Definition 4.3

Fix an alternating bicharacter c 𝑐 c italic_c as in (4.2). Then c 𝑐 c italic_c is a 2-cocycle on Γ Γ \Gamma roman_Γ and

c ( α , β ) c ( β , α ) - 1 = c ( α , β ) 2 = σ ( α , β ) 𝑐 𝛼 𝛽 𝑐 superscript 𝛽 𝛼 1 𝑐 superscript 𝛼 𝛽 2 𝜎 𝛼 𝛽 c(\alpha,\beta)c(\beta,\alpha)^{-1}=c(\alpha,\beta)^{2}=\sigma(\alpha,\beta) italic_c ( italic_α , italic_β ) italic_c ( italic_β , italic_α ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_c ( italic_α , italic_β ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_σ ( italic_α , italic_β )

for α , β Γ 𝛼 𝛽 Γ \alpha,\beta\in\Gamma italic_α , italic_β ∈ roman_Γ . As in (3.3), we write k c Γ superscript 𝑘 𝑐 Γ k^{c}\Gamma italic_k start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT roman_Γ in terms of a basis { x α α Γ } conditional-set subscript 𝑥 𝛼 𝛼 Γ \{x_{\alpha}\mid\alpha\in\Gamma\} { italic_x start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∣ italic_α ∈ roman_Γ } such that x α x β = c ( α , β ) x α + β subscript 𝑥 𝛼 subscript 𝑥 𝛽 𝑐 𝛼 𝛽 subscript 𝑥 𝛼 𝛽 x_{\alpha}x_{\beta}=c(\alpha,\beta)x_{\alpha+\beta} italic_x start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT = italic_c ( italic_α , italic_β ) italic_x start_POSTSUBSCRIPT italic_α + italic_β end_POSTSUBSCRIPT for α , β Γ 𝛼 𝛽 Γ \alpha,\beta\in\Gamma italic_α , italic_β ∈ roman_Γ . Thus A = k c Γ + 𝐴 superscript 𝑘 𝑐 superscript Γ A=k^{c}\Gamma^{+} italic_A = italic_k start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT equals the subspace of k c Γ superscript 𝑘 𝑐 Γ k^{c}\Gamma italic_k start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT roman_Γ spanned by the x α subscript 𝑥 𝛼 x_{\alpha} italic_x start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT for α Γ + 𝛼 superscript Γ \alpha\in\Gamma^{+} italic_α ∈ roman_Γ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT .

Similarly, we write the group algebra k Γ 𝑘 Γ k\Gamma italic_k roman_Γ in terms of a basis { y α α Γ } conditional-set subscript 𝑦 𝛼 𝛼 Γ \{y_{\alpha}\mid\alpha\in\Gamma\} { italic_y start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT ∣ italic_α ∈ roman_Γ } , with y α y β = y α + β subscript 𝑦 𝛼 subscript 𝑦 𝛽 subscript 𝑦 𝛼 𝛽 y_{\alpha}y_{\beta}=y_{\alpha+\beta} italic_y start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT italic_y start_POSTSUBSCRIPT italic_β end_POSTSUBSCRIPT = italic_y start_POSTSUBSCRIPT italic_α + italic_β end_POSTSUBSCRIPT for α , β Γ 𝛼 𝛽 Γ \alpha,\beta\in\Gamma italic_α , italic_β ∈ roman_Γ , and we identify the semigroup algebra R := k Γ + assign 𝑅 𝑘 superscript Γ R:=k\Gamma^{+} italic_R := italic_k roman_Γ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT with the subspace of k Γ 𝑘 Γ k\Gamma italic_k roman_Γ spanned by the y α subscript 𝑦 𝛼 y_{\alpha} italic_y start_POSTSUBSCRIPT italic_α end_POSTSUBSCRIPT for α Γ + 𝛼 superscript Γ \alpha\in\Gamma^{+} italic_α ∈ roman_Γ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT . We also view R 𝑅 R italic_R as a polynomial ring k [ y 1 , , y n ] 𝑘 subscript 𝑦 1 subscript 𝑦 𝑛 k[y_{1},\dots,y_{n}] italic_k [ italic_y start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_y start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] , as in Section 2, where y i = y ϵ i subscript 𝑦 𝑖 subscript 𝑦 subscript italic-ϵ 𝑖 y_{i}=y_{\epsilon_{i}} italic_y start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = italic_y start_POSTSUBSCRIPT italic_ϵ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUBSCRIPT and ϵ i subscript italic-ϵ 𝑖 \epsilon_{i} italic_ϵ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT is the i 𝑖 i italic_i -th standard basis element of Γ Γ \Gamma roman_Γ .

