Definition 2.1

A left (resp. right) Zinbiel algebra is a vector space π’œ π’œ \mathcal{A} caligraphic_A endowed with a bilinear product βˆ— normal-βˆ— \ast βˆ— satisfying, for all x , y , z ∈ π’œ π‘₯ 𝑦 𝑧 π’œ x,y,z\in\mathcal{A} italic_x , italic_y , italic_z ∈ caligraphic_A ,

( x βˆ— y ) βˆ— z = x βˆ— ( y βˆ— z ) + x βˆ— ( z βˆ— y ) , βˆ— βˆ— π‘₯ 𝑦 𝑧 βˆ— π‘₯ βˆ— 𝑦 𝑧 βˆ— π‘₯ βˆ— 𝑧 𝑦 \displaystyle(x\ast y)\ast z=x\ast(y\ast z)+x\ast(z\ast y), ( italic_x βˆ— italic_y ) βˆ— italic_z = italic_x βˆ— ( italic_y βˆ— italic_z ) + italic_x βˆ— ( italic_z βˆ— italic_y ) , (2.1.1)
( resp. x βˆ— ( y βˆ— z ) = ( x βˆ— y ) βˆ— z + ( y βˆ— x ) βˆ— z ) , fragments fragments ( resp. italic- x βˆ— fragments ( y βˆ— z ) fragments ( x βˆ— y ) βˆ— z fragments ( y βˆ— x ) βˆ— z italic- ) , \displaystyle(\quad\mbox{resp.}\quad\;x\ast(y\ast z)=(x\ast y)\ast z+(y\ast x)% \ast z\;\quad), ( resp. italic_x βˆ— ( italic_y βˆ— italic_z ) = ( italic_x βˆ— italic_y ) βˆ— italic_z + ( italic_y βˆ— italic_x ) βˆ— italic_z ) , (2.1.2)

or, equivalently,

( x , y , z ) = x βˆ— ( z βˆ— y ) π‘₯ 𝑦 𝑧 βˆ— π‘₯ βˆ— 𝑧 𝑦 \displaystyle(x,y,z)=x\ast(z\ast y) ( italic_x , italic_y , italic_z ) = italic_x βˆ— ( italic_z βˆ— italic_y ) (2.1.3)
( resp. ( x , y , z ) = - ( y βˆ— x ) βˆ— z ) ) , fragments fragments ( resp. italic- fragments ( x , y , z ) fragments ( y βˆ— x ) βˆ— z ) italic- ) , \displaystyle(\quad\mbox{resp.}\quad\;(x,y,z)=-(y\ast x)\ast z)\quad), ( resp. ( italic_x , italic_y , italic_z ) = - ( italic_y βˆ— italic_x ) βˆ— italic_z ) ) , (2.1.4)

where, βˆ€ x , y , z ∈ π’œ , ( x , y , x ) = ( x βˆ— y ) βˆ— z - x βˆ— ( y βˆ— z ) formulae-sequence for-all π‘₯ 𝑦 𝑧 π’œ π‘₯ 𝑦 π‘₯ normal-βˆ— normal-βˆ— π‘₯ 𝑦 𝑧 normal-βˆ— π‘₯ normal-βˆ— 𝑦 𝑧 \forall x,y,z\in\mathcal{A},(x,y,x)=(x\ast y)\ast z-x\ast(y\ast z) βˆ€ italic_x , italic_y , italic_z ∈ caligraphic_A , ( italic_x , italic_y , italic_x ) = ( italic_x βˆ— italic_y ) βˆ— italic_z - italic_x βˆ— ( italic_y βˆ— italic_z ) is the associator associated to βˆ— normal-βˆ— \ast βˆ— .

Definition 2.13

[ Ni_B ] Let ( 𝒒 , β‹… ) 𝒒 normal-β‹… \displaystyle(\mathcal{G},\cdot) ( caligraphic_G , β‹… ) and ( β„‹ , ∘ ) β„‹ \displaystyle(\mathcal{H},\circ) ( caligraphic_H , ∘ ) be two commutative associative algebras, and ρ : β„‹ β†’ 𝔀 ⁒ 𝔩 ⁒ ( 𝒒 ) normal-: 𝜌 normal-β†’ β„‹ 𝔀 𝔩 𝒒 {\displaystyle\rho:\mathcal{H}\rightarrow\mathfrak{gl}(\mathcal{G})} italic_ρ : caligraphic_H β†’ fraktur_g fraktur_l ( caligraphic_G ) and ΞΌ : 𝒒 β†’ 𝔀 ⁒ 𝔩 ⁒ ( β„‹ ) normal-: πœ‡ normal-β†’ 𝒒 𝔀 𝔩 β„‹ {\displaystyle\mu:\mathcal{G}\rightarrow\mathfrak{gl}(\mathcal{H})} italic_ΞΌ : caligraphic_G β†’ fraktur_g fraktur_l ( caligraphic_H ) be two 𝒦 𝒦 {\mathcal{K}} caligraphic_K -linear maps which are representations of β„‹ β„‹ {\mathcal{H}} caligraphic_H and 𝒒 𝒒 {\mathcal{G}} caligraphic_G , respectively, satisfying the following relations: for all ⁒ x , y ∈ 𝒒 for all π‘₯ 𝑦 𝒒 \mbox{for all }x,y\in\mathcal{G} for all italic_x , italic_y ∈ caligraphic_G and all a , b ∈ β„‹ , π‘Ž 𝑏 β„‹ {\displaystyle a,b\in~{}\mathcal{H}}, italic_a , italic_b ∈ caligraphic_H ,

ΞΌ ⁒ ( x ) ⁒ ( a ∘ b ) = ( ΞΌ ⁒ ( x ) ⁒ a ) ∘ b + ΞΌ ⁒ ( ρ ⁒ ( a ) ⁒ x ) ⁒ b , πœ‡ π‘₯ π‘Ž 𝑏 πœ‡ π‘₯ π‘Ž 𝑏 πœ‡ 𝜌 π‘Ž π‘₯ 𝑏 \displaystyle{\mu(x)(a\circ b)=(\mu(x)a)\circ b+\mu(\rho(a)x)b}, italic_ΞΌ ( italic_x ) ( italic_a ∘ italic_b ) = ( italic_ΞΌ ( italic_x ) italic_a ) ∘ italic_b + italic_ΞΌ ( italic_ρ ( italic_a ) italic_x ) italic_b , (2.4.1)
ρ ⁒ ( a ) ⁒ ( x β‹… y ) = ( ρ ⁒ ( a ) ⁒ x ) β‹… b + ρ ⁒ ( ΞΌ ⁒ ( x ) ⁒ a ) ⁒ y . 𝜌 π‘Ž β‹… π‘₯ 𝑦 β‹… 𝜌 π‘Ž π‘₯ 𝑏 𝜌 πœ‡ π‘₯ π‘Ž 𝑦 \displaystyle{\rho(a)(x\cdot y)=(\rho(a)x)\cdot b+\rho(\mu(x)a)y}. italic_ρ ( italic_a ) ( italic_x β‹… italic_y ) = ( italic_ρ ( italic_a ) italic_x ) β‹… italic_b + italic_ρ ( italic_ΞΌ ( italic_x ) italic_a ) italic_y . (2.4.2)

Then, ( 𝒒 , β„‹ , ρ , ΞΌ ) 𝒒 β„‹ 𝜌 πœ‡ {\displaystyle(\mathcal{G},\mathcal{H},\rho,\mu)} ( caligraphic_G , caligraphic_H , italic_ρ , italic_ΞΌ ) is called a matched pair of the commutative associative algebras 𝒒 𝒒 {\displaystyle\mathcal{G}} caligraphic_G and β„‹ , β„‹ {\displaystyle\mathcal{H}}, caligraphic_H , denoted by 𝒒 β‹ˆ ρ ΞΌ β„‹ . subscript superscript normal-β‹ˆ πœ‡ 𝜌 𝒒 β„‹ {\displaystyle\mathcal{G}\bowtie^{\mu}_{\rho}\mathcal{H}}. caligraphic_G β‹ˆ start_POSTSUPERSCRIPT italic_ΞΌ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ρ end_POSTSUBSCRIPT caligraphic_H .

In this case, ( 𝒒 βŠ• β„‹ , βˆ— ) direct-sum 𝒒 β„‹ normal-βˆ— {\displaystyle(\mathcal{G}\oplus\mathcal{H},\ast)} ( caligraphic_G βŠ• caligraphic_H , βˆ— ) defines a commutative associative algebra with respect to the product βˆ— , normal-βˆ— {\ast}, βˆ— , given, for all x , y ∈ 𝒒 π‘₯ 𝑦 𝒒 {x,y\in\mathcal{G}} italic_x , italic_y ∈ caligraphic_G and all a , b ∈ β„‹ π‘Ž 𝑏 β„‹ {a,b\in\mathcal{H}} italic_a , italic_b ∈ caligraphic_H , by

( x + a ) βˆ— ( y + b ) = x β‹… y + ΞΌ ⁒ ( a ) ⁒ y + ΞΌ ⁒ ( b ) ⁒ x + a ∘ b + ρ ⁒ ( x ) ⁒ b + ρ ⁒ ( y ) ⁒ a βˆ— π‘₯ π‘Ž 𝑦 𝑏 β‹… π‘₯ 𝑦 πœ‡ π‘Ž 𝑦 πœ‡ 𝑏 π‘₯ π‘Ž 𝑏 𝜌 π‘₯ 𝑏 𝜌 𝑦 π‘Ž {\displaystyle(x+a)\ast(y+b)=x\cdot y+\mu(a)y+\mu(b)x+a\circ b+\rho(x)b+\rho(y% )a} ( italic_x + italic_a ) βˆ— ( italic_y + italic_b ) = italic_x β‹… italic_y + italic_ΞΌ ( italic_a ) italic_y + italic_ΞΌ ( italic_b ) italic_x + italic_a ∘ italic_b + italic_ρ ( italic_x ) italic_b + italic_ρ ( italic_y ) italic_a .


