Definition 1.1 .

A multiplier of a semigroup S 𝑆 S italic_S is a pair m 𝑚 m italic_m of maps s m s maps-to 𝑠 𝑚 𝑠 s\mapsto ms italic_s ↦ italic_m italic_s and s s m maps-to 𝑠 𝑠 𝑚 s\mapsto sm italic_s ↦ italic_s italic_m from S 𝑆 S italic_S to itself, such that for all s , t S 𝑠 𝑡 𝑆 s,t\in S italic_s , italic_t ∈ italic_S :

  1. (i)

    m ( s t ) = ( m s ) t 𝑚 𝑠 𝑡 𝑚 𝑠 𝑡 m(st)=(ms)t italic_m ( italic_s italic_t ) = ( italic_m italic_s ) italic_t ;

  2. (ii)

    ( s t ) m = s ( t m ) 𝑠 𝑡 𝑚 𝑠 𝑡 𝑚 (st)m=s(tm) ( italic_s italic_t ) italic_m = italic_s ( italic_t italic_m ) ;

  3. (iii)

    s ( m t ) = ( s m ) t 𝑠 𝑚 𝑡 𝑠 𝑚 𝑡 s(mt)=(sm)t italic_s ( italic_m italic_t ) = ( italic_s italic_m ) italic_t .

The set of multipliers of S 𝑆 S italic_S , denoted by ( S ) 𝑆 \mathcal{M}(S) caligraphic_M ( italic_S ) , forms a monoid under the usual composition of maps.

Definition 1.4 .

[ 4 , p. 3282] Let α : S T : 𝛼 𝑆 𝑇 \alpha:S\to T italic_α : italic_S → italic_T be an isomorphism of semigroups. For any m ( S ) 𝑚 𝑆 m\in\mathcal{M}(S) italic_m ∈ caligraphic_M ( italic_S ) denote by m α superscript 𝑚 𝛼 m^{\alpha} italic_m start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT the multiplier of T 𝑇 T italic_T acting on t T 𝑡 𝑇 t\in T italic_t ∈ italic_T in the following way:

t m α = α ( α ( t ) - 1 m ) , m α t = α ( m α ( t ) - 1 ) . fragments t superscript 𝑚 𝛼 α fragments ( α superscript fragments ( t ) 1 m ) , superscript 𝑚 𝛼 t α fragments ( m α superscript fragments ( t ) 1 ) . \displaystyle tm^{\alpha}=\alpha(\alpha{}^{-1}(t)m),\ m^{\alpha}t=\alpha(m% \alpha{}^{-1}(t)). italic_t italic_m start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT = italic_α ( italic_α start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT ( italic_t ) italic_m ) , italic_m start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT italic_t = italic_α ( italic_m italic_α start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT ( italic_t ) ) . (1)
Definition 1.33 .

A map f : G S : 𝑓 𝐺 𝑆 f:G\to S italic_f : italic_G → italic_S from a group G 𝐺 G italic_G to a semigroup S 𝑆 S italic_S is called a partial homomorphism if it satisfies, for all g , h G 𝑔 𝐺 g,h\in G italic_g , italic_h ∈ italic_G :

  1. (PH1)

    f ( g ) - 1 f ( g ) f ( h ) = f ( g ) - 1 f ( g h ) fragments f fragments ( g superscript ) 1 f fragments ( g ) f fragments ( h ) f fragments ( g superscript ) 1 f fragments ( g h ) f(g{}^{-1})f(g)f(h)=f(g{}^{-1})f(gh) italic_f ( italic_g start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT ) italic_f ( italic_g ) italic_f ( italic_h ) = italic_f ( italic_g start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT ) italic_f ( italic_g italic_h ) ;

  2. (PH2)

    f ( g ) f ( h ) f ( h ) - 1 = f ( g h ) f ( h ) - 1 fragments f fragments ( g ) f fragments ( h ) f fragments ( h superscript ) 1 f fragments ( g h ) f fragments ( h superscript ) 1 f(g)f(h)f(h{}^{-1})=f(gh)f(h{}^{-1}) italic_f ( italic_g ) italic_f ( italic_h ) italic_f ( italic_h start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT ) = italic_f ( italic_g italic_h ) italic_f ( italic_h start_FLOATSUPERSCRIPT - 1 end_FLOATSUPERSCRIPT ) ;

  3. (PH3)

    f ( g ) f ( 1 ) = f ( g ) 𝑓 𝑔 𝑓 1 𝑓 𝑔 f(g)f(1)=f(g) italic_f ( italic_g ) italic_f ( 1 ) = italic_f ( italic_g ) .

If S 𝑆 S italic_S is a monoid, then the partial homomorphism is said to be unital if, instead of (PH3) , one has f ( 1 ) = 1 𝑓 1 1 f(1)=1 italic_f ( 1 ) = 1 .


Definition 3.4 .

We say that σ : G × X E : 𝜎 𝐺 𝑋 𝐸 \sigma\,:\,G\times X\to E italic_σ : italic_G × italic_X → italic_E is a cocycle if for every g , g G 𝑔 superscript 𝑔 𝐺 g,g^{\prime}\in G italic_g , italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_G and every u X 𝑢 𝑋 u\in X italic_u ∈ italic_X ,

σ ( g g , u ) = σ ( g , g u ) + σ ( g , u ) . 𝜎 𝑔 superscript 𝑔 𝑢 𝜎 𝑔 superscript 𝑔 𝑢 𝜎 superscript 𝑔 𝑢 \sigma(gg^{\prime},u)=\sigma(g,g^{\prime}\cdot u)+\sigma(g^{\prime},u)\,. italic_σ ( italic_g italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_u ) = italic_σ ( italic_g , italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⋅ italic_u ) + italic_σ ( italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_u ) . (3.9)

Definition 1 .

(CARMA(p,q) process)
A CARMA(p,q) process y ( t ) 𝑦 𝑡 y(t) italic_y ( italic_t ) , 0 q < p 0 𝑞 𝑝 0\leq q<p 0 ≤ italic_q < italic_p , is defined as the stationary solution of

y = 𝐜 𝐮 ( t ) , 𝑦 𝐜 𝐮 𝑡 y=\mathbf{c}\;\mathbf{u}(t), italic_y = bold_c bold_u ( italic_t ) , (39)

with the linear differential equation for the state vector 𝐮 ( t ) p 𝐮 𝑡 superscript 𝑝 \mathbf{u}(t)\in\mathds{R}^{p} bold_u ( italic_t ) ∈ blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT

𝐮 ˙ ( t ) = 𝐀 𝐮 ( t ) + 𝐛 ξ ( t ) , ˙ 𝐮 𝑡 𝐀 𝐮 𝑡 𝐛 𝜉 𝑡 \mathbf{\dot{u}}(t)=\mathrm{\mathbf{A}}\;\mathbf{u}(t)+\mathbf{b}\;\xi(t), ˙ start_ARG bold_u end_ARG ( italic_t ) = bold_A bold_u ( italic_t ) + bold_b italic_ξ ( italic_t ) , (40)

where ξ ( t ) 𝜉 𝑡 \xi(t) italic_ξ ( italic_t ) is white noise with E { ξ ( t ) } = 0 𝐸 𝜉 𝑡 0 E\{\xi(t)\}=0 italic_E { italic_ξ ( italic_t ) } = 0 and E { ξ ( t ) ξ ( t + τ ) } = σ 2 δ ( τ ) 𝐸 𝜉 𝑡 𝜉 𝑡 𝜏 superscript 𝜎 2 𝛿 𝜏 E\{\xi(t)\xi(t+\tau)\}=\sigma^{2}\delta(\tau) italic_E { italic_ξ ( italic_t ) italic_ξ ( italic_t + italic_τ ) } = italic_σ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_δ ( italic_τ ) , σ 𝜎 \;\sigma\in\mathds{R} italic_σ ∈ blackboard_R , δ ( ) 𝛿 \delta(\cdot) italic_δ ( ⋅ ) is the Dirac function,

𝐀 = ( - a 1 1 0 0 - a 2 0 1 0 - a p - 1 0 0 1 - a p 0 0 ) , 𝐛 = ( b p - 1 b p - 2 b 1 b 0 ) , 𝐜 = ( 1 0 0 ) , formulae-sequence 𝐀 matrix subscript 𝑎 1 1 0 0 subscript 𝑎 2 0 1 0 subscript 𝑎 𝑝 1 0 0 1 subscript 𝑎 𝑝 0 0 formulae-sequence 𝐛 subscript 𝑏 𝑝 1 subscript 𝑏 𝑝 2 subscript 𝑏 1 subscript 𝑏 0 𝐜 1 0 0 \displaystyle\mathrm{\mathbf{A}}=\left(\begin{matrix}-a_{1}&1&0&\cdots&0\\ -a_{2}&0&1&\ddots&\vdots\\ \vdots&\vdots&\ddots&\ddots&0\\ -a_{p-1}&0&\cdots&0&1\\ -a_{p}&0&\cdots&\cdots&0\end{matrix}\right),\;\;\;\mathbf{b}=\left(\begin{% array}[]{c}b_{p-1}\\ b_{p-2}\\ \vdots\\ b_{1}\\ b_{0}\\ \end{array}\right),\;\;\;\mathbf{c}=\left(\begin{array}[]{c}1\\ 0\\ \vdots\\ 0\\ \end{array}\right), bold_A = ( start_ARG start_ROW start_CELL - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL start_CELL 1 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋱ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL - italic_a start_POSTSUBSCRIPT italic_p - 1 end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW start_ROW start_CELL - italic_a start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW end_ARG ) , bold_b = ( start_ARRAY start_ROW start_CELL italic_b start_POSTSUBSCRIPT italic_p - 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT italic_p - 2 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL italic_b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_CELL end_ROW end_ARRAY ) , bold_c = ( start_ARRAY start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARRAY ) , (41)

and b j = 0 subscript 𝑏 𝑗 0 b_{j}=0 italic_b start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = 0 if j > q 𝑗 𝑞 j>q italic_j > italic_q .


Definition 15 .

Let \mathcal{R} caligraphic_R be a surrounding differential relation with respect to ( d π , u ) 𝑑 𝜋 𝑢 (d\pi,u) ( italic_d italic_π , italic_u ) and let c : A × / p : 𝑐 𝐴 superscript 𝑝 c:A\times\mathbb{R}/\mathbb{Z}\rightarrow\mathbb{R}^{p} italic_c : italic_A × blackboard_R / blackboard_Z → blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT be a loop pattern for some k 2 𝑘 2 k\geq 2 italic_k ≥ 2 . A surrounding loop family γ γ : IntConv ( , d π , u ) C k - 2 ( / , T W ) : γ γ IntConv 𝑑 𝜋 𝑢 superscript 𝐶 𝑘 2 𝑇 𝑊 \textstyle{\textup{\raisebox{1.7pt}{$\gamma$\raisebox{-6.5pt}{{\color[rgb]{% 1,1,1}$\blacksquare$}}} $\gamma$}}:\mathrm{IntConv}(\mathcal{R},d\pi,u)% \rightarrow C^{k-2}(\mathbb{R}/\mathbb{Z},TW) γ■ italic_γ : roman_IntConv ( caligraphic_R , italic_d italic_π , italic_u ) → italic_C start_POSTSUPERSCRIPT italic_k - 2 end_POSTSUPERSCRIPT ( blackboard_R / blackboard_Z , italic_T italic_W ) is said to be c 𝑐 c italic_c -shaped if there exist a section \mathcal{e} caligraphic_e of q * E IntConv ( , d π , u ) superscript 𝑞 𝐸 IntConv 𝑑 𝜋 𝑢 q^{*}E\rightarrow\mathrm{IntConv}(\mathcal{R},d\pi,u) italic_q start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_E → roman_IntConv ( caligraphic_R , italic_d italic_π , italic_u ) and a map 𝐚 : IntConv ( , d π , u ) A : 𝐚 IntConv 𝑑 𝜋 𝑢 𝐴 {\bf a}:\mathrm{IntConv}(\mathcal{R},d\pi,u)\rightarrow A bold_a : roman_IntConv ( caligraphic_R , italic_d italic_π , italic_u ) → italic_A such that

γ γ ( σ , w ) ( t ) = ( σ , w ) c ( 𝐚 ( σ , w ) , t ) γ γ 𝜎 𝑤 𝑡 𝜎 𝑤 𝑐 𝐚 𝜎 𝑤 𝑡 \displaystyle\textstyle{\textup{\raisebox{1.7pt}{$\gamma$\raisebox{-6.5pt}{{% \color[rgb]{1,1,1}$\blacksquare$}}} $\gamma$}}(\sigma,w)(t)=\displaystyle% \mathcal{e}(\sigma,w)\circ c({\bf a}(\sigma,w),t) γ■ italic_γ ( italic_σ , italic_w ) ( italic_t ) = caligraphic_e ( italic_σ , italic_w ) ∘ italic_c ( bold_a ( italic_σ , italic_w ) , italic_t )

for all ( ( σ , w ) , t ) IntConv ( , d π , u ) × / . 𝜎 𝑤 𝑡 IntConv 𝑑 𝜋 𝑢 ((\sigma,w),t)\in\mathrm{IntConv}(\mathcal{R},d\pi,u)\times\mathbb{R}/\mathbb{% Z}. ( ( italic_σ , italic_w ) , italic_t ) ∈ roman_IntConv ( caligraphic_R , italic_d italic_π , italic_u ) × blackboard_R / blackboard_Z .

