Definition 2.5 .

If ( 𝒞 , , k , σ ) 𝒞 tensor-product 𝑘 𝜎 (\mathcal{C},\otimes,k,\sigma) ( caligraphic_C , ⊗ , italic_k , italic_σ ) is an additive symmetric monoidal category with an algebra modality ( S , μ , η , 𝗆 , 𝗎 ) 𝑆 𝜇 𝜂 𝗆 𝗎 (S,\mu,\eta,\mathsf{m},\mathsf{u}) ( italic_S , italic_μ , italic_η , sansserif_m , sansserif_u ) , then a deriving transformation on 𝒞 𝒞 \mathcal{C} caligraphic_C is a natural transformation 𝖽 𝖽 \mathsf{d} sansserif_d , with components

𝖽 C : S C S C C ( C 𝒞 ) fragments subscript 𝖽 𝐶 : S C S C tensor-product C italic- fragments ( C C ) \mathsf{d}_{C}:SC\to SC\otimes C\;\;\;\;\;\;(C\in\mathcal{C}) sansserif_d start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT : italic_S italic_C → italic_S italic_C ⊗ italic_C ( italic_C ∈ caligraphic_C )

such that 4 4 4 Note that here, and throughout, we denote diagrammatic (left-to-right) composition by juxtaposition, whereas we denote right-to-left, non-diagrammatic composition by \circ , and functions f 𝑓 f italic_f are applied on the left, parenthesized as in f ( x ) 𝑓 𝑥 f(x) italic_f ( italic_x ) ; however, we write composition of functors in the right-to-left, non-diagrammatic order, and functors F 𝐹 F italic_F are applied on the left, as in F X 𝐹 𝑋 FX italic_F italic_X . We suppress the use of the monoidal category associator and unitor isomorphisms, and we omit subscripts and whiskering on the right.

  1. [d.1]

    Derivative of a constant : 𝗎𝖽 = 0 𝗎𝖽 0 \mathsf{u}\mathsf{d}=0 sansserif_ud = 0 ;

  2. [d.2]

    Leibniz/product rule : 𝗆𝖽 = [ ( 1 𝖽 ) ( 𝗆 1 ) ] + [ ( 𝖽 1 ) ( 1 σ ) ( 𝗆 1 ) ] 𝗆𝖽 delimited-[] tensor-product 1 𝖽 tensor-product 𝗆 1 delimited-[] tensor-product 𝖽 1 tensor-product 1 𝜎 tensor-product 𝗆 1 \mathsf{m}\mathsf{d}=[(1\otimes\mathsf{d})(\mathsf{m}\otimes 1)]+[(\mathsf{d}% \otimes 1)(1\otimes\sigma)(\mathsf{m}\otimes 1)] sansserif_md = [ ( 1 ⊗ sansserif_d ) ( sansserif_m ⊗ 1 ) ] + [ ( sansserif_d ⊗ 1 ) ( 1 ⊗ italic_σ ) ( sansserif_m ⊗ 1 ) ] ;

  3. [d.3]

    Derivative of a linear function : η 𝖽 = 𝗎 1 𝜂 𝖽 tensor-product 𝗎 1 \eta\mathsf{d}=\mathsf{u}\otimes 1 italic_η sansserif_d = sansserif_u ⊗ 1 ;

  4. [d.4]

    Chain rule : μ 𝖽 = 𝖽 ( μ 𝖽 ) ( 𝗆 1 ) 𝜇 𝖽 𝖽 tensor-product 𝜇 𝖽 tensor-product 𝗆 1 \mu\mathsf{d}=\mathsf{d}(\mu\otimes\mathsf{d})(\mathsf{m}\otimes 1) italic_μ sansserif_d = sansserif_d ( italic_μ ⊗ sansserif_d ) ( sansserif_m ⊗ 1 ) ;

  5. [d.5]

    Interchange 5 5 5 This rule was not in the original paper [ 4 ] , but was later formally introduced in [ 5 ] , and is used in [ 9 ] . It represents the independence of order of partial differentiation. : 𝖽 ( 𝖽 1 ) = 𝖽 ( 𝖽 1 ) ( 1 σ ) 𝖽 tensor-product 𝖽 1 𝖽 tensor-product 𝖽 1 tensor-product 1 𝜎 \mathsf{d}(\mathsf{d}\otimes 1)=\mathsf{d}(\mathsf{d}\otimes 1)(1\otimes\sigma) sansserif_d ( sansserif_d ⊗ 1 ) = sansserif_d ( sansserif_d ⊗ 1 ) ( 1 ⊗ italic_σ ) .

Such a 𝒞 𝒞 \mathcal{C} caligraphic_C equipped with a deriving transformation 𝖽 𝖽 \mathsf{d} sansserif_d is called a codifferential category .

Definition 2.7 .

If ( 𝒞 , , k , σ ) 𝒞 tensor-product 𝑘 𝜎 (\mathcal{C},\otimes,k,\sigma) ( caligraphic_C , ⊗ , italic_k , italic_σ ) is an additive symmetric monoidal category with an algebra modality ( S , μ , η , 𝗆 , 𝗎 ) 𝑆 𝜇 𝜂 𝗆 𝗎 (S,\mu,\eta,\mathsf{m},\mathsf{u}) ( italic_S , italic_μ , italic_η , sansserif_m , sansserif_u ) , then an integral transformation on 𝒞 𝒞 \mathcal{C} caligraphic_C is a natural transformation 𝗌 𝗌 \mathsf{s} sansserif_s , with components

𝗌 C : S C C S C ( C 𝒞 ) fragments subscript 𝗌 𝐶 : S C tensor-product C S C italic- fragments ( C C ) \mathsf{s}_{C}:SC\otimes C\to SC\;\;\;\;\;\;(C\in\mathcal{C}) sansserif_s start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT : italic_S italic_C ⊗ italic_C → italic_S italic_C ( italic_C ∈ caligraphic_C )

such that

  1. [s.1]

    Integral of a constant : ( 𝗎 1 ) 𝗌 = η tensor-product 𝗎 1 𝗌 𝜂 (\mathsf{u}\otimes 1)\mathsf{s}=\eta ( sansserif_u ⊗ 1 ) sansserif_s = italic_η ;

  2. [s.2]

    Rota-Baxter rule : ( 𝗌 𝗌 ) 𝗆 = [ ( 𝗌 1 1 ) ( 𝗆 1 ) 𝗌 ] + [ ( 1 1 𝗌 ) ( 1 σ ) ( 𝗆 1 ) 𝗌 fragments fragments ( s tensor-product s ) m fragments [ fragments ( s tensor-product 1 tensor-product 1 ) fragments ( m tensor-product 1 ) s ] fragments [ fragments ( 1 tensor-product 1 tensor-product s ) fragments ( 1 tensor-product σ ) fragments ( m tensor-product 1 ) s (\mathsf{s}\otimes\mathsf{s})\mathsf{m}=[(\mathsf{s}\otimes 1\otimes 1)(% \mathsf{m}\otimes 1)\mathsf{s}]+[(1\otimes 1\otimes\mathsf{s})(1\otimes\sigma)% (\mathsf{m}\otimes 1)\mathsf{s} ( sansserif_s ⊗ sansserif_s ) sansserif_m = [ ( sansserif_s ⊗ 1 ⊗ 1 ) ( sansserif_m ⊗ 1 ) sansserif_s ] + [ ( 1 ⊗ 1 ⊗ sansserif_s ) ( 1 ⊗ italic_σ ) ( sansserif_m ⊗ 1 ) sansserif_s ];

  3. [s.3]

    Interchange : ( 𝗌 1 ) 𝗌 = ( 1 σ ) ( 𝗌 1 ) 𝗌 tensor-product 𝗌 1 𝗌 tensor-product 1 𝜎 tensor-product 𝗌 1 𝗌 (\mathsf{s}\otimes 1)\mathsf{s}=(1\otimes\sigma)(\mathsf{s}\otimes 1)\mathsf{s} ( sansserif_s ⊗ 1 ) sansserif_s = ( 1 ⊗ italic_σ ) ( sansserif_s ⊗ 1 ) sansserif_s .

Such a 𝒞 𝒞 \mathcal{C} caligraphic_C equipped with an integral transformation 𝗌 𝗌 \mathsf{s} sansserif_s is called a co-integral category .


Definition 1.1 .

A Hom-Lie algebra is a triple ( 𝔤 , [ , ] , α ) 𝔤 normal-⋅ normal-⋅ 𝛼 (\mathfrak{g},[\cdot,\cdot],\alpha) ( fraktur_g , [ ⋅ , ⋅ ] , italic_α ) consisting of a linear space 𝔤 𝔤 \mathfrak{g} fraktur_g , a skew-symmetric bilinear map [ , ] : 2 𝔤 𝔤 normal-: normal-⋅ normal-⋅ normal-⟶ superscript 2 𝔤 𝔤 [\cdot,\cdot]:\wedge^{2}\mathfrak{g}\longrightarrow\mathfrak{g} [ ⋅ , ⋅ ] : ∧ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT fraktur_g ⟶ fraktur_g and an algebra morphism α : 𝔤 𝔤 normal-: 𝛼 normal-⟶ 𝔤 𝔤 \alpha:\mathfrak{g}\longrightarrow\mathfrak{g} italic_α : fraktur_g ⟶ fraktur_g , satisfying:

[ α ( x ) , [ y , z ] ] + [ α ( y ) , [ z , x ] ] + [ α ( z ) , [ x , y ] ] = 0 , x , y , z 𝔤 . formulae-sequence 𝛼 𝑥 𝑦 𝑧 𝛼 𝑦 𝑧 𝑥 𝛼 𝑧 𝑥 𝑦 0 for-all 𝑥 𝑦 𝑧 𝔤 [\alpha(x),[y,z]]+[\alpha(y),[z,x]]+[\alpha(z),[x,y]]=0,\quad\forall~{}x,y,z% \in\mathfrak{g}. [ italic_α ( italic_x ) , [ italic_y , italic_z ] ] + [ italic_α ( italic_y ) , [ italic_z , italic_x ] ] + [ italic_α ( italic_z ) , [ italic_x , italic_y ] ] = 0 , ∀ italic_x , italic_y , italic_z ∈ fraktur_g . (1)
Definition 1.2 .

A Hom-pre-Lie algebra ( A , , α ) 𝐴 normal-⋅ 𝛼 (A,\cdot,\alpha) ( italic_A , ⋅ , italic_α ) is a vector space A 𝐴 A italic_A equipped with a bilinear product : A A A fragments normal-⋅ normal-: A tensor-product A normal-⟶ A \cdot:A\otimes A\longrightarrow A ⋅ : italic_A ⊗ italic_A ⟶ italic_A , and α 𝔤 𝔩 ( A ) 𝛼 𝔤 𝔩 𝐴 \alpha\in\mathfrak{gl}(A) italic_α ∈ fraktur_g fraktur_l ( italic_A ) , such that for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A , α ( x y ) = α ( x ) α ( y ) 𝛼 normal-⋅ 𝑥 𝑦 normal-⋅ 𝛼 𝑥 𝛼 𝑦 \alpha(x\cdot y)=\alpha(x)\cdot\alpha(y) italic_α ( italic_x ⋅ italic_y ) = italic_α ( italic_x ) ⋅ italic_α ( italic_y ) and the following equality is satisfied:

( x y ) α ( z ) - α ( x ) ( y z ) = ( y x ) α ( z ) - α ( y ) ( x z ) . 𝑥 𝑦 𝛼 𝑧 𝛼 𝑥 𝑦 𝑧 𝑦 𝑥 𝛼 𝑧 𝛼 𝑦 𝑥 𝑧 \displaystyle(x\cdot y)\cdot\alpha(z)-\alpha(x)\cdot(y\cdot z)=(y\cdot x)\cdot% \alpha(z)-\alpha(y)\cdot(x\cdot z). ( italic_x ⋅ italic_y ) ⋅ italic_α ( italic_z ) - italic_α ( italic_x ) ⋅ ( italic_y ⋅ italic_z ) = ( italic_y ⋅ italic_x ) ⋅ italic_α ( italic_z ) - italic_α ( italic_y ) ⋅ ( italic_x ⋅ italic_z ) . (2)

Definition 3.4 .

