thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is Cauchy q in P ; V ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a >= X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y `2 in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B `2 = b `2 ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `2 <= b `2 ; assume b in X ; assume k <> 1 ; f = Product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is from of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A `2 in B `2 ; assume i = 1 ; let x be element ; x `2 = x `2 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , x be set ; let G be _Graph , x be set ; let a be VECTOR of W ; let x be element ; let x be element ; let C be FormalContext , D be Subset of TOP-REAL 2 ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; let y be Real ; X c= f . a let y be element ; let x be element ; let i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= NAT ; let y be element ; r2 in r2 ; let x be element ; k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = $ " ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp ( x , a ) is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b2 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r1 ; let e be Real , x be Point of TOP-REAL 2 ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is non discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , i be Nat ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 is open ; cluster uparrow x -> be be be be open ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; that element >= us ; G . y <> 0 ; let X be RealNormSpace , x be Point of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , A be Subset of V ; assume x in - M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded & L is upper-bounded ; rng f = Y ; Gs c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `2 = a `2 + 1 ; x `2 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= ii ; 1 <= ii ; pp c= PI / 2 ; 1 <= ii ; 1 <= ii ; UMP C in L ; 1 in dom f ; let seq ; set C = a * B ; x in rng f ; assume f is Lipschitzian ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 & b2 >= Y2 ; assume w = 0. V ; assume x in A . i ; g in PreNorms X ; y in dom t ; i in dom g ; assume P [ k ] ; Set Set Set Set = f ; x4 is increasing ; let e2 be element ; - b divides b ; F c= \mathclose { F } ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , X be non-empty ManySortedSet of S ; assume P [ n ] ; assume union S is independent & card S is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ; assume inf X in X ; y in rng f ; let s , I be set , s be State of SCM+FSA ; b `2 c= ( b `2 ) ; assume not x in NAT + 1 ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster Product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 & i2 < i2 ; a * h in a * H ; p , q in Y ; cluster sqrt I -> left ideal ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; |. cn .| < n ; assume A c= dom f ; Re f is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; assume O is symmetric transitive ; let x , y be element ; let j2 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 is_halting_on s , P ; d , c // a , b ; let t , u ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , f be Function of X , REAL ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , x be Element of A ; let S be non empty ManySortedSign ; let x be variable , f be Function ; let b be Element of X , a be Element of X ; R [ x , y ] ; x ` = x ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( n (#) F ) ; h2 . a = y ; P [ n + 1 ] ; cluster G * F -> pre| ; let R be non empty multiplicative Function , a be Element of R ; let G be _Graph ; let j be Element of I ; a , p // x , p `2 ; assume f | X is lower ; x in rng pion1 & y in rng pion1 ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `2 ; let M be void maid ; let N be non empty Subset of the \it \mathbin { 0 } ; let R be RelStr with finite finite Anumber ; let n , k be Nat ; let P , Q be RelStr ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I does not destroy a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < ( v - u ) ; x <= c2 . x ; x in F ` ; cluster S --> T -> product is \cal ; assume t1 <= t2 & t2 <= t1 ; let i , j be even Nat ; assume F1 <> F2 & F2 <> G2 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> A2 & A2 <> A1 ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & rng g2 c= B ; i < len M + 1 ; assume not - +infty in rng G ; N c= dom f1 & N c= dom f2 ; x in dom sec & y in dom sec ; assume [ x , y ] in R ; set d = ( x - y ) / 2 ; 1 <= len g1 & len g2 = len g2 ; len s2 > 1 & len s2 > 1 ; z in dom f1 & z in dom f2 ; 1 in dom D2 & 1 <= len D2 ; ( p `2 ) ^2 = 0 ; j2 <= width G ; len cos > 1 + 1 ; set n1 = n + 1 ; |. q9 .| = 1 ; let s be SortSymbol of S ; ( i , i ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be Line of as elements of as line ; cluster m * n -> invertible ; let kk be Nat ; i - 1 > m ; R is transitive & R is transitive implies R is transitive set F = <* u , w *> ; pp `1 c= P3 `1 & p1 `1 <= b ; I is_halting_on t , Q & I is_halting_on t , Q ; assume [ S , x ] is vertical ; i <= len f2 & j <= len f2 ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom f1 & y in dom f2 ; assume [ X , p ] in C ; BX c= XX & BX c= X ; n2 <= ( 2 |^ ( n + 1 ) ) ; A /\ ( P ` ) c= A ` ; cluster x -valued -> x -valued for Function ; let Q be Subset-Family of S , P be Subset of T ; assume n in dom g2 & n in dom g2 ; let a be Element of R ; t `2 in dom e2 & t `2 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SetSequence of X , T be Subset of S ; i . y in rng i ; REAL c= dom f & rng f c= dom g ; f . x in rng f ; mt <= ( r / 2 ) * ( 2 * n ) ; s2 in r-5 & s1 < s2 ; let z , z be complex number ; n <= NN . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = |[ S , T ]| ; let x be non positive Real ; let m be Element of M ; f in union ( F1 * F ) ; let K be add-associative right_zeroed right_complementable associative commutative associative distributive non empty doubleLoopStr , p be Polynomial of K ; let i be Element of NAT ; rng ( F * g ) c= Y dom f c= dom x & rng f c= dom x ; n1 < n1 + 1 + 1 ; n1 < n1 + 1 + 1 ; cluster [: T , T :] -> transitive ; [ y2 , 2 ] `2 = z ; let m be Element of NAT ; let S be Subset of R ; y in rng S29 & y in rng S29 ; b = sup dom f & b = sup dom f ; x in Seg len q & y in Seg len q ; reconsider X = [: D , D :] as set ; [ a , c ] in E1 ; assume n in dom h2 & n in dom h2 ; w + 1 = ( a1 + a2 ) ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k2 + 1 <= k2 ; let i be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete \frac of m , n ; assume that f = g and p = q ; n1 <= n1 + 1 & n2 + 1 <= n1 ; let x be Element of REAL n ; assume x in rng s2 & y in rng s2 ; x0 < x0 + 1 / 2 ; len ( L5 ) = W ; P c= Seg ( len A ) ; dom q = Seg n & rng q c= Seg n ; j <= width M *' ; let rr be real-valued FinSequence ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT ; assume z in in c= c= c= V -] ( 0 ) ; let i be set ; n - 1 = n-1 - 1 ; len ( n |-> 0 ) = n ; Set N = F .: c ; assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , f be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q & dom q = Seg i ; let s be Element of E |^ omega ; let B1 be Basis of x , B ; ( ( LSeg ( L2 , j ) ) /\ L2 = {} ; L1 /\ L2 = {} ; assume ||. x .|| = ||. y .|| ; assume b , c // b `1 , c `2 ; LIN q , c , c ; x in rng ( f-1z ) ; set n8 = n + j ; let D7 be non empty set , f be FinSequence of D ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , M be Matrix of K ; assume that f `2 = f and h `2 = h ; R1 - R2 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [' a , b '] ; K1 ` is open & K1 /\ K1 is open ; assume a , b are_maximal in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster \vert a -> neeess\mathop ; not u in { [: g , h :] } ; the carrier of f c= B ; reconsider z = x as VECTOR of V ; cluster the RelStr of L -> -> -> -> -> -> for RelStr ; r (#) H is being being being being being being being being being being being being PartFunc of X , REAL ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict non-empty MSAlgebra over S , x be set ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in { { y } where y is Element of L : not contradiction } ; let x , y be Element of X ; let A , I be Subset of X ; [ y , z ] in O ; that that that card Macro i = 1 and card Macro i = 2 ; rng Sgm A = A & card A = card A ; q |- All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b ; p . 2 = Z |^ Y ; ( D . x0 ) `2 = {} ; n + 1 + 1 <= len g ; a in CQC-WFF ( Al ( ) ) ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f2 + f3 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 & y `2 in A1 ; ( f /* s ) . k < r ; set v = VAL g ; i -' k + 1 <= S ; cluster non empty multiplicative -> associative for is associative ; x in support ( ( support t ) --> x ) ; assume a in [: G , H :] ; i `2 <= len ( y `2 ) ; assume p divides b1 + b2 & p divides b2 ; x0 <= sup M1 & x0 < sup M1 ; assume x in W-min ( X ) ; j in dom ( z | n ) ; let x be Element of [: D , D :] ; IC Comput ( P1 , s , m ) = l1 ; a = {} or a = { x } ; set uG = Vertices G , uG = Vertices G , uG = Vertices G , uG = Vertices G , uG = Vertices G , uG = Vertices G , uG seq " is non-zero implies seq " is non-zero for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; h-4 c= h-14 ( h ) ; ]. a , b .[ c= Z ; X1 , X2 are_separated & X2 , X1 are_separated implies X1 , X2 are_separated a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 -' 1 = k ; cluster NAT -valued for NAT -defined Function ; ex v st C = v + W ; let IT be non empty NAT , n be Nat ; assume V is Abelian add-associative right_zeroed right_complementable ; XY \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper & sup B is upper ; let L be non empty reflexive RelStr , X be Subset of L ; R is reflexive & X is transitive implies R \/ R is transitive E , g |= the_left_argument_of H implies E , f |= H dom G /. y = a ; sqrt ( 1 - 4 ) >= - r ; G . x0 in rng G & G . x0 in rng G ; let x be Element of FH , y be Element of FH ; D [ ( P-6 ) . 0 , 0 ] ; z in dom id ( B ) & z in dom id ( B ) ; y in the carrier of N & y in the carrier of N ; g in the carrier of H & g in the carrier of H ; rng f|[ 1 , 1 ]| c= NAT ; j `2 + 1 in dom s1 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL ; f . z1 in dom h & f . z2 in dom h ; P . k1 in rng P & P . k2 in rng P ; M = ( A +* {} ) +* {} .= A ; let p be FinSequence of REAL , n be Nat ; f . n1 in rng f & f . n1 in rng f ; M . ( F . 0 ) in REAL ; h | [' a , b '] = b ; assume that the distance of V , Q is v ; let a be Element of ^ ( V ) ; let s be Element of P ( ) ; let PL be non empty RelStr ; n be Nat ; the carrier of g c= B & f .: ( g .: B ) c= B ; I = halt SCM ( R ) .= I ; consider b being element such that b in B ; set BK = BCS K , BK = BCS K ; l <= ( -> -> Real ) ; assume x in ]. [ s , t ] , [ s , t ] } ; ( x `2 ) ^2 in ]. t `1 , t `2 .[ ; x in JumpParts ( T . s ) ; let h be Morphism of c , a ; Y c= { 1_ K } & Y c= { 1_ K } ; A2 \/ A3 c= Carrier ( L1 ) \/ Carrier ( L2 ) ; assume LIN o `1 , a & LIN o `1 , b , c ; b , c // d1 , d2 ; x1 , x2 , x3 is_collinear & x2 , x3 , x4 is_collinear ; dom <* y *> = Seg 1 .= Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in X ~ ; for n being Nat holds 0 <= x . n |[ a , b ]| = [. a , b .] ; cluster -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , q1 is_collinear & q2 , q2 , q1 is_collinear ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] & y = [ x2 , x3 ] ; let R , Q be ManySortedSet of A ; set d = ( 1 / n ) * ( 1 / n ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , V be Subset of M ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( ( R * S ) * ( R * S ) ) ; let b be Element of the lattice of T ; dist ( e , z ) > r-r ; u1 + v1 in W2 + W3 ; assume the carrier of L misses rng G & G is finite ; let L be lower-bounded antisymmetric non empty RelStr ; assume [ x , y ] in [: a9 , b9 :] ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool ( M , X ) ; 0 <= Arg a * PI ; not o , a9 , y is_collinear & not o , a , y is_collinear ; { v } c= the carrier of l ; let x be variable of A ; assume x in dom ( uncurry f ) ; rng F c= ( product f ) .: X assume D2 . k in rng D & D . k in rng D ; f " . p1 = 0 ; set x = the Element of X , y = the Element of X ; dom Ser G = NAT & dom Ser G = NAT ; n be Element of NAT ; assume LIN c , a , e1 ; cluster finite for FinSequence of NAT ; reconsider d = c as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f .: the carrier of G ; conv @ @ S c= conv A & conv @ S c= conv A ; reconsider B = b as Element of the lattice of T ; J , v |= P ! l ; cluster the TopStruct of J . i -> non empty ; ex_sup_of Y1 \/ Y2 , T & for x st x in Y1 holds x in Y1 implies x in Y1 W1 is_well field W1 & W2 is_\upharpoonright field W2 implies W1 is well of W2 assume x in the carrier of R & y in the carrier of R ; dom ( n |-> 0 ) = Seg n & rng ( n --> 0 ) = Seg n ; s4 misses s4 & not s4 c= s ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in Indices ( f * g ) ; assume that Directed I c= J and Directed I c= K ; Im ( lim seq ) = 0 ; ( ( ( - 1 ) (#) sin ) `| Z ) . x <> 0 ; sin is_differentiable_on Z & cos is_differentiable_on Z implies sin is_differentiable_on Z t2 . n = t2 . n .= s . n ; dom ( ( - F ) | Z ) c= dom F ; W1 . x = W2 . x .= W2 . x ; y in W .vertices() \/ W .vertices() ; ( k <= len ( vk ) ) & ( k + 1 ) <= len ( vk ) ; x * a \equiv y * ( m mod p ) ; proj2 .: S c= proj2 .: P & proj2 .: P c= proj2 .: P ; h . p4 = g2 . I .= g2 . I ; G6 = U /. 1 .= G * ( 1 , 1 ) `1 ; f . ( r1 - r2 ) in rng f ; i + 1 + 1-1 <= len - 1 ; rng F = rng ( F | n ) & rng F c= rng F ; mode upper_bound is well unital non empty multiplicative loop structure ; [ x , y ] in A ~ ; x1 . o in L2 . ( o . o ) ; the carrier of m - m c= B ; not [ y , x ] in id ( X ) ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower ; len F-12 = len I & len Fc = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number , r be Real ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} as Element of T ; let Y be connected Chain of T ; cluster -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 ; cluster J => y -> total for Function ; K c= 2 |^ ( the carrier of T ) F . b1 = F . b2 ; x1 = x or x1 = y or x1 = z ; attr a <> {} means : Def6 : for a st a in a holds ( a * x ) = 1 ; assume that a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b1 } on C2 ; LIN o `1 , b , b9 ; reconsider m = x as Element of Funcs ( V , V ) ; let f be non constant FinSequence of D ; let F2 be non empty TopSpace ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider p9 = x as Subset of m m ; A , B , C , D , E , F , J , M , N , N , M , N , N , N , M , N , N , N , M , N , N cluster strict non empty for for us empty real number ; rng c `1 misses rng ( e | m ) & rng e c= rng e2 ; z is Element of gr ( { x } ) ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( ( cot * cot ) `| Z ) ; the component of Q c= UBD A & P /\ Q c= UBD A ; reconsider E = { i } as finite Subset of I ; g2 in dom ( 1 / ( ( f ^ ) (#) ( g ^ ) ) ) ; attr f = u means : Def6 : a * f = a * u ; for n holds P1 [ prop n ] ; { x . O : x in L } <> {} ; let x be Element of V . s ; let a , b be Nat ; assume that S = S2 and p = p2 and S = S2 ; gcd ( n1 , n2 ) = 1 & gcd ( n1 , n2 ) = 1 ; set o1 = a * _ 2 , o2 = b * _ 3 ; seq . n < |. r1 .| & |. r1 - x0 .| < r ; assume that seq is increasing and r < 0 and for n st n >= 0 holds r < 0 ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] ; set g = { n + 1 : n in NAT } ; k = a or k = b or k = c ; a9 , b9 , c9 is_collinear & a9 , b9 , c9 is_collinear ; assume that Y = { 1 } and s = <* 1 *> ; I1 . x = f . x .= 0 ; W3 .first() = W2 . 1 .= W2 . 1 ; cluster -> trivial for Vertex of G , finite _Graph ; reconsider u = u as Element of Bags X ; A in B ^ B implies A , B are_\kern1pt \kern1pt x in { [ 2 * n + 3 , k ] } ; 1 >= ( sqrt ( ( q `1 ) ^2 ) / ( |. q .| ) ^2 ) ; f1 is_in the carrier of ( f2 | A ) & f2 | A is ' ; ( f /. 2 ) `2 <= ( q `2 ) / ( |. q .| ) ; h is_the carrier of Cage ( C , n ) ; ( b `2 / |. p .| - sn ) / ( 1 + sn ) <= ( p `2 / |. p .| - sn ) / ( 1 + sn ) ; let f , g be Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( max ( - f , - g ) ) ; p2 in NN . p1 & p2 in NN . p2 ; len ( the_left_argument_of H ) < len H & len ( H ) < len H ; F [ A , F-14 . A ] ; consider Z such that y in Z and Z in X ; attr 1 in C means : Def6 : A c= C |^ A ; assume that r1 <> 0 or r2 <> 0 ; rng q1 c= rng C1 & rng q2 c= rng C1 ; A1 , L , A2 is_collinear & A1 , A2 , p3 is_collinear ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in PartFunc ( p , Ss ) . ( S . x ) ; then S is atomic means : then for n holds P-2 [ n ] ; Cl ( Int [#] T ) = [#] T ; f12 | ( A2 /\ A1 ) = f2 | ( A2 /\ A1 ) ; 0. M in the carrier of W & 0. M in W ; v , v , w , y is_collinear ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V & V \ Y c= Y \ Z ; let X be Subset of S , T be Subset of S ; consider H1 such that H = 'not' H1 and H1 in H ; \bf 1 c= ( ( t * the function of A ) * ( \HM { 0 } ) ) ; 0 * a = 0. R .= a * 0. R .= a * 0. R ; A |^ 2 = A ^^ A & A |^ 2 = A |^ 2 ; set vY = vY /. n , vY = vY /. n ; r = 0. ( \langle \cal E *> , \Vert \cdot \Vert \rangle ) ; ( f . p4 ) `1 >= 0 ; len W = len ( W ^ ( m ) ) + len ( W ^ ( m ) ) ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t8 on W7 & not LIN b1 , b2 , b1 & not a2 on b2 , b1 ; reconsider Y1 = X1 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i as non zero Element of NAT ; c . x >= id ( L . x ) ; \sigma ( T ) \/ omega is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> pair for set ; sup downarrow a /\ downarrow t is Ideal of T ; let X be with NAT -defined non empty set , f be Function of NAT , NAT ; rng f = S1 -S1 ( S , X ) ; let p be Element of B , x be the the ResultSort of S ; max ( N1 , 2 ) >= N1 ; 0. X <= b |^ ( m * \mathbb m ) ; assume that i in I and R1 . i = R . i ; i = j1 & p1 = q1 & q1 = q2 ; assume gR in the right & FR c= the carrier of g ; let A1 , A2 be Subset of S , A be Subset of S ; x in h " ( P /\ [#] ( T | P ) ) /\ [#] ( T | P ) ; 1 in Seg 2 & 1 in Seg 3 & 2 in Seg 3 ; reconsider X-5 = X as non empty Subset of Tsuch that X = { {} } and X is non empty ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Target of G ) -valued ; n1 <= i2 + len g2 & n2 <= len g2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & v in the carrier' of G2 ; y = Re y + ( Im y ) * i ; ( ( - 1 ) |^ p ) gcd ( p , q ) = 1 ; x2 is_differentiable_on ]. a , b .[ & x2 in ]. a , b .[ ; rng M5 c= rng ( D2 | D2 ) & rng ( D1 | D2 ) c= rng ( D2 | D2 ) ; for p be Real st p in Z holds p >= a assume that \bf X in proj1 .: ( f .: X ) and X is compact and Y is compact ; ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) \ominus C h \equiv gg . ( mod P ) .= g . ( mod P ) ; reconsider i1 = i-1 - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider i9 = i - 1 as Element of NAT ; dom f c= [: C , D :] & rng f c= [: D , D :] ; x in ( the Sorts of B ) . n ; len - f2 in Seg len ( f2 | ( len f2 ) ) ; p9 c= the topology of T & p9 c= the topology of T ; ]. r , s .[ c= [. r , s .] ; B2 be Basis of T2 , B be Basis of T2 ; G * ( B * A ) = ( id o1 ) * ( id o1 ) ; assume that p , u are_elements and u , v // v , w ; [ z , z ] in union rng ( F | X ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S ; LIN a1 , a3 , a4 & LIN a1 , a3 , a4 ; f " ( f .: x ) = { x } ; dom w2 = dom ( r12 ) .= Seg len r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; I1 * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; q9 . x in rng ( q | n ) ; Carrier ( LF2 ) misses ( Carrier ( LF2 ) ) ` ; consider c being element such that [ a , c ] in G ; assume N|[ o1 , o2 ]| = o1 & o1 <> o2 ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F-12 | C ) .: ( Cpion1 .: C ) ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . j .] ; attr 0 <= x & x ^2 <= x ; p `2 <> 0. TOP-REAL 2 & p `2 <> 0. TOP-REAL 2 ; cluster \cal a] ( S , T ) -> non empty ; let x be Element of S ~ ; ( Obj F ) . ( a , b ) is one-to-one ; |. i .| <= - ( - 2 |^ n ) / ( n + 1 ) ; the carrier of I[01] = dom P & P . 0 = P . 1 ; assume n * ( n + 1 ) ! > 0 * n ; S c= ( A1 /\ A2 ) /\ ( A1 /\ A2 ) ; a3 , a4 // a3 , a4 & a3 , a4 // a4 , a4 ; then dom A <> {} & dom A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y , G , G , j , G , k , G ; set v2 = v4 /. ( i + 1 ) , v2 = v4 /. ( i + 1 ) ; x = r . n .= ( rr . n ) ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g = the carrier of I[01] ; p in Lower_Arc ( P ) /\ Lower_Arc ( P ) ; dom d = A2 & dom d = A2 & for x st x in A2 holds d . x = F ( x ) ; 0 < ( ||. p .|| ) / ( ||. z .|| + 1 ) ; e . ( m + 1 ) <= e . ( m + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X - - Im ( g | B ) < Integral ( M , Im g ) ; cluster O := F -> \HM of X means : Let : F is an operation of X ; let U1 , U2 be non-empty MSAlgebra over S , f be Function of U1 , U2 ; Proj ( i , n ) * g is_differentiable_on X ; x , y , z is_collinear & x , y , z is_collinear ; reconsider p9 = p . x as Subset of V . x ; x in the carrier of Lin ( A ) & y in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a , b be Int-Location ; assume that - a is lower and b is lower and a < b ; Int ( A /\ B ) c= Cl Int ( A /\ B ) ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 / p2 `1 ) ^2 <= ( p `2 / p2 `1 ) ^2 ; Cl Q ` = [#] ( T | P ) ; set S = the carrier of T , T = the carrier of S ; set I1 = ' ( f , n ) , I2 = ' ( f , n ) , I2 = ' ( f , n ) , I2 = ' ( f , n ) , I2 = ' ( f , n ) , I2 = ' ( f , n len p -' n = len p - n .= len p - n ; A is Permutation of Line ( A , x ) ; reconsider nnY = nY - 1 as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s | n ) ; let q9 , q9 , q9 , g2 be Element of M ; a1 in the carrier of S1 & a2 in the carrier of S2 ; c1 /. n1 = c1 . n1 .= c2 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 ; y = ( f * ST ) . x .= f . x ; consider x being element such that x in \mathop { \rm _ } A ; assume r in ( ( dist ( o ) ) .: P ) .: P ; set i2 = width ( h /. ( n + 1 ) ) ; h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) . i = M . i ; reconsider m = ( x - 2 ) / ( x - 2 ) as Element of ( REAL 2 ) ; let U1 , U2 be Subspace of U0 , a be Element of U0 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p1 + 1 <= len p1 ; let T1 , T2 be Scott Scott Scott m of L ; then x <= y & { x } c= { y } ; set M = n -tuples_on the carrier of G , F = n -tuples_on the carrier of G ; reconsider i = x1 , j = x2 as Nat ; rng ( ( the_arity_of a9 ) * ( the_arity_of a9 ) ) c= dom H ; z1 " = z1 " * z " .= z1 " * z " " " " * z " " " " * z " " " " " " * z " " " * z " " * z " " * z " * z " " * z " * z x0 - r in L /\ dom f & f . x0 < x0 + r ; then w is \rm \hbox { - } that rng w /\ AllSymbolsOf S <> {} ; set xZ = xZ ^ <* Z *> ^ <* Z *> ^ <* Z *> ^ <* Z *> ^ <* x *> ; len w1 in Seg len w1 & len w2 = len w2 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) / ( |. a .| ) ; ( p `1 ) ^2 / ( |. p .| ) ^2 <= ( G * ( 1 , 1 ) ) `1 / ( |. p .