Notation.– If ( c 1 , , c p ) subscript 𝑐 1 subscript 𝑐 𝑝 (c_{1},\ldots,c_{p}) ( italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ) denote the components of c 𝑐 c italic_c in the standard basis of p superscript 𝑝 \mathbb{R}^{p} blackboard_R start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT and if 𝐞 1 , , 𝐞 p subscript 𝐞 1 subscript 𝐞 𝑝 {\bf e}_{1},\ldots,{\bf e}_{p} bold_e start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , bold_e start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT denote the image of this basis by \mathcal{e} caligraphic_e , we write

γ γ ( σ , w ) ( t ) = c ( 𝐚 ( σ , w ) , t ) 𝐞 ( σ , w ) = i = 1 p c i ( 𝐚 ( σ , w ) , t ) 𝐞 i ( σ , w ) . γ γ 𝜎 𝑤 𝑡 𝑐 𝐚 𝜎 𝑤 𝑡 𝐞 𝜎 𝑤 superscript subscript 𝑖 1 𝑝 subscript 𝑐 𝑖 𝐚 𝜎 𝑤 𝑡 subscript 𝐞 𝑖 𝜎 𝑤 \displaystyle\textstyle{\textup{\raisebox{1.7pt}{$\gamma$\raisebox{-6.5pt}{{% \color[rgb]{1,1,1}$\blacksquare$}}} $\gamma$}}(\sigma,w)(t)=c({\bf a}(\sigma,% w),t)\cdot{\bf e}(\sigma,w)=\displaystyle\sum_{i=1}^{p}c_{i}({\bf a}(\sigma,w)% ,t)\,{\bf e}_{i}(\sigma,w). γ■ italic_γ ( italic_σ , italic_w ) ( italic_t ) = italic_c ( bold_a ( italic_σ , italic_w ) , italic_t ) ⋅ bold_e ( italic_σ , italic_w ) = ∑ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( bold_a ( italic_σ , italic_w ) , italic_t ) bold_e start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_σ , italic_w ) .

Definition 4.5 .

(see [ G1 ] ) Let k 𝑘 k italic_k be a field. A Gerstenhaber algebra ( V , , [ . , . ] ) fragments normal-( V normal-, normal-, fragments normal-[ normal-. normal-, normal-. normal-] normal-) (V,\cup,[.,.]) ( italic_V , ∪ , [ . , . ] ) over k 𝑘 k italic_k consists of the following data:

(A) A graded vector space V = i 0 V i 𝑉 𝑖 0 direct-sum superscript 𝑉 𝑖 V=\underset{i\geq 0}{\bigoplus}V^{i} italic_V = start_UNDERACCENT italic_i ≥ 0 end_UNDERACCENT start_ARG ⊕ end_ARG italic_V start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT .

(B) A cup product : V m V n V m + n fragments normal-: superscript 𝑉 𝑚 tensor-product superscript 𝑉 𝑛 normal-⟶ superscript 𝑉 𝑚 𝑛 \cup:V^{m}\otimes V^{n}\longrightarrow V^{m+n} ∪ : italic_V start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊗ italic_V start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ⟶ italic_V start_POSTSUPERSCRIPT italic_m + italic_n end_POSTSUPERSCRIPT , for-all \forall m 𝑚 m italic_m , n 0 𝑛 0 n\geq 0 italic_n ≥ 0 so that ( V , ) 𝑉 (V,\cup) ( italic_V , ∪ ) carries the structure of a graded commutative algebra.

(C) A degree - 1 1 -1 - 1 Lie bracket [ . , . ] : V m V n V m + n - 1 fragments fragments normal-[ normal-. normal-, normal-. normal-] normal-: superscript 𝑉 𝑚 tensor-product superscript 𝑉 𝑛 normal-⟶ superscript 𝑉 𝑚 𝑛 1 [.,.]:V^{m}\otimes V^{n}\longrightarrow V^{m+n-1} [ . , . ] : italic_V start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT ⊗ italic_V start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ⟶ italic_V start_POSTSUPERSCRIPT italic_m + italic_n - 1 end_POSTSUPERSCRIPT , for-all \forall m 𝑚 m italic_m , n 0 𝑛 0 n\geq 0 italic_n ≥ 0 so that ( V , [ . , . ] ) fragments normal-( V normal-, fragments normal-[ normal-. normal-, normal-. normal-] normal-) (V,[.,.]) ( italic_V , [ . , . ] ) carries the structure of a graded Lie algebra.

(D) The bracket is a graded derivation for the cup product, i.e.,

[ f , g h ] = [ f , g ] h + ( - 1 ) m ( n + 1 ) g [ f , h ] 𝑓 𝑔 𝑓 𝑔 superscript 1 𝑚 𝑛 1 𝑔 𝑓 [f,g\cup h]=[f,g]\cup h+(-1)^{m(n+1)}g\cup[f,h] [ italic_f , italic_g ∪ italic_h ] = [ italic_f , italic_g ] ∪ italic_h + ( - 1 ) start_POSTSUPERSCRIPT italic_m ( italic_n + 1 ) end_POSTSUPERSCRIPT italic_g ∪ [ italic_f , italic_h ]

for f V m 𝑓 superscript 𝑉 𝑚 f\in V^{m} italic_f ∈ italic_V start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT , g V n 𝑔 superscript 𝑉 𝑛 g\in V^{n} italic_g ∈ italic_V start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and h V p superscript 𝑉 𝑝 h\in V^{p} italic_h ∈ italic_V start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT .


Definition 2.1 .

Let P 1 subscript 𝑃 1 P_{1} italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and P 2 subscript 𝑃 2 P_{2} italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two planes in 3 superscript 3 \mathbb{R}^{3} blackboard_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT that intersect with each other. Let ϕ ( 0 , π ) italic-ϕ 0 𝜋 \phi\in(0,\pi) italic_ϕ ∈ ( 0 , italic_π ) be one of the associated intersecting dihedral angle of P 1 subscript 𝑃 1 P_{1} italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and P 2 subscript 𝑃 2 P_{2} italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT . Set

ϕ = α π , α ( 0 , 1 ) . formulae-sequence italic-ϕ 𝛼 𝜋 𝛼 0 1 \phi=\alpha\cdot\pi,\ \ \alpha\in(0,1). italic_ϕ = italic_α ⋅ italic_π , italic_α ∈ ( 0 , 1 ) .

Then, ϕ italic-ϕ \phi italic_ϕ is said to be an irrational dihedral angle if α 𝛼 \alpha italic_α is an irrational number; and it is said to be a rational dihedral angle of degree q 𝑞 q italic_q if α = p / q 𝛼 𝑝 𝑞 \alpha=p/q italic_α = italic_p / italic_q with p , q 𝑝 𝑞 p,q\in\mathbb{N} italic_p , italic_q ∈ blackboard_N and irreducible.


Definition 4 (Semi-invariant polynomials)

A polynomial f R 𝑓 𝑅 f\in R italic_f ∈ italic_R is called semi-invariant with respect to G 𝐺 G italic_G , if there exists a linear character η 𝜂 \eta italic_η of G 𝐺 G italic_G such that

g f = η ( g ) f 𝑔 𝑓 𝜂 𝑔 𝑓 g\cdot f=\eta(g)\cdot f italic_g ⋅ italic_f = italic_η ( italic_g ) ⋅ italic_f

for all g G 𝑔 𝐺 g\in G italic_g ∈ italic_G .


Definition 2.1 .

Let T 𝑇 T italic_T be a real vector space endowed with a non-zero alternating form ( , ) : T × T fragments fragments ( , ) : T T R (\,,\,)\colon T\times T\to\mathbb{R} ( , ) : italic_T × italic_T → blackboard_R , and a triple product [ , , ] : T × T × T T fragments fragments [ , , ] : T T T T [\,,\,,\,]\colon T\times T\times T\to T [ , , ] : italic_T × italic_T × italic_T → italic_T . It is said that ( T , [ , , ] , ( , ) ) fragments ( T , fragments [ , , ] , fragments ( , ) ) (T,[\,,\,,\,],(\,,\,)) ( italic_T , [ , , ] , ( , ) ) is a symplectic triple system if satisfies

(1) [ x , y , z ] = [ y , x , z ] , 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 \displaystyle[x,y,z]=[y,x,z], [ italic_x , italic_y , italic_z ] = [ italic_y , italic_x , italic_z ] ,
(2) - [ x , z , y ] = ( x , z ) y - ( x , y ) z + 2 ( y , z ) x , 𝑥 𝑧 𝑦 𝑥 𝑧 𝑦 𝑥 𝑦 𝑧 2 𝑦 𝑧 𝑥 \displaystyle-[x,z,y]=(x,z)y-(x,y)z+2(y,z)x, - [ italic_x , italic_z , italic_y ] = ( italic_x , italic_z ) italic_y - ( italic_x , italic_y ) italic_z + 2 ( italic_y , italic_z ) italic_x ,
(3) ] = [ [ x , y , u ] , v , w ] + [ u , [ x , y , v ] , w ] + [ u , v , [ x , y , w ] ] , fragments ] [ fragments [ x , y , u ] , v , w ] [ u , fragments [ x , y , v ] , w ] [ u , v , fragments [ x , y , w ] ] , \displaystyle]=[[x,y,u],v,w]+[u,[x,y,v],w]+[u,v,[x,y,w]], ] = [ [ italic_x , italic_y , italic_u ] , italic_v , italic_w ] + [ italic_u , [ italic_x , italic_y , italic_v ] , italic_w ] + [ italic_u , italic_v , [ italic_x , italic_y , italic_w ] ] ,
(4) ( [ x , y , u ] , v ) = - ( u , [ x , y , v ] ) , 𝑥 𝑦 𝑢 𝑣 𝑢 𝑥 𝑦 𝑣 \displaystyle([x,y,u],v)=-(u,[x,y,v]), ( [ italic_x , italic_y , italic_u ] , italic_v ) = - ( italic_u , [ italic_x , italic_y , italic_v ] ) ,

for any x , y , z , u , v , w T 𝑥 𝑦 𝑧 𝑢 𝑣 𝑤 𝑇 x,y,z,u,v,w\in T italic_x , italic_y , italic_z , italic_u , italic_v , italic_w ∈ italic_T .


Definition 1.4 .

Given i : 𝖡 𝖢 : 𝑖 𝖡 𝖢 i:\mathsf{B}\to\mathsf{C} italic_i : sansserif_B → sansserif_C complete homomorphism of complete boolean algebras, i 𝑖 i italic_i extends to a map i ^ : V 𝖡 V 𝖢 : ^ 𝑖 superscript 𝑉 𝖡 superscript 𝑉 𝖢 \hat{i}:V^{\mathsf{B}}\to V^{\mathsf{C}} ^ start_ARG italic_i end_ARG : italic_V start_POSTSUPERSCRIPT sansserif_B end_POSTSUPERSCRIPT → italic_V start_POSTSUPERSCRIPT sansserif_C end_POSTSUPERSCRIPT defined by transfinite recursion by

i ^ ( τ ) = { i ^ ( σ ) , i ( b ) : σ , b τ } . ^ 𝑖 𝜏 conditional-set ^ 𝑖 𝜎 𝑖 𝑏 𝜎 𝑏 𝜏 \hat{i}(\tau)=\left\{\langle\hat{i}(\sigma),i(b)\rangle:\,\langle\sigma,b% \rangle\in\tau\right\}. ^ start_ARG italic_i end_ARG ( italic_τ ) = { ⟨ ^ start_ARG italic_i end_ARG ( italic_σ ) , italic_i ( italic_b ) ⟩ : ⟨ italic_σ , italic_b ⟩ ∈ italic_τ } .

Given τ 1 , , τ n V 𝖡 subscript 𝜏 1 subscript 𝜏 𝑛 superscript 𝑉 𝖡 \tau_{1},\dots,\tau_{n}\in V^{\mathsf{B}} italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_τ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_V start_POSTSUPERSCRIPT sansserif_B end_POSTSUPERSCRIPT , ϕ ( τ 1 , , τ n ) italic-ϕ subscript 𝜏 1 subscript 𝜏 𝑛 \phi(\tau_{1},\dots,\tau_{n}) italic_ϕ ( italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_τ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) is generically absolute for i 𝑖 i italic_i if

i ( ϕ ( τ 1 , , τ n 𝖡 ) = ϕ ( i ^ ( τ 1 ) , , i ^ ( τ n ) 𝖢 . fragments i fragments ( fragments ϕ subscript fragments ( subscript 𝜏 1 , , subscript 𝜏 𝑛 𝖡 ) fragments ϕ subscript fragments ( ^ 𝑖 fragments ( subscript 𝜏 1 ) , , ^ 𝑖 fragments ( subscript 𝜏 𝑛 ) 𝖢 . i(\left\llbracket\phi(\tau_{1},\dots,\tau_{n}\right\rrbracket_{\mathsf{B}})=% \left\llbracket\phi(\hat{i}(\tau_{1}),\dots,\hat{i}(\tau_{n})\right\rrbracket_% {\mathsf{C}}. italic_i ( ⟦ italic_ϕ ( italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_τ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ⟧ start_POSTSUBSCRIPT sansserif_B end_POSTSUBSCRIPT ) = ⟦ italic_ϕ ( ^ start_ARG italic_i end_ARG ( italic_τ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , … , ^ start_ARG italic_i end_ARG ( italic_τ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) ⟧ start_POSTSUBSCRIPT sansserif_C end_POSTSUBSCRIPT .

Definition 10 .

