Definition 2.3 (holonomy of a second order ODE) .

Given a linear homogeneous second order ODE with complex polynomial coefficients

a ( z ) u ′′ + b ( z ) u + c ( z ) u = 0 𝑎 𝑧 superscript 𝑢 ′′ 𝑏 𝑧 superscript 𝑢 𝑐 𝑧 𝑢 0 a(z)u^{\prime\prime}+b(z)u^{\prime}+c(z)u=0 italic_a ( italic_z ) italic_u start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT + italic_b ( italic_z ) italic_u start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_c ( italic_z ) italic_u = 0

we call the holonomy of the ODE the global holonomy group of the corresponding Riccati model.


Definition 2 .

By quaternion algebra \mathbb{H} blackboard_H with Hamiltonian product we mean a four-dimensional algebra 1 , i , j , k subscript 1 𝑖 𝑗 𝑘 \langle 1,i,j,k\rangle_{\mathbb{R}} ⟨ 1 , italic_i , italic_j , italic_k ⟩ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT such that

i 2 = j 2 = k 2 = - 1 ; i j = - j i = k ; j k = - k j = i ; k i = - i k = j . formulae-sequence superscript 𝑖 2 superscript 𝑗 2 superscript 𝑘 2 1 𝑖 𝑗 𝑗 𝑖 𝑘 𝑗 𝑘 𝑘 𝑗 𝑖 𝑘 𝑖 𝑖 𝑘 𝑗 i^{2}=j^{2}=k^{2}=-1;ij=-ji=k;jk=-kj=i;ki=-ik=j. italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - 1 ; italic_i italic_j = - italic_j italic_i = italic_k ; italic_j italic_k = - italic_k italic_j = italic_i ; italic_k italic_i = - italic_i italic_k = italic_j .

In this algebra quaternions of = 1 subscript delimited-⟨⟩ 1 \mathbb{R}=\langle 1\rangle_{\mathbb{R}} blackboard_R = ⟨ 1 ⟩ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT are called scalars, and V = i , j , k 𝑉 subscript 𝑖 𝑗 𝑘 V=\langle i,j,k\rangle_{\mathbb{R}} italic_V = ⟨ italic_i , italic_j , italic_k ⟩ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT are called vectors. By basic quaternions we mean the following four elements of \mathbb{H} blackboard_H : { 1 , i , j , k } 1 𝑖 𝑗 𝑘 \{1,i,j,k\} { 1 , italic_i , italic_j , italic_k } . We also will use the standard quaternion functions: the norm || a + b i + c j + d k || = a 2 + b 2 + c 2 + d 2 norm 𝑎 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 superscript 𝑑 2 \left|\left|a+bi+cj+dk\right|\right|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} | | italic_a + italic_b italic_i + italic_c italic_j + italic_d italic_k | | = square-root start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , the real part Re ( a + b i + c j + d k ) = a Re 𝑎 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 𝑎 {\operatorname{Re}\,}(a+bi+cj+dk)=a roman_Re ( italic_a + italic_b italic_i + italic_c italic_j + italic_d italic_k ) = italic_a , the vector part Ve ( a + b i + c j + d k ) = b i + c j + d k Ve 𝑎 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 {\operatorname{Ve}\,}(a+bi+cj+dk)=bi+cj+dk roman_Ve ( italic_a + italic_b italic_i + italic_c italic_j + italic_d italic_k ) = italic_b italic_i + italic_c italic_j + italic_d italic_k .


Definition 5.1 .

Fix a homomorphism C d C superscript missing-subexpression 𝑑 𝐶 superscript 𝐶 C\stackrel{{\scriptstyle\begin{array}[]{c}\\ \scriptstyle d\\ \end{array}}}{{\longleftarrow}}C^{\prime} italic_C start_RELOP SUPERSCRIPTOP start_ARG ⟵ end_ARG start_ARG start_ARRAY start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL italic_d end_CELL end_ROW end_ARRAY end_ARG end_RELOP italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT of 𝕜 𝕜 \Bbbk roman_𝕜 -vector spaces with basis. The Moore–Penrose pseudoinverse of d 𝑑 d italic_d is the unique homomorphism C d + C superscript missing-subexpression superscript 𝑑 𝐶 superscript 𝐶 C\stackrel{{\scriptstyle\begin{array}[]{c}\\ \scriptstyle d^{+}\\ \end{array}}}{{\longrightarrow}}C^{\prime} italic_C start_RELOP SUPERSCRIPTOP start_ARG ⟶ end_ARG start_ARG start_ARRAY start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY end_ARG end_RELOP italic_C start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT that satisfies

  1. 1.

    d d + d = d 𝑑 superscript 𝑑 𝑑 𝑑 dd^{+}d=d italic_d italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_d = italic_d

  2. 2.

    d + d d + = d + superscript 𝑑 𝑑 superscript 𝑑 superscript 𝑑 d^{+}dd^{+}=d^{+} italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_d italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT

  3. 3.

    ( d d + ) = d d + superscript 𝑑 superscript 𝑑 top 𝑑 superscript 𝑑 (dd^{+})^{\top}=dd^{+} ( italic_d italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT = italic_d italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT

  4. 4.

    ( d + d ) = d + d superscript superscript 𝑑 𝑑 top superscript 𝑑 𝑑 (d^{+}d)^{\top}=d^{+}d ( italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_d ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT = italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_d .

When d 𝑑 d italic_d is the differential of a CW complex K 𝐾 K italic_K , the indices are such that d 𝑑 d italic_d and d + superscript 𝑑 d^{+} italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT pass between two fixed homological positions, so d 𝑑 d italic_d might always mean C i - 1 d i C i superscript missing-subexpression subscript 𝑑 𝑖 subscript 𝐶 𝑖 1 subscript 𝐶 𝑖 C_{i-1}\stackrel{{\scriptstyle\begin{array}[]{c}\\ \scriptstyle d_{i}\\ \end{array}}}{{\longleftarrow}}C_{i} italic_C start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG ⟵ end_ARG start_ARG start_ARRAY start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY end_ARG end_RELOP italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT and then d + superscript 𝑑 d^{+} italic_d start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT would always mean C i - 1 d i + C i superscript missing-subexpression superscript subscript 𝑑 𝑖 subscript 𝐶 𝑖 1 subscript 𝐶 𝑖 C_{i-1}\stackrel{{\scriptstyle\begin{array}[]{c}\\ \scriptstyle d_{i}^{+}\\ \end{array}}}{{\longrightarrow}}C_{i} italic_C start_POSTSUBSCRIPT italic_i - 1 end_POSTSUBSCRIPT start_RELOP SUPERSCRIPTOP start_ARG ⟶ end_ARG start_ARG start_ARRAY start_ROW start_CELL end_CELL end_ROW start_ROW start_CELL italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_CELL end_ROW end_ARRAY end_ARG end_RELOP italic_C start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT .


Definition 3.2 .

Two families G : ( n × 2 n , ( β 0 , x 0 ) ) : 𝐺 superscript 𝑛 superscript 2 𝑛 subscript 𝛽 0 subscript 𝑥 0 G:\left(\mathbb{R}^{n}\times\mathbb{R}^{2n},(\beta_{0},x_{0})\right)\to\mathbb% {R} italic_G : ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT , ( italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) → blackboard_R and
G ¯ : ( n × 2 n , ( β ¯ 0 , x ¯ 0 ) ) : ¯ 𝐺 superscript 𝑛 superscript 2 𝑛 subscript ¯ 𝛽 0 subscript ¯ 𝑥 0 \bar{G}:\left(\mathbb{R}^{n}\times\mathbb{R}^{2n},(\bar{\beta}_{0},\bar{x}_{0}% )\right)\to\mathbb{R} ¯ start_ARG italic_G end_ARG : ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT , ( ¯ start_ARG italic_β end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) → blackboard_R are o d d superscript 𝑜 𝑑 𝑑 \mathcal{R}^{odd} caligraphic_R start_POSTSUPERSCRIPT italic_o italic_d italic_d end_POSTSUPERSCRIPT -equivalent , or more precisely fibred o d d superscript 𝑜 𝑑 𝑑 \mathcal{R}^{odd} caligraphic_R start_POSTSUPERSCRIPT italic_o italic_d italic_d end_POSTSUPERSCRIPT -equivalent (cf. Definition 4.10 below) if there exist a germ of diffeomorphism ( n × 2 n , ( β ¯ 0 , x ¯ 0 ) ) ( n × 2 n , ( β 0 , x 0 ) ) superscript 𝑛 superscript 2 𝑛 subscript ¯ 𝛽 0 subscript ¯ 𝑥 0 superscript 𝑛 superscript 2 𝑛 subscript 𝛽 0 subscript 𝑥 0 \left(\mathbb{R}^{n}\times\mathbb{R}^{2n},(\bar{\beta}_{0},\bar{x}_{0})\right)% \to\left(\mathbb{R}^{n}\times\mathbb{R}^{2n},(\beta_{0},x_{0})\right) ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT , ( ¯ start_ARG italic_β end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ¯ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) → ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT × blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT , ( italic_β start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) of the form

( β , x ) = ( β ( β ¯ , x ¯ ) , x ( x ¯ ) ) 𝛽 𝑥 𝛽 ¯ 𝛽 ¯ 𝑥 𝑥 ¯ 𝑥 (\beta,{x})=\left(\beta(\bar{\beta},\bar{x}),x(\bar{x})\right) ( italic_β , italic_x ) = ( italic_β ( ¯ start_ARG italic_β end_ARG , ¯ start_ARG italic_x end_ARG ) , italic_x ( ¯ start_ARG italic_x end_ARG ) )

where β ( , x ¯ ) 𝒟 n o d d 𝛽 ¯ 𝑥 superscript subscript 𝒟 𝑛 𝑜 𝑑 𝑑 \beta(\cdot,\bar{x})\in\mathcal{D}_{n}^{odd} italic_β ( ⋅ , ¯ start_ARG italic_x end_ARG ) ∈ caligraphic_D start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_o italic_d italic_d end_POSTSUPERSCRIPT for each fixed x ¯ ¯ 𝑥 \bar{x} ¯ start_ARG italic_x end_ARG , such that

G ( β , x ) = G ¯ ( β ¯ , x ¯ ) , 𝐺 𝛽 𝑥 ¯ 𝐺 ¯ 𝛽 ¯ 𝑥 G(\beta,x)=\bar{G}(\bar{\beta},\bar{x}), italic_G ( italic_β , italic_x ) = ¯ start_ARG italic_G end_ARG ( ¯ start_ARG italic_β end_ARG , ¯ start_ARG italic_x end_ARG ) ,

in the Lagrangian setting, or such that

G ( β , x ) = G ¯ ( β ¯ , x ¯ ) + c ( x ¯ ) , 𝐺 𝛽 𝑥 ¯ 𝐺 ¯ 𝛽 ¯ 𝑥 𝑐 ¯ 𝑥 G(\beta,x)=\bar{G}(\bar{\beta},\bar{x})+c(\bar{x}), italic_G ( italic_β , italic_x ) = ¯ start_ARG italic_G end_ARG ( ¯ start_ARG italic_β end_ARG , ¯ start_ARG italic_x end_ARG ) + italic_c ( ¯ start_ARG italic_x end_ARG ) ,

in the Legendrian setting, for a germ of function c : ( 2 n , 0 ) ( , 0 ) : 𝑐 superscript 2 𝑛 0 0 c:(\mathbb{R}^{2n},0)\to(\mathbb{R},0) italic_c : ( blackboard_R start_POSTSUPERSCRIPT 2 italic_n end_POSTSUPERSCRIPT , 0 ) → ( blackboard_R , 0 ) .