A real-valued function f 𝑓 f italic_f on G 𝐺 G italic_G is called even or odd if

f ( g ) = f ( g - 1 ) , 𝑓 𝑔 𝑓 superscript 𝑔 1 \displaystyle f(g)=f(g^{-1}), italic_f ( italic_g ) = italic_f ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , (3.12)
or
f ( g ) = - f ( g - 1 ) , 𝑓 𝑔 𝑓 superscript 𝑔 1 \displaystyle f(g)=-f(g^{-1}), italic_f ( italic_g ) = - italic_f ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , (3.13)

respectively.


Definition 2.1 .

A BiHom-Poisson superalgebra A 𝐴 A italic_A is a BiHom-Lie superalgebra ( A , [ , ] , ϕ , ψ ) 𝐴 normal-⋅ normal-⋅ italic-ϕ 𝜓 (A,[\cdot,\cdot],\phi,\psi) ( italic_A , [ ⋅ , ⋅ ] , italic_ϕ , italic_ψ ) endowed with a BiHom-associative superproduct, that is, a bilinear product denoted by juxtaposition such that

ϕ ( x ) ( y z ) = ( x y ) ψ ( y ) , italic-ϕ 𝑥 𝑦 𝑧 𝑥 𝑦 𝜓 𝑦 \displaystyle\phi(x)(yz)=(xy)\psi(y), italic_ϕ ( italic_x ) ( italic_y italic_z ) = ( italic_x italic_y ) italic_ψ ( italic_y ) ,

for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A , and such that the BiHom-Leibniz superidentity

[ x y , ϕ ψ ( z ) ] = ϕ ( x ) [ y , ϕ ( z ) ] + ( - 1 ) | j | | k | [ x , ψ ( z ) ] ϕ ( y ) 𝑥 𝑦 italic-ϕ 𝜓 𝑧 italic-ϕ 𝑥 𝑦 italic-ϕ 𝑧 superscript 1 𝑗 𝑘 𝑥 𝜓 𝑧 italic-ϕ 𝑦 \displaystyle[xy,\phi\psi(z)]=\phi(x)[y,\phi(z)]+(-1)^{|j||k|}[x,\psi(z)]\phi(y) [ italic_x italic_y , italic_ϕ italic_ψ ( italic_z ) ] = italic_ϕ ( italic_x ) [ italic_y , italic_ϕ ( italic_z ) ] + ( - 1 ) start_POSTSUPERSCRIPT | italic_j | | italic_k | end_POSTSUPERSCRIPT [ italic_x , italic_ψ ( italic_z ) ] italic_ϕ ( italic_y )

holds for any x A i ¯ , y A j ¯ , z A k ¯ formulae-sequence 𝑥 subscript 𝐴 normal-¯ 𝑖 formulae-sequence 𝑦 subscript 𝐴 normal-¯ 𝑗 𝑧 subscript 𝐴 normal-¯ 𝑘 x\in A_{\overline{i}},y\in A_{\overline{j}},z\in A_{\overline{k}} italic_x ∈ italic_A start_POSTSUBSCRIPT ¯ start_ARG italic_i end_ARG end_POSTSUBSCRIPT , italic_y ∈ italic_A start_POSTSUBSCRIPT ¯ start_ARG italic_j end_ARG end_POSTSUBSCRIPT , italic_z ∈ italic_A start_POSTSUBSCRIPT ¯ start_ARG italic_k end_ARG end_POSTSUBSCRIPT and i ¯ , j ¯ , k ¯ 2 normal-¯ 𝑖 normal-¯ 𝑗 normal-¯ 𝑘 subscript 2 \overline{i},\overline{j},\overline{k}\in\mathbb{Z}_{2} ¯ start_ARG italic_i end_ARG , ¯ start_ARG italic_j end_ARG , ¯ start_ARG italic_k end_ARG ∈ blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .


Definition 3.4

Suppose that d 𝑑 d italic_d is the exterior derivative operator, we define the Laplace-Beltrami (or Laplacian) operator : A p ( M ) A p ( M ) normal-: normal-△ normal-⟶ superscript 𝐴 𝑝 𝑀 superscript 𝐴 𝑝 𝑀 \triangle:A^{p}(M)\longrightarrow A^{p}(M) △ : italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_M ) ⟶ italic_A start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_M ) by

( ω ) = ( d δ + δ d ) ( ω ) . 𝜔 𝑑 𝛿 𝛿 𝑑 𝜔 \triangle(\omega)=(d\circ\delta+\delta\circ d)(\omega). △ ( italic_ω ) = ( italic_d ∘ italic_δ + italic_δ ∘ italic_d ) ( italic_ω ) .

We say a p 𝑝 p italic_p -form is harmonic if it is in the kernel of normal-△ \triangle .


Definition 4 (Hom-Lie algebra) .

A hom-Lie algebra over an associative, commutative, and unital ring R 𝑅 R italic_R is a triple ( M , [ , ] , α ) 𝑀 𝛼 (M,[\cdot,\cdot],\alpha) ( italic_M , [ ⋅ , ⋅ ] , italic_α ) where M 𝑀 M italic_M is an R 𝑅 R italic_R -module, α : M M : 𝛼 𝑀 𝑀 \alpha\colon M\to M italic_α : italic_M → italic_M a linear map called the twisting map , and [ , ] : M × M M : 𝑀 𝑀 𝑀 [\cdot,\cdot]\colon M\times M\to M [ ⋅ , ⋅ ] : italic_M × italic_M → italic_M a map called the hom-Lie bracket , satisfying the following axioms for all a , b , c M 𝑎 𝑏 𝑐 𝑀 a,b,c\in M italic_a , italic_b , italic_c ∈ italic_M and r , s R 𝑟 𝑠 𝑅 r,s\in R italic_r , italic_s ∈ italic_R :

[ r a + s b , c ] = r [ a , c ] + s [ b , c ] , [ a , r b + s c ] = r [ a , b ] + s [ a , c ] , (bilinearity) , formulae-sequence 𝑟 𝑎 𝑠 𝑏 𝑐 𝑟 𝑎 𝑐 𝑠 𝑏 𝑐 𝑎 𝑟 𝑏 𝑠 𝑐 𝑟 𝑎 𝑏 𝑠 𝑎 𝑐 (bilinearity) \displaystyle[ra+sb,c]=r[a,c]+s[b,c],\quad[a,rb+sc]=r[a,b]+s[a,c],\quad\text{(% bilinearity)}, [ italic_r italic_a + italic_s italic_b , italic_c ] = italic_r [ italic_a , italic_c ] + italic_s [ italic_b , italic_c ] , [ italic_a , italic_r italic_b + italic_s italic_c ] = italic_r [ italic_a , italic_b ] + italic_s [ italic_a , italic_c ] , (bilinearity) ,
= 0 , (alternativity) , absent 0 (alternativity) \displaystyle=0,\quad\text{(alternativity)}, = 0 , (alternativity) ,
[ α ( a ) , [ b , c ] ] + [ α ( c ) , [ a , b ] ] + [ α ( b ) , [ c , a ] ] = 0 , (hom-Jacobi identity) . 𝛼 𝑎 𝑏 𝑐 𝛼 𝑐 𝑎 𝑏 𝛼 𝑏 𝑐 𝑎 0 (hom-Jacobi identity) \displaystyle\left[\alpha(a),[b,c]\right]+\left[\alpha(c),[a,b]\right]+\left[% \alpha(b),[c,a]\right]=0,\quad\text{(hom-Jacobi identity)}. [ italic_α ( italic_a ) , [ italic_b , italic_c ] ] + [ italic_α ( italic_c ) , [ italic_a , italic_b ] ] + [ italic_α ( italic_b ) , [ italic_c , italic_a ] ] = 0 , (hom-Jacobi identity) .

Definition 2.3 .

A polarity truth table is defined as follows

f ^ ( x ) = ( - 1 ) f ( x ) , ^ 𝑓 𝑥 superscript 1 𝑓 𝑥 \hat{f}(x)=(-1)^{f(x)}, ^ start_ARG italic_f end_ARG ( italic_x ) = ( - 1 ) start_POSTSUPERSCRIPT italic_f ( italic_x ) end_POSTSUPERSCRIPT ,

where x 𝔽 n 𝑥 superscript 𝔽 𝑛 x\in\mathbb{F}^{n} italic_x ∈ blackboard_F start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , f ^ normal-^ 𝑓 \hat{f} ^ start_ARG italic_f end_ARG maps the output values of the Boolean function from the set { 0 , 1 } 0 1 \{0,1\} { 0 , 1 } to the set { - 1 , 1 } 1 1 \{-1,1\} { - 1 , 1 } , i . e . formulae-sequence 𝑖 𝑒 i.e. italic_i . italic_e . ,

f ^ : { 0 , 1 } { - 1 , 1 } . : ^ 𝑓 0 1 1 1 \hat{f}:\{0,1\}\to\{-1,1\}. ^ start_ARG italic_f end_ARG : { 0 , 1 } → { - 1 , 1 } .

A linear Boolean function in polarity form is denoted as L ^ w ( x ) subscript normal-^ 𝐿 𝑤 𝑥 \hat{L}_{w}(x) ^ start_ARG italic_L end_ARG start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ( italic_x ) .


Definition 2.5

In a FTvN system ( 𝒱 , 𝒲 , λ ) 𝒱 𝒲 𝜆 ({\cal V},{\cal W},\lambda) ( caligraphic_V , caligraphic_W , italic_λ ) we say that elements x , y 𝒱 𝑥 𝑦 𝒱 x,y\in{\cal V} italic_x , italic_y ∈ caligraphic_V commute if

x , y = λ ( x ) , λ ( y ) . 𝑥 𝑦 𝜆 𝑥 𝜆 𝑦 \langle x,y\rangle=\langle\lambda(x),\lambda(y)\rangle. ⟨ italic_x , italic_y ⟩ = ⟨ italic_λ ( italic_x ) , italic_λ ( italic_y ) ⟩ .

Definition 1 .