For a central extension \xymatrix 1 \ar [ r ] & A \ar [ r ] & G ~ \ar [ r ] π & G \ar [ r ] & 1 \xymatrix 1 \ar delimited-[] 𝑟 & 𝐴 \ar delimited-[] 𝑟 & ~ 𝐺 \ar superscript delimited-[] 𝑟 𝜋 & 𝐺 \ar delimited-[] 𝑟 & 1 \xymatrix{1\ar[r]&A\ar[r]&\tilde{G}\ar[r]^{\pi}&G\ar[r]&1} 1 [ italic_r ] & italic_A [ italic_r ] & ~ start_ARG italic_G end_ARG [ italic_r ] start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT & italic_G [ italic_r ] & 1 , a cochain τ : G ~ A : 𝜏 ~ 𝐺 𝐴 \tau:\tilde{G}\to A italic_τ : ~ start_ARG italic_G end_ARG → italic_A that satisfies the condition

τ ( a g ~ ) = a + τ ( g ~ ) 𝜏 𝑎 ~ 𝑔 𝑎 𝜏 ~ 𝑔 \displaystyle\tau(a\tilde{g})=a+\tau(\tilde{g}) italic_τ ( italic_a ~ start_ARG italic_g end_ARG ) = italic_a + italic_τ ( ~ start_ARG italic_g end_ARG )

for all g ~ G ~ ~ 𝑔 ~ 𝐺 \tilde{g}\in\tilde{G} ~ start_ARG italic_g end_ARG ∈ ~ start_ARG italic_G end_ARG and a A 𝑎 𝐴 a\in A italic_a ∈ italic_A is called a connection cochain .


Definition 4.1 .

We say that a function clone 𝒞 𝒞 \mathcal{C} caligraphic_C has local pseudo-Siggers operations if for every finite A C 𝐴 𝐶 A\subseteq C italic_A ⊆ italic_C there exists a 6 6 6 6 -ary s 𝒞 𝑠 𝒞 s\in\mathcal{C} italic_s ∈ caligraphic_C and unary α , β 𝒞 𝛼 𝛽 𝒞 \alpha,\beta\in\mathcal{C} italic_α , italic_β ∈ caligraphic_C satisfying

α s ( x , y , x , z , y , z ) = β s ( y , x , z , x , z , y ) 𝛼 𝑠 𝑥 𝑦 𝑥 𝑧 𝑦 𝑧 𝛽 𝑠 𝑦 𝑥 𝑧 𝑥 𝑧 𝑦 \alpha s(x,y,x,z,y,z)=\beta s(y,x,z,x,z,y) italic_α italic_s ( italic_x , italic_y , italic_x , italic_z , italic_y , italic_z ) = italic_β italic_s ( italic_y , italic_x , italic_z , italic_x , italic_z , italic_y )

for all x , y , z A 𝑥 𝑦 𝑧 𝐴 x,y,z\in A italic_x , italic_y , italic_z ∈ italic_A .


Definition 9 .

Let f : n : 𝑓 superscript 𝑛 f:\mathbb{R}^{n}\to\mathbb{R} italic_f : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R , g : n n : 𝑔 superscript 𝑛 superscript 𝑛 g:\mathbb{R}^{n}\to\mathbb{R}^{n} italic_g : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and h : n m : superscript 𝑛 superscript 𝑚 h:\mathbb{R}^{n}\to\mathbb{R}^{m} italic_h : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT be continuously differentiable. We say f 𝑓 f italic_f is a Lyapunov function of,

x ˙ = g ( x ) , ˙ 𝑥 𝑔 𝑥 \dot{x}=g(x), ˙ start_ARG italic_x end_ARG = italic_g ( italic_x ) , (17)

if ( f g ) ( n ) - superscript 𝑓 top 𝑔 superscript 𝑛 subscript (\nabla f^{\top}g)(\mathbb{R}^{n})\subset\mathbb{R}_{-} ( ∇ italic_f start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT italic_g ) ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) ⊂ blackboard_R start_POSTSUBSCRIPT - end_POSTSUBSCRIPT , and h h italic_h is a conserved quantity if ( h g ) ( n ) = { 0 } superscript top 𝑔 superscript 𝑛 0 (\nabla h^{\top}g)(\mathbb{R}^{n})=\{0\} ( ∇ italic_h start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT italic_g ) ( blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) = { 0 } . Further, we define the stationary set 𝒞 = ( f g , h ) - 1 ( { ( 0 , 0 ) } ) 𝒞 superscript superscript 𝑓 top 𝑔 1 0 0 \mathcal{C}=(\nabla f^{\top}g,h)^{-1}(\{(0,0)\}) caligraphic_C = ( ∇ italic_f start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT italic_g , italic_h ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( { ( 0 , 0 ) } ) , namely critical points on the constraint manifold = h - 1 ( { 0 } ) superscript 1 0 \mathcal{M}=h^{-1}(\{0\}) caligraphic_M = italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( { 0 } ) , it is a closed set as continuous preimage of a closed set. We complete the definition of a Lyapunov function by requiring that,

( f g ) - 1 ( { 0 } ) 𝒞 . superscript superscript 𝑓 top 𝑔 1 0 𝒞 (\nabla f^{\top}g)^{-1}(\{0\})\subset\mathcal{C}. ( ∇ italic_f start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT italic_g ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( { 0 } ) ⊂ caligraphic_C .

Definition 11 .

Let Pairs ( k , n ) normal-Pairs 𝑘 𝑛 \mathrm{Pairs}(k,n) roman_Pairs ( italic_k , italic_n ) denote the set of elements β 𝛽 \beta italic_β where each element β 𝛽 \beta italic_β is a multi-set of k 𝑘 k italic_k pairs of integers:

β = { β ( 1 ) , β ( 2 ) , , β ( k ) } 𝛽 𝛽 1 𝛽 2 𝛽 𝑘 \beta=\{\beta(1),\beta(2),...,\beta(k)\} italic_β = { italic_β ( 1 ) , italic_β ( 2 ) , … , italic_β ( italic_k ) } (6)

where

β ( i ) = { β ( i , 1 ) , β ( i , 2 ) } 𝛽 𝑖 𝛽 𝑖 1 𝛽 𝑖 2 \beta(i)=\{\beta(i,1),\beta(i,2)\} italic_β ( italic_i ) = { italic_β ( italic_i , 1 ) , italic_β ( italic_i , 2 ) }

such that β ( i , 1 ) < β ( i , 2 ) 𝛽 𝑖 1 𝛽 𝑖 2 \beta(i,1)<\beta(i,2) italic_β ( italic_i , 1 ) < italic_β ( italic_i , 2 ) and each β ( i , j ) { 1 , 2 , , n } 𝛽 𝑖 𝑗 1 2 normal-… 𝑛 \beta(i,j)\in\{1,2,...,n\} italic_β ( italic_i , italic_j ) ∈ { 1 , 2 , … , italic_n } . Note that β 𝛽 \beta italic_β is a set: even though we have used an ordering of the pairs β ( 1 ) , , β ( k ) 𝛽 1 normal-… 𝛽 𝑘 \beta(1),...,\beta(k) italic_β ( 1 ) , … , italic_β ( italic_k ) in the notation of ( 6 ), another ordering would result in the same element β 𝛽 \beta italic_β .

Let | β | 𝛽 |\beta| | italic_β | denote

| β | = # distinct numbers that appear as β ( i , 1 ) or β ( i , 2 ) . 𝛽 # distinct numbers that appear as β ( i , 1 ) or β ( i , 2 ) |\beta|=\#\text{ distinct numbers that appear as $\beta(i,1)$ or $\beta(i,2)$}. | italic_β | = # distinct numbers that appear as italic_β ( italic_i , 1 ) or italic_β ( italic_i , 2 ) .

For β Pairs ( k , n ) 𝛽 normal-Pairs 𝑘 𝑛 \beta\in\mathrm{Pairs}(k,n) italic_β ∈ roman_Pairs ( italic_k , italic_n ) , define

𝒟 ( β ) = i = 1 k ( z β ( i , 1 ) - z β ( i , 2 ) ) 𝒟 𝛽 superscript subscript product 𝑖 1 𝑘 subscript 𝑧 𝛽 𝑖 1 subscript 𝑧 𝛽 𝑖 2 \mathcal{D}(\beta)=\prod_{i=1}^{k}(z_{\beta(i,1)}-z_{\beta(i,2)}) caligraphic_D ( italic_β ) = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_z start_POSTSUBSCRIPT italic_β ( italic_i , 1 ) end_POSTSUBSCRIPT - italic_z start_POSTSUBSCRIPT italic_β ( italic_i , 2 ) end_POSTSUBSCRIPT )

Definition 2.1 .

The Kauffman skein 𝒟 ( M ) 𝒟 𝑀 \mathcal{D}(M) caligraphic_D ( italic_M ) of a 3-manifold M 𝑀 M italic_M is the vector space spanned by framed unoriented links in M 𝑀 M italic_M , modulo the Kauffman skein relations:

(2.1) - = ( s - s - 1 ) ( - ) , 𝑠 superscript 𝑠 1 \displaystyle\vbox{\hbox{\includegraphics[height=56.905512pt]{poscross.eps}}}% \,\,-\,\,\vbox{\hbox{\includegraphics[height=56.905512pt]{negcross.eps}}}\quad% =\quad(s-s^{-1})\left(\vbox{\hbox{\includegraphics[height=56.905512pt]{% idresolution.eps}}}\right.\,\,-\,\,\left.\vbox{\hbox{\includegraphics[height=5% 6.905512pt]{capcupresolution.eps}}}\right), - = ( italic_s - italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ( - ) ,
(2.2) = v - 1 , = v superscript 𝑣 1 𝑣 \displaystyle\vbox{\hbox{\includegraphics[height=56.905512pt, keepaspectratio]% {invvh.eps}}}\quad=\quad v^{-1}\,\,\vbox{\hbox{\includegraphics[height=56.9055% 12pt, keepaspectratio]{frameresolution.eps}}}\,\,,\qquad\qquad\vbox{\hbox{% \includegraphics[height=56.905512pt, keepaspectratio]{vh.eps}}}\quad=\quad v\,% \,\vbox{\hbox{\includegraphics[height=56.905512pt, keepaspectratio]{% frameresolution.eps}}} = italic_v start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT , = italic_v

Definition 1 .

Suppose Σ normal-Σ \Sigma roman_Σ to be a smooth spacelike hypersurface of a spacetime \mathcal{M} caligraphic_M . A closed orientable two-dimensional surface σ 0 subscript 𝜎 0 \sigma_{0} italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in Σ normal-Σ \Sigma roman_Σ is a dynamically transversely trapping surface (DTTS) if and only if there exists a timelike hypersurface S 𝑆 S italic_S in \mathcal{M} caligraphic_M that intersects Σ normal-Σ \Sigma roman_Σ precisely at σ 0 subscript 𝜎 0 \sigma_{0} italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and satisfies the following three conditions at arbitrary points on σ 0 subscript 𝜎 0 \sigma_{0} italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT :

k ¯ = 0 , ¯ 𝑘 0 \displaystyle\bar{k}=0, ¯ start_ARG italic_k end_ARG = 0 , (the momentarily non-expanding condition); (21)
max ( K ¯ a b k a k b ) = 0 , max subscript ¯ 𝐾 𝑎 𝑏 superscript 𝑘 𝑎 superscript 𝑘 𝑏 0 \displaystyle\mathrm{max}\left(\bar{K}_{ab}k^{a}k^{b}\right)=0, roman_max ( ¯ start_ARG italic_K end_ARG start_POSTSUBSCRIPT italic_a italic_b end_POSTSUBSCRIPT italic_k start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT ) = 0 , (the marginally transversely trapping condition); (22)
£ ¯ n ¯ ( 3 ) k ¯ 0 , superscript subscript ¯ £ ¯ 𝑛 3 ¯ 𝑘 0 \displaystyle{}^{(3)}\bar{\pounds}_{\bar{n}}\bar{k}\leq 0, start_FLOATSUPERSCRIPT ( 3 ) end_FLOATSUPERSCRIPT ¯ start_ARG £ end_ARG start_POSTSUBSCRIPT ¯ start_ARG italic_n end_ARG end_POSTSUBSCRIPT ¯ start_ARG italic_k end_ARG ≤ 0 , (the accelerated contraction condition), (23)

where k a superscript 𝑘 𝑎 k^{a} italic_k start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT is arbitrary future-directed null vectors tangent to S 𝑆 S italic_S and the quantity £ n ¯ k ¯ subscript normal-£ normal-¯ 𝑛 normal-¯ 𝑘 \pounds_{\bar{n}}\bar{k} £ start_POSTSUBSCRIPT ¯ start_ARG italic_n end_ARG end_POSTSUBSCRIPT ¯ start_ARG italic_k end_ARG is evaluated with a time coordinate in S 𝑆 S italic_S whose lapse function is constant on σ 0 subscript 𝜎 0 \sigma_{0} italic_σ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .


Definition 2.2 .

[ 13 , Proposition 6.46] , [ 12 ] The Iwasawa decomposition of the complex vector space 𝔤 𝔤 \mathfrak{g} fraktur_g is

𝔤 = 𝔨 𝔞 𝔫 . 𝔤 direct-sum 𝔨 𝔞 𝔫 \mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}. fraktur_g = fraktur_k ⊕ fraktur_a ⊕ fraktur_n .

The Iwasawa decomposition of G 𝐺 G italic_G [ 13 , Theorem 6.46] is

G = K A N . 𝐺 𝐾 𝐴 𝑁 G=KAN. italic_G = italic_K italic_A italic_N .
Definition 9.1 .