Definition 5.1

First, let A 𝐴 A italic_A be the standard one-parameter quantization 𝒪 q ( k n ) subscript 𝒪 𝑞 superscript 𝑘 𝑛 {\Cal{O}}_{q}(k^{n}) caligraphic_O start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_k start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ) , for some q k × 𝑞 superscript 𝑘 q\in k^{\times} italic_q ∈ italic_k start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT . Then A 𝐴 A italic_A is generated by x 1 , , x n subscript 𝑥 1 subscript 𝑥 𝑛 x_{1},\dots,x_{n} italic_x start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_x start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT such that x i x j = q x j x i subscript 𝑥 𝑖 subscript 𝑥 𝑗 𝑞 subscript 𝑥 𝑗 subscript 𝑥 𝑖 x_{i}x_{j}=qx_{j}x_{i} italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT = italic_q italic_x start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT for all i < j 𝑖 𝑗 i<j italic_i < italic_j . The alternating bicharacter σ 𝜎 \sigma italic_σ as in (4.1) can be expressed by

σ ( α , β ) = q b ( α , β ) , 𝜎 𝛼 𝛽 superscript 𝑞 𝑏 𝛼 𝛽 \sigma(\alpha,\beta)=q^{b(\alpha,\beta)}, italic_σ ( italic_α , italic_β ) = italic_q start_POSTSUPERSCRIPT italic_b ( italic_α , italic_β ) end_POSTSUPERSCRIPT ,

where b : Γ × Γ : 𝑏 Γ Γ b:\Gamma\times\Gamma\rightarrow{\mathbb{Z}} italic_b : roman_Γ × roman_Γ → blackboard_Z is the alternating bilinear form

b ( α , β ) = i < j α i β j - i > j α i β j . 𝑏 𝛼 𝛽 subscript 𝑖 𝑗 subscript 𝛼 𝑖 subscript 𝛽 𝑗 subscript 𝑖 𝑗 subscript 𝛼 𝑖 subscript 𝛽 𝑗 b(\alpha,\beta)=\sum_{i<j}\alpha_{i}\beta_{j}-\sum_{i>j}\alpha_{i}\beta_{j}. italic_b ( italic_α , italic_β ) = ∑ start_POSTSUBSCRIPT italic_i < italic_j end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT - ∑ start_POSTSUBSCRIPT italic_i > italic_j end_POSTSUBSCRIPT italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_β start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT .

To complete the hypotheses of (4.11), we must assume that q 𝑞 q italic_q is either not a root of unity or an odd root of unity. In either case, q 𝑞 q italic_q has a square root p k × 𝑝 superscript 𝑘 p\in k^{\times} italic_p ∈ italic_k start_POSTSUPERSCRIPT × end_POSTSUPERSCRIPT such that - 1 p 1 delimited-⟨⟩ 𝑝 -1\notin\langle p\rangle - 1 ∉ ⟨ italic_p ⟩ (if char k 2 char 𝑘 2 \operatorname{char}k\neq 2 roman_char italic_k ≠ 2 ), and the rule

c ( α , β ) = p b ( α , β ) 𝑐 𝛼 𝛽 superscript 𝑝 𝑏 𝛼 𝛽 c(\alpha,\beta)=p^{b(\alpha,\beta)} italic_c ( italic_α , italic_β ) = italic_p start_POSTSUPERSCRIPT italic_b ( italic_α , italic_β ) end_POSTSUPERSCRIPT

defines an alternating bicharacter c 𝑐 c italic_c on Γ Γ \Gamma roman_Γ satisfying the conclusions of (4.2). Hence, we can identify A 𝐴 A italic_A with k c Γ + superscript 𝑘 𝑐 superscript Γ k^{c}\Gamma^{+} italic_k start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT roman_Γ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT for this c 𝑐 c italic_c .


Definition 2.1 .