Definition 1 .

Let ( 𝔩 , [ , ] ) 𝔩 normal-⋅ normal-⋅ (\mathfrak{l},[\cdot,\cdot]) ( fraktur_l , [ ⋅ , ⋅ ] ) be a Lie algebra; 𝔭 , 𝔮 𝔩 𝔭 𝔮 𝔩 \mathfrak{p},\mathfrak{q}\subset\mathfrak{l} fraktur_p , fraktur_q ⊂ fraktur_l are nonzero vector subspaces. By definition,

[ 𝔭 , 𝔮 ] = { [ v , w ] : v 𝔭 , w 𝔮 } . 𝔭 𝔮 conditional-set 𝑣 𝑤 formulae-sequence 𝑣 𝔭 𝑤 𝔮 [\mathfrak{p},\mathfrak{q}]=\{[v,w]:v\in\mathfrak{p},w\in\mathfrak{q}\}. [ fraktur_p , fraktur_q ] = { [ italic_v , italic_w ] : italic_v ∈ fraktur_p , italic_w ∈ fraktur_q } .

If dim ( 𝔭 ) 2 dimension 𝔭 2 \dim(\mathfrak{p})\geq 2 roman_dim ( fraktur_p ) ≥ 2 then by definition,

𝔭 1 = 𝔭 , 𝔭 k + 1 = [ 𝔭 , 𝔭 k ] , 𝔭 m = k = 0 m 𝔭 k . formulae-sequence superscript 𝔭 1 𝔭 formulae-sequence superscript 𝔭 𝑘 1 𝔭 superscript 𝔭 𝑘 subscript 𝔭 𝑚 superscript subscript 𝑘 0 𝑚 superscript 𝔭 𝑘 \quad\mathfrak{p}^{1}=\mathfrak{p},\quad\mathfrak{p}^{k+1}=[\mathfrak{p},% \mathfrak{p}^{k}],\quad\mathfrak{p}_{m}=\sum_{k=0}^{m}\mathfrak{p}^{k}. fraktur_p start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = fraktur_p , fraktur_p start_POSTSUPERSCRIPT italic_k + 1 end_POSTSUPERSCRIPT = [ fraktur_p , fraktur_p start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ] , fraktur_p start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT = ∑ start_POSTSUBSCRIPT italic_k = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT fraktur_p start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT .

The vector subspace 𝔭 𝔩 𝔭 𝔩 \mathfrak{p}\subset\mathfrak{l} fraktur_p ⊂ fraktur_l generates the Lie algebra ( 𝔩 , [ , ] ) 𝔩 normal-⋅ normal-⋅ (\mathfrak{l},[\cdot,\cdot]) ( fraktur_l , [ ⋅ , ⋅ ] ) , if 𝔩 = 𝔭 m 𝔩 subscript 𝔭 𝑚 \mathfrak{l}=\mathfrak{p}_{m} fraktur_l = fraktur_p start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT for some natural number m ; 𝑚 m; italic_m ; the smallest number m := s assign 𝑚 𝑠 m:=s italic_m := italic_s with such property is called the generation degree (of the algebra ( 𝔩 , [ , ] ) 𝔩 normal-⋅ normal-⋅ (\mathfrak{l},[\cdot,\cdot]) ( fraktur_l , [ ⋅ , ⋅ ] ) by the subspace 𝔭 𝔭 \mathfrak{p} fraktur_p ).


Definition 3.7 .

For an element 𝔣 ( z ; λ , μ ) 𝔣 𝑧 𝜆 𝜇 {\mathfrak{f}}(z;\lambda,\mu) fraktur_f ( italic_z ; italic_λ , italic_μ ) of z - 1 𝒪 S 2 [ z - 1 ] 0 superscript 𝑧 1 subscript 𝒪 superscript 𝑆 2 subscript delimited-[] superscript 𝑧 1 0 z^{-1}\mathcal{O}_{S^{2}}[z^{-1}]_{0} italic_z start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_z start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , consider the following properties:

The set of sections of z - 1 𝒪 S 2 [ z - 1 ] 0 superscript 𝑧 1 subscript 𝒪 superscript 𝑆 2 subscript delimited-[] superscript 𝑧 1 0 z^{-1}\mathcal{O}_{S^{2}}[z^{-1}]_{0} italic_z start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT caligraphic_O start_POSTSUBSCRIPT italic_S start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_z start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT with these properties is denoted by Irr ( S ) Irr 𝑆 \mathrm{Irr}(S) roman_Irr ( italic_S ) .


Definition A.6 .

We say that P 𝑃 P italic_P is irreducible and aperiodic if

P f = e i θ f , with θ , f L i p ( S ) e i θ = 1 and f = constant . formulae-sequence formulae-sequence 𝑃 𝑓 superscript 𝑒 𝑖 𝜃 𝑓 formulae-sequence with 𝜃 𝑓 𝐿 𝑖 𝑝 𝑆 superscript 𝑒 𝑖 𝜃 1 and 𝑓 constant Pf=e^{i\theta}f,\quad\text{with }\theta\in\mathbb{R},\quad f\in Lip(S)% \Rightarrow e^{i\theta}=1\quad\mbox{and}\quad f=\mbox{constant}. italic_P italic_f = italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT italic_f , with italic_θ ∈ blackboard_R , italic_f ∈ italic_L italic_i italic_p ( italic_S ) ⇒ italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT = 1 and italic_f = constant .

A Markov chain with an irreducible and aperiodic transition kernel is said an irreducible and aperiodic Markov chain.


Definition 1.1 .

Let B 𝐵 B italic_B and X 𝑋 X italic_X be magmas. A map B × X X normal-→ 𝐵 𝑋 𝑋 B\times X\to X italic_B × italic_X → italic_X written as ( b , x ) b x maps-to 𝑏 𝑥 𝑏 𝑥 (b,x)\mapsto bx ( italic_b , italic_x ) ↦ italic_b italic_x is said to be an action of B 𝐵 B italic_B on X 𝑋 X italic_X if

(1) 0 x = x , b 0 = 0 , formulae-sequence 0 𝑥 𝑥 𝑏 0 0 0x=x,\,\,b0=0, 0 italic_x = italic_x , italic_b 0 = 0 ,

for all x X 𝑥 𝑋 x\in X italic_x ∈ italic_X and b B 𝑏 𝐵 b\in B italic_b ∈ italic_B .

Definition 3.5 .

Let B 𝐵 B italic_B and X 𝑋 X italic_X be magmas. An action of B 𝐵 B italic_B on X 𝑋 X italic_X will be called firm if

(39) b ( b x ) = ( b + b ) x , superscript 𝑏 𝑏 𝑥 superscript 𝑏 𝑏 𝑥 b^{\prime}(bx)=(b^{\prime}+b)x, italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_b italic_x ) = ( italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_b ) italic_x ,

for all b , b B 𝑏 superscript 𝑏 normal-′ 𝐵 b,\,b^{\prime}\in B italic_b , italic_b start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_B and x X 𝑥 𝑋 x\in X italic_x ∈ italic_X . Accordingly, a split extension of magmas will be called firm if its associated action is firm.


Definition 5.1 .

The vertex span R = 𝔽 Q 0 𝑅 superscript 𝔽 subscript 𝑄 0 R={\mathbb{F}}^{Q_{0}} italic_R = blackboard_F start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and arrow span A = 𝔽 Q 1 𝐴 superscript 𝔽 subscript 𝑄 1 A={\mathbb{F}}^{Q_{1}} italic_A = blackboard_F start_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT of Γ Γ \Gamma roman_Γ are the vector spaces of 𝔽 𝔽 {\mathbb{F}} blackboard_F -valued functions on Q 0 subscript 𝑄 0 Q_{0} italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Q 1 subscript 𝑄 1 Q_{1} italic_Q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , with bases identified with Q 0 subscript 𝑄 0 Q_{0} italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and Q 1 subscript 𝑄 1 Q_{1} italic_Q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT via Kronecker delta functions. R 𝑅 R italic_R is a commutative algebra over 𝔽 𝔽 {\mathbb{F}} blackboard_F under pointwise multiplication of functions, with the basis elements in Q 0 subscript 𝑄 0 Q_{0} italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT as idempotents, while A 𝐴 A italic_A is an R 𝑅 R italic_R -bimodule via

( e f ) ( a ) = e ( h a ) f ( a ) and ( f e ) ( a ) = f ( a ) e ( t a ) 𝑒 𝑓 𝑎 𝑒 𝑎 𝑓 𝑎 and 𝑓 𝑒 𝑎 𝑓 𝑎 𝑒 𝑡 𝑎 (e\cdot f)(a)=e(ha)f(a)\,\,\,\mbox{ and }\,\,\,(f\cdot e)(a)=f(a)e(ta) ( italic_e ⋅ italic_f ) ( italic_a ) = italic_e ( italic_h italic_a ) italic_f ( italic_a ) and ( italic_f ⋅ italic_e ) ( italic_a ) = italic_f ( italic_a ) italic_e ( italic_t italic_a )

for all e R 𝑒 𝑅 e\in R italic_e ∈ italic_R , f A 𝑓 𝐴 f\in A italic_f ∈ italic_A and a Q 1 𝑎 subscript 𝑄 1 a\in Q_{1} italic_a ∈ italic_Q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT . Any R 𝑅 R italic_R -bimodule M 𝑀 M italic_M can be decomposed into sub- R 𝑅 R italic_R -bimodules

M = e , e ~ Q 0 M e , e ~ where M e , e ~ = e M e ~ . 𝑀 subscript direct-sum 𝑒 ~ 𝑒 subscript 𝑄 0 subscript 𝑀 𝑒 ~ 𝑒 where subscript 𝑀 𝑒 ~ 𝑒 𝑒 𝑀 ~ 𝑒 M=\bigoplus_{e,\tilde{e}\in Q_{0}}M_{e,\tilde{e}}\,\,\mbox{ where }\,\,M_{e,% \tilde{e}}=eM\tilde{e}. italic_M = ⊕ start_POSTSUBSCRIPT italic_e , ~ start_ARG italic_e end_ARG ∈ italic_Q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT italic_e , ~ start_ARG italic_e end_ARG end_POSTSUBSCRIPT where italic_M start_POSTSUBSCRIPT italic_e , ~ start_ARG italic_e end_ARG end_POSTSUBSCRIPT = italic_e italic_M ~ start_ARG italic_e end_ARG .

