Definition 6 .

An involutive bisemilattice is an algebra ๐ = โŸจ B , โˆง , โˆจ , โ€ฒ , 0 , 1 โŸฉ fragments B fragments โŸจ B , , superscript , โ€ฒ , 0 , 1 โŸฉ {\mathbf{B}}=\langle B,\land,\lor,^{{}^{\prime}},0,1\rangle bold_B = โŸจ italic_B , โˆง , โˆจ , start_POSTSUPERSCRIPT start_FLOATSUPERSCRIPT โ€ฒ end_FLOATSUPERSCRIPT end_POSTSUPERSCRIPT , 0 , 1 โŸฉ of type ( 2 , 2 , 1 , 0 , 0 ) 2 2 1 0 0 (2,2,1,0,0) ( 2 , 2 , 1 , 0 , 0 ) satisfying:

  1. I1 .

    x โˆจ x โ‰ˆ x ๐‘ฅ ๐‘ฅ ๐‘ฅ x\lor x\thickapprox x italic_x โˆจ italic_x โ‰ˆ italic_x ;

  2. I2 .

    x โˆจ y โ‰ˆ y โˆจ x ๐‘ฅ ๐‘ฆ ๐‘ฆ ๐‘ฅ x\lor y\thickapprox y\lor x italic_x โˆจ italic_y โ‰ˆ italic_y โˆจ italic_x ;

  3. I3 .

    x โˆจ ( y โˆจ z ) โ‰ˆ ( x โˆจ y ) โˆจ z ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง x\lor(y\lor z)\thickapprox(x\lor y)\lor z italic_x โˆจ ( italic_y โˆจ italic_z ) โ‰ˆ ( italic_x โˆจ italic_y ) โˆจ italic_z ;

  4. I4 .

    ( x โ€ฒ ) โ€ฒ โ‰ˆ x superscript superscript ๐‘ฅ โ€ฒ โ€ฒ ๐‘ฅ (x^{\prime})^{\prime}\thickapprox x ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ‰ˆ italic_x ;

  5. I5 .

    x โˆง y โ‰ˆ ( x โ€ฒ โˆจ y โ€ฒ ) โ€ฒ ๐‘ฅ ๐‘ฆ superscript superscript ๐‘ฅ โ€ฒ superscript ๐‘ฆ โ€ฒ โ€ฒ x\land y\thickapprox(x^{\prime}\lor y^{\prime})^{\prime} italic_x โˆง italic_y โ‰ˆ ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆจ italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ;

  6. I6 .

    x โˆง ( x โ€ฒ โˆจ y ) โ‰ˆ x โˆง y ๐‘ฅ superscript ๐‘ฅ โ€ฒ ๐‘ฆ ๐‘ฅ ๐‘ฆ x\land(x^{\prime}\lor y)\thickapprox x\land y italic_x โˆง ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆจ italic_y ) โ‰ˆ italic_x โˆง italic_y ;

  7. I7 .

    0 โˆจ x โ‰ˆ x 0 ๐‘ฅ ๐‘ฅ 0\lor x\thickapprox x 0 โˆจ italic_x โ‰ˆ italic_x ;

  8. I8 .

    1 โ‰ˆ 0 โ€ฒ 1 superscript 0 โ€ฒ 1\thickapprox 0^{\prime} 1 โ‰ˆ 0 start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT .


Definition 3.1.12 .
{enumerate*}

Suppose i โˆˆ ๐–จ๐—‡๐—‰๐—Ž๐— ๐‘– ๐–จ๐—‡๐—‰๐—Ž๐— i\in\mathsf{Input} italic_i โˆˆ sansserif_Input and o โˆˆ ๐–ฎ๐—Ž๐—๐—‰๐—Ž๐— ๐‘œ ๐–ฎ๐—Ž๐—๐—‰๐—Ž๐— o\in\mathsf{Output} italic_o โˆˆ sansserif_Output . Then say that i ๐‘– i italic_i points to o ๐‘œ o italic_o and write i โ†ฆ o maps-to ๐‘– ๐‘œ i\mapsto o italic_i โ†ฆ italic_o when they share a position:

i โ†ฆ o when ๐‘๐‘œ๐‘  โข ( i ) = ๐‘๐‘œ๐‘  โข ( o ) . formulae-sequence maps-to ๐‘– ๐‘œ when ๐‘๐‘œ๐‘  ๐‘– ๐‘๐‘œ๐‘  ๐‘œ i\mapsto o\quad\text{when}\quad\mathit{pos}(i)=\mathit{pos}(o). italic_i โ†ฆ italic_o when italic_pos ( italic_i ) = italic_pos ( italic_o ) .

(The use of โ€˜pointโ€™ here is unrelated to the โ€˜pointed setsโ€™ from Notation 2.1.3 .)

Recall the notation ๐‘ก๐‘ฅ โข and โข i ๐‘ก๐‘ฅ italic- and ๐‘– \mathit{tx}\and i italic_tx italic_and italic_i from Notation 3.1.8 ( 3.1.8 ). Suppose that:

i = ( p , k ) โˆˆ ๐–จ๐—‡๐—‰๐—Ž๐— i โˆˆ ๐‘ก๐‘ฅ โˆˆ ๐–ณ๐—‹๐–บ๐—‡๐—Œ๐–บ๐–ผ๐—๐—‚๐—ˆ๐—‡ and o = ( p , V ) โˆˆ ๐–ฎ๐—Ž๐—๐—‰๐—Ž๐— . ๐‘– ๐‘ ๐‘˜ ๐–จ๐—‡๐—‰๐—Ž๐— formulae-sequence ๐‘– ๐‘ก๐‘ฅ ๐–ณ๐—‹๐–บ๐—‡๐—Œ๐–บ๐–ผ๐—๐—‚๐—ˆ๐—‡ and ๐‘œ ๐‘ ๐‘‰ ๐–ฎ๐—Ž๐—๐—‰๐—Ž๐— \begin{array}[]{l}i=(p,k)\in\mathsf{Input}\\ i\in\mathit{tx}\in\mathsf{Transaction}\ \ \text{and}\\ o=(p,V)\in\mathsf{Output}.\end{array} start_ARRAY start_ROW start_CELL italic_i = ( italic_p , italic_k ) โˆˆ sansserif_Input end_CELL end_ROW start_ROW start_CELL italic_i โˆˆ italic_tx โˆˆ sansserif_Transaction and end_CELL end_ROW start_ROW start_CELL italic_o = ( italic_p , italic_V ) โˆˆ sansserif_Output . end_CELL end_ROW end_ARRAY

Then write

๐‘ฃ๐‘Ž๐‘™๐‘–๐‘‘๐‘Ž๐‘ก๐‘’๐‘  โข ( o , ๐‘ก๐‘ฅ โข and โข i ) when ๐‘ก๐‘ฅ โข and โข i โˆˆ V ๐‘ฃ๐‘Ž๐‘™๐‘–๐‘‘๐‘Ž๐‘ก๐‘’๐‘  ๐‘œ ๐‘ก๐‘ฅ italic- and ๐‘– when ๐‘ก๐‘ฅ italic- and ๐‘– ๐‘‰ \mathit{validates}(o,\mathit{tx}\and i)\quad\text{when}\quad\mathit{tx}\and i\in V italic_validates ( italic_o , italic_tx italic_and italic_i ) when italic_tx italic_and italic_i โˆˆ italic_V

and say that the output o ๐‘œ o italic_o validates the input-in-context ๐‘ก๐‘ฅ โข and โข i ๐‘ก๐‘ฅ italic- and ๐‘– \mathit{tx}\and i italic_tx italic_and italic_i .


Definition 2.1 .

The (first-order) differential calculus over an algebra A ๐ด A italic_A over a field k ๐‘˜ k italic_k is a pair ( ฮฉ 1 โข ( A ) , d ) superscript normal-ฮฉ 1 ๐ด ๐‘‘ (\Omega^{1}(A),d) ( roman_ฮฉ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_A ) , italic_d ) , where ฮฉ 1 โข ( A ) superscript normal-ฮฉ 1 ๐ด \Omega^{1}(A) roman_ฮฉ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_A ) is a bimodule over A ๐ด A italic_A , d ๐‘‘ d italic_d is a linear map d : A โ†’ ฮฉ 1 โข ( A ) normal-: ๐‘‘ normal-โ†’ ๐ด superscript normal-ฮฉ 1 ๐ด d:A\rightarrow\Omega^{1}(A) italic_d : italic_A โ†’ roman_ฮฉ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_A ) , which satisfies the Leibniz rule,

d โข ( a โข b ) = a โข d โข b + ( d โข a ) โข b , ๐‘‘ ๐‘Ž ๐‘ ๐‘Ž ๐‘‘ ๐‘ ๐‘‘ ๐‘Ž ๐‘ \displaystyle d(ab)=a\,db+(da)\,b, italic_d ( italic_a italic_b ) = italic_a italic_d italic_b + ( italic_d italic_a ) italic_b , (2.1)

and ฮฉ 1 โข ( A ) superscript normal-ฮฉ 1 ๐ด \Omega^{1}(A) roman_ฮฉ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_A ) is generated as a left module by the image of d ๐‘‘ d italic_d . We say that ( ฮฉ 1 โข ( A ) , d ) superscript normal-ฮฉ 1 ๐ด ๐‘‘ (\Omega^{1}(A),d) ( roman_ฮฉ start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( italic_A ) , italic_d ) is connected if ker โก d โ‰… k kernel ๐‘‘ ๐‘˜ \ker d\cong k roman_ker italic_d โ‰… italic_k .

Definition 3.9 .

We say that the connection is star-compatible, if:

โˆ‡ โˆ˜ โˆ— = ฯƒ โˆ˜ โ€  โˆ˜ โˆ‡ , fragments โˆ‡ โˆ— ฯƒ โ€  โˆ‡ , \nabla\circ\ast=\sigma\circ\dagger\circ\nabla, โˆ‡ โˆ˜ โˆ— = italic_ฯƒ โˆ˜ โ€  โˆ˜ โˆ‡ ,

where ( ฯ‰ โŠ— A ฮท ) โ€  = ฮท โˆ— โŠ— A ฯ‰ โˆ— superscript subscript tensor-product ๐ด ๐œ” ๐œ‚ normal-โ€  subscript tensor-product ๐ด superscript ๐œ‚ normal-โˆ— superscript ๐œ” normal-โˆ— (\omega\otimes_{A}\eta)^{\dagger}=\eta^{\ast}\otimes_{A}\omega^{\ast} ( italic_ฯ‰ โŠ— start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_ฮท ) start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT = italic_ฮท start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT โŠ— start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_ฯ‰ start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT , i.e. โ€  normal-โ€  \dagger โ€  is the induced โˆ— normal-โˆ— \ast โˆ— -structure on higher tensors.

Definition 4.3 .

We say that the metric is compatible with the higher-order differential calculus iff ๐  โˆˆ ker โˆง ๐  limit-from kernel \mathbf{g}\in\ker\wedge bold_g โˆˆ roman_ker โˆง , that is

โˆง ๐  = ๐  ( 1 ) โˆง ๐  ( 2 ) = 0 . ๐  superscript ๐  1 superscript ๐  2 0 \wedge\,\mathbf{g}=\mathbf{g}^{(1)}\wedge\mathbf{g}^{(2)}=0. โˆง bold_g = bold_g start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT โˆง bold_g start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT = 0 .
Definition 5.1 .

A linear connection ( โˆ‡ , ฯƒ ) normal-โˆ‡ ๐œŽ (\nabla,\sigma) ( โˆ‡ , italic_ฯƒ ) is compatible with the metric ๐  ๐  {\bf g} bold_g if

( โˆ‡ โŠ— id ) โข ๐  + ( ฯƒ โŠ— id ) โข ( id โŠ— โˆ‡ ) โข ๐  = 0 . tensor-product โˆ‡ id ๐  tensor-product ๐œŽ id tensor-product id โˆ‡ ๐  0 (\nabla\otimes\mathrm{id}){\bf g}+(\sigma\otimes\mathrm{id})(\mathrm{id}% \otimes\nabla){\bf g}=0. ( โˆ‡ โŠ— roman_id ) bold_g + ( italic_ฯƒ โŠ— roman_id ) ( roman_id โŠ— โˆ‡ ) bold_g = 0 . (5.1)

Definition 3 .

Let S ๐‘† S italic_S be a set with two operations + + + and โ‹… โ‹… \cdot โ‹… such that ( S , + ) ๐‘† \left(S,+\right) ( italic_S , + ) is a semigroup (not necessarily commutative) and ( S , โ‹… ) ๐‘† โ‹… \left(S,\cdot\right) ( italic_S , โ‹… ) is an inverse semigroup. Then, we say that ( S , + , โ‹… ) ๐‘† โ‹… \left(S,+,\cdot\right) ( italic_S , + , โ‹… ) is a left inverse semi-brace if

a โข ( b + c ) = a โข b + a โข ( a - 1 + c ) ๐‘Ž ๐‘ ๐‘ ๐‘Ž ๐‘ ๐‘Ž superscript ๐‘Ž 1 ๐‘ \displaystyle a\left(b+c\right)=ab+a\left(a^{-1}+c\right) italic_a ( italic_b + italic_c ) = italic_a italic_b + italic_a ( italic_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT + italic_c ) (1)

holds, for all a , b , c โˆˆ S ๐‘Ž ๐‘ ๐‘ ๐‘† a,b,c\in S italic_a , italic_b , italic_c โˆˆ italic_S . We call ( S , + ) ๐‘† (S,+) ( italic_S , + ) and ( S , โ‹… ) ๐‘† โ‹… (S,\cdot) ( italic_S , โ‹… ) the additive semigroup and the multiplicative semigroup of S ๐‘† S italic_S , respectively.
A right inverse semi-brace is defined similarly, by replacing condition ( 1 ) with ( a + b ) โข c = ( a + c - 1 ) โข c + b โข c , ๐‘Ž ๐‘ ๐‘ ๐‘Ž superscript ๐‘ 1 ๐‘ ๐‘ ๐‘ \;\left(a+b\right)c=\left(a+c^{-1}\right)c+bc,\; ( italic_a + italic_b ) italic_c = ( italic_a + italic_c start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ) italic_c + italic_b italic_c , for all a , b , c โˆˆ S ๐‘Ž ๐‘ ๐‘ ๐‘† a,b,c\in S italic_a , italic_b , italic_c โˆˆ italic_S .
A two-sided inverse semi-brace ( S , + , โ‹… ) ๐‘† โ‹… (S,+,\cdot) ( italic_S , + , โ‹… ) is a left inverse semi-brace that is also a right inverse semi-brace with respect to the same operations + + + and โ‹… โ‹… \cdot โ‹… .


Definition 2 (Path-differentiable functions) .

A locally Lipschitz function f : โ„ n โ†’ โ„ : ๐‘“ โ†’ superscript โ„ ๐‘› โ„ f\colon\mathbb{R}^{n}\to\mathbb{R} italic_f : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT โ†’ blackboard_R is path-differentiable if for each Lipschitz 1 1 1 In other parts of the literature (see e.g. [ 4 ] ), this definition is given with absolutely-continuous curves, and this is equivalent because such curves can be reparameterized (for example, by arclength) to obtain Lipschitz curves, without affecting their role in the definition. curve ฮณ : โ„ โ†’ โ„ n : ๐›พ โ†’ โ„ superscript โ„ ๐‘› \gamma\colon\mathbb{R}\to\mathbb{R}^{n} italic_ฮณ : blackboard_R โ†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , for almost every t โˆˆ โ„ ๐‘ก โ„ t\in\mathbb{R} italic_t โˆˆ blackboard_R , the composition f โˆ˜ ฮณ ๐‘“ ๐›พ f\circ\gamma italic_f โˆ˜ italic_ฮณ is differentiable at t ๐‘ก t italic_t and the derivative is given by

( f โˆ˜ ฮณ ) โ€ฒ โข ( t ) = v โ‹… ฮณ โ€ฒ โข ( t ) superscript ๐‘“ ๐›พ โ€ฒ ๐‘ก โ‹… ๐‘ฃ superscript ๐›พ โ€ฒ ๐‘ก (f\circ\gamma)^{\prime}(t)=v\cdot\gamma^{\prime}(t) ( italic_f โˆ˜ italic_ฮณ ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_t ) = italic_v โ‹… italic_ฮณ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_t )

for all v โˆˆ โˆ‚ c โก f โข ( ฮณ โข ( t ) ) ๐‘ฃ superscript ๐‘ ๐‘“ ๐›พ ๐‘ก v\in\partial^{c}f(\gamma(t)) italic_v โˆˆ โˆ‚ start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT italic_f ( italic_ฮณ ( italic_t ) ) .