| ) ^2 ; rng ( g | ( L~ g ) ) c= L~ g /\ L~ g ; reconsider k = i-1 * ( lj + 1 ) as Nat ; for n being Nat holds F . n is Seg ( n + 1 ) is Seg n reconsider xM = xM as VECTOR of M ; dom ( f | X ) = X /\ dom f /\ X .= X ; p , a // p , c & b , a // c , d ; reconsider x1 = x as Element of REAL m ( ) ; assume i in dom ( a * p ^ q ) ; m . ( |. g .| ) = p . ( |. g .| ) ; a / ( s . m ) - ( a / ( s . n ) ) <= 1 ; S . ( n + k ) c= S . ( n + k ) ; assume B1 \/ C1 = B2 \/ C2 & B2 \/ C2 = B2 \/ C2 ; X . i = { x1 , x2 } . i .= x2 ; r2 in dom ( h1 + h2 ) /\ dom h2 ; that that - 0. R = a and b0. R = b ; FQ is_closed_on t1 , Q1 & PQ is_halting_on t1 , Q1 implies Q1 is_halting_on t1 , Q set T = InInIncluster ( X , x0 ) ; Int ( Cl R ) c= Int R & Int ( R ) c= Cl R ; consider y being Element of L such that c . y = x ; rng Fwhere x is Element of X ( ) st rng F: x in { F ( x ) } c= { F ( x ) } ; G-23 ( { c } ) c= B \/ S ; f-1 is Relation of [: X , Y :] , [: X , Y :] & X is Y ; set RP = the Element of P , R = the Element of P , I = the carrier of P , J = the carrier of P , R = the carrier of P , T = the carrier of P , R = the carrier of P , T = the assume that n + 1 >= 1 and n + 1 <= len M ; k2 be Element of NAT , x be Element of NAT ; reconsider p9 = u as Element of ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( j + 1 ) ) ; g . x in dom f & x in dom g ; assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of G / ( N , 1 ) ; len ( ( P * ( 1 , k ) ) `2 ) <= len ( ( P * ( 1 , k ) ) `2 ; x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( A * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple ; f . x = a . i .= a1 . k ; let f be PartFunc of REAL i , REAL n , x be Element of REAL n ; rng f = the carrier of \bf SCM ( A ) & f .: A c= the carrier of \bf SCM ( A ) ; assume s1 = sqrt ( 2 * p ) & s2 = sqrt ( 2 * p ) ; attr a > 1 & b > 0 & a |^ b > 1 ; let A , B , C be Subset of I1 , D be Subset of I2 ; reconsider X0 = X , Y1 = Y as RealNormSpace ; let f be PartFunc of REAL , REAL , x be Element of REAL m ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V and X is Subspace of V ; t-3 , tt1 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 Q [ e \/ { v2 } , f ] ; g \circlearrowleft ( W-min L~ z ) = z ; |. |[ x , v ]| - |[ x , y ]| .| = v12 ; - f . w = - ( L * w ) ; z - y <= x iff z <= x + y sqrt ( 7 + 1 ) / ( 2 * e ) > 0 ; assume X is BCK-algebra & 0 < 0 & 0 < n ; F . 1 = v1 & F . 2 = v2 ; ( f | X ) . x2 = f . x2 ; ( ( tan * tan ) `| Z ) . x in dom sec ; i2 = ( f /. len f ) `2 .= ( f /. len f ) `2 ; X1 = X2 \/ ( X1 \ X2 ) & X2 = X1 \/ X2 ; [. a , b , 1_ G .] = 1_ G & [. a , b , c .] = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be Function of V , W ; dom g2 = the carrier of I[01] & rng g2 = the carrier of I[01] ; dom f2 = the carrier of I[01] & rng f2 = the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: ( X /\ Y ) ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & a1 . n < x0 + r ; |. ( f /* s ) . k - G . ( k + 1 ) .| < r ; len Line ( A , i ) = width A & width A = width A ; SY / S = ( S . g ) / S ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized p & Initialized p = Initialized s ; i1 , i2 |= ( b , c ) & not i2 does not destroy b1 & i1 , i2 does not destroy b2 ; ( - 1 ) * ( 1 / ( r - 1 ) ) = ( sqrt ( r ) ) * ( 1 / ( r - 1 ) ) ; for x st x in Z holds f2 is_differentiable_in x & f2 is_differentiable_in x & f2 is_differentiable_in x ; reconsider q2 = ( q - x ) / 2 as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 ; assume f in the carrier of [ X , Omega ] ; F . a = H / ( x , y ) . a ; true T = TRUE & not ( C is Element of C implies p in T ) ; dist ( ( a * seq ) . n , h ) < r ; 1 in the carrier of [. 0 , 1 .] & 1 <= len G ; ( p2 `1 ) ^2 - x1 > - g / ( 1 - g ) ; |. r1 - r2 .| = |. a1 .| * |. a2 - x .| ; reconsider S-14 = 8 as Element of Seg 8 ; ( A \/ B ) |^ b c= A |^ b \/ B |^ c DDDW = DDW -A0 + 1 ; i1 = ( of a + n ) * ( i , j ) & i2 = ( a + n ) * ( i , j ) ; f . a [= f . ( f .: O1 ) ; attr f = v & g = u + v ; I . n = Integral ( M , F . n ) ; [: { T } , T :] . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b2 - 1 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ R & L~ M2 meets L~ R implies L~ M1 misses L~ R set h = the continuous Function of X , R , s be Real ; set A = { L . ( ( k + 1 ) / 2 ) where k is Nat : 0 < k & k < n } ; for H st H is atomic holds P [ H ] ; set breal = S5 . ( i + 1 ) , S5 = S5 . ( i + 1 ) , x5 = S . ( i + 1 ) , x5 = S . ( i + 1 ) , x5 = S . ( i + 1 ) , x Hom ( a , b ) c= Hom ( a `1 , b `2 ) ; sqrt ( 1 + ( n + 1 ) ) < sqrt ( 1 + ( s " ) ) ; ( l /. 1 ) `1 = [ dom l , cod l ] `1 .= [ dom l , cod l ] ; y +* ( i , y ) in dom g ; let p be Element of CQC-WFF ( Al ( ) ) , A ( ) ; X /\ X1 c= dom ( f1 - f2 ) /\ dom ( f2 - f3 ) ; p2 in rng ( f /^ p1 ) & p1 in rng ( f /^ ( p1 + 1 ) ) ; 1 <= indx ( D2 , D1 , j1 ) + 1 - 1 ; assume x in K1 /\ ( ( TOP-REAL 2 ) | K1 ) ; - 1 <= ( ( f2 . O ) `2 / ( 1 + ( f2 . O ) `2 ) ^2 ) ; let f , g be Function of I[01] , TOP-REAL 2 , a , b , c be Real ; k1 -' k2 = k1 - k2 + 1 .= k1 -' k2 + 1 ; rng seq c= ]. x0 - r , x0 + r .[ & rng seq c= ]. x0 , x0 + r .[ ; g2 in ]. x0 - r , x0 + r .[ & g2 < x0 + r / 2 ; sgn ( p `1 , K ) = - 1_ K .= 1_ K ; consider u being Nat such that b = p |^ y * u ; ex A being the the carrier of T st a = Sum A & A is limit_ordinal ; Cl ( ( Cl H ) ` ) = union ( ( Cl H ) ` ) ; len t = len t1 + len t2 .= len t1 + len t2 + len t2 ; v-29 = v + w & v + A = v + A ; v <> DataLoc ( t1 . GBP , 3 ) , X = P +* I , Y = P +* I , Y = P +* I , Y = Comput ( P , s , 3 ) , Y = P +* I , Z = Comput ( P , s , 3 ) , g . s = sup ( d " { s } ) ; ( \dot y ) . s = s . ( y . s ) ; { s : s < t } c= NAT & t = {} ; s ` \ s = s ` \ 0. X .= ( s ` ) \ ( s ` ) ; defpred P [ Nat ] means B + $1 in A & B + $1 in A ; ( 339 + 1 ) ! = 311139 * ( 339 + 1 ) ; U /. succ A = ( T /. A ) `1 .= ( U /. A ) `1 ; reconsider y = y as Element of COMPLEX ( len y , n ) ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f and x = f . i2 ; reconsider p = Y | Seg k as FinSequence of NAT , f be FinSequence of NAT ; set f = ( S , U ) -TruthEval z ; consider Z be set such that lim s in Z and Z in F ; let f be Function of I[01] , TOP-REAL n , a , b be Real ; ( \cal M ) . [ n + i , 'not' A ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; R1 , R2 be Element of ( n -tuples_on REAL ) * , R2 be Element of ( n -tuples_on REAL ) * ; reconsider l = (0). V as Linear_Combination of A * , B ; set r = |. e .| + |. w .| + |. s .| ; consider y being Element of S such that z <= y and y in X ; a 'or' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ; ||. xg - g2 .|| < r2 & ||. x1 - g2 .|| < s ; b9 , a9 // b9 , c9 & b9 , c9 // c9 , c9 ; 1 <= k2 -' k1 & k2 + 1 + 1 = k2 -' k1 + 1 & k2 + 1 = k2 -' k1 + 1 ; sqrt ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) >= 0 ; sqrt ( ( |. q .| - sn ) / ( 1 + sn ) ) < 0 ; E-max C in right_cell ( R , 1 ) & E-max L~ R in rng R ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( lim F ) = Re ( lim G ) .= Im ( lim G ) ; LIN b , a , c or LIN b , a , c ; p `1 , a `2 // a `1 , b `2 ; g . n = a * Sum ( f | n ) .= f . n ; consider f being Subset of X such that e = f and f is \rm } ; F | ( N2 , S ) = CircleMap * ( F * ( N , S ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r1 ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } & W is Subspace of V ; rng ( ( ( - 1 ) (#) cos ) `| [. - 1 , 1 .] ) = [. - 1 , 1 .] ; assume that Re ( seq ) is summable and Im ( seq ) is summable and Im ( seq ) is summable ; ||. ( ( vseq . n ) - ( vseq . m ) ) * ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 as 0 -started string of S2 ; reconsider xLet = seq . n as sequence of ( TOP-REAL n ) | ( the carrier of TOP-REAL n ) ; assume that E-max L~ Cage ( C , n ) meets L~ go and L~ pion1 /\ L~ pion1 meets L~ pion1 ; - ( 1 / ( 1 - x ) ) < F . n - x ; set d1 = being element of being Function of REAL , REAL n , REAL n , z1 , z2 be Real ; 2 |^ ( 2 -' 1 ) = 2 |^ ( 2 - 1 ) ; dom ( v | ( len ( v | k ) ) ) = Seg len ( ( v | k ) ^ <* d *> ) ; set x1 = ( - ( k2 + 1 ) ) / ( k + 1 ) , x2 = ( - ( k2 + 1 ) ) / ( k + 1 ) ; assume for n being Element of X holds 0. ( X , n ) <= F . n ; assume that 0 <= T|^ i and T|^ ( i + 1 ) <= 1 / 2 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( LZ + L2 ) c= I & L2 c= I ; 'not' All ( x , p ) => All ( x , p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal normal w.r.t. over D ; Z c= dom ( ( ( ( - 1 ) (#) ( f1 * f2 ) ) `| Z ) ; |. 0. TOP-REAL 2 - q .| < r / ( 1 - sn ) ; ConsecutiveSet2 ( A , succ B ) c= ConsecutiveSet2 ( A , succ ( d ) ) ; E = dom ( L | E ) & LL is_measurable_on E & LL | E is is_measurable_on E ; C |^ ( A + B ) = C |^ B * C |^ A ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of W2 ; I . IC Comput ( P , s , m ) = P . IC Comput ( P , s , m ) ; attr x > 0 means : Def6 : x = 1 / ( - x ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , R .] and p in { p } ; b , c are_connected & - C , - C are_not empty & - C , - C are_not Set assume f = id the carrier of C & f is Function of the carrier of C , the carrier of C ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( ( the carrier of V ) \ { v } ) ; reconsider g = f " as Function of U2 , U1 , U2 ; A1 : x in the carrier of ( G . k ) & A2 : x in the carrier of ( G . k ) ; |. - x .| = - ( - x ) .= - x .= - x ; set S = \mathop { \rm ) . ( x , y , c ) ; Fib ( n ) * ( 5 * Fib ( n ) ) >= 4 * log ( 2 , n ) ; v3 /. ( k + 1 ) = v3 . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) / i ; Indices M1 = [: Seg n , Seg n :] & len M2 = n ; Line ( SFinSequence , j ) = SFinSequence . j .= 0. K ; h . ( x1 , y1 ) = [ y1 , y2 ] & h . ( y1 , y2 ) = [ y1 , y2 ] ; |. f .| - ( Re ( |. f .| ) * h ) is nonnegative ; assume x = ( a1 ^ <* x1 *> ) ^ <* b1 *> ^ <* b2 *> ; MW is_halting_on IExec ( I , P , s ) , P & PI is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos 0 + 4 ; x + y < - x + y & |. x - y .| = - x + y ; LIN c , q , b & LIN c , q , a ; f^ . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z ) .= x1 + ( y1 + z ) ; f_ { let a } . a = f[ a , f ] & v in InputVertices S & v in InputVertices S & u in InputVertices S ; ( p `1 ) ^2 / ( ( E-max C ) / ( p `1 ) ^2 <= ( ( E-max C ) / ( p `1 ) ) ^2 / ( p `1 ) ^2 ; set R8 = Cage ( C , n ) \circlearrowleft E , E8 = Cage ( C , n ) /. E , E8 = Cage ( C , n ) /. i , E8 = Cage ( C , n ) /. i , E8 = Cage ( C , n ) /. ( i + 1 ) , E ( p `1 ) ^2 >= ( E-max C ) ^2 / ( ( E-max C ) / ( p `2 ) ^2 ) ; consider p such that p = p9 and s1 < p and p < s2 and p < s2 ; |. ( f /* ( s * F ) ) . l - G . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 ) = width N ; f1 /* ( s1 /* s1 ) is convergent & f2 /* ( s1 ^\ k ) is convergent ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m .= Seg m ; n = k * ( 2 * t ) + ( n mod ( 2 * k ) ) ; dom B = 2 \ { {} } .= the carrier of V ; consider r such that r _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 in [. 1 / 2 , 1 .] ; for L being complete LATTICE holds <* <* <* a *> *> , L *> is isomorphic iff L is isomorphic [ gi , gj ] in I \ ( I \ { i } ) ; set S2 = 1GateCircStr ( <* x , y *> , '&' ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r st x0 in dom f1 /\ dom f2 holds f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 reconsider y = ( a " ) / ( Fq " ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - f ) ) . c ) <= h . c ; set G2 = the subgraph of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 = the Vertex of G , s3 reconsider g = f as PartFunc of REAL , REAL-NS n , REAL-NS n ; |. s1 . m .| / |. p .