Definition 2.2 .

Let E 𝐸 E italic_E be a central A 𝐴 A italic_A -extension of G 𝐺 G italic_G . A 1 1 1 1 -cochain τ C 1 ( E ; A ) 𝜏 superscript 𝐶 1 𝐸 𝐴 \tau\in C^{1}(E;A) italic_τ ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_E ; italic_A ) is called a connection cochain of E 𝐸 E italic_E if τ 𝜏 \tau italic_τ satisfies

τ ( g a ) = τ ( g ) + a 𝜏 𝑔 𝑎 𝜏 𝑔 𝑎 \tau(ga)=\tau(g)+a italic_τ ( italic_g italic_a ) = italic_τ ( italic_g ) + italic_a

for any g G , a A formulae-sequence 𝑔 𝐺 𝑎 𝐴 g\in G,a\in A italic_g ∈ italic_G , italic_a ∈ italic_A . The coboundary δ τ C 2 ( E ; A ) 𝛿 𝜏 superscript 𝐶 2 𝐸 𝐴 \delta\tau\in C^{2}(E;A) italic_δ italic_τ ∈ italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_E ; italic_A ) is called a curvature of τ 𝜏 \tau italic_τ .


Definition 2.1 .

We say that a function f : d normal-: 𝑓 normal-→ superscript 𝑑 f:\mathbb{R}^{d}\rightarrow\mathbb{R} italic_f : blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT → blackboard_R is multiplicatively scale invariant if it satisfies

f ( c x ) = u ( c ) f ( x ) 𝑓 𝑐 𝑥 𝑢 𝑐 𝑓 𝑥 f(cx)=u(c)f(x) italic_f ( italic_c italic_x ) = italic_u ( italic_c ) italic_f ( italic_x ) (2)

and f : d { 0 } normal-: 𝑓 normal-→ superscript 𝑑 0 f:\mathbb{R}^{d}\setminus\{0\}\rightarrow\mathbb{R} italic_f : blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ∖ { 0 } → blackboard_R is additively scale invariant if it satisfies

f ( c x ) = f ( x ) + v ( c ) 𝑓 𝑐 𝑥 𝑓 𝑥 𝑣 𝑐 f(cx)=f(x)+v(c) italic_f ( italic_c italic_x ) = italic_f ( italic_x ) + italic_v ( italic_c ) (3)

for some even functions u : + normal-: 𝑢 normal-→ superscript u:\mathbb{R}\rightarrow\mathbb{R}^{+} italic_u : blackboard_R → blackboard_R start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT with u ( 0 ) = 0 𝑢 0 0 u(0)=0 italic_u ( 0 ) = 0 and v : { 0 } normal-: 𝑣 normal-→ 0 v:\mathbb{R}\setminus\{0\}\rightarrow\mathbb{R} italic_v : blackboard_R ∖ { 0 } → blackboard_R with v ( 1 ) = 0 𝑣 1 0 v(1)=0 italic_v ( 1 ) = 0 .


Definition 2.2 .

Let L 𝐿 L italic_L be a Leibniz algebra, M 𝑀 M italic_M be a 𝕂 𝕂 \mathbb{K} blackboard_K vector space and bilinear maps [ - , - ] : L × M M : 𝐿 𝑀 𝑀 [-,-]:L\times M\rightarrow M [ - , - ] : italic_L × italic_M → italic_M and [ - , - ] : M × L M : 𝑀 𝐿 𝑀 [-,-]:M\times L\rightarrow M [ - , - ] : italic_M × italic_L → italic_M satisfy the following three axioms:

[ m , [ x , y ] ] = [ [ m , x ] , y ] - [ [ m , y ] , x ] , [ x , [ m , y ] ] = [ [ x , m ] , y ] - [ [ x , y ] , m ] , [ x , [ y , m ] ] = [ [ x , y ] , m ] - [ [ x , m ] , y ] . 𝑚 𝑥 𝑦 𝑚 𝑥 𝑦 𝑚 𝑦 𝑥 𝑥 𝑚 𝑦 𝑥 𝑚 𝑦 𝑥 𝑦 𝑚 𝑥 𝑦 𝑚 𝑥 𝑦 𝑚 𝑥 𝑚 𝑦 \begin{array}[]{c}[m,[x,y]]=[[m,x],y]-[[m,y],x],\\ [x,[m,y]]=[[x,m],y]-[[x,y],m],\\ [x,[y,m]]=[[x,y],m]-[[x,m],y].\end{array} start_ARRAY start_ROW start_CELL [ italic_m , [ italic_x , italic_y ] ] = [ [ italic_m , italic_x ] , italic_y ] - [ [ italic_m , italic_y ] , italic_x ] , end_CELL end_ROW start_ROW start_CELL [ italic_x , [ italic_m , italic_y ] ] = [ [ italic_x , italic_m ] , italic_y ] - [ [ italic_x , italic_y ] , italic_m ] , end_CELL end_ROW start_ROW start_CELL [ italic_x , [ italic_y , italic_m ] ] = [ [ italic_x , italic_y ] , italic_m ] - [ [ italic_x , italic_m ] , italic_y ] . end_CELL end_ROW end_ARRAY (2.1)

Then M 𝑀 M italic_M is called a representation of the Leibniz algebra L 𝐿 L italic_L or an L - limit-from 𝐿 L- italic_L - bimodule .


Definition 5.6 .

Let Y 𝑌 Y italic_Y be a complex Banach space. For each f Y 𝑓 𝑌 f\in Y italic_f ∈ italic_Y denote by f ^ ^ 𝑓 \hat{f} ^ start_ARG italic_f end_ARG the function on the dual Y superscript 𝑌 Y^{\prime} italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT defined by

(14) f ^ ( ϕ ) = ϕ ( f ) . ^ 𝑓 italic-ϕ italic-ϕ 𝑓 \hat{f}(\phi)=\phi(f). ^ start_ARG italic_f end_ARG ( italic_ϕ ) = italic_ϕ ( italic_f ) .

The weak-star topology on Y superscript 𝑌 Y^{\prime} italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is the weak topology on Y superscript 𝑌 Y^{\prime} italic_Y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT induced by the family { f ^ : f Y } . conditional-set ^ 𝑓 𝑓 𝑌 \{\hat{f}\colon f\in Y\}. { ^ start_ARG italic_f end_ARG : italic_f ∈ italic_Y } .


Definition 11

Let , 𝒢 𝒢 \mathcal{F},\mathcal{G} caligraphic_F , caligraphic_G be two σ 𝜎 \sigma italic_σ -algebras on X , Y 𝑋 𝑌 X,Y italic_X , italic_Y respectively. Let σ : m : 𝜎 superscript 𝑚 \sigma\colon\mathcal{F}\to\mathbb{R}^{m} italic_σ : caligraphic_F → blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT and let θ : 𝒢 : 𝜃 𝒢 \theta\colon\mathcal{G}\to\mathbb{R} italic_θ : caligraphic_G → blackboard_R be two measures. An unique measure σ θ : 𝒢 n : tensor-product 𝜎 𝜃 tensor-product 𝒢 superscript 𝑛 \sigma\otimes\theta\colon\mathcal{F}\otimes\mathcal{G}\to\mathbb{R}^{n} italic_σ ⊗ italic_θ : caligraphic_F ⊗ caligraphic_G → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT such that

σ θ , v = σ , v θ tensor-product 𝜎 𝜃 𝑣 tensor-product 𝜎 𝑣 𝜃 \langle\sigma\otimes\theta,v\rangle=\langle\sigma,v\rangle\otimes\theta ⟨ italic_σ ⊗ italic_θ , italic_v ⟩ = ⟨ italic_σ , italic_v ⟩ ⊗ italic_θ

for all v m 𝑣 superscript 𝑚 v\in\mathbb{R}^{m} italic_v ∈ blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT we shall call the product measure . Here σ , v θ tensor-product 𝜎 𝑣 𝜃 \langle\sigma,v\rangle\otimes\theta ⟨ italic_σ , italic_v ⟩ ⊗ italic_θ is the usual product measure of \mathbb{R} blackboard_R -valued measures.


Definition 2.1 .

Let n 1 𝑛 1 n\geq 1 italic_n ≥ 1 , then we set

ι ( n ) = ( - 1 ) π ( n ) , 𝜄 𝑛 superscript 1 𝜋 𝑛 \displaystyle\iota(n)=(-1)^{\pi(n)}, italic_ι ( italic_n ) = ( - 1 ) start_POSTSUPERSCRIPT italic_π ( italic_n ) end_POSTSUPERSCRIPT ,

Definition 1.1 .

[ 18 ] A BiHom-Lie superalgebra is a triple ( 𝔤 , [  , ] , α , β ) fragments normal-( g normal-, fragments normal-[  normal-⋅ normal-, normal-⋅ normal-] normal-, α normal-, β normal-) (\mathfrak{g},[\cdot,\cdot],\alpha,\beta) ( fraktur_g , [  ⋅ , ⋅ ] , italic_α , italic_β ) consisting of a 2 subscript 2 \mathbb{Z}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -graded vector space 𝔤 = 𝔤  0 ¯ 𝔤  1 ¯ 𝔤 direct-sum 𝔤 subscript normal- normal-¯ 0 𝔤 subscript normal- normal-¯ 1 \mathfrak{g}=\mathfrak{g}_{\overline{0}}\oplus\mathfrak{g}_{\overline{1}} fraktur_g = fraktur_g  start_POSTSUBSCRIPT ¯ start_ARG 0 end_ARG end_POSTSUBSCRIPT ⊕ fraktur_g  start_POSTSUBSCRIPT ¯ start_ARG 1 end_ARG end_POSTSUBSCRIPT , an even bilinear map [ , ] : 𝔤 × 𝔤 𝔤 normal-: normal-⋅ normal-⋅ normal-⟶ 𝔤 𝔤 𝔤 [\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\longrightarrow\mathfrak{g} [ ⋅ , ⋅ ] : fraktur_g × fraktur_g ⟶ fraktur_g and a two even homomorphisms α , β : 𝔤 𝔤 normal-: 𝛼 𝛽 normal-→ 𝔤 𝔤 \alpha,\beta:\mathfrak{g}\rightarrow\mathfrak{g} italic_α , italic_β : fraktur_g → fraktur_g satisfying the following identities:

