MACHINE LEARNING FOR
PROOF AUTOMATION AND FORMALIZATION

Josef Urban

Czech Technical University in Prague

Machine Learning (a.k.a. Function Approximation)
Learning vs. Reasoning
Learning of Theorem Proving

Autoformalization

2/37

Data vs Theory-driven Approach to Problem Solving

» John Shawe-Taylor and Nello Cristianini — Kernel Methods for Pattern
Analysis (2004):

« Many of the most interesting problems in Al and computer science in
general are extremely complex often making it difficult or even impossible
to specify an explicitly programmed solution.

« As an example consider the problem of recognising genes in a DNA
sequence. We do not know how to specify a program to pick out the
subsequences of, say, human DNA that represent genes.

« Similarly we are not able directly to program a computer to recognise a
face in a photo.

« me: or to prove an arbitrary reasonably easy lemma

3/37

Data vs Theory-driven Approach to Problem Solving

« Learning systems offer an alternative methodology for tackling these
problems.

By exploiting the knowledge extracted from a sample of data, they are
often capable of adapting themselves to infer a solution to such tasks.

- We will call this alternative approach to software design the learning
methodology.

- Itis also referred to as the data driven or data based approach, in

contrast to the theory driven approach that gives rise to precise
specifications of the required algorithms.

4/37

Sample of Learning Approaches

- neural networks (statistical ML) — backpropagation, deep learning,
convolutional, recurrent, etc.

- decision trees, random forests — find good classifying attributes (and/or
their values); more explainable

 support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

- k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions

 haive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features (just multiplying
probabilities)

« inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

- genetic algorithms — evolve large population by crossover and mutation

« various combinations of statistical and symbolic approaches

* supervised, unsupervised, reinforcement learning (actions,

explore/exploit, cumulative reward)
5/37

Learning — Features and Data Preprocessing

« Extremely important - if irrelevant, there is no use to learn the function
from input to output (“garbage in garbage out”)

- Feature discovery — a big field

» Deep Learning — design neural architectures that automatically find
important high-level features for a task

« Latent Semantics, dimensionality reduction: use linear algebra
(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them

« word2vec and related methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

« math and theorem proving: syntactic/semantic patterns/abstractions
» how do we represent math objects (formulas, proofs, ideas) in our mind?

6/37

Induction/Learning vs Reasoning — Henri Poincaré

 Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

- “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

« | believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

7137

Learning vs Reasoning — Alan Turing 1950 — Al

« 1950: Computing machinery and intelligence — Al, Turing test

« “We may hope that machines will eventually compete with men in all
purely intellectual fields.” (regardless of his 1936 undecidability result!)

- last section on Learning Machines:

« “But which are the best ones [fields] to start [learning on] with?”

« “.. Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess, would be best.”

« Why not try with large computer-understandable math corpora?

8/37

Using Learning to Guide Theorem Proving

+ high-level: pre-select lemmas from a large library, give them to ATPs

- high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
- low-level: guide every inference step of ATPs (tableau, superposition)

- low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

- mid-level: invent suitable ATP strategies for classes of problems

- mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories

- proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...

9/37

Large Datasets

» Mizar / MML / MPTP — since 2003

« MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)

- Isabelle (and AFP) — since 2005

* Flyspeck (including core HOL Light and Multivariate) — since 2012
« HOLStep — 2016, kernel inferences

+ Cog — since 2013/2016

+ HOL4 - since 2014

« ACL2 — 20147

« Lean? — 20177

10/37

Statistical Guidance of Connection Tableau

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

+ good for learning — the tableau compactly represents the proof state

Clauses: Closed Connection Tableau: P(a)
¢ P(x) / |
c2: R(x,y) vV -P(x) Vv Qy) R(a, b) -P(a) Q(b)
s : S(x) v =Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b) —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)

11/37

Statistical Guidance of Connection Tableau

» MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions

- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
 20-time search shortening on the MPTP Challenge

 second version: 2015, with C. Kaliszyk

« both prover and naive Bayes in OCAML, fast indexing

« Fairly Efficient MaLeCoP = FEMaLeCoP

+ 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones

12/37

Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS)

- MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

InN

i

% Yeop- (UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

« clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning

13/37

Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

14/37

Statistical Guidance the Given Clause in E Prover

« harder for learning than tableau

« the proof state are two large heaps of clauses processed/unprocessed
« 2017: ENIGMA (features engineering), Deep guidance (neural nets)

- both learn on E’s proof search traces, put classifier in E

- positive examples: given clauses used in the proof

+ negative examples: given clauses not used in the proof

« ENIGMA: fast feature extraction followed by fast/sparse linear classifier
« about 80% improvement on the AIM benchmark