Let G 𝐺 G italic_G be O ( p , q ) 𝑂 𝑝 𝑞 O(p,q) italic_O ( italic_p , italic_q ) p + q = 2 n + 1 𝑝 𝑞 2 𝑛 1 p+q=2n+1 italic_p + italic_q = 2 italic_n + 1 or S p 2 n ( ) 𝑆 subscript 𝑝 2 𝑛 Sp_{2n}(\mathbb{R}) italic_S italic_p start_POSTSUBSCRIPT 2 italic_n end_POSTSUBSCRIPT ( blackboard_R ) , let 𝔤 0 subscript 𝔤 0 \mathfrak{g}_{0} fraktur_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT be its Lie algebra, with complexification 𝔤 = 𝔨 𝔭 𝔤 direct-sum 𝔨 𝔭 \mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p} fraktur_g = fraktur_k ⊕ fraktur_p . Conjugation ¯ : 𝔤 𝔤 normal-: normal-¯ absent normal-→ 𝔤 𝔤 \bar{}:\mathfrak{g}\to\mathfrak{g} ¯ start_ARG end_ARG : fraktur_g → fraktur_g is defined by the real form 𝔤 0 subscript 𝔤 0 \mathfrak{g}_{0} fraktur_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . Define the star operation as the conjugate linear map : * 𝔤 𝔤 fragments superscript normal-: g normal-→ g {}^{*}:\mathfrak{g}\to\mathfrak{g} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT : fraktur_g → fraktur_g such that:

g * = - g ¯ for all g 𝔤 . superscript 𝑔 ¯ 𝑔 for all 𝑔 𝔤 g^{*}=-\bar{g}\text{ for all }g\in\mathfrak{g}. italic_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = - ¯ start_ARG italic_g end_ARG for all italic_g ∈ fraktur_g .

Define the operation : 𝔤 𝔤 fragments superscript normal-: normal-∙ g normal-→ g {}^{\bullet}:\mathfrak{g}\to\mathfrak{g} start_FLOATSUPERSCRIPT ∙ end_FLOATSUPERSCRIPT : fraktur_g → fraktur_g by:

p = p ¯ for all p 𝔭 . superscript 𝑝 ¯ 𝑝 for all 𝑝 𝔭 p^{\bullet}=\bar{p}\text{ for all }p\in\mathfrak{p}. italic_p start_POSTSUPERSCRIPT ∙ end_POSTSUPERSCRIPT = ¯ start_ARG italic_p end_ARG for all italic_p ∈ fraktur_p .
k = - k ¯ for all k 𝔨 . superscript 𝑘 ¯ 𝑘 for all 𝑘 𝔨 k^{\bullet}=-\bar{k}\text{ for all }k\in\mathfrak{k}. italic_k start_POSTSUPERSCRIPT ∙ end_POSTSUPERSCRIPT = - ¯ start_ARG italic_k end_ARG for all italic_k ∈ fraktur_k .

Definition 2.1 .

A λ 𝜆 \lambda italic_λ -lattice is an algebra ( L , , ) 𝐿 (L,\vee,\wedge) ( italic_L , ∨ , ∧ ) of type ( 2 , 2 ) 2 2 (2,2) ( 2 , 2 ) satisfying the following identities:

  1. (i)

    x y y x 𝑥 𝑦 𝑦 𝑥 x\vee y\approx y\vee x italic_x ∨ italic_y ≈ italic_y ∨ italic_x , x y y x 𝑥 𝑦 𝑦 𝑥 x\wedge y\approx y\wedge x italic_x ∧ italic_y ≈ italic_y ∧ italic_x ( commutativity ) ,

  2. (ii)

    x ( ( x y ) z ) ( x y ) z 𝑥 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 x\vee((x\vee y)\vee z)\approx(x\vee y)\vee z italic_x ∨ ( ( italic_x ∨ italic_y ) ∨ italic_z ) ≈ ( italic_x ∨ italic_y ) ∨ italic_z , x ( ( x y ) z ) ( x y ) z 𝑥 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 x\wedge((x\wedge y)\wedge z)\approx(x\wedge y)\wedge z italic_x ∧ ( ( italic_x ∧ italic_y ) ∧ italic_z ) ≈ ( italic_x ∧ italic_y ) ∧ italic_z ( weak associativity ) ,

  3. (iii)

    x ( x y ) x 𝑥 𝑥 𝑦 𝑥 x\vee(x\wedge y)\approx x italic_x ∨ ( italic_x ∧ italic_y ) ≈ italic_x , x ( x y ) x 𝑥 𝑥 𝑦 𝑥 x\wedge(x\vee y)\approx x italic_x ∧ ( italic_x ∨ italic_y ) ≈ italic_x ( absorption )


5.5 Definition .

An element a A 𝑎 𝐴 a\in A italic_a ∈ italic_A is a Nijenhuis element associated to a Rota-Baxter operator R 𝑅 R italic_R of weight 0 0 if a 𝑎 a italic_a satisfies

( a b - b a ) ( a c - c a ) = 0 , 𝑎 𝑏 𝑏 𝑎 𝑎 𝑐 𝑐 𝑎 0 \displaystyle(a\cdot b-b\cdot a)\cdot(a\cdot c-c\cdot a)=0, ( italic_a ⋅ italic_b - italic_b ⋅ italic_a ) ⋅ ( italic_a ⋅ italic_c - italic_c ⋅ italic_a ) = 0 ,
[ a , R ( b ) a - a R ( b ) - R ( a b - b a ) ] C = 0 , for all b A . formulae-sequence subscript 𝑎 𝑅 𝑏 𝑎 𝑎 𝑅 𝑏 𝑅 𝑎 𝑏 𝑏 𝑎 𝐶 0 for all 𝑏 𝐴 \displaystyle[a,R(b)\cdot a-a\cdot R(b)-R(a\cdot b-b\cdot a)]_{C}=0,~{}~{}~{}~% {}\text{ for all }b\in A. [ italic_a , italic_R ( italic_b ) ⋅ italic_a - italic_a ⋅ italic_R ( italic_b ) - italic_R ( italic_a ⋅ italic_b - italic_b ⋅ italic_a ) ] start_POSTSUBSCRIPT italic_C end_POSTSUBSCRIPT = 0 , for all italic_b ∈ italic_A .
5.7 Definition .

Let ( A , ) 𝐴 (A,\cdot) ( italic_A , ⋅ ) be an associative algebra. An element r 2 A 𝑟 superscript 2 𝐴 r\in\wedge^{2}A italic_r ∈ ∧ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_A is called an associative r -matrix if r satisfies [ [ r , r ] ] = 0 delimited-[] 𝑟 𝑟 0 [[r,r]]=0 [ [ italic_r , italic_r ] ] = 0 , where [ [ r , r ] ] A A A delimited-[] 𝑟 𝑟 tensor-product 𝐴 𝐴 𝐴 [[r,r]]\in A\otimes A\otimes A [ [ italic_r , italic_r ] ] ∈ italic_A ⊗ italic_A ⊗ italic_A is given by

[ [ r , r ] ] ( α , β , γ ) = r ( α ) r ( β ) , γ + r ( β ) r ( γ ) , α + r ( γ ) r ( α ) , β , delimited-[] 𝑟 𝑟 𝛼 𝛽 𝛾 superscript 𝑟 𝛼 superscript 𝑟 𝛽 𝛾 superscript 𝑟 𝛽 superscript 𝑟 𝛾 𝛼 superscript 𝑟 𝛾 superscript 𝑟 𝛼 𝛽 \displaystyle[[r,r]](\alpha,\beta,\gamma)=\langle r^{\sharp}(\alpha)\cdot r^{% \sharp}(\beta),\gamma\rangle+\langle r^{\sharp}(\beta)\cdot r^{\sharp}(\gamma)% ,\alpha\rangle+\langle r^{\sharp}(\gamma)\cdot r^{\sharp}(\alpha),\beta\rangle, [ [ italic_r , italic_r ] ] ( italic_α , italic_β , italic_γ ) = ⟨ italic_r start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_α ) ⋅ italic_r start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_β ) , italic_γ ⟩ + ⟨ italic_r start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_β ) ⋅ italic_r start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_γ ) , italic_α ⟩ + ⟨ italic_r start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_γ ) ⋅ italic_r start_POSTSUPERSCRIPT ♯ end_POSTSUPERSCRIPT ( italic_α ) , italic_β ⟩ ,

for α , β , γ A * . 𝛼 𝛽 𝛾 superscript 𝐴 \alpha,\beta,\gamma\in A^{*}. italic_α , italic_β , italic_γ ∈ italic_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT .

5.18 Definition .

Let ( A , , ) 𝐴 (A,\cdot,\triangle) ( italic_A , ⋅ , △ ) and ( A , , ) 𝐴 superscript (A,\cdot,\triangle^{\prime}) ( italic_A , ⋅ , △ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) be two infinitesimal bialgebras. A weak homomorphism between them consists of a pair ( ϕ , ψ ) italic-ϕ 𝜓 (\phi,\psi) ( italic_ϕ , italic_ψ ) of an algebra morphism ϕ : A A : italic-ϕ 𝐴 𝐴 \phi:A\rightarrow A italic_ϕ : italic_A → italic_A and a coalgebra morphism ψ : A A : 𝜓 𝐴 𝐴 \psi:A\rightarrow A italic_ψ : italic_A → italic_A such that

ψ ( ϕ ( a ) b ) = a ψ ( b ) , ψ ( a ϕ ( b ) ) = ψ ( a ) b . formulae-sequence 𝜓 italic-ϕ 𝑎 𝑏 𝑎 𝜓 𝑏 𝜓 𝑎 italic-ϕ 𝑏 𝜓 𝑎 𝑏 \displaystyle\psi(\phi(a)\cdot b)=a\cdot\psi(b),\quad\psi(a\cdot\phi(b))=\psi(% a)\cdot b. italic_ψ ( italic_ϕ ( italic_a ) ⋅ italic_b ) = italic_a ⋅ italic_ψ ( italic_b ) , italic_ψ ( italic_a ⋅ italic_ϕ ( italic_b ) ) = italic_ψ ( italic_a ) ⋅ italic_b .

Definition 7.1 .

We set

n = n ( p ) = { 4 if p = 2 ; p otherwise . 𝑛 𝑛 𝑝 cases 4 if 𝑝 2 𝑝 otherwise n=n(p)=\begin{cases}4&\text{ if }p=2;\\ p&\text{ otherwise}.\end{cases} italic_n = italic_n ( italic_p ) = { start_ROW start_CELL 4 end_CELL start_CELL if italic_p = 2 ; end_CELL end_ROW start_ROW start_CELL italic_p end_CELL start_CELL otherwise . end_CELL end_ROW

We write I = I ( p ) 𝐼 𝐼 𝑝 I=I(p) italic_I = italic_I ( italic_p ) for the monomial ideal on the set of 2 n + 1 2 𝑛 1 2n+1 2 italic_n + 1 variables

X = X ( p ) = { v 0 , , v n , e 1 , 2 , e 2 , 3 , , e n - 1 , n , e n , 1 } 𝑋 𝑋 𝑝 subscript 𝑣 0 subscript 𝑣 𝑛 subscript 𝑒 1 2 subscript 𝑒 2 3 subscript 𝑒 𝑛 1 𝑛 subscript 𝑒 𝑛 1 X=X(p)=\{v_{0},\dots,v_{n},e_{1,2},e_{2,3},\dots,e_{n-1,n},e_{n,1}\} italic_X = italic_X ( italic_p ) = { italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT 2 , 3 end_POSTSUBSCRIPT , … , italic_e start_POSTSUBSCRIPT italic_n - 1 , italic_n end_POSTSUBSCRIPT , italic_e start_POSTSUBSCRIPT italic_n , 1 end_POSTSUBSCRIPT }

generated by the set of monomials { m 0 , m 1 , , m n } , subscript 𝑚 0 subscript 𝑚 1 subscript 𝑚 𝑛 \{m_{0},m_{1},\dots,m_{n}\}, { italic_m start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } , where m = y X y 𝑚 subscript product 𝑦 𝑋 𝑦 m=\prod_{y\in X}y italic_m = ∏ start_POSTSUBSCRIPT italic_y ∈ italic_X end_POSTSUBSCRIPT italic_y and

m 0 = m v 0 , m 1 = v 0 m e n , 1 v 1 e 1 , 2 , m n = v 0 m e n - 1 , n v n e n , 1 , formulae-sequence subscript 𝑚 0 𝑚 subscript 𝑣 0 formulae-sequence subscript 𝑚 1 subscript 𝑣 0 𝑚 subscript 𝑒 𝑛 1 subscript 𝑣 1 subscript 𝑒 1 2 subscript 𝑚 𝑛 subscript 𝑣 0 𝑚 subscript 𝑒 𝑛 1 𝑛 subscript 𝑣 𝑛 subscript 𝑒 𝑛 1 \displaystyle m_{0}=\frac{m}{v_{0}},\qquad m_{1}=\frac{v_{0}m}{e_{n,1}v_{1}e_{% 1,2}},\qquad m_{n}=\frac{v_{0}m}{e_{n-1,n}v_{n}e_{n,1}}, italic_m start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = divide start_ARG italic_m end_ARG start_ARG italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG , italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = divide start_ARG italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_m end_ARG start_ARG italic_e start_POSTSUBSCRIPT italic_n , 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT 1 , 2 end_POSTSUBSCRIPT end_ARG , italic_m start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_m end_ARG start_ARG italic_e start_POSTSUBSCRIPT italic_n - 1 , italic_n end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_n , 1 end_POSTSUBSCRIPT end_ARG ,
and m i = v 0 m e i - 1 , i v i e i , i + 1 for i = 2 , , n - 1 . formulae-sequence and subscript 𝑚 𝑖 subscript 𝑣 0 𝑚 subscript 𝑒 𝑖 1 𝑖 subscript 𝑣 𝑖 subscript 𝑒 𝑖 𝑖 1 for 𝑖 2 𝑛 1 \displaystyle\text{ and }\qquad m_{i}=\frac{v_{0}m}{e_{i-1,i}v_{i}e_{i,i+1}}% \qquad\text{ for }i=2,\dots,n-1. and italic_m start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = divide start_ARG italic_v start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_m end_ARG start_ARG italic_e start_POSTSUBSCRIPT italic_i - 1 , italic_i end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_e start_POSTSUBSCRIPT italic_i , italic_i + 1 end_POSTSUBSCRIPT end_ARG for italic_i = 2 , … , italic_n - 1 .