α β = β α , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_α ∘ italic_β = italic_β ∘ italic_α , (1.1)
α ( [ x , y ] ) = [ α ( x ) , α ( y ) ] , β ( [ x , y ] ) = [ β ( x ) , β ( y ) ] , formulae-sequence 𝛼 𝑥 𝑦 𝛼 𝑥 𝛼 𝑦 𝛽 𝑥 𝑦 𝛽 𝑥 𝛽 𝑦 \displaystyle\alpha([x,y])=[\alpha(x),\alpha(y)],\ \beta([x,y])=[\beta(x),% \beta(y)], italic_α ( [ italic_x , italic_y ] ) = [ italic_α ( italic_x ) , italic_α ( italic_y ) ] , italic_β ( [ italic_x , italic_y ] ) = [ italic_β ( italic_x ) , italic_β ( italic_y ) ] , (1.2)
[ β ( x ) , α ( y ) ] = - ( - 1 ) | x | | y | [ β ( y ) , α ( x ) ] , 𝛽 𝑥 𝛼 𝑦 superscript 1 𝑥 𝑦 𝛽 𝑦 𝛼 𝑥 \displaystyle[\beta(x),\alpha(y)]=-(-1)^{|x||y|}[\beta(y),\alpha(x)], [ italic_β ( italic_x ) , italic_α ( italic_y ) ] = - ( - 1 ) start_POSTSUPERSCRIPT | italic_x | | italic_y | end_POSTSUPERSCRIPT [ italic_β ( italic_y ) , italic_α ( italic_x ) ] , (1.3)
x , y , z ( - 1 ) | x | | z | [ β 2 ( x ) , [ β ( y ) , α ( z ) ] ] = 0 . subscript 𝑥 𝑦 𝑧 absent superscript 1 𝑥 𝑧 superscript 𝛽 2 𝑥 𝛽 𝑦 𝛼 𝑧 0 \displaystyle\displaystyle\circlearrowleft_{x,y,z}(-1)^{|x||z|}[\beta^{2}(x),[% \beta(y),\alpha(z)]]=0\ . ↺ start_POSTSUBSCRIPT italic_x , italic_y , italic_z end_POSTSUBSCRIPT ( - 1 ) start_POSTSUPERSCRIPT | italic_x | | italic_z | end_POSTSUPERSCRIPT [ italic_β start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) , [ italic_β ( italic_y ) , italic_α ( italic_z ) ] ] = 0 . (1.4)

where x , y 𝑥 𝑦 x,y italic_x , italic_y and z 𝑧 z italic_z are homogeneous elements in 𝔤 𝔤 \mathfrak{g} fraktur_g . The condition ( 1.4 ) is called BiHom-super-Jacobi identity.
If the conditions ( 1.1 ) and ( 1.2 ) are not satisfying, then BiHom-Lie superalgebra is called nonmultiplicative BiHom-Lie superalgebra.

Definition 1.5 .

A 3 3 3 3 -BiHom-Lie superalgebra is a nonmultiplicative 3 3 3 3 -BiHom-Lie superalgebra ( 𝔤 , [  , , ] , α , β ) fragments normal-( g normal-, fragments normal-[  normal-⋅ normal-, normal-⋅ normal-, normal-⋅ normal-] normal-, α normal-, β normal-) (\mathfrak{g},[\cdot,\cdot,\cdot],\alpha,\beta) ( fraktur_g , [  ⋅ , ⋅ , ⋅ ] , italic_α , italic_β ) such that

α β = β α , 𝛼 𝛽 𝛽 𝛼 \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_α ∘ italic_β = italic_β ∘ italic_α , (1.6)
α ( [ x , y , z ] ) = [ α ( x ) , α ( y ) , α ( z ) ] a n d β ( [ x , y , z ] ) = [ β ( x ) , β ( y ) , β ( z ) ] , 𝛼 𝑥 𝑦 𝑧 𝛼 𝑥 𝛼 𝑦 𝛼 𝑧 𝑎 𝑛 𝑑 𝛽 𝑥 𝑦 𝑧 𝛽 𝑥 𝛽 𝑦 𝛽 𝑧 \displaystyle\alpha([x,y,z])=[\alpha(x),\alpha(y),\alpha(z)]\;\;and\;\;\beta([% x,y,z])=[\beta(x),\beta(y),\beta(z)], italic_α ( [ italic_x , italic_y , italic_z ] ) = [ italic_α ( italic_x ) , italic_α ( italic_y ) , italic_α ( italic_z ) ] italic_a italic_n italic_d italic_β ( [ italic_x , italic_y , italic_z ] ) = [ italic_β ( italic_x ) , italic_β ( italic_y ) , italic_β ( italic_z ) ] , (1.7)

for all x , y , z ( 𝔤 ) . 𝑥 𝑦 𝑧 𝔤 x,y,z\in\mathcal{H}(\mathfrak{g}). italic_x , italic_y , italic_z ∈ caligraphic_H ( fraktur_g ) .


Definition 5 .

Full extraction holds if, given v : T 𝐑 : 𝑣 𝑇 𝐑 v:T\to{\bf R} italic_v : italic_T → bold_R , there exists a collection { c ( t ) C ( S ) : t T } conditional-set 𝑐 𝑡 𝐶 𝑆 𝑡 𝑇 \{c(t)\in C(S):t\in T\} { italic_c ( italic_t ) ∈ italic_C ( italic_S ) : italic_t ∈ italic_T } such that for each t T 𝑡 𝑇 t\in T italic_t ∈ italic_T :

v ( t ) - π ( t ) c ( t ) = 0 𝑣 𝑡 𝜋 𝑡 𝑐 𝑡 0 v(t)-\pi(t)\cdot c(t)=0 italic_v ( italic_t ) - italic_π ( italic_t ) ⋅ italic_c ( italic_t ) = 0

and

v ( t ) - π ( t ) c ( s ) 0 s t formulae-sequence 𝑣 𝑡 𝜋 𝑡 𝑐 𝑠 0 for-all 𝑠 𝑡 v(t)-\pi(t)\cdot c(s)\leq 0\ \ \ \forall s\not=t italic_v ( italic_t ) - italic_π ( italic_t ) ⋅ italic_c ( italic_s ) ≤ 0 ∀ italic_s ≠ italic_t

Virtual extraction holds if, given v : T 𝐑 : 𝑣 𝑇 𝐑 v:T\to{\bf R} italic_v : italic_T → bold_R , for each ε > 0 𝜀 0 \varepsilon>0 italic_ε > 0 there exists a collection { c ε ( t ) C ( S ) : t T } conditional-set subscript 𝑐 𝜀 𝑡 𝐶 𝑆 𝑡 𝑇 \{c_{\varepsilon}(t)\in C(S):t\in T\} { italic_c start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_t ) ∈ italic_C ( italic_S ) : italic_t ∈ italic_T } such that for each t T 𝑡 𝑇 t\in T italic_t ∈ italic_T :

0 v ( t ) - π ( t ) c ε ( t ) ε 0 𝑣 𝑡 𝜋 𝑡 subscript 𝑐 𝜀 𝑡 𝜀 0\leq v(t)-\pi(t)\cdot c_{\varepsilon}(t)\leq\varepsilon 0 ≤ italic_v ( italic_t ) - italic_π ( italic_t ) ⋅ italic_c start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_t ) ≤ italic_ε

and

v ( t ) - π ( t ) c ε ( s ) ε s t formulae-sequence 𝑣 𝑡 𝜋 𝑡 subscript 𝑐 𝜀 𝑠 𝜀 for-all 𝑠 𝑡 v(t)-\pi(t)\cdot c_{\varepsilon}(s)\leq\varepsilon\ \ \ \forall s\not=t italic_v ( italic_t ) - italic_π ( italic_t ) ⋅ italic_c start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_s ) ≤ italic_ε ∀ italic_s ≠ italic_t
Definition 11 .

A type t * T superscript 𝑡 𝑇 t^{*}\in T italic_t start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ∈ italic_T is strongly detectable if there exists z 𝐑 S 𝑧 superscript 𝐑 𝑆 z\in{\bf R}^{S} italic_z ∈ bold_R start_POSTSUPERSCRIPT italic_S end_POSTSUPERSCRIPT such that

π ( t * ) z = 0 𝜋 superscript 𝑡 𝑧 0 \pi(t^{*})\cdot z=0 italic_π ( italic_t start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) ⋅ italic_z = 0

and

inf t t * π ( t ) z > 0 subscript infimum 𝑡 superscript 𝑡 𝜋 𝑡 𝑧 0 \inf_{t\not=t^{*}}\pi(t)\cdot z>0 roman_inf start_POSTSUBSCRIPT italic_t ≠ italic_t start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_π ( italic_t ) ⋅ italic_z > 0

Definition 1 .

A rack is a set X 𝑋 X italic_X with two binary operations \triangleright and - 1 superscript 1 \triangleright^{-1} ▷ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT satisfying for all x , y , z X 𝑥 𝑦 𝑧 𝑋 x,y,z\in X italic_x , italic_y , italic_z ∈ italic_X

A rack which further satisfies x x = x 𝑥 𝑥 𝑥 x\triangleright x=x italic_x ▷ italic_x = italic_x for all x X 𝑥 𝑋 x\in X italic_x ∈ italic_X is a quandle .


Definition 2.4 (Shuffle product) .

The shuffle product : 𝒲 ( 𝒜 d ) × 𝒲 ( 𝒜 d ) 𝒲 ( 𝒜 d ) fragments square-union square-union normal-: W fragments normal-( subscript 𝒜 𝑑 normal-) W fragments normal-( subscript 𝒜 𝑑 normal-) normal-→ W fragments normal-( subscript 𝒜 𝑑 normal-) \phantom{}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{\mskip-3.2mu }{% \mskip-3.8mu }\sqcup\phantom{}:\mathcal{W}(\mathcal{A}_{d})\times\mathcal{W}(% \mathcal{A}_{d})\to\mathcal{W}(\mathcal{A}_{d}) ⊔ ⊔ : caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) × caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) → caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) is defined inductively by

𝐮𝐚 𝐯𝐛 = ( 𝐮 𝐯𝐛 ) 𝐚 + ( 𝐮𝐚 𝐯 ) 𝐛 , fragments ua square-union square-union vb fragments ( u square-union square-union vb ) a fragments ( ua square-union square-union v ) b , {\color[rgb]{0,0,1}\mathbf{ua}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }% {\mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{vb}}=({\color[% rgb]{0,0,1}\mathbf{u}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{\mskip-3% .2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{vb}}){\color[rgb]{0,0,1}% \mathbf{a}}+({\color[rgb]{0,0,1}\mathbf{ua}}\sqcup\mathchoice{\mskip-7.0mu }{% \mskip-7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{v% }}){\color[rgb]{0,0,1}\mathbf{b}}, bold_ua ⊔ ⊔ bold_vb = ( bold_u ⊔ ⊔ bold_vb ) bold_a + ( bold_ua ⊔ ⊔ bold_v ) bold_b ,
𝐰 = 𝐰 = 𝐰 fragments w square-union square-union square-union square-union w w {\color[rgb]{0,0,1}\mathbf{w}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{% \mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{\varnothing}}={% \color[rgb]{0,0,1}\mathbf{\varnothing}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip% -7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{w}}={% \color[rgb]{0,0,1}\mathbf{w}} bold_w ⊔ ⊔ ∅ = ∅ ⊔ ⊔ bold_w = bold_w

for all words 𝐮 , 𝐯 𝐮 𝐯 {\color[rgb]{0,0,1}\mathbf{u}},{\color[rgb]{0,0,1}\mathbf{v}} bold_u , bold_v and letters 𝐚 , 𝐛 𝒜 d 𝐚 𝐛 subscript 𝒜 𝑑 {\color[rgb]{0,0,1}\mathbf{a}},{\color[rgb]{0,0,1}\mathbf{b}}\in\mathcal{A}_{d} bold_a , bold_b ∈ caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , which is then extended by bilinearity to 𝒲 ( 𝒜 d ) 𝒲 subscript 𝒜 𝑑 \mathcal{W}(\mathcal{A}_{d}) caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) . With some abuse of notation, the shuffle product on T ( ( d ) ) 𝑇 superscript superscript 𝑑 normal-∗ T((\mathbb{R}^{d})^{\ast}) italic_T ( ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) induced by the shuffle product on words will also be denoted by square-union square-union \sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }% \sqcup\phantom{} ⊔ ⊔ .