- Deep guidance: convolutional nets - no feature engineering but slow

15/37

ProofWatch: Statistical/Semantic Guidance of E

« Bob Veroff’s hints method used for Prover9/AIM

solve many easier/related problems

- load their useful lemmas on the watchlist

boost inferences on clauses that subsume a watchlist clause
watchlist parts are fast thinking, bridged by standard search

- ProofWatch (2018): load many proofs separately

dynamically boost those that have been covered more

+ needed for heterogeneous ITP libraries

statistical: watchlists chosen using similarity and usefulness

- semantic/deductive: dynamic guidance based on exact proof matching
- results in better vectorial characterization of saturation proof searches

16/37

ProofWatch: Statistical/Symbolic Guidance of E

theorem Th36: :: YELLOW_5:36
for L being non empty Boolean RelStr for a, b being Element of L
holds ('not’ (a "\/" b) = (‘not’ a) "/\" ('not’ b)

& 'not’ (a "/\" b) = (not’ a) "\/" ('‘not’ b))

* De Morgan’s laws for Boolean lattices

 guided by 32 related proofs resulting in 2220 watchlist clauses

» 5218 given clause loops, resulting ATP proof is 436 clauses

* 194 given clauses match the watchlist and 120 (61.8%) used in the proof

» most helped by the proof of WAYBEL_1:85 — done for lower-bounded Heyting
theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds

for a, b being Element of H holds
"not’” (a "/\" b) >= ('not’ a) "\/" ('not’ D)

17/37

ProofWatch: Vectorial Proof State

Final state of the proof progress for the 32 proofs guiding YELLOW_5:36

0 0438 42/96 | 1 0.727 56/77 | 2 0865 4552 | 3 0.360 9/25
4 0750 b51/68 | 5 0259 7/27 | 6 0805 62/77 | 7 0.302 73/242
8 0652 1523 | 9 0286 828 |10 0.259 7/27 | 11 0.338 24/71
12 0.680 17/25 | 13 0.509 27/53 | 14 0.357 10/28 | 15 0.568 25/44
16 0.703 52/74 | 17 0.029 8/272 | 18 0.379 33/87 | 19 0.424 14/33
20 0471 16/34 | 21 0.323 20/62 | 22 0.333 7/21 | 23 0.520 26/50
24 0524 22/42 | 25 0.523 45/86 | 26 0.462 6/13 | 27 0.370 20/54
28 0.411 30/73 |29 0.364 20/55 | 30 0.571 16/28 | 31 0.357 10/28

18/37

High-level ATP guidance: Premise Selection/Hammers

+ 2003: Can existing ATPs be used on the freshly translated Mizar library?
 About 80000 nontrivial math facts at that time — impossible to use them all
+ Mizar Proof Advisor (2003):

- train naive-Bayes fact selection on previous Mizar/MML

« recommend relevant premises when proving new conjectures

« give them to unmodified FOL ATPs

+ possibly reconstruct inside the ITP afterwards (lots of work)

« First results over the whole Mizar library in 2003:

» about 70% coverage in the first 100 recommended premises
« chain the recommendations with strong ATPs to get full proofs
» about 14% of the Mizar theorems were then automatically provable (SPASS)

19/37

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\A /—\A
v v

Proof Assistant ITP Proof *Hammer ATP Proof ATP _

20/37

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
V_/ V_/

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?

20/37

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

Proof Assistant ITP Proof *Hammer ATP Proof ATP _

How much can it do?
+ Mizar / MML — MizAR
« Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

20/37

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
+ Mizar / MML — MizAR
« Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 45% success rate

20/37

Machine Learner for Automated Reasoning

» MaLARea (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

« both syntactic and semantic features for characterizing formulas:
- evolving set of finite (counter)models in which formulas evaluated

\J
initial settings
| solve problems)
(ATP)

v
<_all proved? >— stop

_'
learn
| from proofs (ML)

premise
selections (ML) |

L

21/37

Recent Improvements and Additions

« Semantic features encoding term matching/unification [IJCAI'15]
- Distance-weighted k-nearest neighbor, LS|, boosted trees (XGBoost)

« Matching and transferring concepts and theorems between libraries
(Gauthier & Kaliszyk) — allows “superhammers”, conjecturing, and more

« Lemmatization — extracting and considering millions of low-level lemmas

» First useful CogHammer (Czajka & Kaliszyk 2016), 40%—50%
reconstruction/ATP success on the Coq standard library

+ Neural sequence models, definitional embeddings (Google Research)
- Hammers combined with statistical tactical search: TacticToe (HOL4)
« Learning in binary setting from many alternative proofs

- Negative/positive mining (ATPBoost)

22/37

Summary of Features Used

« From syntactic to more semantic:

« Constant and function symbols

« Walks in the term graph

« Walks in clauses with polarity and variables/skolems unified
+ Subterms, de Bruijn normalized

- Subterms, all variables unified

- Matching terms, no generalizations

- terms and (some of) their generalizations
« Substitution tree nodes

« All unifying terms

« Evaluation in a large set of (finite) models
+ LSI/PCA combinations of above

+ Neural embeddings of above

23/37

TacticToe: mid-level ITP Guidance (Gauthier et al.)