Feature transformations in DNN can be characterized as the first-order partial differential equation (PDE):

𝐱 ˙ = f ( t , 𝐱 ) , ˙ 𝐱 𝑓 𝑡 𝐱 \dot{{\mathbf{x}}}=f(t,\mathbf{x}), ˙ start_ARG bold_x end_ARG = italic_f ( italic_t , bold_x ) , (1)

where 𝐱 ˙ = 𝐱 t normal-˙ 𝐱 𝐱 𝑡 \dot{{\mathbf{x}}}=\frac{\partial\mathbf{x}}{\partial t} ˙ start_ARG bold_x end_ARG = divide start_ARG ∂ bold_x end_ARG start_ARG ∂ italic_t end_ARG , f : T × X R d normal-: 𝑓 normal-→ 𝑇 𝑋 superscript 𝑅 𝑑 f:T\times X\rightarrow R^{d} italic_f : italic_T × italic_X → italic_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT , T R + 𝑇 superscript 𝑅 T\subseteq R^{+} italic_T ⊆ italic_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT , and X R d 𝑋 superscript 𝑅 𝑑 X\subseteq R^{d} italic_X ⊆ italic_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT . t T 𝑡 𝑇 t\in T italic_t ∈ italic_T is the time along the feature transformations, in which t 0 𝑡 0 t\geq 0 italic_t ≥ 0 . 𝐱 X 𝐱 𝑋 \mathbf{x}\in X bold_x ∈ italic_X is the feature vector of dimension d 𝑑 d italic_d .


Definition 5 (Strongly Euclidean Kernels) .

A Euclidean kernel k 𝑘 k italic_k that is a kernel over \mathbb B n \mathbb subscript 𝐵 𝑛 \mathbb B_{n} italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT for any n 1 𝑛 1 n\geqslant 1 italic_n ⩾ 1 , is said to be L 𝐿 L italic_L -Strongly Euclidean if k ( 𝐱 ( 1 ) , 𝐱 ( 2 ) ) 𝑘 superscript 𝐱 1 superscript 𝐱 2 k(\mathbf{x}^{(1)},\mathbf{x}^{(2)}) italic_k ( bold_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT , bold_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ) can be written as:

k ( 𝐱 ( 1 ) , 𝐱 ( 2 ) ) = g ( 𝐱 ( 1 ) , 𝐱 ( 2 ) ) 𝑘 superscript 𝐱 1 superscript 𝐱 2 𝑔 superscript 𝐱 1 superscript 𝐱 2 \displaystyle k(\mathbf{x}^{(1)},\mathbf{x}^{(2)})=g({\langle\mathbf{x}^{(1)},% \mathbf{x}^{(2)}\rangle}) italic_k ( bold_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT , bold_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ) = italic_g ( ⟨ bold_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT , bold_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ⟩ ) (3.1)

and g 𝑔 g italic_g is L 𝐿 L italic_L -Lipschitz over the domain [ 0 , n ] 0 𝑛 [0,n] [ 0 , italic_n ] .


Definition 6.2 .

Let A 𝕄 𝐴 𝕄 A\in\mathbb{MC} italic_A ∈ blackboard_M blackboard_C . We say that A 𝐴 A italic_A is archimedean if, for all x , y A 𝑥 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A ,

d ( x , y ) = 0 x = y . d 𝑥 𝑦 0 𝑥 𝑦 {\rm d}(x,y)=0\Rightarrow x=y. roman_d ( italic_x , italic_y ) = 0 ⇒ italic_x = italic_y .


Definition 7.9 .

Let ( 𝔤 , [ , ] 𝔤 ) 𝔤 subscript normal-⋅ normal-⋅ 𝔤 (\mathfrak{g},[\cdot,\cdot]_{\mathfrak{g}}) ( fraktur_g , [ ⋅ , ⋅ ] start_POSTSUBSCRIPT fraktur_g end_POSTSUBSCRIPT ) be a Leibniz algebra and r Sym 2 ( 𝔤 ) 𝑟 superscript normal-Sym 2 𝔤 r\in\mathrm{Sym}^{2}(\mathfrak{g}) italic_r ∈ roman_Sym start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( fraktur_g ) . Then equation

(68) [ [ r , r ] ] = 0 delimited-[] 𝑟 𝑟 0 ~{}[[r,r]]=0 [ [ italic_r , italic_r ] ] = 0

is called the classical Leibniz-Yang-Baxter equation in 𝔤 𝔤 \mathfrak{g} fraktur_g and r 𝑟 r italic_r is called a classical Leibniz r 𝑟 r italic_r -matrix .


Definition 1.1 .

Let α = a b 𝛼 𝑎 𝑏 \alpha=\frac{a}{b}\in\mathbb{Q} italic_α = divide start_ARG italic_a end_ARG start_ARG italic_b end_ARG ∈ blackboard_Q with gcd ( a , b ) = 1 𝑎 𝑏 1 \gcd(a,b)=1 roman_gcd ( italic_a , italic_b ) = 1 and b > 0 𝑏 0 b>0 italic_b > 0 . Then we define the denominator of α 𝛼 \alpha italic_α as

denom α = b . denom 𝛼 𝑏 \operatorname{denom}\alpha=b. roman_denom italic_α = italic_b .

Definition 2.1 .

An almost contact structure on a ( 2 n + 1 ) 2 𝑛 1 (2n+1) ( 2 italic_n + 1 ) -dimensional smooth manifold M 𝑀 M italic_M is a triple ( ϕ , ξ , η ) italic-ϕ 𝜉 𝜂 (\phi,\xi,\eta) ( italic_ϕ , italic_ξ , italic_η ) , where ϕ italic-ϕ \phi italic_ϕ is a ( 1 , 1 ) 1 1 (1,1) ( 1 , 1 ) -type tensor field, ξ 𝜉 \xi italic_ξ is a global vector field and η 𝜂 \eta italic_η a 1-form, such that

(2.1) ϕ 2 = - id + η ξ , η ( ξ ) = 1 , formulae-sequence superscript italic-ϕ 2 id tensor-product 𝜂 𝜉 𝜂 𝜉 1 \phi^{2}=-\mathrm{id}+\eta\otimes\xi,\quad\eta(\xi)=1, italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - roman_id + italic_η ⊗ italic_ξ , italic_η ( italic_ξ ) = 1 ,

where, id id \mathrm{id} roman_id denotes the identity mapping, which imply that ϕ ( ξ ) = 0 italic-ϕ 𝜉 0 \phi(\xi)=0 italic_ϕ ( italic_ξ ) = 0 , η ϕ = 0 𝜂 italic-ϕ 0 \eta\circ\phi=0 italic_η ∘ italic_ϕ = 0 and rank ( ϕ ) = 2 n rank italic-ϕ 2 𝑛 \mathrm{rank}(\phi)=2n roman_rank ( italic_ϕ ) = 2 italic_n . Generally, ξ 𝜉 \xi italic_ξ is called the characteristic vector field or the Reeb vector field.

Definition 2.3 .

If ( M , ϕ , ξ , η , g ) 𝑀 italic-ϕ 𝜉 𝜂 𝑔 (M,\phi,\xi,\eta,g) ( italic_M , italic_ϕ , italic_ξ , italic_η , italic_g ) be an almost contact metric structure, then there is a well known deformation of contact forms which is named D-homothetic deformation and is defined by

η ¯ = a η , ϕ ¯ = ϕ , ξ ¯ = 1 a ξ , g ¯ = a g + a ( a - 1 ) η η , formulae-sequence ¯ 𝜂 𝑎 𝜂 formulae-sequence ¯ italic-ϕ italic-ϕ formulae-sequence ¯ 𝜉 1 𝑎 𝜉 ¯ 𝑔 𝑎 𝑔 tensor-product 𝑎 𝑎 1 𝜂 𝜂 \bar{\eta}=a\eta,\quad\bar{\phi}=\phi,\quad\bar{\xi}=\dfrac{1}{a}\xi,\quad\bar% {g}=ag+a(a-1)\eta\otimes\eta, ¯ start_ARG italic_η end_ARG = italic_a italic_η , ¯ start_ARG italic_ϕ end_ARG = italic_ϕ , ¯ start_ARG italic_ξ end_ARG = divide start_ARG 1 end_ARG start_ARG italic_a end_ARG italic_ξ , ¯ start_ARG italic_g end_ARG = italic_a italic_g + italic_a ( italic_a - 1 ) italic_η ⊗ italic_η ,

where, a 𝑎 a italic_a is a positive constant.


Definition 2.1 .

A control system of type ( n , s ) 𝑛 𝑠 (n,s) ( italic_n , italic_s ) ( s < n ) 𝑠 𝑛 (s<n) ( italic_s < italic_n ) is an underdetermined ODE system

(1) 𝐱 ˙ = 𝐟 ( 𝐱 , 𝐮 ) , ˙ 𝐱 𝐟 𝐱 𝐮 \dot{\bf x}={\bf f}({\bf x},{\bf u}), ˙ start_ARG bold_x end_ARG = bold_f ( bold_x , bold_u ) ,

where

𝐱 = ( x i ) n , 𝐮 = ( u α ) s , formulae-sequence 𝐱 subscript 𝑥 𝑖 superscript 𝑛 𝐮 subscript 𝑢 𝛼 superscript 𝑠 {\bf x}=(x_{i})\in\mathbb{R}^{n},\qquad{\bf u}=(u_{\alpha})\in\mathbb{R}^{s}, bold_x = ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , bold_u = ( italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT ,

and 𝐟 = ( f i ) : n + s n : 𝐟 subscript 𝑓 𝑖 superscript 𝑛 𝑠 superscript 𝑛 {\bf f}=(f_{i}):\mathbb{R}^{n+s}\rightarrow\mathbb{R}^{n} bold_f = ( italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) : blackboard_R start_POSTSUPERSCRIPT italic_n + italic_s end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is a smooth function satisfying rank ( f i u α ) = s rank subscript 𝑓 𝑖 subscript 𝑢 𝛼 𝑠 {\rm rank}\left(\dfrac{\partial f_{i}}{\partial u_{\alpha}}\right)=s roman_rank ( divide start_ARG ∂ italic_f start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT end_ARG ) = italic_s on some open domain 1 1 1 Since our study is local, we henceforth assume that such a domain is the entire n + s superscript 𝑛 𝑠 \mathbb{R}^{n+s} blackboard_R start_POSTSUPERSCRIPT italic_n + italic_s end_POSTSUPERSCRIPT . in n + s superscript 𝑛 𝑠 \mathbb{R}^{n+s} blackboard_R start_POSTSUPERSCRIPT italic_n + italic_s end_POSTSUPERSCRIPT . Here, x i subscript 𝑥 𝑖 x_{i} italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are called the state variables , u α subscript 𝑢 𝛼 u_{\alpha} italic_u start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT the control variables .


Definition 3.3 .

Let \mathcal{R} caligraphic_R be a unique factorization domain with a , b 𝑎 𝑏 a,b\in\mathcal{R} italic_a , italic_b ∈ caligraphic_R not both zero and consider an LDE ( 45 ) for a , b 𝑎 𝑏 a,b italic_a , italic_b . If the righthand side, c 𝑐 c italic_c , in ( 45 ) is zero,

(47) a x + b y = 0 . 𝑎 𝑥 𝑏 𝑦 0 ax+by=0. italic_a italic_x + italic_b italic_y = 0 .

then ( 47 ) is called the homogeneous LDE for a , b 𝑎 𝑏 a,b italic_a , italic_b . If the righthand side, c 𝑐 c italic_c , in ( 45 ) is nonzero then we call ( 45 ) an inhomogeneous LDE for a , b 𝑎 𝑏 a,b italic_a , italic_b with inhomogeneity c 𝑐 c italic_c .

Definition 4.1 (Size-Reducing Solutions) .

Let \mathcal{R} caligraphic_R be a Euclidean domain whose size function satisfies σ ( 0 ) = - 𝜎 0 \sigma(0)=-\infty italic_σ ( 0 ) = - ∞ and the homomorphism property,

(59) σ ( a b ) = σ ( a ) + σ ( b ) . 𝜎 𝑎 𝑏 𝜎 𝑎 𝜎 𝑏 \sigma(ab)=\sigma(a)+\sigma(b). italic_σ ( italic_a italic_b ) = italic_σ ( italic_a ) + italic_σ ( italic_b ) .