Definition 2.4 .

Let a = y + z 𝑎 𝑦 𝑧 a=y+z italic_a = italic_y + italic_z , b = x + z 𝑏 𝑥 𝑧 b=x+z italic_b = italic_x + italic_z , and c = x + y 𝑐 𝑥 𝑦 c=x+y italic_c = italic_x + italic_y , that is, x = ( b + c - a ) 2 𝑥 𝑏 𝑐 𝑎 2 x=\frac{(b+c-a)}{2} italic_x = divide start_ARG ( italic_b + italic_c - italic_a ) end_ARG start_ARG 2 end_ARG , y = ( a + c - b ) 2 𝑦 𝑎 𝑐 𝑏 2 y=\frac{(a+c-b)}{2} italic_y = divide start_ARG ( italic_a + italic_c - italic_b ) end_ARG start_ARG 2 end_ARG , and z = ( a + b - c ) 2 𝑧 𝑎 𝑏 𝑐 2 z=\frac{(a+b-c)}{2} italic_z = divide start_ARG ( italic_a + italic_b - italic_c ) end_ARG start_ARG 2 end_ARG , so that

{overpic} [unit=1mm, scale = .5]3vertex c b a = {overpic} [unit=1mm, scale = .5]3vertexfn c b a x y z . {overpic} [unit=1mm, scale = .5]3vertex c b a {overpic} [unit=1mm, scale = .5]3vertexfn c b a x y z \vbox{\hbox{ \centering\overpic[unit=1mm, scale = .5]{3vertex} \put(16.0,25.0){$c$} \put(22.0,0.0){$b$} \put(-3.0,0.0){$a$} \@add@centering}}=\vbox{\hbox{ \centering\overpic[unit=1mm, scale = .5]{3vertexfn} \par\put(17.0,26.0){$c$} \put(25.0,0.0){$b$} \put(-1.0,0.0){$a$} \put(21.5,13.0){$x$} \put(9.0,13.0){$y$} \put(15.0,6.0){$z$} \@add@centering}}. [unit=1mm, scale = .5]3vertex italic_c italic_b italic_a = italic_c italic_b italic_a italic_x italic_y italic_z .

Notice that ( a + b - c ) 𝑎 𝑏 𝑐 (a+b-c) ( italic_a + italic_b - italic_c ) , ( b + c - a ) 𝑏 𝑐 𝑎 (b+c-a) ( italic_b + italic_c - italic_a ) , and ( a + c - b ) 𝑎 𝑐 𝑏 (a+c-b) ( italic_a + italic_c - italic_b ) are all even integers. The Temperley - Lieb category 𝐓 𝐋 𝐓 𝐋 \boldsymbol{TL} bold_italic_T bold_italic_L consists of objects n , 𝑛 normal-ℕ n\in\mathbb{N}, italic_n ∈ roman_ℕ , morphism spaces T L m , n , 𝑇 subscript 𝐿 𝑚 𝑛 TL_{m,n}, italic_T italic_L start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT , and multiplication T L m , n × T L l , m T L l , n normal-⟶ 𝑇 subscript 𝐿 𝑚 𝑛 𝑇 subscript 𝐿 𝑙 𝑚 𝑇 subscript 𝐿 𝑙 𝑛 TL_{m,n}\times TL_{l,m}\longrightarrow TL_{l,n} italic_T italic_L start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT × italic_T italic_L start_POSTSUBSCRIPT italic_l , italic_m end_POSTSUBSCRIPT ⟶ italic_T italic_L start_POSTSUBSCRIPT italic_l , italic_n end_POSTSUBSCRIPT (see, for example, [ QW ] ). Then, the following figure depicts the Markov trace of the multiplication of T L c , a + b × T L a + b , c T L a + b , a + b . normal-⟶ 𝑇 subscript 𝐿 𝑐 𝑎 𝑏 𝑇 subscript 𝐿 𝑎 𝑏 𝑐 𝑇 subscript 𝐿 𝑎 𝑏 𝑎 𝑏 TL_{c,a+b}\times TL_{a+b,c}\longrightarrow TL_{a+b,a+b}. italic_T italic_L start_POSTSUBSCRIPT italic_c , italic_a + italic_b end_POSTSUBSCRIPT × italic_T italic_L start_POSTSUBSCRIPT italic_a + italic_b , italic_c end_POSTSUBSCRIPT ⟶ italic_T italic_L start_POSTSUBSCRIPT italic_a + italic_b , italic_a + italic_b end_POSTSUBSCRIPT . 2 2 2 Recall that trace in the disk is called the Markov trace.


Definition 18 .

Let f 𝑓 f italic_f be a relation on X 𝑋 X italic_X . Then the transpose of f 𝑓 f italic_f (or f 𝑓 f italic_f -transpose) is

f * = { ( y , x ) : ( x , y ) f } . superscript 𝑓 conditional-set 𝑦 𝑥 𝑥 𝑦 𝑓 f^{*}=\{(y,x):~{}(x,y)\in f\}. italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = { ( italic_y , italic_x ) : ( italic_x , italic_y ) ∈ italic_f } .

Definition 3 .

An arithmetical function ψ 𝜓 \psi italic_ψ on q subscript 𝑞 \mathcal{M}_{q} caligraphic_M start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT is said to be multiplicative if

ψ ( f g ) = ψ ( f ) ψ ( g ) , if f and g are coprime polynomials . 𝜓 𝑓 𝑔 𝜓 𝑓 𝜓 𝑔 if 𝑓 and 𝑔 are coprime polynomials \displaystyle\psi(fg)=\psi(f)\psi(g),\quad\text{ if }f\text{ and }g\text{ are % coprime polynomials }. italic_ψ ( italic_f italic_g ) = italic_ψ ( italic_f ) italic_ψ ( italic_g ) , if italic_f and italic_g are coprime polynomials .

Definition 2.5 (Shuffle product) .

The shuffle product : 𝒲 ( 𝒜 d ) × 𝒲 ( 𝒜 d ) 𝒲 ( 𝒜 d ) fragments square-union square-union normal-: W fragments normal-( subscript 𝒜 𝑑 normal-) W fragments normal-( subscript 𝒜 𝑑 normal-) normal-→ W fragments normal-( subscript 𝒜 𝑑 normal-) \sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }% \sqcup\phantom{}:\mathcal{W}(\mathcal{A}_{d})\times\mathcal{W}(\mathcal{A}_{d}% )\to\mathcal{W}(\mathcal{A}_{d}) ⊔ ⊔ : caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) × caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) → caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) is defined inductively by

𝐮𝐚 𝐯𝐛 = ( 𝐮 𝐯𝐛 ) 𝐚 + ( 𝐮𝐚 𝐯 ) 𝐛 , fragments ua square-union square-union vb fragments ( u square-union square-union vb ) a fragments ( ua square-union square-union v ) b , {\color[rgb]{0,0,1}\mathbf{ua}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }% {\mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{vb}}=({\color[% rgb]{0,0,1}\mathbf{u}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{\mskip-3% .2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{vb}}){\color[rgb]{0,0,1}% \mathbf{a}}+({\color[rgb]{0,0,1}\mathbf{ua}}\sqcup\mathchoice{\mskip-7.0mu }{% \mskip-7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{v% }}){\color[rgb]{0,0,1}\mathbf{b}}, bold_ua ⊔ ⊔ bold_vb = ( bold_u ⊔ ⊔ bold_vb ) bold_a + ( bold_ua ⊔ ⊔ bold_v ) bold_b ,
𝐰 = 𝐰 = 𝐰 fragments w square-union square-union square-union square-union w w {\color[rgb]{0,0,1}\mathbf{w}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{% \mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{\varnothing}}={% \color[rgb]{0,0,1}\mathbf{\varnothing}}\sqcup\mathchoice{\mskip-7.0mu }{\mskip% -7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }\sqcup{\color[rgb]{0,0,1}\mathbf{w}}={% \color[rgb]{0,0,1}\mathbf{w}} bold_w ⊔ ⊔ ∅ = ∅ ⊔ ⊔ bold_w = bold_w

for all words 𝐮 , 𝐯 𝐮 𝐯 {\color[rgb]{0,0,1}\mathbf{u}},{\color[rgb]{0,0,1}\mathbf{v}} bold_u , bold_v and letters 𝐚 , 𝐛 𝒜 d 𝐚 𝐛 subscript 𝒜 𝑑 {\color[rgb]{0,0,1}\mathbf{a}},{\color[rgb]{0,0,1}\mathbf{b}}\in\mathcal{A}_{d} bold_a , bold_b ∈ caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT , which is then extended by bilinearity to 𝒲 ( 𝒜 d ) 𝒲 subscript 𝒜 𝑑 \mathcal{W}(\mathcal{A}_{d}) caligraphic_W ( caligraphic_A start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ) . With some abuse of notation, the shuffle product on T ( ( d ) ) 𝑇 superscript superscript 𝑑 normal-∗ T((\mathbb{R}^{d})^{\ast}) italic_T ( ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ) induced by the shuffle product on words will also be denoted by square-union square-union \sqcup\mathchoice{\mskip-7.0mu }{\mskip-7.0mu }{\mskip-3.2mu }{\mskip-3.8mu }% \sqcup\phantom{} ⊔ ⊔ .


Definition 1 .

Two representations, G π superscript normal-↷ 𝜋 𝐺 G\curvearrowright^{\pi}\mathcal{H} italic_G ↷ start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT caligraphic_H and G π superscript normal-↷ superscript 𝜋 normal-′ 𝐺 superscript normal-′ G\curvearrowright^{\pi^{\prime}}\mathcal{H}^{\prime} italic_G ↷ start_POSTSUPERSCRIPT italic_π start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT caligraphic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , are additive conjugates if there exists a bijection ξ : normal-: 𝜉 normal-→ superscript normal-′ \xi\colon\mathcal{H}\to\mathcal{H}^{\prime} italic_ξ : caligraphic_H → caligraphic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT such that for all v , w 𝑣 𝑤 v,w\in\mathcal{H} italic_v , italic_w ∈ caligraphic_H and g G 𝑔 𝐺 g\in G italic_g ∈ italic_G ,

ξ ( v + w ) = ξ ( v ) + ξ ( w ) 𝜉 𝑣 𝑤 𝜉 𝑣 𝜉 𝑤 \displaystyle\xi(v+w)=\xi(v)+\xi(w) italic_ξ ( italic_v + italic_w ) = italic_ξ ( italic_v ) + italic_ξ ( italic_w )

and

ξ ( π g v ) = π g ξ ( v ) . 𝜉 subscript 𝜋 𝑔 𝑣 subscript superscript 𝜋 𝑔 𝜉 𝑣 \displaystyle\xi(\pi_{g}v)=\pi^{\prime}_{g}\xi(v). italic_ξ ( italic_π start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_v ) = italic_π start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_g end_POSTSUBSCRIPT italic_ξ ( italic_v ) .

Definition 1 .

