Definition 5.2 .

For τ > 0 𝜏 0 \tau>0 italic_τ > 0 , let d ( τ ) H 𝑑 𝜏 𝐻 d(\tau)\in H italic_d ( italic_τ ) ∈ italic_H be uniquely defined by the conditions ( d ( τ ) ) α i = τ superscript 𝑑 𝜏 subscript 𝛼 𝑖 𝜏 (d(\tau))^{\alpha_{i}}=\tau ( italic_d ( italic_τ ) ) start_POSTSUPERSCRIPT italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = italic_τ , for all simple roots α i subscript 𝛼 𝑖 \alpha_{i}\, italic_α start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT . Then d ( τ ) x i ( a ) d ( τ ) - 1 = x i ( τ a ) 𝑑 𝜏 subscript 𝑥 𝑖 𝑎 𝑑 superscript 𝜏 1 subscript 𝑥 𝑖 𝜏 𝑎 d(\tau)x_{i}(a)d(\tau)^{-1}=x_{i}(\tau a) italic_d ( italic_τ ) italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_a ) italic_d ( italic_τ ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT = italic_x start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_τ italic_a ) for any i 𝑖 i italic_i . For the type A n - 1 subscript 𝐴 𝑛 1 A_{n-1}\, italic_A start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ,

(5.1) d ( τ ) = τ - ( n - 1 ) / 2 [ τ n - 1 0 0 0 τ n - 2 0 0 0 1 ] , 𝑑 𝜏 superscript 𝜏 𝑛 1 2 delimited-[] superscript 𝜏 𝑛 1 0 0 0 superscript 𝜏 𝑛 2 0 0 0 1 d(\tau)=\tau^{-(n-1)/2}\left[\begin{array}[]{cccc}\tau^{n-1}&0&\cdots&0\\ 0&\tau^{n-2}&\cdots&0\\ \vdots&\vdots&\ddots&\vdots\\ 0&0&\cdots&1\end{array}\right]\,, italic_d ( italic_τ ) = italic_τ start_POSTSUPERSCRIPT - ( italic_n - 1 ) / 2 end_POSTSUPERSCRIPT [ start_ARRAY start_ROW start_CELL italic_τ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_τ start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT end_CELL start_CELL ⋯ end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL ⋮ end_CELL start_CELL ⋮ end_CELL start_CELL ⋱ end_CELL start_CELL ⋮ end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL start_CELL ⋯ end_CELL start_CELL 1 end_CELL end_ROW end_ARRAY ] ,

and the automorphism x d ( τ ) x d ( τ ) - 1 maps-to 𝑥 𝑑 𝜏 𝑥 𝑑 superscript 𝜏 1 x\mapsto d(\tau)xd(\tau)^{-1} italic_x ↦ italic_d ( italic_τ ) italic_x italic_d ( italic_τ ) start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT of the group N 𝑁 N italic_N multiplies each matrix entry x i j subscript 𝑥 𝑖 𝑗 x_{ij} italic_x start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT of x 𝑥 x italic_x by τ j - i superscript 𝜏 𝑗 𝑖 \tau^{j-i} italic_τ start_POSTSUPERSCRIPT italic_j - italic_i end_POSTSUPERSCRIPT .