U q ( g , f 𝔰 l 2 ) subscript 𝑈 𝑞 𝑔 𝑓 𝔰 subscript 𝑙 2 U_{q}(g,f{\mathfrak{s}l}_{2}) italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_g , italic_f fraktur_s italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is an associative algebra with unit 1 and the generators: x ± ( z ) superscript 𝑥 plus-or-minus 𝑧 x^{\pm}(z) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) , φ ( z ) 𝜑 𝑧 \varphi(z) italic_φ ( italic_z ) , ψ ( z ) 𝜓 𝑧 \psi(z) italic_ψ ( italic_z ) , a central element c 𝑐 c italic_c and a nonzero complex parameter q 𝑞 q italic_q , where z * 𝑧 superscript z\in{\mathbb{C}}^{*} italic_z ∈ blackboard_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT . φ ( z ) 𝜑 𝑧 \varphi(z) italic_φ ( italic_z ) and ψ ( z ) 𝜓 𝑧 \psi(z) italic_ψ ( italic_z ) are invertible. In terms of the generating functions: the defining relations are

φ ( z ) φ ( w ) = φ ( w ) φ ( z ) , 𝜑 𝑧 𝜑 𝑤 𝜑 𝑤 𝜑 𝑧 \displaystyle\varphi(z)\varphi(w)=\varphi(w)\varphi(z), italic_φ ( italic_z ) italic_φ ( italic_w ) = italic_φ ( italic_w ) italic_φ ( italic_z ) ,
ψ ( z ) ψ ( w ) = ψ ( w ) ψ ( z ) , 𝜓 𝑧 𝜓 𝑤 𝜓 𝑤 𝜓 𝑧 \displaystyle\psi(z)\psi(w)=\psi(w)\psi(z), italic_ψ ( italic_z ) italic_ψ ( italic_w ) = italic_ψ ( italic_w ) italic_ψ ( italic_z ) ,
φ ( z ) ψ ( w ) φ ( z ) - 1 ψ ( w ) - 1 = g ( z / w q - c ) g ( z / w q c ) , 𝜑 𝑧 𝜓 𝑤 𝜑 superscript 𝑧 1 𝜓 superscript 𝑤 1 𝑔 𝑧 𝑤 superscript 𝑞 𝑐 𝑔 𝑧 𝑤 superscript 𝑞 𝑐 \displaystyle\varphi(z)\psi(w)\varphi(z)^{-1}\psi(w)^{-1}=\frac{g(z/wq^{-c})}{% g(z/wq^{c})}, italic_φ ( italic_z ) italic_ψ ( italic_w ) italic_φ ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ψ ( italic_w ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = divide start_ARG italic_g ( italic_z / italic_w italic_q start_POSTSUPERSCRIPT - italic_c end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_g ( italic_z / italic_w italic_q start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ) end_ARG ,
φ ( z ) x ± ( w ) φ ( z ) - 1 = g ( z / w q 1 2 c ) ± 1 x ± ( w ) , 𝜑 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝜑 superscript 𝑧 1 𝑔 superscript 𝑧 𝑤 superscript 𝑞 minus-or-plus 1 2 𝑐 plus-or-minus 1 superscript 𝑥 plus-or-minus 𝑤 \displaystyle\varphi(z)x^{\pm}(w)\varphi(z)^{-1}=g(z/wq^{\mp\frac{1}{2}c})^{% \pm 1}x^{\pm}(w), italic_φ ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_φ ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_g ( italic_z / italic_w italic_q start_POSTSUPERSCRIPT ∓ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) ,
ψ ( z ) x ± ( w ) ψ ( z ) - 1 = g ( w / z q 1 2 c ) 1 x ± ( w ) , 𝜓 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝜓 superscript 𝑧 1 𝑔 superscript 𝑤 𝑧 superscript 𝑞 minus-or-plus 1 2 𝑐 minus-or-plus 1 superscript 𝑥 plus-or-minus 𝑤 \displaystyle\psi(z)x^{\pm}(w)\psi(z)^{-1}=g(w/zq^{\mp\frac{1}{2}c})^{\mp 1}x^% {\pm}(w), italic_ψ ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_g ( italic_w / italic_z italic_q start_POSTSUPERSCRIPT ∓ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∓ 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) ,
[ x + ( z ) , x - ( w ) ] = 1 q - q - 1 ( δ ( z w q - c ) ψ ( w q 1 2 c ) - δ ( z w q c ) φ ( z q 1 2 c ) ) , superscript 𝑥 𝑧 superscript 𝑥 𝑤 1 𝑞 superscript 𝑞 1 𝛿 𝑧 𝑤 superscript 𝑞 𝑐 𝜓 𝑤 superscript 𝑞 1 2 𝑐 𝛿 𝑧 𝑤 superscript 𝑞 𝑐 𝜑 𝑧 superscript 𝑞 1 2 𝑐 \displaystyle[x^{+}(z),x^{-}(w)]=\frac{1}{q-q^{-1}}\left(\delta(\frac{z}{w}q^{% -c})\psi(wq^{\frac{1}{2}c})-\delta(\frac{z}{w}q^{c})\varphi(zq^{\frac{1}{2}c})% \right), [ italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , italic_x start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) ] = divide start_ARG 1 end_ARG start_ARG italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ( italic_δ ( divide start_ARG italic_z end_ARG start_ARG italic_w end_ARG italic_q start_POSTSUPERSCRIPT - italic_c end_POSTSUPERSCRIPT ) italic_ψ ( italic_w italic_q start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) - italic_δ ( divide start_ARG italic_z end_ARG start_ARG italic_w end_ARG italic_q start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ) italic_φ ( italic_z italic_q start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) ) ,
x ± ( z ) x ± ( w ) = g ( z / w ) ± 1 x ± ( w ) x ± ( z ) . superscript 𝑥 plus-or-minus 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝑔 superscript 𝑧 𝑤 plus-or-minus 1 superscript 𝑥 plus-or-minus 𝑤 superscript 𝑥 plus-or-minus 𝑧 \displaystyle x^{\pm}(z)x^{\pm}(w)=g(z/w)^{\pm 1}x^{\pm}(w)x^{\pm}(z). italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = italic_g ( italic_z / italic_w ) start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) .
Definition 3.1 .