The path algebra of Γ Γ \Gamma roman_Γ is the graded algebra

𝒜 = d 0 A d 𝒜 subscript direct-sum 𝑑 0 superscript 𝐴 𝑑 \mathcal{A}=\bigoplus_{d\geqslant 0}A^{d} caligraphic_A = ⊕ start_POSTSUBSCRIPT italic_d ⩾ 0 end_POSTSUBSCRIPT italic_A start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT

where A d = A R A R R A superscript 𝐴 𝑑 subscript tensor-product 𝑅 subscript tensor-product 𝑅 subscript tensor-product 𝑅 𝐴 𝐴 𝐴 A^{d}=A\otimes_{R}A\otimes_{R}\cdots\otimes_{R}A italic_A start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT = italic_A ⊗ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_A ⊗ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ⋯ ⊗ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_A and A 0 = R superscript 𝐴 0 𝑅 A^{0}=R italic_A start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = italic_R . Here A d superscript 𝐴 𝑑 A^{d} italic_A start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT has a basis given by the paths

{ a 1 a d : a 1 , , a d Q 1 and t ( a k ) = h ( a k + 1 ) for 1 k < d } conditional-set subscript 𝑎 1 subscript 𝑎 𝑑 subscript 𝑎 1 subscript 𝑎 𝑑 subscript 𝑄 1 and 𝑡 subscript 𝑎 𝑘 subscript 𝑎 𝑘 1 for 1 𝑘 𝑑 \{a_{1}\ldots a_{d}:a_{1},\ldots,a_{d}\in Q_{1}\mbox{ and }t(a_{k})=h(a_{k+1})% \mbox{ for }1\leqslant k<d\} { italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT … italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT : italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT ∈ italic_Q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and italic_t ( italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) = italic_h ( italic_a start_POSTSUBSCRIPT italic_k + 1 end_POSTSUBSCRIPT ) for 1 ⩽ italic_k < italic_d }

of length d 𝑑 d italic_d in Γ Γ \Gamma roman_Γ , with multiplication given by concatenation where defined and 0 otherwise. Our assumption that Γ Γ \Gamma roman_Γ is acyclic implies that A d = 0 superscript 𝐴 𝑑 0 A^{d}=0 italic_A start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT = 0 when d 𝑑 d italic_d is large enough, and therefore dim 𝔽 𝒜 < subscript dimension 𝔽 𝒜 \dim_{\mathbb{F}}\mathcal{A}<\infty roman_dim start_POSTSUBSCRIPT blackboard_F end_POSTSUBSCRIPT caligraphic_A < ∞ .


Definition 4.4 .

Let X 𝑋 X italic_X be a smooth compact manifold. The / {\mathbb{R}}/{\mathbb{Z}} blackboard_R / blackboard_Z K 0 superscript 𝐾 0 K^{0} italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT -theory of X , 𝑋 X, italic_X , denoted by K 0 ( X , / ) , superscript 𝐾 0 𝑋 K^{0}(X,{\mathbb{R}}/{\mathbb{Z}}), italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_X , blackboard_R / blackboard_Z ) , consists of all / {\mathbb{R}}/{\mathbb{Z}} blackboard_R / blackboard_Z K 0 superscript 𝐾 0 K^{0} italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT -cocycles with zero virtual trace in the lowest degree, modulo the / {\mathbb{R}}/{\mathbb{Z}} blackboard_R / blackboard_Z K 0 superscript 𝐾 0 K^{0} italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT -relation. The group operation is given by the addition of / {\mathbb{R}}/{\mathbb{Z}} blackboard_R / blackboard_Z K 0 superscript 𝐾 0 K^{0} italic_K start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT -cocycles

(4.9) ( g , ( d , g - 1 d g ) , μ ) + ( h , ( d , h - 1 d h ) , θ ) = ( g h , ( d d , g - 1 d g h - 1 d h ) , μ θ ) . 𝑔 𝑑 superscript 𝑔 1 𝑑 𝑔 𝜇 𝑑 superscript 1 𝑑 𝜃 direct-sum 𝑔 direct-sum 𝑑 𝑑 direct-sum superscript 𝑔 1 𝑑 𝑔 superscript 1 𝑑 direct-sum 𝜇 𝜃 (g,(d,g^{-1}dg),\mu)+(h,(d,h^{-1}dh),\theta)=(g\oplus h,(d\oplus d,g^{-1}dg% \oplus h^{-1}dh),\mu\oplus\theta). ( italic_g , ( italic_d , italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_g ) , italic_μ ) + ( italic_h , ( italic_d , italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_h ) , italic_θ ) = ( italic_g ⊕ italic_h , ( italic_d ⊕ italic_d , italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_g ⊕ italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_h ) , italic_μ ⊕ italic_θ ) .

Definition 3.6 .

Suppose κ 𝜅 \kappa italic_κ is a regular cardinal and λ 𝜆 \lambda italic_λ is such that ω λ < κ 𝜔 𝜆 𝜅 \omega\cdot\lambda<\kappa italic_ω ⋅ italic_λ < italic_κ . Suppose f κ ω λ 𝑓 superscript 𝜅 𝜔 𝜆 f\in{}^{\omega\cdot\lambda}\kappa italic_f ∈ start_FLOATSUPERSCRIPT italic_ω ⋅ italic_λ end_FLOATSUPERSCRIPT italic_κ . Let 𝖻𝗅𝗈𝖼𝗄 : κ ω λ κ λ : 𝖻𝗅𝗈𝖼𝗄 superscript 𝜅 𝜔 𝜆 superscript 𝜅 𝜆 \mathsf{block}:{}^{\omega\cdot\lambda}\kappa\rightarrow{}^{\lambda}\kappa sansserif_block : start_FLOATSUPERSCRIPT italic_ω ⋅ italic_λ end_FLOATSUPERSCRIPT italic_κ → start_FLOATSUPERSCRIPT italic_λ end_FLOATSUPERSCRIPT italic_κ be defined by 𝖻𝗅𝗈𝖼𝗄 ( f ) ( α ) = sup { f ( ω α + k ) : k ω } 𝖻𝗅𝗈𝖼𝗄 𝑓 𝛼 supremum conditional-set 𝑓 𝜔 𝛼 𝑘 𝑘 𝜔 \mathsf{block}(f)(\alpha)=\sup\{f(\omega\cdot\alpha+k):k\in\omega\} sansserif_block ( italic_f ) ( italic_α ) = roman_sup { italic_f ( italic_ω ⋅ italic_α + italic_k ) : italic_k ∈ italic_ω } .

Suppose f , g κ ω λ 𝑓 𝑔 superscript 𝜅 𝜔 𝜆 f,g\in{}^{\omega\cdot\lambda}\kappa italic_f , italic_g ∈ start_FLOATSUPERSCRIPT italic_ω ⋅ italic_λ end_FLOATSUPERSCRIPT italic_κ . Let 𝗃𝗈𝗂𝗇𝗍 : κ ω λ × κ ω λ κ λ : 𝗃𝗈𝗂𝗇𝗍 superscript 𝜅 𝜔 𝜆 superscript 𝜅 𝜔 𝜆 superscript 𝜅 𝜆 \mathsf{joint}:{}^{\omega\cdot\lambda}\kappa\times{}^{\omega\cdot\lambda}% \kappa\rightarrow{}^{\lambda}\kappa sansserif_joint : start_FLOATSUPERSCRIPT italic_ω ⋅ italic_λ end_FLOATSUPERSCRIPT italic_κ × start_FLOATSUPERSCRIPT italic_ω ⋅ italic_λ end_FLOATSUPERSCRIPT italic_κ → start_FLOATSUPERSCRIPT italic_λ end_FLOATSUPERSCRIPT italic_κ be defined by

𝗃𝗈𝗂𝗇𝗍 ( f , g ) ( α ) = sup { f ( ω α + k ) , g ( ω α + k ) : k ω } . 𝗃𝗈𝗂𝗇𝗍 𝑓 𝑔 𝛼 supremum conditional-set 𝑓 𝜔 𝛼 𝑘 𝑔 𝜔 𝛼 𝑘 𝑘 𝜔 \mathsf{joint}(f,g)(\alpha)=\sup\{f(\omega\cdot\alpha+k),g(\omega\cdot\alpha+k% ):k\in\omega\}. sansserif_joint ( italic_f , italic_g ) ( italic_α ) = roman_sup { italic_f ( italic_ω ⋅ italic_α + italic_k ) , italic_g ( italic_ω ⋅ italic_α + italic_k ) : italic_k ∈ italic_ω } .

Definition 2.1 (The first Lie bracket) .

Let x , y : M 𝔤 C 1 ( M , 𝔤 ) : 𝑥 𝑦 𝑀 𝔤 superscript 𝐶 1 𝑀 𝔤 x,y:M\rightarrow\mathfrak{g}\in C^{1}(M,\mathfrak{g}) italic_x , italic_y : italic_M → fraktur_g ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_M , fraktur_g ) and let [ , ] fragments [ , ] [\,,\,] [ , ] denote the Lie bracket on 𝔤 𝔤 \mathfrak{g} fraktur_g . Then we define the first, pointwise Lie bracket on C 1 ( M , 𝔤 ) superscript 𝐶 1 𝑀 𝔤 C^{1}(M,\mathfrak{g}) italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_M , fraktur_g ) , to be

[ x , y ] ( z ) = [ x ( z ) , y ( z ) ] . 𝑥 𝑦 𝑧 𝑥 𝑧 𝑦 𝑧 \phantom{}[x,y](z)=[x(z),y(z)]. [ italic_x , italic_y ] ( italic_z ) = [ italic_x ( italic_z ) , italic_y ( italic_z ) ] . (17)

Definition 2.5 .

