Definition 19

Directoids (join) are groupoids of the form H = H ¯ , 𝐻 normal-¯ 𝐻 normal-⋅ H=\left\langle\underline{H},\cdot\right\rangle italic_H = ⟨ ¯ start_ARG italic_H end_ARG , ⋅ ⟩ that satisfy the following conditions:

a a = a 𝑎 𝑎 𝑎 \displaystyle aa=a italic_a italic_a = italic_a (dir1)
( a b ) a = a b 𝑎 𝑏 𝑎 𝑎 𝑏 \displaystyle(ab)a=ab ( italic_a italic_b ) italic_a = italic_a italic_b (dir2)
b ( a b ) = a b 𝑏 𝑎 𝑏 𝑎 𝑏 \displaystyle b(ab)=ab italic_b ( italic_a italic_b ) = italic_a italic_b (dir3)
a ( ( a b ) c ) = ( a b ) c 𝑎 𝑎 𝑏 𝑐 𝑎 𝑏 𝑐 \displaystyle a((ab)c)=(ab)c italic_a ( ( italic_a italic_b ) italic_c ) = ( italic_a italic_b ) italic_c (dir4)

Definition 3.1 .

A pre-Lie algebra is a pair ( V , ) 𝑉 normal-⋆ (V,\star) ( italic_V , ⋆ ) , where V 𝑉 V italic_V is a vector space and : V V V fragments normal-⋆ normal-: V tensor-product V normal-⟶ V \star:V\otimes V\longrightarrow V ⋆ : italic_V ⊗ italic_V ⟶ italic_V is a bilinear multiplication satisfying that for all x , y , z V 𝑥 𝑦 𝑧 𝑉 x,y,z\in V italic_x , italic_y , italic_z ∈ italic_V , the associator ( x , y , z ) = ( x y ) z - x ( y z ) 𝑥 𝑦 𝑧 normal-⋆ normal-⋆ 𝑥 𝑦 𝑧 normal-⋆ 𝑥 normal-⋆ 𝑦 𝑧 (x,y,z)=(x\star y)\star z-x\star(y\star z) ( italic_x , italic_y , italic_z ) = ( italic_x ⋆ italic_y ) ⋆ italic_z - italic_x ⋆ ( italic_y ⋆ italic_z ) is symmetric in x , y 𝑥 𝑦 x,y italic_x , italic_y , i.e.

( x , y , z ) = ( y , x , z ) , or equivalently , ( x y ) z - x ( y z ) = ( y x ) z - y ( x z ) . formulae-sequence 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 or equivalently 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 𝑦 𝑥 𝑧 (x,y,z)=(y,x,z),\;\;{\rm or}\;\;{\rm equivalently,}\;\;(x\star y)\star z-x% \star(y\star z)=(y\star x)\star z-y\star(x\star z). ( italic_x , italic_y , italic_z ) = ( italic_y , italic_x , italic_z ) , roman_or roman_equivalently , ( italic_x ⋆ italic_y ) ⋆ italic_z - italic_x ⋆ ( italic_y ⋆ italic_z ) = ( italic_y ⋆ italic_x ) ⋆ italic_z - italic_y ⋆ ( italic_x ⋆ italic_z ) .

Definition 2

A Hermitian Lie algebra ( 𝔤 , , , J ) 𝔤 normal-⋅ normal-⋅ 𝐽 (\mathfrak{g},\langle\cdot,\cdot\rangle,J) ( fraktur_g , ⟨ ⋅ , ⋅ ⟩ , italic_J ) is called Kähler if its fundamental 2 2 2 2 -form ω = J , fragments ω fragments normal-⟨ J normal-⋅ normal-, normal-⋅ normal-⟩ \omega=\langle J\cdot,\cdot\rangle italic_ω = ⟨ italic_J ⋅ , ⋅ ⟩ is closed. It is called locally conformally Kähler (shortly lcK) if

d ω = ω θ 𝑑 𝜔 𝜔 𝜃 d\omega=\omega\wedge\theta italic_d italic_ω = italic_ω ∧ italic_θ

for some closed 1 1 1 1 -form θ 𝔤 * 𝜃 superscript 𝔤 \theta\in\mathfrak{g}^{*} italic_θ ∈ fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT (called the Lee form ). An lcK Lie algebra is called Vaisman if θ = 0 normal-∇ 𝜃 0 \nabla\theta=0 ∇ italic_θ = 0 , where 𝔤 * 𝔰 𝔬 ( 𝔤 ) normal-∇ tensor-product superscript 𝔤 𝔰 𝔬 𝔤 \nabla\in\mathfrak{g}^{*}\otimes\mathfrak{so}(\mathfrak{g}) ∇ ∈ fraktur_g start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ⊗ fraktur_s fraktur_o ( fraktur_g ) denotes the Levi-Civita connection.


Definition 4.2 .

For ψ B C ( 𝔾 ) 𝜓 𝐵 𝐶 𝔾 \psi\in BC(\mathbb{G}) italic_ψ ∈ italic_B italic_C ( blackboard_G ) , define inductively:

u ε ( 0 , p ) = ψ ( p ) superscript 𝑢 𝜀 0 𝑝 𝜓 𝑝 u^{\varepsilon}(0,p)=\psi(p) italic_u start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( 0 , italic_p ) = italic_ψ ( italic_p )

and for t ( ( k t - 1 ) ε 2 , k t ε 2 ] 𝑡 subscript 𝑘 𝑡 1 superscript 𝜀 2 subscript 𝑘 𝑡 superscript 𝜀 2 t\in((k_{t}-1)\varepsilon^{2},k_{t}\varepsilon^{2}] italic_t ∈ ( ( italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT - 1 ) italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ] :

u ε ( t , p ) = 1 1 + μ ε 2 inf η , 𝒳 sup q { u ε ( t - ε 2 , p δ ε ( q ) ) + R ε ( t , p , q , η , 𝒳 ) } . superscript 𝑢 𝜀 𝑡 𝑝 1 1 𝜇 superscript 𝜀 2 subscript infimum 𝜂 𝒳 subscript supremum 𝑞 superscript 𝑢 𝜀 𝑡 superscript 𝜀 2 𝑝 subscript 𝛿 𝜀 𝑞 superscript 𝑅 𝜀 𝑡 𝑝 𝑞 𝜂 𝒳 u^{\varepsilon}(t,p)=\frac{1}{1+\mu\varepsilon^{2}}\inf_{\eta,\mathcal{X}}\sup% _{q}\left\{u^{\varepsilon}(t-\varepsilon^{2},p\cdot\delta_{\varepsilon}(q))+R^% {\varepsilon}(t,p,q,\eta,\mathcal{X})\right\}. italic_u start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t , italic_p ) = divide start_ARG 1 end_ARG start_ARG 1 + italic_μ italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_inf start_POSTSUBSCRIPT italic_η , caligraphic_X end_POSTSUBSCRIPT roman_sup start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT { italic_u start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t - italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_p ⋅ italic_δ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_q ) ) + italic_R start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t , italic_p , italic_q , italic_η , caligraphic_X ) } .

When k t = 1 subscript 𝑘 𝑡 1 k_{t}=1 italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = 1 , u ε ( t - ε 2 , p δ ε ( q ) ) superscript 𝑢 𝜀 𝑡 superscript 𝜀 2 normal-⋅ 𝑝 subscript 𝛿 𝜀 𝑞 u^{\varepsilon}(t-\varepsilon^{2},p\cdot\delta_{\varepsilon}(q)) italic_u start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( italic_t - italic_ε start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_p ⋅ italic_δ start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_q ) ) is understood as u ε ( 0 , p ) superscript 𝑢 𝜀 0 𝑝 u^{\varepsilon}(0,p) italic_u start_POSTSUPERSCRIPT italic_ε end_POSTSUPERSCRIPT ( 0 , italic_p ) .


Definition 3.10 .

