Definition 2.1 (Jacobi bracket)

A Jacobi bracket is a bilinear operation { , } : ( M ) ( M ) ( M ) fragments fragments { , } : F fragments ( M ) tensor-product F fragments ( M ) F fragments ( M ) \{\ ,\ \}:{\cal F}(M)\otimes{\cal F}(M)\to{\cal F}(M) { , } : caligraphic_F ( italic_M ) ⊗ caligraphic_F ( italic_M ) → caligraphic_F ( italic_M ) which satisfies ( 1 ) and the following conditions f , g , h ( M ) for-all 𝑓 𝑔 𝑀 \forall f,g,h\in{\cal F}(M) ∀ italic_f , italic_g , italic_h ∈ caligraphic_F ( italic_M )
a) skew-symmetry

{ f , g } = - { g , f } 𝑓 𝑔 𝑔 𝑓 \{f,g\}=-\{g,f\} { italic_f , italic_g } = - { italic_g , italic_f } (2)

b) Jacobi identity

{ f , { g , h } } + { g , { h , f } } + { h , { f , g } } = 0 . 𝑓 𝑔 𝑔 𝑓 𝑓 𝑔 0 \{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0\quad. { italic_f , { italic_g , italic_h } } + { italic_g , { italic_h , italic_f } } + { italic_h , { italic_f , italic_g } } = 0 . (3)

Definition 5.1 .

A Riemannian manifold ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) is called conformally compact if M 𝑀 M italic_M is the interior of a compact manifold M ~ normal-~ 𝑀 \widetilde{M} ~ start_ARG italic_M end_ARG with boundary M 𝑀 \partial M ∂ italic_M and g 𝑔 g italic_g is conformal to a smooth metric g ~ normal-~ 𝑔 \tilde{g} ~ start_ARG italic_g end_ARG on M ~ normal-~ 𝑀 \widetilde{M} ~ start_ARG italic_M end_ARG ,

g = ρ - 2 g ~ , 𝑔 superscript 𝜌 2 ~ 𝑔 g=\rho^{-2}\tilde{g}, italic_g = italic_ρ start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ~ start_ARG italic_g end_ARG ,

where ρ 𝜌 \rho italic_ρ is a defining function for the boundary, that is M = { x : ρ ( x ) = 0 } 𝑀 conditional-set 𝑥 𝜌 𝑥 0 \partial M=\{x:\rho(x)=0\} ∂ italic_M = { italic_x : italic_ρ ( italic_x ) = 0 } and d ρ 0 𝑑 𝜌 0 d\rho\neq 0 italic_d italic_ρ ≠ 0 on M 𝑀 \partial M ∂ italic_M .


Definition 4.5 .

Let ( M , g ) 𝑀 𝑔 (M,g) ( italic_M , italic_g ) be a spacetime. Then the cosmological time function τ : M ( 0 , ] : 𝜏 𝑀 0 \tau:M\to(0,\infty] italic_τ : italic_M → ( 0 , ∞ ] is defined by

τ ( q ) = sup { d ( p , q ) : p q } . 𝜏 𝑞 supremum conditional-set 𝑑 𝑝 𝑞 much-less-than 𝑝 𝑞 \tau(q)=\sup\{d(p,q):p\ll q\}. italic_τ ( italic_q ) = roman_sup { italic_d ( italic_p , italic_q ) : italic_p ≪ italic_q } .

where d 𝑑 d italic_d is the Lorentzian distance function.  ∎