Definition 3.6 .

Let ∼ similar-to \sim ∼ denote the generalization of the equivalence relation ( 3.1 ) to the case of directed metric graphs,

( G , Ξ» , o ) ∼ ( G β€² , Ξ» β€² , o β€² ) ⟺ { βˆƒ Ο† : G ⟢ G β€² ⁒ homothety and ⁒ βˆ€ e ∈ E ⁒ ( G ) : o ⁒ ( e ) = ( x , y ) ⟹ o β€² ⁒ ( Ο† ⁒ ( e ) ) = ( Ο† ⁒ ( x ) , Ο† ⁒ ( y ) ) . ⟺ similar-to 𝐺 πœ† π‘œ superscript 𝐺 β€² superscript πœ† β€² superscript π‘œ β€² cases : πœ‘ ⟢ 𝐺 superscript 𝐺 β€² homothety and for-all 𝑒 𝐸 𝐺 : absent π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ π‘œ 𝑒 π‘₯ 𝑦 ⟹ superscript π‘œ β€² πœ‘ 𝑒 πœ‘ π‘₯ πœ‘ 𝑦 π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ (G,\lambda,o)\sim(G^{\prime},\lambda^{\prime},o^{\prime})\Longleftrightarrow% \begin{cases}\exists\varphi:G\longrightarrow G^{\prime}\text{ homothety and }% \forall e\in E(G):\\ o(e)=(x,y)\Longrightarrow o^{\prime}(\varphi(e))=(\varphi(x),\varphi(y)).\end{cases} ( italic_G , italic_Ξ» , italic_o ) ∼ ( italic_G start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ξ» start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_o start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ⟺ { start_ROW start_CELL βˆƒ italic_Ο† : italic_G ⟢ italic_G start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT homothety and βˆ€ italic_e ∈ italic_E ( italic_G ) : end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_o ( italic_e ) = ( italic_x , italic_y ) ⟹ italic_o start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ο† ( italic_e ) ) = ( italic_Ο† ( italic_x ) , italic_Ο† ( italic_y ) ) . end_CELL start_CELL end_CELL end_ROW

Then for n , s ∈ β„• 𝑛 𝑠 β„• n,s\in\mathbb{N} italic_n , italic_s ∈ blackboard_N the moduli space of directed graphs is defined as

β„³ ⁒ π’Ÿ ⁒ 𝒒 n , s := { ( G , { v 1 , … , v s } , Ξ» , o ) | G adm.Β with s legs, | G | = n , directed by o : E β†’ V 2 , Ξ» regular } / ∼ . assign β„³ π’Ÿ subscript 𝒒 𝑛 𝑠 subscript conditional-set 𝐺 subscript 𝑣 1 … subscript 𝑣 𝑠 πœ† π‘œ fragments G adm.Β with s legs, | G | n , fragments directed by o : E β†’ V 2 , Ξ» regular absent similar-to \mathcal{MDG}_{n,s}:=\left\{(G,\{v_{1},\ldots,v_{s}\},\lambda,o)\;\middle|\;% \begin{tabular}[]{@{}l@{}}G adm.\ with $s$ legs, $|G|=n$,\\ directed by $o:E\rightarrow V^{2}$, $\lambda$ regular\end{tabular}\right\}_{% \Big{/}\sim}. caligraphic_M caligraphic_D caligraphic_G start_POSTSUBSCRIPT italic_n , italic_s end_POSTSUBSCRIPT := { ( italic_G , { italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT } , italic_Ξ» , italic_o ) | start_ROW start_CELL G adm. with italic_s legs, | italic_G | = italic_n , end_CELL end_ROW start_ROW start_CELL directed by italic_o : italic_E β†’ italic_V start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_Ξ» regular end_CELL end_ROW } start_POSTSUBSCRIPT / ∼ end_POSTSUBSCRIPT .

Definition 2

(Modulo operations) The notation x mod a modulo π‘₯ π‘Ž x\bmod a italic_x roman_mod italic_a denotes reducing x ∈ β„€ π‘₯ β„€ x\in\mathbb{Z} italic_x ∈ blackboard_Z modulo the integer interval [ - a , a ) π‘Ž π‘Ž [-a,a) [ - italic_a , italic_a ) . That is,

x mod a = x - b β‹… [ a - ( - a ) ] , modulo π‘₯ π‘Ž π‘₯ β‹… 𝑏 delimited-[] π‘Ž π‘Ž x\bmod a=x-b\cdot\left[a-(-a)\right], italic_x roman_mod italic_a = italic_x - italic_b β‹… [ italic_a - ( - italic_a ) ] ,

where b ∈ β„€ 𝑏 β„€ b\in\mathbb{Z} italic_b ∈ blackboard_Z is the (unique) integer such that

x - b β‹… [ a - ( - a ) ] ∈ [ - a , a ) . π‘₯ β‹… 𝑏 delimited-[] π‘Ž π‘Ž π‘Ž π‘Ž x-b\cdot\left[a-(-a)\right]\in[-a,a). italic_x - italic_b β‹… [ italic_a - ( - italic_a ) ] ∈ [ - italic_a , italic_a ) .

Definition 3 .

Let ( V , B ) 𝑉 𝐡 (V,B) ( italic_V , italic_B ) be an anti-Hermitian space. Define a right action β†Ό β†Ό \leftharpoonup β†Ό of the multiplicative monoid ( R , β‹… ) 𝑅 β‹… (R,\cdot) ( italic_R , β‹… ) on β„Œ β„Œ \mathfrak{H} fraktur_H by

( v , x ) β†Ό y = ( v ⁒ y , y Β― ⁒ 1 Β― - 1 ⁒ x ⁒ y ) . β†Ό 𝑣 π‘₯ 𝑦 𝑣 𝑦 Β― 𝑦 superscript Β― 1 1 π‘₯ 𝑦 (v,x)\leftharpoonup y=(vy,\bar{y}\bar{1}^{-1}xy). ( italic_v , italic_x ) β†Ό italic_y = ( italic_v italic_y , Β― start_ARG italic_y end_ARG Β― start_ARG 1 end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x italic_y ) .

This action has the property that ( Ξ± ⁒ + . ⁒ Ξ² ) β†Ό y = Ξ± β†Ό y ⁒ + . ⁒ Ξ² β†Ό y β†Ό 𝛼 . 𝛽 𝑦 𝛼 β†Ό 𝑦 . 𝛽 β†Ό 𝑦 (\alpha\overset{.}{+}\beta)\leftharpoonup y=\alpha\leftharpoonup y\overset{.}{% +}\beta\leftharpoonup y ( italic_Ξ± . start_ARG + end_ARG italic_Ξ² ) β†Ό italic_y = italic_Ξ± β†Ό italic_y . start_ARG + end_ARG italic_Ξ² β†Ό italic_y for any Ξ± , Ξ² ∈ β„Œ 𝛼 𝛽 β„Œ \alpha,\beta\in\mathfrak{H} italic_Ξ± , italic_Ξ² ∈ fraktur_H and y ∈ R 𝑦 𝑅 y\in R italic_y ∈ italic_R .


Definition 2.4 .

A mapping f : X β†’ Y : 𝑓 β†’ 𝑋 π‘Œ f\colon X\to Y italic_f : italic_X β†’ italic_Y is topologically equivalent to g : X β€² β†’ Y β€² : 𝑔 β†’ superscript 𝑋 β€² superscript π‘Œ β€² g\colon X^{\prime}\to Y^{\prime} italic_g : italic_X start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β†’ italic_Y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT if there exists homeomorphisms Ο• italic-Ο• \phi italic_Ο• and ψ πœ“ \psi italic_ψ such that

f = ψ - 1 ∘ g ∘ Ο• . 𝑓 superscript πœ“ 1 𝑔 italic-Ο• f=\psi^{-1}\circ g\circ\phi. italic_f = italic_ψ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ∘ italic_g ∘ italic_Ο• .

In other words the following diagram commutes:

{tikzcd} ⁒ X ⁒ \arrow ⁒ r ⁒ f ⁒ \arrow ⁒ [ s ⁒ w ⁒ a ⁒ p ] ⁒ d ⁒ Ο• ⁒ & ⁒ Y ⁒ \arrow ⁒ d ⁒ ψ ⁒ X β€² ⁒ \arrow ⁒ r ⁒ g ⁒ & ⁒ Y β€² . {tikzcd} 𝑋 \arrow π‘Ÿ 𝑓 \arrow delimited-[] 𝑠 𝑀 π‘Ž 𝑝 𝑑 italic-Ο• & π‘Œ \arrow 𝑑 πœ“ superscript 𝑋 β€² \arrow π‘Ÿ 𝑔 & superscript π‘Œ β€² \tikzcd X\arrow{r}{f}\arrow[swap]{d}{\phi}&Y\arrow{d}{\psi}\\ X^{\prime}\arrow{r}{g}&Y^{\prime}. italic_X italic_r italic_f [ italic_s italic_w italic_a italic_p ] italic_d italic_Ο• & italic_Y italic_d italic_ψ italic_X start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_r italic_g & italic_Y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT .

Definition 1 .

Algebra ( Q , β‹… , / , \ ) 𝑄 β‹… \ (Q,\cdot,/,\backslash) ( italic_Q , β‹… , / , \ ) with three binary operations that satisfies the following identities:

x β‹… ( x \ y ) = y , β‹… π‘₯ \ π‘₯ 𝑦 𝑦 x\cdot(x\backslash y)=y, italic_x β‹… ( italic_x \ italic_y ) = italic_y , (1)
( y / x ) β‹… x = y , β‹… 𝑦 π‘₯ π‘₯ 𝑦 (y/x)\cdot x=y, ( italic_y / italic_x ) β‹… italic_x = italic_y , (2)
x \ ( x β‹… y ) = y , \ π‘₯ β‹… π‘₯ 𝑦 𝑦 x\backslash(x\cdot y)=y, italic_x \ ( italic_x β‹… italic_y ) = italic_y , (3)
( y β‹… x ) / x = y , β‹… 𝑦 π‘₯ π‘₯ 𝑦 (y\cdot x)/x=y, ( italic_y β‹… italic_x ) / italic_x = italic_y , (4)

is called an equational quasigroup (often it is called a quasigroup).

Definition 2 .

A quasigroup ( Q , β‹… ) 𝑄 β‹… (Q,\cdot) ( italic_Q , β‹… ) is said to be Neumann quasigroup if in this quasigroup the identity

x β‹… ( y ⁒ z β‹… y ⁒ x ) = z β‹… π‘₯ β‹… 𝑦 𝑧 𝑦 π‘₯ 𝑧 x\cdot(yz\cdot yx)=z italic_x β‹… ( italic_y italic_z β‹… italic_y italic_x ) = italic_z (5)

holds true [ 8 , 12 , 7 ] , [ 15 , p. 248] .

Definition 11 .

A bijection ΞΈ πœƒ \theta italic_ΞΈ of a set Q 𝑄 Q italic_Q is called a right pseudoautomorphism of a quasigroup ( Q , β‹… ) 𝑄 β‹… (Q,\cdot) ( italic_Q , β‹… ) if there exists at least one element c ∈ Q 𝑐 𝑄 c\in Q italic_c ∈ italic_Q such that

ΞΈ ⁒ x β‹… ( ΞΈ ⁒ y β‹… c ) = ( ΞΈ ⁒ ( x β‹… y ) ) β‹… c β‹… πœƒ π‘₯ β‹… πœƒ 𝑦 𝑐 β‹… πœƒ β‹… π‘₯ 𝑦 𝑐 \theta x\cdot(\theta y\cdot c)=(\theta(x\cdot y))\cdot c italic_ΞΈ italic_x β‹… ( italic_ΞΈ italic_y β‹… italic_c ) = ( italic_ΞΈ ( italic_x β‹… italic_y ) ) β‹… italic_c (9)

for all x , y ∈ Q π‘₯ 𝑦 𝑄 x,y\in Q italic_x , italic_y ∈ italic_Q , i.e., ( ΞΈ , R c ⁒ ΞΈ , R c ⁒ ΞΈ ) πœƒ subscript 𝑅 𝑐 πœƒ subscript 𝑅 𝑐 πœƒ (\theta,R_{c}\theta,R_{c}\theta) ( italic_ΞΈ , italic_R start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_ΞΈ , italic_R start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_ΞΈ ) is an autotopy a quasigroup ( Q , β‹… ) 𝑄 β‹… (Q,\cdot) ( italic_Q , β‹… ) . The element c 𝑐 c italic_c is called a companion of ΞΈ πœƒ \theta italic_ΞΈ [ 11 , 9 , 13 ] .

A bijection ΞΈ πœƒ \theta italic_ΞΈ of a set Q 𝑄 Q italic_Q is called a left pseudoautomorphism of a quasigroup ( Q , β‹… ) 𝑄 β‹… (Q,\cdot) ( italic_Q , β‹… ) if there exists at least one element c ∈ Q 𝑐 𝑄 c\in Q italic_c ∈ italic_Q such that

( c β‹… ΞΈ ⁒ x ) β‹… ΞΈ ⁒ y = c β‹… ( ΞΈ ⁒ ( x β‹… y ) ) β‹… β‹… 𝑐 πœƒ π‘₯ πœƒ 𝑦 β‹… 𝑐 πœƒ β‹… π‘₯ 𝑦 (c\cdot\theta x)\cdot\theta y=c\cdot(\theta(x\cdot y)) ( italic_c β‹… italic_ΞΈ italic_x ) β‹… italic_ΞΈ italic_y = italic_c β‹… ( italic_ΞΈ ( italic_x β‹… italic_y ) ) (10)

for all x , y ∈ Q π‘₯ 𝑦 𝑄 x,y\in Q italic_x , italic_y ∈ italic_Q , i.e., ( L c ⁒ ΞΈ , ΞΈ , L c ⁒ ΞΈ ) subscript 𝐿 𝑐 πœƒ πœƒ subscript 𝐿 𝑐 πœƒ (L_{c}\theta,\theta,L_{c}\theta) ( italic_L start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_ΞΈ , italic_ΞΈ , italic_L start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT italic_ΞΈ ) is an autotopy a quasigroup ( Q , β‹… ) 𝑄 β‹… (Q,\cdot) ( italic_Q , β‹… ) . The element c 𝑐 c italic_c is called a companion of left pseudoautomorphism ΞΈ πœƒ \theta italic_ΞΈ [ 11 , 9 , 13 ] .

Definition 20 .

Quasigroup ( Q , β‹… ) 𝑄 β‹… (Q,\cdot) ( italic_Q , β‹… ) with identity

y ⁒ z β‹… y ⁒ x = x ⁒ z β‹… 𝑦 𝑧 𝑦 π‘₯ π‘₯ 𝑧 yz\cdot yx=xz italic_y italic_z β‹… italic_y italic_x = italic_x italic_z (15)

is called Schweizer quasigroup [ 7 , p. 313] .


Definition 3 .

We say that a holomorphic function f 𝑓 f italic_f on ℍ ℍ \mathbb{H} blackboard_H is a mock modular form of weight k π‘˜ k italic_k and multiplier Ο‡ πœ’ \chi italic_Ο‡ on Ξ“ Ξ“ \Gamma roman_Ξ“ , if and only if it exists a weight 2 - k 2 π‘˜ 2-k 2 - italic_k cusp form g 𝑔 g italic_g on Ξ“ Ξ“ \Gamma roman_Ξ“ such that the non-holomorphic completion of f 𝑓 f italic_f , defined as

f ^ ⁒ ( Ο„ ) = f ⁒ ( Ο„ ) - g βˆ— ⁒ ( Ο„ ) ^ 𝑓 𝜏 𝑓 𝜏 superscript 𝑔 βˆ— 𝜏 \hat{f}(\tau)=f(\tau)-g^{\ast}(\tau) ^ start_ARG italic_f end_ARG ( italic_Ο„ ) = italic_f ( italic_Ο„ ) - italic_g start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_Ο„ )

satisfies f ^ = f ^ | k , Ο‡ Ξ³ fragments ^ 𝑓 ^ 𝑓 fragments subscript | π‘˜ πœ’ Ξ³ \hat{f}=\hat{f}\lvert_{k,\chi}\gamma ^ start_ARG italic_f end_ARG = ^ start_ARG italic_f end_ARG | start_POSTSUBSCRIPT italic_k , italic_Ο‡ end_POSTSUBSCRIPT italic_Ξ³ for every Ξ³ ∈ Ξ“ 𝛾 Ξ“ \gamma\in\Gamma italic_Ξ³ ∈ roman_Ξ“ . In the above, we defined the non-holomorphic Eichler integral

g βˆ— ⁒ ( Ο„ ) := C ⁒ ∫ - Ο„ Β― i ⁒ ∞ ( Ο„ β€² + Ο„ ) - k ⁒ g ⁒ ( - Ο„ Β― β€² ) Β― ⁒ 𝑑 Ο„ β€² assign superscript 𝑔 βˆ— 𝜏 𝐢 superscript subscript Β― 𝜏 𝑖 superscript superscript 𝜏 β€² 𝜏 π‘˜ Β― 𝑔 superscript Β― 𝜏 β€² differential-d superscript 𝜏 β€² g^{\ast}(\tau):={C\int_{-\bar{\tau}}^{i\infty}(\tau^{\prime}+\tau)^{-k}% \overline{g(-\bar{\tau}^{\prime})}\,d\tau^{\prime}} italic_g start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ( italic_Ο„ ) := italic_C ∫ start_POSTSUBSCRIPT - Β― start_ARG italic_Ο„ end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_i ∞ end_POSTSUPERSCRIPT ( italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + italic_Ο„ ) start_POSTSUPERSCRIPT - italic_k end_POSTSUPERSCRIPT Β― start_ARG italic_g ( - Β― start_ARG italic_Ο„ end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) end_ARG italic_d italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT (7.33)

for Ο„ ∈ ℍ 𝜏 ℍ \tau\in\mathbb{H} italic_Ο„ ∈ blackboard_H .