A (left) Leibniz algebra is a vector space L 𝐿 L italic_L with a linear map μ : L L L , a b a b : 𝜇 formulae-sequence tensor-product 𝐿 𝐿 𝐿 maps-to tensor-product 𝑎 𝑏 𝑎 𝑏 \mu:L\otimes L\to L,a\otimes b\mapsto a\cdot b italic_μ : italic_L ⊗ italic_L → italic_L , italic_a ⊗ italic_b ↦ italic_a ⋅ italic_b , such that for all a , b , c L 𝑎 𝑏 𝑐 𝐿 a,b,c\in L italic_a , italic_b , italic_c ∈ italic_L

a ( b c ) = ( a b ) c + b ( a c ) . 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 \displaystyle a\cdot(b\cdot c)=(a\cdot b)\cdot c+b\cdot(a\cdot c). italic_a ⋅ ( italic_b ⋅ italic_c ) = ( italic_a ⋅ italic_b ) ⋅ italic_c + italic_b ⋅ ( italic_a ⋅ italic_c ) . (1)
Definition 3 .

A Perm-algebra (or commutative dialgebra) is a vector space A 𝐴 A italic_A with an associative multiplication : A A A fragments : A tensor-product A A \cdot:A\otimes A\to A ⋅ : italic_A ⊗ italic_A → italic_A , such that

( a b ) c = ( b a ) c . 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 (a\cdot b)\cdot c=(b\cdot a)\cdot c. ( italic_a ⋅ italic_b ) ⋅ italic_c = ( italic_b ⋅ italic_a ) ⋅ italic_c . (5)
Definition 4 .

A pre-Lie algebra is a vector space A 𝐴 A italic_A with a multiplication : A A A fragments : A tensor-product A A \circ:A\otimes A\to A ∘ : italic_A ⊗ italic_A → italic_A such that

( x y ) z - x ( y z ) = ( y x ) z - y ( x z ) . 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 𝑦 𝑥 𝑧 (x\circ y)\circ z-x\circ(y\circ z)=(y\circ x)\circ z-y\circ(x\circ z). ( italic_x ∘ italic_y ) ∘ italic_z - italic_x ∘ ( italic_y ∘ italic_z ) = ( italic_y ∘ italic_x ) ∘ italic_z - italic_y ∘ ( italic_x ∘ italic_z ) . (7)
Definition 6 .

A Zinbiel (or commutative dendriform) algebra, is a vector space Z 𝑍 Z italic_Z , with an multiplication Z Z Z tensor-product 𝑍 𝑍 𝑍 Z\otimes Z\to Z italic_Z ⊗ italic_Z → italic_Z such that

x ( y z ) = ( x y ) z + ( y x ) z . 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 x\cdot(y\cdot z)=(x\cdot y)\cdot z+(y\cdot x)\cdot z. italic_x ⋅ ( italic_y ⋅ italic_z ) = ( italic_x ⋅ italic_y ) ⋅ italic_z + ( italic_y ⋅ italic_x ) ⋅ italic_z . (11)
Definition 8 .

A symmetric Leibniz algebra is a left Leibniz algebra A 𝐴 A italic_A which is also a right Leibniz algebra. This means the multiplication : A A A fragments : A tensor-product A A \cdot:A\otimes A\to A ⋅ : italic_A ⊗ italic_A → italic_A satisfies

a ( b c ) = ( a b ) c + b ( a c ) , 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 \displaystyle a\cdot(b\cdot c)=(a\cdot b)\cdot c+b\cdot(a\cdot c), italic_a ⋅ ( italic_b ⋅ italic_c ) = ( italic_a ⋅ italic_b ) ⋅ italic_c + italic_b ⋅ ( italic_a ⋅ italic_c ) , (13)
( a b ) c = a ( b c ) + ( a c ) b . 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 \displaystyle(a\cdot b)\cdot c=a\cdot(b\cdot c)+(a\cdot c)\cdot b. ( italic_a ⋅ italic_b ) ⋅ italic_c = italic_a ⋅ ( italic_b ⋅ italic_c ) + ( italic_a ⋅ italic_c ) ⋅ italic_b . (14)
Definition 13 .

A sym. Perm-algebra is a vector space A 𝐴 A italic_A with an associative multiplication : A A A fragments : A tensor-product A A \cdot:A\otimes A\to A ⋅ : italic_A ⊗ italic_A → italic_A such that for all a , b , c A 𝑎 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A

a b c = a c b = b a c . 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 𝑏 𝑎 𝑐 a\cdot b\cdot c=a\cdot c\cdot b=b\cdot a\cdot c. italic_a ⋅ italic_b ⋅ italic_c = italic_a ⋅ italic_c ⋅ italic_b = italic_b ⋅ italic_a ⋅ italic_c . (18)

Definition 1.2 .

A supertropical monoid U 𝑈 U italic_U is an abelian monoid ( U , ) 𝑈 normal-⋅ (U,\cdot\,) ( italic_U , ⋅ ) with an absorbing element 0 := 0 U assign 0 subscript 0 𝑈 0:=0_{U} 0 := 0 start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT , i.e., 0 x = 0 normal-⋅ 0 𝑥 0 0\cdot x=0 0 ⋅ italic_x = 0 for every x U 𝑥 𝑈 x\in U italic_x ∈ italic_U , and a distinguished idempotent e := e U assign 𝑒 subscript 𝑒 𝑈 e:=e_{U} italic_e := italic_e start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT such that

x U : e x = 0 x = 0 . fragments for-all x U : italic- e x 0 x 0 . \forall x\in U:\quad ex=0\ \Rightarrow\ x=0. ∀ italic_x ∈ italic_U : italic_e italic_x = 0 ⇒ italic_x = 0 .

In addition, the submonoid M := e U assign 𝑀 𝑒 𝑈 M:=eU italic_M := italic_e italic_U of U 𝑈 U italic_U is equipped with a total ordering, compatible with multiplication [ IKR4 , Definition 1.1] , which is again determined by rule ( 1.1 ). The map ν U : U M normal-: subscript 𝜈 𝑈 normal-→ 𝑈 𝑀 \nu_{U}:U\to M italic_ν start_POSTSUBSCRIPT italic_U end_POSTSUBSCRIPT : italic_U → italic_M , x e x maps-to 𝑥 𝑒 𝑥 x\mapsto ex italic_x ↦ italic_e italic_x , is a monoid homomorphism, called the ghost map of U 𝑈 U italic_U . Tangible elements 𝒯 := 𝒯 ( U ) assign 𝒯 𝒯 𝑈 \mathcal{T}:=\mathcal{T}(U) caligraphic_T := caligraphic_T ( italic_U ) and ghost elements 𝒢 := 𝒢 ( U ) assign 𝒢 𝒢 𝑈 \mathcal{G}:=\mathcal{G}(U) caligraphic_G := caligraphic_G ( italic_U ) are defined exactly as in Definition 1.1 .

A supertropical monoid U 𝑈 U italic_U is called unfolded , if the set 𝒯 ( U ) 0 := 𝒯 ( U ) { 0 } assign 𝒯 subscript 𝑈 0 𝒯 𝑈 0 \mathcal{T}(U)_{0}:=\mathcal{T}(U)\cup~{}\{0\} caligraphic_T ( italic_U ) start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := caligraphic_T ( italic_U ) ∪ { 0 } is closed under multiplication.


Definition 21

Let 𝒳 𝒳 \mathcal{X} caligraphic_X be a vector space over \mathbb{C} blackboard_C equipped with product : 𝒳 × 𝒳 𝒳 fragments normal-⋅ normal-: X X maps-to X \cdot:\mathcal{X}\times\mathcal{X}\mapsto\mathcal{X} ⋅ : caligraphic_X × caligraphic_X ↦ caligraphic_X . Denote the vector space addition by + + + , we call 𝒳 𝒳 \mathcal{X} caligraphic_X an algebra if for all a , b , c 𝒳 𝑎 𝑏 𝑐 𝒳 a,b,c\in\mathcal{X} italic_a , italic_b , italic_c ∈ caligraphic_X and α 𝛼 \alpha\in\mathbb{C} italic_α ∈ blackboard_C ,

  1. 1.

    a ( b c ) = ( a b ) c 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 a(bc)=(ab)c italic_a ( italic_b italic_c ) = ( italic_a italic_b ) italic_c ,

  2. 2.

    a ( b + c ) = a b + a c 𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 𝑐 a(b+c)=ab+ac italic_a ( italic_b + italic_c ) = italic_a italic_b + italic_a italic_c ,

  3. 3.

    α ( a b ) = ( α a ) b = a ( α b ) 𝛼 𝑎 𝑏 𝛼 𝑎 𝑏 𝑎 𝛼 𝑏 \alpha(ab)=(\alpha a)b=a(\alpha b) italic_α ( italic_a italic_b ) = ( italic_α italic_a ) italic_b = italic_a ( italic_α italic_b ) .

We call 𝒳 𝒳 \mathcal{X} caligraphic_X a unital algebra if there is a unital element 1 𝒳 subscript 1 𝒳 1_{\mathcal{X}} 1 start_POSTSUBSCRIPT caligraphic_X end_POSTSUBSCRIPT such that, for all a 𝒳 𝑎 𝒳 a\in\mathcal{X} italic_a ∈ caligraphic_X

a = a 1 𝒳 = 1 𝒳 a . 𝑎 𝑎 subscript 1 𝒳 subscript 1 𝒳 𝑎 a=a1_{\mathcal{X}}=1_{\mathcal{X}}a. italic_a = italic_a 1 start_POSTSUBSCRIPT caligraphic_X end_POSTSUBSCRIPT = 1 start_POSTSUBSCRIPT caligraphic_X end_POSTSUBSCRIPT italic_a . (54)

An algebra 𝒳 𝒳 \mathcal{X} caligraphic_X is called a * * * -algebra if it is also endowed with an antilinear * * * -operation 𝒳 a a * 𝒳 contains 𝒳 𝑎 maps-to superscript 𝑎 𝒳 \mathcal{X}\ni a\mapsto a^{*}\in\mathcal{X} caligraphic_X ∋ italic_a ↦ italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ∈ caligraphic_X , such that ( α a ) * = α ¯ a * superscript 𝛼 𝑎 normal-¯ 𝛼 superscript 𝑎 (\alpha a)^{*}=\bar{\alpha}a^{*} ( italic_α italic_a ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = ¯ start_ARG italic_α end_ARG italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , ( a * ) * = a superscript superscript 𝑎 𝑎 (a^{*})^{*}=a ( italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_a and ( a b ) * = b * a * superscript 𝑎 𝑏 superscript 𝑏 superscript 𝑎 (ab)^{*}=b^{*}a^{*} ( italic_a italic_b ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_b start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT for all α 𝛼 \alpha\in\mathbb{C} italic_α ∈ blackboard_C , a , b 𝒳 𝑎 𝑏 𝒳 a,b\in\mathcal{X} italic_a , italic_b ∈ caligraphic_X .


Definition 1 .