Definition 2.1 .

Let โ€ โ‹… normal-โ‹… \cdot โ‹… โ€ be a bilinear product in a vector space ๐’œ . ๐’œ \mathcal{A}. caligraphic_A . Suppose that it satisfies the following law:

( x โ‹… y ) โ‹… z = - x โ‹… ( y โ‹… z ) . โ‹… โ‹… ๐‘ฅ ๐‘ฆ ๐‘ง โ‹… ๐‘ฅ โ‹… ๐‘ฆ ๐‘ง \displaystyle(x\cdot y)\cdot z=-x\cdot(y\cdot z). ( italic_x โ‹… italic_y ) โ‹… italic_z = - italic_x โ‹… ( italic_y โ‹… italic_z ) . (2.3)

Then, we call the pair ( ๐’œ , โ‹… ) ๐’œ normal-โ‹… (\mathcal{A},\cdot) ( caligraphic_A , โ‹… ) an antiassociative algebra . Combining both associative (q=1) and antiassociative (q=-1) cases, any algebra ๐’œ ๐’œ \mathcal{A} caligraphic_A satisfying

( x โ‹… y ) โ‹… z = q โข x โ‹… ( y โ‹… z ) , q = 1 , - 1 formulae-sequence โ‹… โ‹… ๐‘ฅ ๐‘ฆ ๐‘ง โ‹… ๐‘ž ๐‘ฅ โ‹… ๐‘ฆ ๐‘ง ๐‘ž 1 1 \displaystyle(x\cdot y)\cdot z=qx\cdot(y\cdot z),q=1,-1 ( italic_x โ‹… italic_y ) โ‹… italic_z = italic_q italic_x โ‹… ( italic_y โ‹… italic_z ) , italic_q = 1 , - 1

is called a q ๐‘ž q italic_q -associative algebra .

Definition 2.4 .

[ 12 ] An algebra ( ๐’œ , โ‹„ ) ๐’œ normal-โ‹„ (\mathcal{A},\diamond) ( caligraphic_A , โ‹„ ) over K ๐พ K italic_K is called mock Lie if it is commutative:

x โ‹„ y = y โ‹„ x , โ‹„ ๐‘ฅ ๐‘ฆ โ‹„ ๐‘ฆ ๐‘ฅ \displaystyle x\diamond y=y\diamond x, italic_x โ‹„ italic_y = italic_y โ‹„ italic_x , (2.4)

and satisfies the Jacobi identity:

( x โ‹„ y ) โ‹„ z + ( z โ‹„ x ) โ‹„ y + ( y โ‹„ z ) โ‹„ x = 0 โ‹„ โ‹„ โ‹„ โ‹„ ๐‘ฅ ๐‘ฆ ๐‘ง โ‹„ ๐‘ง ๐‘ฅ ๐‘ฆ โ‹„ ๐‘ฆ ๐‘ง ๐‘ฅ 0 \displaystyle(x\diamond y)\diamond z+(z\diamond x)\diamond y+(y\diamond z)% \diamond x=0 ( italic_x โ‹„ italic_y ) โ‹„ italic_z + ( italic_z โ‹„ italic_x ) โ‹„ italic_y + ( italic_y โ‹„ italic_z ) โ‹„ italic_x = 0 (2.5)

for any x ๐‘ฅ x italic_x , y ๐‘ฆ y italic_y , z โˆˆ ๐’œ ๐‘ง ๐’œ z\in\mathcal{A} italic_z โˆˆ caligraphic_A .

Definition 5.6 .

Let ๐’œ ๐’œ \mathcal{A} caligraphic_A be an antiassociative algebra. We say that ( ๐’œ , ฯ‰ ) ๐’œ ๐œ” (\mathcal{A},\omega) ( caligraphic_A , italic_ฯ‰ ) is a sympletic antiassociative algebra if ฯ‰ ๐œ” \omega italic_ฯ‰ is a non-degenerate skew-symmetric bilinear form on ๐’œ ๐’œ \mathcal{A} caligraphic_A such that the following identity satisfied:

ฯ‰ โข ( x โข y , z ) + ฯ‰ โข ( y โข z , x ) + ฯ‰ โข ( z โข x , y ) = 0 โข (invariance condition), ๐œ” ๐‘ฅ ๐‘ฆ ๐‘ง ๐œ” ๐‘ฆ ๐‘ง ๐‘ฅ ๐œ” ๐‘ง ๐‘ฅ ๐‘ฆ 0 (invariance condition), \displaystyle\omega(xy,z)+\omega(yz,x)+\omega(zx,y)=0\ \mbox{(invariance % condition),} italic_ฯ‰ ( italic_x italic_y , italic_z ) + italic_ฯ‰ ( italic_y italic_z , italic_x ) + italic_ฯ‰ ( italic_z italic_x , italic_y ) = 0 (invariance condition), (5.2)

for all x , y , z โˆˆ ๐’œ . ๐‘ฅ ๐‘ฆ ๐‘ง ๐’œ x,y,z\in\mathcal{A}. italic_x , italic_y , italic_z โˆˆ caligraphic_A .


Definition 2.1 .

We will say that ๐Ÿ โˆˆ V ๐Ÿ ๐‘‰ \mathbf{f}\in V bold_f โˆˆ italic_V is a โŠก normal-โŠก \boxdot โŠก -null element if for all ๐ฑ โˆˆ V ๐ฑ ๐‘‰ \mathbf{x}\in V bold_x โˆˆ italic_V we have

(2.1) ๐ฑ โŠก ๐Ÿ = ๐Ÿ . โŠก ๐ฑ ๐Ÿ ๐Ÿ {\bf x}\boxdot{\bf f}={\bf f}. bold_x โŠก bold_f = bold_f .

Definition

Let P ๐‘ƒ P italic_P be a probability measure on ๐‘บ = ๐‘บ โ€ฒ ร— ๐‘บ โ€ฒโ€ฒ ๐‘บ superscript ๐‘บ โ€ฒ superscript ๐‘บ โ€ฒโ€ฒ {\boldsymbol{S}}={\boldsymbol{S}}^{\prime}\times{\boldsymbol{S}}^{\prime\prime} bold_italic_S = bold_italic_S start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ร— bold_italic_S start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT with the product metric

ฯ โข ( ( x โ€ฒ , x โ€ฒโ€ฒ ) , ( y โ€ฒ , y โ€ฒโ€ฒ ) ) = ฯ โ€ฒ โข ( x โ€ฒ , y โ€ฒ ) โˆจ ฯ โ€ฒโ€ฒ โข ( x โ€ฒโ€ฒ , y โ€ฒโ€ฒ ) . ๐œŒ superscript ๐‘ฅ โ€ฒ superscript ๐‘ฅ โ€ฒโ€ฒ superscript ๐‘ฆ โ€ฒ superscript ๐‘ฆ โ€ฒโ€ฒ superscript ๐œŒ โ€ฒ superscript ๐‘ฅ โ€ฒ superscript ๐‘ฆ โ€ฒ superscript ๐œŒ โ€ฒโ€ฒ superscript ๐‘ฅ โ€ฒโ€ฒ superscript ๐‘ฆ โ€ฒโ€ฒ \rho((x^{\prime},x^{\prime\prime}),(y^{\prime},y^{\prime\prime}))=\rho^{\prime% }(x^{\prime},y^{\prime})\vee\rho^{\prime\prime}(x^{\prime\prime},y^{\prime% \prime}). italic_ฯ ( ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_x start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) , ( italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) ) = italic_ฯ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) โˆจ italic_ฯ start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ( italic_x start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) .

Define the marginal distributions by P โ€ฒ โข ( A โ€ฒ ) = P โข ( A โ€ฒ ร— ๐‘บ โ€ฒโ€ฒ ) superscript ๐‘ƒ โ€ฒ superscript ๐ด โ€ฒ ๐‘ƒ superscript ๐ด โ€ฒ superscript ๐‘บ โ€ฒโ€ฒ P^{\prime}(A^{\prime})=P(A^{\prime}\times{\boldsymbol{S}}^{\prime\prime}) italic_P start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) = italic_P ( italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ร— bold_italic_S start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) and P โ€ฒโ€ฒ โข ( A โ€ฒโ€ฒ ) = P โข ( ๐‘บ โ€ฒ ร— A โ€ฒโ€ฒ ) superscript ๐‘ƒ โ€ฒโ€ฒ superscript ๐ด โ€ฒโ€ฒ ๐‘ƒ superscript ๐‘บ โ€ฒ superscript ๐ด โ€ฒโ€ฒ P^{\prime\prime}(A^{\prime\prime})=P({\boldsymbol{S}}^{\prime}\times A^{\prime% \prime}) italic_P start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ( italic_A start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) = italic_P ( bold_italic_S start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ร— italic_A start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) . If the marginals are independent, we write P = P โ€ฒ ร— P โ€ฒโ€ฒ ๐‘ƒ superscript ๐‘ƒ โ€ฒ superscript ๐‘ƒ โ€ฒโ€ฒ P=P^{\prime}\times P^{\prime\prime} italic_P = italic_P start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ร— italic_P start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT . We denote by ๐’ฎ โ€ฒ ร— ๐’ฎ โ€ฒโ€ฒ superscript ๐’ฎ โ€ฒ superscript ๐’ฎ โ€ฒโ€ฒ \mathcal{S}^{\prime}\times\mathcal{S}^{\prime\prime} caligraphic_S start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ร— caligraphic_S start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT the product ฯƒ ๐œŽ \sigma italic_ฯƒ -algebra generated by the measurable rectangles A โ€ฒ ร— A โ€ฒโ€ฒ superscript ๐ด โ€ฒ superscript ๐ด โ€ฒโ€ฒ A^{\prime}\times A^{\prime\prime} italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ร— italic_A start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT for A โ€ฒ โˆˆ ๐’ฎ โ€ฒ superscript ๐ด โ€ฒ superscript ๐’ฎ โ€ฒ A^{\prime}\in\mathcal{S}^{\prime} italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆˆ caligraphic_S start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT and A โ€ฒโ€ฒ โˆˆ ๐’ฎ โ€ฒโ€ฒ superscript ๐ด โ€ฒโ€ฒ superscript ๐’ฎ โ€ฒโ€ฒ A^{\prime\prime}\in\mathcal{S}^{\prime\prime} italic_A start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT โˆˆ caligraphic_S start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT . โ–  โ–  {}_{\blacksquare} start_FLOATSUBSCRIPT โ–  end_FLOATSUBSCRIPT


Definition 1.2 .

Let R ๐‘… R italic_R be a commutative unital ring. The set { x : x = x 2 } conditional-set ๐‘ฅ ๐‘ฅ superscript ๐‘ฅ 2 \{x:x=x^{2}\} { italic_x : italic_x = italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT } of idempotents is a Boolean algebra, denoted by ๐”น ๐”น \mathbb{B} blackboard_B , with operations

e โˆง f = e โข f , ๐‘’ ๐‘“ ๐‘’ ๐‘“ e\wedge f=ef, italic_e โˆง italic_f = italic_e italic_f ,
ยฌ โข e = 1 - e , ๐‘’ 1 ๐‘’ \neg e=1-e, ยฌ italic_e = 1 - italic_e ,
0 = 0 , 0 0 0=0, 0 = 0 ,
1 = 1 , 1 1 1=1, 1 = 1 ,
e โˆจ f = 1 - ( 1 - e ) โข ( 1 - f ) = e + f - e โข f . ๐‘’ ๐‘“ 1 1 ๐‘’ 1 ๐‘“ ๐‘’ ๐‘“ ๐‘’ ๐‘“ e\vee f=1-(1-e)(1-f)=e+f-ef. italic_e โˆจ italic_f = 1 - ( 1 - italic_e ) ( 1 - italic_f ) = italic_e + italic_f - italic_e italic_f .

It carries a partial ordering defined by e โ‰ค f โ‡” e โข f = e normal-โ‡” ๐‘’ ๐‘“ ๐‘’ ๐‘“ ๐‘’ e\leq f\Leftrightarrow ef=e italic_e โ‰ค italic_f โ‡” italic_e italic_f = italic_e (which is โ„’ r โข i โข n โข g โข s subscript โ„’ ๐‘Ÿ ๐‘– ๐‘› ๐‘” ๐‘  \mathcal{L}_{rings} caligraphic_L start_POSTSUBSCRIPT italic_r italic_i italic_n italic_g italic_s end_POSTSUBSCRIPT -definable). The atoms of ๐”น ๐”น \mathbb{B} blackboard_B are the minimal idempotents (with respect to the ordering) that are not equal to 0 , 1 0 1 0,1 0 , 1 . (In fact we assume 0 โ‰  1 0 1 0\neq 1 0 โ‰  1 ).


Definition 3.1

Let E ๐ธ E italic_E be a Frรฉchet space and f : W โ†’ E : ๐‘“ โ†’ ๐‘Š ๐ธ f\colon W\to E italic_f : italic_W โ†’ italic_E be a function on a subset W โŠ† โ„ ร— E ๐‘Š โ„ ๐ธ W\subseteq{\mathbb{R}}\times E italic_W โŠ† blackboard_R ร— italic_E . We say that the differential equation

y โ€ฒ โข ( t ) = f โข ( t , y โข ( t ) ) superscript ๐‘ฆ โ€ฒ ๐‘ก ๐‘“ ๐‘ก ๐‘ฆ ๐‘ก y^{\prime}(t)\,=\,f(t,y(t)) italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_t ) = italic_f ( italic_t , italic_y ( italic_t ) ) (12)

satisfies local uniqueness of Carathรฉodory solutions if the following holds: For all Carathรฉodory solutions ฮณ 1 : I 1 โ†’ E : subscript ๐›พ 1 โ†’ subscript ๐ผ 1 ๐ธ \gamma_{1}\colon I_{1}\to E italic_ฮณ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT : italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ†’ italic_E and ฮณ 2 : I 2 โ†’ E : subscript ๐›พ 2 โ†’ subscript ๐ผ 2 ๐ธ \gamma_{2}\colon I_{2}\to E italic_ฮณ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT : italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ†’ italic_E of ( 12 ) and t 0 โˆˆ I 1 โˆฉ I 2 subscript ๐‘ก 0 subscript ๐ผ 1 subscript ๐ผ 2 t_{0}\in I_{1}\cap I_{2} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆฉ italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that ฮณ 1 โข ( t 0 ) = ฮณ 2 โข ( t 0 ) subscript ๐›พ 1 subscript ๐‘ก 0 subscript ๐›พ 2 subscript ๐‘ก 0 \gamma_{1}(t_{0})=\gamma_{2}(t_{0}) italic_ฮณ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ฮณ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , there exists an interval K โŠ† โ„ ๐พ โ„ K\subseteq{\mathbb{R}} italic_K โŠ† blackboard_R which is an open neighbourhood of t 0 subscript ๐‘ก 0 t_{0} italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT in I 1 โˆฉ I 2 subscript ๐ผ 1 subscript ๐ผ 2 I_{1}\cap I_{2} italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆฉ italic_I start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that