Definition 4 ( π–₯π—‚π—‹π—Œπ— ⁒ - ⁒ π—ˆπ—‹π–½π–Ύπ—‹ ⁒ 𝖼𝗋𝗂𝗍𝗂𝖼𝖺𝗅 ⁒ π—‰π—ˆπ—‚π—‡π—π—Œ π–₯π—‚π—‹π—Œπ— - π—ˆπ—‹π–½π–Ύπ—‹ 𝖼𝗋𝗂𝗍𝗂𝖼𝖺𝗅 π—‰π—ˆπ—‚π—‡π—π—Œ \mathsf{First\text{-}order~{}critical~{}points} sansserif_First - sansserif_order sansserif_critical sansserif_points ) .

A first-order critical point (stationary point) 𝐱 𝐱 {\bm{x}} bold_italic_x of f ⁒ ( β‹… ) 𝑓 normal-β‹… f(\cdot) italic_f ( β‹… ) is any point that satisfies

βˆ‡ ⁑ f ⁒ ( 𝒙 ) = 𝟎 . βˆ‡ 𝑓 𝒙 0 \nabla f({\bm{x}})=\bm{0}. βˆ‡ italic_f ( bold_italic_x ) = bold_0 .

Definition 8.2 .

A global C 𝐢 C italic_C -definable type is generically stable if

p ⁒ ( x ) βŠ— p ⁒ ( y ) = p ⁒ ( y ) βŠ— p ⁒ ( x ) . tensor-product 𝑝 π‘₯ 𝑝 𝑦 tensor-product 𝑝 𝑦 𝑝 π‘₯ p(x)\otimes p(y)=p(y)\otimes p(x). italic_p ( italic_x ) βŠ— italic_p ( italic_y ) = italic_p ( italic_y ) βŠ— italic_p ( italic_x ) .

Given a definable set X 𝑋 X italic_X in k π‘˜ k italic_k , we let X ^ ⁒ ( C ) ^ 𝑋 𝐢 \widehat{X}(C) ^ start_ARG italic_X end_ARG ( italic_C ) denote the set of generically stable types on X 𝑋 X italic_X , that is, those types containing a formula which defines X 𝑋 X italic_X .


Definition 3.1 .

Let H 𝐻 H italic_H be an algebra generated by the elements a π‘Ž a italic_a , b 𝑏 b italic_b , c 𝑐 c italic_c , d 𝑑 d italic_d satisfying the relations

(4) a 6 = 1 , b 2 = 0 , c 2 = 0 , d 6 = 1 , a 2 = d 2 , a ⁒ d = d ⁒ a , b ⁒ c = 0 = c ⁒ b , a ⁒ b = ΞΎ ⁒ b ⁒ a , a ⁒ c = ΞΎ ⁒ c ⁒ a , d ⁒ b = - ΞΎ ⁒ b ⁒ d , d ⁒ c = - ΞΎ ⁒ c ⁒ d , b ⁒ d = c ⁒ a , b ⁒ a = c ⁒ d . fragments superscript π‘Ž 6 1 , italic- superscript 𝑏 2 0 , italic- superscript 𝑐 2 0 , italic- superscript 𝑑 6 1 , italic- superscript π‘Ž 2 superscript 𝑑 2 , italic- π‘Ž 𝑑 𝑑 π‘Ž , italic- 𝑏 𝑐 0 𝑐 𝑏 ⁣ π‘Ž 𝑏 πœ‰ 𝑏 π‘Ž , italic- π‘Ž 𝑐 πœ‰ 𝑐 π‘Ž , italic- 𝑑 𝑏 πœ‰ 𝑏 𝑑 , italic- 𝑑 𝑐 πœ‰ 𝑐 𝑑 , italic- 𝑏 𝑑 𝑐 π‘Ž , italic- 𝑏 π‘Ž 𝑐 𝑑 PERIOD \displaystyle\begin{split}\displaystyle a^{6}=1,\quad b^{2}=0,\quad c^{2}=0,% \quad d^{6}=1,\quad a^{2}=d^{2},\quad ad=da,\quad bc=0=cb,\\ \displaystyle ab=\xi ba,\quad ac=\xi ca,\quad db=-\xi bd,\quad dc=-\xi cd,% \quad bd=ca,\quad ba=cd.\end{split} start_ROW start_CELL italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = 1 , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 , italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 , italic_d start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = 1 , italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_a italic_d = italic_d italic_a , italic_b italic_c = 0 = italic_c italic_b , end_CELL end_ROW start_ROW start_CELL italic_a italic_b = italic_ΞΎ italic_b italic_a , italic_a italic_c = italic_ΞΎ italic_c italic_a , italic_d italic_b = - italic_ΞΎ italic_b italic_d , italic_d italic_c = - italic_ΞΎ italic_c italic_d , italic_b italic_d = italic_c italic_a , italic_b italic_a = italic_c italic_d . end_CELL end_ROW
Definition 4.1 .

The Hopf algebra K 𝐾 K italic_K is the algebra generated by the elements a π‘Ž a italic_a , b 𝑏 b italic_b , c 𝑐 c italic_c satisfying the relations

(27) a 6 = 1 , b 2 = 0 , c 2 = 1 , b ⁒ a = ΞΎ ⁒ a ⁒ b , a ⁒ c = c ⁒ a , b ⁒ c = c ⁒ b , formulae-sequence superscript π‘Ž 6 1 formulae-sequence superscript 𝑏 2 0 formulae-sequence superscript 𝑐 2 1 formulae-sequence 𝑏 π‘Ž πœ‰ π‘Ž 𝑏 formulae-sequence π‘Ž 𝑐 𝑐 π‘Ž 𝑏 𝑐 𝑐 𝑏 \displaystyle a^{6}=1,\quad b^{2}=0,\quad c^{2}=1,\quad ba=\xi ab,\quad ac=ca,% \quad bc=cb, italic_a start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT = 1 , italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 , italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 1 , italic_b italic_a = italic_ΞΎ italic_a italic_b , italic_a italic_c = italic_c italic_a , italic_b italic_c = italic_c italic_b ,

with the coalgebra structure and antipode given by

(28) Ξ” ⁒ ( a ) = a βŠ— a + ( ΞΎ 4 + ΞΎ 5 ) ⁒ b βŠ— b ⁒ a 3 , Ξ” ⁒ ( b ) = b βŠ— a 4 + a βŠ— b , Ξ” ⁒ ( c ) = c βŠ— c , formulae-sequence Ξ” π‘Ž tensor-product π‘Ž π‘Ž tensor-product superscript πœ‰ 4 superscript πœ‰ 5 𝑏 𝑏 superscript π‘Ž 3 formulae-sequence Ξ” 𝑏 tensor-product 𝑏 superscript π‘Ž 4 tensor-product π‘Ž 𝑏 Ξ” 𝑐 tensor-product 𝑐 𝑐 \displaystyle\Delta(a)=a\otimes a+(\xi^{4}+\xi^{5})b\otimes ba^{3},\quad\Delta% (b)=b\otimes a^{4}+a\otimes b,\quad\Delta(c)=c\otimes c, roman_Ξ” ( italic_a ) = italic_a βŠ— italic_a + ( italic_ΞΎ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_ΞΎ start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT ) italic_b βŠ— italic_b italic_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT , roman_Ξ” ( italic_b ) = italic_b βŠ— italic_a start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + italic_a βŠ— italic_b , roman_Ξ” ( italic_c ) = italic_c βŠ— italic_c ,
(29) Ο΅ ⁒ ( a ) = 1 , Ο΅ ⁒ ( b ) = 0 , Ο΅ ⁒ ( c ) = 1 , S ⁒ ( a ) = a 5 , S ⁒ ( b ) = ΞΎ - 2 ⁒ b ⁒ a , S ⁒ ( c ) = c . formulae-sequence italic-Ο΅ π‘Ž 1 formulae-sequence italic-Ο΅ 𝑏 0 formulae-sequence italic-Ο΅ 𝑐 1 formulae-sequence 𝑆 π‘Ž superscript π‘Ž 5 formulae-sequence 𝑆 𝑏 superscript πœ‰ 2 𝑏 π‘Ž 𝑆 𝑐 𝑐 \displaystyle\epsilon(a)=1,\quad\epsilon(b)=0,\quad\epsilon(c)=1,\quad S(a)=a^% {5},\quad S(b)=\xi^{-2}ba,\quad S(c)=c. italic_Ο΅ ( italic_a ) = 1 , italic_Ο΅ ( italic_b ) = 0 , italic_Ο΅ ( italic_c ) = 1 , italic_S ( italic_a ) = italic_a start_POSTSUPERSCRIPT 5 end_POSTSUPERSCRIPT , italic_S ( italic_b ) = italic_ΞΎ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT italic_b italic_a , italic_S ( italic_c ) = italic_c .

Definition 2.3 .