It is called exterior form of degree two or 2-form at point m 𝑚 m italic_m on the manifold M 2 n superscript 𝑀 2 𝑛 M^{2n} italic_M start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT to the bilinear and antisymmetric application ω 2 : T m M 2 n × T m M 2 n normal-: superscript 𝜔 2 normal-→ subscript 𝑇 𝑚 superscript 𝑀 2 𝑛 subscript 𝑇 𝑚 superscript 𝑀 2 𝑛 \omega^{2}:T_{m}M^{2n}\times T_{m}M^{2n}\rightarrow\Re italic_ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT : italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_M start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT × italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_M start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT → roman_ℜ , i.e.

for all x , y , z T m M 2 n 𝑥 𝑦 𝑧 subscript 𝑇 𝑚 superscript 𝑀 2 𝑛 x,y,z\in T_{m}M^{2n} italic_x , italic_y , italic_z ∈ italic_T start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT italic_M start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT and α , β 𝛼 𝛽 \alpha,\beta\in\Re italic_α , italic_β ∈ roman_ℜ (see [ 2 ] ).


Definition 2.43 .

For a matrix F M F ( r , p , 1 ) 𝐹 𝑀 𝐹 𝑟 𝑝 1 F\in MF(r,p,1) italic_F ∈ italic_M italic_F ( italic_r , italic_p , 1 ) we define a p 𝑝 p italic_p admissible balanced s 𝑠 s italic_s -partition τ P a r t c ( F , p , s ) 𝜏 𝑃 𝑎 𝑟 𝑡 𝑐 𝐹 𝑝 𝑠 \tau\in Partc(F,p,s) italic_τ ∈ italic_P italic_a italic_r italic_t italic_c ( italic_F , italic_p , italic_s ) to be any ordered tupel

τ = ( τ ( 1 ) , , τ ( s ) ) 𝜏 𝜏 1 𝜏 𝑠 \tau=(\tau(1),\ldots,\tau(s)) italic_τ = ( italic_τ ( 1 ) , … , italic_τ ( italic_s ) ) (2.54)

of matrices τ ( α ) M B a l n ( r + p ) 𝜏 𝛼 𝑀 𝐵 𝑎 𝑙 𝑛 𝑟 𝑝 \tau(\alpha)\in MBaln(r+p) italic_τ ( italic_α ) ∈ italic_M italic_B italic_a italic_l italic_n ( italic_r + italic_p ) with

k = r + 1 r + p d i a s ( τ ( α ) ) k 1 superscript subscript 𝑘 𝑟 1 𝑟 𝑝 𝑑 𝑖 𝑎 𝑠 subscript 𝜏 𝛼 𝑘 1 \sum_{k=r+1}^{r+p}dias(\tau(\alpha))_{k}\leq 1 ∑ start_POSTSUBSCRIPT italic_k = italic_r + 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r + italic_p end_POSTSUPERSCRIPT italic_d italic_i italic_a italic_s ( italic_τ ( italic_α ) ) start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ≤ 1 (2.55)

for α = 1 , , s 𝛼 1 normal-… 𝑠 \alpha=1,\ldots,s italic_α = 1 , … , italic_s such that

F = 1 i s τ ( α ) 𝐹 subscript 1 𝑖 𝑠 𝜏 𝛼 F=\sum_{1\leq i\leq s}\tau(\alpha) italic_F = ∑ start_POSTSUBSCRIPT 1 ≤ italic_i ≤ italic_s end_POSTSUBSCRIPT italic_τ ( italic_α ) (2.56)

We define P a r t ( F , p , s ) 𝑃 𝑎 𝑟 𝑡 𝐹 𝑝 𝑠 Part(F,p,s) italic_P italic_a italic_r italic_t ( italic_F , italic_p , italic_s ) to be the set of equivalence classes of P a r t c ( F , p , s ) 𝑃 𝑎 𝑟 𝑡 𝑐 𝐹 𝑝 𝑠 Partc(F,p,s) italic_P italic_a italic_r italic_t italic_c ( italic_F , italic_p , italic_s ) under permutation in the s 𝑠 s italic_s -tupel and identify any representative of the class with it in the sequel. Because of equation ( 2.55 ) it is trivial to note that a p 𝑝 p italic_p -admissible partition must contain at least p 𝑝 p italic_p elements.


Definition 0.1 .

Let A 𝐴 A italic_A be an algebra and X 𝑋 X italic_X be an A 𝐴 A italic_A -bimodule. A linear map d : A X : 𝑑 𝐴 𝑋 d:A\longrightarrow X italic_d : italic_A ⟶ italic_X is called an A 𝐴 A italic_A - derivation if

d ( a b ) = d ( a ) b + a d ( b ) 𝑑 𝑎 𝑏 𝑑 𝑎 𝑏 𝑎 𝑑 𝑏 d(ab)=d(a)\circ b+a\circ d(b) italic_d ( italic_a italic_b ) = italic_d ( italic_a ) ∘ italic_b + italic_a ∘ italic_d ( italic_b )

for every a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A .


Definition 2.0 .

An associative algebra A is a k-module equipped with a k-bilinear map μ 𝜇 \mu italic_μ satisfying

μ ( a , μ ( b , c ) ) = μ ( μ ( a , b ) , c ) , 𝜇 𝑎 𝜇 𝑏 𝑐 𝜇 𝜇 𝑎 𝑏 𝑐 \mu(a,\mu(b,c))=\mu(\mu(a,b),c), italic_μ ( italic_a , italic_μ ( italic_b , italic_c ) ) = italic_μ ( italic_μ ( italic_a , italic_b ) , italic_c ) ,

for all a , b , c A 𝑎 𝑏 𝑐 𝐴 a,b,c\in A italic_a , italic_b , italic_c ∈ italic_A

Let A be an associative k-algebra. A bimodule M over A is a k-module M with two actions (left and right) of A, μ : A × M M normal-: 𝜇 normal-→ 𝐴 𝑀 𝑀 \mu:A\times M\to M italic_μ : italic_A × italic_M → italic_M and μ : M × A M normal-: 𝜇 normal-→ 𝑀 𝐴 𝑀 \mu:M\times A\to M italic_μ : italic_M × italic_A → italic_M (for simplicity we denote both the actions by same symbol, one can differentiate both of them from the context) such that μ ( x , μ ( y , z ) ) = μ ( μ ( x , y ) , z ) , 𝜇 𝑥 𝜇 𝑦 𝑧 𝜇 𝜇 𝑥 𝑦 𝑧 \mu(x,\mu(y,z))=\mu(\mu(x,y),z), italic_μ ( italic_x , italic_μ ( italic_y , italic_z ) ) = italic_μ ( italic_μ ( italic_x , italic_y ) , italic_z ) , whenever one of x,y,z is from M and others are from A.

Let A and B be associative k-algebras. An associative algebra morphism ϕ : A B normal-: italic-ϕ normal-→ 𝐴 𝐵 \phi:A\to B italic_ϕ : italic_A → italic_B is a k-linear map satisfying

ϕ ( μ ( a , b ) ) = μ ( ϕ a , ϕ b ) , italic-ϕ 𝜇 𝑎 𝑏 𝜇 italic-ϕ 𝑎 italic-ϕ 𝑏 \phi(\mu(a,b))=\mu(\phi a,\phi b), italic_ϕ ( italic_μ ( italic_a , italic_b ) ) = italic_μ ( italic_ϕ italic_a , italic_ϕ italic_b ) ,

for all a , b A . 𝑎 𝑏 𝐴 a,b\in A. italic_a , italic_b ∈ italic_A .


Definition 2.2.1 .

For a k 𝑘 k italic_k -algebra A 𝐴 A italic_A we define Ω ( A ) normal-Ω 𝐴 \Omega(A) roman_Ω ( italic_A ) to the A 𝐴 A italic_A module generated by d f 𝑑 𝑓 df italic_d italic_f for f A 𝑓 𝐴 f\in A italic_f ∈ italic_A , satisfying the relations:

d ( f + g ) = d f + d g 𝑑 𝑓 𝑔 𝑑 𝑓 𝑑 𝑔 d(f+g)=df+dg italic_d ( italic_f + italic_g ) = italic_d italic_f + italic_d italic_g
d f g = f d g + g d f 𝑑 𝑓 𝑔 𝑓 𝑑 𝑔 𝑔 𝑑 𝑓 dfg=fdg+gdf italic_d italic_f italic_g = italic_f italic_d italic_g + italic_g italic_d italic_f
d α f = α d f 𝑑 𝛼 𝑓 𝛼 𝑑 𝑓 d\alpha f=\alpha df italic_d italic_α italic_f = italic_α italic_d italic_f

For f , g A 𝑓 𝑔 𝐴 f,g\in A italic_f , italic_g ∈ italic_A , α k 𝛼 𝑘 \alpha\in k italic_α ∈ italic_k . The co-tangent bundle of a smooth variety X 𝑋 X italic_X is the sheaf satisfying Ω X ( O ) = Ω ( 𝒪 X ( O ) ) subscript normal-Ω 𝑋 𝑂 normal-Ω subscript 𝒪 𝑋 𝑂 \Omega_{X}(O)=\Omega(\mathcal{O}_{X}(O)) roman_Ω start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_O ) = roman_Ω ( caligraphic_O start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT ( italic_O ) ) for any affine open subset O 𝑂 O italic_O . To construct this explicitly we look at the diagonal embedding Δ : X X × k X normal-: normal-Δ normal-→ 𝑋 subscript 𝑘 𝑋 𝑋 \Delta:X\rightarrow X\times_{k}X roman_Δ : italic_X → italic_X × start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_X and if \mathcal{I} caligraphic_I is the ideal sheaf of the diagonal, then:

Ω X = Δ * ( / 2 ) subscript Ω 𝑋 superscript Δ superscript 2 \Omega_{X}=\Delta^{*}(\mathcal{I}/\mathcal{I}^{2}) roman_Ω start_POSTSUBSCRIPT italic_X end_POSTSUBSCRIPT = roman_Δ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( caligraphic_I / caligraphic_I start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )

Definition 1.1 .

[ 2 ] Let A 𝐴 A italic_A be a Banach algebra and ϕ Δ ( A ) italic-ϕ Δ 𝐴 \phi\in\Delta(A) italic_ϕ ∈ roman_Δ ( italic_A ) . The Banach algebra A 𝐴 A italic_A is called left ϕ italic-ϕ \phi italic_ϕ -biflat (right ϕ italic-ϕ \phi italic_ϕ -biflat or satisfies condition W 𝑊 W italic_W ), if there exists a bounded linear map ρ : A ( A p A ) * * : 𝜌 𝐴 superscript subscript tensor-product 𝑝 𝐴 𝐴 absent \rho:A\rightarrow(A\otimes_{p}A)^{**} italic_ρ : italic_A → ( italic_A ⊗ start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_A ) start_POSTSUPERSCRIPT * * end_POSTSUPERSCRIPT such that

ρ ( a b ) = ϕ ( b ) ρ ( a ) = a ρ ( b ) ( ρ ( a b ) = ϕ ( a ) ρ ( b ) = ρ ( a ) b ) fragments ρ fragments ( a b ) ϕ fragments ( b ) ρ fragments ( a ) a ρ fragments ( b ) italic- fragments ( ρ fragments ( a b ) ϕ fragments ( a ) ρ fragments ( b ) ρ fragments ( a ) b ) \rho(ab)=\phi(b)\rho(a)=a\cdot\rho(b)\quad(\rho(ab)=\phi(a)\rho(b)=\rho(a)% \cdot b) italic_ρ ( italic_a italic_b ) = italic_ϕ ( italic_b ) italic_ρ ( italic_a ) = italic_a ⋅ italic_ρ ( italic_b ) ( italic_ρ ( italic_a italic_b ) = italic_ϕ ( italic_a ) italic_ρ ( italic_b ) = italic_ρ ( italic_a ) ⋅ italic_b )

and

ϕ ~ π A * * ρ ( a ) = ϕ ( a ) , ~ italic-ϕ subscript superscript 𝜋 absent 𝐴 𝜌 𝑎 italic-ϕ 𝑎 \tilde{\phi}\circ\pi^{**}_{A}\circ\rho(a)=\phi(a), ~ start_ARG italic_ϕ end_ARG ∘ italic_π start_POSTSUPERSCRIPT * * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ∘ italic_ρ ( italic_a ) = italic_ϕ ( italic_a ) ,

for each a , b A , 𝑎 𝑏 𝐴 a,b\in A, italic_a , italic_b ∈ italic_A , respectively.