ฮณ 1 | K = ฮณ 2 | K . evaluated-at subscript ๐›พ 1 ๐พ evaluated-at subscript ๐›พ 2 ๐พ \gamma_{1}|_{K}=\gamma_{2}|_{K}. italic_ฮณ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT = italic_ฮณ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT | start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT .
Definition 4.1

Let M ๐‘€ M italic_M be a C 1 superscript ๐ถ 1 C^{1} italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -manifold modelled on a Frรฉchet space E ๐ธ E italic_E and f : W โ†’ T โข M : ๐‘“ โ†’ ๐‘Š ๐‘‡ ๐‘€ f\colon W\to TM italic_f : italic_W โ†’ italic_T italic_M be a function on a subset W โŠ† โ„ ร— M ๐‘Š โ„ ๐‘€ W\subseteq{\mathbb{R}}\times M italic_W โŠ† blackboard_R ร— italic_M such that f โข ( t , y ) โˆˆ T y โข M ๐‘“ ๐‘ก ๐‘ฆ subscript ๐‘‡ ๐‘ฆ ๐‘€ f(t,y)\in T_{y}M italic_f ( italic_t , italic_y ) โˆˆ italic_T start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT italic_M for all ( t , y ) โˆˆ W ๐‘ก ๐‘ฆ ๐‘Š (t,y)\in W ( italic_t , italic_y ) โˆˆ italic_W . We say that a function ฮณ : I โ†’ M : ๐›พ โ†’ ๐ผ ๐‘€ \gamma\colon I\to M italic_ฮณ : italic_I โ†’ italic_M on a non-degenerate interval I โŠ† โ„ ๐ผ โ„ I\subseteq{\mathbb{R}} italic_I โŠ† blackboard_R is a Carathรฉodory solution to the differential equation

y ห™ โข ( t ) = f โข ( t , y โข ( t ) ) ห™ ๐‘ฆ ๐‘ก ๐‘“ ๐‘ก ๐‘ฆ ๐‘ก \dot{y}(t)=f(t,y(t)) ห™ start_ARG italic_y end_ARG ( italic_t ) = italic_f ( italic_t , italic_y ( italic_t ) ) (16)

if ฮณ ๐›พ \gamma italic_ฮณ is absolutely continuous, ( t , ฮณ โข ( t ) ) โˆˆ W ๐‘ก ๐›พ ๐‘ก ๐‘Š (t,\gamma(t))\in W ( italic_t , italic_ฮณ ( italic_t ) ) โˆˆ italic_W for all t โˆˆ I ๐‘ก ๐ผ t\in I italic_t โˆˆ italic_I and

ฮณ ห™ โข ( t ) = f โข ( t , ฮณ โข ( t ) ) ห™ ๐›พ ๐‘ก ๐‘“ ๐‘ก ๐›พ ๐‘ก \dot{\gamma}(t)=f(t,\gamma(t)) ห™ start_ARG italic_ฮณ end_ARG ( italic_t ) = italic_f ( italic_t , italic_ฮณ ( italic_t ) )

for ฮป 1 subscript ๐œ† 1 \lambda_{1} italic_ฮป start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT -almost all t โˆˆ I ๐‘ก ๐ผ t\in I italic_t โˆˆ italic_I (using notation as in 2.4 ). If ( t 0 , y 0 ) โˆˆ W subscript ๐‘ก 0 subscript ๐‘ฆ 0 ๐‘Š (t_{0},y_{0})\in W ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) โˆˆ italic_W is given and ฮณ ๐›พ \gamma italic_ฮณ satisfies, moreover, the condition ฮณ โข ( t 0 ) = y 0 ๐›พ subscript ๐‘ก 0 subscript ๐‘ฆ 0 \gamma(t_{0})=y_{0} italic_ฮณ ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , then ฮณ ๐›พ \gamma italic_ฮณ is called a Carathรฉodory solution to the initial value problem

y ห™ โข ( t ) = f โข ( t , y โข ( t ) ) , y โข ( t 0 ) = y 0 . formulae-sequence ห™ ๐‘ฆ ๐‘ก ๐‘“ ๐‘ก ๐‘ฆ ๐‘ก ๐‘ฆ subscript ๐‘ก 0 subscript ๐‘ฆ 0 \dot{y}(t)=f(t,y(t)),\quad y(t_{0})=y_{0}. ห™ start_ARG italic_y end_ARG ( italic_t ) = italic_f ( italic_t , italic_y ( italic_t ) ) , italic_y ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT . (17)

Definition 1 .

Let f : โ„ n โ†’ โ„ : ๐‘“ โ†’ superscript โ„ ๐‘› โ„ f:\mathbb{R}^{n}\to\mathbb{R} italic_f : blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT โ†’ blackboard_R be a smooth function and M โŠ‚ โ„ n ๐‘€ superscript โ„ ๐‘› M\subset\mathbb{R}^{n} italic_M โŠ‚ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT a compact, codimension-one manifold with a boundary โˆ‚ โก M ๐‘€ \partial M โˆ‚ italic_M . The manifold M ๐‘€ M italic_M is a ridge of the scalar field f ๐‘“ f italic_f if both M ๐‘€ M italic_M and โˆ‚ โก M ๐‘€ \partial M โˆ‚ italic_M are normally attracting invariant manifolds for the gradient system

x ห™ = โˆ‡ โก f โข ( x ) . ห™ ๐‘ฅ โˆ‡ ๐‘“ ๐‘ฅ \dot{x}=\nabla f(x). ห™ start_ARG italic_x end_ARG = โˆ‡ italic_f ( italic_x ) . (VI.4)

Definition 4.4 (Big circle relation) .

Let ฮด ๐›ฟ \delta italic_ฮด be the reduced loop class of the circle D ๐ท D italic_D in Figure 3.1 . The Big circle relation is

(4.5) ฮด = - q 2 - q - 2 . ๐›ฟ superscript ๐‘ž 2 superscript ๐‘ž 2 \delta=-q^{2}-q^{-2}. italic_ฮด = - italic_q start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_q start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT .

5.13 Definition .

[ 24 ] An associative dialgebra is a vector space D ๐ท D italic_D together with bilinear maps โŠฃ , โŠข : D โŠ— D โ†’ D fragments does-not-prove , proves : D tensor-product D โ†’ D \dashv,\vdash:D\otimes D\rightarrow D โŠฃ , โŠข : italic_D โŠ— italic_D โ†’ italic_D satisfying the following identities

a โŠฃ ( b โŠฃ c ) = ( a โŠฃ b ) โŠฃ c = a โŠฃ ( b โŠข c ) , fragments a does-not-prove fragments ( b does-not-prove c ) fragments ( a does-not-prove b ) does-not-prove c a does-not-prove fragments ( b proves c ) , \displaystyle a\dashv(b\dashv c)=(a\dashv b)\dashv c=a\dashv(b\vdash c), italic_a โŠฃ ( italic_b โŠฃ italic_c ) = ( italic_a โŠฃ italic_b ) โŠฃ italic_c = italic_a โŠฃ ( italic_b โŠข italic_c ) ,
( a โŠข b ) โŠฃ c = a โŠข ( b โŠฃ c ) , fragments fragments ( a proves b ) does-not-prove c a proves fragments ( b does-not-prove c ) , \displaystyle(a\vdash b)\dashv c=a\vdash(b\dashv c), ( italic_a โŠข italic_b ) โŠฃ italic_c = italic_a โŠข ( italic_b โŠฃ italic_c ) ,
( a โŠฃ b ) โŠข c = a โŠข ( b โŠข c ) = ( a โŠข b ) โŠข c , for all a , b , c โˆˆ D . fragments fragments ( a does-not-prove b ) proves c a proves fragments ( b proves c ) fragments ( a proves b ) proves c , for all a , b , c D . \displaystyle(a\dashv b)\vdash c=a\vdash(b\vdash c)=(a\vdash b)\vdash c,~{}~{}% ~{}\text{ for all }a,b,c\in D. ( italic_a โŠฃ italic_b ) โŠข italic_c = italic_a โŠข ( italic_b โŠข italic_c ) = ( italic_a โŠข italic_b ) โŠข italic_c , for all italic_a , italic_b , italic_c โˆˆ italic_D .

Definition 2.2

A Nelson algebra is an algebra ๐€ = โŸจ A ; โˆง , โˆจ , โ†’ , โˆผ , 1 โŸฉ ๐€ ๐ด normal-โ†’ similar-to 1 \mathbf{A}=\langle A;\land,\lor,\to,\sim,1\rangle bold_A = โŸจ italic_A ; โˆง , โˆจ , โ†’ , โˆผ , 1 โŸฉ of type ( 2 , 2 , 2 , 1 , 0 ) 2 2 2 1 0 (2,2,2,1,0) ( 2 , 2 , 2 , 1 , 0 ) such that the following conditions are satisfied for all x , y , z โˆˆ A ๐‘ฅ ๐‘ฆ ๐‘ง ๐ด x,y,z\in A italic_x , italic_y , italic_z โˆˆ italic_A :

  1. (N1)

    x โˆง ( x โˆจ y ) = x ๐‘ฅ ๐‘ฅ ๐‘ฆ ๐‘ฅ x\land(x\lor y)=x italic_x โˆง ( italic_x โˆจ italic_y ) = italic_x ,

  2. (N2)

    x โˆง ( y โˆจ z ) = ( z โˆง x ) โˆจ ( y โˆง x ) ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ฅ x\land(y\lor z)=(z\land x)\lor(y\land x) italic_x โˆง ( italic_y โˆจ italic_z ) = ( italic_z โˆง italic_x ) โˆจ ( italic_y โˆง italic_x ) ,

  3. (N3)

    โˆผ โˆผ x = x fragments similar-to similar-to x x \sim\sim x=x โˆผ โˆผ italic_x = italic_x ,

  4. (N4)

    โˆผ ( x โˆง y ) = โˆผ x โˆจ โˆผ y fragments similar-to fragments ( x y ) similar-to x similar-to y \sim(x\land y)=\sim x\lor\sim y โˆผ ( italic_x โˆง italic_y ) = โˆผ italic_x โˆจ โˆผ italic_y ,

  5. (N5)

    x โˆง โˆผ x = ( x โˆง โˆผ x ) โˆง ( y โˆจ โˆผ y ) fragments x similar-to x fragments ( x similar-to x ) fragments ( y similar-to y ) x\land\sim x=(x\land\sim x)\land(y\lor\sim y) italic_x โˆง โˆผ italic_x = ( italic_x โˆง โˆผ italic_x ) โˆง ( italic_y โˆจ โˆผ italic_y ) ,

  6. (N6)

    x โ†’ x = 1 โ†’ ๐‘ฅ ๐‘ฅ 1 x\to x=1 italic_x โ†’ italic_x = 1 ,

  7. (N7)

    x โ†’ ( y โ†’ z ) = ( x โˆง y ) โ†’ z fragments x โ†’ fragments ( y โ†’ z ) fragments ( x y ) โ†’ z x\to(y\to z)=(x\land y)\to z italic_x โ†’ ( italic_y โ†’ italic_z ) = ( italic_x โˆง italic_y ) โ†’ italic_z ,

  8. (N8)

    x โˆง ( x โ†’ y ) = x โˆง ( โˆผ x โˆจ y ) fragments x fragments ( x โ†’ y ) x fragments ( similar-to x y ) x\land(x\to y)=x\land(\sim x\lor y) italic_x โˆง ( italic_x โ†’ italic_y ) = italic_x โˆง ( โˆผ italic_x โˆจ italic_y ) .

Definition 2.8

An algebra ๐€ = โŸจ A ; โˆง , โˆจ , โ†’ , โ€  , 0 , 1 โŸฉ fragments A fragments normal-โŸจ A normal-; normal-, normal-, normal-โ†’ superscript normal-, normal-โ€  normal-, 0 normal-, 1 normal-โŸฉ \mathbf{A}=\langle A;\land,\lor,\to,^{\dagger},0,1\rangle bold_A = โŸจ italic_A ; โˆง , โˆจ , โ†’ , start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT , 0 , 1 โŸฉ of type ( 2 , 2 , 2 , 1 , 0 , 0 ) 2 2 2 1 0 0 (2,2,2,1,0,0) ( 2 , 2 , 2 , 1 , 0 , 0 ) is said to be a dually hemimorphic semi-Heyting algebra if โŸจ A ; โˆง , โˆจ , โ†’ , 0 , 1 โŸฉ ๐ด normal-โ†’ 0 1 \langle A;\land,\lor,\to,0,1\rangle โŸจ italic_A ; โˆง , โˆจ , โ†’ , 0 , 1 โŸฉ is a semi-Heyting algebra and the following equations are satisfied:

  1. DSM1)

    0 โ€  = 1 superscript 0 โ€  1 0^{\dagger}=1 0 start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT = 1 ,

  2. DSM2)

    1 โ€  = 0 superscript 1 โ€  0 1^{\dagger}=0 1 start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT = 0 ,

  3. DSM3)

    ( x โˆง y ) โ€  = x โ€  โˆจ y โ€  superscript ๐‘ฅ ๐‘ฆ โ€  superscript ๐‘ฅ โ€  superscript ๐‘ฆ โ€  (x\land y)^{\dagger}=x^{\dagger}\lor y^{\dagger} ( italic_x โˆง italic_y ) start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT โˆจ italic_y start_POSTSUPERSCRIPT โ€  end_POSTSUPERSCRIPT .

Definition 2.9

An algebra ๐€ = โŸจ A ; โˆง , โˆจ , โ†’ , โˆผ , โ€ฒ , 1 โŸฉ fragments A fragments normal-โŸจ A normal-; normal-, normal-, normal-โ†’ normal-, similar-to superscript normal-, normal-โ€ฒ normal-, 1 normal-โŸฉ \mathbf{A}=\langle A;\land,\lor,\to,\sim,^{\prime},1\rangle bold_A = โŸจ italic_A ; โˆง , โˆจ , โ†’ , โˆผ , start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , 1 โŸฉ of type ( 2 , 2 , 2 , 1 , 0 ) 2 2 2 1 0 (2,2,2,1,0) ( 2 , 2 , 2 , 1 , 0 ) is said to be a dually hemimorphic semi-Nelson algebra if โŸจ A ; โˆง , โˆจ , โ†’ , โˆผ , 1 โŸฉ ๐ด normal-โ†’ similar-to 1 \langle A;\land,\lor,\to,\sim,1\rangle โŸจ italic_A ; โˆง , โˆจ , โ†’ , โˆผ , 1 โŸฉ is a semi-Nelson algebra and the following equations are satisfied:

  1. DSN1)

    ( โˆผ 1 ) โ€ฒ = 1 fragments superscript fragments ( similar-to 1 ) โ€ฒ 1 (\sim 1)^{\prime}=1 ( โˆผ 1 ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT = 1 ,

  2. DSN2)

    1 โ€ฒ โ†’ ( โˆผ 1 ) = 1 fragments superscript 1 โ€ฒ โ†’ fragments ( similar-to 1 ) 1 1^{\prime}\to(\sim 1)=1 1 start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ†’ ( โˆผ 1 ) = 1 ,

  3. DSN3)

    ( ( x โ†’ y ) โˆง ( y โ†’ x ) โˆง x โ€ฒ ) โ†’ ( ( x โ†’ y ) โˆง ( y โ†’ x ) โˆง y ) โ€ฒ = 1 fragments fragments ( fragments ( x โ†’ y ) fragments ( y โ†’ x ) superscript ๐‘ฅ โ€ฒ ) โ†’ superscript fragments ( fragments ( x โ†’ y ) fragments ( y โ†’ x ) y ) โ€ฒ 1 ((x\to y)\land(y\to x)\land x^{\prime})\to((x\to y)\land(y\to x)\land y)^{% \prime}=1 ( ( italic_x โ†’ italic_y ) โˆง ( italic_y โ†’ italic_x ) โˆง italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) โ†’ ( ( italic_x โ†’ italic_y ) โˆง ( italic_y โ†’ italic_x ) โˆง italic_y ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT = 1 ,

  4. DSN4)

    โˆผ x โ€ฒ โ†’ ( โˆผ x โˆง ( x โ€ฒ โ†’ x ) ) = 1 fragments similar-to superscript ๐‘ฅ โ€ฒ โ†’ fragments ( similar-to x fragments ( superscript ๐‘ฅ โ€ฒ โ†’ x ) ) 1 \sim x^{\prime}\to(\sim x\land(x^{\prime}\to x))=1 โˆผ italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ†’ ( โˆผ italic_x โˆง ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ†’ italic_x ) ) = 1 ,

  5. DSN5)

    ( โˆผ x โˆง ( x โ€ฒ โ†’ x ) ) โ†’ โˆผ x โ€ฒ = 1 fragments fragments ( similar-to x fragments ( superscript ๐‘ฅ โ€ฒ โ†’ x ) ) โ†’ similar-to superscript ๐‘ฅ โ€ฒ 1 (\sim x\land(x^{\prime}\to x))\to\sim x^{\prime}=1 ( โˆผ italic_x โˆง ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ†’ italic_x ) ) โ†’ โˆผ italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT = 1 ,

  6. DSN6)

    ( x โˆง y ) โ€ฒ โ†’ ( x โ€ฒ โˆจ y โ€ฒ ) = 1 โ†’ superscript ๐‘ฅ ๐‘ฆ โ€ฒ superscript ๐‘ฅ โ€ฒ superscript ๐‘ฆ โ€ฒ 1 (x\land y)^{\prime}\to(x^{\prime}\lor y^{\prime})=1 ( italic_x โˆง italic_y ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โ†’ ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆจ italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) = 1 ,

  7. DSN7)

    ( x โ€ฒ โˆจ y โ€ฒ ) โ†’ ( x โˆง y ) โ€ฒ = 1 โ†’ superscript ๐‘ฅ โ€ฒ superscript ๐‘ฆ โ€ฒ superscript ๐‘ฅ ๐‘ฆ โ€ฒ 1 (x^{\prime}\lor y^{\prime})\to(x\land y)^{\prime}=1 ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆจ italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) โ†’ ( italic_x โˆง italic_y ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT = 1 .