A variation of ( u , η , 𝝀 ) 𝐻𝑃 𝐙 𝑢 𝜂 𝝀 subscript 𝐻𝑃 𝐙 (u,\eta,\boldsymbol{\lambda})\in\mathit{HP}_{\mathbf{Z}} ( italic_u , italic_η , bold_italic_λ ) ∈ italic_HP start_POSTSUBSCRIPT bold_Z end_POSTSUBSCRIPT is a curve { ( u ϵ , η ϵ , 𝝀 ϵ ) } ϵ ( - 1 , 1 ) 𝐻𝑃 𝐙 subscript superscript 𝑢 italic-ϵ superscript 𝜂 italic-ϵ superscript 𝝀 italic-ϵ italic-ϵ 1 1 subscript 𝐻𝑃 𝐙 \{(u^{\epsilon},\eta^{\epsilon},\boldsymbol{\lambda}^{\epsilon})\}_{\epsilon% \in(-1,1)}\subset\mathit{HP}_{\mathbf{Z}} { ( italic_u start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT , italic_η start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT , bold_italic_λ start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT ) } start_POSTSUBSCRIPT italic_ϵ ∈ ( - 1 , 1 ) end_POSTSUBSCRIPT ⊂ italic_HP start_POSTSUBSCRIPT bold_Z end_POSTSUBSCRIPT of the form

( u ϵ , η ϵ , 𝝀 ϵ ) = ( u + ϵ 𝜹 u , ψ ϵ η , 𝝀 + ϵ 𝜹 λ ) , superscript 𝑢 italic-ϵ superscript 𝜂 italic-ϵ superscript 𝝀 italic-ϵ 𝑢 italic-ϵ 𝜹 𝑢 superscript 𝜓 italic-ϵ 𝜂 𝝀 italic-ϵ 𝜹 𝜆 (u^{\epsilon},\eta^{\epsilon},\boldsymbol{\lambda}^{\epsilon})=(u+\epsilon% \boldsymbol{\delta}u,\psi^{\epsilon}\circ\eta,\boldsymbol{\lambda}+\epsilon% \boldsymbol{\delta}\lambda), ( italic_u start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT , italic_η start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT , bold_italic_λ start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT ) = ( italic_u + italic_ϵ bold_italic_δ italic_u , italic_ψ start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT ∘ italic_η , bold_italic_λ + italic_ϵ bold_italic_δ italic_λ ) ,

where ψ C ( [ - 1 , 1 ] × [ 0 , T ] ; Diff C ) 𝜓 superscript 𝐶 1 1 0 𝑇 subscript Diff superscript 𝐶 \psi\in C^{\infty}([-1,1]\times[0,T];\operatorname{Diff}_{C^{\infty}}) italic_ψ ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( [ - 1 , 1 ] × [ 0 , italic_T ] ; roman_Diff start_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) is defined to be the flow (in the t 𝑡 t italic_t -variable) given by

t ψ t ϵ X = ϵ t 𝜹 w t ( ψ t ϵ X ) , ψ 0 ϵ X = X M , formulae-sequence subscript 𝑡 subscript superscript 𝜓 italic-ϵ 𝑡 𝑋 italic-ϵ subscript 𝑡 𝜹 subscript 𝑤 𝑡 subscript superscript 𝜓 italic-ϵ 𝑡 𝑋 subscript superscript 𝜓 italic-ϵ 0 𝑋 𝑋 𝑀 \partial_{t}\psi^{\epsilon}_{t}X=\epsilon\partial_{t}\boldsymbol{\delta}w_{t}(% \psi^{\epsilon}_{t}X),\quad\psi^{\epsilon}_{0}X=X\in M, ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_ψ start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_X = italic_ϵ ∂ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT bold_italic_δ italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_ψ start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_X ) , italic_ψ start_POSTSUPERSCRIPT italic_ϵ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_X = italic_X ∈ italic_M ,

for arbitrarily chosen ( 𝜹 u , 𝜹 w , 𝜹 λ ) C T ( 𝔛 C × 𝔄 C × 𝔄 C ) 𝜹 𝑢 𝜹 𝑤 𝜹 𝜆 subscript superscript 𝐶 𝑇 subscript 𝔛 superscript 𝐶 subscript 𝔄 superscript 𝐶 subscript superscript 𝔄 superscript 𝐶 (\boldsymbol{\delta}u,\boldsymbol{\delta}w,\boldsymbol{\delta}\lambda)\in C^{% \infty}_{T}(\mathfrak{X}_{C^{\infty}}\times\mathfrak{A}_{C^{\infty}}\times% \mathfrak{A}^{\vee}_{C^{\infty}}) ( bold_italic_δ italic_u , bold_italic_δ italic_w , bold_italic_δ italic_λ ) ∈ italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ( fraktur_X start_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT × fraktur_A start_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT × fraktur_A start_POSTSUPERSCRIPT ∨ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) which vanishes at t = 0 𝑡 0 t=0 italic_t = 0 and t = T 𝑡 𝑇 t=T italic_t = italic_T ,


Definition 8 .

HCT2015 Let \ast be a binary operation on I 𝐼 I italic_I , \vartriangle be a t 𝑡 t italic_t -norm on I 𝐼 I italic_I , and \triangledown be a t 𝑡 t italic_t -conorm on I 𝐼 I italic_I . Define the binary operations \curlywedge and : 𝐌 2 𝐌 fragments : superscript 𝐌 2 M \curlyvee:\mathbf{M}^{2}\rightarrow\mathbf{M} ⋎ : bold_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → bold_M as follows: for f , g 𝐌 𝑓 𝑔 𝐌 f,g\in\mathbf{M} italic_f , italic_g ∈ bold_M ,

( f g ) ( x ) = sup { f ( y ) g ( z ) : y z = x } , 𝑓 𝑔 𝑥 supremum conditional-set 𝑓 𝑦 𝑔 𝑧 𝑦 𝑧 𝑥 (f\curlywedge g)(x)=\sup\left\{f(y)\ast g(z):y\vartriangle z=x\right\}, ( italic_f ⋏ italic_g ) ( italic_x ) = roman_sup { italic_f ( italic_y ) ∗ italic_g ( italic_z ) : italic_y △ italic_z = italic_x } , (1.1)

and

( f g ) ( x ) = sup { f ( y ) g ( z ) : y z = x } . 𝑓 𝑔 𝑥 supremum conditional-set 𝑓 𝑦 𝑔 𝑧 𝑦 𝑧 𝑥 (f\curlyvee g)(x)=\sup\left\{f(y)\ast g(z):y\ \triangledown\ z=x\right\}. ( italic_f ⋎ italic_g ) ( italic_x ) = roman_sup { italic_f ( italic_y ) ∗ italic_g ( italic_z ) : italic_y ▽ italic_z = italic_x } . (1.2)
Definition 16 .

Define a binary operation : 𝐌 2 𝐌 fragments not-and : superscript 𝐌 2 M \barwedge:\mathbf{M}^{2}\longrightarrow\mathbf{M} ⊼ : bold_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ⟶ bold_M as follows: for f , g 𝐌 𝑓 𝑔 𝐌 f,g\in\mathbf{M} italic_f , italic_g ∈ bold_M ,

( f g ) ( x ) = { ( f g ) ( x ) , x [ 0 , 1 ) , 0 , x = 1 . not-and 𝑓 𝑔 𝑥 cases square-intersection 𝑓 𝑔 𝑥 𝑥 0 1 0 𝑥 1 (f\barwedge g)(x)=\begin{cases}(f\sqcap g)(x),&x\in[0,1),\\ 0,&x=1.\end{cases} ( italic_f ⊼ italic_g ) ( italic_x ) = { start_ROW start_CELL ( italic_f ⊓ italic_g ) ( italic_x ) , end_CELL start_CELL italic_x ∈ [ 0 , 1 ) , end_CELL end_ROW start_ROW start_CELL 0 , end_CELL start_CELL italic_x = 1 . end_CELL end_ROW

Definition 1 .

Let G 𝐺 G italic_G be a group of order v 𝑣 v italic_v . A collection D 1 , D 2 , , D f subscript 𝐷 1 subscript 𝐷 2 subscript 𝐷 𝑓 D_{1},D_{2},\ldots,D_{f} italic_D start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_D start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT of f 𝑓 f italic_f subsets of G 𝐺 G italic_G with | D i | = k i subscript 𝐷 𝑖 subscript 𝑘 𝑖 |D_{i}|=k_{i} | italic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT | = italic_k start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is called a supplementary difference set in G 𝐺 G italic_G denoted by f 𝑓 f italic_f -SDS( v ; k 1 , , 𝑣 subscript 𝑘 1 v;k_{1},\ldots, italic_v ; italic_k start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , k f ; λ subscript 𝑘 𝑓 𝜆 k_{f};\lambda italic_k start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ; italic_λ ) if for each α G { e } 𝛼 𝐺 𝑒 \alpha\in G\setminus\{e\} italic_α ∈ italic_G ∖ { italic_e } , the constraint

α = x y - 1 , 𝛼 𝑥 superscript 𝑦 1 \alpha=xy^{-1}, italic_α = italic_x italic_y start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ,

where x , y D i 𝑥 𝑦 subscript 𝐷 𝑖 x,y\in D_{i} italic_x , italic_y ∈ italic_D start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for some i { 1 , 2 , , f } 𝑖 1 2 𝑓 i\in\{1,2,\ldots,f\} italic_i ∈ { 1 , 2 , … , italic_f } , has exactly λ 𝜆 \lambda italic_λ solutions.