Let = ( C , μ , ϵ , δ ) 𝐶 𝜇 italic-ϵ 𝛿 {\cal B}=(C,\mu,\epsilon,\delta) caligraphic_B = ( italic_C , italic_μ , italic_ϵ , italic_δ ) be a differential graded S 𝑆 S italic_S -bocs. Then, a twisted {\cal B} caligraphic_B -module is a pair ( M , u ) 𝑀 𝑢 (M,u) ( italic_M , italic_u ) , where M GMod - 𝑀 GMod - M\in{\rm GMod}\hbox{-}{\cal B} italic_M ∈ roman_GMod - caligraphic_B and u 𝑢 u italic_u is a homogeneous morphism u Hom GMod - 1 ( M , M ) 𝑢 superscript subscript Hom GMod - 1 𝑀 𝑀 u\in{\rm Hom}_{{\rm GMod}\hbox{-}{\cal B}}^{1}(M,M) italic_u ∈ roman_Hom start_POSTSUBSCRIPT roman_GMod - caligraphic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_M , italic_M ) such that the following Maurer-Cartan equation for u 𝑢 u italic_u holds

δ ^ ( u ) + u * u = 0 . ^ 𝛿 𝑢 𝑢 𝑢 0 \hat{\delta}(u)+u*u=0. ^ start_ARG italic_δ end_ARG ( italic_u ) + italic_u * italic_u = 0 .

If ( M , u ) 𝑀 𝑢 (M,u) ( italic_M , italic_u ) and ( N , v ) 𝑁 𝑣 (N,v) ( italic_N , italic_v ) are twisted {\cal B} caligraphic_B -modules, then a homogeneous morphism of twisted {\cal B} caligraphic_B -modules f : ( M , u ) ( N , v ) normal-: 𝑓 𝑀 𝑢 𝑁 𝑣 f:(M,u)\smash{\mathop{\hbox to 20.0pt{\rightarrowfill}}\limits}(N,v) italic_f : ( italic_M , italic_u ) BIGOP ( italic_N , italic_v ) of degree d 𝑑 d italic_d is a homogeneous morphism f : M N : 𝑓 𝑀 𝑁 f:M\smash{\mathop{\hbox to 20.0pt{\rightarrowfill}}\limits}N italic_f : italic_M BIGOP italic_N in GMod - GMod - {\rm GMod}\hbox{-}{\cal B} roman_GMod - caligraphic_B of degree d 𝑑 d italic_d such that

δ ^ ( f ) + v * f - ( - 1 ) d f * u = 0 . ^ 𝛿 𝑓 𝑣 𝑓 superscript 1 𝑑 𝑓 𝑢 0 \hat{\delta}(f)+v*f-(-1)^{d}f*u=0. ^ start_ARG italic_δ end_ARG ( italic_f ) + italic_v * italic_f - ( - 1 ) start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT italic_f * italic_u = 0 .

We will denote by Hom GMod - d ( ( M , u ) , ( N , v ) ) superscript subscript Hom GMod - 𝑑 𝑀 𝑢 𝑁 𝑣 {\rm Hom}_{{\rm GMod}\hbox{-}{\cal B}}^{d}((M,u),(N,v)) roman_Hom start_POSTSUBSCRIPT roman_GMod - caligraphic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ( ( italic_M , italic_u ) , ( italic_N , italic_v ) ) the space of homogeneous morphisms of twisted {\cal B} caligraphic_B -modules of degree d 𝑑 d italic_d . Moreover, we make

Hom TGMod - ( ( M , u ) , ( N , v ) ) := d Hom TGMod - d ( ( M , u ) , ( N , v ) ) . assign subscript Hom TGMod - 𝑀 𝑢 𝑁 𝑣 subscript direct-sum 𝑑 subscript superscript Hom 𝑑 TGMod - 𝑀 𝑢 𝑁 𝑣 {\rm Hom}_{{\rm TGMod}\hbox{-}{\cal B}}((M,u),(N,v)):=\bigoplus_{d\in\mathbb{Z% }}{\rm Hom}^{d}_{{\rm TGMod}\hbox{-}{\cal B}}((M,u),(N,v)). roman_Hom start_POSTSUBSCRIPT roman_TGMod - caligraphic_B end_POSTSUBSCRIPT ( ( italic_M , italic_u ) , ( italic_N , italic_v ) ) := ⊕ start_POSTSUBSCRIPT italic_d ∈ blackboard_Z end_POSTSUBSCRIPT roman_Hom start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_TGMod - caligraphic_B end_POSTSUBSCRIPT ( ( italic_M , italic_u ) , ( italic_N , italic_v ) ) .
Definition 3.5 .

Let = ( C , μ , ϵ , δ ) 𝐶 𝜇 italic-ϵ 𝛿 {\cal B}=(C,\mu,\epsilon,\delta) caligraphic_B = ( italic_C , italic_μ , italic_ϵ , italic_δ ) be a differential graded S 𝑆 S italic_S -bocs. Given morphisms f , g Hom TGMod - 0 ( ( M , u ) , ( N , v ) ) 𝑓 𝑔 subscript superscript Hom 0 TGMod - 𝑀 𝑢 𝑁 𝑣 f,g\in{\rm Hom}^{0}_{{\rm TGMod}\hbox{-}{\cal B}}((M,u),(N,v)) italic_f , italic_g ∈ roman_Hom start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_TGMod - caligraphic_B end_POSTSUBSCRIPT ( ( italic_M , italic_u ) , ( italic_N , italic_v ) ) , a homotopy h h italic_h from f 𝑓 f italic_f to g 𝑔 g italic_g is a morphism h Hom GMod - - 1 ( M , N ) superscript subscript Hom GMod - 1 𝑀 𝑁 h\in{\rm Hom}_{{\rm GMod}\hbox{-}{\cal B}}^{-1}(M,N) italic_h ∈ roman_Hom start_POSTSUBSCRIPT roman_GMod - caligraphic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_M , italic_N ) such that

f - g = δ ^ ( h ) + v * h + h * u . 𝑓 𝑔 ^ 𝛿 𝑣 𝑢 f-g=\hat{\delta}(h)+v*h+h*u. italic_f - italic_g = ^ start_ARG italic_δ end_ARG ( italic_h ) + italic_v * italic_h + italic_h * italic_u .

A morphism f Hom TGMod - 0 ( ( M , u ) , ( N , v ) ) 𝑓 subscript superscript Hom 0 TGMod - 𝑀 𝑢 𝑁 𝑣 f\in{\rm Hom}^{0}_{{\rm TGMod}\hbox{-}{\cal B}}((M,u),(N,v)) italic_f ∈ roman_Hom start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT roman_TGMod - caligraphic_B end_POSTSUBSCRIPT ( ( italic_M , italic_u ) , ( italic_N , italic_v ) ) is null-homotopic iff there is a homotopy from f 𝑓 f italic_f to 0 0 .

We denote by TGMod 0 - superscript TGMod 0 - {\rm TGMod}^{0}\hbox{-}{\cal B} roman_TGMod start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT - caligraphic_B the subcategory TGMod - TGMod - {\rm TGMod}\hbox{-}{\cal B} roman_TGMod - caligraphic_B with the same objects and only zero degree homogeneous morphisms. Thus, the notion of homotopy is an equivalence relation in the category TGMod 0 - superscript TGMod 0 - {\rm TGMod}^{0}\hbox{-}{\cal B} roman_TGMod start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT - caligraphic_B .


Definition 2.2 .

( Strong short immersion ) We call a C 1 superscript 𝐶 1 C^{1} italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT immersion u : m : 𝑢 superscript 𝑚 u:\mathcal{M}\rightarrow\mathbb{R}^{m} italic_u : caligraphic_M → blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT strongly short if

g - u e = ρ 2 ( g + h ) 𝑔 superscript 𝑢 𝑒 superscript 𝜌 2 𝑔 g-u^{\sharp}e=\rho^{2}(g+h) italic_g - italic_u start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT italic_e = italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g + italic_h )

with a non-negative function ρ C ( ) 𝜌 𝐶 \rho\in C(\mathcal{M}) italic_ρ ∈ italic_C ( caligraphic_M ) and symmetric tensor h C ( ; s y m n × n ) 𝐶 subscript superscript 𝑛 𝑛 𝑠 𝑦 𝑚 h\in C(\mathcal{M};\mathbb{R}^{n\times n}_{sym}) italic_h ∈ italic_C ( caligraphic_M ; blackboard_R start_POSTSUPERSCRIPT italic_n × italic_n end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s italic_y italic_m end_POSTSUBSCRIPT ) satisfying

- 1 2 g h 1 2 g on . formulae-sequence 1 2 𝑔 1 2 𝑔 on -\tfrac{1}{2}g\leq h\leq\tfrac{1}{2}g\quad\textrm{ on }\mathcal{M}. - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_g ≤ italic_h ≤ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_g on caligraphic_M .
Definition 2.3 .

( Adapted short immersion ) Given a closed subset Σ Σ \Sigma\subset\mathcal{M} roman_Σ ⊂ caligraphic_M a strongly short immersion u : m : 𝑢 superscript 𝑚 u:\mathcal{M}\rightarrow\mathbb{R}^{m} italic_u : caligraphic_M → blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT is called adapted short with respect to Σ normal-Σ \Sigma roman_Σ with exponent 0 < θ < 1 0 𝜃 1 0<\theta<1 0 < italic_θ < 1 if u C 1 , θ ( ) 𝑢 superscript 𝐶 1 𝜃 u\in C^{1,\theta}(\mathcal{M}) italic_u ∈ italic_C start_POSTSUPERSCRIPT 1 , italic_θ end_POSTSUPERSCRIPT ( caligraphic_M ) is strongly short with

g - u e = ρ 2 ( g + h ) 𝑔 superscript 𝑢 𝑒 superscript 𝜌 2 𝑔 g-u^{\sharp}e=\rho^{2}(g+h) italic_g - italic_u start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT italic_e = italic_ρ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_g + italic_h )

such that Σ = { ρ = 0 } fragments Σ fragments { ρ 0 } \Sigma=\{\rho=0\} roman_Σ = { italic_ρ = 0 } ,

u C 2 ( Σ ) , ρ , h C 1 ( Σ ) formulae-sequence 𝑢 superscript 𝐶 2 Σ 𝜌 superscript 𝐶 1 Σ u\in C^{2}(\mathcal{M}\setminus\Sigma),\quad\rho,h\in C^{1}(\mathcal{M}% \setminus\Sigma) italic_u ∈ italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( caligraphic_M ∖ roman_Σ ) , italic_ρ , italic_h ∈ italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( caligraphic_M ∖ roman_Σ )

and there exists a constant A 1 𝐴 1 A\geq 1 italic_A ≥ 1 such that, in any chart Ω k subscript Ω 𝑘 \Omega_{k} roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT

| 2 u ( x ) | A ρ ( x ) 1 - 1 θ , | ρ ( x ) | A ρ ( x ) 1 - 1 θ , | h ( x ) | A ρ ( x ) - 1 θ . formulae-sequence superscript 2 𝑢 𝑥 𝐴 𝜌 superscript 𝑥 1 1 𝜃 formulae-sequence 𝜌 𝑥 𝐴 𝜌 superscript 𝑥 1 1 𝜃 𝑥 𝐴 𝜌 superscript 𝑥 1 𝜃 \begin{split}&\displaystyle|\nabla^{2}u(x)|\leq A\rho(x)^{1-\tfrac{1}{\theta}}% ,\\ &\displaystyle|\nabla\rho(x)|\leq A\rho(x)^{1-\tfrac{1}{\theta}},\\ &\displaystyle|\nabla h(x)|\leq A\rho(x)^{-\tfrac{1}{\theta}}.\end{split} start_ROW start_CELL end_CELL start_CELL | ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_u ( italic_x ) | ≤ italic_A italic_ρ ( italic_x ) start_POSTSUPERSCRIPT 1 - divide start_ARG 1 end_ARG start_ARG italic_θ end_ARG end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL | ∇ italic_ρ ( italic_x ) | ≤ italic_A italic_ρ ( italic_x ) start_POSTSUPERSCRIPT 1 - divide start_ARG 1 end_ARG start_ARG italic_θ end_ARG end_POSTSUPERSCRIPT , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL | ∇ italic_h ( italic_x ) | ≤ italic_A italic_ρ ( italic_x ) start_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG italic_θ end_ARG end_POSTSUPERSCRIPT . end_CELL end_ROW (2.9)

for any x Ω k Σ 𝑥 subscript Ω 𝑘 Σ x\in\Omega_{k}\setminus\Sigma italic_x ∈ roman_Ω start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∖ roman_Σ .