| < d / ( p . m ) / ( |. p .| / ( |. p .| ) ) ; for x being element st x in for u being element st x in B ( ) holds x in B ( ) iff x in B ( ) P = the carrier of ( ( TOP-REAL n ) | K1 ) | K1 .= K1 ; assume that p1 in LSeg ( p1 , p2 ) /\ LSeg ( p01 , p2 ) and p2 in LSeg ( p1 , p2 ) /\ LSeg ( p01 , p2 ) ; ( 0. X \ x ) |^ ( m + 1 ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c ) <= 2 * C1 * C2 + ( 2 * C2 ) ; let f , g , h be PartFunc of X , Y ; set h = Hom ( a , g ) ; then idseq ( n ) | Seg m = idseq ( m ) & m <= n ; H * ( g " * a ) in the right of H & H * ( g " * a ) in the carrier of H ; x in dom ( ( ( - 1 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) ) `| REAL ) ; cell ( G , i1 , j2 -' 1 ) misses C & LSeg ( G * ( i1 , j2 ) , 1 ) misses C ; LE q2 , q2 , P , p1 , p2 & LE q2 , q1 , P , p1 , p2 & LE q2 , q2 , P , p1 , p2 ; attr B is an component means : Def6 : B c= BDD A & B c= BDD A ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len p + ( - n ) + ( - n ) ; attr a <> 0. K means : Let : for M st M <> 0. K holds width M = width M & len M = width M ; consider j such that j in dom \mathbb J and I = len |^ j + j ; consider x1 such that z in x1 and x1 in ( P * f ) . x ; for n ex r being Element of REAL st X [ n , r ] set C1 = Comput ( P2 , s2 , i + 1 ) , C1 = Comput ( P2 , s2 , i + 1 ) , C1 = Comput ( P2 , s2 , i + 1 ) , C1 = Comput ( P2 , s2 , i + 1 ) , C1 = Comput ( P2 , s2 set \cal v = 3 / ( { a , b } \/ { c } ) , w = 3 / ( { a , b } \/ { c } ) , e = 3 / ( { a , b } \/ { c } ) , f = 3 / ( { a , b } \/ { c } ) conv @ ( @ W ) c= union ( F .: ( E " ) ) ; 1 in [. - 1 , 1 .] /\ dom ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( r3 <= s1 + ( ( r - s2 ) / 2 ) * ( ( r - s1 ) / 2 ) ; dom ( f * ( f0 * f1 ) ) = dom f /\ dom ( f2 * f1 ) .= dom f /\ dom f1 ; dom ( f * G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider g2 = gp as Point of ( TOP-REAL n ) | ( ( TOP-REAL n ) | K1 ) | K1 ; ( T * h . s ) . x = T . ( h . s ) ; I . ( J . x ) = ( I * L ) . J ; y in dom an an an implies ( Frege ( A . ( ( Frege A ) . o ) ) . y = ( Frege ( A . ( ( Frege A ) . o ) ) ) . y ; for I being non degenerated commutative commutative Ring holds I is commutative set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* Initialize ( ( intloc 0 ) .--> 1 ) , s2 = P +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* Initialize ( ( intloc 0 ) .--> 1 ) , s2 = P +* S2 , s2 = P +* S2 , P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [' a , b '] & lim S1 in the carrier of [' a , b '] ; v . ( lpp . i ) = ( v *' ) . i .= ( v *' ) . i ; consider n being element such that n in NAT and x = seq . n ; consider x being Element of c such that F1 . x <> F2 . x and F2 . x <> F2 . x ; card ( X , 0 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , j + ( 2 * ( k + 1 ) ) + m1 > j + ( 2 * ( k + 1 ) ) ; { s , t } on A3 & { s , t } on B2 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n4 , n4 , n4 , n4 , n3 , n3 , n4 , n3 , n4 , n4 , n4 , n4 , n3 , n4 , n4 ( ( for m being Element of NAT st ( HT ( f2 , T ) ) + T ) = 0. L holds ( ( g2 ) + T ) . m = 0. L ; then H1 , H2 are_: for H st H = H1 & H is normal holds H is be be be Subgroup of G ; ( E-max L~ f ) .. f > 1 & ( E-max L~ f ) .. f > 1 ; ]. s , 1 .[ = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , T be PartFunc of S , T ; DigA ( t5 , z ) is Element of k -tuples_on k -tuples_on k ; I /. 122z = d1 & I /. IC I = k2 & I /. IC I = k2 ; uu = { [ a , u ] } & u = { [ a , v ] } ; ( w | p ) | ( w | w ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u = v + u2 ; for y st y in rng F ex n st y = a |^ n & y in a |^ n dom ( ( g * ( :] --> C ) ) | K ) = K ; ex x being element st x in ( ( [#] U0 ) \/ A ) . s & x in ( the Sorts of U0 ) . s ; ex x being element st x in ( ( ( ( ( ( ( ( ( L ) . O ) ) . s ) ) . s ) . s ) . s ) . x ; f . x in the carrier of [. - r , 1 .] & f . x in [. - r , 1 .] ; ( the carrier of X1 ) /\ ( the carrier of X2 ) <> {} & ( the carrier of X1 ) /\ ( the carrier of X2 ) <> {} ; L1 /\ LSeg ( p01 , p2 ) c= { p01 } /\ LSeg ( p01 , p2 ) ; sqrt ( b + ( b `1 ) ^2 ) in { r : a < r & r < b & b < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of G such that z = y and P [ z ] and P [ z ] ; ( the sequence of \overline ( M ) ) . n <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 ; f | E-4 = g | E-4 .= ( g | E-4 ) | E-4 .= ( g | E-4 ) | E-4 ; reconsider i1 = x1 , i2 = x2 , j2 = x3 as Element of NAT ; ( a * A ) ` = ( a * ( A * B ) ) ` ; assume ex x0 being Element of NAT st f .: ( n + 1 ) is <= x0 & x0 < x0 ; Seg len ( ( ( ( f ^ f2 ) | i ) ^ ( ( f ^ f2 ) | i ) ) = dom ( ( f ^ f2 ) | i ) ; ( Complement A1 ) . m c= ( Complement A1 ) . n & ( Complement A1 ) . m c= ( Complement A1 ) . n ; f1 . p = p9 & g1 . ( p . p ) = d & g1 . ( p . p ) = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; sqrt ( |. x .| ^2 ) <= sqrt ( ( r2 ^2 ) / ( 2 * n ) ) ; Sum ( F-12 ) = Sum f & dom ( F-12 ) = dom g ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W2 and W2 is Subspace of W3 and W1 is Subspace of W2 and W2 is Subspace of W3 ; ||. t-15 . x - lim ( x - y ) .|| = lim ||. ( x - y ) .|| .= ||. x - y .|| ; assume that i in dom D and f | A is lower and g | A is bounded and g | A is bounded ; sqrt ( ( p `2 ) ^2 + ( p `2 ) ^2 ) <= sqrt ( 1 + ( p `2 ) ^2 ) ; g | Sphere ( p , r ) = id ( Ball ( p , r ) ) ; set N8 = E-max L~ Cage ( C , n ) , N8 = W-min L~ Cage ( C , n ) ; for T being non empty TopSpace holds T is countable iff T is countable width B |-> 0. K = Line ( B , i ) .= B * ( i , j ) .= B * ( i , j ) ; attr a <> 0 means : Def6 : ( A ^^ B ) Y. = ( A Y. ) Y. ; then f is_differentiable u , 3 & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a > 1 and b > 0 and c > 0 and d > 0 and b > 0 and c > 0 and d > 0 and d > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 , w1 , w2 , w1 , w2 , w1 , w2 , w1 , w2 } is Element of the carrier of V ; p2 /. IC Comput ( p2 , s , k ) = p2 . IC Comput ( p1 , s , k ) ; ind ( T-10 | b ) = ind B - ind B .= ind B - ind B .= ind B - 1 ; [ a , A ] in the Points of Line ( D , k ) & [ a , A ] in the P of Line ( D , k ) ; m in ( the Arrows of C ) . ( o1 , o2 ) & ( the Arrows of C ) . ( o1 , o2 ) = ( the Arrows of C ) . ( o1 , o2 ) ; ( ( a , CompF ( PA , G ) ) . z ) . z = FALSE ; reconsider phi = phi /. 11 , phi = phi /. 2 as Element of from from from from ^ 11 , ^ <* y *> ; len s1 - ( len s2 - 1 ) > 0 + 1 - 1 ; \delta ( D * ( f . sup A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the carrier' of A & [ f22 , f22 ] in the carrier' of A ; the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 & ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z and g2 . z = g2 . z ; [#] V1 = { 0. V } .= the carrier of V1 .= { 0. V } ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P [ P2 ] ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ ( <* p3 *> ^ <* p *> ) .= h ; c /. [ b , c ] = c /. ( a , c ) .= c /. ( a , c ) ; reconsider t1 = p1 , t2 = p2 , t2 = p2 , t1 = p2 as Term of C , V , s be State of C , a , b be Element of C , s be Element of C , t be Element of C , a , b be Element of C , s be Element of C , r be Element of C , r be sqrt ( 1 - 2 ) in the carrier of [. 1 / 2 , 1 .] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `1 + D * ( p1 `1 ) ) + D * ( p1 `1 + D * ( p1 `1 ) ) ; R . b real 2 = 2 * - b .= 2 * b ; consider e1 such that B = 1- `1 * C + ( 0 * A ) and 0 <= e1 and e1 <= 1 ; dom g = dom ( ( the Sorts of A ) * ( the Sorts of A ) * ( the Arity of S ) ) ; [ P . ( l2 , P . ( l2 , y ) ) , P . ( l2 , y ) ] in => ( T . ( l2 , y ) ) ; set s2 = Initialize s , P2 = P +* I , P2 = P +* I , s2 = P +* I , P2 = P +* I , P3 = P +* I , s4 = P +* I , s2 = Comput ( P3 , s3 , 1 ) , P4 = P3 ; reconsider M = mid ( z , i2 , i1 ) as non empty FinSequence of TOP-REAL 2 ; y in product ( ( the Sorts of J ) +* ( { 1 } --> { 1 } ) ) ; 1 / ( 0 , 1 ) = 1 / ( 0 , 1 ) & 0 / ( 0 , 1 ) = 0 ; assume x in the left .[ or x in the right of g or x in the right of g ; consider M be strict Subspace of A such that a = M and T is elements of M and for A being Subset of M holds T . A = A ; for x st x in Z holds ( ( ( ( exp_R * f ) `| Z ) `| Z ) . x <> 0 len W1 + len W2 + m = 1 + len W2 + len W1 + len W2 + m ; reconsider h1 = ( ( vseq . n ) - tt ) * t-16 as Lipschitzian LinearOperator of X , Y ; ( ( len p + len q ) + 1 ) in dom ( p + q ) ; assume that s2 is negative and F in the |= of s2 and F is the |= of s2 and F is the |= of s2 ; ( ( ( ( ( ( x , y ) ) / 3 ) ) / 3 ) / 3 ) / 3 = ( ( x , y ) / 3 ) / 3 ) / 3 ; for u being element st u in Bags n holds ( p `2 + m ) . u = p . u for B being Subset of u-5 st B in E holds A = B or A = B or A misses B ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = from [: p , q :] \/ [: q , p :] ; x in { X where X is Ideal of L : X is Ideal of L & X is Ideal of L } ; the carrier of W1 /\ W2 c= the carrier of W2 & the carrier of W1 /\ W2 c= the carrier of W1 /\ W2 ; ( ( 1 / a ) * id ( a + b ) ) * id ( a + b ) = ( 1 / a ) * id ( a + b ) ; ( dom ( X --> f ) ) . x = ( X --> dom f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => ( p => q ) ) in TAUT ( A ) ; set cos = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set cos = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( - 1 ) |^ ( n -' m ) ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 * f2 ) /\ dom f2 ; assume that b1 . r = { c1 } and b2 . r = c2 . r and b2 . r = c2 . r ; ex P st a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P reconsider gf = g `2 * f `2 , hg = h `2 * g `2 as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in ( { v1 } ) ` and v2 in ( { v1 } ) ` ; n in { i where i is Nat : i < n1 + 1 & n1 < n + 1 } ; ( F /. i , j ) `2 >= ( F /. m ) `2 ; assume K1 = { p : ( p `1 >= cn & p `2 >= cn ) & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) .: ( A , O1 ) ; set I1 = Macro ( a , intloc 0 ) , I2 = P +* while>0 ( a , intloc 0 ) , I2 = P +* while>0 ( a , intloc 0 ) , I2 = P +* while>0 ( a , intloc 0 ) , I2 = P +* while>0 ( a , intloc 0 ) , I2 = P +* while>0 ( a , intloc 0 ) , I1 = P +* while>0 ( a , intloc 0 ) , I1 = P +* while>0 ( for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= ( the carrier of L1 ) /\ ( the carrier of L2 ) & the carrier of L2 c= the carrier of L2 ; consider xp being Element of GF ( p ) such that xp |^ 2 = a and xp = x ; reconsider e1 = e1 , fe2 = f . ( x , y ) , ffff:] as Element of D ( ) ; ex O being set st O in S & C1 c= O & M . O = 0. ( Cl O ) ; consider n be Nat such that for m being Nat st n <= m holds S . m in U1 ; f * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) * reproj ( i , x ) ) . x ; defpred P [ Nat ] means A + succ $1 = succ $1 & A = succ $1 & B = succ $1 ; the left One of - ( - g ) = the left st - ( - g ) = the left ' of g ; reconsider p9 = x , p9 = y , q9 = z as Point of ( TOP-REAL 2 ) | K1 ; consider g2 such that g2 = y and x <= g2 and g2 <= x0 and x0 < g2 & g2 < x0 and g2 < x0 and g2 < x0 and g2 < x0 and g2 in dom f ; for n being Element of NAT holds X [ n , r ] implies X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 .= len x2 + len y2 .= len x2 + len y2 ; for x being element st x in X holds x in the set of the set of K & x in the set of K & y = the set of K . n ; LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} ; func " ( X ) -> set means : Def6 : for x being set holds it . x = ( the carrier of X ) \ ( id X ) ; len ( ( Cage ( C , n ) /. len ( Cage ( C , n ) ) ) ) <= len ( ( Cage ( C , n ) /. len ( Cage ( C , n ) ) ) ; attr K is a L means : Def6 : a <> 0. K & v . ( a |^ i ) = i * v . ( a |^ i ) ; consider o being OperSymbol of S such that t . {} = [ o , the carrier of S ] and o <> the carrier of S ; for x st x in X ex y st x c= y & y in X & x is a holds y is a holds f . x is a fixpoint of f IC Comput ( P1 , s1 , k ) in dom ( Comput ( P1 , s1 , k ) ) ; attr q < s & r < s & s < q & p < q & q < s implies ]. p , q .