Also, for convenience of notation, for each e i , j X ( p ) subscript 𝑒 𝑖 𝑗 𝑋 𝑝 e_{i,j}\in X(p) italic_e start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT ∈ italic_X ( italic_p ) we set e j , i = e i , j subscript 𝑒 𝑗 𝑖 subscript 𝑒 𝑖 𝑗 e_{j,i}=e_{i,j} italic_e start_POSTSUBSCRIPT italic_j , italic_i end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_i , italic_j end_POSTSUBSCRIPT .


Definition 2.6 .

Let σ : G × X H : 𝜎 𝐺 𝑋 𝐻 \sigma:G\times X\rightarrow H italic_σ : italic_G × italic_X → italic_H be a measurable cocycle. We say that a measurable map ϕ : B ( G ) × X B ( H ) : italic-ϕ 𝐵 𝐺 𝑋 𝐵 𝐻 \phi:B(G)\times X\rightarrow B(H) italic_ϕ : italic_B ( italic_G ) × italic_X → italic_B ( italic_H ) is σ 𝜎 \sigma italic_σ - equivariant if

ϕ ( g ξ , g x ) = σ ( g , x ) ϕ ( ξ , x ) , italic-ϕ 𝑔 𝜉 𝑔 𝑥 𝜎 𝑔 𝑥 italic-ϕ 𝜉 𝑥 \phi(g\xi,gx)=\sigma(g,x)\phi(\xi,x)\ , italic_ϕ ( italic_g italic_ξ , italic_g italic_x ) = italic_σ ( italic_g , italic_x ) italic_ϕ ( italic_ξ , italic_x ) ,

for every g G 𝑔 𝐺 g\in G italic_g ∈ italic_G and almost every ξ B ( G ) 𝜉 𝐵 𝐺 \xi\in B(G) italic_ξ ∈ italic_B ( italic_G ) and x X 𝑥 𝑋 x\in X italic_x ∈ italic_X .

A boundary map for σ 𝜎 \sigma italic_σ is a σ 𝜎 \sigma italic_σ -equivariant measurable map ϕ italic-ϕ \phi italic_ϕ .


Definition 1.3 .

An algebra 𝒜 𝒜 \mathcal{A} caligraphic_A over a field 𝔽 𝔽 \mathbb{F} blackboard_F is a vector space equipped with a bilinear product; that is, a mapping : 𝒜 × 𝒜 𝒜 fragments tensor-product normal-: A A normal-→ A \otimes:\mathcal{A}\times\mathcal{A}\rightarrow\mathcal{A} ⊗ : caligraphic_A × caligraphic_A → caligraphic_A satisfying the following:

  1. (1)

    ( x + y ) z = x x + y z tensor-product 𝑥 𝑦 𝑧 tensor-product 𝑥 𝑥 tensor-product 𝑦 𝑧 (x+y)\otimes z=x\otimes x+y\otimes z ( italic_x + italic_y ) ⊗ italic_z = italic_x ⊗ italic_x + italic_y ⊗ italic_z ,

  2. (2)

    x ( y + z ) = x y + x z tensor-product 𝑥 𝑦 𝑧 tensor-product 𝑥 𝑦 tensor-product 𝑥 𝑧 x\otimes(y+z)=x\otimes y+x\otimes z italic_x ⊗ ( italic_y + italic_z ) = italic_x ⊗ italic_y + italic_x ⊗ italic_z ,

  3. (3)

    ( α β ) x y = ( α x ) ( β y ) tensor-product 𝛼 𝛽 𝑥 𝑦 tensor-product 𝛼 𝑥 𝛽 𝑦 (\alpha\beta)x\otimes y=(\alpha x)\otimes(\beta y) ( italic_α italic_β ) italic_x ⊗ italic_y = ( italic_α italic_x ) ⊗ ( italic_β italic_y ) ,

for each x , y , z 𝒜 𝑥 𝑦 𝑧 𝒜 x,y,z\in\mathcal{A} italic_x , italic_y , italic_z ∈ caligraphic_A and α , β 𝔽 𝛼 𝛽 𝔽 \alpha,\beta\in\mathbb{F} italic_α , italic_β ∈ blackboard_F . 𝒜 𝒜 \mathcal{A} caligraphic_A is called unital if there exists an identity element e 𝒜 𝑒 𝒜 e\in\mathcal{A} italic_e ∈ caligraphic_A for which e x = x e = x tensor-product 𝑒 𝑥 tensor-product 𝑥 𝑒 𝑥 e\otimes x=x\otimes e=x italic_e ⊗ italic_x = italic_x ⊗ italic_e = italic_x for each x 𝒜 𝑥 𝒜 x\in\mathcal{A} italic_x ∈ caligraphic_A . An element x 𝒜 𝑥 𝒜 x\in\mathcal{A} italic_x ∈ caligraphic_A is called invertible if there exists an element x - 1 superscript 𝑥 1 x^{-1} italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT satisfying x - 1 x = x x - 1 = e tensor-product superscript 𝑥 1 𝑥 tensor-product 𝑥 superscript 𝑥 1 𝑒 x^{-1}\otimes x=x\otimes x^{-1}=e italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ⊗ italic_x = italic_x ⊗ italic_x start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_e . To be concise, the product operation is henceforth denoted by concatenation.

Definition 4.2 .

Let ( G , ) 𝐺 normal-⋅ ({G},\cdot) ( italic_G , ⋅ ) , ( H , × ) 𝐻 ({H},\times) ( italic_H , × ) be two abelian groups. A homomorphism is a map ϕ : G H normal-: italic-ϕ normal-→ 𝐺 𝐻 \phi:{G}\rightarrow{H} italic_ϕ : italic_G → italic_H which preserves the group operations, in the sense that for each a , b G 𝑎 𝑏 𝐺 a,b\in{G} italic_a , italic_b ∈ italic_G

ϕ ( a b ) = ϕ ( a ) × ϕ ( b ) . italic-ϕ 𝑎 𝑏 italic-ϕ 𝑎 italic-ϕ 𝑏 \phi(a\cdot b)=\phi(a)\times\phi(b). italic_ϕ ( italic_a ⋅ italic_b ) = italic_ϕ ( italic_a ) × italic_ϕ ( italic_b ) .

If ϕ italic-ϕ \phi italic_ϕ is a bijection, we say it is an isomorphism and that the groups G , H 𝐺 𝐻 {G},{H} italic_G , italic_H are isomorphic and we write G H 𝐺 𝐻 {G}\cong{H} italic_G ≅ italic_H .


Definition 2.1 .

Let X 𝑋 X italic_X be a Γ Γ \Gamma roman_Γ -space. For γ Γ 𝛾 Γ \gamma\in\Gamma italic_γ ∈ roman_Γ and f C 0 ( X ) 𝑓 subscript 𝐶 0 𝑋 f\in C_{0}(X) italic_f ∈ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X ) , define γ ( f ) C 0 ( X ) 𝛾 𝑓 subscript 𝐶 0 𝑋 \gamma(f)\in C_{0}(X) italic_γ ( italic_f ) ∈ italic_C start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_X ) by

γ ( f ) ( x ) = f ( γ - 1 x ) . 𝛾 𝑓 𝑥 𝑓 superscript 𝛾 1 𝑥 \gamma(f)(x)=f(\gamma^{-1}x). italic_γ ( italic_f ) ( italic_x ) = italic_f ( italic_γ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x ) .

Definition 6 .

The quantum Grassmann superalgebra Ω q ( m | n ) subscript normal-Ω 𝑞 conditional 𝑚 𝑛 \Omega_{q}(m|n) roman_Ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_m | italic_n ) is defined as a superspace over 𝕜 normal-𝕜 \Bbbk roman_𝕜 with the multiplication given by

(3.4) ( x ( α ) x μ ) ( x ( β ) x ν ) = q μ * β x ( α ) x ( β ) x μ x ν , tensor-product superscript 𝑥 𝛼 superscript 𝑥 𝜇 tensor-product superscript 𝑥 𝛽 superscript 𝑥 𝜈 tensor-product superscript 𝑞 𝜇 𝛽 superscript 𝑥 𝛼 superscript 𝑥 𝛽 superscript 𝑥 𝜇 superscript 𝑥 𝜈 (x^{(\alpha)}\otimes x^{\mu})\cdot(x^{(\beta)}\otimes x^{\nu})=q^{\mu*\beta}x^% {(\alpha)}x^{(\beta)}\otimes x^{\mu}x^{\nu}, ( italic_x start_POSTSUPERSCRIPT ( italic_α ) end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) ⋅ ( italic_x start_POSTSUPERSCRIPT ( italic_β ) end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ) = italic_q start_POSTSUPERSCRIPT italic_μ * italic_β end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ( italic_α ) end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ( italic_β ) end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ,

for any x ( α ) , x ( β ) 𝒜 q ( m ) , x μ , x ν Λ q - 1 ( n ) formulae-sequence superscript 𝑥 𝛼 superscript 𝑥 𝛽 subscript 𝒜 𝑞 𝑚 superscript 𝑥 𝜇 superscript 𝑥 𝜈 subscript normal-Λ superscript 𝑞 1 𝑛 x^{(\alpha)},x^{(\beta)}\in\mathcal{A}_{q}(m),\,x^{\mu},x^{\nu}\in\Lambda_{q^{% -1}}(n) italic_x start_POSTSUPERSCRIPT ( italic_α ) end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ( italic_β ) end_POSTSUPERSCRIPT ∈ caligraphic_A start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_m ) , italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ∈ roman_Λ start_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_n ) , which is an associative 𝕜 normal-𝕜 \Bbbk roman_𝕜 -superalgebra.

When 𝐜𝐡𝐚𝐫 ( q ) = 3 𝐜𝐡𝐚𝐫 𝑞 normal-ℓ 3 \text{\bf char}(q)=\ell\geq 3 char ( italic_q ) = roman_ℓ ≥ 3 , Ω q ( m | n , 𝟙 ) := 𝒜 q ( m , 𝟙 ) Λ q - 1 ( n ) assign subscript normal-Ω 𝑞 conditional 𝑚 𝑛 double-struck-𝟙 tensor-product subscript 𝒜 𝑞 𝑚 double-struck-𝟙 subscript normal-Λ superscript 𝑞 1 𝑛 \Omega_{q}(m|n,\mathbb{1}):=\mathcal{A}_{q}(m,\mathbb{1})\otimes\Lambda_{q^{-1% }}(n) roman_Ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_m | italic_n , blackboard_𝟙 ) := caligraphic_A start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_m , blackboard_𝟙 ) ⊗ roman_Λ start_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_n ) is a sub-superalgebra, which is referred to as the quantum restricted Grassmann superalgebra.

Definition 31 .

The quantum dual Grassmann superalgebra Ω q ! ( m | n ) superscript subscript normal-Ω 𝑞 conditional 𝑚 𝑛 \Omega_{q}^{!}(m|n) roman_Ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ! end_POSTSUPERSCRIPT ( italic_m | italic_n ) is defined as a superspace over 𝕜 normal-𝕜 \Bbbk roman_𝕜 with the multiplication given by

(5.4) ( x μ x ( α ) ) ( x ν x ( β ) ) = ( - q ) - α * ν x μ x ν x ( α ) x ( β ) , tensor-product superscript 𝑥 𝜇 superscript 𝑥 𝛼 tensor-product superscript 𝑥 𝜈 superscript 𝑥 𝛽 tensor-product superscript 𝑞 𝛼 𝜈 superscript 𝑥 𝜇 superscript 𝑥 𝜈 superscript 𝑥 𝛼 superscript 𝑥 𝛽 (x^{\mu}\otimes x^{(\alpha)})\cdot(x^{\nu}\otimes x^{(\beta)})=(-q)^{-\alpha*% \nu}x^{\mu}x^{\nu}\otimes x^{(\alpha)}x^{(\beta)}, ( italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT ( italic_α ) end_POSTSUPERSCRIPT ) ⋅ ( italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT ( italic_β ) end_POSTSUPERSCRIPT ) = ( - italic_q ) start_POSTSUPERSCRIPT - italic_α * italic_ν end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ⊗ italic_x start_POSTSUPERSCRIPT ( italic_α ) end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ( italic_β ) end_POSTSUPERSCRIPT ,

for any x μ , x ν Λ q ( m ) , x ( α ) , x ( β ) 𝒜 q - 1 ( n ) formulae-sequence superscript 𝑥 𝜇 superscript 𝑥 𝜈 subscript normal-Λ 𝑞 𝑚 superscript 𝑥 𝛼 superscript 𝑥 𝛽 subscript 𝒜 superscript 𝑞 1 𝑛 x^{\mu},x^{\nu}\in\Lambda_{q}(m),\,x^{(\alpha)},x^{(\beta)}\in\mathcal{A}_{q^{% -1}}(n) italic_x start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT italic_ν end_POSTSUPERSCRIPT ∈ roman_Λ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_m ) , italic_x start_POSTSUPERSCRIPT ( italic_α ) end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT ( italic_β ) end_POSTSUPERSCRIPT ∈ caligraphic_A start_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_n ) , which is an associative 𝕜 normal-𝕜 \Bbbk roman_𝕜 -superalgebra.

When 𝐜𝐡𝐚𝐫 ( q ) = 3 𝐜𝐡𝐚𝐫 𝑞 normal-ℓ 3 \text{\bf char}(q)=\ell\geq 3 char ( italic_q ) = roman_ℓ ≥ 3 , Ω q ! ( m | n , 𝟙 ) := Λ q ( m ) 𝒜 q - 1 ( n , 𝟙 ) assign superscript subscript normal-Ω 𝑞 conditional 𝑚 𝑛 double-struck-𝟙 tensor-product subscript normal-Λ 𝑞 𝑚 subscript 𝒜 superscript 𝑞 1 𝑛 double-struck-𝟙 \Omega_{q}^{!}(m|n,\mathbb{1}):=\Lambda_{q}(m)\otimes\mathcal{A}_{q^{-1}}(n,% \mathbb{1}) roman_Ω start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ! end_POSTSUPERSCRIPT ( italic_m | italic_n , blackboard_𝟙 ) := roman_Λ start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_m ) ⊗ caligraphic_A start_POSTSUBSCRIPT italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ( italic_n , blackboard_𝟙 ) is a sub-superalgebra, which is referred to as the quantum restricted dual Grassmann superalgebra.