Definition 2.4

A deductive algebra ( A , \rightarrowtail , 1 ) 𝐴 \rightarrowtail 1 (A,\rightarrowtail,1) ( italic_A , , 1 ) is an algebra of type ( 2 , 0 ) 2 0 (2,0) ( 2 , 0 ) satisfying the following conditions ( [ 25 ] , p.5):


Definition 2

The coin flip is a decision rule, δ c f superscript 𝛿 𝑐 𝑓 \delta^{cf} italic_δ start_POSTSUPERSCRIPT italic_c italic_f end_POSTSUPERSCRIPT , such that, for every 𝐲 𝐲 {\mathbf{y}} bold_y ,

δ c f ( 𝐲 , u ) = u superscript 𝛿 𝑐 𝑓 𝐲 𝑢 𝑢 \displaystyle\delta^{cf}({\mathbf{y}},u)=u italic_δ start_POSTSUPERSCRIPT italic_c italic_f end_POSTSUPERSCRIPT ( bold_y , italic_u ) = italic_u

Definition 2.2 .

( [ 10 , Definition 2.1] ) A faithful action of a group G 𝐺 G italic_G on X ω superscript 𝑋 𝜔 X^{\omega} italic_X start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT is said to be self-similar if for every g G 𝑔 𝐺 g\in G italic_g ∈ italic_G and x X 𝑥 𝑋 x\in X italic_x ∈ italic_X there exist h G 𝐺 h\in G italic_h ∈ italic_G and v X 𝑣 𝑋 v\in X italic_v ∈ italic_X such that for any w X ω 𝑤 superscript 𝑋 𝜔 w\in X^{\omega} italic_w ∈ italic_X start_POSTSUPERSCRIPT italic_ω end_POSTSUPERSCRIPT ,

(2.1) g ( x w ) = v h ( w ) . 𝑔 𝑥 𝑤 𝑣 𝑤 g(xw)=vh(w). italic_g ( italic_x italic_w ) = italic_v italic_h ( italic_w ) .
Definition 3.1 .

( [ 10 , Definition 3.1] ) Let 𝒪 G max subscript 𝒪 subscript 𝐺 {\mathcal{O}}_{G_{\max}} caligraphic_O start_POSTSUBSCRIPT italic_G start_POSTSUBSCRIPT roman_max end_POSTSUBSCRIPT end_POSTSUBSCRIPT be the universal C * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra  generated by G 𝐺 G italic_G (we assume that every relation in G 𝐺 G italic_G is preserved) and { S x | x X } conditional-set subscript 𝑆 𝑥 𝑥 𝑋 \{S_{x}\ |\ x\in X\} { italic_S start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT | italic_x ∈ italic_X } satisfying the following relations for any x , y X 𝑥 𝑦 𝑋 x,y\in X italic_x , italic_y ∈ italic_X and g G 𝑔 𝐺 g\in G italic_g ∈ italic_G :

(3.1) g * g = g g * = 1 , superscript 𝑔 𝑔 𝑔 superscript 𝑔 1 g^{*}g=gg^{*}=1, italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_g = italic_g italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = 1 ,
(3.2) S x * S y = δ x , y , superscript subscript 𝑆 𝑥 subscript 𝑆 𝑦 subscript 𝛿 𝑥 𝑦 S_{x}^{*}S_{y}=\delta_{x,y}, italic_S start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_S start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT = italic_δ start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPT ,
(3.3) x X S x S x * = 1 , subscript 𝑥 𝑋 subscript 𝑆 𝑥 superscript subscript 𝑆 𝑥 1 \sum_{x\in X}S_{x}S_{x}^{*}=1, ∑ start_POSTSUBSCRIPT italic_x ∈ italic_X end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = 1 ,
(3.4) g S x = S v ( g , x ) h ( g , x ) , 𝑔 subscript 𝑆 𝑥 subscript 𝑆 𝑣 𝑔 𝑥 𝑔 𝑥 gS_{x}=S_{v(g,x)}h(g,x), italic_g italic_S start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT italic_v ( italic_g , italic_x ) end_POSTSUBSCRIPT italic_h ( italic_g , italic_x ) ,

where δ x , y subscript 𝛿 𝑥 𝑦 \delta_{x,y} italic_δ start_POSTSUBSCRIPT italic_x , italic_y end_POSTSUBSCRIPT denotes the Kronecker delta.


Definition 6.1 .

Let ( W , S ) 𝑊 𝑆 (W,S) ( italic_W , italic_S ) be a Coxeter group. The Richardson-Springer monoid O ( W ) 𝑂 𝑊 O(W) italic_O ( italic_W ) of W 𝑊 W italic_W is the quotient of the free monoid generated by S 𝑆 S italic_S modulo the relations s 2 = s superscript 𝑠 2 𝑠 s^{2}=s italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_s for s S 𝑠 𝑆 s\in S italic_s ∈ italic_S and

s t s t = t s t s 𝑠 𝑡 𝑠 𝑡 𝑡 𝑠 𝑡 𝑠 stst\cdots=tsts\cdots italic_s italic_t italic_s italic_t ⋯ = italic_t italic_s italic_t italic_s ⋯ (6.2)

for s , t S 𝑠 𝑡 𝑆 s,t\in S italic_s , italic_t ∈ italic_S , where both sides of ( 6.2 ) are the product of exactly order of s t 𝑠 𝑡 st italic_s italic_t many elements.


Definition 2 (Synchronous Kleene Algebra)

A synchronous KA (SKA) is a tuple ( A , S , + , , ( - ) * , × , 0 , 1 ) 𝐴 𝑆 superscript 0 1 (A,S,+,\cdot,{(-)}^{*},\times,0,1) ( italic_A , italic_S , + , ⋅ , ( - ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , × , 0 , 1 ) such that ( A , + , , ( - ) * , 0 , 1 ) 𝐴 superscript 0 1 (A,+,\cdot,{(-)}^{*},0,1) ( italic_A , + , ⋅ , ( - ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , 0 , 1 ) is a Kleene algebra and × \times × is a binary operator on A 𝐴 A italic_A , with S A 𝑆 𝐴 S\subseteq A italic_S ⊆ italic_A closed under × \times × and ( S , × ) 𝑆 (S,\times) ( italic_S , × ) a semilattice. Furthermore, the following hold for all e , f , g A 𝑒 𝑓 𝑔 𝐴 e,f,g\in A italic_e , italic_f , italic_g ∈ italic_A and α , β S 𝛼 𝛽 𝑆 \alpha,\beta\in S italic_α , italic_β ∈ italic_S :

e × ( f + g ) = e × f + e × g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑒 𝑔 \displaystyle e\times(f+g)=e\times f+e\times g italic_e × ( italic_f + italic_g ) = italic_e × italic_f + italic_e × italic_g e × ( f × g ) = ( e × f ) × g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑔 \displaystyle\quad e\times(f\times g)=(e\times f)\times g italic_e × ( italic_f × italic_g ) = ( italic_e × italic_f ) × italic_g e × 0 = 0 𝑒 0 0 \displaystyle\quad e\times 0=0 italic_e × 0 = 0
( α e ) × ( β f ) = ( α × β ) ( e × f ) 𝛼 𝑒 𝛽 𝑓 𝛼 𝛽 𝑒 𝑓 \displaystyle(\alpha\cdot e)\times(\beta\cdot f)=(\alpha\times\beta)\cdot(e% \times f) ( italic_α ⋅ italic_e ) × ( italic_β ⋅ italic_f ) = ( italic_α × italic_β ) ⋅ ( italic_e × italic_f ) e × f = f × e 𝑒 𝑓 𝑓 𝑒 \displaystyle\quad e\times f=f\times e italic_e × italic_f = italic_f × italic_e e × 1 = e 𝑒 1 𝑒 \displaystyle\quad e\times 1=e italic_e × 1 = italic_e
Definition 5

An 𝖥 1 subscript 𝖥 1 \mathsf{F}_{1} sansserif_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -algebra [ 24 ] is a tuple ( A , + , , ( - ) * , 0 , 1 , H ) 𝐴 superscript 0 1 𝐻 (A,+,\cdot,{(-)}^{*},0,1,H) ( italic_A , + , ⋅ , ( - ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , 0 , 1 , italic_H ) where A 𝐴 A italic_A is a set, ( - ) * superscript {(-)}^{*} ( - ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is a unary operator, + + + and \cdot are binary operators and 0 0 and 1 1 1 1 are constants, and such that for all e , f , g A 𝑒 𝑓 𝑔 𝐴 e,f,g\in A italic_e , italic_f , italic_g ∈ italic_A the following axioms are satisfied:

e + ( f + g ) = ( e + f ) + g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑔 \displaystyle e+(f+g)=(e+f)+g italic_e + ( italic_f + italic_g ) = ( italic_e + italic_f ) + italic_g e + f = f + e 𝑒 𝑓 𝑓 𝑒 \displaystyle e+f=f+e italic_e + italic_f = italic_f + italic_e e + 0 = e e + e = e formulae-sequence 𝑒 0 𝑒 𝑒 𝑒 𝑒 \displaystyle e+0=e\qquad e+e=e italic_e + 0 = italic_e italic_e + italic_e = italic_e
e 1 = e = 1 e 𝑒 1 𝑒 1 𝑒 \displaystyle e\cdot 1=e=1\cdot e italic_e ⋅ 1 = italic_e = 1 ⋅ italic_e e 0 = 0 = 0 e 𝑒 0 0 0 𝑒 \displaystyle e\cdot 0=0=0\cdot e italic_e ⋅ 0 = 0 = 0 ⋅ italic_e e ( f g ) = ( e f ) g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑔 \displaystyle e\cdot(f\cdot g)=(e\cdot f)\cdot g italic_e ⋅ ( italic_f ⋅ italic_g ) = ( italic_e ⋅ italic_f ) ⋅ italic_g
e * = 1 + e e * = 1 + e * e superscript 𝑒 1 𝑒 superscript 𝑒 1 superscript 𝑒 𝑒 \displaystyle e^{*}=1+e\cdot e^{*}=1+e^{*}\cdot e italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = 1 + italic_e ⋅ italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = 1 + italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⋅ italic_e ( e + f ) g = e g + f g 𝑒 𝑓 𝑔 𝑒 𝑔 𝑓 𝑔 \displaystyle(e+f)\cdot g=e\cdot g+f\cdot g ( italic_e + italic_f ) ⋅ italic_g = italic_e ⋅ italic_g + italic_f ⋅ italic_g e ( f + g ) = e f + e g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑒 𝑔 \displaystyle e\cdot(f+g)=e\cdot f+e\cdot g italic_e ⋅ ( italic_f + italic_g ) = italic_e ⋅ italic_f + italic_e ⋅ italic_g

Additionally, the loop tightening and unique fixpoint axiom hold:

( e + 1 ) * = e * superscript 𝑒 1 superscript 𝑒 \displaystyle{(e+1)}^{*}=e^{*} ( italic_e + 1 ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT H ( e ) = 0 e f + g = f e * g = f 𝐻 𝑒 0 𝑒 𝑓 𝑔 𝑓 superscript 𝑒 𝑔 𝑓 \displaystyle H(e)=0\wedge e\cdot f+g=f\implies e^{*}\cdot g=f italic_H ( italic_e ) = 0 ∧ italic_e ⋅ italic_f + italic_g = italic_f ⟹ italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⋅ italic_g = italic_f

Lastly, H 𝐻 H italic_H is compatible with the operators in the following sense: {mathpar} H(0) = 0 H(1) = 1 H(e + f) = H(e) + H(f) etc.