[ c= ]. p , s .[ ; consider c being Element of Class ( f . c , x ) such that Y = ( F . c ) `1 and c in X ; func the ResultSort of S2 -> ResultSort means : Def6 : for x being Element of S2 holds it . x = id the carrier of S2 & for y being Element of S2 holds it . y = id the carrier of S2 . y ; set y9 = [ <* y , z *> , f2 ] , z9 = [ <* z , x *> , f2 ] , y9 = [ <* y , z *> , f3 ] , z9 = [ <* z , x *> , f3 ] , z9 = [ <* z , x *> , f3 ] , zx = [ <* z , x *> , f3 ] ; assume x in dom ( ( ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) `| Z ) ; r-7 in Int cell ( GoB f , i , width GoB f ) \ { LSeg ( GoB f , i + 1 , width GoB f ) where f is FinSequence of TOP-REAL 2 : 1 <= i & i + 1 <= len GoB f } ; ( q `2 / |. q .| - sn ) >= ( ( Cage ( C , n ) ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a ` : a in X } ; i -' len f <= len f + ( len f -' 1 ) - len f + 1 - len f + 1 ; for n ex x st x in N & x in N1 & h . n = x0 + r / ( n + 1 ) set s0 = ( \mathop { \it true } ( a , I ) ) . i , p = ( \mathop { \it true } ( a , I ) ) . i , q = ( \mathop { \it true } ( a , I ) ) . i , s = ( \mathop { \it true } ( a , I ) ) . i , s = ( \mathop { \it true } ( a , I ) p . k = 1 or p . k = - 1 or p . k = - 1 ; u + Sum ( L-18 ) in ( U \ { u } ) \/ { u + Sum ( L-18 ) } ; consider xm being set such that x in xm and xm in V1 and xm c= V and xm c= V and xm c= V ; ( p ^ q ) . m = ( q | k ) . ( Seg len p ) .= p . ( len p ) ; g + h = gg + h + 1 & for x holds -SVF1 ( g , X , h ) = g + h + x L1 is distributive & L2 is distributive implies L1 * L2 is distributive & L2 * L2 is distributive attr x in rng f & y in rng ( f | x ) & f | x = f | y ; assume that 1 < p and p + 1 / ( 2 * q ) = 1 and 0 <= p and p <= 1 / ( 2 * q ) ; FM * ( fM *' ) = rpoly ( 1 , the carrier of L ) *' .= 0. L ; for X being set , A being Subset of X holds A ` = {} implies A = {} & A = {} ( ( ( E-max X ) `2 ) / ( 1 + ( ( E-max X ) `2 ) / ( 1 + ( ( E-max X ) `2 ) / ( 1 + ( S-bound X ) `2 ) ^2 ) ) <= ( ( E-max X ) / ( 1 + ( E-max X ) / ( 1 + ( S-bound X ) / ( 1 + ( S-bound X ) / ( 1 + ( q `2 ) / ( 1 + ( q for c being Element of the Sorts of A , a being Element of the Sorts of A holds c <> a implies c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . intpos ( card I + 3 ) .= 0 ; for a , b being Real holds [ a , b ] in ( y >= 0 iff b >= 0 & a >= 0 ) implies b = 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` mode BCK-algebra of i , j , m , n , m , n , m , k being Nat holds m * n , j , k * m * n , n * m * n , m * n + k * n , m * n + k * n , m * n + k * n , m * n + k * n is commutative set x2 = ( Re ( y ) ) * ( Im ( y ) ) ; [ y , x ] in dom u & [ u , x ] in g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A & [. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A ; 0 <= delta ( S2 . n , S2 . n ) & |. delta ( S2 . n , S2 . n ) - 0 .| < e / 2 ; ( - ( - ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 <= ( - ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ; set A = ( 2 / 2 ) * ( - 1 ) ; for x , y being set st x in R" holds x , y are_\hbox { x } deffunc F2 ( Nat ) = b . ( $1 * M . ( $1 + 1 ) ) * ( M . ( $1 + 1 ) ) ; for s being element holds s in ( { f } \/ { g } ) iff s in ( { f } \/ { g } ) for S being non void holds S is connected holds S is connected iff S is connected max ( ( |. z .| ) / ( |. z .| ) ) >= 0 ; consider n1 be Nat such that for k holds seq . ( n1 + k ) < r + s / 2 ; Lin ( A /\ B ) is Subspace of Lin ( A /\ B ) & Lin ( B /\ A ) is Subspace of Lin ( B ) ; set n-15 = nnv '&' ( M . x qua Element of BOOLEAN ) , nv = ( n -tuples_on BOOLEAN ) . ( n qua Element of BOOLEAN ) ; f " V in ( ( f " ) .: X ) & f " V in D & f " ( ( f " ) .: X ) in D ; rng ( ( a \HM { c } ) +* ( 1 , b ) ) c= { a , c } ; consider y being Wsubgraph of G1 such that y `1 = y and dom y `1 = WG1 and dom y `1 = WG2 and y `2 = WG2 ; dom ( 1 / f ) /\ ]. - 1 , 1 .[ c= ]. - 1 , 1 .[ & dom ( 1 / f ) /\ ]. - 1 , 1 .[ c= ]. - 1 , 1 .[ ; in in in , j , n , - ( i , j ) , - ( j , n ) , - ( i , j ) , - ( j , n ) , - ( i , j ) , - ( j , n ) ) ; v ^ ( ( n |-> 0 ) ^ ( n |-> 0 ) ) in Lin ( ( ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B | ( B ex a , k1 , k2 st i = a := k1 & k2 = b := k2 & i = c := k2 ; t . NAT = ( NAT .--> ( i1 , m ) ) . NAT .= ( NAT .--> ( i1 , m ) ) . NAT .= ( NAT .--> ( i1 , m ) ) . NAT .= ( NAT .--> ( i1 , m ) ) . NAT ; assume that F is b\times and rng p = Seg ( n + 1 ) and dom p = Seg ( n + 1 ) and rng p = Seg ( n + 1 ) and rng p = Seg ( n + 1 ) ; not LIN b `1 , b9 , c9 & not LIN a , b , c & not LIN a , c , c9 ( L1 there L2 ) | O c= ( L1 | O ) | O & ( L2 | O ) | O c= ( L1 | O ) | O ; consider F be ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) ; consider a , b such that a * ( v + w ) = b * ( -w ) and 0 < a and a < b and b < 0 ; defpred P [ FinSequence of D ] means |. Sum ( $1 ) .| <= Sum ( |. $1 .| ) * |. $1 .| ; u = cos . ( x , y ) * x + cos . ( x , y ) * y .= v . ( x , y ) * y ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , |. p .| : p <> {} & ( id the carrier of A ) . ( id the carrier of A ) = id the carrier of A consider X being Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and X is finite and X is non empty ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g . l1 <= ( h . l1 ) `1 & ( g . l1 ) `2 <= ( h . l ) `2 } ; ( ( Partial_Sums ( G . n ) ) . m ) / ( ( G . n ) to_power k ) <= ( Partial_Sums ( G . n ) ) . m / ( ( G . n ) to_power k ) ; f . y = x .= x * 1_ L .= ( 1_ L ) * ( 1_ L ) .= x * ( 1_ L ) .= x * ( 1_ L ) ; NIC ( ( \bf if i1 , i2 ) , ( 0 , k ) ) = { i1 , i2 , k } & { i1 , i2 , k , k } in { i1 , i2 , k , k } ; LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 } /\ LSeg ( p1 , p2 ) ; Product ( ( the Sorts of I1 ) +* ( i , { 1 } ) ) in Z1 ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) | ( the carrier of S2 ) .= Following ( s1 , n ) | ( the carrier of S2 ) ; W-min ( Q ) <= ( q1 `1 ) / ( |. q1 .| ) & ( q1 `1 ) / ( |. q1 .| ) <= ( q1 `1 ) / ( |. q1 .| ) ; f /. i2 <> f /. ( ( i1 + len g -' 1 ) + 1 ) ; M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) |= H ; len ( ( ( P ^ ) ^ ( P ^ ) ) ^ ) in dom ( ( P ^ ) ^ ( P ^ ) ) ; A |^ ( m , n ) c= A |^ ( m , n ) & A |^ ( k , n ) c= A |^ ( k , l ) ; ( R |^ n ) \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and y = p1 . n1 ; consider X be set such that X in Q and for Z being set st Z in Q & Z <> {} holds X in Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( ( ( ||. v .|| ) . v ) .| + |. ( ( v .| ) . v ) .| for phi , phi st phi in X holds phi . phi in X & phi . phi in X & phi . phi in Y ; rng ( Sgm dom ( f | ( dom f ) ) ) c= dom ( f | ( dom f /\ dom ( f | ( dom f ) ) ) ) ; ex c being FinSequence of D ( ) st len c = k & P [ c ] & P [ c ] ; ( the_arity_of a , b ) <> <* ( <* b *> , <* c *> *> , <* d *> *> , <* e *> *> , <* f *> *> , <* g *> , <* h *> *> , <* g *> *> , <* h *> *> , <* h *> , <* g *> , <* h *> *> , <* h *> , <* h *> , <* h *> *> , <* h *> , <* h *> *> , <* h *> *> , <* h *> consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous one-to-one and for x be Element of X , r be Real st x in X & r > 0 holds f1 . x <> r ; a1 = b1 & a2 = b2 & a3 = b3 & a4 = b3 & a4 = b3 & a4 = b3 & a5 = b3 & a4 = 6 & a5 = 6 & 8 = 7 & 8 = 8 & 8 = 7 & 8 = 8 & 8 = 8 & 7 = 8 & 8 = 7 & 8 = 8 & 7 = 8 & 8 = 8 & 8 = 8 & 8 = 7 & 8 = 7 & 8 = 8 & 7 = 7 D2 . indx ( D2 , D1 , n1 ) = D1 . ( indx ( D2 , D1 , n1 ) + 1 ) .= D1 . ( indx ( D2 , D1 , n1 ) + 1 ) ; f . ( ||. r .|| ) = ||. ||. r .|| * ||. r .|| .= ||. r .|| * ||. r .|| .= ||. r .|| * ||. r .|| .= ||. r .|| * ||. r .|| ; consider n be Nat such that for m being Nat st n <= m holds Cseq . m = Cseq . m ; consider d be Real such that for a , b be Real st a in X & b in Y holds a <= b & b <= d & a <= b ; ||. L /. h - ( K * |. h .| ) + ( K * |. h .| ) .|| <= x0 + ( K * |. h .| ) ; attr F is commutative means : Def6 : for b being Element of X holds F -|^ { b } = f . b ; p = 2 * ( p1 + 0. TOP-REAL 2 ) .= 1 * ( p1 + 0. TOP-REAL 2 ) .= 1 * ( p1 + 0. TOP-REAL 2 ) .= p1 `1 ; consider z1 such that b , x3 , z1 is_collinear and o , x1 , x2 is_collinear and o <> x1 and o <> x2 and o <> x2 and o <> x1 and o <> x2 and o <> x1 and o <> x2 and o <> x1 and o <> x2 ; consider i such that Arg ( ( Rotate ( s , q ) ) . q ) = s + Arg ( q , p ) and 2 * PI < ( 2 * PI ) * ( i , j ) ; consider g such that g is one-to-one and dom g = card f . x and rng g = { f . x } and rng g = { f . x } and rng g = { g . x } ; assume that A = P2 \/ Q2 and P2 <> {} and P /\ P2 = {} and P /\ P2 = {} and P /\ Q = {} and P /\ Q = {} and P /\ Q = {} and P /\ Q = {} ; attr F is associative means : Def6 : F .: ( F .: ( f , g ) , h ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x `1 < z `1 & z `2 < i & m < len z `2 ; consider k2 be Nat such that k2 in dom ( Pk . ( k1 + k2 ) ) and l in dom ( Pk . ( k2 + k2 ) ) ; seq = r * seq implies for n holds seq . n = r * seq . n & seq . n = r * seq . ( n + 1 ) F1 . [ ( id a ) , ( id a ) . [ a , a ] ] = [ f * ( id a ) , f * ( id a ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & p in D1 } ; consider z being element such that z in dom ( ( dom F ) | ( dom F ) ) and ( dom F ) = y and ( dom F ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = y holds x = y Int cell ( G , i , j ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 & s <= G * ( 0 , 1 ) `2 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v ; ( F `2 * b1 ) . x = ( ( Mx2Tran J ) . x ) * ( ( Mx2Tran J ) . j ) .= ( ( Mx2Tran J ) . j ) * ( ( Mx2Tran J ) . j ) ; - 1 _ { \mathbb R } = ( ( m (#) D ) | n ) | D .= ( ( m (#) D ) | n ) | ( ( m (#) D ) | n ) .= ( ( Det M ) | n ) | ( ( m (#) D ) | n ) .= ( Det M ) | ( ( m * D ) | n ) ; attr for x being set st x in dom f /\ dom g holds g . x <= f . x + g . x ; len ( f1 . j ) = len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) ; All ( 'not' All ( a , A , G ) , B , G ) |= All ( 'not' All ( 'not' a , B , G ) , A , G ) ; LSeg ( E . k1 , F . k2 ) c= Cl RightComp Cage ( C , k + 1 ) & LSeg ( Cage ( C , k + 1 ) , F /. ( k + 1 ) ) c= Cl RightComp Cage ( C , k + 1 ) ; x \ ( a |^ m ) = x \ ( ( a |^ k ) * a ) .= ( x \ ( a |^ k ) ) \ a ; k -inininin0 ( I ) = ( commute I ) . k .= ( ( commute I ) . k ) .= ( ( commute I ) . k ) .= ( ( commute I ) . k ) . ( ( commute I ) . k ) .