Definition 2.3 .

A function f : [ 0 , ) normal-: 𝑓 normal-→ 0 f\colon\mathbb{N}\to[0,\infty) italic_f : blackboard_N → [ 0 , ∞ ) is log-affine when it satisfies

f 2 ( n ) = f ( n - 1 ) f ( n + 1 ) superscript 𝑓 2 𝑛 𝑓 𝑛 1 𝑓 𝑛 1 \displaystyle f^{2}(n)=f(n-1)f(n+1) italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_n ) = italic_f ( italic_n - 1 ) italic_f ( italic_n + 1 ) (5)

for all n 1 𝑛 1 n\geq 1 italic_n ≥ 1 and has contiguous support.


Definition 16 (Pairing function) .

If x , y 𝑥 𝑦 x,y\in\mathbb{N} italic_x , italic_y ∈ blackboard_N we define the pairing function x , y 𝑥 𝑦 \langle x,y\rangle ⟨ italic_x , italic_y ⟩ to be the following term in V 0 superscript 𝑉 0 V^{0} italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT :

x , y = ( x + y ) ( x + y + 1 ) + 2 y 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 1 2 𝑦 \langle x,y\rangle=(x+y)(x+y+1)+2y ⟨ italic_x , italic_y ⟩ = ( italic_x + italic_y ) ( italic_x + italic_y + 1 ) + 2 italic_y (10)

Since the formula for pairing function is just a term in standard vocabulary for the theory V 0 superscript 𝑉 0 V^{0} italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT , it is obvious that V 0 superscript 𝑉 0 V^{0} italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT proves the condition ( 7 ). It is also easy to prove in V 0 superscript 𝑉 0 V^{0} italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT that pairing function is a one-one function, that is:

V 0 x 1 , x 2 , y 1 , y 2 x 1 , y 1 = x 2 , y 2 x 1 = x 2 y 1 = y 2 proves superscript 𝑉 0 for-all subscript 𝑥 1 subscript 𝑥 2 subscript 𝑦 1 subscript 𝑦 2 subscript 𝑥 1 subscript 𝑦 1 subscript 𝑥 2 subscript 𝑦 2 subscript 𝑥 1 subscript 𝑥 2 subscript 𝑦 1 subscript 𝑦 2 V^{0}\vdash\forall x_{1},x_{2},y_{1},y_{2}\ \langle x_{1},y_{1}\rangle=\langle x% _{2},y_{2}\rangle\to x_{1}=x_{2}\wedge y_{1}=y_{2} italic_V start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ⊢ ∀ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟨ italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ⟩ = ⟨ italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ⟩ → italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_x start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∧ italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_y start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT (11)

Definition 26

The “discrete Lorentz transformation” expresses the F superscript 𝐹 normal-′ {F^{\prime}} italic_F start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT coordinates in terms of the F 𝐹 F italic_F coordinates as:

t = ( cosh ( ρ ) ) t - ( sinh ( ρ ) ) 𝐱 𝐮 , superscript 𝑡 𝜌 𝑡 𝜌 𝐱 𝐮 t^{\prime}=\left(\cosh\left(\rho\right)\right)t-\left(\sinh\left(\rho\right)% \right)\mathbf{x}\cdot\mathbf{u}, italic_t start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT = ( roman_cosh ( italic_ρ ) ) italic_t - ( roman_sinh ( italic_ρ ) ) bold_x ⋅ bold_u , (43)

where normal-⋅ {\cdot} denotes the standard (“dot”) inner product of vectors in n superscript 𝑛 {\mathbb{Z}^{n}} blackboard_Z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT .


Definition 1.1 .

Let 𝔽 𝔽 \mathbb{F} blackboard_F be an arbitrary field and fix q 𝔽 𝑞 𝔽 q\in\mathbb{F} italic_q ∈ blackboard_F and f , g 𝔽 [ h ] 𝑓 𝑔 𝔽 delimited-[] f,g\in\mathbb{F}[h] italic_f , italic_g ∈ blackboard_F [ italic_h ] . The quantum generalized Heisenberg algebra (qGHA, for short), denoted by q ( f , g ) subscript 𝑞 𝑓 𝑔 \mathcal{H}_{q}(f,g) caligraphic_H start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_f , italic_g ) , is the 𝔽 𝔽 \mathbb{F} blackboard_F -algebra generated by x 𝑥 x italic_x , y 𝑦 y italic_y and h h italic_h , with defining relations:

h x = x f ( h ) , y h = f ( h ) y , y x - q x y = g ( h ) . formulae-sequence 𝑥 𝑥 𝑓 formulae-sequence 𝑦 𝑓 𝑦 𝑦 𝑥 𝑞 𝑥 𝑦 𝑔 hx=xf(h),\quad yh=f(h)y,\quad yx-qxy=g(h). italic_h italic_x = italic_x italic_f ( italic_h ) , italic_y italic_h = italic_f ( italic_h ) italic_y , italic_y italic_x - italic_q italic_x italic_y = italic_g ( italic_h ) . (1.2)

Definition 2.2 .

h h italic_h is a step function taking the value α := 0.971239 assign 𝛼 0.971239 \alpha:=0.971239 italic_α := 0.971239 between [ 0 , x ) 0 𝑥 [0,x) [ 0 , italic_x ) and the value β := 0.873362 assign 𝛽 0.873362 \beta:=0.873362 italic_β := 0.873362 between [ x , 1 ] 𝑥 1 [x,1] [ italic_x , 1 ] where x := 0.236901 assign 𝑥 0.236901 x:=0.236901 italic_x := 0.236901 (Figure 1 ), i.e.

h ( σ ) = { 0.971239 if σ [ 0 , 0.236901 ) 0.873362 otherwise. 𝜎 cases 0.971239 if σ [ 0 , 0.236901 ) 0.873362 otherwise. \displaystyle h(\sigma)=\begin{cases*}0.971239&if $\sigma\in[0,0.236901)$\\ 0.873362&otherwise.\end{cases*} italic_h ( italic_σ ) = { start_ROW start_CELL 0.971239 end_CELL start_CELL if italic_σ ∈ [ 0 , 0.236901 ) end_CELL end_ROW start_ROW start_CELL 0.873362 end_CELL start_CELL otherwise. end_CELL end_ROW

Definition 3 (RGAS Observer) .

A robustly globally asymptotically stable (full-order state) observer for system ( 1 )-( 2 ) is a system defined by

x ~ ( t + 1 ) = g ( x ~ ( t ) , u ~ ( t ) , w ~ ( t ) , v ~ ( t ) , y ~ ( t ) ) ~ 𝑥 𝑡 1 𝑔 ~ 𝑥 𝑡 ~ 𝑢 𝑡 ~ 𝑤 𝑡 ~ 𝑣 𝑡 ~ 𝑦 𝑡 \displaystyle\tilde{x}(t+1)=g(\tilde{x}(t),\tilde{u}(t),\tilde{w}(t),\tilde{v}% (t),\tilde{y}(t)) ~ start_ARG italic_x end_ARG ( italic_t + 1 ) = italic_g ( ~ start_ARG italic_x end_ARG ( italic_t ) , ~ start_ARG italic_u end_ARG ( italic_t ) , ~ start_ARG italic_w end_ARG ( italic_t ) , ~ start_ARG italic_v end_ARG ( italic_t ) , ~ start_ARG italic_y end_ARG ( italic_t ) ) (8)

with g : 𝕏 × 𝕌 × 𝕎 × 𝕍 × 𝕐 𝕏 : 𝑔 𝕏 𝕌 𝕎 𝕍 𝕐 𝕏 {g:\mathbb{X}\times\mathbb{U}\times\mathbb{W}\times\mathbb{V}\times\mathbb{Y}% \rightarrow\mathbb{X}} italic_g : blackboard_X × blackboard_U × blackboard_W × blackboard_V × blackboard_Y → blackboard_X and x ~ : 𝕏 : ~ 𝑥 𝕏 {\tilde{x}:\mathbb{N}\rightarrow\mathbb{X}} ~ start_ARG italic_x end_ARG : blackboard_N → blackboard_X such that there exist β , β w , β v , β u , β y 𝒦 𝛽 subscript 𝛽 𝑤 subscript 𝛽 𝑣 subscript 𝛽 𝑢 subscript 𝛽 𝑦 𝒦 {\beta,\beta_{w},\beta_{v},\beta_{u},\beta_{y}\in\mathcal{KL}} italic_β , italic_β start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT , italic_β start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ∈ caligraphic_K caligraphic_L satisfying