U q ( g , f 𝔰 ) subscript 𝑈 𝑞 𝑔 𝑓 𝔰 U_{q}(g,f{\mathfrak{s}}) italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_g , italic_f fraktur_s ) is an a 2 subscript 2 {\mathbb{Z}}_{2} blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT graded associative algebra with unit 1 and the generators: x ± ( z ) superscript 𝑥 plus-or-minus 𝑧 x^{\pm}(z) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) , φ ( z ) 𝜑 𝑧 \varphi(z) italic_φ ( italic_z ) , ψ ( z ) 𝜓 𝑧 \psi(z) italic_ψ ( italic_z ) , a central element c 𝑐 c italic_c and a nonzero complex parameter q 𝑞 q italic_q , where z * 𝑧 superscript z\in{\mathbb{C}}^{*} italic_z ∈ blackboard_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT , x ± ( z ) superscript 𝑥 plus-or-minus 𝑧 x^{\pm}(z) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) are graded 1(mod2), and φ ( z ) 𝜑 𝑧 \varphi(z) italic_φ ( italic_z ) , ψ ( z ) 𝜓 𝑧 \psi(z) italic_ψ ( italic_z ) and c are graded 0(mod2). φ ( z ) 𝜑 𝑧 \varphi(z) italic_φ ( italic_z ) and ψ ( z ) 𝜓 𝑧 \psi(z) italic_ψ ( italic_z ) are invertible. In terms of the generating functions: the defining relations are

