Definition 2.1 .

[ 12 ] An algebra J 𝐽 J italic_J over a field F normal-F \rm{F} roman_F is a Jordan algebra satisfying for any x , y J 𝑥 𝑦 𝐽 x,y\in J italic_x , italic_y ∈ italic_J ,

  1. (1)

    x y = y x 𝑥 𝑦 𝑦 𝑥 x\circ y=y\circ x italic_x ∘ italic_y = italic_y ∘ italic_x ;

  2. (2)

    ( x 2 y ) x = x 2 ( y x ) superscript 𝑥 2 𝑦 𝑥 superscript 𝑥 2 𝑦 𝑥 (x^{2}\circ y)\circ x=x^{2}\circ(y\circ x) ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∘ italic_y ) ∘ italic_x = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∘ ( italic_y ∘ italic_x ) .

Definition 2.5 .

Suppose that 𝒜 𝒜 \mathcal{A} caligraphic_A is a ternary Jordan algebra over F normal-F \rm{F} roman_F and f : 𝒜 × 𝒜 F normal-: 𝑓 normal-→ 𝒜 𝒜 normal-F f:\mathcal{A}\times\mathcal{A}\rightarrow\rm{F} italic_f : caligraphic_A × caligraphic_A → roman_F is a bilinear form on 𝒜 𝒜 \mathcal{A} caligraphic_A . If for any x , y , z , w 𝒜 𝑥 𝑦 𝑧 𝑤 𝒜 x,y,z,w\in\mathcal{A} italic_x , italic_y , italic_z , italic_w ∈ caligraphic_A , f 𝑓 f italic_f satisifies

f ( [ [ x , y , z ] ] , w ) = f ( x , [ [ w , y , z ] ] ) , 𝑓 delimited-[] 𝑥 𝑦 𝑧 𝑤 𝑓 𝑥 delimited-[] 𝑤 𝑦 𝑧 f(\rm{[\![\it{x},\it{y},\it{z}]\!]},\it{w})=f(\it{x},\rm{[\![\it{w},\it{y},\it% {z}]\!]}), italic_f ( [ [ italic_x , italic_y , italic_z ] ] , italic_w ) = italic_f ( italic_x , [ [ italic_w , italic_y , italic_z ] ] ) ,

then f 𝑓 f italic_f is called invariant.

Definition 2.9 .

Let 𝒜 𝒜 \mathcal{A} caligraphic_A be a ternary Jordan algebra. The centroid of 𝒜 𝒜 \mathcal{A} caligraphic_A is a vector space spanned by all elements f End ( 𝒜 ) 𝑓 normal-End 𝒜 \it{f}\in\rm{End}(\mathcal{A}) italic_f ∈ roman_End ( caligraphic_A ) which satisfies for all x , y , z 𝒜 𝑥 𝑦 𝑧 𝒜 x,y,z\in\mathcal{A} italic_x , italic_y , italic_z ∈ caligraphic_A

[ [ f ( x ) , y , z ] ] = [ [ x , f ( y ) , z ] ] = [ [ x , y , f ( z ) ] ] = f ( [ [ x , y , z ] ] ) , delimited-[] 𝑓 𝑥 𝑦 𝑧 delimited-[] 𝑥 𝑓 𝑦 𝑧 delimited-[] 𝑥 𝑦 𝑓 𝑧 𝑓 delimited-[] 𝑥 𝑦 𝑧 \rm{[\![\it{f}(x),\it{y},\it{z}]\!]}=\rm{[\![\it{x},\it{f}(y),\it{z}]\!]}=\rm{% [\![\it{x},\it{y},\it{f}(z)]\!]}=\it{f}(\rm{[\![\it{x},\it{y},\it{z}]\!]}), [ [ italic_f ( italic_x ) , italic_y , italic_z ] ] = [ [ italic_x , italic_f ( italic_y ) , italic_z ] ] = [ [ italic_x , italic_y , italic_f ( italic_z ) ] ] = italic_f ( [ [ italic_x , italic_y , italic_z ] ] ) ,

denoted by Γ ( 𝒜 ) normal-Γ 𝒜 \Gamma(\mathcal{A}) roman_Γ ( caligraphic_A ) .

Definition 2.10 .

Let 𝒜 𝒜 \mathcal{A} caligraphic_A be a ternary Jordan algebra. The quasicentroid of 𝒜 𝒜 \mathcal{A} caligraphic_A is a vector space spanned by all elements f End ( 𝒜 ) 𝑓 normal-End 𝒜 \it{f}\in\rm{End}(\mathcal{A}) italic_f ∈ roman_End ( caligraphic_A ) which satisfies for all x , y , z 𝒜 𝑥 𝑦 𝑧 𝒜 x,y,z\in\mathcal{A} italic_x , italic_y , italic_z ∈ caligraphic_A

[ [ f ( x ) , y , z ] ] = [ [ x , f ( y ) , z ] ] = [ [ x , y , f ( z ) ] ] , delimited-[] 𝑓 𝑥 𝑦 𝑧 delimited-[] 𝑥 𝑓 𝑦 𝑧 delimited-[] 𝑥 𝑦 𝑓 𝑧 \rm{[\![\it{f}(x),\it{y},\it{z}]\!]}=\rm{[\![\it{x},\it{f}(y),\it{z}]\!]}=\rm{% [\![\it{x},\it{y},\it{f}(z)]\!]}, [ [ italic_f ( italic_x ) , italic_y , italic_z ] ] = [ [ italic_x , italic_f ( italic_y ) , italic_z ] ] = [ [ italic_x , italic_y , italic_f ( italic_z ) ] ] ,

denoted by Q Γ ( 𝒜 ) 𝑄 normal-Γ 𝒜 Q\Gamma(\mathcal{A}) italic_Q roman_Γ ( caligraphic_A ) .


Definition 3 .

[ 1 ] Let ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) be a m 𝑚 m italic_m -dimensional generalized Riemannian manifold, normal-∇ \nabla is an affine connection on M 𝑀 M italic_M , if

g = 0 𝑔 0 \nabla g=0 ∇ italic_g = 0

then normal-∇ \nabla is admissible connection of generalized Riemannian manifold ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) .


Definition 5.6 .

Let ( ξ = ( E , p , N ) , s ) 𝜉 𝐸 𝑝 𝑁 𝑠 (\xi=(E,p,N),s) ( italic_ξ = ( italic_E , italic_p , italic_N ) , italic_s ) be a definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT bilinear spaces over a definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT manifold N 𝑁 N italic_N . Consider a definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT map f : M N : 𝑓 𝑀 𝑁 f:M\rightarrow N italic_f : italic_M → italic_N between definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT manifolds. The definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT bilinear space f * ( ξ , s ) superscript 𝑓 𝜉 𝑠 f^{*}(\xi,s) italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_ξ , italic_s ) induced by f 𝑓 f italic_f is a definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT bilinear space whose vector bundle is f * ξ superscript 𝑓 𝜉 f^{*}\xi italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_ξ and whose definable C r superscript 𝐶 𝑟 C^{r} italic_C start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT bilinear form is f * s superscript 𝑓 𝑠 f^{*}s italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_s defined by

f * s ( ( x , v ) , ( x , w ) ) = s ( v , w ) superscript 𝑓 𝑠 𝑥 𝑣 𝑥 𝑤 𝑠 𝑣 𝑤 f^{*}s((x,v),(x,w))=s(v,w) italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_s ( ( italic_x , italic_v ) , ( italic_x , italic_w ) ) = italic_s ( italic_v , italic_w )

for x M 𝑥 𝑀 x\in M italic_x ∈ italic_M and v , w E 𝑣 𝑤 𝐸 v,w\in E italic_v , italic_w ∈ italic_E with p ( v ) = p ( w ) = f ( x ) 𝑝 𝑣 𝑝 𝑤 𝑓 𝑥 p(v)=p(w)=f(x) italic_p ( italic_v ) = italic_p ( italic_w ) = italic_f ( italic_x ) .


Definition 3.4.2 .

The boundary map : 𝕄 k ( Γ ) 𝔹 k ( Γ ) normal-: normal-→ subscript 𝕄 𝑘 normal-Γ subscript 𝔹 𝑘 normal-Γ \partial:\mathbb{M}_{k}(\Gamma)\rightarrow\mathbb{B}_{k}(\Gamma) ∂ : blackboard_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ ) → blackboard_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ ) is the natural map extending linearly the map

( v { α , β } ) = v α - v β tensor-product 𝑣 𝛼 𝛽 tensor-product 𝑣 𝛼 tensor-product 𝑣 𝛽 \partial(v\otimes\{\alpha,\beta\})=v\otimes\alpha-v\otimes\beta ∂ ( italic_v ⊗ { italic_α , italic_β } ) = italic_v ⊗ italic_α - italic_v ⊗ italic_β

The space 𝕊 k ( Γ ) = ker subscript 𝕊 𝑘 Γ kernel \mathbb{S}_{k}(\Gamma)=\ker\partial blackboard_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ ) = roman_ker ∂ is called the space of cuspidal modular symbols . As in subsection 3.3 , we can define 𝔹 k ( Γ , ε ) subscript 𝔹 𝑘 Γ 𝜀 \mathbb{B}_{k}(\Gamma,\varepsilon) blackboard_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ , italic_ε ) , a boundary map : 𝕄 k ( Γ , ε ) 𝔹 k ( Γ , ε ) : subscript 𝕄 𝑘 Γ 𝜀 subscript 𝔹 𝑘 Γ 𝜀 \partial:\mathbb{M}_{k}(\Gamma,\varepsilon)\rightarrow\mathbb{B}_{k}(\Gamma,\varepsilon) ∂ : blackboard_M start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ , italic_ε ) → blackboard_B start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ , italic_ε ) and its kernel will be denoted by 𝕊 k ( Γ , ε ) subscript 𝕊 𝑘 Γ 𝜀 \mathbb{S}_{k}(\Gamma,\varepsilon) blackboard_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ , italic_ε ) .