= ( ( commute I ) . k ) . ( ( commute I ) . k ) ; for s being State of A holds Following ( s , n ) . ( 0 + 1 ) is stable implies Following ( s , n ) . ( 2 * n + 1 ) is stable for x st x in Z holds f1 . x = a / ( x - a ) & ( f1 . x ) <> 0 & ( f1 . x ) <> 0 implies f1 . x = a / ( x - a ) ) support ( ( support ( m ) ) \/ support ( ( support ( m ) ) ) c= support ( ( support ( m ) ) ) \/ support ( ( support ( m ) ) ) ) ; reconsider t = u as Function of ( the carrier of A ) , the carrier of B ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + b ^2 ) ) / sqrt ( 1 + b ^2 ) ; phi /. ( succ b1 ) = g . a & phi /. ( b + a ) = f . ( g . ( a , b ) ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( F ^ <* p *> ) and i <> j ; { x1 , x2 , x3 , x4 , x5 , x5 , x6 , x6 , x6 , x5 , x6 , x6 , x6 , x5 , x6 , x6 , x5 , x6 , x6 , x6 , x6 , x5 , x6 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x6 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , a9 , x5 , x6 , x5 , x5 , x5 , the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U2 & the Sorts of U2 /\ ( U1 "\/" U2 ) c= the Sorts of U1 /\ ( U2 "\/" U2 ) ; ( - ( 2 * a ) + b ) / ( 2 * a ) > 0 ; consider W00 such that for z being element holds z in W00 iff z in N ~ & P [ z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r and ( the Arity of S ) . o = r ; Z = dom ( ( exp_R ^ ) (#) ( ( exp_R ^ ) (#) ( ( exp_R ^ ) (#) ( ( exp_R ^ ) ) ) ) `| Z ) ; lim sum ( f , S1 ) is convergent & lim lim lim lim sum ( f , S1 ) = 0 ; ( X . a9 ) => ( ( f . a9 ) => ( g . b9 ) ) in [: the carrier of L , the carrier of L :] ; len ( M2 * M1 ) = n & width ( M2 * M1 ) = n & width ( M2 * M1 ) = n ; attr X1 \/ X2 is open means : Def6 : X1 , X2 are_separated & X1 , X2 are_separated & X2 , X1 are_separated ; for L being lower-bounded antisymmetric RelStr for X being Subset of L holds X "\/" { Top L } = { Top L } implies X "\/" { Top L } = { Top L } reconsider f-1be Function of [: M . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . consider w being FinSequence of I such that the initial of M , the initial q q , w ^ <* s *> , q ^ <* s *> , q ^ <* s *> , q ^ <* s *> , q ^ w , q ^ <* s *> , q ^ <* s *> , w ^ <* s *> , q ^ <* s *> , w ^ <* s *> , q ^ <* s *> , w ^ <* s *> , w ^ <* s *> , q ^ <* s *> g . ( a |^ 0 ) = g . ( 1_ G ) .= ( 1_ G ) * g . ( a * a ) .= ( 1_ G ) * g . ( a * a ) .= ( 1_ G ) * g . a ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier ( L ) = C & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C2 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 ; reconsider o9 = o `2 , carrier' = o `2 as Element of TS ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . o ) ) ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) ; EP " . 1 = ( ( E qua Function ) " ) . 1 .= ( E qua Function ) . 1 .= E " . 1 .= E " . 1 .= E " . 1 ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" z ) "\/" ( x "/\" y ) ; |. f . ( s1 . ( m1 + 1 ) ) - f . ( s1 . ( m1 + 1 ) ) .| < r / ( 1 - M ) ; LSeg ( ( Cage ( C , n ) /. i , ( Cage ( C , n ) /. ( i + 1 ) ) ) , ( L~ Cage ( C , n ) ) /. ( i + 1 ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- - x0 ) + R /. ( a1 - x0 ) ; g . c * ( g . c ) + f . c <= h . c * ( ( - 1 ) * f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) ; assume that width ( f ) in the carrier of ( A ) and len ( f ) = width ( A * B ) and width ( f * B ) = width ( A * B ) and width ( f * B ) = width ( A * B ) ; len ( - M1 ) = len M1 & width ( - M2 ) = width M1 & width ( - M2 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i ] in the InternalRel of [: n , m :] pdiff1 ( f1 , 2 ) is_partial_differentiable_in z , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z , 1 & pdiff1 ( f2 , 2 ) . 1 = z * pdiff1 ( f2 , 1 ) . 1 ; attr a <> 0 & b <> 0 & Arg a = Arg b & Arg b = Arg - Arg a ; for c being set st not c in [. a , b .[ holds not c in Intersection ( the open m of a , b ) assume that V1 is linearly closed and V2 is linearly closed and V1 is closed and V1 /\ V2 = { v + u : v in V1 & u in V1 & v in V1 & u in V1 & v in V1 & u in V1 & v in V1 & u + v in V1 & v + u in V1 & v + u in V1 and v + u in V1 ; z * x1 + ( 1 - z ) * x2 in M & z * ( y + z ) + ( 1 - z ) * x2 in N ; rng ( ( ( ( ( ( ( ( ( ( P qua Function ) qua Function ) ) " ) * S ) * S ) * ( ( ( ( P * R ) * S ) * S ) * f ) * ( ( ( P * R ) * S ) * f ) ) ) = Seg card ( ( ( ( P * R ) * S ) * f ) ) ; consider s2 being Integer such that s2 is convergent and b = lim s2 and for n holds s2 . n = lim s2 and s2 . n <> 0 ; h2 " . n = h2 . n " * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 ) / 2 ) ) ) ) ) ) ; ( Partial_Sums ||. ( r (#) ( seq ^\ k ) ) . m ) . m = ||. ( r (#) ( seq ^\ k ) ) . m .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= Comput ( P2 , s2 , 1 ) . b .= Comput ( P2 , s2 , 1 ) . b ; - v = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & - w = - w * v ; sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: D ) .= sup ( ( k .: D ) .: D ) .= sup ( ( k .: D ) .: D ) .= sup ( ( k .: D ) .: D ) ; A |^ ( k , l ) = ( A |^ n ) |^ ( k , l ) .= ( A |^ n ) |^ ( k , l ) ; for R being add-associative right_zeroed right_complementable associative distributive non empty doubleLoopStr , I , J being Subset of R holds I + J = ( I + J ) \ ( I + J ) ( f . p ) `1 = sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) .= sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) ; for a , b being non zero Nat st a , b are_relative_prime holds ( for n being Nat holds Fib ( a * b ) = ( Fib ( a ) ) . n + ( Fib ( b ) ) . n consider A5 being countable set such that r is countable and A5 is non empty and ( A is closed & B is closed & A /\ B is closed ) & ( for n being Nat holds A c= A iff A is closed ) ; for X being non empty additive Subset of X , M being Subset of X st M in M holds x + M in M + M { [ x1 , x2 ] , [ y1 , y2 ] } c= { x1 , x2 } & { y1 , y2 } in { x1 } ; h . O = |[ A * ( f . O ) + B * ( f . I ) , C * ( f . O ) + D * ( f . I ) + D * ( f . I ) + D * ( f . I ) + D * ( f . I ) + D * ( f . I ) ]| ; ( Gauge ( C , n ) * ( k , i ) ) `2 in L~ Cage ( C , n ) /\ L~ Cage ( C , n ) ; cluster m , n ) mod ( 2 , n ) -> prime implies for Nat holds p divides m & p divides n implies p divides n ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being Lattice , a , b , c being Element of L st a \ b <= c & b \ c <= c holds a "/\" b <= c consider b being element such that b in dom ( H / ( ( x , y ) . b ) ) and z = H . ( ( x , y ) . b ) ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 2 , G & e Joins W . 3 , G . 3 , G ; ( exists h st x0 = ( h * f ) . ( 2 * n ) ) . x = ( h * f ) . ( 2 * n ) ; j + 1 = j + ( len h2 -' 1 ) .= i + 1 -' len h11 + 1 .= i + 1 -' len h11 + 1 ; ( *' S ) . f = S *' . ( f ^ ) .= S . ( ( S ^ ) . f ) .= S . ( ( S ^ ) . f ) .= S . ( ( S ^ ) . f ) .= S . ( ( S ^ ) . f ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L2 * H ) and Sum ( L2 * H ) = Sum ( L2 * H ) ; attr R is in R means : Def6 : p <> q & p <> q & q <> p & p <> q & p <> q & q <> r & r < p ; dom ( Product ( X --> f ) ) = meet ( dom ( X --> f ) ) .= meet ( dom ( X --> f ) ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) ; sup ( ( proj2 .: ( Lower_Arc C ) /\ Vertical_Line w ) ) <= sup ( ( proj2 .: ( Lower_Arc C ) /\ Vertical_Line w ) ) & sup ( ( proj2 .: ( w ) /\ Vertical_Line w ) /\ Vertical_Line w ) <= sup ( ( proj2 .: ( w ) /\ Vertical_Line w ) ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - g /. x0 .| < r i * fN - fN = i * ( f . ( i + 1 ) ) .= i * ( f . ( i + 1 ) ) - f . ( i + 1 ) ; consider f being Function such that dom f = 2 -tuples_on X ( ) and for Y being set st Y in 2 -tuples_on X ( ) holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and [ g1 , g2 ] in union C and [ g2 , g2 ] in [: the carrier of Y , the carrier of X :] ; func d gcd n -> Nat means : Def6 : d divides n & ( d |^ n ) divides ( d |^ n ) & ( d |^ n ) divides ( d |^ n ) ; f\rbrack . [ 0 , t ] = f . [ 0 , t ] .= ( - P * ( x , t ) ) . [ 0 , t ] .= a * ( - P * ( x , t ) ) .= a ; t = h . D or t = h . C or t = h . D or t = h . E or t = h . F ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( ( seq . n ) , ( seq . n ) ) , ( lim seq ) ) < 1 / ( ( lim seq ) to_power k ) ; sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ^2 ) <= sqrt ( ( q `1 / |. q .| - sn ) ^2 ) ; h1 . ( i + 1 ) = h2 . ( i + 1 + 1 ) .= h2 . ( i + 1 + 1 ) .= h2 . ( i + 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier of S } such that a = [ o , x2 ] and a = [ o , x2 ] ; for L being RelStr , a , b being Element of L holds a <= { b } iff a >= b & b >= a & a >= b & b <= a ||. h1 .|| . n = ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 . n .|| ; ( ( - ( exp_R * exp_R ) ) . x = f . x - ( exp_R * exp_R ) . x ) .= ( ( - exp_R * exp_R ) . x ) - ( exp_R * exp_R ) . x .= ( ( - exp_R * exp_R ) . x ) - ( exp_R * exp_R ) . x ; attr r = F .: ( p , q ) means : Def6 : len r = len p & for i st i in dom p holds r . i = F . ( p . i , q . i ) ; sqrt ( ( r / 2 ) ^2 + ( r / 2 ) ^2 ) <= sqrt ( ( r / 2 ) ^2 + ( r / 2 ) ^2 ) ; for i being Nat , M being Matrix of n , K st i in Seg n & i in Seg n holds Det ( M , i ) = Sum ( ( Line ( M , i ) ) * ( i , j ) ) then a " <> 0. R & a " * ( a * v ) = 1 / ( a * v ) & a " * ( a * v ) = 1 / ( a * v ) ; p . ( j -' 1 ) * ( q *' r ) . ( i + 1 ) = Sum ( p . ( j -' 1 ) * r ) ; deffunc F ( Nat ) = L . 1 + ( R /* ( h ^\ n ) ) . ( h . n ) " ; assume that the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H2 = f .: ( the carrier of H2 ) and the carrier of H1 = f .: ( the carrier of H2 ) and the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H2 = the carrier of H2 ; Args ( o , Free ( X , Free ( X ) ) ) = ( ( the Sorts of Free ( S , X ) ) * the Arity of S ) . o ; H1 = n + 1 / ( |. 2 .| + h ) .= n + 1 / ( |. N .| + h ) .= n + 1 / ( |. N .| + h ) ; ( O /. 1 ) `1 = 0 & ( O /. 1 ) `2 = 1 & ( O /. 1 ) `2 = 1 & ( O /. 1 ) `2 = 1 ; F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 1 ) } .= { f /. ( n + 1 ) } ; attr b <> 0 & d <> 0 & b <> d & a = ( - e ) / 2 implies ( a = ( - e ) / 2 ) / 2 & ( b = ( - e ) / 2 ) / 2 ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom f \/ dom g /\ D .= dom f /\ D .= dom ( f +* g ) /\ D .= dom f /\ D ; for i being set st i in dom g ex u being Element of L st g /. i = u * a & ex u being Element of B st g /. i = u * a * v g `2 * P `2 = g `2 * ( g `2 ) * ( g `2 ) .= g `2 * ( g `2 ) * ( g `2 ) ; consider i , s1 such that f . i = s1 and not ( ( s1 . i ) in s1 & ( not s1 . i in s1 & s1 . i in s1 & not s1 . i in s1 ) & not s1 . i in s1 . i ) ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ( ]. a , b .[ \/ ( g | ]. a , b .[ ) ) | ( ]. a , b .[ \/ ( g | ]. a , b .[ ) ) .= g | ]. a , b .[ ; [ s1 , t1 ] in R & [ s2 , t2 ] in R & [ s1 , t1 ] in R implies [ s1 , t2 ] in R & [ s2 , t2 ] in R then H is negative & H is non negative & H is non negative & H is non negative implies H is non negative & H is non negative & H is non negative ; attr f1 is total means : Def6 : 1 / f2 is total & for c st c in dom f1 holds ( ( f1 (#) f2 ) . c ) (#) ( f2 * f1 ) . c = ( f1 . c ) * ( f2 . c ) ; z1 in W2 " ( W2 " ( { z } ) ) & ( z in W2 " ( { z } ) ) & ( z in W2 " ( { z } ) ) & ( z in W2 " ( { z } ) implies z in W2 " ( { z } ) ) ; p = 1 * p " * a * p .= a " * p " * ( b " * q ) .= a " * p " * ( b " * q " ) .= a " * p " * p " * q " * q " ; for rr be Real for K be Real st for n be Nat st n <= K holds rr . n <= K . ( n + 1 ) holds upper_bound rng ( ( r * K ) . n ) <= K . ( n + 1 ) \hbox { E-max C } meets L~ go \/ L~ pion1 or not ( L~ Cage ( C , n ) meets L~ pion1 ) & ( not ( not W-min C in L~ pion1 ) & ( not W-min C in L~ pion1 ) & ( not W-min C in L~ pion1 ) & ( not W-min C in L~ pion1 ) & not ( W-min C in L~ pion1 ) & not ( W-min C in L~ pion1 ) & not W-min C in L~ pion1 ) ; ||. f . ( g . ( k + 1 ) ) - g . ( g . ( k + 1 ) ) .|| <= ||. g . ( g . ( k + 1 ) ) - g . ( k + 1 ) .|| * ( K * ( K to_power k ) ) ; assume h = ( ( B .--> C ) +* ( D .--> E ) +* ( F .--> J ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) ) +* ( M .--> N ) assume h = ( B .--> N ) +* ( M .--> N ) +* ( M .--> N ) assume assume h = h ; |. ( ( Let ( H . n ) `| ( A . n ) ) . k ) - ( ( H . n ) `| ( A . m ) ) . k .| <= e * ( b * ( b * ( a + 0 ) ) ) ) . k ; ( ( a holds ( the Sorts of U1 ) . e ) . v = [ ( the Sorts of U1 ) . ( ( the Sorts of U2 ) . v ) , ( the Sorts of U1 ) . ( ( the Sorts of U2 ) . v ) ] ; { x1 , x2 , x3 , x4 , x5 , x5 , x6 , x6 , x6 , x5 , x6 , x6 , x6 , x5 , x6 , x6 , x5 , x6 , x5 , x6 , x6 , x6 , x5 , x6 , x5 , x5 , x5 , x5 , x5 , x5 , a9 , b9 , c9 , a9 , c9 , a9 , b9 , c9 , a9 , b9 , c9 , a9 , c9 , a9 , b9 , c9 , a9 , c9 , a9 , b9 , c9 , c9 , a9 , b9 , c9 , c9 , a9 , b9 , c9 , c9 , a9 assume that A = [. 