Let a , b , c 𝑎 𝑏 𝑐 a,b,c\in\mathcal{R} italic_a , italic_b , italic_c ∈ caligraphic_R with a 𝑎 a italic_a and b 𝑏 b italic_b not both zero. Let h = 𝖽𝖾𝖿 gcd ( a , b ) superscript 𝖽𝖾𝖿 𝑎 𝑏 h\stackrel{{\scriptstyle\mbox{\tiny{def}}}}{{=}}\gcd(a,b) italic_h start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG def end_ARG end_RELOP roman_gcd ( italic_a , italic_b ) and assume h | c conditional 𝑐 h\,|\,c italic_h | italic_c . For a 0 𝑎 0 a\neq 0 italic_a ≠ 0 a solution ( x , y ) 𝑥 𝑦 (x,y) ( italic_x , italic_y ) to

(60) a x + b y = c 𝑎 𝑥 𝑏 𝑦 𝑐 ax+by=c italic_a italic_x + italic_b italic_y = italic_c

will be called size-reducing in a 𝑎 a italic_a if

(61) σ ( y ) < σ ( a ) - σ ( h ) . 𝜎 𝑦 𝜎 𝑎 𝜎 \sigma(y)<\sigma(a)-\sigma(h). italic_σ ( italic_y ) < italic_σ ( italic_a ) - italic_σ ( italic_h ) .

Similarly, a solution is called size-reducing in b 0 𝑏 0 b\neq 0 italic_b ≠ 0 if

(62) σ ( x ) < σ ( b ) - σ ( h ) . 𝜎 𝑥 𝜎 𝑏 𝜎 \sigma(x)<\sigma(b)-\sigma(h). italic_σ ( italic_x ) < italic_σ ( italic_b ) - italic_σ ( italic_h ) .

Definition 3.3 .

A 3-Hom-pre-Lie algebra is a triple ( L , { , , } , α ) 𝐿 normal-⋅ normal-⋅ normal-⋅ 𝛼 (L,\{\cdot,\cdot,\cdot\},\alpha) ( italic_L , { ⋅ , ⋅ , ⋅ } , italic_α ) consisting of a vector space L 𝐿 L italic_L , with a linear map { , , } : L L L L normal-: normal-⋅ normal-⋅ normal-⋅ normal-→ tensor-product 𝐿 𝐿 𝐿 𝐿 \{\cdot,\cdot,\cdot\}:L\otimes L\otimes L\rightarrow L { ⋅ , ⋅ , ⋅ } : italic_L ⊗ italic_L ⊗ italic_L → italic_L and a linear map α : L L normal-: 𝛼 normal-→ 𝐿 𝐿 \alpha:L\rightarrow L italic_α : italic_L → italic_L satisfying

{ x , y , z } = - { y , x , z } , fragments { x , y , z } { y , x , z } , \displaystyle\{x,y,z\}=-\{y,x,z\}, { italic_x , italic_y , italic_z } = - { italic_y , italic_x , italic_z } , (3.3)
{ α ( x ) , α ( y ) , { z , u , w } } fragments { α fragments ( x ) , α fragments ( y ) , fragments { z , u , w } } \displaystyle\{\alpha(x),\alpha(y),\{z,u,w\}\} { italic_α ( italic_x ) , italic_α ( italic_y ) , { italic_z , italic_u , italic_w } } = \displaystyle= = { [ x , y , z ] L , α ( u ) , α ( v ) } + { α ( z ) , [ x , y , u ] L , α ( v ) } fragments { subscript fragments [ x , y , z ] 𝐿 , α fragments ( u ) , α fragments ( v ) } { α fragments ( z ) , subscript fragments [ x , y , u ] 𝐿 , α fragments ( v ) } \displaystyle\{[x,y,z]_{L},\alpha(u),\alpha(v)\}+\{\alpha(z),[x,y,u]_{L},% \alpha(v)\} { [ italic_x , italic_y , italic_z ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_α ( italic_u ) , italic_α ( italic_v ) } + { italic_α ( italic_z ) , [ italic_x , italic_y , italic_u ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_α ( italic_v ) } (3.4)
+ { α ( z ) , α ( u ) , [ x , y , v ] L } , 𝛼 𝑧 𝛼 𝑢 subscript 𝑥 𝑦 𝑣 𝐿 \displaystyle+\{\alpha(z),\alpha(u),[x,y,v]_{L}\}, + { italic_α ( italic_z ) , italic_α ( italic_u ) , [ italic_x , italic_y , italic_v ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } ,
{ [ x , y , z ] L , α ( u ) , α ( v ) } fragments { subscript fragments [ x , y , z ] 𝐿 , α fragments ( u ) , α fragments ( v ) } \displaystyle\{[x,y,z]_{L},\alpha(u),\alpha(v)\} { [ italic_x , italic_y , italic_z ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT , italic_α ( italic_u ) , italic_α ( italic_v ) } = \displaystyle= = { α ( x ) , α ( y ) , [ z , u , v ] L } + { α ( y ) , α ( z ) , [ x , u , v ] L } fragments { α fragments ( x ) , α fragments ( y ) , subscript fragments [ z , u , v ] 𝐿 } { α fragments ( y ) , α fragments ( z ) , subscript fragments [ x , u , v ] 𝐿 } \displaystyle\{\alpha(x),\alpha(y),[z,u,v]_{L}\}+\{\alpha(y),\alpha(z),[x,u,v]% _{L}\} { italic_α ( italic_x ) , italic_α ( italic_y ) , [ italic_z , italic_u , italic_v ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } + { italic_α ( italic_y ) , italic_α ( italic_z ) , [ italic_x , italic_u , italic_v ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } (3.5)
+ { α ( z ) , α ( x ) , [ y , u , v ] L } , 𝛼 𝑧 𝛼 𝑥 subscript 𝑦 𝑢 𝑣 𝐿 \displaystyle+\{\alpha(z),\alpha(x),[y,u,v]_{L}\}, + { italic_α ( italic_z ) , italic_α ( italic_x ) , [ italic_y , italic_u , italic_v ] start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT } ,

for any x , y , z , u , v L 𝑥 𝑦 𝑧 𝑢 𝑣 𝐿 x,y,z,u,v\in L italic_x , italic_y , italic_z , italic_u , italic_v ∈ italic_L and [ , , ] C subscript normal-⋅ normal-⋅ normal-⋅ 𝐶 [\cdot,\cdot,\cdot]_{C} [ ⋅ , ⋅ , ⋅ ] start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT is defined by

[ x , y , z ] C = { x , y , z } + { y , z , x } + { z , x , y } . subscript 𝑥 𝑦 𝑧 𝐶 𝑥 𝑦 𝑧 𝑦 𝑧 𝑥 𝑧 𝑥 𝑦 \displaystyle[x,y,z]_{C}=\{x,y,z\}+\{y,z,x\}+\{z,x,y\}. [ italic_x , italic_y , italic_z ] start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = { italic_x , italic_y , italic_z } + { italic_y , italic_z , italic_x } + { italic_z , italic_x , italic_y } . (3.6)
Definition 3.8 .

( [ 19 ] ) Let ( L , [ , , ] , α ) 𝐿 normal-⋅ normal-⋅ normal-⋅ 𝛼 (L,[\cdot,\cdot,\cdot],\alpha) ( italic_L , [ ⋅ , ⋅ , ⋅ ] , italic_α ) be 3-Hom-Lie algebra and r L L 𝑟 tensor-product 𝐿 𝐿 r\in L\otimes L italic_r ∈ italic_L ⊗ italic_L . The equation

[ [ r , r , r ] ] = 0 delimited-[] 𝑟 𝑟 𝑟 0 \displaystyle[[r,r,r]]=0 [ [ italic_r , italic_r , italic_r ] ] = 0

is called the 3-Lie classical Hom-Yang-Baxter equation.

Definition 5.1 .

A symplectic structure on a regular 3-Hom-Lie algebra ( L , [ , , ] , α ) 𝐿 normal-⋅ normal-⋅ normal-⋅ 𝛼 (L,[\cdot,\cdot,\cdot],\alpha) ( italic_L , [ ⋅ , ⋅ , ⋅ ] , italic_α ) is a nondegenerate skew-symmetric bilinear form ω L L 𝜔 superscript 𝐿 normal-∗ superscript 𝐿 normal-∗ \omega\in L^{\ast}\wedge L^{\ast} italic_ω ∈ italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ∧ italic_L start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT such that ω α = ω 𝜔 𝛼 𝜔 \omega\circ\alpha=\omega italic_ω ∘ italic_α = italic_ω satisfying the following equality

ω ( [ x , y , z ] , α ( w ) ) - ω ( [ y , z , w ] , α ( x ) ) + ω ( [ z , w , x ] , α ( y ) ) - ω ( [ w , x , y ] , α ( z ) ) = 0 , 𝜔 𝑥 𝑦 𝑧 𝛼 𝑤 𝜔 𝑦 𝑧 𝑤 𝛼 𝑥 𝜔 𝑧 𝑤 𝑥 𝛼 𝑦 𝜔 𝑤 𝑥 𝑦 𝛼 𝑧 0 \displaystyle\omega([x,y,z],\alpha(w))-\omega([y,z,w],\alpha(x))+\omega([z,w,x% ],\alpha(y))-\omega([w,x,y],\alpha(z))=0, italic_ω ( [ italic_x , italic_y , italic_z ] , italic_α ( italic_w ) ) - italic_ω ( [ italic_y , italic_z , italic_w ] , italic_α ( italic_x ) ) + italic_ω ( [ italic_z , italic_w , italic_x ] , italic_α ( italic_y ) ) - italic_ω ( [ italic_w , italic_x , italic_y ] , italic_α ( italic_z ) ) = 0 , (5.1)

for any x , y , z , w L 𝑥 𝑦 𝑧 𝑤 𝐿 x,y,z,w\in L italic_x , italic_y , italic_z , italic_w ∈ italic_L .


Definition 1.1 (Hom-Lie algebra) .