In order to have a concrete realization of 𝕊 k ( Γ , ε ) subscript 𝕊 𝑘 Γ 𝜀 \mathbb{S}_{k}(\Gamma,\varepsilon) blackboard_S start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( roman_Γ , italic_ε ) , it remains to efficiently compute the boundary map.


Definition 2.5 .

Let X 𝑋 X italic_X be a finite dimensional free module over a commutative ring with identity and a non-degenerate anti-symmetric bilinear form , fragments , \langle,\rangle ⟨ , ⟩ . Then ( X 𝑋 X italic_X , , fragments , \langle,\rangle ⟨ , ⟩ ) is a quandle with the quandle operation

x y = x + x , y y and x - 1 y = x - x , y y . formulae-sequence contains-as-subgroup 𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 and superscript contains-as-subgroup 1 𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 x\rhd y=x+\langle x,y\rangle y\quad\text{and}\quad x\rhd^{-1}y=x-\langle x,y% \rangle y. italic_x ⊳ italic_y = italic_x + ⟨ italic_x , italic_y ⟩ italic_y and italic_x ⊳ start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_y = italic_x - ⟨ italic_x , italic_y ⟩ italic_y .

This type of quandle is called a s y m p l e c t i c 𝑠 𝑦 𝑚 𝑝 𝑙 𝑒 𝑐 𝑡 𝑖 𝑐 symplectic italic_s italic_y italic_m italic_p italic_l italic_e italic_c italic_t italic_i italic_c q u a n d l e 𝑞 𝑢 𝑎 𝑛 𝑑 𝑙 𝑒 quandle italic_q italic_u italic_a italic_n italic_d italic_l italic_e . See [ 29 ] for more details.


Definition 3.2 .

Let X 𝑋 X italic_X be a complex manifold and let f : X X : 𝑓 𝑋 𝑋 f\colon X\to X italic_f : italic_X → italic_X be a holomorphic self-map. A semi-model for f 𝑓 f italic_f is a triple ( Λ , h , φ ) Λ 𝜑 (\Lambda,h,\varphi) ( roman_Λ , italic_h , italic_φ ) where Λ Λ \Lambda roman_Λ is a complex manifold called the base space , h : X Λ : 𝑋 Λ h\colon X\to\Lambda italic_h : italic_X → roman_Λ is a holomorphic mapping, and φ : Λ Λ : 𝜑 Λ Λ \varphi\colon\Lambda\to\Lambda italic_φ : roman_Λ → roman_Λ is an automorphism such that

h f = φ h , 𝑓 𝜑 h\circ f=\varphi\circ h, italic_h ∘ italic_f = italic_φ ∘ italic_h , (3.2)

and

n 0 φ - n ( h ( X ) ) = Λ . subscript 𝑛 0 superscript 𝜑 𝑛 𝑋 Λ \bigcup_{n\geq 0}\varphi^{-n}(h(X))=\Lambda. ⋃ start_POSTSUBSCRIPT italic_n ≥ 0 end_POSTSUBSCRIPT italic_φ start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT ( italic_h ( italic_X ) ) = roman_Λ . (3.3)

Let ( Z , , τ ) 𝑍 𝜏 (Z,\ell,\tau) ( italic_Z , roman_ℓ , italic_τ ) and ( Λ , h , φ ) Λ 𝜑 (\Lambda,h,\varphi) ( roman_Λ , italic_h , italic_φ ) be two semi-models for the map f 𝑓 f italic_f . A morphism of semi-models η ^ : ( Z , , τ ) ( Λ , h , φ ) : ^ 𝜂 𝑍 𝜏 Λ 𝜑 \hat{\eta}\colon(Z,\ell,\tau)\to(\Lambda,h,\varphi) ^ start_ARG italic_η end_ARG : ( italic_Z , roman_ℓ , italic_τ ) → ( roman_Λ , italic_h , italic_φ ) is given by a holomorphic map η : Z Λ : 𝜂 𝑍 Λ \eta:Z\to\Lambda italic_η : italic_Z → roman_Λ such that the following diagram commutes: \SelectTips xy12

\xymatrix X \ar [ r r r ] h \ar [ r r d ] \ar [ d d ] f & & & Λ \ar [ d d ] φ & & Z \ar [ r u ] η \ar [ d d ] ( .25 ) τ X \ar [ r r ] h [ r r r ] \ar [ r r d ] & & & Λ & & Z \ar [ r u ] η fragments \xymatrix X \ar superscript fragments [ r r r ] \ar superscript fragments [ r r d ] \ar superscript fragments [ d d ] 𝑓 & & & Λ \ar superscript fragments [ d d ] 𝜑 & & Z \ar superscript fragments [ r u ] 𝜂 \ar superscript fragments [ d d ] ( .25 ) τ X \ar [ r r ] [ r r r ] \ar [ r r d ] & & & Λ & & Z \ar [ r u ] 𝜂 \xymatrix{X\ar[rrr]^{h}\ar[rrd]^{\ell}\ar[dd]^{f}&&&\Lambda\ar[dd]^{\varphi}\\ &&Z\ar[ru]^{\eta}\ar[dd]^{(}.25)\tau\\ X\ar^{\prime}[rr]^{h}[rrr]\ar[rrd]^{\ell}&&&\Lambda\\ &&Z\ar[ru]^{\eta}} italic_X [ italic_r italic_r italic_r ] start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT [ italic_r italic_r italic_d ] start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT [ italic_d italic_d ] start_POSTSUPERSCRIPT italic_f end_POSTSUPERSCRIPT & & & roman_Λ [ italic_d italic_d ] start_POSTSUPERSCRIPT italic_φ end_POSTSUPERSCRIPT & & italic_Z [ italic_r italic_u ] start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT [ italic_d italic_d ] start_POSTSUPERSCRIPT ( end_POSTSUPERSCRIPT .25 ) italic_τ italic_X start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT [ italic_r italic_r ] start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT [ italic_r italic_r italic_r ] [ italic_r italic_r italic_d ] start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT & & & roman_Λ & & italic_Z [ italic_r italic_u ] start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT

If the mapping η : Z Λ : 𝜂 𝑍 Λ \eta\colon Z\to\Lambda italic_η : italic_Z → roman_Λ is a biholomorphism, then we say that η ^ : ( Z , , τ ) ( Λ , h , φ ) : ^ 𝜂 𝑍 𝜏 Λ 𝜑 \hat{\eta}\colon(Z,\ell,\tau)\to(\Lambda,h,\varphi) ^ start_ARG italic_η end_ARG : ( italic_Z , roman_ℓ , italic_τ ) → ( roman_Λ , italic_h , italic_φ ) is an isomorphism of semi-models . Notice that then η - 1 : Λ Z : superscript 𝜂 1 Λ 𝑍 \eta^{-1}\colon\Lambda\to Z italic_η start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : roman_Λ → italic_Z induces a morphism η ^ - 1 : ( Λ , h , φ ) ( Z , , τ ) . : superscript ^ 𝜂 1 Λ 𝜑 𝑍 𝜏 {\hat{\eta}}^{-1}\colon(\Lambda,h,\varphi)\to(Z,\ell,\tau). ^ start_ARG italic_η end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : ( roman_Λ , italic_h , italic_φ ) → ( italic_Z , roman_ℓ , italic_τ ) .

Definition 5.2 .

Let X 𝑋 X italic_X be a complex manifold and let f : X X : 𝑓 𝑋 𝑋 f\colon X\to X italic_f : italic_X → italic_X be a holomorphic self-map. A pre-model for f 𝑓 f italic_f is a triple ( Λ , h , φ ) Λ 𝜑 (\Lambda,h,\varphi) ( roman_Λ , italic_h , italic_φ ) where Λ Λ \Lambda roman_Λ is a complex manifold called the base space , h : Λ X : Λ 𝑋 h\colon\Lambda\to X italic_h : roman_Λ → italic_X is a holomorphic mapping, and φ : Λ Λ : 𝜑 Λ Λ \varphi\colon\Lambda\to\Lambda italic_φ : roman_Λ → roman_Λ is an automorphism such that

f h = h φ . 𝑓 𝜑 f\circ h=h\circ\varphi. italic_f ∘ italic_h = italic_h ∘ italic_φ . (5.1)

Let ( Λ , h , φ ) Λ 𝜑 (\Lambda,h,\varphi) ( roman_Λ , italic_h , italic_φ ) and ( Z , , τ ) 𝑍 𝜏 (Z,\ell,\tau) ( italic_Z , roman_ℓ , italic_τ ) be two pre-models for f 𝑓 f italic_f . A morphism of pre-models η ^ : ( Λ , h , φ ) ( Z , , τ ) : ^ 𝜂 Λ 𝜑 𝑍 𝜏 \hat{\eta}\colon(\Lambda,h,\varphi)\to(Z,\ell,\tau) ^ start_ARG italic_η end_ARG : ( roman_Λ , italic_h , italic_φ ) → ( italic_Z , roman_ℓ , italic_τ ) is given by a holomorphic mapping η : Λ Z : 𝜂 Λ 𝑍 \eta\colon\Lambda\to Z italic_η : roman_Λ → italic_Z such that the following diagram commutes: \SelectTips xy12