0 , 2 * PI .] and [' a , b '] = 0 and [' a , b '] = |. a .| * |. b .| and |. a .| = |. b .| * |. b .| ; p `2 is Permutation of dom f1 & p `2 = ( Sgm Y ) . i " * p " * ( Sgm Y ) . ( Sgm Y ) " = ( Sgm Y ) . ( Sgm Y ) " * p " * ( Sgm Y ) . ( Sgm Y ) " ; for x , y st x in A holds |. ( 1 / 2 ) * ( f . x ) - ( 1 / 2 ) * ( f . y ) .| <= 1 * |. f . x - ( 1 / 2 ) * ( f . y ) .| ( p2 `2 / |. p2 .| - sn ) / ( 1 + sn ) = |. q2 .| * sqrt ( 1 + sn ^2 ) / sqrt ( 1 + sn ^2 ) ; for f be PartFunc of the carrier of C , REAL st dom f is compact & rng f c= dom f & f | X is bounded holds rng f c= dom f & rng f c= dom ( f | X ) assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , CompF ( B , G ) ) ) . x = TRUE ; consider F3 such that dom F3 = n1 and for k be Nat st k in n1 holds Q [ k , F3 . k ] ; ex u , u1 st u <> u1 & u , v , u1 , v1 , u1 , v1 , v1 , u1 , v1 , v1 , u1 , v1 , u1 , v1 , v1 , v2 , v1 , u1 , v1 , v2 , v1 , u1 , v1 , v2 , v1 , u1 , v1 , u1 , v1 , u1 , v1 , v1 , u1 , v1 , u1 , v1 , u1 , v1 , u1 , v1 , u1 , v1 , u1 , v1 , v1 , u1 , v1 , v2 , v1 , u1 , v1 , u1 , v1 , u1 , v1 , u1 , u1 , v1 , u1 for G being Group , A , B being strict Subgroup of G holds ( N ` A ) * ( N ` A ) = N ` A * ( N ` A ) for s be Real st s in dom F holds F . s = ( ( R to_power 0 ) (#) ( ( f + g ) (#) ( e to_power 0 ) ) ) . x width ( AutMt ( f1 , b1 , b2 ) ) = len ( ( f2 * ( f1 , b2 ) ) * ( ( f2 * ( f1 , b2 ) ) * ( ( f2 * ( f1 , b2 ) ) * ( ( f2 * ( f2 * ( f1 , b2 ) ) ) ) ) .= len ( ( f2 * ( f1 , b1 ) ) * ( ( f2 * ( f2 * ( f1 * ( f2 * ( f2 * ( f1 , b2 ) ) ) ) ) ) ) ) ; f | ]. - PI / 2 , PI / 2 .[ = f & f " ( ]. - PI / 2 , PI / 2 .[ ) = f " ( ]. - PI / 2 , PI / 2 .[ ) & f " ( ]. - PI / 2 , PI / 2 .[ ) = f " ( ]. - PI / 2 , PI / 2 .[ ) assume that X is closed and a in X and a in X and y in X and x in X and y in X and x in X and y in X and x in X and y in X ; Z = dom ( ( ( ( ( exp_R * arctan ) `| Z ) / ( exp_R * arccot ) ) `| Z ) /\ dom ( ( exp_R * arccot ) `| Z ) ; func VERUM ( V ) -> Subset of V means : Def6 : 1 <= it & it . k = l . k & for k st 1 <= k & k <= len l holds it . k = V . k ; for L being non empty TopSpace , N being net of L , M being net of L st c is net of N for c being Element of N st c is cluster cluster /. 1 ) holds c is cluster ; for s being Element of NAT holds ( ( ( ( 0. X ) . v ) + ( 0. X ) . v ) + ( ( 0. X ) . v ) ) . s = ( ( ( 0. X ) . v ) + ( 0. X ) . v ) ; then z /. 1 = ( E-max L~ z ) .. z & ( E-max L~ z ) .. z < ( E-max L~ z ) .. z ; len ( p ^ <* 0 *> ) = len p + len <* 0 *> .= len p + 1 + 1 .= len p + 1 + 1 .= len p + 1 ; assume that Z c= dom ( ( ( - ln * f ) `| Z ) and for x st x in Z holds f . x = a - x / ( a - x ) ) and f . x = a - x / ( a - x ) ) and for x st x in Z holds f . x = a - x / ( a - x ) ; for R being add-associative right_zeroed right_complementable distributive non empty doubleLoopStr , I being non empty Subset of R , J being Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f being Function of B1 , B2 such that for x being Element of B1 holds f . x = F ( x ) and f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= dom ( x (#) z ) .= Seg len ( x (#) z ) .= Seg len ( x (#) z ) .= Seg len x ; for S being -1 functor of C , B being Morphism of B for c being Object of C holds ( S . id c ) . ( id c ) = id ( ( Obj S ) . c ) * ( S . c ) ex a st a = a2 & a in dom f /\ ( dom ( f | X ) ) & for x st x in dom f /\ ( dom ( f | X ) ) holds f . x = F ( f5 , x ) ) ; a in Free ( H2 , ( x. 4 ) ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) '&' ( ( x. 4 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ; for C1 , C2 being set , f being stable Function of C1 , C2 st f is stable holds f = g iff f = g ( W-min L~ go ) `1 = ( W-min L~ pion1 ) `1 .= ( W-bound L~ pion1 ) `1 .= ( W-bound L~ pion1 ) `1 .= ( W-bound L~ pion1 ) `1 ; assume that u = <* x0 , y0 , z0 *> and f is PartFunc of 3 , u & u = SVF1 ( 3 , f , u ) . 3 and SVF1 ( 3 , f , u ) . 3 = SVF1 ( 3 , f , u ) . 3 ; then ( t . {} in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & ( t . {} = ( t . {} ) `1 & ( t . {} ) `2 = ( t . {} ) `2 ; Valid ( p '&' J , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y & y = f . x holds a >= f . y & b >= f . x & a >= b ; func Class R -> Subset of R means : Def6 : for A being Subset of R holds A in it iff ex a being Element of R st a = Class ( R , a ) ; defpred P [ Nat ] means ( ( ( ( ( ( ( the Target of G ) . $1 ) ) `1 ) `1 ) `1 ) `1 c= G * ( ( the Element of G ) . $1 ) `1 ; assume that dim W1 = 0 and dim W2 = 0 and dim W2 = 0 and dim W1 = 0 and dim W1 = 0 and dim W2 = 1 and dim W1 = 0 and dim W1 = 1 and dim W1 = 0 and dim W1 = 1 and dim W1 = 0 ; mam ( t ) = ( m . t ) `1 .= ( m . t ) `1 .= ( m . t ) `1 .= ( m . t ) `1 .= ( m . t ) `1 ; d11 = x11 ^ ( ( y , d ) --> ( x , y ) ) .= f . ( ( y , d ) --> ( x , y ) ) .= ( f ^ <* ( y , z ) *> ^ ( f ^ <* x , z *> ) ) .= ( f ^ <* y *> ) . ( ( y , z ) --> d ) .= ( f ^ <* y , z *> ) . ( y , z ) ; consider g such that x = g and dom g = dom f and for x being element st x in dom f holds g . x = f . x ) & for x being element st x in dom f holds g . x = f . x ; x + 0. F_Complex = x + ( len x ) .= x + ( len x ) .= x + ( len x ) .= x + ( len x ) .= x + ( len x ) .= x + ( len x ) ; ( ( f /^ ( ( len f -' 1 ) + 1 ) ) + 1 ) in dom ( f /^ ( ( len f -' 1 ) + 1 ) ) /\ dom ( f /^ ( ( len f -' 1 ) + 1 ) ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 /\ P2 = { p1 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p2 , p3 } and P1 /\ P2 = { p2 , p3 } and P1 /\ P2 = { p1 , p3 } and P1 /\ P2 = { p2 , p3 } and P1 /\ P2 = { p1 , p3 } and P1 /\ P2 = { p2 , p3 } = { p1 , p3 } and p2 /\ LSeg ( p1 , p2 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p3 , p4 , p4 , p4 , p4 , p2 , p4 , p4 , p4 , p4 , p4 reconsider a1 = a , b1 = b , c1 = c , c2 = d , c2 = c , c2 = d , c1 = d , c2 = c , c2 = d , c2 = c , c1 = d , c2 = d , c2 = c , c2 = d , c2 = d , c1 = d , c2 = c , c2 = d , c2 = d , c2 = d , c2 = d , c2 = c , c1 = d , c2 = d , c2 = d , c2 = c , c2 = d , c2 = d , c2 = d , 7 = d , 7 = d , 7 = d , 8 = d , 7 = d , 8 = c , 7 = d , 8 = d , 7 = c = d , 8 = d , reconsider GFFFFFFFf = G1 . t * F1 . a as Morphism of ( G1 * F1 ) . a , ( G1 * F2 ) . b ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + 1 -' 1 ) , f /. ( i + 1 -' 1 ) ) \/ LSeg ( f /. ( i + 1 -' 1 ) , f /. ( i + 1 -' 1 ) ) ; Integral ( M , P . m ) | dom ( P . n ) <= Integral ( M , P . n ) | dom ( P . n ) ; assume that dom f1 = dom f2 and for x , y being element st x in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) and f2 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( r - ( G * ( i , 1 ) ) `1 ) / 2 , ( G * ( i , 1 ) `2 ) / 2 ) ; for G being Group , H being Subgroup of G , a being Element of G , b being Element of G st a = b holds a |^ b = b |^ a * b consider B be Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p2 where p2 is Point of TOP-REAL 2 : P [ p1 ] & p2 `2 <= 0 & p1 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 } as Subset of TOP-REAL 2 ; sqrt ( ( ( W-bound C ) / 2 ) ^2 + ( ( W-bound C ) / 2 ) ^2 ) <= ( ( W-bound C ) / 2 ) / 2 + ( ( W-bound C ) / 2 ) / 2 ; for x be Element of X , n be Nat st x in E holds |. ( Re F ) . n .| <= P . x & |. ( Im F ) . n .| <= P . x len ( @ @ ) = len ( ( @ @ p ) ^ <* 0 *> ) + len <* 1 *> .= len ( @ p ) + 1 .= len ( @ p ) + 1 ; v / ( x. 3 , m1 ) / ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) = m1 / ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) . ( x. 4 , m ) = m1 / ( x. 4 , m ) ; consider r being Element of M such that M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) ) |= r ; func U1 \ w2 -> Element of Union ( G , R ) equals ( the Sorts of G ) . ( ( the Sorts of R ) * ( the Arity of S ) . ( ( the Arity of S ) . ( ( the Arity of S ) . ( ( the Arity of S ) . ( ( the Arity of S ) . ( ( the Arity of S ) . ( ( the Arity of S ) . ( o ) ) ) ) ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( i2 , s2 ) . b2 .= Exec ( i2 , s2 ) . b2 .= Exec ( i2 , s2 ) . b2 .= s2 . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums |. seq .| ) . ( n + k ) - ( Partial_Sums |. seq .| ) . ( n + k ) set F = S \! \mathop { \vert F .| , G = S \! \mathop { \vert F .| } ; ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) >= ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - f . x0 = L . ( x- ( 1 / 2 ) ) * R . ( x- ( 1 / 2 ) ) ; func the closed non empty Subset of TOP-REAL 2 means : Def6 : for a , b , c being Real st a in the carrier of \HM { a , b } holds it . ( a , c ) = ( the distance of \HM { a } ) . ( b , c ) ; a * b ^2 + ( a * c ) + ( b * d ) >= 6 * a * c + ( b * d ) ; v / ( x1 , m1 ) / ( x2 , m1 ) . ( x2 , m ) = v / ( x2 , m1 ) / ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) . ( x2 , m ) ) = v / ( x2 , m ) . ( x2 , m ) . ( x2 , m ) ; ( ( Q ^ <* x *> ) . ( M ^ <* y *> ) = ( ( ( Q ^ <* x *> ) +* ( M ^ <* y *> ) ) +* ( M ^ <* x *> ) ) . ( ( M ^ <* y *> --> FALSE ) ) . ( M ^ <* x *> ) ; Sum ( F3 = ( r to_power n1 ) * Sum ( C3 ) .= ( C to_power n1 ) * ( ( r to_power n1 ) * ( r to_power n1 ) ) .= C . ( ( r to_power n1 ) * ( r to_power n1 ) ) .= C . ( ( r to_power n1 ) * ( r to_power n1 ) ) ; ( GoB f ) * ( len GoB f , 1 ) `1 = ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( 1 , 1 ) ) `1 .= ( GoB f ) * ( 1 , 1 ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums s ) . $1 = ( Partial_Sums ( a * $1 ) ) . ( 2 * $1 + 1 ) * b ; ( the_arity_of g ) . ( ( the Arity of S ) . g ) = ( the Arity of S ) . ( ( the Arity of S ) . g ) .= ( ( the Arity of S ) . g ) . ( ( the Arity of S ) . g ) .= ( the Arity of S ) . g ; ( X \times Y ) Z tolerates X ^ Y & ( X \/ Y ) c= ( X \/ Y ) \/ ( X \/ Y ) implies ( X \/ Y ) \/ ( X \/ Y ) = ( X \/ Y ) \/ ( X \/ Y ) for a , b being Element of S for s being Element of NAT st s = F . n & a = F . n & b = N . n holds b = N . ( n + 1 ) \ G . ( n + 1 ) E , f |= All ( x , H ) => ( ( All ( x , H ) '&' ( All ( x , H ) ) '&' ( ( All ( x , H ) '&' ( ( All ( x , H ) '&' ( ( All ( x , H ) ) '&' ( ( All ( x , H ) '&' ( ( All ( x , H ) ) '&' ( ( All ( x , H ) ) '&' ( ( x , H ) ) ) ) ) ) ) ) ) ; ex R2 be 1-sorted st R2 = ( p | ( n2 -' 1 ) ) . i & ( the carrier of p ) . i = the carrier of R & ( the carrier of p ) . i = the carrier of R ; [. a , b + sqrt ( 1 - ( a * b ) ) / ( 1 - ( b * f ) ) , b + sqrt ( 1 - ( b * f ) ) / ( 1 - ( b * f ) ) .] is Element of the W of the W of X ; Comput ( P , s , 2 + 1 ) = Exec ( a3 , Comput ( P , s , 2 ) ) . IC SCM+FSA .= Exec ( a3 , s ) . IC SCM+FSA .= s . IC SCM+FSA .= s . IC SCM+FSA ; card ( h1 *' ) . k = ( power ( F_Complex , n ) ) . ( ( - 1_ F_Complex ) * u ) .= ( ( ( - 1_ F_Complex ) * u ) ) . k .= ( ( ( - 1_ F_Complex ) * u ) . k ) * u .= ( ( ( - 1_ F_Complex ) * u ) . k ) * u ; sqrt ( ( f * g ) /. c ) = f /. c * ( g /. c ) " .= ( f * g ) /. c * ( g /. c ) " .= ( f * g ) /. c * ( g /. c ) " .= ( f * g ) /. c ; len Cv - len ( ( ( ( ( ( ( ( ( ( ( ( ( B /. 1 ) ) ) /. len ( ( ( ( ( ( C /. 1 ) ) ) /. len ( ( ( ( C /. 1 ) ) /. len ( ( ( ( C /. 1 ) ) /. len ( ( ( C /. 1 ) ) /. len ( ( D /. 1 ) ) /. len ( ( D /. 