A Hom-Lie algebra ( 𝔤 , [ , ] , α ) 𝔤 𝛼 (\mathfrak{g},[\cdot,\cdot],\alpha) ( fraktur_g , [ ⋅ , ⋅ ] , italic_α ) is a Hom-module ( 𝔤 , α ) 𝔤 𝛼 (\mathfrak{g},\alpha) ( fraktur_g , italic_α ) with a skew-symmetric linear map [ , ] : 𝔤 𝔤 𝔤 : tensor-product 𝔤 𝔤 𝔤 [\cdot,\cdot]:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g} [ ⋅ , ⋅ ] : fraktur_g ⊗ fraktur_g → fraktur_g , called Hom-Lie bracket, such that the Hom-Jacobi identity is satisfied and the bracket is compatible with α 𝛼 \alpha italic_α , i.e. for x , y , z 𝔤 𝑥 𝑦 𝑧 𝔤 x,y,z\in\mathfrak{g} italic_x , italic_y , italic_z ∈ fraktur_g

[ [ x , y ] , α ( z ) ] + [ [ y , z ] , α ( x ) ] + [ [ z , x ] , α ( y ) ] = 0 , 𝑥 𝑦 𝛼 𝑧 𝑦 𝑧 𝛼 𝑥 𝑧 𝑥 𝛼 𝑦 0 \displaystyle[[x,y],\alpha(z)]+[[y,z],\alpha(x)]+[[z,x],\alpha(y)]=0, [ [ italic_x , italic_y ] , italic_α ( italic_z ) ] + [ [ italic_y , italic_z ] , italic_α ( italic_x ) ] + [ [ italic_z , italic_x ] , italic_α ( italic_y ) ] = 0 , (1)
= α ( [ x , y ] ) . absent 𝛼 𝑥 𝑦 \displaystyle=\alpha([x,y]). = italic_α ( [ italic_x , italic_y ] ) . (2)

The second equation is called multiplicativity and is not required in some papers. We will often write ( 𝔤 , ν , α ) 𝔤 𝜈 𝛼 (\mathfrak{g},\nu,\alpha) ( fraktur_g , italic_ν , italic_α ) instead of ( 𝔤 , [ , ] , α ) 𝔤 𝛼 (\mathfrak{g},[\cdot,\cdot],\alpha) ( fraktur_g , [ ⋅ , ⋅ ] , italic_α ) , where ν : 𝔤 𝔤 𝔤 : 𝜈 tensor-product 𝔤 𝔤 𝔤 \nu:\mathfrak{g}\otimes\mathfrak{g}\to\mathfrak{g} italic_ν : fraktur_g ⊗ fraktur_g → fraktur_g is given by ν ( a b ) = [ a , b ] 𝜈 tensor-product 𝑎 𝑏 𝑎 𝑏 \nu(a\otimes b)=[a,b] italic_ν ( italic_a ⊗ italic_b ) = [ italic_a , italic_b ] .

Definition 1.3 (Hom-associative algebra) .

A Hom-associative algebra ( A , μ , α ) 𝐴 𝜇 𝛼 (A,\mu,\alpha) ( italic_A , italic_μ , italic_α ) consists of a Hom-module ( A , α ) 𝐴 𝛼 (A,\alpha) ( italic_A , italic_α ) and a linear map μ : A A A : 𝜇 tensor-product 𝐴 𝐴 𝐴 \mu:A\otimes A\to A italic_μ : italic_A ⊗ italic_A → italic_A , such that

μ ( id α ) = μ ( α id ) 𝜇 tensor-product id 𝛼 𝜇 tensor-product 𝛼 id \displaystyle\mu\circ(\operatorname{id}\otimes\alpha)=\mu\circ(\alpha\otimes% \operatorname{id}) italic_μ ∘ ( roman_id ⊗ italic_α ) = italic_μ ∘ ( italic_α ⊗ roman_id ) (3)
μ ( α α ) = α μ . 𝜇 tensor-product 𝛼 𝛼 𝛼 𝜇 \displaystyle\mu\circ(\alpha\otimes\alpha)=\alpha\circ\mu. italic_μ ∘ ( italic_α ⊗ italic_α ) = italic_α ∘ italic_μ . (4)
Definition 1.5 (Representation of a Hom-Lie algebra) .

Let ( 𝔤 , [ , ] , α ) 𝔤 𝛼 (\mathfrak{g},[\cdot,\cdot],\alpha) ( fraktur_g , [ ⋅ , ⋅ ] , italic_α ) be a Hom-Lie algebra. A representation of 𝔤 𝔤 \mathfrak{g} fraktur_g is a Hom-module ( V , β ) 𝑉 𝛽 (V,\beta) ( italic_V , italic_β ) with an action ρ : 𝔤 V V , g v g v : 𝜌 formulae-sequence tensor-product 𝔤 𝑉 𝑉 maps-to tensor-product 𝑔 𝑣 𝑔 𝑣 \rho:\mathfrak{g}\otimes V\to V,g\otimes v\mapsto g\cdot v italic_ρ : fraktur_g ⊗ italic_V → italic_V , italic_g ⊗ italic_v ↦ italic_g ⋅ italic_v , such that for all x , y g 𝑥 𝑦 𝑔 x,y\in g italic_x , italic_y ∈ italic_g and v V 𝑣 𝑉 v\in V italic_v ∈ italic_V

[ x , y ] β ( v ) = α ( x ) ( y v ) - α ( y ) ( x v ) . 𝑥 𝑦 𝛽 𝑣 𝛼 𝑥 𝑦 𝑣 𝛼 𝑦 𝑥 𝑣 [x,y]\cdot\beta(v)=\alpha(x)\cdot(y\cdot v)-\alpha(y)\cdot(x\cdot v). [ italic_x , italic_y ] ⋅ italic_β ( italic_v ) = italic_α ( italic_x ) ⋅ ( italic_y ⋅ italic_v ) - italic_α ( italic_y ) ⋅ ( italic_x ⋅ italic_v ) . (5)

We require that it is multiplicative, i.e.

β ( x v ) = α ( x ) β ( v ) . 𝛽 𝑥 𝑣 𝛼 𝑥 𝛽 𝑣 \beta(x\cdot v)=\alpha(x)\cdot\beta(v). italic_β ( italic_x ⋅ italic_v ) = italic_α ( italic_x ) ⋅ italic_β ( italic_v ) . (6)

We call ( M , ρ , β ) 𝑀 𝜌 𝛽 (M,\rho,\beta) ( italic_M , italic_ρ , italic_β ) also a Hom-Lie module over 𝔤 𝔤 \mathfrak{g} fraktur_g or simply a 𝔤 𝔤 \mathfrak{g} fraktur_g -module.

Definition 1.6 .

Let ( A , μ , α ) 𝐴 𝜇 𝛼 (A,\mu,\alpha) ( italic_A , italic_μ , italic_α ) be a Hom-associative algebra and ( M , β ) 𝑀 𝛽 (M,\beta) ( italic_M , italic_β ) be a Hom-module. Further let ρ : A M M , ( a m ) a m : 𝜌 formulae-sequence tensor-product 𝐴 𝑀 𝑀 maps-to tensor-product 𝑎 𝑚 𝑎 𝑚 \rho:A\otimes M\to M,(a\otimes m)\mapsto a\cdot m italic_ρ : italic_A ⊗ italic_M → italic_M , ( italic_a ⊗ italic_m ) ↦ italic_a ⋅ italic_m be a linear map, then ( M , ρ ) 𝑀 𝜌 (M,\rho) ( italic_M , italic_ρ ) is called an (left) A 𝐴 A italic_A -module if

( a b ) β ( m ) = α ( a ) ( b m ) , 𝑎 𝑏 𝛽 𝑚 𝛼 𝑎 𝑏 𝑚 \displaystyle(ab)\cdot\beta(m)=\alpha(a)(b\cdot m), ( italic_a italic_b ) ⋅ italic_β ( italic_m ) = italic_α ( italic_a ) ( italic_b ⋅ italic_m ) , (7)
β ( a m ) = α ( a ) β ( m ) . 𝛽 𝑎 𝑚 𝛼 𝑎 𝛽 𝑚 \displaystyle\beta(a\cdot m)=\alpha(a)\cdot\beta(m). italic_β ( italic_a ⋅ italic_m ) = italic_α ( italic_a ) ⋅ italic_β ( italic_m ) . (8)

Similarly one can define right A 𝐴 A italic_A -modules.

An A 𝐴 A italic_A -bimodule is a Hom-module ( M , β ) 𝑀 𝛽 (M,\beta) ( italic_M , italic_β ) , with two maps ρ : A M M , a m a m : 𝜌 formulae-sequence tensor-product 𝐴 𝑀 𝑀 maps-to tensor-product 𝑎 𝑚 𝑎 𝑚 \rho:A\otimes M\to M,a\otimes m\mapsto a\cdot m italic_ρ : italic_A ⊗ italic_M → italic_M , italic_a ⊗ italic_m ↦ italic_a ⋅ italic_m and λ : M A M , a m m a : 𝜆 formulae-sequence tensor-product 𝑀 𝐴 𝑀 maps-to tensor-product 𝑎 𝑚 𝑚 𝑎 \lambda:M\otimes A\to M,a\otimes m\mapsto m\cdot a italic_λ : italic_M ⊗ italic_A → italic_M , italic_a ⊗ italic_m ↦ italic_m ⋅ italic_a , such that ρ 𝜌 \rho italic_ρ is a left and λ 𝜆 \lambda italic_λ a right module structure and

α ( a ) ( m b ) = ( a m ) α ( b ) . 𝛼 𝑎 𝑚 𝑏 𝑎 𝑚 𝛼 𝑏 \alpha(a)\cdot(m\cdot b)=(a\cdot m)\cdot\alpha(b). italic_α ( italic_a ) ⋅ ( italic_m ⋅ italic_b ) = ( italic_a ⋅ italic_m ) ⋅ italic_α ( italic_b ) . (9)
Definition 1.8 .

A Hom-Lie coalgebra ( 𝔤 , δ , α ) 𝔤 𝛿 𝛼 (\mathfrak{g},\delta,\alpha) ( fraktur_g , italic_δ , italic_α ) is a Hom-module ( 𝔤 , α ) 𝔤 𝛼 (\mathfrak{g},\alpha) ( fraktur_g , italic_α ) with a skew-symmetric cobracket δ : 𝔤 𝔤 𝔤 : 𝛿 𝔤 tensor-product 𝔤 𝔤 \delta:\mathfrak{g}\to\mathfrak{g}\otimes\mathfrak{g} italic_δ : fraktur_g → fraktur_g ⊗ fraktur_g , satisfying.

δ ( δ α ) ( id + σ + σ 2 ) = 0 . 𝛿 tensor-product 𝛿 𝛼 id 𝜎 superscript 𝜎 2 0 \delta\circ(\delta\otimes\alpha)\circ(\operatorname{id}+\sigma+\sigma^{2})=0. italic_δ ∘ ( italic_δ ⊗ italic_α ) ∘ ( roman_id + italic_σ + italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = 0 . (11)

We also require it to be multiplicative, i.e. δ α = ( α α ) δ 𝛿 𝛼 tensor-product 𝛼 𝛼 𝛿 \delta\circ\alpha=(\alpha\otimes\alpha)\circ\delta italic_δ ∘ italic_α = ( italic_α ⊗ italic_α ) ∘ italic_δ .

Definition 1.9 (Hom-Lie bialgebra) .