Definition 1.1 (Discrete hessian) .

Let f : 𝕃 : 𝑓 𝕃 f:\mathbb{L}\rightarrow\mathbb{R} italic_f : blackboard_L → blackboard_R be a function defined on 𝕃 𝕃 \mathbb{L} blackboard_L . We define the (discrete) hessian 2 ( f ) superscript 2 𝑓 \nabla^{2}(f) ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_f ) to be a function from the set E ( 𝕋 n ) 𝐸 subscript 𝕋 𝑛 E(\mathbb{T}_{n}) italic_E ( blackboard_T start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) of rhombi of the form { a , b , c , d } 𝑎 𝑏 𝑐 𝑑 \{a,b,c,d\} { italic_a , italic_b , italic_c , italic_d } of side 1 1 1 1 (where the order is anticlockwise, and the angle at a 𝑎 a italic_a is π / 3 𝜋 3 \pi/3 italic_π / 3 ) on the discrete torus to the reals, satisfying

2 f ( { a , b , c , d } ) = - f ( a ) + f ( b ) - f ( c ) + f ( d ) . superscript 2 𝑓 𝑎 𝑏 𝑐 𝑑 𝑓 𝑎 𝑓 𝑏 𝑓 𝑐 𝑓 𝑑 \nabla^{2}f(\{a,b,c,d\})=-f(a)+f(b)-f(c)+f(d). ∇ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_f ( { italic_a , italic_b , italic_c , italic_d } ) = - italic_f ( italic_a ) + italic_f ( italic_b ) - italic_f ( italic_c ) + italic_f ( italic_d ) .

Definition 2 .

We say that a binary operation s 𝑠 s italic_s is a partial semilattice if it satisfies the identities

s ( x , s ( x , y ) ) s ( s ( x , y ) , x ) s ( x , y ) , s ( x , x ) x . formulae-sequence 𝑠 𝑥 𝑠 𝑥 𝑦 𝑠 𝑠 𝑥 𝑦 𝑥 𝑠 𝑥 𝑦 𝑠 𝑥 𝑥 𝑥 s(x,s(x,y))\approx s(s(x,y),x)\approx s(x,y),\;\;\;s(x,x)\approx x. italic_s ( italic_x , italic_s ( italic_x , italic_y ) ) ≈ italic_s ( italic_s ( italic_x , italic_y ) , italic_x ) ≈ italic_s ( italic_x , italic_y ) , italic_s ( italic_x , italic_x ) ≈ italic_x .
Definition 14 .

For each k 1 𝑘 1 k\geq 1 italic_k ≥ 1 , let 𝒢 k subscript 𝒢 𝑘 \mathcal{G}_{k} caligraphic_G start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT be the set of pairs f , g 𝑓 𝑔 f,g italic_f , italic_g where g : { 1 , , k } 3 { 1 , , k } : 𝑔 superscript 1 𝑘 3 1 𝑘 g:\{1,...,k\}^{3}\rightarrow\{1,...,k\} italic_g : { 1 , … , italic_k } start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT → { 1 , … , italic_k } is an idempotent weak majority function satisfying

g ( x , x , y ) g ( x , y , x ) g ( y , x , x ) f ( x , y ) , 𝑔 𝑥 𝑥 𝑦 𝑔 𝑥 𝑦 𝑥 𝑔 𝑦 𝑥 𝑥 𝑓 𝑥 𝑦 g(x,x,y)\approx g(x,y,x)\approx g(y,x,x)\approx f(x,y), italic_g ( italic_x , italic_x , italic_y ) ≈ italic_g ( italic_x , italic_y , italic_x ) ≈ italic_g ( italic_y , italic_x , italic_x ) ≈ italic_f ( italic_x , italic_y ) ,
f ( f ( x , y ) , f ( y , x ) ) f ( x , y ) , 𝑓 𝑓 𝑥 𝑦 𝑓 𝑦 𝑥 𝑓 𝑥 𝑦 f(f(x,y),f(y,x))\approx f(x,y), italic_f ( italic_f ( italic_x , italic_y ) , italic_f ( italic_y , italic_x ) ) ≈ italic_f ( italic_x , italic_y ) ,

and

g ( g ( x , y , z ) , g ( y , z , x ) , g ( z , x , y ) ) g ( x , y , z ) . 𝑔 𝑔 𝑥 𝑦 𝑧 𝑔 𝑦 𝑧 𝑥 𝑔 𝑧 𝑥 𝑦 𝑔 𝑥 𝑦 𝑧 g(g(x,y,z),g(y,z,x),g(z,x,y))\approx g(x,y,z). italic_g ( italic_g ( italic_x , italic_y , italic_z ) , italic_g ( italic_y , italic_z , italic_x ) , italic_g ( italic_z , italic_x , italic_y ) ) ≈ italic_g ( italic_x , italic_y , italic_z ) .

Define a quasiorder precedes-or-equals \preceq on 𝒢 k subscript 𝒢 𝑘 \mathcal{G}_{k} caligraphic_G start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT by g g precedes-or-equals superscript 𝑔 𝑔 g^{\prime}\preceq g italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⪯ italic_g if g Clo ( g ) superscript 𝑔 Clo 𝑔 g^{\prime}\in\operatorname{Clo}(g) italic_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_Clo ( italic_g ) . Also, define an action of S 2 × S k subscript 𝑆 2 subscript 𝑆 𝑘 S_{2}\times S_{k} italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT × italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT on 𝒢 k subscript 𝒢 𝑘 \mathcal{G}_{k} caligraphic_G start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT by having the nontrivial element of S 2 subscript 𝑆 2 S_{2} italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT take g 𝒢 𝑔 𝒢 g\in\mathcal{G} italic_g ∈ caligraphic_G to g ~ ~ 𝑔 \tilde{g} ~ start_ARG italic_g end_ARG given by

g ~ ( x , y , z ) = g ( x , z , y ) ~ 𝑔 𝑥 𝑦 𝑧 𝑔 𝑥 𝑧 𝑦 \tilde{g}(x,y,z)=g(x,z,y) ~ start_ARG italic_g end_ARG ( italic_x , italic_y , italic_z ) = italic_g ( italic_x , italic_z , italic_y )

and by having σ S k 𝜎 subscript 𝑆 𝑘 \sigma\in S_{k} italic_σ ∈ italic_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT take g 𝑔 g italic_g to σ g 𝜎 𝑔 \sigma g italic_σ italic_g given by ( σ g ) ( x , y , z ) = σ ( g ( σ - 1 ( x ) , σ - 1 ( y ) , σ - 1 ( z ) ) ) 𝜎 𝑔 𝑥 𝑦 𝑧 𝜎 𝑔 superscript 𝜎 1 𝑥 superscript 𝜎 1 𝑦 superscript 𝜎 1 𝑧 (\sigma g)(x,y,z)=\sigma(g(\sigma^{-1}(x),\sigma^{-1}(y),\sigma^{-1}(z))) ( italic_σ italic_g ) ( italic_x , italic_y , italic_z ) = italic_σ ( italic_g ( italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_x ) , italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_y ) , italic_σ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_z ) ) ) .


Definition 2.8 (Junction of order m 𝑚 m italic_m ) .

Consider an N 𝑁 N italic_N –graph G 𝐺 G italic_G and p V G 𝑝 subscript 𝑉 𝐺 p\in V_{G} italic_p ∈ italic_V start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT . We say that p 𝑝 p italic_p is a junction of order m 𝑚 m italic_m (with m { 1 , , N } 𝑚 1 𝑁 m\in\{1,\ldots,N\} italic_m ∈ { 1 , … , italic_N } ) if

π - 1 ( p ) = m , superscript 𝜋 1 𝑝 𝑚 \sharp\,\pi^{-1}(p)=m\,, ♯ italic_π start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_p ) = italic_m ,

where π 𝜋 \pi italic_π is the projection defined below Definition 2.1 and \sharp denotes the cardinality of a set.


Definition 2.4 .

The (classical) curve algebra 𝒞 ( Σ ) 𝒞 normal-Σ \mathscr{C}(\Sigma) script_C ( roman_Σ ) is the [ v i ± 1 ] delimited-[] superscript subscript 𝑣 𝑖 plus-or-minus 1 \mathbb{C}[v_{i}^{\pm 1}] blackboard_C [ italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT ] -algebra freely generated by by the generalized multicurves in Σ Σ \Sigma roman_Σ modded out by the following relations

1 ) - ( + ) fragments 1 ) italic- ( ) \displaystyle 1)\quad\begin{minipage}{36.135pt}\includegraphics[width=469.755% pt]{rel-skein1.pdf}\end{minipage}-\left(\begin{minipage}{36.135pt}% \includegraphics[width=469.755pt]{rel-skein2.pdf}\end{minipage}+% \begin{minipage}{36.135pt}\includegraphics[width=469.755pt]{rel-skein3.pdf}% \end{minipage}\right) 1 ) - ( + )
2 ) v i - ( + ) fragments 2 ) italic- v 𝑖 ( ) \displaystyle 2)\quad v_{i}\begin{minipage}{36.135pt}\includegraphics[width=46% 9.755pt]{rel-punctureskein1.pdf}\end{minipage}-\left(\begin{minipage}{36.135pt% }\includegraphics[width=469.755pt]{rel-punctureskein2.pdf}\end{minipage}+% \begin{minipage}{36.135pt}\includegraphics[width=469.755pt]{rel-punctureskein3% .pdf}\end{minipage}\right) 2 ) italic_v start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT - ( + )
3 ) + 2 fragments 3 ) italic- 2 \displaystyle 3)\quad\begin{minipage}{36.135pt}\includegraphics[width=469.755% pt]{rel-framing.pdf} \end{minipage}+2 3 ) + 2
4 ) - 2 fragments 4 ) italic- 2 \displaystyle 4)\quad\begin{minipage}{36.135pt}\includegraphics[width=469.755% pt]{rel-puncture.pdf} \end{minipage}-2 4 ) - 2

where the diagrams in the relations are assumed to be identical outside of the small balls depicted. Multiplication of elements in 𝒞 ( Σ ) 𝒞 Σ \mathscr{C}(\Sigma) script_C ( roman_Σ ) is the one induced by taking the union of generalized curves in Σ Σ \Sigma roman_Σ , and the unit is the empty curve \emptyset .


Definition 2.4 .

Let σ : G × X H : 𝜎 𝐺 𝑋 𝐻 \sigma:G\times X\rightarrow H italic_σ : italic_G × italic_X → italic_H be a measurable cocycle. A measurable map ϕ : B ( G ) × X Y : italic-ϕ 𝐵 𝐺 𝑋 𝑌 \phi:B(G)\times X\rightarrow Y italic_ϕ : italic_B ( italic_G ) × italic_X → italic_Y is σ 𝜎 \sigma italic_σ -equivariant if it holds

ϕ ( g ξ , g x ) = σ ( g , x ) ϕ ( ξ , x ) , italic-ϕ 𝑔 𝜉 𝑔 𝑥 𝜎 𝑔 𝑥 italic-ϕ 𝜉 𝑥 \phi(g\xi,gx)=\sigma(g,x)\phi(\xi,x)\ , italic_ϕ ( italic_g italic_ξ , italic_g italic_x ) = italic_σ ( italic_g , italic_x ) italic_ϕ ( italic_ξ , italic_x ) ,

for all g G 𝑔 𝐺 g\in G italic_g ∈ italic_G and almost every ξ B ( G ) 𝜉 𝐵 𝐺 \xi\in B(G) italic_ξ ∈ italic_B ( italic_G ) and x X 𝑥 𝑋 x\in X italic_x ∈ italic_X . A generalized boundary map (or simply boundary map ) is the datum of a measurable map ϕ italic-ϕ \phi italic_ϕ which is σ 𝜎 \sigma italic_σ -equivariant.


Definition 1.20 .

By the quaternion algebra \mathbb{H} blackboard_H we mean the four-dimensional algebra 1 , i , j , k subscript 1 𝑖 𝑗 𝑘 \langle 1,i,j,k\rangle_{\mathbb{R}} ⟨ 1 , italic_i , italic_j , italic_k ⟩ start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT such that

i 2 = j 2 = k 2 = - 1 ; i j = - j i = k ; j k = - k j = i ; k i = - i k = j . formulae-sequence superscript 𝑖 2 superscript 𝑗 2 superscript 𝑘 2 1 𝑖 𝑗 𝑗 𝑖 𝑘 𝑗 𝑘 𝑘 𝑗 𝑖 𝑘 𝑖 𝑖 𝑘 𝑗 i^{2}=j^{2}=k^{2}=-1;\ ij=-ji=k;\ jk=-kj=i;\ ki=-ik=j. italic_i start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_j start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = - 1 ; italic_i italic_j = - italic_j italic_i = italic_k ; italic_j italic_k = - italic_k italic_j = italic_i ; italic_k italic_i = - italic_i italic_k = italic_j .