Definition 2.2 .

Define the algebra ¯ d subscript ¯ 𝑑 \bar{\mathcal{H}}_{d} ¯ start_ARG caligraphic_H end_ARG start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT as the 𝕜 𝕜 \Bbbk roman_𝕜 -algebra generated by T 1 , , T d - 1 subscript 𝑇 1 subscript 𝑇 𝑑 1 T_{1},\dotsc,T_{d-1} italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_T start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT and X 1 , , X d subscript 𝑋 1 subscript 𝑋 𝑑 X_{1},\dotsc,X_{d} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT in λ 𝜆 \lambda italic_λ -degree zero, and an extra generator θ 𝜃 \theta italic_θ in λ 𝜆 \lambda italic_λ -degree 1, with relations ( 7 ) to ( 9 ) and

(10) θ 2 = 0 superscript 𝜃 2 0 \displaystyle\theta^{2}=0 italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0
(11) X r θ = θ X r for r = 1 , , d , subscript 𝑋 𝑟 𝜃 𝜃 subscript 𝑋 𝑟 for r = 1 , , d , \displaystyle X_{r}\theta=\theta X_{r}\hbox to 0.0pt{              for $r=1,% \dotsc,d$,} italic_X start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_θ = italic_θ italic_X start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT for italic_r = 1 , … , italic_d ,
(12) T r θ = θ T r for r > 1 , subscript 𝑇 𝑟 𝜃 𝜃 subscript 𝑇 𝑟 for r > 1 , \displaystyle T_{r}\theta=\theta T_{r}\hbox to 0.0pt{                 for $r>1% $,} italic_T start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_θ = italic_θ italic_T start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT for italic_r > 1 ,
(13) T 1 θ T 1 θ + θ T 1 θ T 1 = 0 . subscript 𝑇 1 𝜃 subscript 𝑇 1 𝜃 𝜃 subscript 𝑇 1 𝜃 subscript 𝑇 1 0 \displaystyle T_{1}\theta T_{1}\theta+\theta T_{1}\theta T_{1}=0. italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ + italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 .
Definition 2.16 .

The algebra d subscript 𝑑 \mathcal{H}_{d} caligraphic_H start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT is the 𝕜 𝕜 \Bbbk roman_𝕜 -algebra generated by T 1 , , T d - 1 subscript 𝑇 1 subscript 𝑇 𝑑 1 T_{1},\dotsc,T_{d-1} italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_T start_POSTSUBSCRIPT italic_d - 1 end_POSTSUBSCRIPT and X 1 ± 1 , , X d ± 1 superscript subscript 𝑋 1 plus-or-minus 1 superscript subscript 𝑋 𝑑 plus-or-minus 1 X_{1}^{\pm 1},\dotsc,X_{d}^{\pm 1} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , … , italic_X start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT in λ 𝜆 \lambda italic_λ -degree zero, and an extra generator θ 𝜃 \theta italic_θ in λ 𝜆 \lambda italic_λ -degree 1, with relations ( 14 ) to ( 16 ) and

(17) θ 2 = 0 superscript 𝜃 2 0 \displaystyle\theta^{2}=0 italic_θ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0
(18) X r ± 1 θ = θ X r ± 1 for r = 1 , , d , superscript subscript 𝑋 𝑟 plus-or-minus 1 𝜃 𝜃 superscript subscript 𝑋 𝑟 plus-or-minus 1 for r = 1 , , d , \displaystyle X_{r}^{\pm 1}\theta=\theta X_{r}^{\pm 1}\hbox to 0.0pt{%               for $r=1,\dotsc,d$,} italic_X start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_θ = italic_θ italic_X start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT for italic_r = 1 , … , italic_d ,
(19) T r θ = θ T r for r > 1 , subscript 𝑇 𝑟 𝜃 𝜃 subscript 𝑇 𝑟 for r > 1 , \displaystyle T_{r}\theta=\theta T_{r}\hbox to 0.0pt{                 for $r>1% $,} italic_T start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT italic_θ = italic_θ italic_T start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT for italic_r > 1 ,
(20) T 1 θ T 1 θ + θ T 1 θ T 1 = ( q - 1 ) θ T 1 θ . subscript 𝑇 1 𝜃 subscript 𝑇 1 𝜃 𝜃 subscript 𝑇 1 𝜃 subscript 𝑇 1 𝑞 1 𝜃 subscript 𝑇 1 𝜃 \displaystyle T_{1}\theta T_{1}\theta+\theta T_{1}\theta T_{1}=(q-1)\theta T_{% 1}\theta. italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ + italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( italic_q - 1 ) italic_θ italic_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_θ .

Definition (generalized Boolean algebra) .

A generalized Boolean algebra is a distributive lattice L 𝐿 L italic_L with designated bottom element bottom \bot satisfying

a , b c ( c b = a b and c b = ) . fragments for-all a , b c fragments ( c b a b and c b bottom ) . \forall a,b\ \exists c\ (c\vee b=a\vee b\text{ and }c\wedge b=\bot). ∀ italic_a , italic_b ∃ italic_c ( italic_c ∨ italic_b = italic_a ∨ italic_b and italic_c ∧ italic_b = ⊥ ) .

A generalized Boolean homomorphism is a lattice homomorphism f : L M : 𝑓 𝐿 𝑀 f\colon L\to M italic_f : italic_L → italic_M which preserves the bottom element. We denote the category of generalized Boolean algebras and their homomorphisms by 𝐠𝐁𝐚 𝐠𝐁𝐚 \mathbf{gBa} bold_gBa .


Definition 1.2 .

Let ( X , d ) 𝑋 𝑑 (X,d) ( italic_X , italic_d ) and ( Y , ρ ) 𝑌 𝜌 (Y,\rho) ( italic_Y , italic_ρ ) be pseudometric spaces. The pseudometrics d 𝑑 d italic_d and ρ 𝜌 \rho italic_ρ are combinatorially similar if there are bijections g : Y X : 𝑔 𝑌 𝑋 g\colon Y\to X italic_g : italic_Y → italic_X and f : d ( X 2 ) ρ ( Y 2 ) : 𝑓 𝑑 superscript 𝑋 2 𝜌 superscript 𝑌 2 f\colon d(X^{2})\to\rho(Y^{2}) italic_f : italic_d ( italic_X start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) → italic_ρ ( italic_Y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that

(1.2) ρ ( x , y ) = f ( d ( g ( x ) , g ( y ) ) ) 𝜌 𝑥 𝑦 𝑓 𝑑 𝑔 𝑥 𝑔 𝑦 \rho(x,y)=f(d(g(x),g(y))) italic_ρ ( italic_x , italic_y ) = italic_f ( italic_d ( italic_g ( italic_x ) , italic_g ( italic_y ) ) )

holds for all x 𝑥 x italic_x , y Y 𝑦 𝑌 y\in Y italic_y ∈ italic_Y . In this case, we will say that g : Y X : 𝑔 𝑌 𝑋 g\colon Y\to X italic_g : italic_Y → italic_X is a combinatorial similarity .


Definition 7 .

Let Σ , O Σ 𝑂 \Sigma,O roman_Σ , italic_O be 𝖯𝗆 𝖯𝗆 \mathsf{Pm} sansserif_Pm -sets. A separated language is an equivariant map of the form Σ ( * ) O superscript Σ 𝑂 \Sigma^{(*)}\to O roman_Σ start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT → italic_O . A separated automaton 𝒜 = ( Q , δ , o , q 0 ) 𝒜 𝑄 𝛿 𝑜 subscript 𝑞 0 \mathcal{A}=(Q,\delta,o,q_{0}) caligraphic_A = ( italic_Q , italic_δ , italic_o , italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) consists of Q 𝑄 Q italic_Q , o 𝑜 o italic_o and q 0 subscript 𝑞 0 q_{0} italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT defined as in a nominal automaton, and an equivariant transition function δ : Q Σ Q : 𝛿 𝑄 Σ 𝑄 \delta\colon Q\mathop{\ast}\Sigma\rightarrow Q italic_δ : italic_Q ∗ roman_Σ → italic_Q .

The separated language semantics of such an automaton is given by the map s : Q Σ ( * ) O : 𝑠 𝑄 superscript Σ 𝑂 s\colon Q\mathop{\ast}\Sigma^{(*)}\to O italic_s : italic_Q ∗ roman_Σ start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT → italic_O , defined by

s ( x , ε ) = o ( x ) , s ( x , a w ) = s ( δ ( x , a ) , w ) formulae-sequence 𝑠 𝑥 𝜀 𝑜 𝑥 𝑠 𝑥 𝑎 𝑤 𝑠 𝛿 𝑥 𝑎 𝑤 s(x,\varepsilon)=o(x)\,,\qquad s(x,aw)=s(\delta(x,a),w) italic_s ( italic_x , italic_ε ) = italic_o ( italic_x ) , italic_s ( italic_x , italic_a italic_w ) = italic_s ( italic_δ ( italic_x , italic_a ) , italic_w )

for all x Q 𝑥 𝑄 x\in Q italic_x ∈ italic_Q , a Σ 𝑎 Σ a\in\Sigma italic_a ∈ roman_Σ and w Σ ( * ) 𝑤 superscript Σ w\in\Sigma^{(*)} italic_w ∈ roman_Σ start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT such that x # a w 𝑥 # 𝑎 𝑤 x\mathop{\#}aw italic_x # italic_a italic_w and a # w 𝑎 # 𝑤 a\mathop{\#}w italic_a # italic_w .