A Hom-Lie bialgebra is a tuple ( 𝔤 , ν , δ , α , β ) 𝔤 𝜈 𝛿 𝛼 𝛽 (\mathfrak{g},\nu,\delta,\alpha,\beta) ( fraktur_g , italic_ν , italic_δ , italic_α , italic_β ) , such that ( 𝔤 , ν , α ) 𝔤 𝜈 𝛼 (\mathfrak{g},\nu,\alpha) ( fraktur_g , italic_ν , italic_α ) is a Hom-Lie algebra, ( 𝔤 , δ , β ) 𝔤 𝛿 𝛽 (\mathfrak{g},\delta,\beta) ( fraktur_g , italic_δ , italic_β ) is a Hom-Lie coalgebra and they are compatible in the sense that

δ ( [ x , y ] ) = α ( x ( 1 ) ) [ x ( 2 ) , β ( y ) ] + [ x ( 1 ) , β ( y ) ] α ( x ( 1 ) ) + [ β ( x ) , y ( 1 ) ] α ( y ( 1 ) ) + α ( y ( 1 ) ) [ β ( x ) , y ( 2 ) ] . 𝛿 𝑥 𝑦 tensor-product 𝛼 superscript 𝑥 1 superscript 𝑥 2 𝛽 𝑦 tensor-product superscript 𝑥 1 𝛽 𝑦 𝛼 superscript 𝑥 1 tensor-product 𝛽 𝑥 superscript 𝑦 1 𝛼 superscript 𝑦 1 tensor-product 𝛼 superscript 𝑦 1 𝛽 𝑥 superscript 𝑦 2 \begin{split}\displaystyle\delta([x,y])=\alpha(x^{(1)})\otimes[x^{(2)},\beta(y% )]+[x^{(1)},\beta(y)]\otimes\alpha(x^{(1)})\\ \displaystyle+[\beta(x),y^{(1)}]\otimes\alpha(y^{(1)})+\alpha(y^{(1)})\otimes[% \beta(x),y^{(2)}].\end{split} start_ROW start_CELL italic_δ ( [ italic_x , italic_y ] ) = italic_α ( italic_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ) ⊗ [ italic_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT , italic_β ( italic_y ) ] + [ italic_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT , italic_β ( italic_y ) ] ⊗ italic_α ( italic_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ) end_CELL end_ROW start_ROW start_CELL + [ italic_β ( italic_x ) , italic_y start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ] ⊗ italic_α ( italic_y start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ) + italic_α ( italic_y start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ) ⊗ [ italic_β ( italic_x ) , italic_y start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT ] . end_CELL end_ROW (12)

Here we use Sweedler’s notation δ ( x ) = x ( 1 ) x ( 2 ) 𝛿 𝑥 tensor-product superscript 𝑥 1 superscript 𝑥 2 \delta(x)=x^{(1)}\otimes x^{(2)} italic_δ ( italic_x ) = italic_x start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT for the cobracket. Note that on the right hand side there is an implicit sum. We also require that β ν = ν ( β β ) 𝛽 𝜈 𝜈 tensor-product 𝛽 𝛽 \beta\circ\nu=\nu\circ(\beta\otimes\beta) italic_β ∘ italic_ν = italic_ν ∘ ( italic_β ⊗ italic_β ) , δ α = ( α α ) δ 𝛿 𝛼 tensor-product 𝛼 𝛼 𝛿 \delta\circ\alpha=(\alpha\otimes\alpha)\circ\delta italic_δ ∘ italic_α = ( italic_α ⊗ italic_α ) ∘ italic_δ and β α = α β 𝛽 𝛼 𝛼 𝛽 \beta\circ\alpha=\alpha\circ\beta italic_β ∘ italic_α = italic_α ∘ italic_β .


Definition 3.2 .

Let ρ 𝜌 \rho italic_ρ and θ 𝜃 \theta italic_θ be real-valued functions on an n 𝑛 n italic_n -dimensional manifold M 𝑀 M italic_M with ρ > 0 𝜌 0 \rho>0 italic_ρ > 0 . The Madelung transform is the mapping Φ : ( ρ , θ ) ψ : Φ maps-to 𝜌 𝜃 𝜓 \Phi:(\rho,\theta)\mapsto\psi roman_Φ : ( italic_ρ , italic_θ ) ↦ italic_ψ defined by

ψ = ρ e i θ . 𝜓 𝜌 superscript 𝑒 𝑖 𝜃 \psi=\sqrt{\rho e^{i\theta}}. italic_ψ = square-root start_ARG italic_ρ italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT end_ARG . (8)

Definition 2.4 (Lattice as an algebra) .

A lattice is an algebra 𝐋 := ( , ) assign 𝐋 \mathbf{L}:=({\cal L},{\cal F}) bold_L := ( caligraphic_L , caligraphic_F ) where {\cal F} caligraphic_F contains two binary operations \vee and \wedge (read “join” and “meet” respectively) on {\cal L} caligraphic_L that satisfy the following axiomatic identities for all x , y , z 𝑥 𝑦 𝑧 x,y,z\in{\cal L} italic_x , italic_y , italic_z ∈ caligraphic_L ,

  1. (LA-1)

    commutative laws: x y = y x 𝑥 𝑦 𝑦 𝑥 x\vee y=y\vee x italic_x ∨ italic_y = italic_y ∨ italic_x , x y = y x 𝑥 𝑦 𝑦 𝑥 x\wedge y=y\wedge x italic_x ∧ italic_y = italic_y ∧ italic_x ;

  2. (LA-2)

    associative laws: x ( y z ) = ( x y ) z 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 x\vee(y\vee z)=(x\vee y)\vee z italic_x ∨ ( italic_y ∨ italic_z ) = ( italic_x ∨ italic_y ) ∨ italic_z , x ( y z ) = ( x y ) z 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 x\wedge(y\wedge z)=(x\wedge y)\wedge z italic_x ∧ ( italic_y ∧ italic_z ) = ( italic_x ∧ italic_y ) ∧ italic_z ;

  3. (LA-3)

    absorption laws: x = x ( x y ) 𝑥 𝑥 𝑥 𝑦 x=x\vee(x\wedge y) italic_x = italic_x ∨ ( italic_x ∧ italic_y ) , x = x ( x y ) 𝑥 𝑥 𝑥 𝑦 x=x\wedge(x\vee y) italic_x = italic_x ∧ ( italic_x ∨ italic_y ) .

Definition 2.5 .

A bounded lattice is an algebra ( , ) ({\cal L},{\cal F}) ( caligraphic_L , caligraphic_F ) where {\cal F} caligraphic_F contains binary operations , \vee,\wedge ∨ , ∧ and nullary operations 0 ^ , 1 ^ normal-^ 0 normal-^ 1 \hat{0},\hat{1} ^ start_ARG 0 end_ARG , ^ start_ARG 1 end_ARG so that ( , , ) ({\cal L},\vee,\wedge) ( caligraphic_L , ∨ , ∧ ) is a lattice and, x for-all 𝑥 \forall x\in{\cal L} ∀ italic_x ∈ caligraphic_L ,

x 0 ^ = 0 ^ , x 1 ^ = 1 ^ . formulae-sequence 𝑥 ^ 0 ^ 0 𝑥 ^ 1 ^ 1 x\wedge\hat{0}=\hat{0},\qquad x\vee\hat{1}=\hat{1}. italic_x ∧ ^ start_ARG 0 end_ARG = ^ start_ARG 0 end_ARG , italic_x ∨ ^ start_ARG 1 end_ARG = ^ start_ARG 1 end_ARG . (5)
Definition 2.6 .

A distributive lattice is a lattice which satisfies either of the distributive laws

x ( y z ) = ( x y ) ( x z ) , x ( y z ) = ( x y ) ( x z ) . formulae-sequence 𝑥 𝑦 𝑧 𝑥 𝑦 𝑥 𝑧 𝑥 𝑦 𝑧 𝑥 𝑦 𝑥 𝑧 x\wedge(y\vee z)=(x\wedge y)\vee(x\wedge z),\qquad x\vee(y\wedge z)=(x\vee y)% \wedge(x\vee z). italic_x ∧ ( italic_y ∨ italic_z ) = ( italic_x ∧ italic_y ) ∨ ( italic_x ∧ italic_z ) , italic_x ∨ ( italic_y ∧ italic_z ) = ( italic_x ∨ italic_y ) ∧ ( italic_x ∨ italic_z ) . (6)
Definition 2.8 .

A Boolean algebra is an algebra of the form

𝐁 := ( , , , , 0 ^ , 1 ^ ) , fragments B assign fragments ( B , , superscript , , ^ 0 , ^ 1 ) , \mathbf{B}:=({\cal B},\ \vee,\ \wedge,\ \,^{\prime},\ \hat{0},\ \hat{1}), bold_B := ( caligraphic_B , ∨ , ∧ , start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , ^ start_ARG 0 end_ARG , ^ start_ARG 1 end_ARG ) , (8)

where the binary operations , \vee,\ \wedge ∨ , ∧ , the unary operation normal-′ \,{}^{\prime} start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT called complementation, and the nullary operations 0 ^ , 1 ^ normal-^ 0 normal-^ 1 \hat{0},\ \hat{1} ^ start_ARG 0 end_ARG , ^ start_ARG 1 end_ARG satisfy

  1. (BA-1)

    the identity laws: x 1 ^ = x 𝑥 ^ 1 𝑥 x\wedge\hat{1}=x italic_x ∧ ^ start_ARG 1 end_ARG = italic_x , x 0 ^ = x 𝑥 ^ 0 𝑥 x\vee\hat{0}=x italic_x ∨ ^ start_ARG 0 end_ARG = italic_x ,

  2. (BA-2)

    the complement laws: x x = 0 ^ 𝑥 superscript 𝑥 ^ 0 x\wedge x^{\prime}=\hat{0} italic_x ∧ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ^ start_ARG 0 end_ARG , x x = 1 ^ 𝑥 superscript 𝑥 ^ 1 x\vee x^{\prime}=\hat{1} italic_x ∨ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ^ start_ARG 1 end_ARG ,

  3. (BA-3)

    the commutative laws (LA-1),

  4. (BA-4)

    the distributive laws ( 6 ).


Definition 2.2 .

Let a = { a ( x ) } x = 0 𝑎 subscript superscript 𝑎 𝑥 𝑥 0 a=\{a(x)\}^{\infty}_{x=0} italic_a = { italic_a ( italic_x ) } start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x = 0 end_POSTSUBSCRIPT be an arbitrary sequence of non-negative integers. The h h italic_h -stair b = { b ( x ) } x = 0 𝑏 subscript superscript 𝑏 𝑥 𝑥 0 b=\{b(x)\}^{\infty}_{x=0} italic_b = { italic_b ( italic_x ) } start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x = 0 end_POSTSUBSCRIPT of a 𝑎 a italic_a is defined by the following:

b ( h x + r ) = h a ( x ) + r 𝑏 𝑥 𝑟 𝑎 𝑥 𝑟 \displaystyle b(hx+r)=ha(x)+r italic_b ( italic_h italic_x + italic_r ) = italic_h italic_a ( italic_x ) + italic_r

for all x 𝑥 x italic_x and for all r = 0 , 1 , , h - 1 𝑟 0 1 1 r=0,1,\cdots,h-1 italic_r = 0 , 1 , ⋯ , italic_h - 1 .


Definition 1

Shrinking function.