\xymatrix Λ \ar [ r r r ] h \ar [ r d ] η \ar [ d d ] φ & & & X \ar [ d d ] f & Z \ar [ r r u ] \ar [ d d ] ( .25 ) τ Λ \ar [ r ] [ r r r ] ( .25 ) h \ar [ r d ] η & & & X & Z \ar [ r r u ] fragments fragments \xymatrix Λ \ar superscript fragments [ r r r ] \ar superscript fragments [ r d ] 𝜂 \ar superscript fragments [ d d ] 𝜑 & & & X \ar superscript fragments [ d d ] 𝑓 & Z \ar superscript fragments [ r r u ] \ar superscript fragments [ d d ] ( .25 ) τ Λ superscript \ar fragments [ r ] superscript fragments [ r r r ] ( .25 ) h \ar [ r d ] 𝜂 & & & X & Z \ar [ r r u ] \xymatrix{\Lambda\ar[rrr]^{h}\ar[rd]^{\eta}\ar[dd]^{\varphi}&&&X\ar[dd]^{f}\\ &Z\ar[rru]^{\ell}\ar[dd]^{(}.25)\tau\\ \Lambda\ar^{\prime}[r][rrr]^{(}.25)h\ar[rd]^{\eta}&&&X\\ &Z\ar[rru]^{\ell}} roman_Λ [ italic_r italic_r italic_r ] start_POSTSUPERSCRIPT italic_h end_POSTSUPERSCRIPT [ italic_r italic_d ] start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT [ italic_d italic_d ] start_POSTSUPERSCRIPT italic_φ end_POSTSUPERSCRIPT & & & italic_X [ italic_d italic_d ] start_POSTSUPERSCRIPT italic_f end_POSTSUPERSCRIPT & italic_Z [ italic_r italic_r italic_u ] start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT [ italic_d italic_d ] start_POSTSUPERSCRIPT ( end_POSTSUPERSCRIPT .25 ) italic_τ roman_Λ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT [ italic_r ] [ italic_r italic_r italic_r ] start_POSTSUPERSCRIPT ( end_POSTSUPERSCRIPT .25 ) italic_h [ italic_r italic_d ] start_POSTSUPERSCRIPT italic_η end_POSTSUPERSCRIPT & & & italic_X & italic_Z [ italic_r italic_r italic_u ] start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT

If the mapping η : Λ Z : 𝜂 Λ 𝑍 \eta\colon\Lambda\to Z italic_η : roman_Λ → italic_Z is a biholomorphism, then we say that η ^ : ( Λ , h , φ ) ( Z , , τ ) : ^ 𝜂 Λ 𝜑 𝑍 𝜏 \hat{\eta}\colon(\Lambda,h,\varphi)\to(Z,\ell,\tau) ^ start_ARG italic_η end_ARG : ( roman_Λ , italic_h , italic_φ ) → ( italic_Z , roman_ℓ , italic_τ ) is an isomorphism of pre-models . Notice then that η - 1 : Z Λ : superscript 𝜂 1 𝑍 Λ \eta^{-1}\colon Z\to\Lambda italic_η start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : italic_Z → roman_Λ induces a morphism η ^ - 1 : ( Z , , τ ) ( Λ , h , φ ) . : superscript ^ 𝜂 1 𝑍 𝜏 Λ 𝜑 {\hat{\eta}}^{-1}\colon(Z,\ell,\tau)\to(\Lambda,h,\varphi). ^ start_ARG italic_η end_ARG start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT : ( italic_Z , roman_ℓ , italic_τ ) → ( roman_Λ , italic_h , italic_φ ) .


Definition 2.1 .

An SU ( 3 ) SU 3 \mathrm{SU}(3) roman_SU ( 3 ) structure ( ω , ψ = ψ + + i ψ - ) 𝜔 𝜓 superscript 𝜓 𝑖 superscript 𝜓 (\omega,\psi=\psi^{+}+i\psi^{-}) ( italic_ω , italic_ψ = italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT + italic_i italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) on a 6 6 6 6 -manifold M 𝑀 M italic_M is a pair of forms ω Ω 2 ( M ) 𝜔 superscript Ω 2 𝑀 \omega\in\Omega^{2}(M) italic_ω ∈ roman_Ω start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_M ) and ψ Ω 3 ( M , ) 𝜓 superscript Ω 3 𝑀 \psi\in\Omega^{3}(M,\mathbb{C}) italic_ψ ∈ roman_Ω start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ( italic_M , blackboard_C ) satisfying

2 ω 3 = 3 ψ + ψ - , ω ψ = 0 . formulae-sequence 2 superscript 𝜔 3 3 superscript 𝜓 superscript 𝜓 𝜔 𝜓 0 2\omega^{3}=3\psi^{+}\wedge\psi^{-},\qquad\omega\wedge\psi=0. 2 italic_ω start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = 3 italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ∧ italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT , italic_ω ∧ italic_ψ = 0 .

Definition 3.5 (Properly supported operators) .

A continuous linear operator A : C 0 ( Ω ) C ( Ω ) normal-: 𝐴 normal-→ subscript superscript 𝐶 0 normal-Ω superscript 𝐶 normal-Ω A:C^{\infty}_{0}(\Omega)\rightarrow C^{\infty}(\Omega) italic_A : italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( roman_Ω ) → italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( roman_Ω ) is said to be properly supported if, for any compact subset K Ω 𝐾 normal-Ω K\subset\Omega italic_K ⊂ roman_Ω , there exists a compact subset K Ω superscript 𝐾 normal-′ normal-Ω K^{\prime}\subset\Omega italic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⊂ roman_Ω with:

supp u K supp A u K and u = 0 on K A u = 0 on K supp 𝑢 𝐾 supp 𝐴 𝑢 superscript 𝐾 and 𝑢 0 on superscript 𝐾 𝐴 𝑢 0 on 𝐾 \operatorname{supp}u\subset K\Longrightarrow\operatorname{supp}Au\subset K^{% \prime}\text{ and }u=0\text{ on }K^{\prime}\Longrightarrow Au=0\text{ on }K roman_supp italic_u ⊂ italic_K ⟹ roman_supp italic_A italic_u ⊂ italic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT and italic_u = 0 on italic_K start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ⟹ italic_A italic_u = 0 on italic_K

Definition 5.1 .

Let ( H , β ) 𝐻 𝛽 (H,\beta) ( italic_H , italic_β ) be a monoidal Hom-Hopf algebra. If there exists a convolution invertible bilinear form ζ : H H 𝕜 normal-: 𝜁 normal-⟶ tensor-product 𝐻 𝐻 normal-𝕜 \zeta:H\otimes H\longrightarrow\Bbbk italic_ζ : italic_H ⊗ italic_H ⟶ roman_𝕜 , such that for any h , g , k H 𝑔 𝑘 𝐻 h,g,k\in H italic_h , italic_g , italic_k ∈ italic_H ,

ζ ( β ( h ) , β ( g ) ) = ζ ( h , g ) ; 𝜁 𝛽 𝛽 𝑔 𝜁 𝑔 \displaystyle\zeta(\beta(h),\beta(g))=\zeta(h,g); italic_ζ ( italic_β ( italic_h ) , italic_β ( italic_g ) ) = italic_ζ ( italic_h , italic_g ) ; (5.1)
ζ ( h 1 , g 1 ) g 2 h 2 = h 1 g 1 ζ ( h 2 , g 2 ) ; 𝜁 subscript 1 subscript 𝑔 1 subscript 𝑔 2 subscript 2 subscript 1 subscript 𝑔 1 𝜁 subscript 2 subscript 𝑔 2 \displaystyle\zeta(h_{1},g_{1})g_{2}h_{2}=h_{1}g_{1}\zeta(h_{2},g_{2}); italic_ζ ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ζ ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ; (5.2)
ζ ( β - 1 ( h ) , g k ) = ζ ( h 1 , β ( g ) ) ζ ( h 2 , β ( k ) ) ; 𝜁 superscript 𝛽 1 𝑔 𝑘 𝜁 subscript 1 𝛽 𝑔 𝜁 subscript 2 𝛽 𝑘 \displaystyle\zeta(\beta^{-1}(h),gk)=\zeta(h_{1},\beta(g))\zeta(h_{2},\beta(k)); italic_ζ ( italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_h ) , italic_g italic_k ) = italic_ζ ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_β ( italic_g ) ) italic_ζ ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_β ( italic_k ) ) ; (5.3)
ζ ( h g , β - 1 ( k ) ) = ζ ( β ( h ) , k 2 ) ζ ( β ( g ) , k 1 ) , 𝜁 𝑔 superscript 𝛽 1 𝑘 𝜁 𝛽 subscript 𝑘 2 𝜁 𝛽 𝑔 subscript 𝑘 1 \displaystyle\zeta(hg,\beta^{-1}(k))=\zeta(\beta(h),k_{2})\zeta(\beta(g),k_{1}), italic_ζ ( italic_h italic_g , italic_β start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_k ) ) = italic_ζ ( italic_β ( italic_h ) , italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_ζ ( italic_β ( italic_g ) , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , (5.4)

then ζ 𝜁 \zeta italic_ζ is called a coquasitriangular form of H 𝐻 H italic_H , and ( H , β , ζ ) 𝐻 𝛽 𝜁 (H,\beta,\zeta) ( italic_H , italic_β , italic_ζ ) is called a coquasitriangular monoidal Hom-Hopf algebra.

Definition 5.4 .

Let ( H , β ) 𝐻 𝛽 (H,\beta) ( italic_H , italic_β ) be a monoidal Hom-Hopf algebra. If the linear map σ : H H 𝕜 normal-: 𝜎 normal-⟶ tensor-product 𝐻 𝐻 normal-𝕜 \sigma:H\otimes H\longrightarrow\Bbbk italic_σ : italic_H ⊗ italic_H ⟶ roman_𝕜 such that the following conditions hold:

σ ( β ( h ) , β ( g ) ) = σ ( h , g ) , 𝜎 𝛽 𝛽 𝑔 𝜎 𝑔 \displaystyle\sigma(\beta(h),\beta(g))=\sigma(h,g), italic_σ ( italic_β ( italic_h ) , italic_β ( italic_g ) ) = italic_σ ( italic_h , italic_g ) , (5.5)
σ ( h 1 , g 1 ) σ ( h 2 g 2 , k ) = σ ( g 1 , k 1 ) σ ( h , g 2 k 2 ) , 𝜎 subscript 1 subscript 𝑔 1 𝜎 subscript 2 subscript 𝑔 2 𝑘 𝜎 subscript 𝑔 1 subscript 𝑘 1 𝜎 subscript 𝑔 2 subscript 𝑘 2 \displaystyle\sigma(h_{1},g_{1})\sigma(h_{2}g_{2},k)=\sigma(g_{1},k_{1})\sigma% (h,g_{2}k_{2}), italic_σ ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_σ ( italic_h start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_k ) = italic_σ ( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_σ ( italic_h , italic_g start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_k start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , (5.6)

for any h , g , k H 𝑔 𝑘 𝐻 h,g,k\in H italic_h , italic_g , italic_k ∈ italic_H , then σ 𝜎 \sigma italic_σ is called a left monoidal Hom- 2 2 2 2 -cocycle.