We use the convention that the unary operation โ€ฒ normal-โ€ฒ {}^{\prime} start_FLOATSUPERSCRIPT โ€ฒ end_FLOATSUPERSCRIPT has higher priority than โˆผ similar-to \sim โˆผ , so the expression โˆผ x โ€ฒ similar-to absent superscript ๐‘ฅ normal-โ€ฒ \sim x^{\prime} โˆผ italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT means โˆผ ( x โ€ฒ ) similar-to absent superscript ๐‘ฅ normal-โ€ฒ \sim(x^{\prime}) โˆผ ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) .


Definition 2.1 .

[ 8 ] Let ( M , g ) ๐‘€ ๐‘” (M,g) ( italic_M , italic_g ) be a Riemennian manifold. Then a complex-valued function ฯ• : M โ†’ โ„‚ : italic-ฯ• โ†’ ๐‘€ โ„‚ \phi:M\to{\mathbb{C}} italic_ฯ• : italic_M โ†’ blackboard_C is said to be an eigenfunction if it is eigen both with respect to the Laplace-Beltrami operator ฯ„ ๐œ \tau italic_ฯ„ and the conformality operator ฮบ ๐œ… \kappa italic_ฮบ i.e. there exist complex numbers ฮป , ฮผ โˆˆ โ„‚ ๐œ† ๐œ‡ โ„‚ \lambda,\mu\in{\mathbb{C}} italic_ฮป , italic_ฮผ โˆˆ blackboard_C such that

ฯ„ โข ( ฯ• ) = ฮป โ‹… ฯ• and ฮบ โข ( ฯ• , ฯ• ) = ฮผ โ‹… ฯ• 2 . formulae-sequence ๐œ italic-ฯ• โ‹… ๐œ† italic-ฯ• and ๐œ… italic-ฯ• italic-ฯ• โ‹… ๐œ‡ superscript italic-ฯ• 2 \tau(\phi)=\lambda\cdot\phi\ \ \text{and}\ \ \kappa(\phi,\phi)=\mu\cdot\phi^{2}. italic_ฯ„ ( italic_ฯ• ) = italic_ฮป โ‹… italic_ฯ• and italic_ฮบ ( italic_ฯ• , italic_ฯ• ) = italic_ฮผ โ‹… italic_ฯ• start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

A set โ„ฐ = { ฯ• i : M โ†’ โ„‚ | i โˆˆ I } โ„ฐ conditional-set subscript italic-ฯ• ๐‘– โ†’ ๐‘€ conditional โ„‚ ๐‘– ๐ผ \mathcal{E}=\{\phi_{i}:M\to{\mathbb{C}}\ |\ i\in I\} caligraphic_E = { italic_ฯ• start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT : italic_M โ†’ blackboard_C | italic_i โˆˆ italic_I } of complex-valued functions is said to be an eigenfamily on M ๐‘€ M italic_M if there exist complex numbers ฮป , ฮผ โˆˆ โ„‚ ๐œ† ๐œ‡ โ„‚ \lambda,\mu\in{\mathbb{C}} italic_ฮป , italic_ฮผ โˆˆ blackboard_C such that for all ฯ• , ฯˆ โˆˆ โ„ฐ italic-ฯ• ๐œ“ โ„ฐ \phi,\psi\in\mathcal{E} italic_ฯ• , italic_ฯˆ โˆˆ caligraphic_E we have

ฯ„ โข ( ฯ• ) = ฮป โ‹… ฯ• and ฮบ โข ( ฯ• , ฯˆ ) = ฮผ โ‹… ฯ• โ‹… ฯˆ . formulae-sequence ๐œ italic-ฯ• โ‹… ๐œ† italic-ฯ• and ๐œ… italic-ฯ• ๐œ“ โ‹… ๐œ‡ italic-ฯ• ๐œ“ \tau(\phi)=\lambda\cdot\phi\ \ \text{and}\ \ \kappa(\phi,\psi)=\mu\cdot\phi% \cdot\psi. italic_ฯ„ ( italic_ฯ• ) = italic_ฮป โ‹… italic_ฯ• and italic_ฮบ ( italic_ฯ• , italic_ฯˆ ) = italic_ฮผ โ‹… italic_ฯ• โ‹… italic_ฯˆ .

Definition 2.1 .

Let G ๐บ G italic_G be an abelian group. A map ฮต : G ร— G โ†’ ๐•‚ * : ๐œ€ โ†’ ๐บ ๐บ superscript ๐•‚ \varepsilon:G\times G\rightarrow{\bf\mathbb{K}^{*}} italic_ฮต : italic_G ร— italic_G โ†’ blackboard_K start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is called a skew-symmetric bicharacter on G ๐บ G italic_G if the following identities hold,

  1. (i)

    ฮต โข ( g , g โ€ฒ ) โข ฮต โข ( g โ€ฒ , g ) = 1 ๐œ€ ๐‘” superscript ๐‘” โ€ฒ ๐œ€ superscript ๐‘” โ€ฒ ๐‘” 1 \varepsilon(g,g^{\prime})\varepsilon(g^{\prime},g)=1 italic_ฮต ( italic_g , italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) italic_ฮต ( italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_g ) = 1 ,

  2. (ii)

    ฮต โข ( g , g โ€ฒ + g โ€ฒโ€ฒ ) = ฮต โข ( g , g โ€ฒ ) โข ฮต โข ( g , g โ€ฒโ€ฒ ) ๐œ€ ๐‘” superscript ๐‘” โ€ฒ superscript ๐‘” โ€ฒโ€ฒ ๐œ€ ๐‘” superscript ๐‘” โ€ฒ ๐œ€ ๐‘” superscript ๐‘” โ€ฒโ€ฒ \varepsilon(g,g^{\prime}+g^{\prime\prime})=\varepsilon(g,g^{\prime})% \varepsilon(g,g^{\prime\prime}) italic_ฮต ( italic_g , italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT + italic_g start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) = italic_ฮต ( italic_g , italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) italic_ฮต ( italic_g , italic_g start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) ,

  3. (iii)

    ฮต โข ( g + g โ€ฒ , g โ€ฒโ€ฒ ) = ฮต โข ( g , g โ€ฒโ€ฒ ) โข ฮต โข ( g โ€ฒ , g โ€ฒโ€ฒ ) ๐œ€ ๐‘” superscript ๐‘” โ€ฒ superscript ๐‘” โ€ฒโ€ฒ ๐œ€ ๐‘” superscript ๐‘” โ€ฒโ€ฒ ๐œ€ superscript ๐‘” โ€ฒ superscript ๐‘” โ€ฒโ€ฒ \varepsilon(g+g^{\prime},g^{\prime\prime})=\varepsilon(g,g^{\prime\prime})% \varepsilon(g^{\prime},g^{\prime\prime}) italic_ฮต ( italic_g + italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_g start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) = italic_ฮต ( italic_g , italic_g start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) italic_ฮต ( italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_g start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) ,

g , g โ€ฒ , g โ€ฒโ€ฒ โˆˆ G ๐‘” superscript ๐‘” โ€ฒ superscript ๐‘” โ€ฒโ€ฒ ๐บ g,g^{\prime},g^{\prime\prime}\in G italic_g , italic_g start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_g start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT โˆˆ italic_G .


Definition 2.1 .

A (multiplicative) hom-Lie algebra is a triplet ( ๐”ค , [ , ] , ฮฑ ) fragments ( g , fragments [ , ] , ฮฑ ) (\mathfrak{g},[~{},~{}],\alpha) ( fraktur_g , [ , ] , italic_ฮฑ ) , where ๐”ค ๐”ค \mathfrak{g} fraktur_g is a vector space equipped with a skew-symmetric bilinear map [ , ] : ๐”ค โŠ— ๐”ค โ†’ ๐”ค fragments fragments [ , ] : g tensor-product g โ†’ g [~{},~{}]:\mathfrak{g}\otimes\mathfrak{g}\rightarrow\mathfrak{g} [ , ] : fraktur_g โŠ— fraktur_g โ†’ fraktur_g , and a linear map ฮฑ : ๐”ค โ†’ ๐”ค : ๐›ผ โ†’ ๐”ค ๐”ค \alpha:\mathfrak{g}\rightarrow\mathfrak{g} italic_ฮฑ : fraktur_g โ†’ fraktur_g satisfying ฮฑ โข [ x , y ] = [ ฮฑ โข ( x ) , ฮฑ โข ( y ) ] ๐›ผ ๐‘ฅ ๐‘ฆ ๐›ผ ๐‘ฅ ๐›ผ ๐‘ฆ \alpha[x,y]=[\alpha(x),\alpha(y)] italic_ฮฑ [ italic_x , italic_y ] = [ italic_ฮฑ ( italic_x ) , italic_ฮฑ ( italic_y ) ] such that

(2.1) [ ฮฑ โข ( x ) , [ y , z ] ] + [ ฮฑ โข ( y ) , [ z , x ] ] + [ ฮฑ โข ( z ) , [ x , y ] ] = 0 , for all โข x , y , z โˆˆ ๐”ค . formulae-sequence ๐›ผ ๐‘ฅ ๐‘ฆ ๐‘ง ๐›ผ ๐‘ฆ ๐‘ง ๐‘ฅ ๐›ผ ๐‘ง ๐‘ฅ ๐‘ฆ 0 for all ๐‘ฅ ๐‘ฆ ๐‘ง ๐”ค [\alpha(x),[y,z]]+[\alpha(y),[z,x]]+[\alpha(z),[x,y]]=0,~{}~{}~{}~{}\mbox{for % all}~{}~{}x,y,z\in\mathfrak{g}. [ italic_ฮฑ ( italic_x ) , [ italic_y , italic_z ] ] + [ italic_ฮฑ ( italic_y ) , [ italic_z , italic_x ] ] + [ italic_ฮฑ ( italic_z ) , [ italic_x , italic_y ] ] = 0 , for all italic_x , italic_y , italic_z โˆˆ fraktur_g .

Furthermore, if ฮฑ : ๐”ค โ†’ ๐”ค : ๐›ผ โ†’ ๐”ค ๐”ค \alpha:\mathfrak{g}\rightarrow\mathfrak{g} italic_ฮฑ : fraktur_g โ†’ fraktur_g is a vector space automorphism of ๐”ค ๐”ค \mathfrak{g} fraktur_g , then the hom-Lie algebra ( ๐”ค , [ , ] , ฮฑ ) fragments ( g , fragments [ , ] , ฮฑ ) (\mathfrak{g},[~{},~{}],\alpha) ( fraktur_g , [ , ] , italic_ฮฑ ) is called a regular hom-Lie algebra.

Definition 2.3 .

( [ 21 ] ) A representation of a hom-Lie algebra ( ๐”ค , [ , ] , ฮฑ ) fragments ( g , fragments [ , ] , ฮฑ ) (\mathfrak{g},[~{},~{}],\alpha) ( fraktur_g , [ , ] , italic_ฮฑ ) on a k ๐‘˜ k italic_k -vector space V ๐‘‰ V italic_V with respect to ฮฒ โˆˆ ๐–ค๐—‡๐–ฝ โข ( V ) ๐›ฝ ๐–ค๐—‡๐–ฝ ๐‘‰ \beta\in\mathsf{End}(V) italic_ฮฒ โˆˆ sansserif_End ( italic_V ) is a linear map ฯ : ๐”ค โ†’ ๐–ค๐—‡๐–ฝ โข ( V ) : ๐œŒ โ†’ ๐”ค ๐–ค๐—‡๐–ฝ ๐‘‰ \rho:\mathfrak{g}\rightarrow\mathsf{End}(V) italic_ฯ : fraktur_g โ†’ sansserif_End ( italic_V ) such that

(2.2) ฯ โข ( ฮฑ โข ( x ) ) โข ( ฮฒ โข ( v ) ) = ฮฒ โข ( ฯ โข ( x ) โข ( v ) ) , ๐œŒ ๐›ผ ๐‘ฅ ๐›ฝ ๐‘ฃ ๐›ฝ ๐œŒ ๐‘ฅ ๐‘ฃ \rho(\alpha(x))(\beta(v))=\beta(\rho(x)(v)), italic_ฯ ( italic_ฮฑ ( italic_x ) ) ( italic_ฮฒ ( italic_v ) ) = italic_ฮฒ ( italic_ฯ ( italic_x ) ( italic_v ) ) ,
(2.3) ฯ โข ( [ x , y ] ) โข ( ฮฒ โข ( v ) ) = ฯ โข ( ฮฑ โข ( x ) ) โข ฯ โข ( y ) โข ( v ) - ฯ โข ( ฮฑ โข ( y ) ) โข ฯ โข ( x ) โข ( v ) , ๐œŒ ๐‘ฅ ๐‘ฆ ๐›ฝ ๐‘ฃ ๐œŒ ๐›ผ ๐‘ฅ ๐œŒ ๐‘ฆ ๐‘ฃ ๐œŒ ๐›ผ ๐‘ฆ ๐œŒ ๐‘ฅ ๐‘ฃ \rho([x,y])(\beta(v))=\rho(\alpha(x))\rho(y)(v)-\rho(\alpha(y))\rho(x)(v), italic_ฯ ( [ italic_x , italic_y ] ) ( italic_ฮฒ ( italic_v ) ) = italic_ฯ ( italic_ฮฑ ( italic_x ) ) italic_ฯ ( italic_y ) ( italic_v ) - italic_ฯ ( italic_ฮฑ ( italic_y ) ) italic_ฯ ( italic_x ) ( italic_v ) ,

for all x , y โˆˆ ๐”ค ๐‘ฅ ๐‘ฆ ๐”ค x,y\in\mathfrak{g} italic_x , italic_y โˆˆ fraktur_g and v โˆˆ V ๐‘ฃ ๐‘‰ v\in V italic_v โˆˆ italic_V .


Definition 1 .

