Definition 6.1 .

We’ll say that a (weighted) graph morphism Ο€ : G 1 β†’ G 2 : πœ‹ β†’ subscript 𝐺 1 subscript 𝐺 2 \pi:G_{1}\rightarrow G_{2} italic_Ο€ : italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is a covering, iff it is a surjective local isomorphism, i.Β e.Β for each vertex v ∈ G 2 𝑣 subscript 𝐺 2 v\in G_{2} italic_v ∈ italic_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT there is a vertex u ∈ G 1 𝑒 subscript 𝐺 1 u\in G_{1} italic_u ∈ italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT such that

v = Ο€ ⁒ ( u ) , 𝑣 πœ‹ 𝑒 v=\pi(u), italic_v = italic_Ο€ ( italic_u ) , (6.1)

and each vertex u ∈ G 1 𝑒 subscript 𝐺 1 u\in G_{1} italic_u ∈ italic_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT satisfying ( 6.1 ) has the same count ( and weights) of both incoming and outcoming edges starting or ending in u 𝑒 u italic_u as the edges starting and ending in v 𝑣 v italic_v .


Definition 1

We say that M 𝑀 M italic_M is a braided T ⁒ ( 𝐠 q ) 𝑇 subscript 𝐠 π‘ž T({\bf g}_{q}) italic_T ( bold_g start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) –module (or, simply braided module), if M 𝑀 M italic_M is equiped with a structure of U q ⁒ ( s ⁒ l ⁒ ( n ) ) subscript π‘ˆ π‘ž 𝑠 𝑙 𝑛 U_{q}(sl(n)) italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_s italic_l ( italic_n ) ) –module and of T ⁒ ( 𝐠 q ) 𝑇 subscript 𝐠 π‘ž T({\bf g}_{q}) italic_T ( bold_g start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) –module, and these structures are related as

u β‹… ( g ⁒ m ) = ( u ( 1 ) β‹… g ) ⁒ ( u ( 2 ) β‹… m ) β‹… 𝑒 𝑔 π‘š β‹… superscript 𝑒 1 𝑔 β‹… superscript 𝑒 2 π‘š u\cdot(gm)=\left(u^{(1)}\cdot g\right)\left(u^{(2)}\cdot m\right) italic_u β‹… ( italic_g italic_m ) = ( italic_u start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT β‹… italic_g ) ( italic_u start_POSTSUPERSCRIPT ( 2 ) end_POSTSUPERSCRIPT β‹… italic_m ) (5.1)

for any u ∈ U q ⁒ ( s ⁒ l ⁒ ( n ) ) 𝑒 subscript π‘ˆ π‘ž 𝑠 𝑙 𝑛 u\in U_{q}(sl(n)) italic_u ∈ italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_s italic_l ( italic_n ) ) , g ∈ T ⁒ ( 𝐠 q ) 𝑔 𝑇 subscript 𝐠 π‘ž g\in T({\bf g}_{q}) italic_g ∈ italic_T ( bold_g start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ) and m ∈ M π‘š 𝑀 m\in M italic_m ∈ italic_M .


Definition 6.1

Let M 𝑀 M italic_M be a differentiable manifold. A Poisson bracket (PB) on β„± ⁒ ( M ) β„± 𝑀 {\cal F}(M) caligraphic_F ( italic_M ) is a bilinear mapping { β‹… , β‹… } : β„± ⁒ ( M ) Γ— β„± ⁒ ( M ) β†’ β„± ⁒ ( M ) : β‹… β‹… β†’ β„± 𝑀 β„± 𝑀 β„± 𝑀 \{\cdot,\cdot\}:{\cal F}(M)\times{\cal F}(M)\rightarrow{\cal F}(M) { β‹… , β‹… } : caligraphic_F ( italic_M ) Γ— caligraphic_F ( italic_M ) β†’ caligraphic_F ( italic_M ) that satisfies ( f , g , h ∈ β„± ⁒ ( M ) 𝑓 𝑔 β„Ž β„± 𝑀 f,g,h\in{\cal F}(M) italic_f , italic_g , italic_h ∈ caligraphic_F ( italic_M ) )

a)

Skew-symmetry

{ f , g } = - { g , f } , 𝑓 𝑔 𝑔 𝑓 \{f,g\}=-\{g,f\}\quad, { italic_f , italic_g } = - { italic_g , italic_f } , (6.1)
b)

Leibniz’s rule,

{ f , g ⁒ h } = g ⁒ { f , h } + { f , g } ⁒ h , 𝑓 𝑔 β„Ž 𝑔 𝑓 β„Ž 𝑓 𝑔 β„Ž \{f,gh\}=g\{f,h\}+\{f,g\}h\quad, { italic_f , italic_g italic_h } = italic_g { italic_f , italic_h } + { italic_f , italic_g } italic_h , (6.2)
c)

Jacobi identity

Alt ⁒ { f , { g , h } } = { f , { g , h } } + { g , { h , f } } + { h , { f , g } } = 0 . Alt 𝑓 𝑔 β„Ž 𝑓 𝑔 β„Ž 𝑔 β„Ž 𝑓 β„Ž 𝑓 𝑔 0 \hbox{Alt}\{f,\{g,h\}\}=\{f,\{g,h\}\}+\{g,\{h,f\}\}+\{h,\{f,g\}\}=0\quad. Alt { italic_f , { italic_g , italic_h } } = { italic_f , { italic_g , italic_h } } + { italic_g , { italic_h , italic_f } } + { italic_h , { italic_f , italic_g } } = 0 . (6.3)

A PB on M 𝑀 M italic_M defines a PS.