Definition 6

A synchronous 𝖥 1 subscript 𝖥 1 \mathsf{F}_{1} sansserif_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -algebra ( 𝖲𝖥 1 subscript 𝖲𝖥 1 \mathsf{SF}_{1} sansserif_SF start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -algebra for short) is a tuple ( A , S , + , , ( - ) * , 0 , 1 , H ) 𝐴 𝑆 superscript 0 1 𝐻 (A,S,+,\cdot,{(-)}^{*},0,1,H) ( italic_A , italic_S , + , ⋅ , ( - ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , 0 , 1 , italic_H ) , such that ( A , + , , ( - ) * , 0 , 1 , H ) 𝐴 superscript 0 1 𝐻 (A,+,\cdot,{(-)}^{*},0,1,H) ( italic_A , + , ⋅ , ( - ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , 0 , 1 , italic_H ) is an 𝖥 1 subscript 𝖥 1 \mathsf{F}_{1} sansserif_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -algebra and × \times × is a binary operator on A 𝐴 A italic_A , with S A 𝑆 𝐴 S\subseteq A italic_S ⊆ italic_A closed under × \times × and ( S , × ) 𝑆 (S,\times) ( italic_S , × ) a semilattice. Furthermore, the following hold for all e , f , g A 𝑒 𝑓 𝑔 𝐴 e,f,g\in A italic_e , italic_f , italic_g ∈ italic_A and α , β S 𝛼 𝛽 𝑆 \alpha,\beta\in S italic_α , italic_β ∈ italic_S :

e × ( f + g ) = e × f + e × g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑒 𝑔 \displaystyle e\times(f+g)=e\times f+e\times g italic_e × ( italic_f + italic_g ) = italic_e × italic_f + italic_e × italic_g e × ( f × g ) = ( e × f ) × g 𝑒 𝑓 𝑔 𝑒 𝑓 𝑔 \displaystyle\quad e\times(f\times g)=(e\times f)\times g italic_e × ( italic_f × italic_g ) = ( italic_e × italic_f ) × italic_g e × 0 = 0 𝑒 0 0 \displaystyle\quad e\times 0=0 italic_e × 0 = 0
( α e ) × ( β f ) = ( α × β ) ( e × f ) 𝛼 𝑒 𝛽 𝑓 𝛼 𝛽 𝑒 𝑓 \displaystyle(\alpha\cdot e)\times(\beta\cdot f)=(\alpha\times\beta)\cdot(e% \times f) ( italic_α ⋅ italic_e ) × ( italic_β ⋅ italic_f ) = ( italic_α × italic_β ) ⋅ ( italic_e × italic_f ) e × f = f × e 𝑒 𝑓 𝑓 𝑒 \displaystyle\quad e\times f=f\times e italic_e × italic_f = italic_f × italic_e e × 1 = e 𝑒 1 𝑒 \displaystyle\quad e\times 1=e italic_e × 1 = italic_e

Moreover, H 𝐻 H italic_H is compatible with × \times × as well, i.e., for e , f A 𝑒 𝑓 𝐴 e,f\in A italic_e , italic_f ∈ italic_A we have that H ( e × f ) = H ( e ) × H ( f ) 𝐻 𝑒 𝑓 𝐻 𝑒 𝐻 𝑓 H(e\times f)=H(e)\times H(f) italic_H ( italic_e × italic_f ) = italic_H ( italic_e ) × italic_H ( italic_f ) . Lastly, for α S 𝛼 𝑆 \alpha\in S italic_α ∈ italic_S we require that H ( α ) = 0 𝐻 𝛼 0 H(\alpha)=0 italic_H ( italic_α ) = 0 .

Definition 10

For e , f 𝒯 𝖲𝖥 1 𝑒 𝑓 subscript 𝒯 subscript 𝖲𝖥 1 e,f\in\mathcal{T}_{\mathsf{SF}_{1}} italic_e , italic_f ∈ caligraphic_T start_POSTSUBSCRIPT sansserif_SF start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and a Σ 𝑎 Σ a\in\Sigma italic_a ∈ roman_Σ , we inductively define the reach function ρ : 𝒯 𝖲𝖥 1 𝒫 ( 𝒯 𝖲𝖥 1 ) : 𝜌 subscript 𝒯 subscript 𝖲𝖥 1 𝒫 subscript 𝒯 subscript 𝖲𝖥 1 \rho:\mathcal{T}_{\mathsf{SF}_{1}}\to\mathcal{P}(\mathcal{T}_{\mathsf{SF}_{1}}) italic_ρ : caligraphic_T start_POSTSUBSCRIPT sansserif_SF start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT → caligraphic_P ( caligraphic_T start_POSTSUBSCRIPT sansserif_SF start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) as follows:

ρ ( e + f ) = ρ ( e ) ρ ( f ) 𝜌 𝑒 𝑓 𝜌 𝑒 𝜌 𝑓 \displaystyle\rho(e+f)=\rho(e)\cup\rho(f) italic_ρ ( italic_e + italic_f ) = italic_ρ ( italic_e ) ∪ italic_ρ ( italic_f ) ρ ( 0 ) = 𝜌 0 \displaystyle\rho(0)=\emptyset italic_ρ ( 0 ) = ∅
ρ ( e f ) = { e f : e ρ ( e ) } ρ ( f ) 𝜌 𝑒 𝑓 conditional-set superscript 𝑒 𝑓 superscript 𝑒 𝜌 𝑒 𝜌 𝑓 \displaystyle\rho(e\cdot f)=\{e^{\prime}\cdot f:e^{\prime}\in\rho(e)\}\cup\rho% (f) italic_ρ ( italic_e ⋅ italic_f ) = { italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋅ italic_f : italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_ρ ( italic_e ) } ∪ italic_ρ ( italic_f ) ρ ( 1 ) = { 1 } 𝜌 1 1 \displaystyle\rho(1)=\{1\} italic_ρ ( 1 ) = { 1 }
ρ ( e * ) = { 1 } { e e * : e ρ ( e ) } 𝜌 superscript 𝑒 1 conditional-set superscript 𝑒 superscript 𝑒 superscript 𝑒 𝜌 𝑒 \displaystyle\rho(e^{*})=\{1\}\cup\{e^{\prime}\cdot e^{*}:e^{\prime}\in\rho(e)\} italic_ρ ( italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ) = { 1 } ∪ { italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋅ italic_e start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT : italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_ρ ( italic_e ) } ρ ( a ) = { 1 , a } 𝜌 𝑎 1 𝑎 \displaystyle\rho(a)=\{1,a\} italic_ρ ( italic_a ) = { 1 , italic_a }
ρ ( e × f ) = { e × f : e ρ ( e ) , f ρ ( f ) } ρ ( e ) ρ ( f ) 𝜌 𝑒 𝑓 conditional-set superscript 𝑒 superscript 𝑓 formulae-sequence superscript 𝑒 𝜌 𝑒 superscript 𝑓 𝜌 𝑓 𝜌 𝑒 𝜌 𝑓 \displaystyle\rho(e\times f)=\{e^{\prime}\times f^{\prime}:e^{\prime}\in\rho(e% ),f^{\prime}\in\rho(f)\}\cup\rho(e)\cup\rho(f) italic_ρ ( italic_e × italic_f ) = { italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT × italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_e start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_ρ ( italic_e ) , italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_ρ ( italic_f ) } ∪ italic_ρ ( italic_e ) ∪ italic_ρ ( italic_f ) ρ ( H ( e ) ) = { 1 } 𝜌 𝐻 𝑒 1 \displaystyle\rho(H(e))=\{1\} italic_ρ ( italic_H ( italic_e ) ) = { 1 }

Definition 1 .

A High General Granular Operator Space ( GGS ) 𝕊 𝕊 \mathbb{S} blackboard_S shall be a partial algebraic system of the form 𝕊 = 𝕊 ¯ , γ , l , u , 𝐏 , , , , , 𝕊 normal-¯ 𝕊 𝛾 𝑙 𝑢 𝐏 bottom top \mathbb{S}\,=\,\left\langle\underline{\mathbb{S}},\gamma,l,u,\mathbf{P},\leq,% \vee,\wedge,\bot,\top\right\rangle blackboard_S = ⟨ ¯ start_ARG blackboard_S end_ARG , italic_γ , italic_l , italic_u , bold_P , ≤ , ∨ , ∧ , ⊥ , ⊤ ⟩ with 𝕊 ¯ normal-¯ 𝕊 \underline{\mathbb{S}} ¯ start_ARG blackboard_S end_ARG being a set, γ 𝛾 \gamma italic_γ being a unary predicate that determines 𝒢 𝒢 \mathcal{G} caligraphic_G (by the condition γ x 𝛾 𝑥 \gamma x italic_γ italic_x if and only if x 𝒢 𝑥 𝒢 x\in\mathcal{G} italic_x ∈ caligraphic_G ) an admissible granulation (defined below) for 𝕊 𝕊 \mathbb{S} blackboard_S and l , u 𝑙 𝑢 l,u italic_l , italic_u being operators : 𝕊 ¯ 𝕊 ¯ normal-: absent normal-⟼ normal-¯ 𝕊 normal-¯ 𝕊 :\underline{\mathbb{S}}\longmapsto\underline{\mathbb{S}} : ¯ start_ARG blackboard_S end_ARG ⟼ ¯ start_ARG blackboard_S end_ARG satisfying the following ( 𝕊 ¯ normal-¯ 𝕊 \underline{\mathbb{S}} ¯ start_ARG blackboard_S end_ARG is replaced with 𝕊 𝕊 \mathbb{S} blackboard_S if clear from the context. \vee and \wedge are idempotent partial operations and 𝐏 𝐏 \mathbf{P} bold_P is a binary predicate. Further γ x 𝛾 𝑥 \gamma x italic_γ italic_x will be replaced by x 𝒢 𝑥 𝒢 x\in\mathcal{G} italic_x ∈ caligraphic_G for convenience.):