Definition 2.8 .

Let H 𝐻 H italic_H and K 𝐾 K italic_K be two groups and θ : K : 𝜃 𝐾 absent \theta:K\rightarrow italic_θ : italic_K → Aut H 𝐻 \,H italic_H be a homomorphism. The semidirect product H K right-normal-factor-semidirect-product 𝐻 𝐾 H\rtimes K italic_H ⋊ italic_K of H 𝐻 H italic_H by K 𝐾 K italic_K relative to θ 𝜃 \theta italic_θ is the group with underlying set H × K 𝐻 𝐾 H\times K italic_H × italic_K consisting of pairs ( h , k ) 𝑘 (h,k) ( italic_h , italic_k ) for h H 𝐻 h\in H italic_h ∈ italic_H and k K 𝑘 𝐾 k\in K italic_k ∈ italic_K , and operation

( h , k ) ( h , k ) = ( h ( θ ( k ) ( h ) ) , k k ) . 𝑘 superscript superscript 𝑘 𝜃 𝑘 superscript 𝑘 superscript 𝑘 (h,k)(h^{\prime},k^{\prime})=(h(\theta(k)(h^{\prime})),kk^{\prime}). ( italic_h , italic_k ) ( italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_h ( italic_θ ( italic_k ) ( italic_h start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) , italic_k italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) .

The identity element is ( 1 H , 1 K ) subscript 1 𝐻 subscript 1 𝐾 (1_{H},1_{K}) ( 1 start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT , 1 start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) and the inverse of ( h , k ) 𝑘 (h,k) ( italic_h , italic_k ) is ( h , k ) - 1 = ( θ ( k - 1 ) ( h - 1 ) , k - 1 ) superscript 𝑘 1 𝜃 superscript 𝑘 1 superscript 1 superscript 𝑘 1 (h,k)^{-1}=(\theta(k^{-1})(h^{-1}),k^{-1}) ( italic_h , italic_k ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = ( italic_θ ( italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) ( italic_h start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) , italic_k start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) .


Definition 2.9

Let ϕ italic-ϕ \phi italic_ϕ be a two-valued scf, and let { a , b } 𝑎 𝑏 \{a,b\} { italic_a , italic_b } be its range. We say that ϕ italic-ϕ \phi italic_ϕ is compatible with the dominance relation square-original-of \sqsupset when

P ϕ ( P ) Q ϕ ( Q ) = ϕ ( P ) . 𝑃 italic-ϕ 𝑃 square-original-of 𝑄 italic-ϕ 𝑄 italic-ϕ 𝑃 P\underset{\phi(P)}{\sqsupset}Q\,\Rightarrow\,\,\phi(Q)=\phi(P). italic_P start_UNDERACCENT italic_ϕ ( italic_P ) end_UNDERACCENT start_ARG ⊐ end_ARG italic_Q ⇒ italic_ϕ ( italic_Q ) = italic_ϕ ( italic_P ) .

Definition 7.15 .

We define a function u : T Γ Y T Γ Y : 𝑢 subscript 𝑇 Γ 𝑌 subscript 𝑇 Γ 𝑌 u\colon T_{\Gamma}Y\to T_{\Gamma}Y italic_u : italic_T start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT italic_Y → italic_T start_POSTSUBSCRIPT roman_Γ end_POSTSUBSCRIPT italic_Y by

u ( γ , y , r ) = ( t ( y ) - 1 γ , y , r ) . 𝑢 𝛾 𝑦 𝑟 𝑡 superscript 𝑦 1 𝛾 𝑦 𝑟 u(\gamma,y,r)=(t(y)^{-1}\gamma,y,r). italic_u ( italic_γ , italic_y , italic_r ) = ( italic_t ( italic_y ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_γ , italic_y , italic_r ) .

Definition 4.1 .

𝐱 𝐱 \mathbf{x} bold_x and α 𝛼 \mathbf{\alpha} italic_α are said to be a Complementary Pair if any one of those properties hold (It can be shown that they are all equivalent)

f ( x ) = α , f * ( α ) = x , f ( x ) + f * ( α ) = x α , formulae-sequence superscript 𝑓 𝑥 𝛼 formulae-sequence superscript 𝑓 superscript 𝛼 𝑥 𝑓 𝑥 superscript 𝑓 𝛼 𝑥 𝛼 f^{\prime}(x)=\alpha,\,\,\,f^{*^{\prime}}(\alpha)=x,\,\,\,f(x)+f^{*}(\alpha)=x\alpha, italic_f start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x ) = italic_α , italic_f start_POSTSUPERSCRIPT * start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUPERSCRIPT ( italic_α ) = italic_x , italic_f ( italic_x ) + italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_α ) = italic_x italic_α ,

where f * ( α ) superscript 𝑓 𝛼 f^{*}(\alpha) italic_f start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_α ) is the concave conjugate defined in ( 4 ).


Definition 11 (Additivity and Subadditivity) .

Let f subscript 𝑓 f_{\mathcal{H}} italic_f start_POSTSUBSCRIPT caligraphic_H end_POSTSUBSCRIPT be a family of functions from 𝒮 ( ) 𝒮 \mathcal{S}\left(\mathcal{H}\right) caligraphic_S ( caligraphic_H ) to \mathbb{R} blackboard_R , where \mathcal{H} caligraphic_H is a quantum system. We may omit the subscript of f subscript 𝑓 f_{\mathcal{H}} italic_f start_POSTSUBSCRIPT caligraphic_H end_POSTSUBSCRIPT to write f 𝑓 f italic_f for brevity. Then, f 𝑓 f italic_f is said to be fully additive if it holds that

f ( ψ ϕ ) = f ( ψ ) + f ( ϕ ) 𝑓 tensor-product 𝜓 italic-ϕ 𝑓 𝜓 𝑓 italic-ϕ f\left(\psi\otimes\phi\right)=f\left(\psi\right)+f\left(\phi\right) italic_f ( italic_ψ ⊗ italic_ϕ ) = italic_f ( italic_ψ ) + italic_f ( italic_ϕ ) (111)

for any states ψ 𝒮 ( ) 𝜓 𝒮 \psi\in\mathcal{S}\left(\mathcal{H}\right) italic_ψ ∈ caligraphic_S ( caligraphic_H ) and ϕ 𝒮 ( ) italic-ϕ 𝒮 superscript \phi\in\mathcal{S}\left(\mathcal{H}^{\prime}\right) italic_ϕ ∈ caligraphic_S ( caligraphic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . On the other hand, f 𝑓 f italic_f is said to be weakly additive if it holds that

f ( ψ n ) = n f ( ψ ) 𝑓 superscript 𝜓 tensor-product absent 𝑛 𝑛 𝑓 𝜓 f\left(\psi^{\otimes n}\right)=nf\left(\psi\right) italic_f ( italic_ψ start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT ) = italic_n italic_f ( italic_ψ ) (112)

for any state ψ 𝒮 ( ) 𝜓 𝒮 \psi\in\mathcal{S}\left(\mathcal{H}\right) italic_ψ ∈ caligraphic_S ( caligraphic_H ) and for any positive integer n 𝑛 n italic_n . In this paper, we use the word “additivity” to refer to weak additivity for brevity.

Similarly, f 𝑓 f italic_f is said to be fully subadditive if it holds that

f ( ψ ϕ ) f ( ψ ) + f ( ϕ ) 𝑓 tensor-product 𝜓 italic-ϕ 𝑓 𝜓 𝑓 italic-ϕ f\left(\psi\otimes\phi\right)\leqq f\left(\psi\right)+f\left(\phi\right) italic_f ( italic_ψ ⊗ italic_ϕ ) ≦ italic_f ( italic_ψ ) + italic_f ( italic_ϕ ) (113)

for any states ψ 𝒮 ( ) 𝜓 𝒮 \psi\in\mathcal{S}\left(\mathcal{H}\right) italic_ψ ∈ caligraphic_S ( caligraphic_H ) and ϕ 𝒮 ( ) italic-ϕ 𝒮 superscript \phi\in\mathcal{S}\left(\mathcal{H}^{\prime}\right) italic_ϕ ∈ caligraphic_S ( caligraphic_H start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) . On the other hand, f 𝑓 f italic_f is said to be weakly subadditive if it holds that

f ( ψ n ) n f ( ψ ) 𝑓 superscript 𝜓 tensor-product absent 𝑛 𝑛 𝑓 𝜓 f\left(\psi^{\otimes n}\right)\leqq nf\left(\psi\right) italic_f ( italic_ψ start_POSTSUPERSCRIPT ⊗ italic_n end_POSTSUPERSCRIPT ) ≦ italic_n italic_f ( italic_ψ ) (114)

for any state ψ 𝒮 ( ) 𝜓 𝒮 \psi\in\mathcal{S}\left(\mathcal{H}\right) italic_ψ ∈ caligraphic_S ( caligraphic_H ) and for any positive integer n 𝑛 n italic_n .


Definition 5.1 .