λ ( x , y ) = 2 - 1 - x y x y 𝜆 𝑥 𝑦 superscript 2 1 𝑥 𝑦 𝑥 𝑦 \lambda(x,y)=\tfrac{2^{-1-xy}}{xy} italic_λ ( italic_x , italic_y ) = divide start_ARG 2 start_POSTSUPERSCRIPT - 1 - italic_x italic_y end_POSTSUPERSCRIPT end_ARG start_ARG italic_x italic_y end_ARG

for ( x , y ) ( 1 , ) × + 𝑥 𝑦 1 superscript (x,y)\in(1,\infty)\times\mathbb{N}^{+} ( italic_x , italic_y ) ∈ ( 1 , ∞ ) × blackboard_N start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT . {}_{\Box} start_FLOATSUBSCRIPT □ end_FLOATSUBSCRIPT


Definition C.1 ().
m s ( [ α ] φ ) = m s ( α φ ) = m s ( 𝗍𝗍 ) = m s ( 𝖿𝖿 ) 𝑚 𝑠 delimited-[] 𝛼 𝜑 𝑚 𝑠 delimited-⟨⟩ 𝛼 𝜑 𝑚 𝑠 𝗍𝗍 𝑚 𝑠 𝖿𝖿 \displaystyle ms([\alpha]\varphi)=ms(\mathbf{\langle}\alpha\mathbf{\rangle}% \varphi)=ms(\mathsf{tt})=ms(\mathsf{ff}) italic_m italic_s ( [ italic_α ] italic_φ ) = italic_m italic_s ( ⟨ italic_α ⟩ italic_φ ) = italic_m italic_s ( sansserif_tt ) = italic_m italic_s ( sansserif_ff ) = 0 absent 0 \displaystyle=0 = 0
m s ( max X . φ ) = m s ( min X . φ ) fragments m s fragments ( X . φ ) m s fragments ( X . φ ) \displaystyle ms(\max X.\varphi)=ms(\min X.\varphi) italic_m italic_s ( roman_max italic_X . italic_φ ) = italic_m italic_s ( roman_min italic_X . italic_φ ) = m s ( φ ) + 1 absent 𝑚 𝑠 𝜑 1 \displaystyle=ms(\varphi)+1 = italic_m italic_s ( italic_φ ) + 1
m s ( φ ψ ) = m s ( φ ψ ) 𝑚 𝑠 𝜑 𝜓 𝑚 𝑠 𝜑 𝜓 \displaystyle ms(\varphi\land\psi)=ms(\varphi\lor\psi) italic_m italic_s ( italic_φ ∧ italic_ψ ) = italic_m italic_s ( italic_φ ∨ italic_ψ ) = max { m s ( φ ) , m s ( ψ ) } + 1 . absent 𝑚 𝑠 𝜑 𝑚 𝑠 𝜓 1 \displaystyle=\max\{ms(\varphi),ms(\psi)\}+1. = roman_max { italic_m italic_s ( italic_φ ) , italic_m italic_s ( italic_ψ ) } + 1 .

Definition 1.1.2 .

[(left) derivation of C ( M ^ ) superscript 𝐶 normal-^ 𝑀 C^{\infty}(\widehat{M}) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) ] (Cf. [L-Y1: Definition 1.3.2, footnote 7] (D(14.1)).) A (left) derivation of C ( M ^ ) superscript 𝐶 ^ 𝑀 C^{\infty}(\widehat{M}) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) over {\mathbb{C}} blackboard_C is a / 2 2 {\mathbb{Z}}/2 blackboard_Z / 2 -graded {\mathbb{C}} blackboard_C -linear operation
ξ : C ( M ^ ) C ( M ^ ) : 𝜉 superscript 𝐶 ^ 𝑀 superscript 𝐶 ^ 𝑀 \xi:C^{\infty}(\widehat{M})\rightarrow C^{\infty}(\widehat{M}) italic_ξ : italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) → italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) on C ( M ^ ) superscript 𝐶 ^ 𝑀 C^{\infty}(\widehat{M}) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) that satisfies the / 2 2 {\mathbb{Z}}/2 blackboard_Z / 2 -graded Leibniz rule

ξ ( f g ) = ( ξ f ) g + ( - 1 ) p ( ξ ) p ( f ) f ( ξ g ) 𝜉 𝑓 𝑔 𝜉 𝑓 𝑔 superscript 1 𝑝 𝜉 𝑝 𝑓 𝑓 𝜉 𝑔 \xi(fg)\;=\;(\xi f)g\,+\,(-1)^{p(\xi)p(f)}f(\xi g) italic_ξ ( italic_f italic_g ) = ( italic_ξ italic_f ) italic_g + ( - 1 ) start_POSTSUPERSCRIPT italic_p ( italic_ξ ) italic_p ( italic_f ) end_POSTSUPERSCRIPT italic_f ( italic_ξ italic_g )

when in parity-homogeneous situations. The set 𝐷𝑒𝑟 ( M ^ ) := 𝐷𝑒𝑟 ( C ( M ^ ) ) assign subscript 𝐷𝑒𝑟 ^ 𝑀 subscript 𝐷𝑒𝑟 superscript 𝐶 ^ 𝑀 \mbox{\it Der}\,_{\mathbb{C}}(\widehat{M}):=\mbox{\it Der}\,_{\mathbb{C}}(C^{% \infty}(\widehat{M})) Der start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( ^ start_ARG italic_M end_ARG ) := Der start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) ) of derivations of C ( M ^ ) superscript 𝐶 ^ 𝑀 C^{\infty}(\widehat{M}) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) is a (left) C ( M ^ ) superscript 𝐶 ^ 𝑀 C^{\infty}(\widehat{M}) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) -module, with ( a ξ ) ( ) := a ( ξ ( ) ) assign 𝑎 𝜉 𝑎 𝜉 (a\xi)(\,{\LARGE\cdot}\,):=a(\xi(\,\cdot\,)) ( italic_a italic_ξ ) ( ⋅ ) := italic_a ( italic_ξ ( ⋅ ) ) and p ( a ξ ) := p ( a ) + p ( ξ ) assign 𝑝 𝑎 𝜉 𝑝 𝑎 𝑝 𝜉 p(a\xi):=p(a)+p(\xi) italic_p ( italic_a italic_ξ ) := italic_p ( italic_a ) + italic_p ( italic_ξ ) for a C ( M ^ ) 𝑎 superscript 𝐶 ^ 𝑀 a\in C^{\infty}(\widehat{M}) italic_a ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( ^ start_ARG italic_M end_ARG ) and ξ 𝐷𝑒𝑟 ( M ^ ) 𝜉 subscript 𝐷𝑒𝑟 ^ 𝑀 \xi\in\mbox{\it Der}\,_{\mathbb{C}}(\widehat{M}) italic_ξ ∈ Der start_POSTSUBSCRIPT blackboard_C end_POSTSUBSCRIPT ( ^ start_ARG italic_M end_ARG ) .


Definition 1.2 .

Let Γ Γ \Gamma roman_Γ and Γ superscript Γ \Gamma^{\prime} roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT be two line segments in Ω Ω \Omega roman_Ω that intersect with each other. Denote by θ = ( Γ , Γ ) ( 0 , 2 π ) 𝜃 Γ superscript Γ 0 2 𝜋 \theta=\angle(\Gamma,\Gamma^{\prime})\in(0,2\pi) italic_θ = ∠ ( roman_Γ , roman_Γ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ ( 0 , 2 italic_π ) the intersecting angle. Set

θ = α 2 π , α ( 0 , 1 ) . formulae-sequence 𝜃 𝛼 2 𝜋 𝛼 0 1 \theta=\alpha\cdot 2\pi,\ \ \alpha\in(0,1). italic_θ = italic_α ⋅ 2 italic_π , italic_α ∈ ( 0 , 1 ) . (1.3)

θ 𝜃 \theta italic_θ is called an irrational angle if α 𝛼 \alpha italic_α is an irrational number; and it is called a rational angle of degree q 𝑞 q italic_q if α = p / q 𝛼 𝑝 𝑞 \alpha=p/q italic_α = italic_p / italic_q with p , q 𝑝 𝑞 p,q\in\mathbb{N} italic_p , italic_q ∈ blackboard_N and irreducible.


Definition 1 .

The Hodge locus V [ Z 0 ] N superscript subscript 𝑉 delimited-[] subscript 𝑍 0 𝑁 V_{[Z_{0}]}^{N} italic_V start_POSTSUBSCRIPT [ italic_Z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT is a subscheme of 𝖳 N superscript 𝖳 𝑁 {\sf T}^{N} sansserif_T start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT given by the conditions

(7) ( 𝗌 ) = 0 , 𝗌 0 \displaystyle\nabla({\sf s})=0, ∇ ( sansserif_s ) = 0 ,
(8) 𝗌 F n 2 H dR n ( 𝖷 N / 𝖳 N ) , 𝗌 superscript 𝐹 𝑛 2 subscript superscript 𝐻 𝑛 dR superscript 𝖷 𝑁 superscript 𝖳 𝑁 \displaystyle{\sf s}\in F^{\frac{n}{2}}H^{n}_{\rm dR}({\sf X}^{N}/{\sf T}^{N}), sansserif_s ∈ italic_F start_POSTSUPERSCRIPT divide start_ARG italic_n end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT italic_H start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_dR end_POSTSUBSCRIPT ( sansserif_X start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT / sansserif_T start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT ) ,
(9) 𝗌 0 = cl ( Z 0 ) . subscript 𝗌 0 cl subscript 𝑍 0 \displaystyle{\sf s}_{0}={\rm cl}(Z_{0}). sansserif_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = roman_cl ( italic_Z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Definition 2.4 .

( [ 2 ] ) {linenomath*} A cocycle ϕ italic-ϕ \phi italic_ϕ satisfies

ϕ ( 0 , ω , x ) = x , italic-ϕ 0 𝜔 𝑥 𝑥 \displaystyle\phi(0,\omega,x)=x, italic_ϕ ( 0 , italic_ω , italic_x ) = italic_x ,
ϕ ( l 1 + l 2 , ω , x ) = ϕ ( l 2 , θ l 1 ω , ϕ ( l 1 , ω , x ) ) . italic-ϕ subscript 𝑙 1 subscript 𝑙 2 𝜔 𝑥 italic-ϕ subscript 𝑙 2 subscript 𝜃 subscript 𝑙 1 𝜔 italic-ϕ subscript 𝑙 1 𝜔 𝑥 \displaystyle\phi(l_{1}+l_{2},\omega,x)=\phi(l_{2},\theta_{l_{1}}\omega,\phi(l% _{1},\omega,x)). italic_ϕ ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_ω , italic_x ) = italic_ϕ ( italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_θ start_POSTSUBSCRIPT italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ω , italic_ϕ ( italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ω , italic_x ) ) .

It is ( ( + ) ( ) , ) tensor-product superscript (\mathcal{B(\mathbb{R^{+}})\otimes\mathcal{F}\otimes\mathcal{B(\mathbb{H})},% \mathcal{F}}) ( caligraphic_B ( blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) ⊗ caligraphic_F ⊗ caligraphic_B ( blackboard_H ) , caligraphic_F ) -measurable and defined by mapping:

ϕ : + × Ω × , : italic-ϕ superscript Ω \phi:\mathbb{R^{+}}\times\Omega\times\mathbb{H}\rightarrow\mathbb{H}, italic_ϕ : blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT × roman_Ω × blackboard_H → blackboard_H ,

for x 𝑥 x\in\mathbb{H} italic_x ∈ blackboard_H , ω Ω 𝜔 normal-Ω \omega\in\Omega italic_ω ∈ roman_Ω and l 1 , l 2 + subscript 𝑙 1 subscript 𝑙 2 superscript l_{1},l_{2}\in\mathbb{R^{+}} italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT . Metric dynamical system ( Ω , , , θ ) normal-Ω 𝜃 (\Omega,\mathcal{F},\mathbb{P},\theta) ( roman_Ω , caligraphic_F , blackboard_P , italic_θ ) , together with ϕ italic-ϕ \phi italic_ϕ , generates a random dynamical system.


Definition 1 .

A good polynomial map is a polynomial map F = ( f , g ) : 2 2 : 𝐹 𝑓 𝑔 superscript 2 superscript 2 F=(f,g):\mathbb{C}^{2}\to\mathbb{C}^{2} italic_F = ( italic_f , italic_g ) : blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that the coordinate polynomials f 𝑓 f italic_f and g 𝑔 g italic_g have degrees greater than 1 of the form

f = α x + β y + terms of higher degrees 𝑓 𝛼 𝑥 𝛽 𝑦 terms of higher degrees f=\alpha x+\beta y+\text{ terms of higher degrees} italic_f = italic_α italic_x + italic_β italic_y + terms of higher degrees
g = α x + β y + terms of higher degrees , 𝑔 superscript 𝛼 𝑥 superscript 𝛽 𝑦 terms of higher degrees g=\alpha^{\prime}x+\beta^{\prime}y+\text{ terms of higher degrees}, italic_g = italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_x + italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_y + terms of higher degrees ,

where α , β , α 𝛼 𝛽 superscript 𝛼 \alpha,\beta,\alpha^{\prime} italic_α , italic_β , italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and β superscript 𝛽 \beta^{\prime} italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT are non-zero complex numbers satisfying the condition

(2.1) α β - α β 0 . 𝛼 superscript 𝛽 superscript 𝛼 𝛽 0 \alpha\beta^{\prime}-\alpha^{\prime}\beta\neq 0. italic_α italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT - italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_β ≠ 0 .