Let R ๐‘… R italic_R be a commutative ring, and ๐‹ ๐‹ {\mathbf{L}} bold_L a R ๐‘… R italic_R -linear category. Let ฮน : ๐‹ โ†’ ๐‚ normal-: ๐œ„ normal-โ†’ ๐‹ ๐‚ \iota\colon{\mathbf{L}}\rightarrow{\mathbf{C}} italic_ฮน : bold_L โ†’ bold_C be a functor that preserves finite products, and M โˆˆ Obj โข ( ๐‹ ) ๐‘€ Obj ๐‹ M\in{\textnormal{Obj}}({\mathbf{L}}) italic_M โˆˆ Obj ( bold_L ) . An endomorphism f โˆˆ End ๐‚ โข ( ฮน โข ( M ) ) ๐‘“ subscript End ๐‚ ๐œ„ ๐‘€ f\in{\textnormal{End}}_{\mathbf{C}}(\iota(M)) italic_f โˆˆ End start_POSTSUBSCRIPT bold_C end_POSTSUBSCRIPT ( italic_ฮน ( italic_M ) ) is a machine if, for all morphisms g : X โ†’ ฮน โข ( M ) normal-: ๐‘” normal-โ†’ ๐‘‹ ๐œ„ ๐‘€ g\colon X\rightarrow\iota(M) italic_g : italic_X โ†’ italic_ฮน ( italic_M ) , there exists a unique h : X โ†’ ฮน โข ( M ) normal-: โ„Ž normal-โ†’ ๐‘‹ ๐œ„ ๐‘€ h\colon X\rightarrow\iota(M) italic_h : italic_X โ†’ italic_ฮน ( italic_M ) such that:

h = g + f โข h . โ„Ž ๐‘” ๐‘“ โ„Ž h=g+fh. italic_h = italic_g + italic_f italic_h .

We call h โ„Ž h italic_h the stable state of f ๐‘“ f italic_f with initial condition g ๐‘” g italic_g , and denote by S f subscript ๐‘† ๐‘“ S_{f} italic_S start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT the stable state of f ๐‘“ f italic_f with initial condition id ฮน โข ( M ) subscript id ๐œ„ ๐‘€ {\textnormal{id}}_{\iota(M)} id start_POSTSUBSCRIPT italic_ฮน ( italic_M ) end_POSTSUBSCRIPT .

Definition 3 .

Let R , ๐‚ , ๐‹ , ฮน , M ๐‘… ๐‚ ๐‹ ๐œ„ ๐‘€ R,{\mathbf{C}},{\mathbf{L}},\iota,M italic_R , bold_C , bold_L , italic_ฮน , italic_M be as in definition 1 . Let f , f โ€ฒ โˆˆ End ๐‚ โข ( ฮน โข ( M ) ) ๐‘“ superscript ๐‘“ normal-โ€ฒ subscript End ๐‚ ๐œ„ ๐‘€ f,f^{\prime}\in{\textnormal{End}}_{\mathbf{C}}(\iota(M)) italic_f , italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆˆ End start_POSTSUBSCRIPT bold_C end_POSTSUBSCRIPT ( italic_ฮน ( italic_M ) ) . We say that f ๐‘“ f italic_f does not depend on f โ€ฒ superscript ๐‘“ normal-โ€ฒ f^{\prime} italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT if, for any X โˆˆ Obj โข ( ๐‚ ) ๐‘‹ Obj ๐‚ X\in{\textnormal{Obj}}({\mathbf{C}}) italic_X โˆˆ Obj ( bold_C ) , for any pair of maps b , b โ€ฒ : X โ†’ ฮน โข ( M ) normal-: ๐‘ superscript ๐‘ normal-โ€ฒ normal-โ†’ ๐‘‹ ๐œ„ ๐‘€ b,b^{\prime}\colon X\rightarrow\iota(M) italic_b , italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT : italic_X โ†’ italic_ฮน ( italic_M ) , and for all ฮป โˆˆ R ๐œ† ๐‘… \lambda\in R italic_ฮป โˆˆ italic_R , the following holds:

f โข ( b + ฮป โข f โ€ฒ โข b โ€ฒ ) = f โข b . ๐‘“ ๐‘ ๐œ† superscript ๐‘“ โ€ฒ superscript ๐‘ โ€ฒ ๐‘“ ๐‘ f(b+\lambda f^{\prime}b^{\prime})=fb. italic_f ( italic_b + italic_ฮป italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT italic_b start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) = italic_f italic_b . (4)

Otherwise, we say that f ๐‘“ f italic_f depends on f โ€ฒ superscript ๐‘“ normal-โ€ฒ f^{\prime} italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT .


Definition 4 .

Let G ๐บ G italic_G be a Q ๐‘„ Q italic_Q -group. Let M ๐‘€ M italic_M be, simultaneously, a G ๐บ G italic_G -module and a Q ๐‘„ Q italic_Q -module. We say that M ๐‘€ M italic_M is a Q ๐‘„ Q italic_Q - G ๐บ G italic_G module if

(18) q โข ( g โข m ) = q โข ( g ) โข q โข m ๐‘ž ๐‘” ๐‘š ๐‘ž ๐‘” ๐‘ž ๐‘š \displaystyle q(gm)=q(g)qm italic_q ( italic_g italic_m ) = italic_q ( italic_g ) italic_q italic_m

for g โˆˆ G , q โˆˆ Q , m โˆˆ M formulae-sequence ๐‘” ๐บ formulae-sequence ๐‘ž ๐‘„ ๐‘š ๐‘€ g\in G,q\in Q,m\in M italic_g โˆˆ italic_G , italic_q โˆˆ italic_Q , italic_m โˆˆ italic_M . We denote by Q ๐‘„ Q italic_Q - G โข โ„ณ โข o โข d ๐บ โ„ณ ๐‘œ ๐‘‘ G\,\mathcal{M}od italic_G caligraphic_M italic_o italic_d the category whose objects are Q ๐‘„ Q italic_Q - G ๐บ G italic_G modules and morphisms are the functions f : M โ†’ N normal-: ๐‘“ normal-โ†’ ๐‘€ ๐‘ f:M\rightarrow N italic_f : italic_M โ†’ italic_N such that f ๐‘“ f italic_f is both G ๐บ G italic_G -linear and Q ๐‘„ Q italic_Q -linear.


Definition 1 .

Let ๐€ ๐€ {\bf{A}} bold_A , ๐ ๐ {\bf{B}} bold_B be two bounded distributive lattices. A structure โŸจ ๐€ , ๐ , f โŸฉ ๐€ ๐ ๐‘“ \langle{\bf{A}},{\bf{B}},f\rangle โŸจ bold_A , bold_B , italic_f โŸฉ is called a FDL-module, if f : A ร— B โ†’ A : ๐‘“ โ†’ ๐ด ๐ต ๐ด f\colon A\times B\to A italic_f : italic_A ร— italic_B โ†’ italic_A is a function such that for every x , y โˆˆ A ๐‘ฅ ๐‘ฆ ๐ด x,y\in A italic_x , italic_y โˆˆ italic_A and every b , c โˆˆ B ๐‘ ๐‘ ๐ต b,c\in B italic_b , italic_c โˆˆ italic_B the following conditions hold:

A structure โŸจ ๐€ , ๐ , i โŸฉ ๐€ ๐ ๐‘– \langle{\bf{A}},{\bf{B}},i\rangle โŸจ bold_A , bold_B , italic_i โŸฉ is called an IDL-module, if i : B ร— A โ†’ A : ๐‘– โ†’ ๐ต ๐ด ๐ด i\colon B\times A\to A italic_i : italic_B ร— italic_A โ†’ italic_A is a function such that for every x , y โˆˆ A ๐‘ฅ ๐‘ฆ ๐ด x,y\in A italic_x , italic_y โˆˆ italic_A and every b , c โˆˆ B ๐‘ ๐‘ ๐ต b,c\in B italic_b , italic_c โˆˆ italic_B the following conditions hold:

Moreover, a structure โ„ณ = โŸจ ๐€ , ๐ , f , i โŸฉ โ„ณ ๐€ ๐ ๐‘“ ๐‘– \mathcal{M}=\langle{\bf{A}},{\bf{B}},f,i\rangle caligraphic_M = โŸจ bold_A , bold_B , italic_f , italic_i โŸฉ is called a FIDL-module, if โŸจ ๐€ , ๐ , f โŸฉ ๐€ ๐ ๐‘“ \langle{\bf{A}},{\bf{B}},f\rangle โŸจ bold_A , bold_B , italic_f โŸฉ is a FDL-module and โŸจ ๐€ , ๐ , i โŸฉ ๐€ ๐ ๐‘– \langle{\bf{A}},{\bf{B}},i\rangle โŸจ bold_A , bold_B , italic_i โŸฉ is an IDL-module.


Definition 1 .

Let ฮฃ ฮฃ \Sigma roman_ฮฃ be an alphabet, ฮ“ = { ๐šž , ๐š } ฮ“ ๐šž ๐š \Gamma=\{\texttt{u},\texttt{d}\} roman_ฮ“ = { u , d } , and f : ฮฃ * ร— ฮฃ ร— ฮ“ โ†’ ฮฃ * : ๐‘“ โ†’ superscript ฮฃ ฮฃ ฮ“ superscript ฮฃ f:\Sigma^{*}\times\Sigma\times\Gamma\rightarrow\Sigma^{*} italic_f : roman_ฮฃ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ร— roman_ฮฃ ร— roman_ฮ“ โ†’ roman_ฮฃ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT a function such that

f โข ( w , a , b ) = { a โข w , if โข b = ๐šž , w โข a , if โข b = ๐š . ๐‘“ ๐‘ค ๐‘Ž ๐‘ cases ๐‘Ž ๐‘ค if ๐‘ ๐šž ๐‘ค ๐‘Ž if ๐‘ ๐š f(w,a,b)=\left\{\begin{array}[]{ll}aw,&\text{ if }b=\texttt{u},\\ wa,&\text{ if }b=\texttt{d}.\end{array}\right. italic_f ( italic_w , italic_a , italic_b ) = { start_ARRAY start_ROW start_CELL italic_a italic_w , end_CELL start_CELL if italic_b = u , end_CELL end_ROW start_ROW start_CELL italic_w italic_a , end_CELL start_CELL if italic_b = d . end_CELL end_ROW end_ARRAY (1)

Then, the folding function h : ฮฃ * ร— ฮ“ * โ†’ ฮฃ * : โ„Ž โ†’ superscript ฮฃ superscript ฮ“ superscript ฮฃ h:\Sigma^{*}\times\Gamma^{*}\rightarrow\Sigma^{*} italic_h : roman_ฮฃ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ร— roman_ฮ“ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT โ†’ roman_ฮฃ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is a partial function defined by

h โข ( w , v ) = { f โข ( f โข ( โ€ฆ โข f โข ( \textepsilon , a 1 , b 1 ) โข โ€ฆ , a k - 1 , b k - 1 ) , a k , b k ) , if โข | w | = | v | > 0 \textepsilon , if โข | w | = | v | = 0 , undefined, if โข | w | โ‰  | v | . โ„Ž ๐‘ค ๐‘ฃ cases ๐‘“ ๐‘“ โ€ฆ ๐‘“ \textepsilon subscript ๐‘Ž 1 subscript ๐‘ 1 โ€ฆ subscript ๐‘Ž ๐‘˜ 1 subscript ๐‘ ๐‘˜ 1 subscript ๐‘Ž ๐‘˜ subscript ๐‘ ๐‘˜ if ๐‘ค ๐‘ฃ 0 \textepsilon if ๐‘ค ๐‘ฃ 0 undefined, if ๐‘ค ๐‘ฃ h(w,v)=\left\{\begin{array}[]{ll}f(f(\ldots f(\texttt{\textepsilon},a_{1},b_{1% })\ldots,a_{k-1},b_{k-1}),a_{k},b_{k}),&\text{ if }|w|=|v|>0\\ \texttt{\textepsilon},&\text{ if }|w|=|v|=0,\\ \text{undefined,}&\text{ if }|w|\neq|v|.\end{array}\right. italic_h ( italic_w , italic_v ) = { start_ARRAY start_ROW start_CELL italic_f ( italic_f ( โ€ฆ italic_f ( , italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) โ€ฆ , italic_a start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT italic_k - 1 end_POSTSUBSCRIPT ) , italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ) , end_CELL start_CELL if | italic_w | = | italic_v | > 0 end_CELL end_ROW start_ROW start_CELL , end_CELL start_CELL if | italic_w | = | italic_v | = 0 , end_CELL end_ROW start_ROW start_CELL undefined, end_CELL start_CELL if | italic_w | โ‰  | italic_v | . end_CELL end_ROW end_ARRAY (2)

where w = a 1 โข a 2 โข โ€ฆ โข a k ๐‘ค subscript ๐‘Ž 1 subscript ๐‘Ž 2 โ€ฆ subscript ๐‘Ž ๐‘˜ w=a_{1}a_{2}\ldots a_{k} italic_w = italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ€ฆ italic_a start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , v = b 1 โข b 2 โข โ€ฆ โข b k ๐‘ฃ subscript ๐‘ 1 subscript ๐‘ 2 โ€ฆ subscript ๐‘ ๐‘˜ v=b_{1}b_{2}\ldots b_{k} italic_v = italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ€ฆ italic_b start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , a i โˆˆ ฮฃ subscript ๐‘Ž ๐‘– ฮฃ a_{i}\in\Sigma italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT โˆˆ roman_ฮฃ , with b i โˆˆ ฮ“ subscript ๐‘ ๐‘– ฮ“ b_{i}\in\Gamma italic_b start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT โˆˆ roman_ฮ“ for i = 1 , 2 , โ‹ฏ , k ๐‘– 1 2 โ‹ฏ ๐‘˜ i=1,2,\cdots,k italic_i = 1 , 2 , โ‹ฏ , italic_k , and \textepsilon is the empty string.


Definition 4 .

( x , y ) โˆˆ T ๐‘ฅ ๐‘ฆ ๐‘‡ (x,y)\in T ( italic_x , italic_y ) โˆˆ italic_T is an extreme point of T ๐‘‡ T italic_T if and only if there are no points ( x โ€ฒ , y โ€ฒ ) , ( x โ€ฒโ€ฒ , y โ€ฒโ€ฒ ) โˆˆ T superscript ๐‘ฅ normal-โ€ฒ superscript ๐‘ฆ normal-โ€ฒ superscript ๐‘ฅ normal-โ€ฒโ€ฒ superscript ๐‘ฆ normal-โ€ฒโ€ฒ ๐‘‡ (x^{\prime},y^{\prime}),~{}(x^{\prime\prime},y^{\prime\prime})\in T ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) , ( italic_x start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) โˆˆ italic_T and no ฮฑ โˆˆ ( 0 , 1 ) ๐›ผ 0 1 \alpha\in(0,1) italic_ฮฑ โˆˆ ( 0 , 1 ) such that

( x , y ) = ฮฑ โข ( x โ€ฒ , y โ€ฒ ) + ( 1 - ฮฑ ) โข ( x โ€ฒโ€ฒ , y โ€ฒโ€ฒ ) . ๐‘ฅ ๐‘ฆ ๐›ผ superscript ๐‘ฅ โ€ฒ superscript ๐‘ฆ โ€ฒ 1 ๐›ผ superscript ๐‘ฅ โ€ฒโ€ฒ superscript ๐‘ฆ โ€ฒโ€ฒ (x,y)=\alpha(x^{\prime},y^{\prime})+(1-\alpha)(x^{\prime\prime},y^{\prime% \prime}). ( italic_x , italic_y ) = italic_ฮฑ ( italic_x start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) + ( 1 - italic_ฮฑ ) ( italic_x start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT , italic_y start_POSTSUPERSCRIPT โ€ฒ โ€ฒ end_POSTSUPERSCRIPT ) . (3)

2.3 Definition .

A Hom-coassociative coalgebra is a Hom-vector space ( C , ฮฑ ) ๐ถ ๐›ผ (C,\alpha) ( italic_C , italic_ฮฑ ) together with a linear map โ–ณ : C โ†’ C โŠ— C : โ–ณ โ†’ ๐ถ tensor-product ๐ถ ๐ถ \triangle:C\rightarrow C\otimes C โ–ณ : italic_C โ†’ italic_C โŠ— italic_C satisfying

(1) ( โ–ณ โŠ— ฮฑ ) โˆ˜ โ–ณ = ( ฮฑ โŠ— โ–ณ ) โˆ˜ โ–ณ . tensor-product โ–ณ ๐›ผ โ–ณ tensor-product ๐›ผ โ–ณ โ–ณ \displaystyle(\triangle\otimes\alpha)\circ\triangle=(\alpha\otimes\triangle)% \circ\triangle. ( โ–ณ โŠ— italic_ฮฑ ) โˆ˜ โ–ณ = ( italic_ฮฑ โŠ— โ–ณ ) โˆ˜ โ–ณ .