| x ( t ) , x ~ ( t ) | fragments | x fragments ( t ) , ~ 𝑥 fragments ( t ) | \displaystyle|x(t),\tilde{x}(t)| | italic_x ( italic_t ) , ~ start_ARG italic_x end_ARG ( italic_t ) | max { β ( | x 0 , x ~ 0 | , t ) , fragments fragments { β fragments ( | subscript 𝑥 0 , subscript ~ 𝑥 0 | , t ) , \displaystyle\leq\max\{\beta(|x_{0},\tilde{x}_{0}|,t), ≤ roman_max { italic_β ( | italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , ~ start_ARG italic_x end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT | , italic_t ) , (9)
max 1 τ t { β w ( | w ( t - τ ) , w ~ ( t - τ ) | , τ ) , fragments subscript 1 𝜏 𝑡 fragments { subscript 𝛽 𝑤 fragments ( | w fragments ( t τ ) , ~ 𝑤 fragments ( t τ ) | , τ ) , \displaystyle\qquad\max_{1\leq\tau\leq t}\{\beta_{w}(|w(t-\tau),\tilde{w}(t-% \tau)|,\tau), roman_max start_POSTSUBSCRIPT 1 ≤ italic_τ ≤ italic_t end_POSTSUBSCRIPT { italic_β start_POSTSUBSCRIPT italic_w end_POSTSUBSCRIPT ( | italic_w ( italic_t - italic_τ ) , ~ start_ARG italic_w end_ARG ( italic_t - italic_τ ) | , italic_τ ) ,
β v ( | v ( t - τ ) , v ~ ( t - τ ) | , τ ) , fragments italic- subscript 𝛽 𝑣 fragments ( | v fragments ( t τ ) , ~ 𝑣 fragments ( t τ ) | , τ ) , \displaystyle\qquad\qquad\quad\beta_{v}(|v(t-\tau),\tilde{v}(t-\tau)|,\tau), italic_β start_POSTSUBSCRIPT italic_v end_POSTSUBSCRIPT ( | italic_v ( italic_t - italic_τ ) , ~ start_ARG italic_v end_ARG ( italic_t - italic_τ ) | , italic_τ ) ,
β u ( | u ( t - τ ) , u ~ ( t - τ ) | , τ ) , fragments italic- subscript 𝛽 𝑢 fragments ( | u fragments ( t τ ) , ~ 𝑢 fragments ( t τ ) | , τ ) , \displaystyle\qquad\qquad\quad\beta_{u}(|u(t-\tau),\tilde{u}(t-\tau)|,\tau), italic_β start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT ( | italic_u ( italic_t - italic_τ ) , ~ start_ARG italic_u end_ARG ( italic_t - italic_τ ) | , italic_τ ) ,
β y ( | y ( t - τ ) , y ~ ( t - τ ) | , τ ) } } fragments fragments italic- subscript 𝛽 𝑦 fragments ( | y fragments ( t τ ) , ~ 𝑦 fragments ( t τ ) | , τ ) } } \displaystyle\qquad\qquad\quad\beta_{y}(|y(t-\tau),\tilde{y}(t-\tau)|,\tau)\}\} italic_β start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( | italic_y ( italic_t - italic_τ ) , ~ start_ARG italic_y end_ARG ( italic_t - italic_τ ) | , italic_τ ) } }

for all t 𝑡 {t\in\mathbb{N}} italic_t ∈ blackboard_N , all solutions { x , u , w , v , y } 𝑥 𝑢 𝑤 𝑣 𝑦 {\{x,u,w,v,y\}} { italic_x , italic_u , italic_w , italic_v , italic_y } of ( 1 )-( 2 ) and all solutions { x ~ , u ~ , w ~ , v ~ , y ~ } ~ 𝑥 ~ 𝑢 ~ 𝑤 ~ 𝑣 ~ 𝑦 {\{\tilde{x},\tilde{u},\tilde{w},\tilde{v},\tilde{y}\}} { ~ start_ARG italic_x end_ARG , ~ start_ARG italic_u end_ARG , ~ start_ARG italic_w end_ARG , ~ start_ARG italic_v end_ARG , ~ start_ARG italic_y end_ARG } of ( 8 ).


Definition 2.7 .

[ 8 ] A function f : [ a , b ] α normal-: 𝑓 normal-→ 𝑎 𝑏 superscript 𝛼 f:[a,b]\to\mathbb{R}^{\alpha} italic_f : [ italic_a , italic_b ] → blackboard_R start_POSTSUPERSCRIPT italic_α end_POSTSUPERSCRIPT is said to be symmetric with respect to a + b 2 [ a , b ] 𝑎 𝑏 2 𝑎 𝑏 \frac{a+b}{2}\in[a,b] divide start_ARG italic_a + italic_b end_ARG start_ARG 2 end_ARG ∈ [ italic_a , italic_b ] , if

f ( x ) = f ( a + b - x ) 𝑓 𝑥 𝑓 𝑎 𝑏 𝑥 f(x)=f(a+b-x) italic_f ( italic_x ) = italic_f ( italic_a + italic_b - italic_x )

for all x [ a , b ] 𝑥 𝑎 𝑏 x\in[a,b] italic_x ∈ [ italic_a , italic_b ] .


Definition 1

A poset ( L , ) 𝐿 (L,\geq) ( italic_L , ≥ ) is said to be:
i) bounded if L 𝐿 L italic_L contains a minimum 0 and a maximum 𝕀 𝕀 {\mathbb{I}} blackboard_I ;
ii) orthocomplemented if L 𝐿 L italic_L is equipped with a map ¬ : L L normal-: normal-→ 𝐿 𝐿 \neg:L\rightarrow L ¬ : italic_L → italic_L , called orthocomplementation , satisfying:

a) ¬ ( ¬ p ) = p 𝑝 𝑝 \neg(\neg p)=p ¬ ( ¬ italic_p ) = italic_p for any p L 𝑝 𝐿 p\in L italic_p ∈ italic_L ,

b) p q ¬ q ¬ p 𝑝 𝑞 normal-⇒ 𝑞 𝑝 p\geq q\Rightarrow\neg q\geq\neg p italic_p ≥ italic_q ⇒ ¬ italic_q ≥ ¬ italic_p for any p , q L 𝑝 𝑞 𝐿 p,q\in L italic_p , italic_q ∈ italic_L ,

c) the greatest lower bound p ¬ p 𝑝 𝑝 p\wedge\neg p italic_p ∧ ¬ italic_p and the least upper bound p ¬ p 𝑝 𝑝 p\vee\neg p italic_p ∨ ¬ italic_p exist in L 𝐿 L italic_L and

p ¬ p = 0 𝑝 𝑝 0 p\wedge\neg p=0 italic_p ∧ ¬ italic_p = 0 , p ¬ p = 𝕀 𝑝 𝑝 𝕀 p\vee\neg p={\mathbb{I}} italic_p ∨ ¬ italic_p = blackboard_I ;
iii) σ 𝜎 \sigma italic_σ -orthocomplete if every countable set { p i } i subscript subscript 𝑝 𝑖 𝑖 \{p_{i}\}_{i\in{\mathbb{N}}} { italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT made by orthogonal elements, i.e. ¬ p i p j subscript 𝑝 𝑖 subscript 𝑝 𝑗 \neg p_{i}\geq p_{j} ¬ italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≥ italic_p start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT (written p i p j perpendicular-to subscript 𝑝 𝑖 subscript 𝑝 𝑗 p_{i}\perp p_{j} italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟂ italic_p start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ) for i j 𝑖 𝑗 i\not=j italic_i ≠ italic_j , admits least upper bound i p i L subscript 𝑖 subscript 𝑝 𝑖 𝐿 \vee_{i\in{\mathbb{N}}}p_{i}\in L ∨ start_POSTSUBSCRIPT italic_i ∈ blackboard_N end_POSTSUBSCRIPT italic_p start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ italic_L .
iv) orthomodular if L 𝐿 L italic_L is orthocomplemented and q p 𝑞 𝑝 q\geq p italic_q ≥ italic_p implies q = p ( ¬ p q ) 𝑞 𝑝 𝑝 𝑞 q=p\vee(\neg p\wedge q) italic_q = italic_p ∨ ( ¬ italic_p ∧ italic_q ) .
Two elements p , q L 𝑝 𝑞 𝐿 p,q\in L italic_p , italic_q ∈ italic_L are called compatible if p = r 1 r 3 𝑝 subscript 𝑟 1 subscript 𝑟 3 p=r_{1}\vee r_{3} italic_p = italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∨ italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT and q = r 2 r 3 𝑞 subscript 𝑟 2 subscript 𝑟 3 q=r_{2}\vee r_{3} italic_q = italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∨ italic_r start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT with r i r j perpendicular-to subscript 𝑟 𝑖 subscript 𝑟 𝑗 r_{i}\perp r_{j} italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ⟂ italic_r start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT for i j 𝑖 𝑗 i\not=j italic_i ≠ italic_j .
A poset ( L , ) 𝐿 (L,\geq) ( italic_L , ≥ ) is a lattice if for any p , q L 𝑝 𝑞 𝐿 p,q\in L italic_p , italic_q ∈ italic_L the greatest lower bound p q 𝑝 𝑞 p\wedge q italic_p ∧ italic_q and the least upper bound p q 𝑝 𝑞 p\vee q italic_p ∨ italic_q exist.
A lattice ( L , ) 𝐿 (L,\geq) ( italic_L , ≥ ) is said to be distributive if