Let us say that two plane Cremona maps φ , φ : 2 2 : 𝜑 superscript 𝜑 superscript 2 superscript 2 \varphi,\varphi^{\prime}\colon\mathbb{P}^{2}\dasharrow\mathbb{P}^{2} italic_φ , italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT : blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⇢ blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT are equivalent if there exist two automorphisms α , α Aut ( 2 ) 𝛼 superscript 𝛼 Aut superscript 2 \alpha,\alpha^{\prime}\in\operatorname{Aut}(\mathbb{P}^{2}) italic_α , italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ roman_Aut ( blackboard_P start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) such that

φ = α φ α . superscript 𝜑 superscript 𝛼 𝜑 𝛼 \varphi^{\prime}=\alpha^{\prime}\circ\varphi\circ\alpha. italic_φ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_φ ∘ italic_α .

Definition 7.6 .

Let F : n : 𝐹 superscript 𝑛 F\colon\mathcal{L}^{n}\to\mathbb{R} italic_F : caligraphic_L start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT → blackboard_R be a European function (Definition 1.12 ) given by u 1 , , u r U -pos subscript 𝑢 1 subscript 𝑢 𝑟 subscript 𝑈 -pos u_{1},\dots,u_{r}\in U_{\ell\text{-pos}} italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ∈ italic_U start_POSTSUBSCRIPT roman_ℓ -pos end_POSTSUBSCRIPT and s 1 , , s r , C 0 subscript 𝑠 1 subscript 𝑠 𝑟 𝐶 0 s_{1},\dots,s_{r},C\geq 0 italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_s start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_C ≥ 0 . Let P ( b ) 𝑃 𝑏 P(b) italic_P ( italic_b ) be non-empty. For any 0 i m 0 𝑖 𝑚 0\leq i\leq m 0 ≤ italic_i ≤ italic_m set

β ( 0 ) = 1 and β ( i ) = b ′′ ( i ) = 1 + b ( i ) 2 . formulae-sequence 𝛽 0 1 and 𝛽 𝑖 superscript 𝑏 ′′ 𝑖 1 𝑏 𝑖 2 \beta(0)=1\qquad\text{and}\qquad\beta(i)=b^{\prime\prime}(i)=\tfrac{1+b(i)}{2}. italic_β ( 0 ) = 1 and italic_β ( italic_i ) = italic_b start_POSTSUPERSCRIPT ′ ′ end_POSTSUPERSCRIPT ( italic_i ) = divide start_ARG 1 + italic_b ( italic_i ) end_ARG start_ARG 2 end_ARG .

For any 1 j r 1 𝑗 𝑟 1\leq j\leq r 1 ≤ italic_j ≤ italic_r and any 0 i m 0 𝑖 𝑚 0\leq i\leq m 0 ≤ italic_i ≤ italic_m set

α j ( 0 ) = u j ( ν 0 ) and α j ( i ) = u j ( ν i ) - u j ( ν 0 ) . formulae-sequence subscript 𝛼 𝑗 0 subscript 𝑢 𝑗 subscript 𝜈 0 and subscript 𝛼 𝑗 𝑖 subscript 𝑢 𝑗 subscript 𝜈 𝑖 subscript 𝑢 𝑗 subscript 𝜈 0 \alpha_{j}(0)=u_{j}(\nu_{0})\qquad\text{and}\qquad\alpha_{j}(i)=u_{j}(\nu_{i})% -u_{j}(\nu_{0}). italic_α start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( 0 ) = italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and italic_α start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_i ) = italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) - italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_ν start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

The minimizer of F 𝐹 F italic_F on P ( b ) 𝑃 𝑏 P(b) italic_P ( italic_b ) is the function G : 𝒯 * : 𝐺 superscript 𝒯 G\colon\mathcal{T}^{*}\to\mathbb{R} italic_G : caligraphic_T start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT → blackboard_R defined as follows. Using the notation in 6.2 for u j subscript 𝑢 𝑗 u_{j} italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT and β 𝛽 \beta italic_β and α j subscript 𝛼 𝑗 \alpha_{j} italic_α start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , for any 1 k n 1 𝑘 𝑛 1\leq k\leq n 1 ≤ italic_k ≤ italic_n and any ω 𝒯 n - k 𝜔 subscript 𝒯 𝑛 𝑘 \omega\in\mathcal{T}_{n-k} italic_ω ∈ caligraphic_T start_POSTSUBSCRIPT italic_n - italic_k end_POSTSUBSCRIPT set

G ( k ) ( ω ) = 𝐢 { 0 , , m } k β ( 𝐢 ) ( j = 1 r s j α j ( 𝐢 ) u j ( ω ) - C ) + . superscript 𝐺 𝑘 𝜔 subscript 𝐢 superscript 0 𝑚 𝑘 𝛽 𝐢 superscript superscript subscript 𝑗 1 𝑟 subscript 𝑠 𝑗 subscript 𝛼 𝑗 𝐢 subscript 𝑢 𝑗 𝜔 𝐶 G^{(k)}(\omega)=\sum_{\mathbf{i}\in\{0,\dots,m\}^{k}}\,\beta(\mathbf{i})\big{(% }\sum_{j=1}^{r}s_{j}\cdot\alpha_{j}(\mathbf{i})\cdot u_{j}(\omega)-C\big{)}^{+}. italic_G start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT ( italic_ω ) = ∑ start_POSTSUBSCRIPT bold_i ∈ { 0 , … , italic_m } start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_β ( bold_i ) ( ∑ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ⋅ italic_α start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( bold_i ) ⋅ italic_u start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ( italic_ω ) - italic_C ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT .

Definition 2.7 (Symmetrized distance) .

Let ( X , d ) 𝑋 𝑑 (X,d) ( italic_X , italic_d ) be a quasi-metric space. The symmetrized distance d ϕ superscript 𝑑 italic-ϕ d^{\phi} italic_d start_POSTSUPERSCRIPT italic_ϕ end_POSTSUPERSCRIPT is given by

d ϕ ( x , y ) = ϕ ( d ( x , y ) , d ( y , x ) ) , superscript 𝑑 italic-ϕ 𝑥 𝑦 italic-ϕ 𝑑 𝑥 𝑦 𝑑 𝑦 𝑥 d^{\phi}(x,y)=\phi(d(x,y),d(y,x)), italic_d start_POSTSUPERSCRIPT italic_ϕ end_POSTSUPERSCRIPT ( italic_x , italic_y ) = italic_ϕ ( italic_d ( italic_x , italic_y ) , italic_d ( italic_y , italic_x ) ) ,

where ϕ : + 2 [ 0 , ) : italic-ϕ superscript subscript 2 0 \phi:\mathbb{R}_{+}^{2}\to[0,\infty) italic_ϕ : blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → [ 0 , ∞ ) is a symmetric (i.e. ϕ ( a , b ) = ϕ ( b , a ) italic-ϕ 𝑎 𝑏 italic-ϕ 𝑏 𝑎 \phi(a,b)=\phi(b,a) italic_ϕ ( italic_a , italic_b ) = italic_ϕ ( italic_b , italic_a ) , for all a , b + 𝑎 𝑏 subscript a,b\in\mathbb{R}_{+} italic_a , italic_b ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ) continuous, coercive function satisfying ϕ ( a , b ) = 0 italic-ϕ 𝑎 𝑏 0 \phi(a,b)=0 italic_ϕ ( italic_a , italic_b ) = 0 if and only if a = b 𝑎 𝑏 a=b italic_a = italic_b , for every a , b 0 𝑎 𝑏 0 a,b\geq 0 italic_a , italic_b ≥ 0 , and ϕ ( a , b ) max { a , b } italic-ϕ 𝑎 𝑏 𝑎 𝑏 \phi(a,b)\geq\max\{a,b\} italic_ϕ ( italic_a , italic_b ) ≥ roman_max { italic_a , italic_b } .

Definition 2.11 (Abstract cone) .

A cone on + subscript \mathbb{R}_{+} blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT is a triple ( C , + , ) 𝐶 (C,+,\cdot) ( italic_C , + , ⋅ ) such that ( C , + ) 𝐶 (C,+) ( italic_C , + ) is an abelian monoid, and \cdot is a mapping from + × X subscript 𝑋 \mathbb{R}_{+}\times X blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT × italic_X to X 𝑋 X italic_X such that for all x , y C 𝑥 𝑦 𝐶 x,y\in C italic_x , italic_y ∈ italic_C and r , s + 𝑟 𝑠 subscript r,s\in\mathbb{R}_{+} italic_r , italic_s ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT :

  1. (i)

    r ( s x ) = ( r s ) x 𝑟 𝑠 𝑥 𝑟 𝑠 𝑥 r\cdot(s\cdot x)=(rs)\cdot x italic_r ⋅ ( italic_s ⋅ italic_x ) = ( italic_r italic_s ) ⋅ italic_x ;

  2. (ii)

    r ( x + y ) = ( r x ) + ( r y ) and ( r + s ) x = ( r x ) + ( s x ) formulae-sequence 𝑟 𝑥 𝑦 𝑟 𝑥 𝑟 𝑦 and 𝑟 𝑠 𝑥 𝑟 𝑥 𝑠 𝑥 r\cdot(x+y)=(r\cdot x)+(r\cdot y)\quad\text{and}\quad(r+s)\cdot x=(r\cdot x)+(% s\cdot x) italic_r ⋅ ( italic_x + italic_y ) = ( italic_r ⋅ italic_x ) + ( italic_r ⋅ italic_y ) and ( italic_r + italic_s ) ⋅ italic_x = ( italic_r ⋅ italic_x ) + ( italic_s ⋅ italic_x ) ;

  3. (iii)

    1 x = x and 0 x = 0 . formulae-sequence 1 𝑥 𝑥 and 0 𝑥 0 1\cdot x=x\quad\text{and}\quad 0\cdot x=0. 1 ⋅ italic_x = italic_x and 0 ⋅ italic_x = 0 .

Definition 2.12 (Cancellative cone) .