A Hom-coassociative coalgebra as above may be denoted by ( C , ฮฑ , โ–ณ ) ๐ถ ๐›ผ โ–ณ (C,\alpha,\triangle) ( italic_C , italic_ฮฑ , โ–ณ ) or simply by C ๐ถ C italic_C . A Hom-coassociative coalgebra ( C , ฮฑ , โ–ณ ) ๐ถ ๐›ผ โ–ณ (C,\alpha,\triangle) ( italic_C , italic_ฮฑ , โ–ณ ) is called multiplicative if ( ฮฑ โŠ— ฮฑ ) โˆ˜ โ–ณ = โ–ณ โˆ˜ ฮฑ tensor-product ๐›ผ ๐›ผ โ–ณ โ–ณ ๐›ผ (\alpha\otimes\alpha)\circ\triangle=\triangle\circ\alpha ( italic_ฮฑ โŠ— italic_ฮฑ ) โˆ˜ โ–ณ = โ–ณ โˆ˜ italic_ฮฑ .

2.4 Definition .

An infinitesimal Hom-bialgebra is a quadruple ( A , ฮฑ , ฮผ , โ–ณ ) ๐ด ๐›ผ ๐œ‡ โ–ณ (A,\alpha,\mu,\triangle) ( italic_A , italic_ฮฑ , italic_ฮผ , โ–ณ ) in which ( A , ฮฑ , ฮผ ) ๐ด ๐›ผ ๐œ‡ (A,\alpha,\mu) ( italic_A , italic_ฮฑ , italic_ฮผ ) is a Hom-associative algebra, ( A , ฮฑ , โ–ณ ) ๐ด ๐›ผ โ–ณ (A,\alpha,\triangle) ( italic_A , italic_ฮฑ , โ–ณ ) is a Hom-coassociative coalgebra and satisfying the following compatibility

(2) โ–ณ โˆ˜ ฮผ = ( ฮผ โŠ— ฮฑ ) โˆ˜ ( ฮฑ โŠ— โ–ณ ) + ( ฮฑ โŠ— ฮผ ) โˆ˜ ( โ–ณ โŠ— ฮฑ ) . โ–ณ ๐œ‡ tensor-product ๐œ‡ ๐›ผ tensor-product ๐›ผ โ–ณ tensor-product ๐›ผ ๐œ‡ tensor-product โ–ณ ๐›ผ \displaystyle\triangle\circ\mu=(\mu\otimes\alpha)\circ(\alpha\otimes\triangle)% +(\alpha\otimes\mu)\circ(\triangle\otimes\alpha). โ–ณ โˆ˜ italic_ฮผ = ( italic_ฮผ โŠ— italic_ฮฑ ) โˆ˜ ( italic_ฮฑ โŠ— โ–ณ ) + ( italic_ฮฑ โŠ— italic_ฮผ ) โˆ˜ ( โ–ณ โŠ— italic_ฮฑ ) .

Definition 4.12 .

Define the static part of u ๐‘ข u italic_u to be the part of u ๐‘ข u italic_u that has not been pushed yet, i.e. the subword s โข ( u ) ๐‘  ๐‘ข s(u) italic_s ( italic_u ) satisfying

u = s โข ( u ) โ‹… p โข ( u ) . ๐‘ข โ‹… ๐‘  ๐‘ข ๐‘ ๐‘ข u=s(u)\cdot p(u). italic_u = italic_s ( italic_u ) โ‹… italic_p ( italic_u ) .

Definition 2.4 .

Let ( A , โ‹… ) ๐ด โ‹… (A,\cdot) ( italic_A , โ‹… ) be a ๐ค ๐ค {\bf k} bold_k -algebra with multiplication โ‹… โ‹… \cdot โ‹… and let ( R , โˆ˜ ) ๐‘… (R,\circ) ( italic_R , โˆ˜ ) be a ๐ค ๐ค {\bf k} bold_k -algebra with multiplication โˆ˜ \circ โˆ˜ . Let โ„“ , r : A โ†’ End ๐ค โข ( R ) : โ„“ ๐‘Ÿ โ†’ ๐ด subscript End ๐ค ๐‘… \ell,r:A\rightarrow{\rm End}_{\bf k}(R) roman_โ„“ , italic_r : italic_A โ†’ roman_End start_POSTSUBSCRIPT bold_k end_POSTSUBSCRIPT ( italic_R ) be linear maps. We call R ๐‘… R italic_R (or the quadruple ( R , โˆ˜ , โ„“ , r ) ๐‘… โ„“ ๐‘Ÿ (R,\circ,\ell,r) ( italic_R , โˆ˜ , roman_โ„“ , italic_r ) ) an A ๐ด A italic_A -bimodule ๐ค ๐ค {\bf k} bold_k -algebra if ( R , โ„“ , r ) ๐‘… โ„“ ๐‘Ÿ (R,\ell,r) ( italic_R , roman_โ„“ , italic_r ) is an A ๐ด A italic_A -bimodule that is compatible with the multiplication โˆ˜ \circ โˆ˜ on R ๐‘… R italic_R in the sense that

โ„“ โข ( x ) โข ( v โˆ˜ w ) = ( โ„“ โข ( x ) โข v ) โˆ˜ w , ( v โˆ˜ w ) โข r โข ( x ) = v โˆ˜ ( w โข r โข ( x ) ) , ( v โข r โข ( x ) ) โˆ˜ w = v โˆ˜ ( โ„“ โข ( x ) โข w ) , formulae-sequence โ„“ ๐‘ฅ ๐‘ฃ ๐‘ค โ„“ ๐‘ฅ ๐‘ฃ ๐‘ค formulae-sequence ๐‘ฃ ๐‘ค ๐‘Ÿ ๐‘ฅ ๐‘ฃ ๐‘ค ๐‘Ÿ ๐‘ฅ ๐‘ฃ ๐‘Ÿ ๐‘ฅ ๐‘ค ๐‘ฃ โ„“ ๐‘ฅ ๐‘ค \ell(x)(v\circ w)=(\ell(x)v)\circ w,\;(v\circ w)r(x)=v\circ(wr(x)),\;(vr(x))% \circ w=v\circ(\ell(x)w),\; roman_โ„“ ( italic_x ) ( italic_v โˆ˜ italic_w ) = ( roman_โ„“ ( italic_x ) italic_v ) โˆ˜ italic_w , ( italic_v โˆ˜ italic_w ) italic_r ( italic_x ) = italic_v โˆ˜ ( italic_w italic_r ( italic_x ) ) , ( italic_v italic_r ( italic_x ) ) โˆ˜ italic_w = italic_v โˆ˜ ( roman_โ„“ ( italic_x ) italic_w ) ,

for all x , y โˆˆ A , v , w โˆˆ R formulae-sequence ๐‘ฅ ๐‘ฆ ๐ด ๐‘ฃ ๐‘ค ๐‘… x,y\in A,v,w\in R italic_x , italic_y โˆˆ italic_A , italic_v , italic_w โˆˆ italic_R .


Definition 1.4

( [ 19 ] , [ 20 ] ) A Novikov-Poisson algebra is a triple ( A , ฮผ , * ) ๐ด ๐œ‡ (A,\mu,*) ( italic_A , italic_ฮผ , * ) such that ( A , ฮผ ) ๐ด ๐œ‡ (A,\mu) ( italic_A , italic_ฮผ ) is a commutative associative algebra, ( A , * ) ๐ด (A,*) ( italic_A , * ) is a Novikov algebra and the following compatibility conditions hold, for all x , y , z โˆˆ A ๐‘ฅ ๐‘ฆ ๐‘ง ๐ด x,y,z\in A italic_x , italic_y , italic_z โˆˆ italic_A :

( x * y ) โข z - x * ( y โข z ) = ( y * x ) โข z - y * ( x โข z ) , ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฆ ๐‘ฅ ๐‘ง ๐‘ฆ ๐‘ฅ ๐‘ง \displaystyle(x*y)z-x*(yz)=(y*x)z-y*(xz), ( italic_x * italic_y ) italic_z - italic_x * ( italic_y italic_z ) = ( italic_y * italic_x ) italic_z - italic_y * ( italic_x italic_z ) , (1.3)
( x โข y ) * z = ( x * z ) โข y . ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ฅ ๐‘ง ๐‘ฆ \displaystyle(xy)*z=(x*z)y. ( italic_x italic_y ) * italic_z = ( italic_x * italic_z ) italic_y . (1.4)

A morphism of Novikov-Poisson algebras from ( A , ฮผ , * ) ๐ด ๐œ‡ (A,\mu,*) ( italic_A , italic_ฮผ , * ) to ( A โ€ฒ , ฮผ โ€ฒ , * โ€ฒ ) superscript ๐ด normal-โ€ฒ superscript ๐œ‡ normal-โ€ฒ superscript normal-โ€ฒ (A^{\prime},\mu^{\prime},*^{\prime}) ( italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮผ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , * start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) is a linear map f : A โ†’ A โ€ฒ normal-: ๐‘“ normal-โ†’ ๐ด superscript ๐ด normal-โ€ฒ f:A\rightarrow A^{\prime} italic_f : italic_A โ†’ italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT satisfying f โˆ˜ ฮผ = ฮผ โ€ฒ โˆ˜ ( f โŠ— f ) ๐‘“ ๐œ‡ superscript ๐œ‡ normal-โ€ฒ tensor-product ๐‘“ ๐‘“ f\circ\mu=\mu^{\prime}\circ(f\otimes f) italic_f โˆ˜ italic_ฮผ = italic_ฮผ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT โˆ˜ ( italic_f โŠ— italic_f ) and f โข ( x * y ) = f โข ( x ) * โ€ฒ f โข ( y ) ๐‘“ ๐‘ฅ ๐‘ฆ superscript normal-โ€ฒ ๐‘“ ๐‘ฅ ๐‘“ ๐‘ฆ f(x*y)=f(x)*^{\prime}f(y) italic_f ( italic_x * italic_y ) = italic_f ( italic_x ) * start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT italic_f ( italic_y ) , for all x , y โˆˆ A ๐‘ฅ ๐‘ฆ ๐ด x,y\in A italic_x , italic_y โˆˆ italic_A .

Definition 1.5

( [ 15 ] ) A BiHom-Novikov algebra is a 4-tuple ( A , โˆ— , ฮฑ , ฮฒ ) ๐ด normal-โˆ— ๐›ผ ๐›ฝ (A,\ast,\alpha,\beta) ( italic_A , โˆ— , italic_ฮฑ , italic_ฮฒ ) , where A ๐ด A italic_A is a linear space, โˆ— : A โŠ— A โ†’ A fragments normal-โˆ— normal-: A tensor-product A normal-โ†’ A \ast:A\otimes A\rightarrow A โˆ— : italic_A โŠ— italic_A โ†’ italic_A is a linear map and ฮฑ , ฮฒ : A โ†’ A normal-: ๐›ผ ๐›ฝ normal-โ†’ ๐ด ๐ด \alpha,\beta:A\rightarrow A italic_ฮฑ , italic_ฮฒ : italic_A โ†’ italic_A are commuting linear maps (called the structure maps of A ๐ด A italic_A ), satisfying the following conditions, for all x , y , z โˆˆ A ๐‘ฅ ๐‘ฆ ๐‘ง ๐ด x,y,z\in A italic_x , italic_y , italic_z โˆˆ italic_A :

ฮฑ โข ( x โˆ— y ) = ฮฑ โข ( x ) โˆ— ฮฑ โข ( y ) , ฮฒ โข ( x โˆ— y ) = ฮฒ โข ( x ) โˆ— ฮฒ โข ( y ) , formulae-sequence ๐›ผ โˆ— ๐‘ฅ ๐‘ฆ โˆ— ๐›ผ ๐‘ฅ ๐›ผ ๐‘ฆ ๐›ฝ โˆ— ๐‘ฅ ๐‘ฆ โˆ— ๐›ฝ ๐‘ฅ ๐›ฝ ๐‘ฆ \displaystyle\alpha(x\ast y)=\alpha(x)\ast\alpha(y),~{}~{}\beta(x\ast y)=\beta% (x)\ast\beta(y), italic_ฮฑ ( italic_x โˆ— italic_y ) = italic_ฮฑ ( italic_x ) โˆ— italic_ฮฑ ( italic_y ) , italic_ฮฒ ( italic_x โˆ— italic_y ) = italic_ฮฒ ( italic_x ) โˆ— italic_ฮฒ ( italic_y ) , (1.6)
( ฮฒ โข ( x ) โˆ— ฮฑ โข ( y ) ) โˆ— ฮฒ โข ( z ) - ฮฑ โข ฮฒ โข ( x ) โˆ— ( ฮฑ โข ( y ) โˆ— z ) โˆ— โˆ— ๐›ฝ ๐‘ฅ ๐›ผ ๐‘ฆ ๐›ฝ ๐‘ง โˆ— ๐›ผ ๐›ฝ ๐‘ฅ โˆ— ๐›ผ ๐‘ฆ ๐‘ง \displaystyle(\beta(x)\ast\alpha(y))\ast\beta(z)-\alpha\beta(x)\ast(\alpha(y)% \ast z) ( italic_ฮฒ ( italic_x ) โˆ— italic_ฮฑ ( italic_y ) ) โˆ— italic_ฮฒ ( italic_z ) - italic_ฮฑ italic_ฮฒ ( italic_x ) โˆ— ( italic_ฮฑ ( italic_y ) โˆ— italic_z )
= ( ฮฒ ( y ) โˆ— ฮฑ ( x ) ) โˆ— ฮฒ ( z ) - ฮฑ ฮฒ ( y ) โˆ— ( ฮฑ ( x ) โˆ— z ) , fragments italic- fragments ( ฮฒ fragments ( y ) โˆ— ฮฑ fragments ( x ) ) โˆ— ฮฒ fragments ( z ) ฮฑ ฮฒ fragments ( y ) โˆ— fragments ( ฮฑ fragments ( x ) โˆ— z ) , \displaystyle\;\;\;\;\;\;\;\;\;\;\;\;=(\beta(y)\ast\alpha(x))\ast\beta(z)-% \alpha\beta(y)\ast(\alpha(x)\ast z), = ( italic_ฮฒ ( italic_y ) โˆ— italic_ฮฑ ( italic_x ) ) โˆ— italic_ฮฒ ( italic_z ) - italic_ฮฑ italic_ฮฒ ( italic_y ) โˆ— ( italic_ฮฑ ( italic_x ) โˆ— italic_z ) , (1.7)
( x โˆ— ฮฒ โข ( y ) ) โˆ— ฮฑ โข ฮฒ โข ( z ) = ( x โˆ— ฮฒ โข ( z ) ) โˆ— ฮฑ โข ฮฒ โข ( y ) . โˆ— โˆ— ๐‘ฅ ๐›ฝ ๐‘ฆ ๐›ผ ๐›ฝ ๐‘ง โˆ— โˆ— ๐‘ฅ ๐›ฝ ๐‘ง ๐›ผ ๐›ฝ ๐‘ฆ \displaystyle(x\ast\beta(y))\ast\alpha\beta(z)=(x\ast\beta(z))\ast\alpha\beta(% y). ( italic_x โˆ— italic_ฮฒ ( italic_y ) ) โˆ— italic_ฮฑ italic_ฮฒ ( italic_z ) = ( italic_x โˆ— italic_ฮฒ ( italic_z ) ) โˆ— italic_ฮฑ italic_ฮฒ ( italic_y ) . (1.8)