p ( q r ) = ( p q ) ( p r ) 𝑎𝑛𝑑 p ( q r ) = ( p q ) ( p r ) formulae-sequence 𝑝 𝑞 𝑟 𝑝 𝑞 𝑝 𝑟 𝑎𝑛𝑑 𝑝 𝑞 𝑟 𝑝 𝑞 𝑝 𝑟 \displaystyle p\vee(q\wedge r)=(p\vee q)\wedge(p\vee r)\qquad\mbox{and}\qquad p% \wedge(q\vee r)=(p\wedge q)\vee(p\wedge r) italic_p ∨ ( italic_q ∧ italic_r ) = ( italic_p ∨ italic_q ) ∧ ( italic_p ∨ italic_r ) and italic_p ∧ ( italic_q ∨ italic_r ) = ( italic_p ∧ italic_q ) ∨ ( italic_p ∧ italic_r ) (5)

for any p , q , r L 𝑝 𝑞 𝑟 𝐿 p,q,r\in L italic_p , italic_q , italic_r ∈ italic_L .
A Boolean algebra is a lattice that is distributive, bounded, orthocomplemented (hence orthomodular). A Boolean σ normal-σ \sigma italic_σ -algebra is a Boolean algebra such that any countable subset admits least upper bound.


4.15 Definition .

If S 𝑆 S italic_S and T 𝑇 T italic_T are semialgebras, then a semialgebra homomorphism from S 𝑆 S italic_S to T 𝑇 T italic_T is a map ϕ : S T normal-: italic-ϕ normal-→ 𝑆 𝑇 \phi:S\to T italic_ϕ : italic_S → italic_T which preserves addition, multiplication, and scalar multiplication: for all x , y S 𝑥 𝑦 𝑆 x,y\in S italic_x , italic_y ∈ italic_S and r + 𝑟 subscript r\in\mathbb{R}_{+} italic_r ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT ,

ϕ ( x + y ) = ϕ ( x ) + ϕ ( y ) , ϕ ( x y ) = ϕ ( x ) ϕ ( y ) , ϕ ( r x ) = r ϕ ( x ) , formulae-sequence italic-ϕ 𝑥 𝑦 italic-ϕ 𝑥 italic-ϕ 𝑦 formulae-sequence italic-ϕ 𝑥 𝑦 italic-ϕ 𝑥 italic-ϕ 𝑦 italic-ϕ 𝑟 𝑥 𝑟 italic-ϕ 𝑥 \phi(x+y)=\phi(x)+\phi(y),\qquad\phi(xy)=\phi(x)\phi(y),\qquad\phi(rx)=r\phi(x), italic_ϕ ( italic_x + italic_y ) = italic_ϕ ( italic_x ) + italic_ϕ ( italic_y ) , italic_ϕ ( italic_x italic_y ) = italic_ϕ ( italic_x ) italic_ϕ ( italic_y ) , italic_ϕ ( italic_r italic_x ) = italic_r italic_ϕ ( italic_x ) ,

as well as the neutral elements, ϕ ( 0 ) = 0 italic-ϕ 0 0 \phi(0)=0 italic_ϕ ( 0 ) = 0 and ϕ ( 1 ) = 1 italic-ϕ 1 1 \phi(1)=1 italic_ϕ ( 1 ) = 1 .


Definition 1 .

Let B 𝐵 B italic_B be a set with two operations + + + and \circ such that ( B , + ) 𝐵 \left(B,+\right) ( italic_B , + ) is a semigroup and ( B , ) 𝐵 \left(B,\circ\right) ( italic_B , ∘ ) is a group. Then, ( B , + , ) 𝐵 \left(B,+,\circ\right) ( italic_B , + , ∘ ) is said to be a left semi-brace if

a ( b + c ) = a b + a ( a - + c ) , 𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 superscript 𝑎 𝑐 \displaystyle a\circ\left(b+c\right)=a\circ b+a\circ\left(a^{-}+c\right), italic_a ∘ ( italic_b + italic_c ) = italic_a ∘ italic_b + italic_a ∘ ( italic_a start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + italic_c ) ,

for all a , b , c B 𝑎 𝑏 𝑐 𝐵 a,b,c\in B italic_a , italic_b , italic_c ∈ italic_B , where a - superscript 𝑎 a^{-} italic_a start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT is the inverse of a 𝑎 a italic_a in ( B , ) 𝐵 \left(B,\circ\right) ( italic_B , ∘ ) .

Definition 7 .

Let S 𝑆 S italic_S be a set with two operations + + + and \circ such that ( S , + ) 𝑆 \left(S,+\right) ( italic_S , + ) is a semigroup (not necessarily commutative) and ( S , ) 𝑆 \left(S,\circ\right) ( italic_S , ∘ ) is a completely regular semigroup. Then, we say that ( S , + , ) 𝑆 \left(S,+,\circ\right) ( italic_S , + , ∘ ) is a generalized left semi-brace if

a ( b + c ) = a b + a ( a - + c ) , 𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 superscript 𝑎 𝑐 \displaystyle a\circ\left(b+c\right)=a\circ b+a\circ\left(a^{-}+c\right), italic_a ∘ ( italic_b + italic_c ) = italic_a ∘ italic_b + italic_a ∘ ( italic_a start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT + italic_c ) , (4)

for all a , b , c S 𝑎 𝑏 𝑐 𝑆 a,b,c\in S italic_a , italic_b , italic_c ∈ italic_S . We call ( S , + ) 𝑆 (S,+) ( italic_S , + ) and ( S , ) 𝑆 (S,\circ) ( italic_S , ∘ ) the additive semigroup and the multiplicative semigroup of S 𝑆 S italic_S , respectively.
A generalized right semi-brace is defined similarly, replacing condition ( 4 ) by

( a + b ) c = ( a + c - ) c + b c , 𝑎 𝑏 𝑐 𝑎 superscript 𝑐 𝑐 𝑏 𝑐 \displaystyle\left(a+b\right)\circ c=\left(a+c^{-}\right)\circ c+b\circ c, ( italic_a + italic_b ) ∘ italic_c = ( italic_a + italic_c start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ) ∘ italic_c + italic_b ∘ italic_c , (5)

for all a , b , c S 𝑎 𝑏 𝑐 𝑆 a,b,c\in S italic_a , italic_b , italic_c ∈ italic_S .
A generalized two-sided semi-brace is a generalized left semi-brace that is also a generalized right semi-brace with respect to the same pair of operations.


Definition 2.16 .