« learns from human tactical HOL4 proofs to solve new goals
+ no translation or reconstruction needed
- similar to rlCoP: policy/value learning

+ however much more technically challenging:

« tactic and goal state recording
» tactic argument abstraction
* absolutization of tactic names
 nontrivial evaluation issues

« policy: which tactic/parameters to choose for a current goal?

- value: how likely is this proof state succeed?

» 66% of HOL4 toplevel proofs in 60s (better than a hammer!)

- work in progress for Coq

« earlier Coq work: SEPIA (Gransden et al, 2015) - inferred automata

24/37

Statistical/Semantic Parsing of Informalized HOL

Goal: Learn understanding of informal math formulas and reasoning

Experiments with the CYK chart parser linked to semantic methods
Training and testing examples exported form Flyspeck formulas
 Along with their informalized versions
Grammar parse trees
* Annotate each (nonterminal) symbol with its HOL type
+ Also “semantic (formal)” nonterminals annotate overloaded terminals
« guiding analogy: word-sense disambiguation using CYK is common
Terminals exactly compose the textual form, for example:

REAL_NEGNEG: Vx. — —x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")
(Tyapp "bool"))) (Abs "AO" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const

"real neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "AO" (Tyapp
"real"))))) (Var "AQO" (Tyapp "real")))))

becomes

("(Type bool)¥ ! ("({Type (fun real bool))¥ (Abs ("(Type real)’

(var A0)) ("(Type bool)# ("(Type real)® real_neg ("(Type real)®

real_neg (" (Type real)® (var A0)))) = ("(Type real)® (var 20))))))

25/37

Example grammars

"(Type bool)"
"(Type (fun real bool))"

26/37

CYK Learning and Parsing (KUV, ITP 17)

+ Induce PCFG (probabilistic context-free grammar) from the trees

« Grammar rules obtained from the inner nodes of each grammar tree
* Probabilities are computed from the frequencies

- The PCFG grammar is binarized for efficiency
* New nonterminals as shortcuts for multiple nonterminals
CYK: dynamic-programming algorithm for parsing ambiguous sentences

« input: sentence — a sequence of words and a binarized PCFG
« output: N most probable parse trees

- Additional semantic pruning
» Compatible types for free variables in subtrees

« Allow small probability for each symbol to be a variable
- Top parse trees are de-binarized to the original CFG

» Transformed to HOL parse trees (preterms, Hindley-Milner)
+ typed checked in HOL and then given to an ATP (hammer)

27/37

Online parsing system

e “sin (0 * x) = cos pi / 2"

produces 16 parses
« of which 11 get type-checked by HOL Light as follows

- with all but three being proved by HOL(y)Hammer

sin (&0 * AQ0) = cos (pi / &2) where AQ:real

sin (&0 % AO) = cos pi / &2 where AO:real

sin (&0 x &AQ0) = cos (pi / &2) where AO:num

sin (&0 % &AO) = cos pi / &2 where AOQ:num

sin (&(0 » AO0)) = cos (pi / &2) where AO:num

sin (&(0 » AO0)) = cos pi / &2 where AQ0:num

csin (Cx (&0 x= AQ)) = ccos (Cx (pi / &2)) where AO:real
csin (Cx (&0) % AQ) = ccos (Cx (pi / &2)) where AO:real”2
Cx (sin (&0 %= AQ)) = ccos (Cx (pi / &2)) where AQ0:real
csin (Cx (&0 x= AQ)) = Cx (cos (pi / &2)) where AQ:real
csin (Cx (&0) * AQ0) = Cx (cos (pi / &2)) where AO:real”2

28/37

Flyspeck Progress

Flyspeck

. 82.5%
AITP 2017 (CYK + semantic pruning + subtree depth 4-8 + new improvements) M 1.99

1 59.2%
77.1%
AITP 2016 (CYK + semantic pruning + subtree depth 4-8) M 1.95
I 55.5%
58.%
IWIL 2015 (CYK + semantic pruning + subtree depth 3) M 1.97
35.%
42.7%
ITP 2015 (CYK + semantic pruning) Il 3.74
19.2%
. 6.7%
CYK1967 W 1.
. 5.4%
0 10 20 30 40 50 60 70 80 90

mtop 20 perfect match W average rank W top 1 perfect match

29/37

First Mizar Results (100-fold Cross-validation)