A morphism f : ( A , โˆ— A , ฮฑ A , ฮฒ A ) โ†’ ( B , โˆ— B , ฮฑ B , ฮฒ B ) normal-: ๐‘“ normal-โ†’ ๐ด subscript normal-โˆ— ๐ด subscript ๐›ผ ๐ด subscript ๐›ฝ ๐ด ๐ต subscript normal-โˆ— ๐ต subscript ๐›ผ ๐ต subscript ๐›ฝ ๐ต f:(A,\ast_{A},\alpha_{A},\beta_{A})\rightarrow(B,\ast_{B},\alpha_{B},\beta_{B}) italic_f : ( italic_A , โˆ— start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , italic_ฮฑ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , italic_ฮฒ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT ) โ†’ ( italic_B , โˆ— start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_ฮฑ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT , italic_ฮฒ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT ) of BiHom-Novikov algebras is a linear map f : A โ†’ B normal-: ๐‘“ normal-โ†’ ๐ด ๐ต f:A\rightarrow B italic_f : italic_A โ†’ italic_B such that ฮฑ B โˆ˜ f = f โˆ˜ ฮฑ A subscript ๐›ผ ๐ต ๐‘“ ๐‘“ subscript ๐›ผ ๐ด \alpha_{B}\circ f=f\circ\alpha_{A} italic_ฮฑ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT โˆ˜ italic_f = italic_f โˆ˜ italic_ฮฑ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT , ฮฒ B โˆ˜ f = f โˆ˜ ฮฒ A subscript ๐›ฝ ๐ต ๐‘“ ๐‘“ subscript ๐›ฝ ๐ด \beta_{B}\circ f=f\circ\beta_{A} italic_ฮฒ start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT โˆ˜ italic_f = italic_f โˆ˜ italic_ฮฒ start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT and f โข ( x โˆ— A y ) = f โข ( x ) โˆ— B f โข ( y ) ๐‘“ subscript normal-โˆ— ๐ด ๐‘ฅ ๐‘ฆ subscript normal-โˆ— ๐ต ๐‘“ ๐‘ฅ ๐‘“ ๐‘ฆ f(x\ast_{A}y)=f(x)\ast_{B}f(y) italic_f ( italic_x โˆ— start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT italic_y ) = italic_f ( italic_x ) โˆ— start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT italic_f ( italic_y ) , for all x , y โˆˆ A ๐‘ฅ ๐‘ฆ ๐ด x,y\in A italic_x , italic_y โˆˆ italic_A .

Definition 1.6

( [ 15 ] ) A BiHom-Novikov-Poisson algebra is a 5-tuple ( A , ฮผ , โˆ— , ฮฑ , ฮฒ ) ๐ด ๐œ‡ normal-โˆ— ๐›ผ ๐›ฝ (A,\mu,\ast,\alpha,\beta) ( italic_A , italic_ฮผ , โˆ— , italic_ฮฑ , italic_ฮฒ ) such that:

(1) ( A , ฮผ , ฮฑ , ฮฒ ) ๐ด ๐œ‡ ๐›ผ ๐›ฝ (A,\mu,\alpha,\beta) ( italic_A , italic_ฮผ , italic_ฮฑ , italic_ฮฒ ) is a BiHom-commutative algebra;

(2) ( A , โˆ— , ฮฑ , ฮฒ ) ๐ด normal-โˆ— ๐›ผ ๐›ฝ (A,\ast,\alpha,\beta) ( italic_A , โˆ— , italic_ฮฑ , italic_ฮฒ ) is a BiHom-Novikov algebra;

(3) the following compatibility conditions hold for all x , y , z โˆˆ A ๐‘ฅ ๐‘ฆ ๐‘ง ๐ด x,y,z\in A italic_x , italic_y , italic_z โˆˆ italic_A :

( ฮฒ โข ( x ) โˆ— ฮฑ โข ( y ) ) โข ฮฒ โข ( z ) - ฮฑ โข ฮฒ โข ( x ) โˆ— ( ฮฑ โข ( y ) โข z ) = ( ฮฒ โข ( y ) โˆ— ฮฑ โข ( x ) ) โข ฮฒ โข ( z ) - ฮฑ โข ฮฒ โข ( y ) โˆ— ( ฮฑ โข ( x ) โข z ) , โˆ— ๐›ฝ ๐‘ฅ ๐›ผ ๐‘ฆ ๐›ฝ ๐‘ง โˆ— ๐›ผ ๐›ฝ ๐‘ฅ ๐›ผ ๐‘ฆ ๐‘ง โˆ— ๐›ฝ ๐‘ฆ ๐›ผ ๐‘ฅ ๐›ฝ ๐‘ง โˆ— ๐›ผ ๐›ฝ ๐‘ฆ ๐›ผ ๐‘ฅ ๐‘ง \displaystyle(\beta(x)\ast\alpha(y))\beta(z)-\alpha\beta(x)\ast(\alpha(y)z)=(% \beta(y)\ast\alpha(x))\beta(z)-\alpha\beta(y)\ast(\alpha(x)z), ( italic_ฮฒ ( italic_x ) โˆ— italic_ฮฑ ( italic_y ) ) italic_ฮฒ ( italic_z ) - italic_ฮฑ italic_ฮฒ ( italic_x ) โˆ— ( italic_ฮฑ ( italic_y ) italic_z ) = ( italic_ฮฒ ( italic_y ) โˆ— italic_ฮฑ ( italic_x ) ) italic_ฮฒ ( italic_z ) - italic_ฮฑ italic_ฮฒ ( italic_y ) โˆ— ( italic_ฮฑ ( italic_x ) italic_z ) , (1.9)
( x โข ฮฒ โข ( y ) ) โˆ— ฮฑ โข ฮฒ โข ( z ) = ( x โˆ— ฮฒ โข ( z ) ) โข ฮฑ โข ฮฒ โข ( y ) , โˆ— ๐‘ฅ ๐›ฝ ๐‘ฆ ๐›ผ ๐›ฝ ๐‘ง โˆ— ๐‘ฅ ๐›ฝ ๐‘ง ๐›ผ ๐›ฝ ๐‘ฆ \displaystyle(x\beta(y))\ast\alpha\beta(z)=(x\ast\beta(z))\alpha\beta(y), ( italic_x italic_ฮฒ ( italic_y ) ) โˆ— italic_ฮฑ italic_ฮฒ ( italic_z ) = ( italic_x โˆ— italic_ฮฒ ( italic_z ) ) italic_ฮฑ italic_ฮฒ ( italic_y ) , (1.10)
ฮฑ โข ( x ) โข ( y โˆ— z ) = ( x โข y ) โˆ— ฮฒ โข ( z ) . ๐›ผ ๐‘ฅ โˆ— ๐‘ฆ ๐‘ง โˆ— ๐‘ฅ ๐‘ฆ ๐›ฝ ๐‘ง \displaystyle\alpha(x)(y\ast z)=(xy)\ast\beta(z). italic_ฮฑ ( italic_x ) ( italic_y โˆ— italic_z ) = ( italic_x italic_y ) โˆ— italic_ฮฒ ( italic_z ) . (1.11)

The maps ฮฑ ๐›ผ \alpha italic_ฮฑ and ฮฒ ๐›ฝ \beta italic_ฮฒ (in this order) are called the structure maps of A ๐ด A italic_A .

A morphism f : ( A , ฮผ , โˆ— , ฮฑ , ฮฒ ) โ†’ ( A โ€ฒ , ฮผ โ€ฒ , โˆ— โ€ฒ , ฮฑ โ€ฒ , ฮฒ โ€ฒ ) normal-: ๐‘“ normal-โ†’ ๐ด ๐œ‡ normal-โˆ— ๐›ผ ๐›ฝ superscript ๐ด normal-โ€ฒ superscript ๐œ‡ normal-โ€ฒ superscript normal-โˆ— normal-โ€ฒ superscript ๐›ผ normal-โ€ฒ superscript ๐›ฝ normal-โ€ฒ f:(A,\mu,\ast,\alpha,\beta)\rightarrow(A^{\prime},\mu^{\prime},\ast^{\prime},% \alpha^{\prime},\beta^{\prime}) italic_f : ( italic_A , italic_ฮผ , โˆ— , italic_ฮฑ , italic_ฮฒ ) โ†’ ( italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮผ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , โˆ— start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮฑ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮฒ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) of BiHom-Novikov-Poisson algebras is a map that is a morphism of BiHom-associative algebras from ( A , ฮผ , ฮฑ , ฮฒ ) ๐ด ๐œ‡ ๐›ผ ๐›ฝ (A,\mu,\alpha,\beta) ( italic_A , italic_ฮผ , italic_ฮฑ , italic_ฮฒ ) to ( A โ€ฒ , ฮผ โ€ฒ , ฮฑ โ€ฒ , ฮฒ โ€ฒ ) superscript ๐ด normal-โ€ฒ superscript ๐œ‡ normal-โ€ฒ superscript ๐›ผ normal-โ€ฒ superscript ๐›ฝ normal-โ€ฒ (A^{\prime},\mu^{\prime},\alpha^{\prime},\beta^{\prime}) ( italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮผ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮฑ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮฒ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) and a morphism of BiHom-Novikov algebras from ( A , โˆ— , ฮฑ , ฮฒ ) ๐ด normal-โˆ— ๐›ผ ๐›ฝ (A,\ast,\alpha,\beta) ( italic_A , โˆ— , italic_ฮฑ , italic_ฮฒ ) to ( A โ€ฒ , โˆ— โ€ฒ , ฮฑ โ€ฒ , ฮฒ โ€ฒ ) superscript ๐ด normal-โ€ฒ superscript normal-โˆ— normal-โ€ฒ superscript ๐›ผ normal-โ€ฒ superscript ๐›ฝ normal-โ€ฒ (A^{\prime},\ast^{\prime},\alpha^{\prime},\beta^{\prime}) ( italic_A start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , โˆ— start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮฑ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฮฒ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) .

Definition 4.1

( [ 16 ] ) A BiHom-Lie algebra ( L , [ โ‹… , โ‹… ] , ฮฑ , ฮฒ ) ๐ฟ normal-โ‹… normal-โ‹… ๐›ผ ๐›ฝ \left(L,\left[\cdot,\cdot\right],\alpha,\beta\right) ( italic_L , [ โ‹… , โ‹… ] , italic_ฮฑ , italic_ฮฒ ) is a 4-tuple in which L ๐ฟ L italic_L is a linear space, ฮฑ , ฮฒ : L โ†’ L normal-: ๐›ผ ๐›ฝ normal-โ†’ ๐ฟ ๐ฟ \alpha,\beta:L\rightarrow L italic_ฮฑ , italic_ฮฒ : italic_L โ†’ italic_L are linear maps and [ โ‹… , โ‹… ] : L ร— L โ†’ L normal-: normal-โ‹… normal-โ‹… normal-โ†’ ๐ฟ ๐ฟ ๐ฟ \left[\cdot,\cdot\right]:L\times L\rightarrow L [ โ‹… , โ‹… ] : italic_L ร— italic_L โ†’ italic_L is a bilinear map, such that

ฮฑ โˆ˜ ฮฒ = ฮฒ โˆ˜ ฮฑ , ๐›ผ ๐›ฝ ๐›ฝ ๐›ผ \displaystyle\alpha\circ\beta=\beta\circ\alpha, italic_ฮฑ โˆ˜ italic_ฮฒ = italic_ฮฒ โˆ˜ italic_ฮฑ , (4.1)
ฮฑ โข ( [ x , y ] ) = [ ฮฑ โข ( x ) , ฮฑ โข ( y ) ] โข and โข ฮฒ โข ( [ x , y ] ) = [ ฮฒ โข ( x ) , ฮฒ โข ( y ) ] , ๐›ผ ๐‘ฅ ๐‘ฆ ๐›ผ ๐‘ฅ ๐›ผ ๐‘ฆ and ๐›ฝ ๐‘ฅ ๐‘ฆ ๐›ฝ ๐‘ฅ ๐›ฝ ๐‘ฆ \displaystyle\alpha(\left[x,y\right])=\left[\alpha\left(x\right),\alpha(y)% \right]\;\;\text{ and }\;\;\beta(\left[x,y\right])=\left[\beta\left(x\right),% \beta\left(y\right)\right], italic_ฮฑ ( [ italic_x , italic_y ] ) = [ italic_ฮฑ ( italic_x ) , italic_ฮฑ ( italic_y ) ] and italic_ฮฒ ( [ italic_x , italic_y ] ) = [ italic_ฮฒ ( italic_x ) , italic_ฮฒ ( italic_y ) ] , (4.2)
[ ฮฒ โข ( x ) , ฮฑ โข ( y ) ] = - [ ฮฒ โข ( y ) , ฮฑ โข ( x ) ] , (BiHom-skew-symmetry) ๐›ฝ ๐‘ฅ ๐›ผ ๐‘ฆ ๐›ฝ ๐‘ฆ ๐›ผ ๐‘ฅ (BiHom-skew-symmetry) \displaystyle\left[\beta\left(x\right),\alpha\left(y\right)\right]=-\left[% \beta\left(y\right),\alpha\left(x\right)\right],\;\;\;\;\text{ (BiHom-skew-% symmetry)} [ italic_ฮฒ ( italic_x ) , italic_ฮฑ ( italic_y ) ] = - [ italic_ฮฒ ( italic_y ) , italic_ฮฑ ( italic_x ) ] , italic_(BiHom-skew-symmetry) (4.3)
[ ฮฒ 2 โข ( x ) , [ ฮฒ โข ( y ) , ฮฑ โข ( z ) ] ] + [ ฮฒ 2 โข ( y ) , [ ฮฒ โข ( z ) , ฮฑ โข ( x ) ] ] + [ ฮฒ 2 โข ( z ) , [ ฮฒ โข ( x ) , ฮฑ โข ( y ) ] ] = 0 , superscript ๐›ฝ 2 ๐‘ฅ ๐›ฝ ๐‘ฆ ๐›ผ ๐‘ง superscript ๐›ฝ 2 ๐‘ฆ ๐›ฝ ๐‘ง ๐›ผ ๐‘ฅ superscript ๐›ฝ 2 ๐‘ง ๐›ฝ ๐‘ฅ ๐›ผ ๐‘ฆ 0 \displaystyle\left[\beta^{2}\left(x\right),\left[\beta\left(y\right),\alpha% \left(z\right)\right]\right]+\left[\beta^{2}\left(y\right),\left[\beta\left(z% \right),\alpha\left(x\right)\right]\right]+\left[\beta^{2}\left(z\right),\left% [\beta\left(x\right),\alpha\left(y\right)\right]\right]=0, [ italic_ฮฒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x ) , [ italic_ฮฒ ( italic_y ) , italic_ฮฑ ( italic_z ) ] ] + [ italic_ฮฒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_y ) , [ italic_ฮฒ ( italic_z ) , italic_ฮฑ ( italic_x ) ] ] + [ italic_ฮฒ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_z ) , [ italic_ฮฒ ( italic_x ) , italic_ฮฑ ( italic_y ) ] ] = 0 , (4.4)
(BiHom-Jacobi condition)

for all x , y , z โˆˆ L ๐‘ฅ ๐‘ฆ ๐‘ง ๐ฟ x,y,z\in L italic_x , italic_y , italic_z โˆˆ italic_L . The maps ฮฑ ๐›ผ \alpha italic_ฮฑ and ฮฒ ๐›ฝ \beta italic_ฮฒ (in this order) are called the structure maps of L ๐ฟ L italic_L .