Let ( 𝔤 , [ . , . , . ] , α , β ) fragments normal-( g normal-, fragments normal-[ normal-. normal-, normal-. normal-, normal-. normal-] normal-, α normal-, β normal-) (\mathfrak{g},[.,.,.],\alpha,\beta) ( fraktur_g , [ . , . , . ] , italic_α , italic_β ) and ( 𝔤 , [ . , . , . ] , α , β ) fragments normal-( superscript 𝔤 normal-′ normal-, superscript fragments normal-[ normal-. normal-, normal-. normal-, normal-. normal-] normal-′ normal-, superscript 𝛼 normal-′ normal-, superscript 𝛽 normal-′ normal-) (\mathfrak{g}^{\prime},[.,.,.]^{\prime},\alpha^{\prime},\beta^{\prime}) ( fraktur_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , [ . , . , . ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) be two 3 3 3 3 -Bihom-Lie superalgebra. A homomorphism f : 𝔤 𝔤 normal-: 𝑓 normal-⟶ 𝔤 superscript 𝔤 normal-′ f:\mathfrak{g}\longrightarrow\mathfrak{g}^{\prime} italic_f : fraktur_g ⟶ fraktur_g start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT is said to be morphism of 3 3 3 3 -Bihom-Lie superalgebra if

f ( [ x , y , z ] ) = [ f ( x ) , f ( y ) , f ( z ) ] , x , y , z 𝔤 , f α = α f f β = β f . formulae-sequence 𝑓 𝑥 𝑦 𝑧 superscript 𝑓 𝑥 𝑓 𝑦 𝑓 𝑧 for-all 𝑥 𝑦 𝑧 𝔤 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression 𝑓 𝛼 superscript 𝛼 𝑓 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression 𝑓 𝛽 superscript 𝛽 𝑓 missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression missing-subexpression \begin{array}[]{llllllll}f([x,y,z])=[f(x),f(y),f(z)]^{\prime},~{}\forall x,y,z% \in\mathfrak{g},\\ f\circ\alpha=\alpha^{\prime}\circ f\\ f\circ\beta=\beta^{\prime}\circ f.\end{array} start_ARRAY start_ROW start_CELL italic_f ( [ italic_x , italic_y , italic_z ] ) = [ italic_f ( italic_x ) , italic_f ( italic_y ) , italic_f ( italic_z ) ] start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , ∀ italic_x , italic_y , italic_z ∈ fraktur_g , end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_f ∘ italic_α = italic_α start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_f ∘ italic_β = italic_β start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∘ italic_f . end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL start_CELL end_CELL end_ROW end_ARRAY

Definition 7 ( AG1981 )

The pair ( A , ) 𝐴 (A,\triangleright) ( italic_A , ▷ ) is a pre-Lie algebra if and only if for any x , y A 𝑥 𝑦 𝐴 x,y\in A italic_x , italic_y ∈ italic_A , the identity [ L x , L y ] = L [ x , y ] subscript subscript 𝐿 𝑥 subscript 𝐿 𝑦 subscript 𝐿 subscript 𝑥 𝑦 [L_{x},L_{y}]_{\circ}=L_{[x,y]_{\triangleright}} [ italic_L start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT , italic_L start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ] start_POSTSUBSCRIPT ∘ end_POSTSUBSCRIPT = italic_L start_POSTSUBSCRIPT [ italic_x , italic_y ] start_POSTSUBSCRIPT ▷ end_POSTSUBSCRIPT end_POSTSUBSCRIPT holds, which is equivalent to the (left) pre-Lie relation

x ( y z ) - ( x y ) z = y ( x z ) - ( y x ) z . 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 𝑦 𝑥 𝑧 x\triangleright(y\triangleright z)-(x\triangleright y)\triangleright z=y% \triangleright(x\triangleright z)-(y\triangleright x)\triangleright z. italic_x ▷ ( italic_y ▷ italic_z ) - ( italic_x ▷ italic_y ) ▷ italic_z = italic_y ▷ ( italic_x ▷ italic_z ) - ( italic_y ▷ italic_x ) ▷ italic_z .

Definition 2.4 .

Let σ : G × Ω H : 𝜎 𝐺 Ω 𝐻 \sigma:G\times\Omega\rightarrow H italic_σ : italic_G × roman_Ω → italic_H be a measurable cocycle. A (generalized) boundary map is a measurable map ϕ : G / Q × Ω Y : italic-ϕ 𝐺 𝑄 Ω 𝑌 \phi:G/Q\times\Omega\rightarrow Y italic_ϕ : italic_G / italic_Q × roman_Ω → italic_Y which is σ 𝜎 \sigma italic_σ -equivariant, that is

ϕ ( g ξ , g s ) = σ ( g , s ) ϕ ( ξ , s ) , italic-ϕ 𝑔 𝜉 𝑔 𝑠 𝜎 𝑔 𝑠 italic-ϕ 𝜉 𝑠 \phi(g\xi,gs)=\sigma(g,s)\phi(\xi,s)\ , italic_ϕ ( italic_g italic_ξ , italic_g italic_s ) = italic_σ ( italic_g , italic_s ) italic_ϕ ( italic_ξ , italic_s ) ,

for every g G 𝑔 𝐺 g\in G italic_g ∈ italic_G and almost every ξ G / Q , s Ω formulae-sequence 𝜉 𝐺 𝑄 𝑠 Ω \xi\in G/Q,s\in\Omega italic_ξ ∈ italic_G / italic_Q , italic_s ∈ roman_Ω .


Definition 6.9 .

( cf. [ 15 ] ) Let 𝐏 = ( P , , , 0 , 1 ) fragments P fragments normal-( P normal-, normal-, superscript normal-, normal-′ 0 normal-, 1 normal-) \mathbf{P}=(P,\leq,{}^{\prime},0,1) bold_P = ( italic_P , ≤ , start_FLOATSUPERSCRIPT ′ end_FLOATSUPERSCRIPT , 0 , 1 ) be an orthomodular poset. Then 𝐏 𝐏 \mathbf{P} bold_P is called weakly Boolean if the following condition holds:

( x , y P 𝑥 𝑦 𝑃 x,y\in P italic_x , italic_y ∈ italic_P ) . Further, 𝐏 𝐏 \mathbf{P} bold_P is said to have the property of maximality if for all x , y P 𝑥 𝑦 𝑃 x,y\in P italic_x , italic_y ∈ italic_P the set L ( x , y ) 𝐿 𝑥 𝑦 L(x,y) italic_L ( italic_x , italic_y ) has a maximal element.


Definition 34 .

Let G 𝐺 G italic_G be a group action on the sets X 𝑋 X italic_X , Y 𝑌 Y italic_Y . A function f : X Y normal-: 𝑓 normal-→ 𝑋 𝑌 f:X\to Y italic_f : italic_X → italic_Y is called G 𝐺 G italic_G -linear if

f ( g x ) = g f ( x ) 𝑓 𝑔 𝑥 𝑔 𝑓 𝑥 f(gx)=gf(x) italic_f ( italic_g italic_x ) = italic_g italic_f ( italic_x )

holds for all x X 𝑥 𝑋 x\in X italic_x ∈ italic_X and g G 𝑔 𝐺 g\in G italic_g ∈ italic_G . If G 𝐺 G italic_G acts trivially on Y 𝑌 Y italic_Y , we call f 𝑓 f italic_f G 𝐺 G italic_G -invariant .


Definition 0 (Consistent message set).

A message set \mathcal{M} caligraphic_M is consistent if

for any two value-path pairs ( x , p ) , ( x , p ) , i n i t ( p ) = i n i t ( p ) x = x formulae-sequence for any two value-path pairs 𝑥 𝑝 superscript 𝑥 superscript 𝑝 𝑖 𝑛 𝑖 𝑡 𝑝 𝑖 𝑛 𝑖 𝑡 superscript 𝑝 𝑥 superscript 𝑥 \text{for any two value-path pairs}~{}(x,p),(x^{\prime},p^{\prime})\in\mathcal% {M},~{}~{}~{}~{}init(p)=init(p^{\prime})~{}\Rightarrow~{}x=x^{\prime} for any two value-path pairs ( italic_x , italic_p ) , ( italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT , italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ∈ caligraphic_M , italic_i italic_n italic_i italic_t ( italic_p ) = italic_i italic_n italic_i italic_t ( italic_p start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) ⇒ italic_x = italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT

Definition 1 .

A function f : 𝔽 2 n 𝔽 2 n : 𝑓 subscript 𝔽 superscript 2 𝑛 subscript 𝔽 superscript 2 𝑛 f\colon\mathbb{F}_{2^{n}}\to\mathbb{F}_{2^{n}} italic_f : blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT → blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT is called almost perfect nonlinear (APN) if the equation

f ( x + a ) + f ( x ) = b 𝑓 𝑥 𝑎 𝑓 𝑥 𝑏 f(x+a)+f(x)=b italic_f ( italic_x + italic_a ) + italic_f ( italic_x ) = italic_b

has exactly 0 0 or 2 2 2 2 solutions for any b 𝔽 2 n 𝑏 subscript 𝔽 superscript 2 𝑛 b\in\mathbb{F}_{2^{n}} italic_b ∈ blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and any nonzero a 𝔽 2 n 𝑎 subscript 𝔽 superscript 2 𝑛 a\in\mathbb{F}_{2^{n}} italic_a ∈ blackboard_F start_POSTSUBSCRIPT 2 start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .


Definition 1.1 .

A k 𝑘 k italic_k -algebra J 𝐽 J italic_J satisfying the identities

  1. (1)

    x y = y x 𝑥 𝑦 𝑦 𝑥 xy=yx italic_x italic_y = italic_y italic_x ,

  2. (2)

    ( x 2 y ) x = x 2 ( y x ) superscript 𝑥 2 𝑦 𝑥 superscript 𝑥 2 𝑦 𝑥 (x^{2}y)x=x^{2}(yx) ( italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y ) italic_x = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_y italic_x )

for all x , y J 𝑥 𝑦 𝐽 x,y\in J italic_x , italic_y ∈ italic_J is called a Jordan algebra.