Definition 1 .

We say a simple closed geodesic γ : 𝕊 1 𝒮 normal-: 𝛾 normal-→ superscript 𝕊 1 𝒮 \gamma:\mathbb{S}^{1}\to\mathcal{S} italic_γ : blackboard_S start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT → caligraphic_S is the boundary of a convexly foliated infinity, provided γ = Σ 𝛾 normal-Σ \gamma=\partial\Sigma italic_γ = ∂ roman_Σ for some set Σ 𝒮 normal-Σ 𝒮 \Sigma\subset\mathcal{S} roman_Σ ⊂ caligraphic_S , and 𝒮 - Σ 2 - B ( 1 ) 𝒮 normal-Σ superscript 2 𝐵 1 \mathcal{S}-\Sigma\cong\mathbb{R}^{2}-B(1) caligraphic_S - roman_Σ ≅ blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_B ( 1 ) . On 𝒮 - Σ 𝒮 normal-Σ \mathcal{S}-\Sigma caligraphic_S - roman_Σ we have,

g ¯ = d r d r + r 2 d φ d φ + h ¯ 𝑔 tensor-product d 𝑟 d 𝑟 tensor-product superscript 𝑟 2 d 𝜑 d 𝜑 \bar{g}=\mathrm{d}r\otimes\mathrm{d}r+r^{2}\mathrm{d}\varphi\otimes\mathrm{d}% \varphi+h ¯ start_ARG italic_g end_ARG = roman_d italic_r ⊗ roman_d italic_r + italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_d italic_φ ⊗ roman_d italic_φ + italic_h

with components satisfying h φ i = 𝒪 ( r ) , h φ i , j = 𝒪 ( 1 ) formulae-sequence subscript 𝜑 𝑖 𝒪 𝑟 subscript 𝜑 𝑖 𝑗 𝒪 1 h_{\varphi i}=\mathcal{O}(r),h_{\varphi i,j}=\mathcal{O}(1) italic_h start_POSTSUBSCRIPT italic_φ italic_i end_POSTSUBSCRIPT = caligraphic_O ( italic_r ) , italic_h start_POSTSUBSCRIPT italic_φ italic_i , italic_j end_POSTSUBSCRIPT = caligraphic_O ( 1 ) .


Definition 4.1 .

A satisfactory coloring c 𝑐 c italic_c of K n subscript 𝐾 𝑛 K_{n} italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is multiplicative if and only if there exists a group ( G , ) 𝐺 normal-⋅ (G,\cdot) ( italic_G , ⋅ ) of order n 𝑛 n italic_n and a bijection φ : [ n ] G normal-: 𝜑 normal-→ delimited-[] 𝑛 𝐺 \varphi\!:[n]\to G italic_φ : [ italic_n ] → italic_G such that, thinking of c 𝑐 c italic_c as a map c : K n [ n ] normal-: 𝑐 normal-→ subscript 𝐾 𝑛 delimited-[] 𝑛 c\!:K_{n}\to[n] italic_c : italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT → [ italic_n ] with c ( i ) = i 𝑐 𝑖 𝑖 c(i)=i italic_c ( italic_i ) = italic_i for all i [ n ] 𝑖 delimited-[] 𝑛 i\in[n] italic_i ∈ [ italic_n ] , and letting h = φ c 𝜑 𝑐 h=\varphi\circ c italic_h = italic_φ ∘ italic_c , we have that

h ( a b ) = h ( a ) h ( b ) 𝑎 𝑏 𝑎 𝑏 h(ab)=h(a)\cdot h(b) italic_h ( italic_a italic_b ) = italic_h ( italic_a ) ⋅ italic_h ( italic_b )

for all a , b K n 𝑎 𝑏 subscript 𝐾 𝑛 a,b\in K_{n} italic_a , italic_b ∈ italic_K start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT . In this case, we say that c 𝑐 c italic_c is a G 𝐺 G italic_G -coloring.


Definition 2.26 .

A function φ : β A : 𝜑 𝛽 𝐴 \varphi:\beta\rightarrow A italic_φ : italic_β → italic_A is 0-trivial if

φ = * 0 superscript 𝜑 0 \varphi=^{*}0 italic_φ = start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT 0

i.e., if φ 𝜑 \varphi italic_φ has finite support. Just as for higher n 𝑛 n italic_n , then, 0-coherent means 0-trivial on all initial segments : φ 𝜑 \varphi italic_φ is 0-coherent if

φ α = * 0 for all α < β . 𝜑 𝛼 superscript 0 for all 𝛼 𝛽 \varphi\!\restriction\!\alpha\,=^{*}0\hskip 9.50322pt\textnormal{ for all }% \alpha<\beta. italic_φ ↾ italic_α = start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT 0 for all italic_α < italic_β .

Definition 13 .

A continuous function β : d - 2 × 𝕋 d : 𝛽 superscript 𝑑 2 superscript 𝕋 𝑑 \beta:{\mathbb{Z}}^{d-2}\times{\mathbb{T}}^{d}\to{\mathbb{R}} italic_β : blackboard_Z start_POSTSUPERSCRIPT italic_d - 2 end_POSTSUPERSCRIPT × blackboard_T start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT → blackboard_R is called an (additive) cocycle over α 𝛼 {\alpha} italic_α if it satisfies

β ( a + b , x ) = β ( a , α ( b ) x ) + β ( b , x ) , 𝛽 𝑎 𝑏 𝑥 𝛽 𝑎 𝛼 𝑏 𝑥 𝛽 𝑏 𝑥 \beta(a+b,x)=\beta(a,{\alpha}(b)\cdot x)+\beta(b,x), italic_β ( italic_a + italic_b , italic_x ) = italic_β ( italic_a , italic_α ( italic_b ) ⋅ italic_x ) + italic_β ( italic_b , italic_x ) ,

for all a , b d - 2 𝑎 𝑏 superscript 𝑑 2 a,b\in{\mathbb{Z}}^{d-2} italic_a , italic_b ∈ blackboard_Z start_POSTSUPERSCRIPT italic_d - 2 end_POSTSUPERSCRIPT and x d 𝑥 superscript 𝑑 x\in{\mathbb{Z}}^{d} italic_x ∈ blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT . A cocycle β 1 subscript 𝛽 1 \beta_{1} italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is cohomologous to another cocycle β 2 subscript 𝛽 2 \beta_{2} italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT if there exists a continuous function Ψ : 𝕋 d : Ψ superscript 𝕋 𝑑 \Psi:{\mathbb{T}}^{d}\to{\mathbb{R}} roman_Ψ : blackboard_T start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT → blackboard_R such that

β 1 ( a , x ) = β 2 ( a , x ) + Ψ ( α ( a ) x ) - Ψ ( x ) subscript 𝛽 1 𝑎 𝑥 subscript 𝛽 2 𝑎 𝑥 Ψ 𝛼 𝑎 𝑥 Ψ 𝑥 \beta_{1}(a,x)=\beta_{2}(a,x)+\Psi({\alpha}(a)\cdot x)-\Psi(x) italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_x ) = italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_a , italic_x ) + roman_Ψ ( italic_α ( italic_a ) ⋅ italic_x ) - roman_Ψ ( italic_x )

Definition 5.1 .

Let Γ Γ \Gamma roman_Γ be a non-negatively \mathbb{Z} blackboard_Z -graded finite-dimensional algebra and n 𝑛 n\in\mathbb{Z} italic_n ∈ blackboard_Z . The graded ( d + 1 ) 𝑑 1 (d+1) ( italic_d + 1 ) -trivial extension algebra of Γ normal-Γ \Gamma roman_Γ , denoted Triv d + 1 ( Γ ) subscript Triv 𝑑 1 Γ \operatorname{Triv}\nolimits_{d+1}(\Gamma) roman_Triv start_POSTSUBSCRIPT italic_d + 1 end_POSTSUBSCRIPT ( roman_Γ ) , is the \mathbb{Z} blackboard_Z -graded vector space Γ Γ * ( - d - 1 ) direct-sum Γ superscript Γ 𝑑 1 \Gamma\oplus\Gamma^{*}(-d-1) roman_Γ ⊕ roman_Γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( - italic_d - 1 ) with multiplication given by

( a , f ) ( b , g ) = ( a b , a g + ( - 1 ) d i f b ) 𝑎 𝑓 𝑏 𝑔 𝑎 𝑏 𝑎 𝑔 superscript 1 𝑑 𝑖 𝑓 𝑏 (a,f)\cdot(b,g)=(ab,ag+(-1)^{di}fb) ( italic_a , italic_f ) ⋅ ( italic_b , italic_g ) = ( italic_a italic_b , italic_a italic_g + ( - 1 ) start_POSTSUPERSCRIPT italic_d italic_i end_POSTSUPERSCRIPT italic_f italic_b )

when b Γ i 𝑏 subscript Γ 𝑖 b\in\Gamma_{i} italic_b ∈ roman_Γ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is a homogeneous element of degree i 𝑖 i italic_i .


Definition 1

For 0 s < 1 0 𝑠 1 0\leq s<1 0 ≤ italic_s < 1 , we say that a function f : [ - 1 , 1 ] : 𝑓 1 1 f:[-1,1]\rightarrow\mathbb{R} italic_f : [ - 1 , 1 ] → blackboard_R is a s 𝑠 s italic_s -corrupted function if f 𝑓 f italic_f can be written as

f ( x ) = g ( x ) + ω ( x ) , 𝑓 𝑥 𝑔 𝑥 𝜔 𝑥 f(x)=g(x)+\omega(x), italic_f ( italic_x ) = italic_g ( italic_x ) + italic_ω ( italic_x ) ,

where g : [ - 1 , 1 ] : 𝑔 1 1 g:[-1,1]\rightarrow\mathbb{R} italic_g : [ - 1 , 1 ] → blackboard_R is a continuous function, ω ( x ) 𝜔 𝑥 \omega(x) italic_ω ( italic_x ) is a measurable function with | supp ( ω ) | s supp 𝜔 𝑠 |{\rm supp}(\omega)|\leq s | roman_supp ( italic_ω ) | ≤ italic_s , and | supp ( ω ) | supp 𝜔 |{\rm supp}(\omega)| | roman_supp ( italic_ω ) | denotes the Lebesgue measure of the support of ω 𝜔 \omega italic_ω on [ - 1 , 1 ] 1 1 [-1,1] [ - 1 , 1 ] . Note that the support of ω 𝜔 \omega italic_ω , denoted by supp ( ω ) supp 𝜔 {\rm supp}(\omega) roman_supp ( italic_ω ) , is a closed subset of [ - 1 , 1 ] 1 1 [-1,1] [ - 1 , 1 ] . {}_{\Box} start_FLOATSUBSCRIPT □ end_FLOATSUBSCRIPT