A cone ( C , + , ) 𝐶 (C,+,\cdot) ( italic_C , + , ⋅ ) is called cancellative if for any x , y , z C 𝑥 𝑦 𝑧 𝐶 x,y,z\in C italic_x , italic_y , italic_z ∈ italic_C ,

x + z = y + z x = y . 𝑥 𝑧 𝑦 𝑧 𝑥 𝑦 x+z=y+z\implies x=y. italic_x + italic_z = italic_y + italic_z ⟹ italic_x = italic_y .

Definition 3.9 .

We define the defect of a monomial in α , β , γ 𝛼 𝛽 𝛾 \alpha,\beta,\gamma italic_α , italic_β , italic_γ and η 𝜂 \eta italic_η via the assignment

def ( α ) = 0 , def ( β ) = def ( γ ) = def ( η ) = 2 formulae-sequence def 𝛼 0 def 𝛽 def 𝛾 def 𝜂 2 \text{def}(\alpha)=0,\ \text{def}(\beta)=\text{def}(\gamma)=\text{def}(\eta)=2 def ( italic_α ) = 0 , def ( italic_β ) = def ( italic_γ ) = def ( italic_η ) = 2

and extending it by multiplicativity. We also define the defect of any polynomial in α , β , γ 𝛼 𝛽 𝛾 \alpha,\beta,\gamma italic_α , italic_β , italic_γ and η 𝜂 \eta italic_η to be the minimum of the defects of its monomials.


Definition 2.6 .

A divergence operator on E 𝐸 E italic_E is a first order differential operator div : Γ ( E ) C ( M ) : div Γ 𝐸 superscript 𝐶 𝑀 \text{div}\colon\Gamma(E)\to C^{\infty}(M) div : roman_Γ ( italic_E ) → italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) satisfying the Leibniz rule

div ( f z ) = π ( z ) f + f div ( z ) , div 𝑓 𝑧 𝜋 𝑧 𝑓 𝑓 div 𝑧 \text{div}(fz)=\pi(z)f+f\,\text{div}(z), div ( italic_f italic_z ) = italic_π ( italic_z ) italic_f + italic_f div ( italic_z ) ,

f C ( M ) 𝑓 superscript 𝐶 𝑀 f\in C^{\infty}(M) italic_f ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_M ) , z Γ ( E ) 𝑧 Γ 𝐸 z\in\Gamma(E) italic_z ∈ roman_Γ ( italic_E ) . Given a generalized connection D 𝐷 D italic_D one may define the associated divergence operator

div D ( z ) = tr ( D z ) . subscript div 𝐷 𝑧 tr 𝐷 𝑧 \text{div}_{D}(z)=\text{tr}(Dz). div start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( italic_z ) = tr ( italic_D italic_z ) .

Definition 3.2 .

The pair ( ϕ , ψ ) H 1 ( ) × H 1 ( ) italic-ϕ 𝜓 superscript 𝐻 1 superscript 𝐻 1 (\phi,\psi)\in H^{1}(\mathbb{R})\times H^{1}(\mathbb{R}) ( italic_ϕ , italic_ψ ) ∈ italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( blackboard_R ) × italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( blackboard_R ) is said to be a (weak) solution of ( 1.13 ) if

{ ϕ w 𝑑 x + ϕ w 𝑑 x - f ( ϕ , ψ ) w 𝑑 x = 0 , ψ z 𝑑 x + ψ z 𝑑 x - g ( ϕ , ψ ) z 𝑑 x = 0 , cases italic-ϕ 𝑤 differential-d 𝑥 superscript italic-ϕ superscript 𝑤 differential-d 𝑥 𝑓 italic-ϕ 𝜓 𝑤 differential-d 𝑥 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝜓 𝑧 differential-d 𝑥 superscript 𝜓 superscript 𝑧 differential-d 𝑥 𝑔 italic-ϕ 𝜓 𝑧 differential-d 𝑥 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 \begin{cases}\displaystyle\int\phi wdx+\int\phi^{\prime}w^{\prime}dx-\int f(% \phi,\psi)wdx=0,\\ \displaystyle\int\psi zdx+\int\psi^{\prime}z^{\prime}dx-\int g(\phi,\psi)zdx=0% ,\end{cases} { start_ROW start_CELL ∫ italic_ϕ italic_w italic_d italic_x + ∫ italic_ϕ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_w start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_d italic_x - ∫ italic_f ( italic_ϕ , italic_ψ ) italic_w italic_d italic_x = 0 , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL ∫ italic_ψ italic_z italic_d italic_x + ∫ italic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_d italic_x - ∫ italic_g ( italic_ϕ , italic_ψ ) italic_z italic_d italic_x = 0 , end_CELL start_CELL end_CELL end_ROW (3.4)

for any ( w , z ) H 1 ( ) × H 1 ( ) 𝑤 𝑧 superscript 𝐻 1 superscript 𝐻 1 (w,z)\in H^{1}(\mathbb{R})\times H^{1}(\mathbb{R}) ( italic_w , italic_z ) ∈ italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( blackboard_R ) × italic_H start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( blackboard_R ) .


Definition 2.11 .

L 𝐿 L italic_L is monotone if there exists κ > 0 𝜅 0 \kappa>0 italic_κ > 0 such that for all β π 2 ( X , L ) 𝛽 subscript 𝜋 2 𝑋 𝐿 \beta\in\pi_{2}(X,L) italic_β ∈ italic_π start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_X , italic_L ) ,

[ ω ] ( β ) = κ μ ( β ) . delimited-[] 𝜔 𝛽 𝜅 𝜇 𝛽 [\omega](\beta)=\kappa\cdot\mu(\beta). [ italic_ω ] ( italic_β ) = italic_κ ⋅ italic_μ ( italic_β ) . (2.8)

Definition 2.1 .

An affine structure on a Lie algebra 𝔤 𝔤 \mathfrak{g} fraktur_g over k 𝑘 k italic_k is a left-symmetric product 𝔤 × 𝔤 𝔤 𝔤 𝔤 𝔤 \mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} fraktur_g × fraktur_g → fraktur_g satisfying

(1) [ x , y ] = x y - y x 𝑥 𝑦 𝑥 𝑦 𝑦 𝑥 [x,y]=x\cdot y-y\cdot x [ italic_x , italic_y ] = italic_x ⋅ italic_y - italic_y ⋅ italic_x

for all x , y , z 𝔤 𝑥 𝑦 𝑧 𝔤 x,y,z\in\mathfrak{g} italic_x , italic_y , italic_z ∈ fraktur_g . If the product is Novikov, we say that 𝔤 𝔤 \mathfrak{g} fraktur_g admits a Novikov structure .


Definition 2.4 .

We define the secondary particles to be the sums of two consecutive primary particles in terms of ϵ subscript succeeds italic-ϵ \succ_{\epsilon} ≻ start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT . We denote by 𝒮 ϵ = × 𝒞 2 subscript 𝒮 italic-ϵ superscript 𝒞 2 \mathcal{S}_{\epsilon}=\mathbb{Z}\times\mathcal{C}^{2} caligraphic_S start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT = blackboard_Z × caligraphic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT the set of secondary particles, in such a way that the particle

( k , c , c ) = ( k + ϵ ( c , c ) , c ) + ( k , c ) 𝑘 𝑐 superscript 𝑐 𝑘 italic-ϵ 𝑐 superscript 𝑐 𝑐 𝑘 superscript 𝑐 (k,c,c^{\prime})=(k+\epsilon(c,c^{\prime}),c)+(k,c^{\prime}) ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_k + italic_ϵ ( italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_c ) + ( italic_k , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) (2.4)

has potential 2 k + ϵ ( c , c ) 2 𝑘 italic-ϵ 𝑐 superscript 𝑐 2k+\epsilon(c,c^{\prime}) 2 italic_k + italic_ϵ ( italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) and state c c 𝑐 superscript 𝑐 cc^{\prime} italic_c italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT . In the following, we identify a secondary particle as ( k , c , c ) 𝑘 𝑐 superscript 𝑐 (k,c,c^{\prime}) ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) or ( 2 k + ϵ ( c , c ) ) c c subscript 2 𝑘 italic-ϵ 𝑐 superscript 𝑐 𝑐 superscript 𝑐 (2k+\epsilon(c,c^{\prime}))_{cc^{\prime}} ( 2 italic_k + italic_ϵ ( italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ) start_POSTSUBSCRIPT italic_c italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT . We denote by γ ( k , c , c ) 𝛾 𝑘 𝑐 superscript 𝑐 \gamma(k,c,c^{\prime}) italic_γ ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) and μ ( k , c , c ) 𝜇 𝑘 𝑐 superscript 𝑐 \mu(k,c,c^{\prime}) italic_μ ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) the primary particles

γ ( k , c , c ) = ( k + ϵ ( c , c ) , c ) and μ ( k , c , c ) = ( k , c ) , formulae-sequence 𝛾 𝑘 𝑐 superscript 𝑐 𝑘 italic-ϵ 𝑐 superscript 𝑐 𝑐 and 𝜇 𝑘 𝑐 superscript 𝑐 𝑘 superscript 𝑐 \gamma(k,c,c^{\prime})=(k+\epsilon(c,c^{\prime}),c)\quad\text{and}\quad\mu(k,c% ,c^{\prime})=(k,c^{\prime})\,, italic_γ ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_k + italic_ϵ ( italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) , italic_c ) and italic_μ ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = ( italic_k , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ,

respectively called upper and lower halves of the secondary particles ( k , c , c ) 𝑘 𝑐 superscript 𝑐 (k,c,c^{\prime}) ( italic_k , italic_c , italic_c start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) .


Definition 27 (Lie bracket) .