Definition 2.1 (See [ 9 ] ) .

A vector space V 𝑉 V italic_V over a field k 𝑘 k italic_k containg 1 2 1 2 \tfrac{1}{2} divide start_ARG 1 end_ARG start_ARG 2 end_ARG is called a Jordan triple system if it admits a trilinear product { , , } : V 3 V fragments fragments { , , } : superscript 𝑉 3 V \{\ ,\ ,\}:V^{3}\rightarrow V { , , } : italic_V start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT → italic_V that is symmetric in the outer variables, while satisfying the identities

  1. (1)

    { a , b , { a , c , a } } = { a , { b , a , c } , a } 𝑎 𝑏 𝑎 𝑐 𝑎 𝑎 𝑏 𝑎 𝑐 𝑎 \{a,b,\{a,c,a\}\}=\{a,\{b,a,c\},a\} { italic_a , italic_b , { italic_a , italic_c , italic_a } } = { italic_a , { italic_b , italic_a , italic_c } , italic_a } ,

  2. (2)

    { { a , b , a } , b , c } = { a , { b , a , b } , c } 𝑎 𝑏 𝑎 𝑏 𝑐 𝑎 𝑏 𝑎 𝑏 𝑐 \{\{a,b,a\},b,c\}=\{a,\{b,a,b\},c\} { { italic_a , italic_b , italic_a } , italic_b , italic_c } = { italic_a , { italic_b , italic_a , italic_b } , italic_c } ,

  3. (3)

    { a , { b , { a , c , a } , b } , a } = { { a , b , a } , c , { a , b , a } } 𝑎 𝑏 𝑎 𝑐 𝑎 𝑏 𝑎 𝑎 𝑏 𝑎 𝑐 𝑎 𝑏 𝑎 \{a,\{b,\{a,c,a\},b\},a\}=\{\{a,b,a\},c,\{a,b,a\}\} { italic_a , { italic_b , { italic_a , italic_c , italic_a } , italic_b } , italic_a } = { { italic_a , italic_b , italic_a } , italic_c , { italic_a , italic_b , italic_a } }

for any a , b , c V 𝑎 𝑏 𝑐 𝑉 a,b,c\in V italic_a , italic_b , italic_c ∈ italic_V .


Definition 3

For the induced graph G = { V , E } 𝐺 𝑉 𝐸 G=\{V,E\} italic_G = { italic_V , italic_E } , a non-reversal path p = { i 0 , i 1 , i 2 , , i k } 𝑝 subscript 𝑖 0 subscript 𝑖 1 subscript 𝑖 2 normal-… subscript 𝑖 𝑘 p=\{i_{0},i_{1},i_{2},\ldots,i_{k}\} italic_p = { italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT } is a path such that i + 2 i ( ) subscript 𝑖 normal-ℓ 2 superscript 𝑖 normal-ℓ i_{\ell+2}\neq i^{(\ell)} italic_i start_POSTSUBSCRIPT roman_ℓ + 2 end_POSTSUBSCRIPT ≠ italic_i start_POSTSUPERSCRIPT ( roman_ℓ ) end_POSTSUPERSCRIPT for all = 0 , 1 , , k - 2 normal-ℓ 0 1 normal-… 𝑘 2 \ell=0,1,\ldots,k-2 roman_ℓ = 0 , 1 , … , italic_k - 2 . For each i V 𝑖 𝑉 i\in V italic_i ∈ italic_V , denote by P i ( k ) superscript subscript 𝑃 𝑖 𝑘 P_{i}^{(k)} italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT the set of all non-reversal paths of length k 𝑘 k italic_k in G 𝐺 G italic_G terminated at node i 𝑖 i italic_i . Define, for each path p = { i 0 , i 1 , i 2 , , i k - 1 , i } P i ( k ) 𝑝 subscript 𝑖 0 subscript 𝑖 1 subscript 𝑖 2 normal-… subscript 𝑖 𝑘 1 𝑖 superscript subscript 𝑃 𝑖 𝑘 p=\{i_{0},i_{1},i_{2},\ldots,i_{k-1},i\}\in P_{i}^{(k)} italic_p = { italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_i start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_i start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT , italic_i } ∈ italic_P start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_k ) end_POSTSUPERSCRIPT , the path gain g ( p ) = ϱ i 0 ϱ i 1 ϱ i k - 1 𝑔 𝑝 subscript italic-ϱ subscript 𝑖 0 subscript italic-ϱ subscript 𝑖 1 normal-… subscript italic-ϱ subscript 𝑖 𝑘 1 g(p)=\varrho_{i_{0}}\varrho_{i_{1}}\ldots\varrho_{i_{k-1}} italic_g ( italic_p ) = italic_ϱ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_ϱ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT … italic_ϱ start_POSTSUBSCRIPT italic_i start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT . The path p 𝑝 p italic_p is called a simple loop if i 0 = i subscript 𝑖 0 𝑖 i_{0}=i italic_i start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_i and i i subscript 𝑖 normal-ℓ 𝑖 i_{\ell}\neq i italic_i start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT ≠ italic_i for all = 1 , 2 , , k - 1 normal-ℓ 1 2 normal-… 𝑘 1 \ell=1,2,\ldots,k-1 roman_ℓ = 1 , 2 , … , italic_k - 1 . Further define the loop gain per node for each simple loop p 𝑝 p italic_p as

λ ( p ) = ( g ( p ) ) 1 / k 𝜆 𝑝 superscript 𝑔 𝑝 1 𝑘 \displaystyle\lambda(p)=(g(p))^{1/k} italic_λ ( italic_p ) = ( italic_g ( italic_p ) ) start_POSTSUPERSCRIPT 1 / italic_k end_POSTSUPERSCRIPT (23)

and denote the maximum loop gain per node , λ subscript 𝜆 normal-⋆ \lambda_{\star} italic_λ start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT , as the largest loop gain per node among all the simple loops in G 𝐺 G italic_G , i.e.,

λ subscript 𝜆 \displaystyle\lambda_{\star} italic_λ start_POSTSUBSCRIPT ⋆ end_POSTSUBSCRIPT = max { λ ( p ) : p is a simple loop in G } . absent : 𝜆 𝑝 𝑝 is a simple loop in 𝐺 \displaystyle=\max\{\lambda(p):\ p\mathrm{\ is\ a\ simple\ loop\ in\ }G\}. = roman_max { italic_λ ( italic_p ) : italic_p roman_is roman_a roman_simple roman_loop roman_in italic_G } .

Definition 2 .

Representatives for the 3 3 3 3 -capitulation types are arranged in the following sections:

Fixed point capitulation ker ( T i ) = N i kernel subscript 𝑇 𝑖 subscript 𝑁 𝑖 \ker(T_{i})=N_{i} roman_ker ( italic_T start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) = italic_N start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , i.e. ϰ ( i ) = i italic-ϰ 𝑖 𝑖 \varkappa(i)=i italic_ϰ ( italic_i ) = italic_i , is always marked by using boldface font.


Definition 2.1 .

A (fully connected and feed-forward) neural network of L 𝐿 L italic_L hidden layers takes an input vector x N 0 𝑥 superscript subscript 𝑁 0 x\in{\mathbb{R}}^{N_{0}} italic_x ∈ blackboard_R start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , outputs a vector y N L + 1 𝑦 superscript subscript 𝑁 𝐿 1 y\in{\mathbb{R}}^{N_{L+1}} italic_y ∈ blackboard_R start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT italic_L + 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and has L 𝐿 L italic_L hidden layers of sizes N 1 , N 2 , N L subscript 𝑁 1 subscript 𝑁 2 normal-⋯ subscript 𝑁 𝐿 N_{1},N_{2},\cdots N_{L} italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , ⋯ italic_N start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT . The neural network is parametrized by the weight matrices W N - 1 × N superscript 𝑊 normal-ℓ superscript subscript 𝑁 normal-ℓ 1 subscript 𝑁 normal-ℓ W^{\ell}\in{\mathbb{R}}^{N_{\ell-1}\times N_{\ell}} italic_W start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT ∈ blackboard_R start_POSTSUPERSCRIPT italic_N start_POSTSUBSCRIPT roman_ℓ - 1 end_POSTSUBSCRIPT × italic_N start_POSTSUBSCRIPT roman_ℓ end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and bias vectors b superscript 𝑏 normal-ℓ b^{\ell} italic_b start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT with = 1 , 2 , , L + 1 normal-ℓ 1 2 normal-⋯ 𝐿 1 \ell=1,2,\cdots,L+1 roman_ℓ = 1 , 2 , ⋯ , italic_L + 1 . The output y 𝑦 y italic_y is defined from the input x 𝑥 x italic_x iteratively according to the following.