Let s : Q ( Σ ( * ) -∗ O ) fragments superscript 𝑠 : Q fragments ( superscript Σ italic--∗ O ) s^{\flat}\colon Q\to(\Sigma^{(*)}\mathrel{-\kern-3.0pt{\ast}}O) italic_s start_POSTSUPERSCRIPT ♭ end_POSTSUPERSCRIPT : italic_Q → ( roman_Σ start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT italic_-∗ italic_O ) be the transpose of s 𝑠 s italic_s . Then s ( q 0 ) : Σ ( * ) O : superscript 𝑠 subscript 𝑞 0 superscript Σ 𝑂 s^{\flat}(q_{0})\colon\Sigma^{(*)}\to O italic_s start_POSTSUPERSCRIPT ♭ end_POSTSUPERSCRIPT ( italic_q start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) : roman_Σ start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT → italic_O corresponds to a separated language, this is called the separated language accepted by 𝒜 𝒜 \mathcal{A} caligraphic_A .


Definition 1.2 .

Let R 𝑅 R italic_R be a ring and let σ : R R : 𝜎 𝑅 𝑅 \sigma:R\to R italic_σ : italic_R → italic_R be a ring endomorphism. An additive map d : R R : 𝑑 𝑅 𝑅 d:R\to R italic_d : italic_R → italic_R is called a generalized σ 𝜎 \sigma italic_σ -derivation (or a generalized skew derivation ) if there exists a map δ : R R : 𝛿 𝑅 𝑅 \delta:R\to R italic_δ : italic_R → italic_R such that

(1.1) d ( x y ) = δ ( x ) y + σ ( x ) d ( y ) 𝑑 𝑥 𝑦 𝛿 𝑥 𝑦 𝜎 𝑥 𝑑 𝑦 d(xy)=\delta(x)y+\sigma(x)d(y) italic_d ( italic_x italic_y ) = italic_δ ( italic_x ) italic_y + italic_σ ( italic_x ) italic_d ( italic_y )

for all x , y R 𝑥 𝑦 𝑅 x,y\in R italic_x , italic_y ∈ italic_R .


Definition 3.1 .

The map f : U W : 𝑓 𝑈 𝑊 f:U\to W italic_f : italic_U → italic_W is differentiable at u 𝑢 u italic_u , if there is an operator f ( u ) ( V , W ) superscript 𝑓 𝑢 𝑉 𝑊 f^{\prime}(u)\in\mathcal{B}(V,W) italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) ∈ caligraphic_B ( italic_V , italic_W ) such that

f ( u + h ) = f ( u ) + f ( u ) h + o ( h ) . 𝑓 𝑢 𝑓 𝑢 superscript 𝑓 𝑢 𝑜 f(u+h)=f(u)+f^{\prime}(u)h+o(h). italic_f ( italic_u + italic_h ) = italic_f ( italic_u ) + italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) italic_h + italic_o ( italic_h ) .

Then f ( u ) superscript 𝑓 𝑢 f^{\prime}(u) italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) is the derivative of f 𝑓 f italic_f at u 𝑢 u italic_u . If f 𝑓 f italic_f is differentiable at every point in U 𝑈 U italic_U , then we say that f 𝑓 f italic_f is differentiable . In that case, the derivative of f 𝑓 f italic_f is the map

f : U ( V , W ) : superscript 𝑓 𝑈 𝑉 𝑊 f^{\prime}\colon U\to\mathcal{B}(V,W) italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : italic_U → caligraphic_B ( italic_V , italic_W ) (3.1)

mapping u U 𝑢 𝑈 u\in U italic_u ∈ italic_U to f ( u ) superscript 𝑓 𝑢 f^{\prime}(u) italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) .

Definition 3.3 .

The map f 𝑓 f italic_f is a near-identity at u 𝑢 u italic_u if the map 3.1 is continuous in a neighbourhood of u 𝑢 u italic_u , and

f ( u ) h = h + o ( h ) . superscript 𝑓 𝑢 𝑜 f^{\prime}(u)h=h+o(h). italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_u ) italic_h = italic_h + italic_o ( italic_h ) .

Definition 2.1 .

[ 10 ] An algebra J 𝐽 J italic_J over a field F normal-F \rm{F} roman_F is a Jordan algebra satisfying for any x , y J 𝑥 𝑦 𝐽 x,y\in J italic_x , italic_y ∈ italic_J ,

  1. (1)

    x y = y x 𝑥 𝑦 𝑦 𝑥 x\circ y=y\circ x italic_x ∘ italic_y = italic_y ∘ italic_x ;

  2. (2)

    ( x 2 y ) x = x 2 ( y x ) superscript 𝑥 2 𝑦 𝑥 superscript 𝑥 2 𝑦 𝑥 (x^{2}\circ y)\circ x=x^{2}\circ(y\circ x) ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∘ italic_y ) ∘ italic_x = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∘ ( italic_y ∘ italic_x ) .

Definition 2.2 .

[ 9 ] A Hom-Jordan algebra over a field F normal-F \rm{F} roman_F is a triple ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) consisting of a linear space V 𝑉 V italic_V , a bilinear map μ : V × V V normal-: 𝜇 normal-→ 𝑉 𝑉 𝑉 \mu:V\times V\rightarrow V italic_μ : italic_V × italic_V → italic_V which is commutative and a linear map α : V V normal-: 𝛼 normal-→ 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying for any x , y V 𝑥 𝑦 𝑉 x,y\in V italic_x , italic_y ∈ italic_V ,

μ ( α 2 ( x ) , μ ( y , μ ( x , x ) ) ) = μ ( μ ( α ( x ) , y ) , α ( μ ( x , x ) ) ) , 𝜇 superscript 𝛼 2 𝑥 𝜇 𝑦 𝜇 𝑥 𝑥 𝜇 𝜇 𝛼 𝑥 𝑦 𝛼 𝜇 𝑥 𝑥 \mu(\alpha^{2}(x),\mu(y,\mu(x,x)))=\mu(\mu(\alpha(x),y),\alpha(\mu(x,x))), italic_μ ( italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) , italic_μ ( italic_y , italic_μ ( italic_x , italic_x ) ) ) = italic_μ ( italic_μ ( italic_α ( italic_x ) , italic_y ) , italic_α ( italic_μ ( italic_x , italic_x ) ) ) ,

where α 2 = α α superscript 𝛼 2 𝛼 𝛼 \alpha^{2}=\alpha\circ\alpha italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_α ∘ italic_α .

Definition 2.6 .

[ 6 ] Let ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) and ( V , μ , β ) superscript 𝑉 normal-′ superscript 𝜇 normal-′ 𝛽 (V^{{}^{\prime}},\mu^{{}^{\prime}},\beta) ( italic_V start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_μ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_β ) be two Hom-Jordan algebras. A linear map ϕ : V V normal-: italic-ϕ normal-→ 𝑉 superscript 𝑉 normal-′ \phi:V\rightarrow V^{{}^{\prime}} italic_ϕ : italic_V → italic_V start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT is said to be a homomorphism of Hom-Jordan algebras if

  1. (1)

    ϕ ( μ ( x , y ) ) = μ ( ϕ ( x ) , ϕ ( y ) ) italic-ϕ 𝜇 𝑥 𝑦 superscript 𝜇 italic-ϕ 𝑥 italic-ϕ 𝑦 \phi(\mu(x,y))=\mu^{{}^{\prime}}(\phi(x),\phi(y)) italic_ϕ ( italic_μ ( italic_x , italic_y ) ) = italic_μ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_ϕ ( italic_x ) , italic_ϕ ( italic_y ) ) ;

  2. (2)

    ϕ α = β ϕ italic-ϕ 𝛼 𝛽 italic-ϕ \phi\circ\alpha=\beta\circ\phi italic_ϕ ∘ italic_α = italic_β ∘ italic_ϕ .


Definition 0

A function f ( x ) 𝑓 𝑥 f\left(x\right) italic_f ( italic_x ) is periodic if there is a positive number p 𝑝 p italic_p such that

f ( x + p ) = f ( x ) 𝑓 𝑥 𝑝 𝑓 𝑥 f\left(x+p\right)=f\left(x\right) italic_f ( italic_x + italic_p ) = italic_f ( italic_x )

for all x 𝑥 x italic_x . If there is a smallest positive number p 𝑝 p italic_p for which this holds, then p 𝑝 p italic_p is called the period of f 𝑓 f italic_f .


Definition \theexx .

Fix i , j > 0 𝑖 𝑗 0 i,j>0 italic_i , italic_j > 0 and let τ 𝜏 \tau italic_τ be a tier on Σ Γ Σ Γ \Sigma\cup\Gamma roman_Σ ∪ roman_Γ . A function f : Σ * Γ * : 𝑓 superscript Σ superscript Γ f:\Sigma^{*}\to\Gamma^{*} italic_f : roman_Σ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → roman_Γ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is i , j 𝑖 𝑗 i,j italic_i , italic_j -input–output strictly local on tier τ 𝜏 \tau italic_τ ( i , j 𝑖 𝑗 i,j italic_i , italic_j -TIOSL) if for all w , x Σ * 𝑤 𝑥 superscript Σ w,x\in\Sigma^{*} italic_w , italic_x ∈ roman_Σ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , if

then f w = f x subscript superscript 𝑓 𝑤 subscript superscript 𝑓 𝑥 f^{\to}_{w}=f^{\to}_{x} italic_f start_POSTSUPERSCRIPT → end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT = italic_f start_POSTSUPERSCRIPT → end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT . A function is i 𝑖 i italic_i -input strictly local on tier τ 𝜏 \tau italic_τ ( i 𝑖 i italic_i -TISL) if it is i , 1 𝑖 1 i,1 italic_i , 1 -TIOSL on tier τ 𝜏 \tau italic_τ , and it is j 𝑗 j italic_j -output strictly local on tier τ 𝜏 \tau italic_τ ( j 𝑗 j italic_j -TOSL) if it is 1 , j 1 𝑗 1,j 1 , italic_j -TIOSL on tier τ 𝜏 \tau italic_τ .


Definition 2.10 .

Let V 𝑉 V italic_V be a vector space over / 2 2 \mathbb{Z}/2\mathbb{Z} blackboard_Z / 2 blackboard_Z equipped with a symplectic form , \langle\cdot,\cdot\rangle ⟨ ⋅ , ⋅ ⟩ . A quadratic form q 𝑞 q italic_q on V 𝑉 V italic_V is a function q : V / 2 : 𝑞 𝑉 2 q:V\to\mathbb{Z}/2\mathbb{Z} italic_q : italic_V → blackboard_Z / 2 blackboard_Z satisfying

q ( x + y ) = q ( x ) + q ( y ) + x , y . 𝑞 𝑥 𝑦 𝑞 𝑥 𝑞 𝑦 𝑥 𝑦 q(x+y)=q(x)+q(y)+\langle x,y\rangle. italic_q ( italic_x + italic_y ) = italic_q ( italic_x ) + italic_q ( italic_y ) + ⟨ italic_x , italic_y ⟩ .