Let G 𝐺 G italic_G be a Lie group, and ϕ : G G L n ( ) : italic-ϕ 𝐺 𝐺 subscript 𝐿 𝑛 \phi:G\to GL_{n}(\mathbb{R}) italic_ϕ : italic_G → italic_G italic_L start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_R ) be a homomorphism, namely

ϕ ( p q ) = ϕ ( p ) ϕ ( q ) italic-ϕ 𝑝 𝑞 italic-ϕ 𝑝 italic-ϕ 𝑞 \phi(p\star q)=\phi(p)\phi(q) italic_ϕ ( italic_p ⋆ italic_q ) = italic_ϕ ( italic_p ) italic_ϕ ( italic_q )

Furthermore, let ϕ * subscript italic-ϕ \phi_{*} italic_ϕ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT , the pushforward of ϕ italic-ϕ \phi italic_ϕ , be a bijection at e G 𝑒 𝐺 e\in G italic_e ∈ italic_G , the identity element. The Lie bracket [ , ] [\cdot,\cdot] [ ⋅ , ⋅ ] on T e ( G ) subscript 𝑇 𝑒 𝐺 T_{e}(G) italic_T start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_G ) is a bilinear form, s.t.

[ U , V ] G = ϕ * - 1 ( ϕ * ( U ) ϕ * ( V ) - ϕ * ( V ) ϕ * ( U ) ) subscript 𝑈 𝑉 𝐺 superscript subscript italic-ϕ 1 subscript italic-ϕ 𝑈 subscript italic-ϕ 𝑉 subscript italic-ϕ 𝑉 subscript italic-ϕ 𝑈 [U,V]_{G}=\phi_{*}^{-1}\left(\phi_{*}(U)\phi_{*}(V)-\phi_{*}(V)\phi_{*}(U)\right) [ italic_U , italic_V ] start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT = italic_ϕ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_ϕ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_U ) italic_ϕ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_V ) - italic_ϕ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_V ) italic_ϕ start_POSTSUBSCRIPT * end_POSTSUBSCRIPT ( italic_U ) )

Definition B.6 .

Let f 𝑓 f italic_f be a Laurent polynomial. Then, f 𝑓 f italic_f can be uniquely factorized as

f = g h , 𝑓 𝑔 f=gh, italic_f = italic_g italic_h ,

where g 𝑔 g italic_g is a monic Laurent monomial and h h italic_h is a polynomial without any monomial factor. We shall call h h italic_h the polynomial part of f 𝑓 f italic_f .


Definition 2.3 .

A Lie algebra over a commutative ring R 𝑅 R italic_R is an R 𝑅 R italic_R -module 𝔤 𝔤 \mathfrak{g} fraktur_g equipped with an R 𝑅 R italic_R -bilinear map [ , ] : 𝔤 × 𝔤 𝔤 : 𝔤 𝔤 𝔤 [\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} [ ⋅ , ⋅ ] : fraktur_g × fraktur_g → fraktur_g satisfying the following conditions:


Definition 4.3 .

A 3 3 3 3 -multipede isafiniterelationalstructure 𝐌 𝐌 \mathbf{M} bold_M withthesignature { < , E , H } 𝐸 𝐻 \{<,E,H\} { < , italic_E , italic_H } ,where < , E 𝐸 <,E < , italic_E arebinarysymbolsand H 𝐻 H italic_H isaternarysymbol,suchthat 𝐌 𝐌 \mathbf{M} bold_M satisfiesthefollowingaxioms.Thedomainof 𝐌 𝐌 \mathbf{M} bold_M hasapartition { 𝑆𝑔 , 𝐹𝑡 } 𝑆𝑔 𝐹𝑡 \{\mathit{Sg},\mathit{Ft}\} { italic_Sg , italic_Ft } into segments and feet suchthat < 𝐌 superscript 𝐌 {<}^{\mathbf{M}} < start_POSTSUPERSCRIPT bold_M end_POSTSUPERSCRIPT isalinearorderon 𝑆𝑔 𝑆𝑔 \mathit{Sg} italic_Sg ,and E 𝐌 superscript 𝐸 𝐌 E^{\mathbf{M}} italic_E start_POSTSUPERSCRIPT bold_M end_POSTSUPERSCRIPT isthegraphofasurjectivefunction seg : 𝐹𝑡 𝑆𝑔 : seg 𝐹𝑡 𝑆𝑔 \mathrm{seg}\colon\mathit{Ft}\rightarrow\mathit{Sg} roman_seg : italic_Ft → italic_Sg with | seg - 1 ( x ) | = 2 superscript seg 1 𝑥 2 |\mathrm{seg}^{-1}(x)|=2 | roman_seg start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( italic_x ) | = 2 forevery x 𝑆𝑔 𝑥 𝑆𝑔 x\in\mathit{Sg} italic_x ∈ italic_Sg .Forevery 𝒕 H 𝐌 𝒕 superscript 𝐻 𝐌 {\bm{t}}\in H^{\mathbf{M}} bold_italic_t ∈ italic_H start_POSTSUPERSCRIPT bold_M end_POSTSUPERSCRIPT ,eithertheentriesof 𝒕 𝒕 {\bm{t}} bold_italic_t arecontainedin 𝑆𝑔 𝑆𝑔 \mathit{Sg} italic_Sg andwecall 𝒕 𝒕 {\bm{t}} bold_italic_t a hyperedge ,ortheyarecontainedin 𝐹𝑡 𝐹𝑡 \mathit{Ft} italic_Ft andwecall 𝒕 𝒕 {\bm{t}} bold_italic_t a positivetriple .Therelation H 𝐌 superscript 𝐻 𝐌 H^{\mathbf{M}} italic_H start_POSTSUPERSCRIPT bold_M end_POSTSUPERSCRIPT istotallysymmetricandonlycontainstripleswithpairwisedistinctentries.Foreverypositivetriple 𝒕 𝒕 {\bm{t}} bold_italic_t ,thetriple ( seg ( 𝒕 [ 1 ] ) , seg ( 𝒕 [ 2 ] ) , seg ( 𝒕 [ 3 ] ) ) seg 𝒕 [ 1 ] seg 𝒕 [ 2 ] seg 𝒕 [ 3 ] (\mathrm{seg}({\bm{t}}\raisebox{0.5pt}{{{[$1$]}}}),\mathrm{seg}({\bm{t}}% \raisebox{0.5pt}{{{[$2$]}}}),\mathrm{seg}({\bm{t}}\raisebox{0.5pt}{{{[$3$]}}})) ( roman_seg ( bold_italic_t [ 1 ] ) , roman_seg ( bold_italic_t [ 2 ] ) , roman_seg ( bold_italic_t [ 3 ] ) ) isahyperedge.If 𝒕 H 𝐌 𝒕 superscript 𝐻 𝐌 {\bm{t}}\in H^{\mathbf{M}} bold_italic_t ∈ italic_H start_POSTSUPERSCRIPT bold_M end_POSTSUPERSCRIPT isanhyperedgewith seg - 1 ( 𝒕 [ i ] ) = { x i _ 0 , x i _ 1 } superscript seg 1 𝒕 [ i ] superscript 𝑥 𝑖 _ 0 superscript 𝑥 𝑖 _ 1 \mathrm{seg}^{-1}({\bm{t}}\raisebox{0.5pt}{{{[$i$]}}})=\{x^{i}_{0},x^{i}_{1}\} roman_seg start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( bold_italic_t [ italic_i ] ) = { italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT _ 0 , italic_x start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT _ 1 } ,thenwerequirethatexactlyfourelementsoftheset { ( x 1 _ i , x 2 _ j , x 3 _ k ) i , j , k { 0 , 1 } } conditional-set superscript 𝑥 1 _ 𝑖 superscript 𝑥 2 _ 𝑗 superscript 𝑥 3 _ 𝑘 𝑖 𝑗 𝑘 0 1 \smash{\{(x^{1}_{i},x^{2}_{j},x^{3}_{k})\mid i,j,k\in\{0,1\}\}} { ( italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT _ italic_i , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT _ italic_j , italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT _ italic_k ) ∣ italic_i , italic_j , italic_k ∈ { 0 , 1 } } arepositivetriples.Wealsorequirethatforeachtwotuples ( x 1 _ i , x 2 _ j , x 3 _ k ) , ( x 1 _ i , x 2 _ j , x 3 _ k ) superscript 𝑥 1 _ 𝑖 superscript 𝑥 2 _ 𝑗 superscript 𝑥 3 _ 𝑘 superscript 𝑥 1 _ superscript 𝑖 superscript 𝑥 2 _ superscript 𝑗 superscript 𝑥 3 _ superscript 𝑘 \smash{(x^{1}_{i},x^{2}_{j},x^{3}_{k}),(x^{1}_{i^{\prime}},x^{2}_{j^{\prime}},% x^{3}_{k^{\prime}})} ( italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT _ italic_i , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT _ italic_j , italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT _ italic_k ) , ( italic_x start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT _ italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT _ italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT _ italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) fromthissetwehave

( i - i ) + ( j - j ) + ( k - k ) = 0 mod 2 . 𝑖 superscript 𝑖 𝑗 superscript 𝑗 𝑘 superscript 𝑘 0 mod 2 (i-i^{\prime})+(j-j^{\prime})+(k-k^{\prime})=0\text{mod}2. ( italic_i - italic_i start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + ( italic_j - italic_j start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) + ( italic_k - italic_k start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) = 0 mod 2 .

Definition 1 .

The expected average gap between primes p x 𝑝 𝑥 p\leq x italic_p ≤ italic_x in progression (P) is

a ( q , x ) = x φ ( q ) li x , 𝑎 𝑞 𝑥 𝑥 𝜑 𝑞 li 𝑥 a(q,x)~{}=~{}{x\varphi(q)\over\mathop{\mathrm{li}}x}, italic_a ( italic_q , italic_x ) = divide start_ARG italic_x italic_φ ( italic_q ) end_ARG start_ARG roman_li italic_x end_ARG , (5)

where φ ( q ) 𝜑 𝑞 \varphi(q) italic_φ ( italic_q ) is Euler’s totient function, and li x li 𝑥 \mathop{\mathrm{li}}x roman_li italic_x is the logarithmic integral.


Definition 4.1 .