A negation map on a 𝒯 𝒯 \mathcal{T} caligraphic_T -module π’œ π’œ \mathcal{A} caligraphic_A is a monoid isomorphism ( - ) : π’œ β†’ π’œ normal-: normal-β†’ π’œ π’œ (-):\mathcal{A}\to\mathcal{A} ( - ) : caligraphic_A β†’ caligraphic_A of order ≀ 2 , absent 2 \leq 2, ≀ 2 , written a ↦ ( - ) ⁒ a maps-to π‘Ž π‘Ž a\mapsto(-)a italic_a ↦ ( - ) italic_a , which also respects the 𝒯 𝒯 \mathcal{T} caligraphic_T -action in the sense that

( - ) ⁒ ( a ⁒ b ) = a ⁒ ( ( - ) ⁒ b ) , π‘Ž 𝑏 π‘Ž 𝑏 (-)(ab)=a((-)b), ( - ) ( italic_a italic_b ) = italic_a ( ( - ) italic_b ) ,

for a ∈ 𝒯 , π‘Ž 𝒯 a\in\mathcal{T}, italic_a ∈ caligraphic_T , b ∈ π’œ . 𝑏 π’œ b\in\mathcal{A}. italic_b ∈ caligraphic_A .

Definition 4.28 .

A (Systemic) Morita context is a six-tuple ( π’œ , π’œ β€² , β„³ , β„³ β€² , Ο„ , Ο„ β€² ) π’œ superscript π’œ normal-β€² β„³ superscript β„³ normal-β€² 𝜏 superscript 𝜏 normal-β€² (\mathcal{A},\mathcal{A}^{\prime},\mathcal{M},\mathcal{M}^{\prime},\tau,\tau^{% \prime}) ( caligraphic_A , caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , caligraphic_M , caligraphic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_Ο„ , italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) where π’œ , π’œ β€² π’œ superscript π’œ normal-β€² \mathcal{A},\mathcal{A}^{\prime} caligraphic_A , caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are systems, β„³ β„³ \mathcal{M} caligraphic_M is an π’œ - π’œ β€² π’œ superscript π’œ normal-β€² \mathcal{A}-\mathcal{A}^{\prime} caligraphic_A - caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT bimodule, β„³ β€² superscript β„³ normal-β€² \mathcal{M}^{\prime} caligraphic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is an π’œ β€² - π’œ superscript π’œ normal-β€² π’œ \mathcal{A}^{\prime}-\mathcal{A} caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT - caligraphic_A bimodule, and

Ο„ : β„³ βŠ— π’œ β€² β„³ β€² β†’ π’œ , Ο„ β€² : β„³ β€² βŠ— π’œ β„³ β†’ π’œ β€² : 𝜏 β†’ subscript tensor-product superscript π’œ β€² β„³ superscript β„³ β€² π’œ superscript 𝜏 β€² : β†’ subscript tensor-product π’œ superscript β„³ β€² β„³ superscript π’œ β€² \tau:\mathcal{M}\otimes_{\mathcal{A}^{\prime}}\mathcal{M}^{\prime}\to\mathcal{% A},\qquad\tau^{\prime}:\mathcal{M}^{\prime}\otimes_{\mathcal{A}}\mathcal{M}\to% \mathcal{A}^{\prime} italic_Ο„ : caligraphic_M βŠ— start_POSTSUBSCRIPT caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT caligraphic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β†’ caligraphic_A , italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT : caligraphic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ— start_POSTSUBSCRIPT caligraphic_A end_POSTSUBSCRIPT caligraphic_M β†’ caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT

are morphisms, linear on each side over π’œ π’œ {\mathcal{A}} caligraphic_A and π’œ β€² superscript π’œ normal-β€² {\mathcal{A}^{\prime}} caligraphic_A start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT respectively, which satisfy the following equations, writing ( x , x β€² ) π‘₯ superscript π‘₯ normal-β€² (x,x^{\prime}) ( italic_x , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) for Ο„ ⁒ ( x , x β€² ) 𝜏 π‘₯ superscript π‘₯ normal-β€² \tau(x,x^{\prime}) italic_Ο„ ( italic_x , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) and [ x β€² , x ] superscript π‘₯ normal-β€² π‘₯ [x^{\prime},x] [ italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_x ] for Ο„ ⁒ ( x β€² , x ) 𝜏 superscript π‘₯ normal-β€² π‘₯ \tau(x^{\prime},x) italic_Ο„ ( italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_x ) :

  1. (i)

    ( x , x β€² ) ⁒ y = x ⁒ [ x β€² , y ] . π‘₯ superscript π‘₯ β€² 𝑦 π‘₯ superscript π‘₯ β€² 𝑦 (x,x^{\prime})y=x[x^{\prime},y]. ( italic_x , italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) italic_y = italic_x [ italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_y ] .

  2. (ii)

    x β€² ⁒ ( x , y β€² ) = [ x β€² , x ] ⁒ y β€² . superscript π‘₯ β€² π‘₯ superscript 𝑦 β€² superscript π‘₯ β€² π‘₯ superscript 𝑦 β€² x^{\prime}(x,y^{\prime})=[x^{\prime},x]y^{\prime}. italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x , italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = [ italic_x start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_x ] italic_y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT .


Definition 1 .

A Hilbert algebra is an algebra ( H , β†’ , 1 ) 𝐻 normal-β†’ 1 (H,\rightarrow,1) ( italic_H , β†’ , 1 ) of type ( 2 , 0 ) 2 0 (2,0) ( 2 , 0 ) which satisfies the following conditions for every a , b , c ∈ H π‘Ž 𝑏 𝑐 𝐻 a,b,c\in H italic_a , italic_b , italic_c ∈ italic_H :

  1. a)

    a β†’ ( b β†’ a ) = 1 fragments a β†’ fragments ( b β†’ a ) 1 a\rightarrow(b\rightarrow a)=1 italic_a β†’ ( italic_b β†’ italic_a ) = 1 ,

  2. b)

    ( a β†’ ( b β†’ c ) ) β†’ ( ( a β†’ b ) β†’ ( a β†’ c ) ) = 1 fragments fragments ( a β†’ fragments ( b β†’ c ) ) β†’ fragments ( fragments ( a β†’ b ) β†’ fragments ( a β†’ c ) ) 1 (a\rightarrow(b\rightarrow c))\rightarrow((a\rightarrow b)\rightarrow(a% \rightarrow c))=1 ( italic_a β†’ ( italic_b β†’ italic_c ) ) β†’ ( ( italic_a β†’ italic_b ) β†’ ( italic_a β†’ italic_c ) ) = 1 ,

  3. c)

    if a β†’ b = b β†’ a = 1 β†’ π‘Ž 𝑏 𝑏 β†’ π‘Ž 1 a\rightarrow b=b\rightarrow a=1 italic_a β†’ italic_b = italic_b β†’ italic_a = 1 then a = b π‘Ž 𝑏 a=b italic_a = italic_b .


Definition 2.4 .

A Frobenius form on an axial algebra A 𝐴 A italic_A is a (symmetric) bilinear form ( β‹… , β‹… ) : A Γ— A β†’ 𝔽 : β‹… β‹… β†’ 𝐴 𝐴 𝔽 (\cdot,\cdot):A\times A\to\mathbb{F} ( β‹… , β‹… ) : italic_A Γ— italic_A β†’ blackboard_F such that the form associates with the algebra product. That is, for all x , y , z ∈ A π‘₯ 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A ,

( x , y ⁒ z ) = ( x ⁒ y , z ) . π‘₯ 𝑦 𝑧 π‘₯ 𝑦 𝑧 (x,yz)=(xy,z). ( italic_x , italic_y italic_z ) = ( italic_x italic_y , italic_z ) .

Definition 2.15 .

Let 𝕄 2 β€² subscript superscript 𝕄 β€² 2 \mathbb{M}^{{}^{\prime}}_{2} blackboard_M start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be the free abelian group generated by { Ξ± , Ξ² } 𝛼 𝛽 \{\alpha,\beta\} { italic_Ξ± , italic_Ξ² } for Ξ± , Ξ² ∈ β„™ 1 ⁒ ( β„š ) 𝛼 𝛽 superscript β„™ 1 β„š \alpha,\beta\in\mathbb{P}^{1}(\mathbb{Q}) italic_Ξ± , italic_Ξ² ∈ blackboard_P start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( blackboard_Q ) . Let 𝕄 2 subscript 𝕄 2 \mathbb{M}_{2} blackboard_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be the quotient of 𝕄 2 β€² subscript superscript 𝕄 β€² 2 \mathbb{M}^{{}^{\prime}}_{2} blackboard_M start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT by the relations

{ Ξ± , Ξ² } + { Ξ² , Ξ³ } + { Ξ³ , Ξ± } = 0 . 𝛼 𝛽 𝛽 𝛾 𝛾 𝛼 0 \{\alpha,\beta\}+\{\beta,\gamma\}+\{\gamma,\alpha\}=0. { italic_Ξ± , italic_Ξ² } + { italic_Ξ² , italic_Ξ³ } + { italic_Ξ³ , italic_Ξ± } = 0 .

We define the action GL 2 ( β„š ) subscript GL 2 β„š \mathop{\rm GL}\nolimits_{2}(\mathbb{Q}) roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Q ) on 𝕄 2 subscript 𝕄 2 \mathbb{M}_{2} blackboard_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT by

g ⁒ { Ξ± , Ξ² } = { g ⁒ ( Ξ± ) , g ⁒ ( Ξ² ) } ⁒ for all ⁒ g ∈ GL 2 ( β„š ) . 𝑔 𝛼 𝛽 𝑔 𝛼 𝑔 𝛽 for all 𝑔 subscript GL 2 β„š g\{\alpha,\beta\}=\{g(\alpha),g(\beta)\}\,\,\,\text{for all}\,\,g\in\mathop{% \rm GL}\nolimits_{2}(\mathbb{Q}). italic_g { italic_Ξ± , italic_Ξ² } = { italic_g ( italic_Ξ± ) , italic_g ( italic_Ξ² ) } for all italic_g ∈ roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Q ) .