Definition 4.2

A BiHom-Poisson algebra is a 5-tuple ( A , ฮผ , [ โ‹… , โ‹… ] , ฮฑ , ฮฒ ) ๐ด ๐œ‡ normal-โ‹… normal-โ‹… ๐›ผ ๐›ฝ (A,\mu,\left[\cdot,\cdot\right],\alpha,\beta) ( italic_A , italic_ฮผ , [ โ‹… , โ‹… ] , italic_ฮฑ , italic_ฮฒ ) , with the property that

(1) ( A , ฮผ , ฮฑ , ฮฒ ) ๐ด ๐œ‡ ๐›ผ ๐›ฝ (A,\mu,\alpha,\beta) ( italic_A , italic_ฮผ , italic_ฮฑ , italic_ฮฒ ) is a BiHom-commutative algebra;

(2) ( A , [ โ‹… , โ‹… ] , ฮฑ , ฮฒ ) ๐ด normal-โ‹… normal-โ‹… ๐›ผ ๐›ฝ (A,\left[\cdot,\cdot\right],\alpha,\beta) ( italic_A , [ โ‹… , โ‹… ] , italic_ฮฑ , italic_ฮฒ ) is a BiHom-Lie algebra;

(3) the following BiHom-Leibniz identity holds for all x , y , z โˆˆ A ๐‘ฅ ๐‘ฆ ๐‘ง ๐ด x,y,z\in A italic_x , italic_y , italic_z โˆˆ italic_A :

[ ฮฑ โข ฮฒ โข ( x ) , y โข z ] = [ ฮฒ โข ( x ) , y ] โข ฮฒ โข ( z ) + ฮฒ โข ( y ) โข [ ฮฑ โข ( x ) , z ] . ๐›ผ ๐›ฝ ๐‘ฅ ๐‘ฆ ๐‘ง ๐›ฝ ๐‘ฅ ๐‘ฆ ๐›ฝ ๐‘ง ๐›ฝ ๐‘ฆ ๐›ผ ๐‘ฅ ๐‘ง \displaystyle\left[\alpha\beta(x),yz\right]=\left[\beta(x),y\right]\beta(z)+% \beta(y)\left[\alpha(x),z\right]. [ italic_ฮฑ italic_ฮฒ ( italic_x ) , italic_y italic_z ] = [ italic_ฮฒ ( italic_x ) , italic_y ] italic_ฮฒ ( italic_z ) + italic_ฮฒ ( italic_y ) [ italic_ฮฑ ( italic_x ) , italic_z ] . (4.5)
Definition 4.3

Let ( A , ฮผ , โˆ— , ฮฑ , ฮฒ ) ๐ด ๐œ‡ normal-โˆ— ๐›ผ ๐›ฝ (A,\mu,\ast,\alpha,\beta) ( italic_A , italic_ฮผ , โˆ— , italic_ฮฑ , italic_ฮฒ ) be a BiHom-Novikov-Poisson algebra. Then A ๐ด A italic_A is called left BiHom-associative if the following condition holds for all x , y , z โˆˆ A ๐‘ฅ ๐‘ฆ ๐‘ง ๐ด x,y,z\in A italic_x , italic_y , italic_z โˆˆ italic_A :

ฮฑ โข ( x ) โˆ— ( y โข z ) = ( x โข y ) โˆ— ฮฒ โข ( z ) . โˆ— ๐›ผ ๐‘ฅ ๐‘ฆ ๐‘ง โˆ— ๐‘ฅ ๐‘ฆ ๐›ฝ ๐‘ง \displaystyle\alpha(x)\ast(yz)=(xy)\ast\beta(z). italic_ฮฑ ( italic_x ) โˆ— ( italic_y italic_z ) = ( italic_x italic_y ) โˆ— italic_ฮฒ ( italic_z ) . (4.6)

Definition 1 (Degree of Algebraic Number) .

Let L ๐ฟ L italic_L be an algebraic number field of degree n ๐‘› n italic_n , and let { 1 , ฮฑ , โ‹ฏ , ฮฑ n - 1 } 1 ๐›ผ normal-โ‹ฏ superscript ๐›ผ ๐‘› 1 \{1,\alpha,\cdots,\alpha^{n-1}\} { 1 , italic_ฮฑ , โ‹ฏ , italic_ฮฑ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT } be a โ„š โ„š \mathbb{Q} blackboard_Q -basis of L ๐ฟ L italic_L for some primitive element ฮฑ โˆˆ L ๐›ผ ๐ฟ \alpha\in L italic_ฮฑ โˆˆ italic_L . Given any element v โˆˆ L ๐‘ฃ ๐ฟ v\in L italic_v โˆˆ italic_L , we can write v ๐‘ฃ v italic_v uniquely as

v = f โข ( ฮฑ ) ๐‘ฃ ๐‘“ ๐›ผ v=f(\alpha) italic_v = italic_f ( italic_ฮฑ )

for some f โˆˆ โ„š โข [ x ] ๐‘“ โ„š delimited-[] ๐‘ฅ f\in\mathbb{Q}[x] italic_f โˆˆ blackboard_Q [ italic_x ] with deg โก f โ‰ค n - 1 degree ๐‘“ ๐‘› 1 \deg f\leq n-1 roman_deg italic_f โ‰ค italic_n - 1 . Then the degree of v ๐‘ฃ v italic_v with respect to ฮฑ ๐›ผ \alpha italic_ฮฑ , written as deg ฮฑ โก ( v ) subscript degree ๐›ผ ๐‘ฃ \deg_{\alpha}(v) roman_deg start_POSTSUBSCRIPT italic_ฮฑ end_POSTSUBSCRIPT ( italic_v ) , is the degree of f โข ( x ) ๐‘“ ๐‘ฅ f(x) italic_f ( italic_x ) .


Definition 2.1 .

[ 10 ] Let โ€ โ‹… normal-โ‹… \cdot โ‹… โ€ be a bilinear product in a vector space ๐’œ . ๐’œ \mathcal{A}. caligraphic_A . Suppose that it satisfies the following law:

( x โ‹… y ) โ‹… z = - x โ‹… ( y โ‹… z ) . โ‹… โ‹… ๐‘ฅ ๐‘ฆ ๐‘ง โ‹… ๐‘ฅ โ‹… ๐‘ฆ ๐‘ง \displaystyle(x\cdot y)\cdot z=-x\cdot(y\cdot z). ( italic_x โ‹… italic_y ) โ‹… italic_z = - italic_x โ‹… ( italic_y โ‹… italic_z ) . (2.1)

Then, we call the pair ( ๐’œ , โ‹… ) ๐’œ normal-โ‹… (\mathcal{A},\cdot) ( caligraphic_A , โ‹… ) an antiassociative algebra .

Definition 2.2 .

[ 13 ] An algebra ( ๐’œ , โ‹„ ) ๐’œ normal-โ‹„ (\mathcal{A},\diamond) ( caligraphic_A , โ‹„ ) over K ๐พ K italic_K is called JJ if it is commutative:

x โ‹„ y = y โ‹„ x , โ‹„ ๐‘ฅ ๐‘ฆ โ‹„ ๐‘ฆ ๐‘ฅ \displaystyle x\diamond y=y\diamond x, italic_x โ‹„ italic_y = italic_y โ‹„ italic_x , (2.2)

and satisfies the Jacobi identity:

( x โ‹„ y ) โ‹„ z + ( z โ‹„ x ) โ‹„ y + ( y โ‹„ z ) โ‹„ x = 0 โ‹„ โ‹„ โ‹„ โ‹„ ๐‘ฅ ๐‘ฆ ๐‘ง โ‹„ ๐‘ง ๐‘ฅ ๐‘ฆ โ‹„ ๐‘ฆ ๐‘ง ๐‘ฅ 0 \displaystyle(x\diamond y)\diamond z+(z\diamond x)\diamond y+(y\diamond z)% \diamond x=0 ( italic_x โ‹„ italic_y ) โ‹„ italic_z + ( italic_z โ‹„ italic_x ) โ‹„ italic_y + ( italic_y โ‹„ italic_z ) โ‹„ italic_x = 0 (2.3)

for any x ๐‘ฅ x italic_x , y ๐‘ฆ y italic_y , z โˆˆ ๐’œ ๐‘ง ๐’œ z\in\mathcal{A} italic_z โˆˆ caligraphic_A .

Definition 2.4 .

[ 13 ] A vector space V ๐‘‰ V italic_V is a module over a JJ algebra ๐’œ ๐’œ \mathcal{A} caligraphic_A , if there is a linear map (a representation) ฯ : ๐’œ โ†’ E โข n โข d โข ( V ) normal-: ๐œŒ normal-โ†’ ๐’œ ๐ธ ๐‘› ๐‘‘ ๐‘‰ \rho:\mathcal{A}\to End(V) italic_ฯ : caligraphic_A โ†’ italic_E italic_n italic_d ( italic_V ) such that

ฯ โข ( x โ‹„ y ) โข ( v ) = - ฯ โข ( x ) โข ( ฯ โข ( y ) โข v ) - ฯ โข ( y ) โข ( ฯ โข ( x ) โข v ) ๐œŒ โ‹„ ๐‘ฅ ๐‘ฆ ๐‘ฃ ๐œŒ ๐‘ฅ ๐œŒ ๐‘ฆ ๐‘ฃ ๐œŒ ๐‘ฆ ๐œŒ ๐‘ฅ ๐‘ฃ \displaystyle\rho(x\diamond y)(v)=-\rho(x)(\rho(y)v)-\rho(y)(\rho(x)v) italic_ฯ ( italic_x โ‹„ italic_y ) ( italic_v ) = - italic_ฯ ( italic_x ) ( italic_ฯ ( italic_y ) italic_v ) - italic_ฯ ( italic_y ) ( italic_ฯ ( italic_x ) italic_v ) (2.4)

for any x , y โˆˆ ๐’œ ๐‘ฅ ๐‘ฆ ๐’œ x,y\in\mathcal{A} italic_x , italic_y โˆˆ caligraphic_A and v โˆˆ V ๐‘ฃ ๐‘‰ v\in V italic_v โˆˆ italic_V .

Definition 2.6 .

Let ( ๐”ค , โ‹„ ) ๐”ค normal-โ‹„ (\mathfrak{g},\diamond) ( fraktur_g , โ‹„ ) be a JJ algebra. Two representations ( V , ฯ ) ๐‘‰ ๐œŒ (V,\rho) ( italic_V , italic_ฯ ) and ( V โ€ฒ , ฯ โ€ฒ ) superscript ๐‘‰ normal-โ€ฒ superscript ๐œŒ normal-โ€ฒ (V^{\prime},\rho^{\prime}) ( italic_V start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT , italic_ฯ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ) of ๐”ค ๐”ค \mathfrak{g} fraktur_g are said to be isomorphic if there exists a linear map ฯ• : V โ†’ V โ€ฒ normal-: italic-ฯ• normal-โ†’ ๐‘‰ superscript ๐‘‰ normal-โ€ฒ \phi\ :V\rightarrow V^{\prime} italic_ฯ• : italic_V โ†’ italic_V start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT such that

โˆ€ x โˆˆ ๐”ค , ฯ โ€ฒ โข ( x ) โˆ˜ ฯ• = ฯ• โˆ˜ ฯ โข ( x ) . formulae-sequence for-all ๐‘ฅ ๐”ค superscript ๐œŒ โ€ฒ ๐‘ฅ italic-ฯ• italic-ฯ• ๐œŒ ๐‘ฅ \forall x\in\mathfrak{g},\ \ \rho^{\prime}(x)\circ\phi=\phi\circ\rho(x). โˆ€ italic_x โˆˆ fraktur_g , italic_ฯ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_x ) โˆ˜ italic_ฯ• = italic_ฯ• โˆ˜ italic_ฯ ( italic_x ) .

Definition 4 (Superposition measures and solutions) .

We say that ๐›ˆ โˆˆ ๐’ซ โข ( โ„ d ร— ฮฃ T ) ๐›ˆ ๐’ซ superscript โ„ ๐‘‘ subscript normal-ฮฃ ๐‘‡ \boldsymbol{\eta}\in\mathscr{P}(\mathbb{R}^{d}\times\Sigma_{T}) bold_italic_ฮท โˆˆ script_P ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ร— roman_ฮฃ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) is a superposition measure generated by v โข ( โ‹… , โ‹… ) ๐‘ฃ normal-โ‹… normal-โ‹… v(\cdot,\cdot) italic_v ( โ‹… , โ‹… ) if it is concentrated on the pairs ( x , ฯƒ ) โˆˆ โ„ d ร— AC โข ( [ 0 , T ] , โ„ d ) ๐‘ฅ ๐œŽ superscript โ„ ๐‘‘ AC 0 ๐‘‡ superscript โ„ ๐‘‘ (x,\sigma)\in\mathbb{R}^{d}\times\textnormal{AC}([0,T],\mathbb{R}^{d}) ( italic_x , italic_ฯƒ ) โˆˆ blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ร— AC ( [ 0 , italic_T ] , blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) such that

ฯƒ โข ( 0 ) = x ๐‘Ž๐‘›๐‘‘ ฯƒ ห™ โข ( t ) = v โข ( t , ฯƒ โข ( t ) ) , formulae-sequence ๐œŽ 0 ๐‘ฅ ๐‘Ž๐‘›๐‘‘ ห™ ๐œŽ ๐‘ก ๐‘ฃ ๐‘ก ๐œŽ ๐‘ก \sigma(0)=x\qquad\text{and}\qquad\dot{\sigma}(t)=v(t,\sigma(t)), italic_ฯƒ ( 0 ) = italic_x and ห™ start_ARG italic_ฯƒ end_ARG ( italic_t ) = italic_v ( italic_t , italic_ฯƒ ( italic_t ) ) , (10)

for โ„’ 1 superscript โ„’ 1 \mathscr{L}^{1} script_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT -almost every t โˆˆ [ 0 , T ] ๐‘ก 0 ๐‘‡ t\in[0,T] italic_t โˆˆ [ 0 , italic_T ] . We further say that a distributional solution ฮผ โข ( โ‹… ) โˆˆ C 0 โข ( [ 0 , T ] , ๐’ซ โข ( โ„ d ) ) ๐œ‡ normal-โ‹… superscript ๐ถ 0 0 ๐‘‡ ๐’ซ superscript โ„ ๐‘‘ \mu(\cdot)\in C^{0}([0,T],\mathscr{P}(\mathbb{R}^{d})) italic_ฮผ ( โ‹… ) โˆˆ italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( [ 0 , italic_T ] , script_P ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ) ) of ( 8 ) is a superposition solution if there exists a superposition measure ๐›ˆ โˆˆ ๐’ซ โข ( โ„ d ร— ฮฃ T ) ๐›ˆ ๐’ซ superscript โ„ ๐‘‘ subscript normal-ฮฃ ๐‘‡ \boldsymbol{\eta}\in\mathscr{P}(\mathbb{R}^{d}\times\Sigma_{T}) bold_italic_ฮท โˆˆ script_P ( blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT ร— roman_ฮฃ start_POSTSUBSCRIPT italic_T end_POSTSUBSCRIPT ) generated by v โข ( โ‹… , โ‹… ) ๐‘ฃ normal-โ‹… normal-โ‹… v(\cdot,\cdot) italic_v ( โ‹… , โ‹… ) such that ฮผ โข ( t ) = ( e t ) # โข ๐›ˆ ๐œ‡ ๐‘ก subscript subscript ๐‘’ ๐‘ก normal-# ๐›ˆ \mu(t)=(e_{t})_{\#}\boldsymbol{\eta} italic_ฮผ ( italic_t ) = ( italic_e start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT # end_POSTSUBSCRIPT bold_italic_ฮท for all times t โˆˆ [ 0 , T ] ๐‘ก 0 ๐‘‡ t\in[0,T] italic_t โˆˆ [ 0 , italic_T ] .