Let N 𝑁 N italic_N be a simply connected nilpotent Lie group with left invariant metric and magnetic form. For any γ N 𝛾 𝑁 \gamma\in N italic_γ ∈ italic_N not equal to the identity, a magnetic geodesic σ ( t ) 𝜎 𝑡 \sigma\left(t\right) italic_σ ( italic_t ) is called γ 𝛾 \gamma italic_γ -periodic with period ω 𝜔 \omega italic_ω if ω 0 𝜔 0 \omega\neq 0 italic_ω ≠ 0 and for all t 𝑡 t\in\mathbb{R} italic_t ∈ blackboard_R

(29) γ σ ( t ) = σ ( t + ω ) . 𝛾 𝜎 𝑡 𝜎 𝑡 𝜔 \displaystyle\gamma\sigma\left(t\right)=\sigma\left(t+\omega\right). italic_γ italic_σ ( italic_t ) = italic_σ ( italic_t + italic_ω ) .

We also say that γ 𝛾 \gamma italic_γ translates the magnetic geodesic σ ( t ) 𝜎 𝑡 \sigma(t) italic_σ ( italic_t ) by amount ω 𝜔 \omega italic_ω . The number ω 𝜔 \omega italic_ω is called a period of γ 𝛾 \gamma italic_γ .


Definition 2.1 .

The DIM algebra, which we denote by 𝒰 = 𝒰 q , t 𝒰 subscript 𝒰 𝑞 𝑡 \mathcal{U}=\mathcal{U}_{q,t} caligraphic_U = caligraphic_U start_POSTSUBSCRIPT italic_q , italic_t end_POSTSUBSCRIPT , is a unital associative algebra generated by the currents x ± ( z ) = n x n ± z - n superscript 𝑥 plus-or-minus 𝑧 subscript 𝑛 subscript superscript 𝑥 plus-or-minus 𝑛 superscript 𝑧 𝑛 x^{\pm}(z)=\sum_{n\in\mathbb{Z}}x^{\pm}_{n}z^{-n} italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) = ∑ start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT , ψ ± ( z ) = ± n 0 ψ n ± z - n superscript 𝜓 plus-or-minus 𝑧 subscript plus-or-minus 𝑛 subscript absent 0 subscript superscript 𝜓 plus-or-minus 𝑛 superscript 𝑧 𝑛 \psi^{\pm}(z)=\sum_{\pm n\in\mathbb{Z}_{\geq 0}}\psi^{\pm}_{n}z^{-n} italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) = ∑ start_POSTSUBSCRIPT ± italic_n ∈ blackboard_Z start_POSTSUBSCRIPT ≥ 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT - italic_n end_POSTSUPERSCRIPT and the central elements c ± 1 / 2 superscript 𝑐 plus-or-minus 1 2 c^{\pm 1/2} italic_c start_POSTSUPERSCRIPT ± 1 / 2 end_POSTSUPERSCRIPT . The defining relations are

ψ + ( z ) x ± ( w ) = g ( c 1 / 2 w / z ) 1 x ± ( w ) ψ + ( z ) , superscript 𝜓 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝑔 superscript superscript 𝑐 minus-or-plus 1 2 𝑤 𝑧 minus-or-plus 1 superscript 𝑥 plus-or-minus 𝑤 superscript 𝜓 𝑧 \displaystyle\psi^{+}(z)x^{\pm}(w)=g(c^{\mp 1/2}w/z)^{\mp 1}x^{\pm}(w)\psi^{+}% (z), italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_g ( italic_c start_POSTSUPERSCRIPT ∓ 1 / 2 end_POSTSUPERSCRIPT italic_w / italic_z ) start_POSTSUPERSCRIPT ∓ 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , (2.1)
ψ - ( z ) x ± ( w ) = g ( c 1 / 2 z / w ) ± 1 x ± ( w ) ψ - ( z ) , superscript 𝜓 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝑔 superscript superscript 𝑐 minus-or-plus 1 2 𝑧 𝑤 plus-or-minus 1 superscript 𝑥 plus-or-minus 𝑤 superscript 𝜓 𝑧 \displaystyle\psi^{-}(z)x^{\pm}(w)=g(c^{\mp 1/2}z/w)^{\pm 1}x^{\pm}(w)\psi^{-}% (z), italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_g ( italic_c start_POSTSUPERSCRIPT ∓ 1 / 2 end_POSTSUPERSCRIPT italic_z / italic_w ) start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_z ) , (2.2)
ψ ± ( z ) ψ ± ( w ) = ψ ± ( w ) ψ ± ( z ) , ψ + ( z ) ψ - ( w ) = g ( c + 1 w / z ) g ( c - 1 w / z ) ψ - ( w ) ψ + ( z ) , formulae-sequence superscript 𝜓 plus-or-minus 𝑧 superscript 𝜓 plus-or-minus 𝑤 superscript 𝜓 plus-or-minus 𝑤 superscript 𝜓 plus-or-minus 𝑧 superscript 𝜓 𝑧 superscript 𝜓 𝑤 𝑔 superscript 𝑐 1 𝑤 𝑧 𝑔 superscript 𝑐 1 𝑤 𝑧 superscript 𝜓 𝑤 superscript 𝜓 𝑧 \displaystyle\psi^{\pm}(z)\psi^{\pm}(w)=\psi^{\pm}(w)\psi^{\pm}(z),\qquad\psi^% {+}(z)\psi^{-}(w)=\dfrac{g(c^{+1}w/z)}{g(c^{-1}w/z)}\psi^{-}(w)\psi^{+}(z), italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) , italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) = divide start_ARG italic_g ( italic_c start_POSTSUPERSCRIPT + 1 end_POSTSUPERSCRIPT italic_w / italic_z ) end_ARG start_ARG italic_g ( italic_c start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_w / italic_z ) end_ARG italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , (2.3)
[ x + ( z ) , x - ( w ) ] = ( 1 - q ) ( 1 - 1 / t ) 1 - q / t ( δ ( c - 1 z / w ) ψ + ( c 1 / 2 w ) - δ ( c z / w ) ψ - ( c - 1 / 2 w ) ) , superscript 𝑥 𝑧 superscript 𝑥 𝑤 1 𝑞 1 1 𝑡 1 𝑞 𝑡 𝛿 superscript 𝑐 1 𝑧 𝑤 superscript 𝜓 superscript 𝑐 1 2 𝑤 𝛿 𝑐 𝑧 𝑤 superscript 𝜓 superscript 𝑐 1 2 𝑤 \displaystyle[x^{+}(z),x^{-}(w)]=\dfrac{(1-q)(1-1/t)}{1-q/t}\bigg{(}\delta(c^{% -1}z/w)\psi^{+}(c^{1/2}w)-\delta(cz/w)\psi^{-}(c^{-1/2}w)\bigg{)}, [ italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , italic_x start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) ] = divide start_ARG ( 1 - italic_q ) ( 1 - 1 / italic_t ) end_ARG start_ARG 1 - italic_q / italic_t end_ARG ( italic_δ ( italic_c start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_z / italic_w ) italic_ψ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_c start_POSTSUPERSCRIPT 1 / 2 end_POSTSUPERSCRIPT italic_w ) - italic_δ ( italic_c italic_z / italic_w ) italic_ψ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_c start_POSTSUPERSCRIPT - 1 / 2 end_POSTSUPERSCRIPT italic_w ) ) , (2.4)
G ( z / w ) x ± ( z ) x ± ( w ) = G ± ( z / w ) x ± ( w ) x ± ( z ) , superscript 𝐺 minus-or-plus 𝑧 𝑤 superscript 𝑥 plus-or-minus 𝑧 superscript 𝑥 plus-or-minus 𝑤 superscript 𝐺 plus-or-minus 𝑧 𝑤 superscript 𝑥 plus-or-minus 𝑤 superscript 𝑥 plus-or-minus 𝑧 \displaystyle G^{\mp}(z/w)x^{\pm}(z)x^{\pm}(w)=G^{\pm}(z/w)x^{\pm}(w)x^{\pm}(z% )\,, italic_G start_POSTSUPERSCRIPT ∓ end_POSTSUPERSCRIPT ( italic_z / italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_G start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z / italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) , (2.5)

where

g ( z ) = G + ( z ) G - ( z ) , G ± ( z ) = ( 1 - q ± 1 z ) ( 1 - t 1 z ) ( 1 - q 1 t ± 1 z ) , δ ( z ) = n z n . formulae-sequence 𝑔 𝑧 superscript 𝐺 𝑧 superscript 𝐺 𝑧 formulae-sequence superscript 𝐺 plus-or-minus 𝑧 1 superscript 𝑞 plus-or-minus 1 𝑧 1 superscript 𝑡 minus-or-plus 1 𝑧 1 superscript 𝑞 minus-or-plus 1 superscript 𝑡 plus-or-minus 1 𝑧 𝛿 𝑧 subscript 𝑛 superscript 𝑧 𝑛 g(z)=\dfrac{G^{+}(z)}{G^{-}(z)}\,,\qquad G^{\pm}(z)=(1-q^{\pm 1}z)(1-t^{\mp 1}% z)(1-q^{\mp 1}t^{\pm 1}z)\,,\qquad\delta(z)=\sum_{n\in\mathbb{Z}}z^{n}\,. italic_g ( italic_z ) = divide start_ARG italic_G start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) end_ARG start_ARG italic_G start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_z ) end_ARG , italic_G start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) = ( 1 - italic_q start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_z ) ( 1 - italic_t start_POSTSUPERSCRIPT ∓ 1 end_POSTSUPERSCRIPT italic_z ) ( 1 - italic_q start_POSTSUPERSCRIPT ∓ 1 end_POSTSUPERSCRIPT italic_t start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_z ) , italic_δ ( italic_z ) = ∑ start_POSTSUBSCRIPT italic_n ∈ blackboard_Z end_POSTSUBSCRIPT italic_z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT . (2.6)