Definition 2.1 .

A propositional assignment is a function e : X β†’ [ 0 , 1 ] : 𝑒 β†’ 𝑋 0 1 e:X\to[0,1] italic_e : italic_X β†’ [ 0 , 1 ] . This function can be naturally extended to a propositional GΓΆdel evaluation over β„’ 0 ⁒ ( X ) subscript β„’ 0 𝑋 \mathcal{L}_{0}(X) caligraphic_L start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X ) by the following recursive definitions:


Definition 19 .

A residuated lattice ( L , ∨ , ∧ , βŠ™ , β†’ , 0 , 1 ) 𝐿 direct-product normal-β†’ 0 1 (L,\vee,\wedge,\odot,\rightarrow,0,1) ( italic_L , ∨ , ∧ , βŠ™ , β†’ , 0 , 1 ) is called prelinear if it satisfies the identity

( x β†’ y ) ∨ ( y β†’ x ) β‰ˆ 1 . fragments fragments ( x β†’ y ) fragments ( y β†’ x ) 1 . (x\rightarrow y)\vee(y\rightarrow x)\approx 1. ( italic_x β†’ italic_y ) ∨ ( italic_y β†’ italic_x ) β‰ˆ 1 .

Definition 6 .

Let π’œ = ( Q , L I , L O Ξ΄ , T , q 0 ) π’œ 𝑄 subscript 𝐿 𝐼 superscript subscript 𝐿 𝑂 𝛿 𝑇 subscript π‘ž 0 {\cal A}=(Q,L_{I},L_{O}^{\delta},T,q_{0}) caligraphic_A = ( italic_Q , italic_L start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT , italic_L start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_Ξ΄ end_POSTSUPERSCRIPT , italic_T , italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) be an SA, q ∈ Q π‘ž 𝑄 q\in Q italic_q ∈ italic_Q , Q β€² βŠ† Q superscript 𝑄 normal-β€² 𝑄 Q^{\prime}\subseteq Q italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT βŠ† italic_Q , ΞΌ ∈ L πœ‡ 𝐿 \mu\in L italic_ΞΌ ∈ italic_L , ρ ∈ L * 𝜌 superscript 𝐿 \rho\in L^{*} italic_ρ ∈ italic_L start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , and Ο΅ italic-Ο΅ \epsilon italic_Ο΅ the empty sequence. Then we define:

q π‘Žπ‘“π‘‘π‘’π‘Ÿ Ο΅ = { q } π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘ž italic-Ο΅ π‘ž \displaystyle{{q}\mathbin{\textit{after}}{\epsilon}}=\{q\} italic_q after italic_Ο΅ = { italic_q } q π‘Žπ‘“π‘‘π‘’π‘Ÿ ΞΌ ⁒ ρ = { T ⁒ ( q , ΞΌ ) π‘Žπ‘“π‘‘π‘’π‘Ÿ ρ if ⁒ T ⁒ ( q , ΞΌ ) ↓ βˆ… π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ π‘Žπ‘“π‘‘π‘’π‘Ÿ π‘ž πœ‡ 𝜌 cases π‘Žπ‘“π‘‘π‘’π‘Ÿ 𝑇 π‘ž πœ‡ 𝜌 ↓ if 𝑇 π‘ž πœ‡ absent π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’ \displaystyle{{q}\mathbin{\textit{after}}{\mu\rho}}=\begin{cases}{{T(q,\mu)}% \mathbin{\textit{after}}{\rho}}&\text{if }T(q,\mu){\downarrow\!}\\ \emptyset&\text{otherwise}\end{cases} italic_q after italic_ΞΌ italic_ρ = { start_ROW start_CELL italic_T ( italic_q , italic_ΞΌ ) after italic_ρ end_CELL start_CELL if italic_T ( italic_q , italic_ΞΌ ) ↓ end_CELL end_ROW start_ROW start_CELL βˆ… end_CELL start_CELL otherwise end_CELL end_ROW π’œ π‘Žπ‘“π‘‘π‘’π‘Ÿ ρ = q 0 π‘Žπ‘“π‘‘π‘’π‘Ÿ ρ π‘Žπ‘“π‘‘π‘’π‘Ÿ π’œ 𝜌 π‘Žπ‘“π‘‘π‘’π‘Ÿ subscript π‘ž 0 𝜌 \displaystyle{{{\cal A}}\mathbin{\textit{after}}{\rho}}={{q_{0}}\mathbin{% \textit{after}}{\rho}} caligraphic_A after italic_ρ = italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT after italic_ρ π‘œπ‘’π‘‘ ( Q β€² ) = ⋃ q β€² ∈ Q β€² π‘œπ‘’π‘‘ ( q β€² ) π‘œπ‘’π‘‘ superscript 𝑄 β€² subscript superscript π‘ž β€² superscript 𝑄 β€² π‘œπ‘’π‘‘ superscript π‘ž β€² \displaystyle\mathop{\textit{out}}({Q^{\prime}})=\bigcup_{q^{\prime}\in Q^{% \prime}}\mathop{\textit{out}}({q^{\prime}}) out ( italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = ⋃ start_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_Q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT out ( italic_q start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) π‘‘π‘Ÿπ‘Žπ‘π‘’π‘  ( π’œ ) = { ρ β€² ∈ L * ∣ π’œ π‘Žπ‘“π‘‘π‘’π‘Ÿ ρ β€² β‰  βˆ… } π‘‘π‘Ÿπ‘Žπ‘π‘’π‘  π’œ conditional-set superscript 𝜌 β€² superscript 𝐿 π‘Žπ‘“π‘‘π‘’π‘Ÿ π’œ superscript 𝜌 β€² \displaystyle\mathop{\textit{traces}}({{\cal A}})=\{\rho^{\prime}\in L^{*}\mid% {{{\cal A}}\mathbin{\textit{after}}{\rho^{\prime}}}\neq\emptyset\} traces ( caligraphic_A ) = { italic_ρ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_L start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ∣ caligraphic_A after italic_ρ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  βˆ… }

Definition 5.12 .

Let Ξ± 𝛼 \alpha italic_Ξ± be a finite even sequence. We say that Ξ± 𝛼 \alpha italic_Ξ± is evenly-composite if there exists an even sequence Ξ² 𝛽 \beta italic_Ξ² such that

Ξ± = Ξ² βŠ• Ξ² βŠ• … βŠ• Ξ² . 𝛼 direct-sum 𝛽 𝛽 … 𝛽 \alpha=\beta\oplus\beta\oplus\ldots\oplus\beta. italic_Ξ± = italic_Ξ² βŠ• italic_Ξ² βŠ• … βŠ• italic_Ξ² .

Otherwise we say that Ξ± 𝛼 \alpha italic_Ξ± is evenly-prime .


Definition 1.1 .

Let n β‰₯ 1 𝑛 1 n\geq 1 italic_n β‰₯ 1 and q π‘ž q italic_q be a primitive 2 ⁒ n 2 𝑛 2n 2 italic_n -th root of unity. The Hopf algebra H 4 ⁒ n subscript 𝐻 4 𝑛 H_{4n} italic_H start_POSTSUBSCRIPT 4 italic_n end_POSTSUBSCRIPT is defined as follows. As an algebra it generated by z , x 𝑧 π‘₯ z,x italic_z , italic_x with relations

z 2 ⁒ n = 1 , z ⁒ x = q ⁒ x ⁒ z , x 2 = 0 formulae-sequence superscript 𝑧 2 𝑛 1 formulae-sequence 𝑧 π‘₯ π‘ž π‘₯ 𝑧 superscript π‘₯ 2 0 z^{2n}=1,\quad zx=qxz,\quad x^{2}=0 italic_z start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT = 1 , italic_z italic_x = italic_q italic_x italic_z , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0

for any a ∈ k π‘Ž π‘˜ a\in k italic_a ∈ italic_k .

The coalgebra structure is

Ξ” ⁒ ( z ) = z βŠ— z + a ⁒ ( 1 - q - 2 ) ⁒ z n + 1 ⁒ x βŠ— z ⁒ x , Ξ” ⁒ ( x ) = x βŠ— 1 + z n βŠ— x ; formulae-sequence Ξ” 𝑧 tensor-product 𝑧 𝑧 tensor-product π‘Ž 1 superscript π‘ž 2 superscript 𝑧 𝑛 1 π‘₯ 𝑧 π‘₯ Ξ” π‘₯ tensor-product π‘₯ 1 tensor-product superscript 𝑧 𝑛 π‘₯ \displaystyle\Delta(z)=z\otimes z+a(1-q^{-2})z^{n+1}x\otimes zx,\quad\Delta(x)% =x\otimes 1+z^{n}\otimes x; roman_Ξ” ( italic_z ) = italic_z βŠ— italic_z + italic_a ( 1 - italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ) italic_z start_POSTSUPERSCRIPT italic_n + 1 end_POSTSUPERSCRIPT italic_x βŠ— italic_z italic_x , roman_Ξ” ( italic_x ) = italic_x βŠ— 1 + italic_z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT βŠ— italic_x ;
Ο΅ ⁒ ( z ) = 1 , Ο΅ ⁒ ( x ) = 0 , formulae-sequence italic-Ο΅ 𝑧 1 italic-Ο΅ π‘₯ 0 \displaystyle\epsilon(z)=1,\quad\epsilon(x)=0, italic_Ο΅ ( italic_z ) = 1 , italic_Ο΅ ( italic_x ) = 0 ,
S ⁒ ( z ) = z - 1 , S ⁒ ( x ) = - z n ⁒ x . formulae-sequence 𝑆 𝑧 superscript 𝑧 1 𝑆 π‘₯ superscript 𝑧 𝑛 π‘₯ \displaystyle S(z)=z^{-1},\quad S(x)=-z^{n}x. italic_S ( italic_z ) = italic_z start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , italic_S ( italic_x ) = - italic_z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_x .