φ ( z ) φ ( w ) = φ ( w ) φ ( z ) , 𝜑 𝑧 𝜑 𝑤 𝜑 𝑤 𝜑 𝑧 \displaystyle\varphi(z)\varphi(w)=\varphi(w)\varphi(z), italic_φ ( italic_z ) italic_φ ( italic_w ) = italic_φ ( italic_w ) italic_φ ( italic_z ) ,
ψ ( z ) ψ ( w ) = ψ ( w ) ψ ( z ) , 𝜓 𝑧 𝜓 𝑤 𝜓 𝑤 𝜓 𝑧 \displaystyle\psi(z)\psi(w)=\psi(w)\psi(z), italic_ψ ( italic_z ) italic_ψ ( italic_w ) = italic_ψ ( italic_w ) italic_ψ ( italic_z ) ,
φ ( z ) ψ ( w ) φ ( z ) - 1 ψ ( w ) - 1 = g ( z / w q - c ) g ( z / w q c ) , 𝜑 𝑧 𝜓 𝑤 𝜑 superscript 𝑧 1 𝜓 superscript 𝑤 1 𝑔 𝑧 𝑤 superscript 𝑞 𝑐 𝑔 𝑧 𝑤 superscript 𝑞 𝑐 \displaystyle\varphi(z)\psi(w)\varphi(z)^{-1}\psi(w)^{-1}=\frac{g(z/wq^{-c})}{% g(z/wq^{c})}, italic_φ ( italic_z ) italic_ψ ( italic_w ) italic_φ ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT italic_ψ ( italic_w ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = divide start_ARG italic_g ( italic_z / italic_w italic_q start_POSTSUPERSCRIPT - italic_c end_POSTSUPERSCRIPT ) end_ARG start_ARG italic_g ( italic_z / italic_w italic_q start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ) end_ARG ,
φ ( z ) x ± ( w ) φ ( z ) - 1 = g ( z / w q 1 2 c ) ± 1 x ± ( w ) , 𝜑 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝜑 superscript 𝑧 1 𝑔 superscript 𝑧 𝑤 superscript 𝑞 minus-or-plus 1 2 𝑐 plus-or-minus 1 superscript 𝑥 plus-or-minus 𝑤 \displaystyle\varphi(z)x^{\pm}(w)\varphi(z)^{-1}=g(z/wq^{\mp\frac{1}{2}c})^{% \pm 1}x^{\pm}(w), italic_φ ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_φ ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_g ( italic_z / italic_w italic_q start_POSTSUPERSCRIPT ∓ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) ,
ψ ( z ) x ± ( w ) ψ ( z ) - 1 = g ( w / z q 1 2 c ) 1 x ± ( w ) , 𝜓 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝜓 superscript 𝑧 1 𝑔 superscript 𝑤 𝑧 superscript 𝑞 minus-or-plus 1 2 𝑐 minus-or-plus 1 superscript 𝑥 plus-or-minus 𝑤 \displaystyle\psi(z)x^{\pm}(w)\psi(z)^{-1}=g(w/zq^{\mp\frac{1}{2}c})^{\mp 1}x^% {\pm}(w), italic_ψ ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_ψ ( italic_z ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_g ( italic_w / italic_z italic_q start_POSTSUPERSCRIPT ∓ divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT ∓ 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) ,
{ x + ( z ) , x - ( w ) } = 1 q - q - 1 ( δ ( z w q - c ) ψ ( w q 1 2 c ) - δ ( z w q c ) φ ( z q 1 2 c ) ) , fragments { superscript 𝑥 fragments ( z ) , superscript 𝑥 fragments ( w ) } 1 𝑞 superscript 𝑞 1 ( δ fragments ( 𝑧 𝑤 superscript 𝑞 𝑐 ) ψ fragments ( w superscript 𝑞 1 2 𝑐 ) δ fragments ( 𝑧 𝑤 superscript 𝑞 𝑐 ) φ fragments ( z superscript 𝑞 1 2 𝑐 ) ) , \displaystyle\{x^{+}(z),x^{-}(w)\}=\frac{1}{q-q^{-1}}\left(\delta(\frac{z}{w}q% ^{-c})\psi(wq^{\frac{1}{2}c})-\delta(\frac{z}{w}q^{c})\varphi(zq^{\frac{1}{2}c% })\right), { italic_x start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ( italic_z ) , italic_x start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT ( italic_w ) } = divide start_ARG 1 end_ARG start_ARG italic_q - italic_q start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT end_ARG ( italic_δ ( divide start_ARG italic_z end_ARG start_ARG italic_w end_ARG italic_q start_POSTSUPERSCRIPT - italic_c end_POSTSUPERSCRIPT ) italic_ψ ( italic_w italic_q start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) - italic_δ ( divide start_ARG italic_z end_ARG start_ARG italic_w end_ARG italic_q start_POSTSUPERSCRIPT italic_c end_POSTSUPERSCRIPT ) italic_φ ( italic_z italic_q start_POSTSUPERSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_c end_POSTSUPERSCRIPT ) ) ,
x ± ( z ) x ± ( w ) = - g ( z / w ) ± 1 x ± ( w ) x ± ( z ) , superscript 𝑥 plus-or-minus 𝑧 superscript 𝑥 plus-or-minus 𝑤 𝑔 superscript 𝑧 𝑤 plus-or-minus 1 superscript 𝑥 plus-or-minus 𝑤 superscript 𝑥 plus-or-minus 𝑧 \displaystyle x^{\pm}(z)x^{\pm}(w)=-g(z/w)^{\pm 1}x^{\pm}(w)x^{\pm}(z), italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) = - italic_g ( italic_z / italic_w ) start_POSTSUPERSCRIPT ± 1 end_POSTSUPERSCRIPT italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_w ) italic_x start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( italic_z ) ,

where { x , y } = x y + y x 𝑥 𝑦 𝑥 𝑦 𝑦 𝑥 \{x,y\}=xy+yx { italic_x , italic_y } = italic_x italic_y + italic_y italic_x .