( a , b ) a b = w b a ; ( a , b ) a b = w b a formulae-sequence superscript 𝑤 for-all 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 superscript 𝑤 for-all 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 \displaystyle(\forall a,b)a\vee b\stackrel{{\scriptstyle w}}{{=}}b\vee a\;;\;(% \forall a,b)a\wedge b\stackrel{{\scriptstyle w}}{{=}}b\wedge a ( ∀ italic_a , italic_b ) italic_a ∨ italic_b start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG italic_w end_ARG end_RELOP italic_b ∨ italic_a ; ( ∀ italic_a , italic_b ) italic_a ∧ italic_b start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG italic_w end_ARG end_RELOP italic_b ∧ italic_a
( a , b ) ( a b ) a = w a ; ( a , b ) ( a b ) a = w a formulae-sequence superscript 𝑤 for-all 𝑎 𝑏 𝑎 𝑏 𝑎 𝑎 superscript 𝑤 for-all 𝑎 𝑏 𝑎 𝑏 𝑎 𝑎 \displaystyle(\forall a,b)(a\vee b)\wedge a\stackrel{{\scriptstyle w}}{{=}}a\;% ;\;(\forall a,b)(a\wedge b)\vee a\stackrel{{\scriptstyle w}}{{=}}a ( ∀ italic_a , italic_b ) ( italic_a ∨ italic_b ) ∧ italic_a start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG italic_w end_ARG end_RELOP italic_a ; ( ∀ italic_a , italic_b ) ( italic_a ∧ italic_b ) ∨ italic_a start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG italic_w end_ARG end_RELOP italic_a
( a , b , c ) ( a b ) c = w ( a c ) ( b c ) superscript 𝑤 for-all 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 𝑐 \displaystyle(\forall a,b,c)(a\wedge b)\vee c\stackrel{{\scriptstyle w}}{{=}}(% a\vee c)\wedge(b\vee c) ( ∀ italic_a , italic_b , italic_c ) ( italic_a ∧ italic_b ) ∨ italic_c start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG italic_w end_ARG end_RELOP ( italic_a ∨ italic_c ) ∧ ( italic_b ∨ italic_c )
( a , b , c ) ( a b ) c = w ( a c ) ( b c ) superscript 𝑤 for-all 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 𝑐 \displaystyle(\forall a,b,c)(a\vee b)\wedge c\stackrel{{\scriptstyle w}}{{=}}(% a\wedge c)\vee(b\wedge c) ( ∀ italic_a , italic_b , italic_c ) ( italic_a ∨ italic_b ) ∧ italic_c start_RELOP SUPERSCRIPTOP start_ARG = end_ARG start_ARG italic_w end_ARG end_RELOP ( italic_a ∧ italic_c ) ∨ ( italic_b ∧ italic_c )
( a , b ) ( a b a b = b a b = a ) fragments fragments ( for-all a , b ) fragments ( a b a b b a b a ) \displaystyle(\forall a,b)(a\leq b\leftrightarrow a\vee b=b\,\leftrightarrow\,% a\wedge b=a) ( ∀ italic_a , italic_b ) ( italic_a ≤ italic_b ↔ italic_a ∨ italic_b = italic_b ↔ italic_a ∧ italic_b = italic_a )
( a 𝕊 ) 𝐏 a l a & a l l = a l & 𝐏 a u a u u fragments fragments ( for-all a S ) P superscript 𝑎 𝑙 a superscript 𝑎 𝑙 𝑙 superscript 𝑎 𝑙 P superscript 𝑎 𝑢 superscript 𝑎 𝑢 𝑢 \displaystyle(\forall a\in\mathbb{S})\,\mathbf{P}a^{l}a\,\&\,a^{ll}\,=\,a^{l}% \,\&\,\mathbf{P}a^{u}a^{uu} ( ∀ italic_a ∈ blackboard_S ) bold_P italic_a start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT italic_a & italic_a start_POSTSUPERSCRIPT italic_l italic_l end_POSTSUPERSCRIPT = italic_a start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT & bold_P italic_a start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT italic_a start_POSTSUPERSCRIPT italic_u italic_u end_POSTSUPERSCRIPT
( a , b 𝕊 ) ( 𝐏 a b 𝐏 a l b l & 𝐏 a u b u ) fragments fragments ( for-all a , b S ) fragments ( P a b P superscript 𝑎 𝑙 superscript 𝑏 𝑙 P superscript 𝑎 𝑢 superscript 𝑏 𝑢 ) \displaystyle(\forall a,b\in\mathbb{S})(\mathbf{P}ab\longrightarrow\mathbf{P}a% ^{l}b^{l}\,\&\,\mathbf{P}a^{u}b^{u}) ( ∀ italic_a , italic_b ∈ blackboard_S ) ( bold_P italic_a italic_b ⟶ bold_P italic_a start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT & bold_P italic_a start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT )
l = & u = & 𝐏 l & 𝐏 u fragments superscript bottom 𝑙 bottom superscript bottom 𝑢 bottom P superscript top 𝑙 top P superscript top 𝑢 top \displaystyle\bot^{l}\,=\,\bot\,\&\,\bot^{u}\,=\,\bot\,\&\,\mathbf{P}\top^{l}% \top\,\&\,\mathbf{P}\top^{u}\top ⊥ start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT = ⊥ & ⊥ start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT = ⊥ & bold_P ⊤ start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ⊤ & bold_P ⊤ start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT ⊤
( a 𝕊 ) 𝐏 a & 𝐏 a fragments fragments ( for-all a S ) P bottom a P a top \displaystyle(\forall a\in\mathbb{S})\,\mathbf{P}\bot a\,\&\,\mathbf{P}a\top ( ∀ italic_a ∈ blackboard_S ) bold_P ⊥ italic_a & bold_P italic_a ⊤

Let \mathbb{P} blackboard_P stand for proper parthood, defined via a b 𝑎 𝑏 \mathbb{P}ab blackboard_P italic_a italic_b if and only if 𝐏 a b & ¬ 𝐏 b a 𝐏 𝑎 𝑏 𝐏 𝑏 𝑎 \mathbf{P}ab\,\&\,\neg\mathbf{P}ba bold_P italic_a italic_b & ¬ bold_P italic_b italic_a ). A granulation is said to be admissible if there exists a term operation t 𝑡 t italic_t formed from the weak lattice operations such that the following three conditions hold:

( x x 1 , x r 𝒢 ) t ( x 1 , x 2 , x r ) = x l fragments fragments ( for-all x subscript 𝑥 1 , subscript 𝑥 𝑟 G ) t fragments ( subscript 𝑥 1 , subscript 𝑥 2 , subscript 𝑥 𝑟 ) superscript 𝑥 𝑙 \displaystyle(\forall x\exists x_{1},\ldots x_{r}\in\mathcal{G})\,t(x_{1},\,x_% {2},\ldots\,x_{r})=x^{l} ( ∀ italic_x ∃ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_x start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∈ caligraphic_G ) italic_t ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … italic_x start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) = italic_x start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT
and ( x ) ( x 1 , x r 𝒢 ) t ( x 1 , x 2 , x r ) = x u , fragments and fragments ( for-all x ) fragments ( subscript 𝑥 1 , subscript 𝑥 𝑟 G ) t fragments ( subscript 𝑥 1 , subscript 𝑥 2 , subscript 𝑥 𝑟 ) superscript 𝑥 𝑢 , \displaystyle\mathrm{and}\>(\forall x)\,(\exists x_{1},\,\ldots\,x_{r}\in% \mathcal{G})\,t(x_{1},\,x_{2},\ldots\,x_{r})=x^{u}, roman_and ( ∀ italic_x ) ( ∃ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_x start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∈ caligraphic_G ) italic_t ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … italic_x start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) = italic_x start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT , (Weak RA, WRA)
( a 𝒢 ) ( x 𝕊 ¯ ) ) ( 𝐏 a x 𝐏 a x l ) , fragments fragments ( for-all a G ) fragments ( for-all x ¯ 𝕊 ) ) ( P a x P a superscript 𝑥 𝑙 ) , \displaystyle{(\forall a\in\mathcal{G})(\forall{x\in\underline{\mathbb{S}})})% \,(\mathbf{P}ax\,\longrightarrow\,\mathbf{P}ax^{l}),} ( ∀ italic_a ∈ caligraphic_G ) ( ∀ italic_x ∈ ¯ start_ARG blackboard_S end_ARG ) ) ( bold_P italic_a italic_x ⟶ bold_P italic_a italic_x start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT ) , (Lower Stability, LS)
( x , a 𝒢 ) ( z 𝕊 ¯ ) ) x z , & a z & z l = z u = z , fragments fragments ( for-all x , a G ) fragments ( z ¯ 𝕊 ) ) P x z , P a z z 𝑙 z 𝑢 z , \displaystyle{(\forall x,\,a\in\mathcal{G})(\exists z\in\underline{\mathbb{S}}% ))\,\mathbb{P}xz,\,\&\,\mathbb{P}az\,\&\,z^{l}\,=\,z^{u}\,=\,z,} ( ∀ italic_x , italic_a ∈ caligraphic_G ) ( ∃ italic_z ∈ ¯ start_ARG blackboard_S end_ARG ) ) blackboard_P italic_x italic_z , & blackboard_P italic_a italic_z & italic_z start_POSTSUPERSCRIPT italic_l end_POSTSUPERSCRIPT = italic_z start_POSTSUPERSCRIPT italic_u end_POSTSUPERSCRIPT = italic_z , (Full Underlap, FU)

Definition 2

A set Ω E normal-Ω 𝐸 \Omega\subset E roman_Ω ⊂ italic_E is closed under inference if it holds that

a , b Ω [ a , b ] = 0 a + b Ω . 𝑎 𝑏 Ω 𝑎 𝑏 0 𝑎 𝑏 Ω a,b\in\Omega\,\wedge\,[a,b]=0\Longrightarrow a+b\in\Omega. italic_a , italic_b ∈ roman_Ω ∧ [ italic_a , italic_b ] = 0 ⟹ italic_a + italic_b ∈ roman_Ω . (7)
Definition 3

A set Ω E normal-Ω 𝐸 \Omega\subset E roman_Ω ⊂ italic_E is non-contextual if there exists a value assignment γ : Ω d normal-: 𝛾 normal-⟶ normal-Ω subscript 𝑑 \gamma:\Omega\longrightarrow\mathbb{Z}_{d} italic_γ : roman_Ω ⟶ blackboard_Z start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT that satisfies the condition

γ ( a ) + γ ( b ) - γ ( a + b ) = β ( a , b ) , 𝛾 𝑎 𝛾 𝑏 𝛾 𝑎 𝑏 𝛽 𝑎 𝑏 \gamma(a)+\gamma(b)-\gamma(a+b)=\beta(a,b), italic_γ ( italic_a ) + italic_γ ( italic_b ) - italic_γ ( italic_a + italic_b ) = italic_β ( italic_a , italic_b ) , (8)

for all a , b Ω 𝑎 𝑏 normal-Ω a,b\in\Omega italic_a , italic_b ∈ roman_Ω , and [ a , b ] = 0 𝑎 𝑏 0 [a,b]=0 [ italic_a , italic_b ] = 0 .


Definition B.3 .

In any group G, the elements g and h are conjugates if

g = k h k - 1 𝑔 𝑘 superscript 𝑘 1 \displaystyle g=khk^{-1} italic_g = italic_k italic_h italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT

for k G 𝑘 𝐺 k\in G italic_k ∈ italic_G . The set of all elements conjugate to a given g is called the conjugacy class of g.