Definition 3.9
π = π ( + 0 , + 1 , , + n ) ( - n , , - 1 , - 0 ) . superscript 𝜋 superscript 𝜋 0 1 𝑛 𝑛 1 0 \pi^{\circ}=\pi^{\bullet}\cdot(+0,~{}+1,...,~{}+n)\cdot(-n,...,~{}-1,~{}-0). italic_π start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT = italic_π start_POSTSUPERSCRIPT ∙ end_POSTSUPERSCRIPT ⋅ ( + 0 , + 1 , … , + italic_n ) ⋅ ( - italic_n , … , - 1 , - 0 ) .

Definition 3.2 .

An inverse monoid is a monoid M 𝑀 M italic_M such that, for each x M 𝑥 𝑀 x\in M italic_x ∈ italic_M , there is a unique y M 𝑦 𝑀 y\in M italic_y ∈ italic_M such that

x y x = x , and y x y = y . formulae-sequence 𝑥 𝑦 𝑥 𝑥 and 𝑦 𝑥 𝑦 𝑦 xyx=x,\,\,{\rm{and}}\,\,yxy=y. italic_x italic_y italic_x = italic_x , roman_and italic_y italic_x italic_y = italic_y .

Algebras over non-commutative rings .

An algebra A 𝐴 A italic_A over a ring R 𝑅 R italic_R (or simply an R 𝑅 R italic_R -algebra ) consists of a ring A 𝐴 A italic_A enriched with an R 𝑅 R italic_R -bimodule structure – the ring addition and the R 𝑅 R italic_R -bimodule addition being the same – such that for all a , b A 𝑎 𝑏 𝐴 a,b\in A italic_a , italic_b ∈ italic_A and r R 𝑟 𝑅 r\in R italic_r ∈ italic_R ,

( r a ) b = r ( a b ) , ( a r ) b = a ( r b ) , and ( a b ) r = a ( b r ) . formulae-sequence 𝑟 𝑎 𝑏 𝑟 𝑎 𝑏 formulae-sequence 𝑎 𝑟 𝑏 𝑎 𝑟 𝑏 and 𝑎 𝑏 𝑟 𝑎 𝑏 𝑟 (ra)b=r(ab),\qquad(ar)b=a(rb),\qquad\text{and}\qquad(ab)r=a(br). ( italic_r italic_a ) italic_b = italic_r ( italic_a italic_b ) , ( italic_a italic_r ) italic_b = italic_a ( italic_r italic_b ) , and ( italic_a italic_b ) italic_r = italic_a ( italic_b italic_r ) .

The middle equation above means that the product of A 𝐴 A italic_A is balanced, and thus is determined as an R 𝑅 R italic_R -bimodule homomorphism A \tensor [ R ] A R A fragments A \tensor fragments subscript [ 𝑅 ] tensor-product subscript 𝐴 𝑅 A A\tensor[_{R}]{\otimes}{{}_{R}}A\to A italic_A [ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ] ⊗ start_FLOATSUBSCRIPT italic_R end_FLOATSUBSCRIPT italic_A → italic_A , a b a b maps-to tensor-product 𝑎 𝑏 𝑎 𝑏 a\otimes b\mapsto ab italic_a ⊗ italic_b ↦ italic_a italic_b .


Definition 2 .

Two functions, f 𝑓 f italic_f and g 𝑔 g italic_g , are weakly equal if

ψ , f - g = 0 , 𝜓 𝑓 𝑔 0 \langle\psi,f-g\rangle=0, ⟨ italic_ψ , italic_f - italic_g ⟩ = 0 , (22)

where , normal-⋅ normal-⋅ \langle\cdot,\cdot\rangle ⟨ ⋅ , ⋅ ⟩ is an inner product and ψ 𝜓 \psi italic_ψ is a test function. The weak equality will be denoted as f g normal-≗ 𝑓 𝑔 f\circeq g italic_f ≗ italic_g .


Definition 2.1 .

Let p 𝑝 p italic_p be a singular point of the metric d s 2 𝑑 superscript 𝑠 2 ds^{2} italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT on M 2 superscript 𝑀 2 M^{2} italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT . Then a non-zero tangent vector 𝒗 T p M 2 𝒗 subscript 𝑇 𝑝 superscript 𝑀 2 {\boldsymbol{v}}\in T_{p}M^{2} bold_italic_v ∈ italic_T start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT italic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is called a null vector if

(2.1) d s 2 ( 𝒗 , 𝒗 ) = 0 . 𝑑 superscript 𝑠 2 𝒗 𝒗 0 ds^{2}({\boldsymbol{v}},{\boldsymbol{v}})=0. italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( bold_italic_v , bold_italic_v ) = 0 .

Moreover, a local coordinate neighborhood ( U ; u , v ) 𝑈 𝑢 𝑣 (U;u,v) ( italic_U ; italic_u , italic_v ) is called adjusted at p U 𝑝 𝑈 p\in U italic_p ∈ italic_U if v := / v assign subscript 𝑣 𝑣 \partial_{v}:=\partial/\partial v ∂ start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT := ∂ / ∂ italic_v gives a null vector of d s 2 𝑑 superscript 𝑠 2 ds^{2} italic_d italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT at p 𝑝 p italic_p .


Definition 2.1 .

[ 14 ] An algebra J 𝐽 J italic_J over a field F normal-F \rm{F} roman_F is a Jordan algebra satisfying for any x , y J 𝑥 𝑦 𝐽 x,y\in J italic_x , italic_y ∈ italic_J ,

  1. (1)

    x y = y x 𝑥 𝑦 𝑦 𝑥 x\circ y=y\circ x italic_x ∘ italic_y = italic_y ∘ italic_x ;

  2. (2)

    ( x 2 y ) x = x 2 ( y x ) superscript 𝑥 2 𝑦 𝑥 superscript 𝑥 2 𝑦 𝑥 (x^{2}\circ y)\circ x=x^{2}\circ(y\circ x) ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∘ italic_y ) ∘ italic_x = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∘ ( italic_y ∘ italic_x ) .

Definition 2.2 .

[ 12 ] A Hom-Jordan algebra over a field F normal-F \rm{F} roman_F is a triple ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) consisting of a linear space V 𝑉 V italic_V , a bilinear map μ : V × V V normal-: 𝜇 normal-→ 𝑉 𝑉 𝑉 \mu:V\times V\rightarrow V italic_μ : italic_V × italic_V → italic_V which is commutative and a linear map α : V V normal-: 𝛼 normal-→ 𝑉 𝑉 \alpha:V\rightarrow V italic_α : italic_V → italic_V satisfying for any x , y V 𝑥 𝑦 𝑉 x,y\in V italic_x , italic_y ∈ italic_V ,

μ ( α 2 ( x ) , μ ( y , μ ( x , x ) ) ) = μ ( μ ( α ( x ) , y ) , α ( μ ( x , x ) ) ) , 𝜇 superscript 𝛼 2 𝑥 𝜇 𝑦 𝜇 𝑥 𝑥 𝜇 𝜇 𝛼 𝑥 𝑦 𝛼 𝜇 𝑥 𝑥 \mu(\alpha^{2}(x),\mu(y,\mu(x,x)))=\mu(\mu(\alpha(x),y),\alpha(\mu(x,x))), italic_μ ( italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) , italic_μ ( italic_y , italic_μ ( italic_x , italic_x ) ) ) = italic_μ ( italic_μ ( italic_α ( italic_x ) , italic_y ) , italic_α ( italic_μ ( italic_x , italic_x ) ) ) ,

where α 2 = α α superscript 𝛼 2 𝛼 𝛼 \alpha^{2}=\alpha\circ\alpha italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_α ∘ italic_α .

Definition 2.6 .

[ 6 ] Let ( V , μ , α ) 𝑉 𝜇 𝛼 (V,\mu,\alpha) ( italic_V , italic_μ , italic_α ) and ( V , μ , β ) superscript 𝑉 normal-′ superscript 𝜇 normal-′ 𝛽 (V^{{}^{\prime}},\mu^{{}^{\prime}},\beta) ( italic_V start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_μ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , italic_β ) be two Hom-Jordan algebras. A linear map ϕ : V V normal-: italic-ϕ normal-→ 𝑉 superscript 𝑉 normal-′ \phi:V\rightarrow V^{{}^{\prime}} italic_ϕ : italic_V → italic_V start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT is said to be a homomorphism of Hom-Jordan algebras if

  1. (1)

    ϕ ( μ ( x , y ) ) = μ ( ϕ ( x ) , ϕ ( y ) ) italic-ϕ 𝜇 𝑥 𝑦 superscript 𝜇 italic-ϕ 𝑥 italic-ϕ 𝑦 \phi(\mu(x,y))=\mu^{{}^{\prime}}(\phi(x),\phi(y)) italic_ϕ ( italic_μ ( italic_x , italic_y ) ) = italic_μ start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_ϕ ( italic_x ) , italic_ϕ ( italic_y ) ) ;

  2. (2)

    ϕ α = β ϕ italic-ϕ 𝛼 𝛽 italic-ϕ \phi\circ\alpha=\beta\circ\phi italic_ϕ ∘ italic_α = italic_β ∘ italic_ϕ .

In particular, ϕ italic-ϕ \phi italic_ϕ is an isomorphism if ϕ italic-ϕ \phi italic_ϕ is bijective.

Definition 5.2 .