In this algebra, = 1 1 \mathbb{R}=\mathbb{R}1 blackboard_R = blackboard_R 1 are called scalars , and V = i + j + k 𝑉 𝑖 𝑗 𝑘 V=\mathbb{R}i+\mathbb{R}j+\mathbb{R}k italic_V = blackboard_R italic_i + blackboard_R italic_j + blackboard_R italic_k are called pure quaternions ; { 1 , i , j , k } 1 𝑖 𝑗 𝑘 \{1,i,j,k\} { 1 , italic_i , italic_j , italic_k } are called basic quaternions . We also will use the standard quaternion functions: the norm || a + b i + c j + d k || = a 2 + b 2 + c 2 + d 2 norm 𝑎 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 superscript 𝑎 2 superscript 𝑏 2 superscript 𝑐 2 superscript 𝑑 2 \left|\left|a+bi+cj+dk\right|\right|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}} | | italic_a + italic_b italic_i + italic_c italic_j + italic_d italic_k | | = square-root start_ARG italic_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_d start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG , the real part Re ( a + b i + c j + d k ) = a Re 𝑎 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 𝑎 {\operatorname{Re}\,}(a+bi+cj+dk)=a roman_Re ( italic_a + italic_b italic_i + italic_c italic_j + italic_d italic_k ) = italic_a , and the pure quaternion part Ve ( a + b i + c j + d k ) = b i + c j + d k Ve 𝑎 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 𝑏 𝑖 𝑐 𝑗 𝑑 𝑘 {\operatorname{Ve}\,}(a+bi+cj+dk)=bi+cj+dk roman_Ve ( italic_a + italic_b italic_i + italic_c italic_j + italic_d italic_k ) = italic_b italic_i + italic_c italic_j + italic_d italic_k .


Definition 2.2 .

A proximity space ( X , δ ) 𝑋 𝛿 (X,\delta) ( italic_X , italic_δ ) is called separated if and only if

{ x } δ { y } x = y , iff 𝑥 𝛿 𝑦 𝑥 𝑦 \{x\}\delta\{y\}\iff x=y, { italic_x } italic_δ { italic_y } ⇔ italic_x = italic_y ,

for all x , y X . 𝑥 𝑦 𝑋 x,y\in X. italic_x , italic_y ∈ italic_X .


Definition 12 (Shape preserving flow) .

We term a solution, u ( t ) 𝑢 𝑡 u(t) italic_u ( italic_t ) , of ( Flow ) as a shape preserving flow if it has separated variables, i.e.

u ( t ) = a ( t ) f . 𝑢 𝑡 𝑎 𝑡 𝑓 \begin{split}\displaystyle u(t)=a(t)\cdot f.\end{split} start_ROW start_CELL italic_u ( italic_t ) = italic_a ( italic_t ) ⋅ italic_f . end_CELL end_ROW ( SPF)

Definition 6.1 .

A smooth mapping h h italic_h from X 𝑋 X italic_X to d superscript 𝑑 \mathbb{R}^{d} blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT is called an additive function if the following condition holds:

(6.1) h ( g x ) = h ( x ) + g , 𝑔 𝑥 𝑥 𝑔 h(g\cdot x)=h(x)+g, italic_h ( italic_g ⋅ italic_x ) = italic_h ( italic_x ) + italic_g ,

where ( x , g ) X × d 𝑥 𝑔 𝑋 superscript 𝑑 (x,g)\in X\times\mathbb{Z}^{d} ( italic_x , italic_g ) ∈ italic_X × blackboard_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT .


Definition 9 .

For a pipeline ( v , g , ) 𝑣 𝑔 (v,g,\ell) ( italic_v , italic_g , roman_ℓ ) , the property map defined as

ϕ [ v , g , ] = g v . italic-ϕ 𝑣 𝑔 𝑔 𝑣 \phi[v,g,\ell]=\ell\circ g\circ v. italic_ϕ [ italic_v , italic_g , roman_ℓ ] = roman_ℓ ∘ italic_g ∘ italic_v . (8)

is called the label map generated by the pipeline.


Definition 2.1 (Encoding) .

Let f ( 𝐱 ) 𝑓 𝐱 f(\mathbf{x}) italic_f ( bold_x ) be a boolean function on variables 𝐱 = ( x 1 , , x n ) 𝐱 subscript 𝑥 1 subscript 𝑥 𝑛 \mathbf{x}=(x_{1},\dots,x_{n}) bold_x = ( italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) . Let φ ( 𝐱 , 𝐲 ) 𝜑 𝐱 𝐲 \varphi(\mathbf{x},\mathbf{y}) italic_φ ( bold_x , bold_y ) be a CNF formula on n + m 𝑛 𝑚 n+m italic_n + italic_m variables where 𝐲 = ( y 1 , , y m ) 𝐲 subscript 𝑦 1 subscript 𝑦 𝑚 \mathbf{y}=(y_{1},\dots,y_{m}) bold_y = ( italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ) . We call φ 𝜑 \varphi italic_φ a CNF encoding of f 𝑓 f italic_f if for every 𝐚 { 0 , 1 } 𝐱 𝐚 superscript 0 1 𝐱 \mathbf{a}\in{\{0,1\}}^{\mathbf{x}} bold_a ∈ { 0 , 1 } start_POSTSUPERSCRIPT bold_x end_POSTSUPERSCRIPT we have

f ( 𝐚 ) = ( 𝐛 { 0 , 1 } 𝐲 ) φ ( 𝐚 , 𝐛 ) , fragments f fragments ( a ) fragments ( b superscript fragments { 0 , 1 } 𝐲 ) φ fragments ( a , b ) , f(\mathbf{a})=(\exists\mathbf{b}\in{\{0,1\}}^{\mathbf{y}})\,\varphi(\mathbf{a}% ,\mathbf{b})\text{\,,} italic_f ( bold_a ) = ( ∃ bold_b ∈ { 0 , 1 } start_POSTSUPERSCRIPT bold_y end_POSTSUPERSCRIPT ) italic_φ ( bold_a , bold_b ) , (1)

where we identify 1 1 1 1 and 0 0 with logical values true and false. The variables in 𝐱 𝐱 \mathbf{x} bold_x and 𝐲 𝐲 \mathbf{y} bold_y are called input variables and auxiliary variables , respectively.


Definition 4.1 .

Let G 𝐺 G italic_G be a countable, discrete group and \mathcal{H} caligraphic_H a real Hilbert space. The orthogonal group of , \mathcal{H}, caligraphic_H , denoted 𝒪 ( ) , 𝒪 \mathcal{O}(\mathcal{H}), caligraphic_O ( caligraphic_H ) , is the group of all invertible, real-linear isometries of . \mathcal{H}. caligraphic_H . A homomorphism π : G 𝒪 ( ) : 𝜋 𝐺 𝒪 \pi\colon G\to\mathcal{O}(\mathcal{H}) italic_π : italic_G → caligraphic_O ( caligraphic_H ) will be called an orthogonal representation . We say that π 𝜋 \pi italic_π is mixing if for ξ , η 𝜉 𝜂 \xi,\eta\in\mathcal{H} italic_ξ , italic_η ∈ caligraphic_H the map g π ( g ) ξ , η maps-to 𝑔 𝜋 𝑔 𝜉 𝜂 g\mapsto\langle\pi(g)\xi,\eta\rangle italic_g ↦ ⟨ italic_π ( italic_g ) italic_ξ , italic_η ⟩ is in c 0 ( G , ) . subscript 𝑐 0 𝐺 c_{0}(G,{\mathbb{R}}). italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_G , blackboard_R ) . We say that π 𝜋 \pi italic_π is weak mixing if 0 π ( G ) ¯ W O T . 0 superscript ¯ 𝜋 𝐺 𝑊 𝑂 𝑇 0\in\overline{\pi(G)}^{WOT}. 0 ∈ ¯ start_ARG italic_π ( italic_G ) end_ARG start_POSTSUPERSCRIPT italic_W italic_O italic_T end_POSTSUPERSCRIPT .

A cocycle for π 𝜋 \pi italic_π is a map c : G : 𝑐 𝐺 c\colon G\to\mathcal{H} italic_c : italic_G → caligraphic_H so that

c ( g h ) = π ( g ) c ( h ) + c ( g ) 𝑐 𝑔 𝜋 𝑔 𝑐 𝑐 𝑔 c(gh)=\pi(g)c(h)+c(g) italic_c ( italic_g italic_h ) = italic_π ( italic_g ) italic_c ( italic_h ) + italic_c ( italic_g )

for all g , h G . 𝑔 𝐺 g,h\in G. italic_g , italic_h ∈ italic_G . It is clear that cocycles form a real vector space under the obvious scaling and additive structure. The real vector space of all cocycles is denoted Z 1 ( G , π ) . superscript 𝑍 1 𝐺 𝜋 Z^{1}(G,\pi). italic_Z start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_G , italic_π ) . We say that c 𝑐 c italic_c is inner if there is a vector ξ 𝜉 \xi\in\mathcal{H} italic_ξ ∈ caligraphic_H so that c ( g ) = ( π ( g ) - 1 ) ξ . 𝑐 𝑔 𝜋 𝑔 1 𝜉 c(g)=(\pi(g)-1)\xi. italic_c ( italic_g ) = ( italic_π ( italic_g ) - 1 ) italic_ξ . The space of inner cocycles is denoted by B 1 ( G , π ) . superscript 𝐵 1 𝐺 𝜋 B^{1}(G,\pi). italic_B start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_G , italic_π ) . Finally, we set H 1 ( G , π ) = Z 1 ( G , π ) / B 1 ( G , π ) . superscript 𝐻 1 𝐺 𝜋 superscript 𝑍 1 𝐺 𝜋 superscript 𝐵 1 𝐺 𝜋 H^{1}(G,\pi)=Z^{1}(G,\pi)/B^{1}(G,\pi). italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_G , italic_π ) = italic_Z start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_G , italic_π ) / italic_B start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_G , italic_π ) .


Definition 3.1 .

The braid skein algebra BSk n ( T 2 , * ) subscript BSk 𝑛 superscript 𝑇 2 \mathrm{BSk}_{n}(T^{2},*) roman_BSk start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_T start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , * ) is defined to be 𝐙 [ s ± 1 , c ± 1 ] 𝐙 superscript 𝑠 plus-or-minus 1 superscript 𝑐 plus-or-minus 1 {\bf Z}[s^{\pm 1},c^{\pm 1}] bold_Z [ italic_s start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT , italic_c start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT ] -linear combinations of n 𝑛 n italic_n -braids in the punctured torus, up to equivalence, subject to the local relations

(3.13) - = ( s - s - 1 ) 𝑠 superscript 𝑠 1 \raisebox{-0.5pt}{\includegraphics[scale=.50]{xor}}-\raisebox{-0.5pt}{% \includegraphics[scale=.50]{yor}}=(s-s^{-1})\raisebox{-0.5pt}{\includegraphics% [scale=.50]{ior}} - = ( italic_s - italic_s start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT )

and

(3.14) \labellist \pinlabel * a t 461500 \endlabellist = c 2 \labellist \pinlabel * a t 193470 \endlabellist \labellist \pinlabel 𝑎 𝑡 461500 \endlabellist superscript 𝑐 2 \labellist \pinlabel 𝑎 𝑡 193470 \endlabellist \labellist\small\pinlabel{*}at461500\endlabellist\raisebox{-0.5pt}{% \includegraphics[scale=.5]{basecross}}\quad=\quad c^{2}\ \labellist\small% \pinlabel{*}at193470\endlabellist\raisebox{-0.5pt}{\includegraphics[scale=.5]{% baseidentity}} * italic_a italic_t 461500 = italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT * italic_a italic_t 193470

between braids.


Definition 3.1 .

An algebraic structure O = ( O , + , , α ) 𝑂 𝑂 𝛼 O=(O,+,\cdot,\alpha) italic_O = ( italic_O , + , ⋅ , italic_α ) is called Onoi ring if ( O , + , ) 𝑂 (O,+,\cdot) ( italic_O , + , ⋅ ) is a ring (not necessarily associative) such that a + a = 0 𝑎 𝑎 0 a+a=0 italic_a + italic_a = 0 for every a 𝑎 a italic_a , and α 𝛼 \alpha italic_α is an automorphism of this ring such that

α 2 ( a ) + α ( a ) + a = 0 and α ( a ) b = a α ( b ) formulae-sequence superscript 𝛼 2 𝑎 𝛼 𝑎 𝑎 0 and 𝛼 𝑎 𝑏 𝑎 𝛼 𝑏 \alpha^{2}(a)+\alpha(a)+a=0\quad\text{ and }\quad\alpha(a)\cdot b=a\cdot\alpha% (b) italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a ) + italic_α ( italic_a ) + italic_a = 0 and italic_α ( italic_a ) ⋅ italic_b = italic_a ⋅ italic_α ( italic_b )

for every a , b O 𝑎 𝑏 𝑂 a,b\in O italic_a , italic_b ∈ italic_O . The derived operation

a * b = ( 1 - α ) ( a ) + α ( b ) = α 2 ( a ) + α ( b ) 𝑎 𝑏 1 𝛼 𝑎 𝛼 𝑏 superscript 𝛼 2 𝑎 𝛼 𝑏 a*b=(1-\alpha)(a)+\alpha(b)=\alpha^{2}(a)+\alpha(b) italic_a * italic_b = ( 1 - italic_α ) ( italic_a ) + italic_α ( italic_b ) = italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_a ) + italic_α ( italic_b )

yields an affine latin quandle, to be denoted Aff ( O ) Aff 𝑂 {\mathrm{Aff}(O)} roman_Aff ( italic_O ) .


Definition 4.3 .

A standard triple { e , h , f } 𝑒 𝑓 \left\{e,h,f\right\} { italic_e , italic_h , italic_f } is a basis of a 𝔰 𝔩 2 𝔰 subscript 𝔩 2 \mathfrak{sl}_{2} fraktur_s fraktur_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT -subalgebra of 𝔤 𝔤 \mathfrak{g} fraktur_g satisfying the standard commutation relations:

[ h , e ] = 2 e , [ h , f ] = - 2 f , [ e , f ] = h . formulae-sequence 𝑒 2 𝑒 formulae-sequence 𝑓 2 𝑓 𝑒 𝑓 [h,e]=2e,\;[h,f]=-2f,\;[e,f]=h. [ italic_h , italic_e ] = 2 italic_e , [ italic_h , italic_f ] = - 2 italic_f , [ italic_e , italic_f ] = italic_h .