Mizar

I, 4.6%

subtree depth 4-8 + new improvements . 2.61

I 37.2%
I, 63.7%

subtree depth 4-8 . 2.64

I 36.5%
I 32.9%

subtree depth 2 [l 4.6

I 13.%

0 10 20 30 40 50 60 70

mtop 20 perfect match maverage rank mtop 1 perfect match

30/37

Neural Autoformalization (Wang et al., 2018)

+ generate about 1M Latex - Mizar pairs based on Bancerek’s work
« train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

« many architectures tested, some work much better than others

- very important latest invention: atfention in the seg-to-seq models

« more data very important for neural training — our biggest bottleneck (you
can help!)

31/37

Neural Autoformalization data

Rendered IATEX fXCYCZthenXCZ
Mizar

X c=Y & Y c= Z implies X c= Z;
Tokenized Mizar
X c=Y & Y c= Z implies X c= Z ;
IATEX
If $X \subseteq Y \subseteq Z$, then $X \subseteq z$.

Tokenized ATEX

If $ X \subseteqg Y \subseteqg Z $, then $ X \subseteq Z $.

32/37

Neural Autoformalization results

Parameter Final Test Final Test Identical Identical
Perplexity BLEU Statements (%) No-overlap (%)

128 Units 3.06 411 40121 (38.12% 6458 (13.43%)

256 Units 1.59 64.2 63433 (60.27% 19685 (40.92%)

1024 Units 1.51 61.6 69179 (65.73% 22978 (47.77%)

)
)
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%)
)
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%)

33/37

Neural Fun — Performance after Some Training

Rendered
IATEX
Input IKTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and sy is convergent . Then lim(sg+S7) = lim Sg+ lim s7

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }

$ is convergent . Then $ \mathop { \rm lim } ({ s _ { 8 }
}y {4+ 1Y {s_ {71} }) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } §

seql is convergent & seqg2 is convergent implies lim (seql
+ seqg2) = (lim seql) + (lim seqg2) ;
x in dom f implies (x xy) (£ | (x| (y | (y | y)
)y)y =(x [(y !l (y |l CylLy))y)y)y):i

seq 1is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seg2
is convergent ;

seq 1s convergent & seg9 is convergent implies
lim (seq + seq9) = (lim seq) + (lim seq9) ;

34/37

Acknowledgments

» Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 Petr Stepanek, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder,
Jan Jakubuv, Ondrej Kuncar, Martin Suda, Zar Goertzel, Bartosz Piotrowski,
Lasse Blaauwbroek, ...
« HOL(y)Hammer group in Innsbruck:

» Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima,

Shawn Wang
ATP and ITP people:

» Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry
Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow,
Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...

 Learning2Reason people at Radboud University Nijmegen:
* Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,

« Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi,
Francois Chollet, Sarah Loos

e ... and many more ...
 Funding: Marie-Curie, NWO, ERC

35/37

http://arg.ciirc.cvut.cz/

Some References

¢ C. Kaliszyk, J. Urban, H. Michalewski, M. Olsak: Reinforcement Learning of Theorem Proving. CoRR
abs/1805.07563 (2018)

* Z. Goertzel, J. Jakubuv, S. Schulz, J. Urban: ProofWatch: Watchlist Guidance for Large Theories in E.
CoRR abs/1802.04007 (2018)

* T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR
abs/1804.00596 (2018).

¢ J. Jakubuy, J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine. CICM 2017:
292-302

* S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105

* L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning
61(1-4): 423-453 (2018)

¢ J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized
Reasoning 9(1): 101-148 (2016)

* G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for
Premise Selection. NIPS 2016: 2235-2243

e C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large
Theories. IJCAI 2015: 3084-3090

¢ J. Urban, G. Sutcliffe, P. Pudlak, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning
with Semantic Guidance. IJCAR 2008: 441-456

* C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of
Mathematics. ITP 2017: 12-27

* Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal
Mathematics. CoRR abs/1805.06502 (2018)

¢ J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging Al Field. LNCS
7788, 240-257, 2013.

36/37

Thanks and Advertisement

+ Thanks for your attention!

» AITP — Artificial Intelligence and Theorem Proving

 April 8-12, 2019, Obergurgl, Austria, aitp-conference.org

« ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
+ Discussion-oriented and experimental

« Grown to 60 people in 2018

37/37

aitp-conference.org

	Machine Learning (a.k.a. Function Approximation)
	Learning vs. Reasoning
	Learning of Theorem Proving
	Autoformalization