5.1 Definition .

Given Ξ± ∈ ℝ 𝛼 ℝ \alpha\in{\mathbb{R}} italic_Ξ± ∈ blackboard_R and a path ΞΎ πœ‰ \xi italic_ΞΎ , we define

ρ ⁒ ( Ξ± , ΞΎ ) = ρ ⁒ ( Ξ± , e ) if ΞΎ = e . 𝜌 𝛼 πœ‰ 𝜌 𝛼 𝑒 if ΞΎ = e . \rho(\alpha,\xi)=\rho(\alpha,e)\qquad\hbox{ if $\xi=e$ .} italic_ρ ( italic_Ξ± , italic_ΞΎ ) = italic_ρ ( italic_Ξ± , italic_e ) if italic_ΞΎ = italic_e .

If ΞΎ = ( e i ) i = 1 M πœ‰ superscript subscript subscript 𝑒 𝑖 𝑖 1 𝑀 \xi=(e_{i})_{i=1}^{M} italic_ΞΎ = ( italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M end_POSTSUPERSCRIPT , for M > 1 𝑀 1 M>1 italic_M > 1 , we set ΞΎ Β― = ( e i ) i = 1 M - 1 Β― πœ‰ superscript subscript subscript 𝑒 𝑖 𝑖 1 𝑀 1 \bar{\xi}=(e_{i})_{i=1}^{M-1} Β― start_ARG italic_ΞΎ end_ARG = ( italic_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_M - 1 end_POSTSUPERSCRIPT and define

ρ ⁒ ( Ξ± , ΞΎ ) = ρ ⁒ ( ρ ⁒ ( Ξ± , ΞΎ Β― ) , e M ) . 𝜌 𝛼 πœ‰ 𝜌 𝜌 𝛼 Β― πœ‰ subscript 𝑒 𝑀 \rho(\alpha,\xi)=\rho(\rho(\alpha,\bar{\xi}),e_{M}). italic_ρ ( italic_Ξ± , italic_ΞΎ ) = italic_ρ ( italic_ρ ( italic_Ξ± , Β― start_ARG italic_ΞΎ end_ARG ) , italic_e start_POSTSUBSCRIPT italic_M end_POSTSUBSCRIPT ) .

Definition 2.15 .

Let G 𝐺 G italic_G be an augmented Lie group. An augmented right G - limit-from 𝐺 G- italic_G - space is a right G - limit-from 𝐺 G- italic_G - space A 𝐴 A italic_A equipped with a continuous map ϡ : A ⟢ C : italic-ϡ ⟢ 𝐴 𝐢 \epsilon:A\longrightarrow C italic_ϡ : italic_A ⟢ italic_C such that

Ο΅ ⁒ ( a β‹… g ) = Ο΅ ⁒ ( a ) β‹… Ο΅ ⁒ ( g ) italic-Ο΅ β‹… π‘Ž 𝑔 β‹… italic-Ο΅ π‘Ž italic-Ο΅ 𝑔 \epsilon(a\cdot g)=\epsilon(a)\cdot\epsilon(g) italic_Ο΅ ( italic_a β‹… italic_g ) = italic_Ο΅ ( italic_a ) β‹… italic_Ο΅ ( italic_g )

for all a ∈ A π‘Ž 𝐴 a\in A italic_a ∈ italic_A and all g ∈ G 𝑔 𝐺 g\in G italic_g ∈ italic_G .


Definition 1 (Lifted matching) .

A matching ΞΌ βŠ† 𝒰 a Γ— 𝒰 b πœ‡ subscript 𝒰 π‘Ž subscript 𝒰 𝑏 \mu\subseteq\mathcal{U}_{a}\times\mathcal{U}_{b} italic_ΞΌ βŠ† caligraphic_U start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT Γ— caligraphic_U start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT gives rise to a lifted matching β„“ ⁒ ( ΞΌ ) βŠ† ( 𝒰 a 2 ) Γ— ( 𝒰 b 2 ) normal-β„“ πœ‡ binomial subscript 𝒰 π‘Ž 2 binomial subscript 𝒰 𝑏 2 \ell(\mu)\subseteq\binom{\mathcal{U}_{a}}{2}\times\binom{\mathcal{U}_{b}}{2} roman_β„“ ( italic_ΞΌ ) βŠ† ( FRACOP start_ARG caligraphic_U start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ) Γ— ( FRACOP start_ARG caligraphic_U start_POSTSUBSCRIPT italic_b end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG ) ,

β„“ ⁒ ( ΞΌ ) = { ( Ξ± ⁒ ( w ) , Ξ² ⁒ ( w ) ) : w ∈ ( ΞΌ 2 ) } . β„“ πœ‡ conditional-set 𝛼 𝑀 𝛽 𝑀 𝑀 binomial πœ‡ 2 \ell(\mu)=\left\{(\alpha(w),\beta(w)):w\in\binom{\mu}{2}\right\}. roman_β„“ ( italic_ΞΌ ) = { ( italic_Ξ± ( italic_w ) , italic_Ξ² ( italic_w ) ) : italic_w ∈ ( FRACOP start_ARG italic_ΞΌ end_ARG start_ARG 2 end_ARG ) } .

Definition 5.1 .

Let π’œ π’œ \mathcal{A} caligraphic_A be a Banach algebra and a , b ∈ π’œ π‘Ž 𝑏 π’œ a,b\in\mathcal{A} italic_a , italic_b ∈ caligraphic_A . The quasi-product a ∘ b π‘Ž 𝑏 a\circ b italic_a ∘ italic_b of a π‘Ž a italic_a and b 𝑏 b italic_b in π’œ π’œ \mathcal{A} caligraphic_A is then defined by

(5.1) a ∘ b = a + b - a ⁒ b . π‘Ž 𝑏 π‘Ž 𝑏 π‘Ž 𝑏 \displaystyle a\circ b=a+b-ab. italic_a ∘ italic_b = italic_a + italic_b - italic_a italic_b .
Definition 5.2 .

Let π’œ π’œ \mathcal{A} caligraphic_A be a Banach algebra and a ∈ π’œ π‘Ž π’œ a\in\mathcal{A} italic_a ∈ caligraphic_A . An element a 0 ∈ π’œ superscript π‘Ž 0 π’œ a^{0}\in\mathcal{A} italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∈ caligraphic_A is called a quasi-inverse for a π‘Ž a italic_a if

a ∘ a 0 = a 0 ∘ a = 0 . π‘Ž superscript π‘Ž 0 superscript π‘Ž 0 π‘Ž 0 a\circ a^{0}=a^{0}\circ a=0. italic_a ∘ italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ∘ italic_a = 0 .

If an element a ∈ π’œ π‘Ž π’œ a\in\mathcal{A} italic_a ∈ caligraphic_A has a quasi-inverse, then it is called quasi-invertible or quasi-regular and otherwise it is called quasi-singular . The sets of all quasi-invertible and quasi-singular elements of A 𝐴 A italic_A are denoted by q - Inv ⁒ ( π’œ ) q Inv π’œ \mathrm{q-Inv}(\mathcal{A}) roman_q - roman_Inv ( caligraphic_A ) and q - Sing ⁒ ( π’œ ) q Sing π’œ \mathrm{q-Sing}(\mathcal{A}) roman_q - roman_Sing ( caligraphic_A ) respectively.


Definition 1.1 .

A Hom-Lie algebra is a triple ( 𝔀 , [ , ] , Ξ± ) fragments ( g , fragments [ , ] , Ξ± ) (\mathfrak{g},[~{},~{}],\alpha) ( fraktur_g , [ , ] , italic_Ξ± ) , where [ , ] : 𝔀 Γ— 𝔀 β†’ 𝔀 fragments fragments [ , ] : g g β†’ g [~{},~{}]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} [ , ] : fraktur_g Γ— fraktur_g β†’ fraktur_g is a bilinear map and Ξ± : 𝔀 β†’ 𝔀 : 𝛼 β†’ 𝔀 𝔀 \alpha:\mathfrak{g}\rightarrow\mathfrak{g} italic_Ξ± : fraktur_g β†’ fraktur_g a linear map satisfying

[ x , y ] = - [ y , x ] (skew-symmetry) π‘₯ 𝑦 𝑦 π‘₯ (skew-symmetry) [x,y]=-[y,x]~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\text{% (skew-symmetry)} [ italic_x , italic_y ] = - [ italic_y , italic_x ] (skew-symmetry)
β†Ί x , y , z [ Ξ± ⁒ ( x ) , [ y , z ] ] = 0 (Hom-JacobiΒ  condition) formulae-sequence subscript β†Ί π‘₯ 𝑦 𝑧 absent 𝛼 π‘₯ 𝑦 𝑧 0 (Hom-JacobiΒ  condition) \displaystyle\circlearrowleft_{x,y,z}[\alpha(x),[y,z]]=0~{}~{}~{}~{}~{}~{}~{}~% {}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\text{(Hom-Jacobi~{} condition)} β†Ί start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT [ italic_Ξ± ( italic_x ) , [ italic_y , italic_z ] ] = 0 (Hom-Jacobi condition)

for all x, y ,z from 𝔀 𝔀 \mathfrak{g} fraktur_g , where β†Ί x , y , z subscript β†Ί π‘₯ 𝑦 𝑧 \displaystyle\circlearrowleft_{x,y,z} β†Ί start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT denotes summation over the cyclic permutations of x , y , z π‘₯ 𝑦 𝑧 x,y,z italic_x , italic_y , italic_z .