Definition 1.1 .

A Courant algebroid over M 𝑀 M italic_M consists of a structure ( E , , , [ , ] , ρ ) fragments ( E , fragments , , fragments [ , ] , ρ ) (E,\langle\,,\,\rangle,[\,,\,],\rho) ( italic_E , ⟨ , ⟩ , [ , ] , italic_ρ ) defined over M 𝑀 M italic_M , which is compatible with the following conditions:

  1. (1)

    [ a , [ b , c ] ] = [ [ a , b ] , c ] + [ b , [ a , c ] ] 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 [a,[b,c]]=[[a,b],c]+[b,[a,c]] [ italic_a , [ italic_b , italic_c ] ] = [ [ italic_a , italic_b ] , italic_c ] + [ italic_b , [ italic_a , italic_c ] ] ,

  2. (2)

    ρ ( [ a , b ] ) = [ ρ ( a ) , ρ ( b ) ] , 𝜌 𝑎 𝑏 𝜌 𝑎 𝜌 𝑏 \rho([a,b])=[\rho(a),\rho(b)], italic_ρ ( [ italic_a , italic_b ] ) = [ italic_ρ ( italic_a ) , italic_ρ ( italic_b ) ] ,

  3. (3)

    [ a , h b ] = ρ ( a ) ( h ) b + h [ a , b ] 𝑎 𝑏 𝜌 𝑎 𝑏 𝑎 𝑏 [a,hb]=\rho(a)(h)b+h[a,b] [ italic_a , italic_h italic_b ] = italic_ρ ( italic_a ) ( italic_h ) italic_b + italic_h [ italic_a , italic_b ] ,

  4. (4)

    [ a , b ] + [ b , a ] = d a , b 𝑎 𝑏 𝑏 𝑎 𝑑 𝑎 𝑏 [a,b]+[b,a]=d\langle a,b\rangle [ italic_a , italic_b ] + [ italic_b , italic_a ] = italic_d ⟨ italic_a , italic_b ⟩ ,

  5. (5)

    ρ ( a ) b , c = [ a , b ] , c + b , [ a , c ] 𝜌 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 𝑏 𝑎 𝑐 \rho(a)\langle b,c\rangle=\langle[a,b],c\rangle+\langle b,[a,c]\rangle italic_ρ ( italic_a ) ⟨ italic_b , italic_c ⟩ = ⟨ [ italic_a , italic_b ] , italic_c ⟩ + ⟨ italic_b , [ italic_a , italic_c ] ⟩ .

where a , b , c Γ ( E ) 𝑎 𝑏 𝑐 Γ 𝐸 a,b,c\in\Gamma(E) italic_a , italic_b , italic_c ∈ roman_Γ ( italic_E ) , h C ( M ) superscript 𝐶 𝑀 h\in C^{\infty}(M) italic_h ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) , and d : C ( M ) Γ ( E ) : 𝑑 superscript 𝐶 𝑀 Γ 𝐸 d:C^{\infty}(M)\rightarrow\Gamma(E) italic_d : italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) → roman_Γ ( italic_E ) is the induced differential operator defined by the relation: d h , a = ρ ( a ) h . 𝑑 𝑎 𝜌 𝑎 \langle dh,a\rangle=\rho(a)h. ⟨ italic_d italic_h , italic_a ⟩ = italic_ρ ( italic_a ) italic_h .


Definition 2.12 .

Let X 𝑋 X italic_X be a graph and x , y , z X 𝑥 𝑦 𝑧 𝑋 x,y,z\in X italic_x , italic_y , italic_z ∈ italic_X three vertices. A triple of vertices ( x , y , z ) superscript 𝑥 superscript 𝑦 superscript 𝑧 (x^{\prime},y^{\prime},z^{\prime}) ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is a median triangle if

{ d ( x , y ) = d ( x , x ) + d ( x , y ) + d ( y , y ) d ( x , z ) = d ( x , x ) + d ( x , z ) + d ( z , z ) d ( y , z ) = d ( y , y ) + d ( y , z ) + d ( z , z ) , cases 𝑑 𝑥 𝑦 𝑑 𝑥 superscript 𝑥 𝑑 superscript 𝑥 superscript 𝑦 𝑑 superscript 𝑦 𝑦 𝑑 𝑥 𝑧 𝑑 𝑥 superscript 𝑥 𝑑 superscript 𝑥 superscript 𝑧 𝑑 superscript 𝑧 𝑧 𝑑 𝑦 𝑧 𝑑 𝑦 superscript 𝑦 𝑑 superscript 𝑦 superscript 𝑧 𝑑 superscript 𝑧 𝑧 \left\{\begin{array}[]{l}d(x,y)=d(x,x^{\prime})+d(x^{\prime},y^{\prime})+d(y^{% \prime},y)\\ d(x,z)=d(x,x^{\prime})+d(x^{\prime},z^{\prime})+d(z^{\prime},z)\\ d(y,z)=d(y,y^{\prime})+d(y^{\prime},z^{\prime})+d(z^{\prime},z)\end{array}% \right., { start_ARRAY start_ROW start_CELL italic_d ( italic_x , italic_y ) = italic_d ( italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_d ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y ) end_CELL end_ROW start_ROW start_CELL italic_d ( italic_x , italic_z ) = italic_d ( italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_d ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_d ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z ) end_CELL end_ROW start_ROW start_CELL italic_d ( italic_y , italic_z ) = italic_d ( italic_y , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_d ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + italic_d ( italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z ) end_CELL end_ROW end_ARRAY ,

if d ( x , y ) = d ( y , z ) = d ( y , z ) 𝑑 superscript 𝑥 superscript 𝑦 𝑑 superscript 𝑦 superscript 𝑧 𝑑 superscript 𝑦 superscript 𝑧 d(x^{\prime},y^{\prime})=d(y^{\prime},z^{\prime})=d(y^{\prime},z^{\prime}) italic_d ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_d ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = italic_d ( italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , and if d ( x , y ) 𝑑 superscript 𝑥 superscript 𝑦 d(x^{\prime},y^{\prime}) italic_d ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) is as small as possible.


Definition 3 .

(i) Let G 𝐺 G italic_G be a group acting on the sets X 𝑋 X italic_X and Y 𝑌 Y italic_Y . A function f : X Y normal-: 𝑓 normal-→ 𝑋 𝑌 f\colon X\to Y italic_f : italic_X → italic_Y is called G 𝐺 G italic_G -linear if

f ( g x ) = g f ( x ) 𝑓 𝑔 𝑥 𝑔 𝑓 𝑥 f(gx)=gf(x) italic_f ( italic_g italic_x ) = italic_g italic_f ( italic_x )

holds for all x X , g G formulae-sequence 𝑥 𝑋 𝑔 𝐺 x\in X,g\in G italic_x ∈ italic_X , italic_g ∈ italic_G . In case that G 𝐺 G italic_G acts trivially on Y 𝑌 Y italic_Y , we instead call f 𝑓 f italic_f G 𝐺 G italic_G -invariant .

(ii) If G 𝐺 G italic_G acts on X 𝑋 X italic_X , then for any map f : X Y normal-: 𝑓 normal-→ 𝑋 𝑌 f\colon X\to Y italic_f : italic_X → italic_Y and any g G 𝑔 𝐺 g\in G italic_g ∈ italic_G we define a new map

f g : X : superscript 𝑓 𝑔 𝑋 \displaystyle{}^{g}f\colon X start_FLOATSUPERSCRIPT italic_g end_FLOATSUPERSCRIPT italic_f : italic_X Y absent 𝑌 \displaystyle\to Y → italic_Y
x 𝑥 \displaystyle x italic_x f ( g - 1 x ) . maps-to absent 𝑓 superscript 𝑔 1 𝑥 \displaystyle\mapsto f(g^{-1}x). ↦ italic_f ( italic_g start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_x ) .

We have

( f g ) h = f h g and f e = f . fragments superscript fragments ( superscript 𝑓 𝑔 ) superscript 𝑓 𝑔 and superscript 𝑓 𝑒 f . {}^{h}\mathopen{}\mathclose{{}\left({}^{g}f}\right)={}^{hg}f\ \mbox{ and }\ {}% ^{e}f=f. start_FLOATSUPERSCRIPT italic_h end_FLOATSUPERSCRIPT ( start_FLOATSUPERSCRIPT italic_g end_FLOATSUPERSCRIPT italic_f ) = start_FLOATSUPERSCRIPT italic_h italic_g end_FLOATSUPERSCRIPT italic_f and start_FLOATSUPERSCRIPT italic_e end_FLOATSUPERSCRIPT italic_f = italic_f .

In particular, the mapping f f g maps-to 𝑓 superscript 𝑓 𝑔 f\mapsto{}^{g}f italic_f ↦ start_FLOATSUPERSCRIPT italic_g end_FLOATSUPERSCRIPT italic_f is a bijection on the set of all functions from X 𝑋 X italic_X to Y 𝑌 Y italic_Y . If f 𝑓 f italic_f is only defined on a subset X X superscript 𝑋 normal-′ 𝑋 X^{\prime}\subseteq X italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊆ italic_X , then f g superscript 𝑓 𝑔 {}^{g}f start_FLOATSUPERSCRIPT italic_g end_FLOATSUPERSCRIPT italic_f is defined on

g X = { g x x X } X . 𝑔 superscript 𝑋 conditional-set 𝑔 𝑥 𝑥 superscript 𝑋 𝑋 gX^{\prime}=\{gx\mid x\in X^{\prime}\}\subseteq X. italic_g italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = { italic_g italic_x ∣ italic_x ∈ italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT } ⊆ italic_X .

(iii) An action of G 𝐺 G italic_G on X 𝑋 X italic_X is free , if Stab ( x ) = { e } normal-Stab 𝑥 𝑒 {\rm Stab}(x)=\{e\} roman_Stab ( italic_x ) = { italic_e } for every x X 𝑥 𝑋 x\in X italic_x ∈ italic_X , where

Stab ( x ) := { g G g x = x } . assign Stab 𝑥 conditional-set 𝑔 𝐺 𝑔 𝑥 𝑥 {\rm Stab}(x):=\mathopen{}\mathclose{{}\left\{g\in G\mid gx=x}\right\}. roman_Stab ( italic_x ) := { italic_g ∈ italic_G ∣ italic_g italic_x = italic_x } .

(iv) An action of G 𝐺 G italic_G on [ n ] delimited-[] 𝑛 [n] [ italic_n ] is blending , if whenever { g 0 0 , , g n n } = [ n ] subscript 𝑔 0 0 normal-… subscript 𝑔 𝑛 𝑛 delimited-[] 𝑛 \{g_{0}0,\ldots,g_{n}n\}=[n] { italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT 0 , … , italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_n } = [ italic_n ] for certain g 0 , , g n G subscript 𝑔 0 normal-… subscript 𝑔 𝑛 𝐺 g_{0},\ldots,g_{n}\in G italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , … , italic_g start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ italic_G , then there is some g G 𝑔 𝐺 g\in G italic_g ∈ italic_G with g i = g i i 𝑔 𝑖 subscript 𝑔 𝑖 𝑖 gi=g_{i}i italic_g italic_i = italic_g start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_i for all i = 0 , , n 𝑖 0 normal-… 𝑛 i=0,\ldots,n italic_i = 0 , … , italic_n . normal-△ \triangle


Definition 4.4 .

Consider a Lie 2-algebra 𝔊 : 𝔥 𝔤 𝔤 : 𝔊 right-normal-factor-semidirect-product 𝔥 𝔤 𝔤 \mathfrak{G}:\mathfrak{h}\rtimes\mathfrak{g}\rightrightarrows\mathfrak{g} fraktur_G : fraktur_h ⋊ fraktur_g ⇉ fraktur_g associated to the differential crossed module ϕ : 𝔥 𝔤 : italic-ϕ 𝔥 𝔤 \phi:\mathfrak{h}\rightarrow\mathfrak{g} italic_ϕ : fraktur_h → fraktur_g . The map - ϕ * : 𝔤 * 𝔥 * : superscript italic-ϕ superscript 𝔤 superscript 𝔥 -\phi^{*}:\mathfrak{g}^{*}\rightarrow\mathfrak{h}^{*} - italic_ϕ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT : fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → fraktur_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT produces an action groupoid (given by the induced action by translations) we shall denote 𝔊 * superscript 𝔊 \mathfrak{G}^{*} fraktur_G start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ; the source and target maps of 𝔊 * superscript 𝔊 \mathfrak{G}^{*} fraktur_G start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT have to be reversed in order to have the pairing 𝔊 * × 𝔊 superscript 𝔊 𝔊 \mathfrak{G}^{*}\times\mathfrak{G}\rightarrow\mathbb{R} fraktur_G start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT × fraktur_G → blackboard_R as a groupoid morphism, that is, for all ( α , θ ) ( 𝔥 𝔤 ) * 𝛼 𝜃 superscript right-normal-factor-semidirect-product 𝔥 𝔤 (\alpha,\theta)\in(\mathfrak{h}\rtimes\mathfrak{g})^{*} ( italic_α , italic_θ ) ∈ ( fraktur_h ⋊ fraktur_g ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT :

𝚜 ( α , θ ) = α - ϕ * ( θ ) , 𝚝 ( α , θ ) = α . formulae-sequence 𝚜 𝛼 𝜃 𝛼 superscript italic-ϕ 𝜃 𝚝 𝛼 𝜃 𝛼 \displaystyle\mathtt{s}(\alpha,\theta)=\alpha-\phi^{*}(\theta),\quad\mathtt{t}% (\alpha,\theta)=\alpha. typewriter_s ( italic_α , italic_θ ) = italic_α - italic_ϕ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_θ ) , typewriter_t ( italic_α , italic_θ ) = italic_α .