[ 7 ] A Jordan module is a system consisting of a vector space V 𝑉 V italic_V , a Jordan algebra J 𝐽 J italic_J , and two compositions x a normal-⋅ 𝑥 𝑎 x\cdot a italic_x ⋅ italic_a , a x normal-⋅ 𝑎 𝑥 a\cdot x italic_a ⋅ italic_x for x 𝑥 x italic_x in V 𝑉 V italic_V , a 𝑎 a italic_a in J 𝐽 J italic_J which are bilinear and satisfy

  1. (i)

    a x = x a 𝑎 𝑥 𝑥 𝑎 a\cdot x=x\cdot a italic_a ⋅ italic_x = italic_x ⋅ italic_a ,

  2. (ii)

    ( x a ) ( b c ) + ( x b ) ( c a ) + ( x c ) ( a b ) = ( x ( b c ) ) a + ( x ( c a ) ) b + ( x ( a b ) ) c 𝑥 𝑎 𝑏 𝑐 𝑥 𝑏 𝑐 𝑎 𝑥 𝑐 𝑎 𝑏 𝑥 𝑏 𝑐 𝑎 𝑥 𝑐 𝑎 𝑏 𝑥 𝑎 𝑏 𝑐 (x\cdot a)\cdot(b\circ c)+(x\cdot b)\cdot(c\circ a)+(x\cdot c)\cdot(a\circ b)=% (x\cdot(b\circ c))\cdot a+(x\cdot(c\circ a))\cdot b+(x\cdot(a\circ b))\cdot c ( italic_x ⋅ italic_a ) ⋅ ( italic_b ∘ italic_c ) + ( italic_x ⋅ italic_b ) ⋅ ( italic_c ∘ italic_a ) + ( italic_x ⋅ italic_c ) ⋅ ( italic_a ∘ italic_b ) = ( italic_x ⋅ ( italic_b ∘ italic_c ) ) ⋅ italic_a + ( italic_x ⋅ ( italic_c ∘ italic_a ) ) ⋅ italic_b + ( italic_x ⋅ ( italic_a ∘ italic_b ) ) ⋅ italic_c ,

  3. (iii)

    ( ( ( x a ) b ) c ) + ( ( ( x c ) b ) a ) + x ( a c b ) = ( x a ) ( b c ) + ( x b ) ( c a ) + ( x c ) ( a b ) 𝑥 𝑎 𝑏 𝑐 𝑥 𝑐 𝑏 𝑎 𝑥 𝑎 𝑐 𝑏 𝑥 𝑎 𝑏 𝑐 𝑥 𝑏 𝑐 𝑎 𝑥 𝑐 𝑎 𝑏 (((x\cdot a)\cdot b)\cdot c)+(((x\cdot c)\cdot b)\cdot a)+x\cdot(a\circ c\circ b% )=(x\cdot a)\cdot(b\circ c)+(x\cdot b)\cdot(c\circ a)+(x\cdot c)\cdot(a\circ b) ( ( ( italic_x ⋅ italic_a ) ⋅ italic_b ) ⋅ italic_c ) + ( ( ( italic_x ⋅ italic_c ) ⋅ italic_b ) ⋅ italic_a ) + italic_x ⋅ ( italic_a ∘ italic_c ∘ italic_b ) = ( italic_x ⋅ italic_a ) ⋅ ( italic_b ∘ italic_c ) + ( italic_x ⋅ italic_b ) ⋅ ( italic_c ∘ italic_a ) + ( italic_x ⋅ italic_c ) ⋅ ( italic_a ∘ italic_b ) ,

where x V , a , b , c J formulae-sequence 𝑥 𝑉 𝑎 𝑏 𝑐 𝐽 x\in V,a,b,c\in J italic_x ∈ italic_V , italic_a , italic_b , italic_c ∈ italic_J , and a 1 a 2 a 3 subscript 𝑎 1 subscript 𝑎 2 subscript 𝑎 3 a_{1}\circ a_{2}\circ a_{3} italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∘ italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT stands for ( ( a 1 a 2 ) a 3 ) subscript 𝑎 1 subscript 𝑎 2 subscript 𝑎 3 ((a_{1}\circ a_{2})\circ a_{3}) ( ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∘ italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ∘ italic_a start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ) .


Definition 2.5 .

(see [ 15 ] or [ 23 ] ) A Gel’fand-Dorfman bialgebra V 𝑉 V italic_V is a Lie algebra ( V , [ , ] ) 𝑉 normal-⋅ normal-⋅ (V,[\cdot,\cdot]) ( italic_V , [ ⋅ , ⋅ ] ) with a binary operation \circ such that ( V , ) 𝑉 (V,\circ) ( italic_V , ∘ ) forms a Novikov algebra where the operation \circ satisfies the following conditions

( a b ) c - a ( b c ) = ( b a ) c - b ( a c ) , 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 𝑏 𝑎 𝑐 \displaystyle(a\circ b)\circ c-a\circ(b\circ c)=(b\circ a)\circ c-b\circ(a% \circ c), ( italic_a ∘ italic_b ) ∘ italic_c - italic_a ∘ ( italic_b ∘ italic_c ) = ( italic_b ∘ italic_a ) ∘ italic_c - italic_b ∘ ( italic_a ∘ italic_c ) , (3)
( a b ) c = ( a c ) b , 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 \displaystyle(a\circ b)\circ c=(a\circ c)\circ b, ( italic_a ∘ italic_b ) ∘ italic_c = ( italic_a ∘ italic_c ) ∘ italic_b , (4)

and the following compatibility condition holds:

[ a b , c ] - [ a c , b ] + [ a , b ] c - [ a , c ] b - a [ b , c ] = 0 , 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 𝑎 𝑏 𝑐 𝑎 𝑐 𝑏 𝑎 𝑏 𝑐 0 \displaystyle[a\circ b,c]-[a\circ c,b]+[a,b]\circ c-[a,c]\circ b-a\circ[b,c]=0, [ italic_a ∘ italic_b , italic_c ] - [ italic_a ∘ italic_c , italic_b ] + [ italic_a , italic_b ] ∘ italic_c - [ italic_a , italic_c ] ∘ italic_b - italic_a ∘ [ italic_b , italic_c ] = 0 , (5)

for a 𝑎 a italic_a , b 𝑏 b italic_b , and c V 𝑐 𝑉 c\in V italic_c ∈ italic_V . We usually denote it by ( V , , [ , ] ) 𝑉 normal-⋅ normal-⋅ (V,\circ,[\cdot,\cdot]) ( italic_V , ∘ , [ ⋅ , ⋅ ] ) .


C.3 Definition .

A function σ : H H normal-: 𝜎 normal-→ 𝐻 𝐻 \sigma:H\to H italic_σ : italic_H → italic_H is called parallel at the boundary of K 𝐾 K italic_K (in short parallel ) if for all ( h * , h ) D superscript 𝐷 (h^{*},h)\in D ( italic_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , italic_h ) ∈ italic_D we have

h * , σ ( h ) = 0 . superscript 𝜎 0 \displaystyle\langle h^{*},\sigma(h)\rangle=0. ⟨ italic_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , italic_σ ( italic_h ) ⟩ = 0 .

Definition 1 .

We say that ( 𝐮 , 𝐯 , 𝐏 , 𝐊 ) 𝐮 𝐯 𝐏 𝐊 \bf(u,v,P,K) ( bold_u , bold_v , bold_P , bold_K ) is true , if there exists a commutative group operation x y direct-sum 𝑥 𝑦 x\oplus y italic_x ⊕ italic_y given by a polynomial P ( x , y ) K [ x , y ] 𝑃 𝑥 𝑦 𝐾 𝑥 𝑦 P(x,y)\in K[x,y] italic_P ( italic_x , italic_y ) ∈ italic_K [ italic_x , italic_y ] , such that

1 1 = u and 2 2 = v . formulae-sequence direct-sum 1 1 𝑢 and direct-sum 2 2 𝑣 \displaystyle 1\oplus 1=u\qquad\text{and}\qquad 2\oplus 2=v. 1 ⊕ 1 = italic_u and 2 ⊕ 2 = italic_v . (1)

Definition 17 .

Let ( X , 𝒜 ) 𝑋 𝒜 (X,\mathcal{A}) ( italic_X , caligraphic_A ) be a measurable space and let E 𝐸 E italic_E be set of measurable and one to one maps from X 𝑋 X italic_X to X 𝑋 X italic_X such that for all A 𝒜 𝐴 𝒜 A\in\mathcal{A} italic_A ∈ caligraphic_A and all g E 𝑔 𝐸 g\in E italic_g ∈ italic_E , g A 𝒜 𝑔 𝐴 𝒜 gA\in\mathcal{A} italic_g italic_A ∈ caligraphic_A (the maps g 𝑔 g italic_g are bi-measurable ). A measure μ 𝜇 \mu italic_μ defined on the measurable subsets of a subset B 𝒜 𝐵 𝒜 B\in\mathcal{A} italic_B ∈ caligraphic_A is E 𝐸 E italic_E -invariant on B 𝐵 B italic_B if for all measurable A B 𝐴 𝐵 A\subset B italic_A ⊂ italic_B and all g E 𝑔 𝐸 g\in E italic_g ∈ italic_E ,

g A B μ ( g A ) = μ ( A ) . 𝑔 𝐴 𝐵 𝜇 𝑔 𝐴 𝜇 𝐴 gA\subset B\Rightarrow\mu(gA)=\mu(A). italic_g italic_A ⊂ italic_B ⇒ italic_μ ( italic_g italic_A ) = italic_μ ( italic_A ) .

Definition 7.1 .

A map φ : G × Λ Λ : 𝜑 𝐺 Λ Λ \varphi:G\times\Lambda\to\Lambda italic_φ : italic_G × roman_Λ → roman_Λ is a category cocycle if for all g G 𝑔 𝐺 g\in G italic_g ∈ italic_G , v Λ 0 𝑣 superscript Λ 0 v\in\Lambda^{0} italic_v ∈ roman_Λ start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , and α , β Λ 𝛼 𝛽 Λ \alpha,\beta\in\Lambda italic_α , italic_β ∈ roman_Λ with s ( α ) = r ( β ) 𝑠 𝛼 𝑟 𝛽 s(\alpha)=r(\beta) italic_s ( italic_α ) = italic_r ( italic_β ) we have

  1. (1)

    φ ( g , v ) = g 𝜑 𝑔 𝑣 𝑔 \varphi(g,v)=g italic_φ ( italic_g , italic_v ) = italic_g ,

  2. (2)

    φ ( g , α ) r ( α ) = g r ( α ) 𝜑 𝑔 𝛼 𝑟 𝛼 𝑔 𝑟 𝛼 \varphi(g,\alpha)\cdot r(\alpha)=g\cdot r(\alpha) italic_φ ( italic_g , italic_α ) ⋅ italic_r ( italic_α ) = italic_g ⋅ italic_r ( italic_α ) ,

  3. (3)

    g ( α β ) = ( g α ) ( φ ( g , α ) β ) 𝑔 𝛼 𝛽 𝑔 𝛼 𝜑 𝑔 𝛼 𝛽 g\cdot(\alpha\beta)=(g\cdot\alpha)(\varphi(g,\alpha)\cdot\beta) italic_g ⋅ ( italic_α italic_β ) = ( italic_g ⋅ italic_α ) ( italic_φ ( italic_g , italic_α ) ⋅ italic_β ) ,

  4. (4)

    φ ( g , α β ) = φ ( φ ( g , α ) , β ) 𝜑 𝑔 𝛼 𝛽 𝜑 𝜑 𝑔 𝛼 𝛽 \varphi(g,\alpha\beta)=\varphi(\varphi(g,\alpha),\beta) italic_φ ( italic_g , italic_α italic_β ) = italic_φ ( italic_φ ( italic_g , italic_α ) , italic_β ) .

We call ( Λ , G , φ ) Λ 𝐺 𝜑 (\Lambda,G,\varphi) ( roman_Λ , italic_G , italic_φ ) a category system .