x 0 = x , superscript 𝑥 0 𝑥 \displaystyle x^{0}=x, italic_x start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = italic_x , (2.1)
x = σ ( W - 1 x - 1 + b - 1 ) , 1 L formulae-sequence superscript 𝑥 𝜎 superscript 𝑊 1 superscript 𝑥 1 superscript 𝑏 1 1 𝐿 \displaystyle x^{\ell}=\sigma(W^{\ell-1}x^{\ell-1}+b^{\ell-1}),\ 1\leq\ell\leq L italic_x start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT = italic_σ ( italic_W start_POSTSUPERSCRIPT roman_ℓ - 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT roman_ℓ - 1 end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT roman_ℓ - 1 end_POSTSUPERSCRIPT ) , 1 ≤ roman_ℓ ≤ italic_L
y = W L x L + b L . 𝑦 superscript 𝑊 𝐿 superscript 𝑥 𝐿 superscript 𝑏 𝐿 \displaystyle y=W^{L}x^{L}+b^{L}. italic_y = italic_W start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT + italic_b start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT .

Here σ 𝜎 \sigma italic_σ is a (nonlinear) activation function which acts on a vector x 𝑥 x italic_x component-wisely, i.e. [ σ ( x ) ] i = σ ( x i ) subscript delimited-[] 𝜎 𝑥 𝑖 𝜎 subscript 𝑥 𝑖 [\sigma(x)]_{i}=\sigma(x_{i}) [ italic_σ ( italic_x ) ] start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_σ ( italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) . When N 1 = N 2 = = N L = N subscript 𝑁 1 subscript 𝑁 2 normal-⋯ subscript 𝑁 𝐿 𝑁 N_{1}=N_{2}=\cdots=N_{L}=N italic_N start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_N start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ⋯ = italic_N start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT = italic_N , we say the network network has width N 𝑁 N italic_N and depth L 𝐿 L italic_L . The neural network is said to be a deep neural network (DNN) if L 2 𝐿 2 L\geq 2 italic_L ≥ 2 . The function defined by the deep neural network is denoted by DNN ( { W , b } = 1 L + 1 ) normal-DNN superscript subscript superscript 𝑊 normal-ℓ superscript 𝑏 normal-ℓ normal-ℓ 1 𝐿 1 {\mathrm{DNN}}(\{W^{\ell},b^{\ell}\}_{\ell=1}^{L+1}) roman_DNN ( { italic_W start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT , italic_b start_POSTSUPERSCRIPT roman_ℓ end_POSTSUPERSCRIPT } start_POSTSUBSCRIPT roman_ℓ = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L + 1 end_POSTSUPERSCRIPT ) .


Definition 2.1 .

Let R 𝑅 R italic_R denote a commutative Noetherian ring. The grade of a proper ideal I 𝐼 I italic_I is the length of the longest regular sequence on R 𝑅 R italic_R in I 𝐼 I italic_I . An ideal I 𝐼 I italic_I is perfect if grade ( I ) = pd R ( I ) grade 𝐼 subscript pd 𝑅 𝐼 \operatorname{grade}(I)=\operatorname{pd}_{R}(I) roman_grade ( italic_I ) = roman_pd start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_I ) (the projective dimension). An ideal of grade g 𝑔 g italic_g is called Gorenstein if it is perfect and Ext R g ( R / I , R ) = R / I superscript subscript Ext 𝑅 𝑔 𝑅 𝐼 𝑅 𝑅 𝐼 \operatorname{Ext}_{R}^{g}(R/I,R)=R/I roman_Ext start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_g end_POSTSUPERSCRIPT ( italic_R / italic_I , italic_R ) = italic_R / italic_I .

A complex F : F 2 F 1 F 0 0 : subscript 𝐹 subscript 𝐹 2 subscript 𝐹 1 subscript 𝐹 0 0 F_{\bullet}:\cdots\to F_{2}\to F_{1}\to F_{0}\to 0 italic_F start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT : ⋯ → italic_F start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT → italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT → italic_F start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT → 0 is called acyclic if the only nonzero homology occurs at the 0 0 th position. We say F subscript 𝐹 F_{\bullet} italic_F start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT is a free resolution of R / I 𝑅 𝐼 R/I italic_R / italic_I if H 0 ( F ) = R / I subscript 𝐻 0 subscript 𝐹 𝑅 𝐼 H_{0}(F_{\bullet})=R/I italic_H start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_F start_POSTSUBSCRIPT ∙ end_POSTSUBSCRIPT ) = italic_R / italic_I and all F i subscript 𝐹 𝑖 F_{i} italic_F start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are free.

Let F 𝐹 F italic_F denote a free R 𝑅 R italic_R -module. Then D 2 ( F ) subscript 𝐷 2 𝐹 D_{2}(F) italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_F ) denotes the degree 2 2 2 2 piece of the divided power algebra on F 𝐹 F italic_F . Recall that by the divided power algebra structure, given x , x F 𝑥 superscript 𝑥 𝐹 x,\ x^{\prime}\in F italic_x , italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ∈ italic_F ,

( x + x ) ( 2 ) = x ( 2 ) + x x + x ( 2 ) superscript 𝑥 superscript 𝑥 2 superscript 𝑥 2 𝑥 superscript 𝑥 superscript 𝑥 2 (x+x^{\prime})^{(2)}=x^{(2)}+x\cdot x^{\prime}+x^{\prime(2)} ( italic_x + italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT + italic_x ⋅ italic_x start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT + italic_x start_POSTSUPERSCRIPT ′ ( 2 ) end_POSTSUPERSCRIPT

whence it suffices to determine the action of a homomorphism with domain D 2 ( F ) subscript 𝐷 2 𝐹 D_{2}(F) italic_D start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_F ) on elements of the form x ( 2 ) superscript 𝑥 2 x^{(2)} italic_x start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT .

We say that a pairing A R B C subscript tensor-product 𝑅 𝐴 𝐵 𝐶 A\otimes_{R}B\to C italic_A ⊗ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT italic_B → italic_C is perfect if the induced maps

A Hom R ( B , C ) B Hom R ( A , C ) formulae-sequence 𝐴 subscript Hom 𝑅 𝐵 𝐶 𝐵 subscript Hom 𝑅 𝐴 𝐶 A\to\operatorname{Hom}_{R}(B,C)\quad B\to\operatorname{Hom}_{R}(A,C) italic_A → roman_Hom start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_B , italic_C ) italic_B → roman_Hom start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( italic_A , italic_C )

are isomorphisms.


Definition 8.4 .

Recall the element ρ = 1 2 α R + α 𝜌 1 2 subscript 𝛼 subscript 𝑅 𝛼 \rho=\frac{1}{2}\sum_{\alpha\in R_{+}}\alpha italic_ρ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG ∑ start_POSTSUBSCRIPT italic_α ∈ italic_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_α . The dot action of the finite Weyl group W f subscript 𝑊 f W_{\text{f}} italic_W start_POSTSUBSCRIPT f end_POSTSUBSCRIPT on 𝔥 * superscript 𝔥 \mathfrak{h}^{*} fraktur_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT (or on 𝔛 𝔛 \mathfrak{X} fraktur_X ) is given by

x λ = x ( λ + ρ ) - ρ . 𝑥 𝜆 𝑥 𝜆 𝜌 𝜌 x\bullet\lambda=x(\lambda+\rho)-\rho. italic_x ∙ italic_λ = italic_x ( italic_λ + italic_ρ ) - italic_ρ .

In words, this shifts the standard action of W f subscript 𝑊 f W_{\text{f}} italic_W start_POSTSUBSCRIPT f end_POSTSUBSCRIPT to have centre - ρ 𝜌 -\rho - italic_ρ . Soon, we will use that the dot-action of W f subscript 𝑊 f W_{\text{f}} italic_W start_POSTSUBSCRIPT f end_POSTSUBSCRIPT on 𝔥 * superscript 𝔥 \mathfrak{h}^{*} fraktur_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT lifts to an action on the set of polynomial functions on 𝔥 * superscript 𝔥 \mathfrak{h}^{*} fraktur_h start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , which can be identified with S ( 𝔥 ) 𝑆 𝔥 S(\mathfrak{h}) italic_S ( fraktur_h ) .