1 ) ) ) ) ) ) ) ) ) = len ( ( ( ( ( ( ( ( ( ( ( D /. len ( ( ( D /. len ( ( D /. len ( ( D /. len ( ( D /. len ( ( D /. len ( ( ( D /. len ( ( D /. len ( ( ( D /. len ( ( D /. len ( ( D /. len ( ( ( dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) ; defpred P [ Nat ] means 2 * Fib ( n + 1 ) = Fib ( n ) * Fib ( $1 ) + Fib ( n ) * Fib ( $1 ) * Fib ( $1 ) * Fib ( $1 ) ; consider f being Function of [: { n + 1 } , NAT :] , NAT such that f = f and f is onto and for n being Nat st n < 1 holds f " . n = n / ( n + 1 ) and f is onto ; consider c2 being Function of S , BOOLEAN such that c = IExec ( A , B , D ) and E . ( A \/ B ) = Prob ( c , D , E ) and E . ( A \/ B ) = Prob ( c , C , D ) ; consider y being Element of [: Y , Z :] such that a = "\/" ( { F ( x , y ) where x is Element of Y : P [ x , y ] } , Z ) and P [ y , x ] ; assume that A c= dom f and f = ( ( - 1 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 ; dom Shift ( q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & len Seq q1 = j + 1 } ; consider G1 , G2 being Morphism of V such that G1 <= G2 and G2 <= G2 and for f being Morphism of G1 , G2 st f in G1 & f in G2 holds f * ( G1 * f ) = G1 * ( G2 * f ) ; func - f -> PartFunc of C , V means : Def6 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c + f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a holds L . ( union L ) = a & for v st v in union L holds L . ( v , v ) = a ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( k + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = sqrt ( i + n ) and for n1 being Nat st n1 <> 0 & n1 < n holds sqrt p = ( i + n ) / ( n + 1 ) ; assume that 0 in Z and Z c= dom ( ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) * ( ( 1 / 2 ) * ( ( 1 / 2 ) * ( ( 1 / 2 ) * ( 1 / 2 ) * ( ( 1 / 2 ) * ( 1 / 2 ) ) ) ) ) ) ) ) ) ) ) and for x ) ) ) ) ) ) and for x ) ) cell ( G1 , i1 -' 1 , j1 -' 1 ) \ ( ( L~ f1 ) \ ( L~ f1 ) \ ( L~ f1 ) ) c= BDD L~ f1 \/ ( L~ f1 ) \ ( L~ f1 ) ; ex Q1 being open Subset of X st s = Q1 & ex Q being Subset of Y st Q c= F & ( for x being Point of Y st x in Q ex y being Point of Y st y in Q & P [ x , y ] ) & ( for x being Point of Y st x in Q holds Q [ x , y ] ) implies P [ x , y ] gcd ( A , ( 1. ( K , n ) ) , ( 1. ( K , n ) ) , ( 1. ( K , n ) ) ) = 1 / ( 1. ( K , n ) ) .= 1. ( K , n ) ; R8 = ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( s2 s2 ) ) ) ) ) ) ) ) ) ) ) ) . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( s2 ) ) ) ) . ( m ) ) ) ) ) ) ) ) . ( x + 1 ) ) ) ) ) ) . ( 2 , 2 ) ) ) ) . ( 2 , 2 ) ) . ( 2 , 2 ) ) . ( 2 , 2 ) ) . ( 2 , 2 ) ) . ( 2 , 2 , 2 ) ) . ( 2 , 2 , 1 ) ) . ( 2 , 2 , 1 ) ) . ( 2 , 2 , 2 ) ) . ( 2 , 2 ) CurInstr ( P3 , Comput ( P3 , s3 , m ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m ) ) .= halt SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) /\ LSeg ( p1 , p2 ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) /\ LSeg ( p1 , p2 ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) /\ LSeg ( p1 , p2 ) ; func -> Subset of the Sorts of A means : Def6 : a in it iff ex i st i in dom f & not ( ex p st p in dom f & f . i = p ) & ( for i st i in dom f holds f . i = p ) & ( not f . i in rng f ) ; for a , b being Element of F_Complex st |. a .| > |. b .| & |. a .| >= 1 holds a * ( f | ( len f ) ) is ] defpred P [ Nat ] means 1 <= $1 & $1 + 1 <= len g & for i , j st [ i , j ] in Indices G & G * ( i , j ) = g * ( $1 , j ) holds G * ( i , j ) = g * ( $1 , j ) ; assume that C1 , C2 are_Following f and g is stable and for s being State of C1 , f being Function of C1 , C2 st f = s holds f . s = ( s * f ) . s and for t being State of C1 , s being State of C2 st t = s holds t . t = s . t ; ( ||. f .|| | X ) . c = ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| ; |. q .| ^2 = ( |. q .| ) ^2 + ( |. q .| ) ^2 + ( |. q .| ) ^2 / ( |. q .| ) ^2 + ( |. q .| ) ^2 / ( |. q .| ) ^2 ) ; for F being Subset-Family of T st F is open & {} in F & for A , B being Subset of T st A in F & B in F & A <> B holds card A = card B & card A = k & card B = k + 1 holds card A = k + 1 assume that len F >= 1 and len F = k + 1 and len F = k and for n st n in dom F holds H . n = F . ( F . n , G . n ) and for k st k in dom F holds H . k = F . ( k , n ) ; i |^ ( mod n ) = i |^ ( s + k ) .= i |^ ( s + k ) * i .= i |^ ( s + k ) * i .= i |^ ( s + k ) * i ; consider q being oriented oriented oriented Chain of G such that r = q and q <> {} and F . ( q . 1 ) = v and rng q c= rng ( p ^ q ) and rng q c= rng p and rng q c= rng p and not q in rng p and not q in rng p and q in rng p ; defpred P [ Element of NAT ] means ( ( g , Z ) . ( len g ) ) . ( len g + $1 ) = ( ( ( f , Z ) ^ <* x *> ) . ( len f + $1 ) ) . ( len f + $1 ) ; for A , B being Matrix of n , K holds len ( A * B ) = len A & width ( A * B ) = n & width ( A * B ) = n implies len ( A * B ) = n & width ( A * B ) = n consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a * b = b * c ; func ( Re x , y ) .|. ( ( Re x ) * ( Re y ) ) -> Element of COMPLEX equals ( Re x ) * ( Re y ) + ( Im y ) * ( Im y ) ; consider g2 be FinSequence of Fq such that g2 is continuous and rng g2 = A and g2 . 0 = x0 and g2 . 1 = x0 and g2 . len g2 = x0 and g2 . len g2 = x0 and g2 . len g2 = x0 and g2 . len g2 = x0 and g2 . len g2 = x0 and g2 . len g2 = x0 and g2 . len g2 = x0 and g2 . len g2 ; then n1 >= len p1 & n2 >= len p1 & n3 = len p1 + len p2 & n3 = len p1 + len p2 & n3 = len p1 + len p2 ; ( q `1 ) * a <= ( q `1 ) * ( q `1 ) & ( - q `1 ) * ( q `1 ) * ( q `1 ) >= ( - q `1 ) * ( q `1 ) ; Fv . ( len ( p . len p ) ) = Fv . ( len p ) .= ( ( v . len p ) ) * v . ( len p ) .= v . ( len p ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( ( a := intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) .--> 1 ) = 1 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) . ( ( intloc 0 ) .--> 1 ) . ( ( intloc 0 ) . intloc 0 ) . ( ( intloc 0 ) . intloc 0 ) . intloc 0 ) . intloc 0 ) . intloc 0 ) ; consider BY being Subset of B1 , DY being Subset of B2 such that BY is finite and BY is finite and DY = \mathop ( card A1 , card B1 ) and BY = indx ( BY , card B1 ) and LY = indx ( BY , card B1 ) ; v2 . b2 = ( curry F2 ) . ( ( ( ( ( F . b2 ) * ( F . b2 ) ) * ( ( F . b2 ) * ( F . b2 ) ) ) ) .= ( ( ( ( F . b2 ) * ( F . b2 ) ) * ( ( F . b2 ) * ( F . b2 ) ) ) ) . b2 ; dom IExec ( I , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) +* Start-At ( ( card I + 2 ) , SCMPDS ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ; ex d|^ be Real st d|^ > 0 & |. h .| < d & |. h .| " * ||. ( R /. ( L + 1 ) - R /. ( L + 1 ) ) .|| < e / 2 ; LSeg ( G * ( len G , 1 ) , G * ( len G , 1 ) ) /\ LSeg ( G * ( len G , 1 ) , G * ( len G , 1 ) ) c= Int cell ( G , len G , width G ) ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i1 + 1 ) , h /. ( i1 + 1 ) ) .= LSeg ( h /. ( i1 + 1 ) , h /. ( i1 + 1 ) ) , h /. ( i1 + 1 ) ) ; A = { q where q is Point of TOP-REAL 2 : LE q , p , P , p1 , p2 & LE q , p , P , p1 , p2 & LE q , p , P , p1 , p2 & LE q , p , P , p1 , p2 & LE q , p , P , p1 , p2 & LE q , p , P , P , p1 , p2 & LE q , p , P , p2 & LE q , p , P , p1 , P , p1 , p2 & LE p , q , P , P , p1 , p2 & LE p , q , P , P , p1 , P , p2 , P , p1 , p2 & LE p , q , P , p1 , p2 & LE p , q , P , P , p2 , P , P , p1 , p2 & LE p , q , P , p1 , P , p1 , P , p1 , P , P , p1 , P , p1 , p2 , ( ( - x ) .|. y ) = ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = sqrt ( ( p `1 / p `2 ) ^2 ) * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ; sqrt ( ( U * ( W * ( W * ( W * ( W * ( W * ( x , y ) ) ) ) ) / ( 2 * ( W * ( x , y ) ) ) ) ^2 ) ) = ( ( U * ( W * ( x , y ) ) ) / ( 2 * ( W * ( x , y ) ) ) ) / ( 2 * ( x , y ) ) ) ; func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def6 : for x be Element of REAL m holds it . x = ( - h ) . x * ( - h ) . x ) & for x be Element of REAL m st x in dom it holds it . x = ( - h ) . x * ( - h ) . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices GoB f and [ i + 1 , j ] in Indices GoB f and [ i + 1 , j ] in Indices GoB f and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) ; assume that not y in Free H and not x in Free H and not x in Free H and not y in Free H and not x in Free H and not y in Free H and not y in Free H and x in Free H and y in Free H and y in Free H and x in Free H and y in Free H ; defpred P [ Element of NAT , Element of NAT ] means ( p |^ $1 ) |^ ( p |^ $1 ) = p |^ $1 & ( for n st n in $1 holds $2 = ( p |^ $1 ) |^ ( p |^ $1 ) ) |^ ( p |^ n ) ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def6 : for A , B being Subset of X holds it . ( A \/ B ) <= it . ( A \/ B ) & for W being Subset of X holds W . ( W . ( A \/ B ) ) <= W . ( W . ( A \/ B ) ) ; [#] ( ( ( ( ( ( TOP-REAL 2 ) | Q ) .: P ) .: Q ) .: Q ) = ( ( ( ( ( ( TOP-REAL 2 ) | P ) .: Q ) .: Q ) .: P ) .: Q ) .: Q ) .: ( [#] ( ( ( ( TOP-REAL 2 ) | P ) .: Q ) ) ; rng ( F | ( [: S , T :] ) = { 1 } or rng ( F | ( S , T ) ) = { 1 } or rng ( F | ( S , T ) ) = { 1 } ; ( f " ) . i = f . i " .= ( f " ) . i .= ( ( f " ) . i ) " .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i ; consider P1 , P2 being Subset of TOP-REAL 2 such that P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p2 , p1 } and P1 /\ P2 = { p2 , p1 } ; f . p2 = |[ ( p2 `1 ) / sqrt ( 1 + ( p2 `1 ) ^2 ) , ( p2 `1 ) / sqrt ( 1 + ( p2 `1 ) ^2 ) ]| ; ( ( for a , X be non empty TopSpace holds ( for x being Point of X st x in the carrier of X holds ( ( a , X ) qua Function ) " ) . x = - a * x + b * x .= 0. X + b * x .= 0. X ; for T being non empty normal TopSpace , A being Subset of T , B being Subset of T , A being Subset of T , B being Subset of T st A <> {} & A misses B holds ( Initialized G ) . p = ( .[ / A ) . p for i , [#] G st i + 1 in dom F for G1 , G2 being strict Subgroup of G st G1 = F . i & G2 = F . ( i + 1 ) holds G1 is strict Subgroup of G for x st x in Z holds ( ( arctan * arccot ) `| Z ) . x = ( ( ( arctan * arccot ) `| Z ) . x / ( 1 + x ^2 ) ) / ( 1 + x ^2 ) / ( 1 + x ^2 ) synonym f /* a is right convergent means : by : for x0 st x0 in dom f & x0 in dom f holds f . x0 < ( f /* a ) . x0 + r / ( f . x0 ) ; then X1 , X2 are_separated & X1 , X2 are_separated & X2 , Y2 are_separated & X1 , X2 are_separated & X2 , Y2 are_separated & X1 , X2 are_separated & X2 , X1 misses X2 & X1 , X2 are_separated implies X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X1 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X1 , X2 are_separated & X2 , X1 are_separated implies X1 , X2 are_separated ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & for x st x in N holds ( SVF1 ( 1 , f , u ) ) . x - SVF1 ( 1 , f , u ) . x = L . ( u - x ) ; sqrt ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) >= sqrt ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) ; ( ( ( 1 / t ) (#) ( ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) (#) ( ( 1 / t ) * ( 1 / t ) ) ) ) ) ) ) ) `| REAL ) . x = ( ( 1 / t ) ) `| REAL ) . x ) ) . x ) . x ) . x ) . x ) . x ) . x ) . x / t . x ) . x / t . x ) . x / t . x ) . x ) . x = ( ( 1 / t ) . x / t . x ) . x / t . x ) = ( ( ( ( 1 / t ) * ( ( 1 / t ) * ( ( 1 / t ) * ( ( 1 / t ) * ( ( 1 / t ) * ( ( 1 / t ) * ( ( 1 / t assume that for x holds f . x = ( ( - 1 / 2 ) (#) ( sin * cos ) ) . x and for x st x in Z holds ( ( ( - 1 / 2 ) (#) ( sin * cos ) ) `| Z ) . x = ( ( - 1 / 2 ) (#) ( cos * sin ) ) . x ; consider Xj1 being Subset of Y , Y1 being Subset of X such that t = Y1 and Y1 = Y1 /\ Y2 and Y1 = Y2 and Y1 /\ Y2 = Y1 /\ Y2 and Y1 /\ Y2 = Y1 /\ Y2 and Y1 /\ Y2 = Y1 /\ Y2 and Y1 /\ Y2 = Y1 /\ Y2 ; card S . ( n + 1 ) = card { [ d , c ] where d is Element of GF ( p ) : [ d , c ] in Indices ( p * a ) } .= card ( p * a ) ; sqrt ( ( ( W-bound D ) / 2 ) * ( ( i1 - 1 ) / 2 ) ) = ( ( W-bound D ) / 2 ) * ( ( i1 - 1 ) / 2 ) ) / 2 .= ( ( W-bound D ) / 2 ) * ( ( i1 - 1 ) / 2 ) ;