Definition 3.1 .

( [ 23 ] )

A vector space T 𝑇 T italic_T together with a trilinear map ( x , y , z ) β†’ [ x , y , z ] β†’ π‘₯ 𝑦 𝑧 π‘₯ 𝑦 𝑧 (x,y,z)\rightarrow[x,y,z] ( italic_x , italic_y , italic_z ) β†’ [ italic_x , italic_y , italic_z ] is called a Lie triple system (LTS) if

  1. (1)

    [ x , x , z ] = 0 , π‘₯ π‘₯ 𝑧 0 [x,x,z]=0, [ italic_x , italic_x , italic_z ] = 0 ,

  2. (2)

    [ x , y , z ] + [ y , z , x ] + [ z , x , y ] = 0 π‘₯ 𝑦 𝑧 𝑦 𝑧 π‘₯ 𝑧 π‘₯ 𝑦 0 [x,y,z]+[y,z,x]+[z,x,y]=0 [ italic_x , italic_y , italic_z ] + [ italic_y , italic_z , italic_x ] + [ italic_z , italic_x , italic_y ] = 0 ,

  3. (3)

    [ u , v , [ x , y , z ] ] = [ [ u , v , x ] , y , z ] + [ x , [ u , v , y ] , z ] + [ x , y , [ u , v , z ] ] , 𝑒 𝑣 π‘₯ 𝑦 𝑧 𝑒 𝑣 π‘₯ 𝑦 𝑧 π‘₯ 𝑒 𝑣 𝑦 𝑧 π‘₯ 𝑦 𝑒 𝑣 𝑧 [u,v,[x,y,z]]=[[u,v,x],y,z]+[x,[u,v,y],z]+[x,y,[u,v,z]], [ italic_u , italic_v , [ italic_x , italic_y , italic_z ] ] = [ [ italic_u , italic_v , italic_x ] , italic_y , italic_z ] + [ italic_x , [ italic_u , italic_v , italic_y ] , italic_z ] + [ italic_x , italic_y , [ italic_u , italic_v , italic_z ] ] ,

for all x , y , z , u , v ∈ T π‘₯ 𝑦 𝑧 𝑒 𝑣 𝑇 x,y,z,u,v\in T italic_x , italic_y , italic_z , italic_u , italic_v ∈ italic_T .

Definition 3.2 .

( [ 29 ] ) A Hom-Lie triple system (Hom-LTS for short) is denoted by ( T , [ β‹… , β‹… , β‹… ] , Ξ± ) 𝑇 β‹… β‹… β‹… 𝛼 (T,[\cdot,\cdot,\cdot],\alpha) ( italic_T , [ β‹… , β‹… , β‹… ] , italic_Ξ± ) , which consists of an 𝕂 𝕂 \mathbb{K} blackboard_K -vector space T 𝑇 T italic_T , a trilinear product [ β‹… , β‹… , β‹… ] : T Γ— T Γ— T β†’ T : β‹… β‹… β‹… β†’ 𝑇 𝑇 𝑇 𝑇 [\cdot,\cdot,\cdot]:T\times T\times T\rightarrow T [ β‹… , β‹… , β‹… ] : italic_T Γ— italic_T Γ— italic_T β†’ italic_T , and a linear map Ξ± : T β†’ T : 𝛼 β†’ 𝑇 𝑇 \alpha:T\rightarrow T italic_Ξ± : italic_T β†’ italic_T , called the twisted map, such that Ξ± 𝛼 \alpha italic_Ξ± preserves the product and for all x , y , z , u , v ∈ T π‘₯ 𝑦 𝑧 𝑒 𝑣 𝑇 x,y,z,u,v\in T italic_x , italic_y , italic_z , italic_u , italic_v ∈ italic_T ,

  1. (1)

    [ x , x , z ] = 0 , π‘₯ π‘₯ 𝑧 0 [x,x,z]=0, [ italic_x , italic_x , italic_z ] = 0 ,

  2. (2)

    [ x , y , z ] + [ y , z , x ] + [ z , x , y ] = 0 π‘₯ 𝑦 𝑧 𝑦 𝑧 π‘₯ 𝑧 π‘₯ 𝑦 0 [x,y,z]+[y,z,x]+[z,x,y]=0 [ italic_x , italic_y , italic_z ] + [ italic_y , italic_z , italic_x ] + [ italic_z , italic_x , italic_y ] = 0 ,

  3. (3)

    [ Ξ± ⁒ ( u ) , Ξ± ⁒ ( v ) , [ x , y , z ] ] = [ [ u , v , x ] , Ξ± ⁒ ( y ) , Ξ± ⁒ ( z ) ] + [ Ξ± ⁒ ( x ) , [ u , v , y ] , Ξ± ⁒ ( z ) ] + [ Ξ± ⁒ ( x ) , Ξ± ⁒ ( y ) , [ u , v , z ] ] 𝛼 𝑒 𝛼 𝑣 π‘₯ 𝑦 𝑧 𝑒 𝑣 π‘₯ 𝛼 𝑦 𝛼 𝑧 𝛼 π‘₯ 𝑒 𝑣 𝑦 𝛼 𝑧 𝛼 π‘₯ 𝛼 𝑦 𝑒 𝑣 𝑧 [\alpha(u),\alpha(v),[x,y,z]]=[[u,v,x],\alpha(y),\alpha(z)]+[\alpha(x),[u,v,y]% ,\alpha(z)]+[\alpha(x),\alpha(y),[u,v,z]] [ italic_Ξ± ( italic_u ) , italic_Ξ± ( italic_v ) , [ italic_x , italic_y , italic_z ] ] = [ [ italic_u , italic_v , italic_x ] , italic_Ξ± ( italic_y ) , italic_Ξ± ( italic_z ) ] + [ italic_Ξ± ( italic_x ) , [ italic_u , italic_v , italic_y ] , italic_Ξ± ( italic_z ) ] + [ italic_Ξ± ( italic_x ) , italic_Ξ± ( italic_y ) , [ italic_u , italic_v , italic_z ] ] .


Definition 5.4 ( 2-regularity of mappings).

Let g : ℝ n β†’ ℝ s normal-: 𝑔 normal-β†’ superscript ℝ 𝑛 superscript ℝ 𝑠 g:\mathbb{R}^{n}\to\mathbb{R}^{s} italic_g : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT β†’ blackboard_R start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT be twice FrΓ©chet differentiable at x Β― ∈ ℝ n normal-Β― π‘₯ superscript ℝ 𝑛 \bar{x}\in\mathbb{R}^{n} Β― start_ARG italic_x end_ARG ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . We say that g 𝑔 g italic_g is 2-regular at the point x Β― normal-Β― π‘₯ \bar{x} Β― start_ARG italic_x end_ARG in the direction v ∈ ℝ n 𝑣 superscript ℝ 𝑛 v\in\mathbb{R}^{n} italic_v ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT if for any p ∈ ℝ s 𝑝 superscript ℝ 𝑠 p\in\mathbb{R}^{s} italic_p ∈ blackboard_R start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT the system

βˆ‡ ⁑ g ⁒ ( x Β― ) ⁒ z + βˆ‡ 2 ⁑ g ⁒ ( x Β― ) ⁒ ( v , w ) = p , βˆ‡ ⁑ g ⁒ ( x Β― ) ⁒ w = 0 formulae-sequence βˆ‡ 𝑔 Β― π‘₯ 𝑧 superscript βˆ‡ 2 𝑔 Β― π‘₯ 𝑣 𝑀 𝑝 βˆ‡ 𝑔 Β― π‘₯ 𝑀 0 \nabla g(\bar{x})z+\nabla^{2}g(\bar{x})(v,w)=p,\;\nabla g(\bar{x})w=0 βˆ‡ italic_g ( Β― start_ARG italic_x end_ARG ) italic_z + βˆ‡ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_g ( Β― start_ARG italic_x end_ARG ) ( italic_v , italic_w ) = italic_p , βˆ‡ italic_g ( Β― start_ARG italic_x end_ARG ) italic_w = 0

admits a solution ( z , w ) ∈ ℝ n Γ— ℝ n 𝑧 𝑀 superscript ℝ 𝑛 superscript ℝ 𝑛 (z,w)\in\mathbb{R}^{n}\times\mathbb{R}^{n} ( italic_z , italic_w ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT Γ— blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT .