thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is Cauchy q in P ; V in F ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a >= X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y `1 in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `1 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B `1 = b `1 ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `1 <= b `1 ; assume b in X ; assume k <> 1 ; f = product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated ; assume m > 0 ; assume A c= B ; X is lower bounded assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `1 = x `1 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , A , B be Subset of G ; let G be _Graph , A , B be Subset of G ; let a be UNKNOWN of F ; let x be element ; let x be element ; let C be FormalContext , A , B be Subset of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= NAT ; let y be element ; r2 in X ; let x be element ; k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = 1 ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Real ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is non discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , i be Integer ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 ; cluster downarrow x -> being being and x is closed ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 |^ x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; 2 >= s ; G . y <> 0 ; let X be RealNormSpace , A be Subset of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , A , B be Subset of V ; assume x in - M ; k < s . a ; not t in { p } ; let Y be such that Y is such that X c= Y and Y c= X ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded & L is lower-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `1 = a * y `1 ; rng D c= A ; assume x in K1 ; 1 <= ii ; 1 <= ii ; p10 c= cos .: A ; 1 <= ii ; 1 <= ii ; UMP C in L ; 1 in dom f ; let seq ; set C = a * B ; x in rng f ; assume f is Lipschitzian ; I = dom A ; u in dom p ; assume a < x + 1 ; seq is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p \not _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 : A is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 & b2 in Z1 ; assume w = 0. V ; assume x in A . i ; g in the carrier of _ X ; y in dom t ; i in dom g ; assume P [ k ] ; if C c= dom f holds f in C x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; IT is non-decreasing ; IT is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , A , B be non-empty MSAlgebra over S ; assume P [ n ] ; assume union S is independent & card S is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , F be Function of s , I ; b `1 c= b9 & b `1 c= b9 ; assume not x in NAT + 1 ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 & i2 < i2 ; a * h in a * H ; p , q in Y ; cluster sqrt I -> left ideal ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; n < n & n < m ; assume A c= dom f ; Re ( f ) is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_differentiable_in x0 ; assume O is symmetric transitive ; let x , y be element ; let jj be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; v be Vector of V ; P3 halts_on s , P2 = P +* stop I ; d , c // a , b ; let t , u ; let X be set with a non-empty ManySortedSet of X ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; Y be Subset of S ; let X be non empty TopSpace , A be Subset of X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , a , b be Element of B ; let S be non empty ManySortedSign ; let x be variable , f , g be Function ; let b be Element of X , a , b be Element of X ; R [ x , y ] ; x ` ` = x ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( n - 1 ) ; h2 . a = y ; P [ n + 1 ] ; cluster G * F -> Int W ; let R be non empty multiplicative loop over R , S be Subset of R ; let G be _Graph ; let j be Element of I ; a , p // x , p `1 ; assume f | X is lower bounded ; x in rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .first() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `1 ; let M be void maid ; let N be non empty // \cal \cal \in ; let R be RelStr with finite and R is finite ; let n , k be Nat ; let P , Q be RelStr ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume not I does not destroy a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < v9 ; x <= c2 . x ; x in F ` ; cluster S --> T -> \in such that S --> is \cal ; assume t1 <= t2 & t2 <= t1 ; let i , j be even ; assume F1 <> F2 & F2 <> F1 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> A2 & A2 <> A3 ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & rng g2 = A ; i < len M + 1 ; assume not - r in rng G ; N c= dom f1 & N c= dom f2 ; x in dom ( sec | Z ) ; assume [ x , y ] in R ; set d = ( x - y ) / 2 ; 1 <= len g1 & len g2 <= len g2 ; len s2 > 1 & len s2 > 1 ; z in dom f1 & z in dom f2 ; 1 in dom D2 & D2 . 1 = D2 . 1 ; ( p `2 ) ^2 = 0 ; j2 <= width G & j2 <= width G ; len cos > 1 + 1 ; set n1 = n + 1 ; |. q2 .| = 1 ; let s be SortSymbol of S ; ( i , i ) *' = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be upper_bound as line ; cluster m * n -> square ; let k9 be Nat ; i -' 1 > m ; R is transitive implies R is transitive set F = <* u , w *> ; p0 c= P3 & p4 c= P3 ; I is_halting_on t , Q & I is_halting_on t , Q ; assume [ S , x ] is real ; i <= len ( f2 | i ) ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom f1 /\ dom f2 ; assume [ X , p ] in C ; BX c= XX & BX c= BX ; n2 <= ( 2 |^ 4 ) * ( 2 |^ 4 ) ; A /\ c9 c= A ` ; cluster -> x -valued for Function ; Q be Subset-Family of S , B be Subset of T ; assume n in dom g2 ; let a be Element of R ; t `1 in dom e2 & t `2 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , T be Subset of X ; i . y in rng i ; REAL c= dom f & rng f c= dom f ; f . x in rng f ; NAT <= ( r - 1 ) / 2 ; s2 in r-5 & s1 in r-5 ; let z , z be complex number ; n <= NN . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = [ S \to T ] ; let x be non positive Real ; m be Element of M ; f in union rng F1 ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , M , N be Matrix of K ; let i be Element of NAT ; rng ( F * g ) c= Y dom f c= dom x & rng f c= dom x ; n1 < n1 + 1 & n2 + 1 < n1 ; n1 < n1 + 1 & n2 + 1 < n1 ; cluster {} T -> \rbrace for set ; [ y2 , 2 ] `2 = z ; let m be Element of NAT ; let S be Subset of R ; y in rng Sit ; b = sup ( dom f ) ; x in Seg ( len q ) ; reconsider X = [: D , D :] as set ; [ a , c ] in E1 ; assume n in dom h2 ; w + 1 = ma1 ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k2 + 1 <= k2 ; i be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete complete ] ; assume f = g & p = q ; n1 <= n1 + 1 & n2 + 1 <= n1 ; let x be Element of REAL ; assume x in rng s2 & y in rng s2 ; x0 < x0 + 1 & x0 < x0 + 1 ; len ( L - K ) = W ; P c= Seg ( len A ) ; dom q = Seg n & rng q c= Seg n ; j <= width M *' ; let r8 be real-valued FinSequence ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT ; assume z in 0 := f . 0 ; let i be set ; n -' 1 = n-1 ; len ( n - m ) = n ; cell ( Z , c , F ) c= F assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , F be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q ; let s be Element of E |^ omega ; let B1 be Basis of x , B ; L2 /\ L2 = {} ; L1 /\ L2 = {} ; assume downarrow x = downarrow y ; assume b , c '||' b , c ; LIN q , c , c ; x in rng ( f-1J ) ; set n8 = n + j ; let D7 be non empty set , A , B be Matrix of n , K ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , M be Matrix of K ; assume f `1 = f & h `1 = h ; R1 - R2 is total & R2 is total ; k in NAT & 1 <= k & k <= n ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open Subset of ( TOP-REAL 2 ) | K1 ; assume a , b ] in maximal ; a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster as nreal for \vert -nA1 ; not u in { is_differentiable_on g } ; the carrier of f c= B ; reconsider z = x as VECTOR of V ; cluster the RelStr of L -> to ; r (#) H is partial ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict non-empty MSAlgebra over S , A be non-empty MSAlgebra over S ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in { ( r . y ) `1 : not contradiction } ; let x , y be Element of X ; A , I be \cal _ empty set ; [ y , z ] in O ; card Macro i = 1 + 1 ; rng Sgm A = A ; q |- All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o9 , a , b ; p . 2 = Z |^ Y ; ( D . 0 ) `2 = {} ; n + 1 + 1 <= len g ; a in VERUM ( Al ) ; u in Support ( m *' p ) ; let x , y be Element of G ; I be Ideal of L ; set g = f1 + f2 , h = f2 + f3 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i -' k + 1 <= S ; cluster non empty multiplicative for multiplicative multMagma ; x in support ( ( support t ) | ( support t ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `1 <= len ( y-5 ) ; assume p divides b1 + b2 ; M1 <= sup M1 & sup M1 <= sup M1 ; assume x in ( W-min X ) .: X ; j in dom ( z | n ) ; let x be Element of D ( ) ; IC Comput ( P3 , s3 , l ) = l1 .= 0 ; a = {} or a = { x } ; set Wmin = Vertices G , u9 = Vertices G ; seq " is non-zero implies seq " is non-zero for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; h-4 c= h-14 .: { x } ; ]. a , b .[ c= Z ; X1 , X2 are_\Vert implies X1 , X2 are_\Vert a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 -' 1 = k ; cluster -> real-valued for Relation ; ex v st C = v + W ; let IT be non empty zero structure , a , b be Element of IT ; assume V is Abelian add-associative right_zeroed right_complementable distributive non empty doubleLoopStr ; XY \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper & sup B in B ; let L be non empty reflexive antisymmetric RelStr , X be Subset of L ; R is reflexive & X is transitive implies R is transitive E , g |= the_right_argument_of H ; dom G /. y = a ; sqrt ( 1 - 4 ) >= - r / 2 ; G . p4 in rng G ; let x be Element of FF , y be Element of FF ; D [ P-6 , 0 ] ; z in dom id ( B ) & z in B ; y in the carrier of N & z in the carrier of N ; g in the carrier of H & g in the carrier of H ; rng fA1 c= [: { x } , NAT :] ; j ' + 1 in dom s1 ; A , B be strict Subgroup of G ; C be non empty Subset of REAL ; f . z1 in dom h & h . z2 in dom h ; P . k1 in rng P ; M = ( A +* {} ) +* {} ; let p be FinSequence of REAL , r be Real ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; h | [. a , b .] = b ; assume the distance of V , Q is_to v , w ; let a be Element of ^ ( V ) ; let s be Element of PP ( ) ; let PP be non empty RelStr ; n be Nat ; the carrier of g c= B ; I = halt SCM R & I = ( l , R ) --> ( l , R ) ; consider b be element such that b in B ; set BK = BCS K , BK = BCS K ; l <= ( ( -> Real ) . j ; assume x in downarrow [ s , t ] ; ( x - t ) / 2 in ]. t - t , s .[ ; x in ( JumpParts T ) . a ; let h be Morphism of c , a ; Y c= { 1_ R } implies the_rank_of ( Y ) c= A A2 \/ A3 c= L2 \/ L2 ; assume LIN o , a , b ; b , c // d1 , e2 ; x1 , x2 in Y & x2 in Y ; dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `1 ] in X ~ ; for n be Nat holds 0 <= x . n |[ a , b ]| = [. a , b .] ; cluster -> -> -> -> -> -> sqrt closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , q1 is_collinear & q2 , q2 , q2 is_collinear ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] & y = [ x2 , x3 ] ; R , Q be ManySortedSet of A ; set d = ( 1 / n + 1 ) * ( 1 / n ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , A , B be Subset of V ; let I be Program of SCM+FSA , a , b be Int-Location ; assume x in rng ( ( R * R ) * ( S * R ) ) ; let b be Element of the lattice of T ; dist ( e , z ) - r > r-r ; u1 + v1 in W2 & v1 in W2 ; assume func support L -> Subset of L equals rng G ; let L be lower-bounded antisymmetric transitive antisymmetric transitive RelStr with L ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool ( M ) ; 0 <= 2 * PI ; o `1 , a9 // o `1 , y `2 ; { v } c= the carrier of l & { v } c= the carrier of l ; x be bound of A ; assume x in dom ( ( curry f ) . x ) ; rng F c= ( product f ) |^ X assume D2 . k in rng D ; f " . p1 = 0 & f " . p2 = 1 ; set x = the Element of X , y = the Element of X ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; n be Element of NAT ; assume LIN c , a , e1 ; cluster non empty for FinSequence of NAT ; reconsider d = c as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of f ; conv @ S c= conv @ A ; reconsider B = b as Element of the lattice of T ; J , v |= P \lbrack l , P \lbrack ; cluster the carrier of J . i -> non empty for TopSpace ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 is_well field W1 & W2 is_\upharpoonright field W1 implies W1 is well field W2 assume x in the carrier of R & y in the carrier of R ; dom ( n |-> 0 ) = Seg n & rng ( n --> 0 ) = Seg n ; s4 misses s2 & not ( not x in dom ( s ) ) ; assume ( a 'imp' b ) . z = TRUE ; assume X is open & f = X --> d ; assume [ a , y ] in Indices ( a * f ) ; assume that that that that that that that that that card I c= J and card Shift J c= K ; Im ( ( lim seq ) (#) ( Im seq ) ) = 0 ; ( sin * sin ) . x <> 0 & ( sin * cos ) . x <> 0 ; sin * cos is_differentiable_on Z & cos * cos is_differentiable_on Z ; t1 . n = t2 . n & t1 . n = t2 . n ; dom ( ( - F ) | A ) c= dom F ; W1 . x = W2 . x & W1 . x = W2 . x ; y in W .first() \/ W .first() \/ W .first() ; k9 <= len ( v | ( len v + 1 ) ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P ; h . p4 = g2 . I . I .= g2 . I ; Gij `1 = U * ( 1 , 1 ) `1 .= Gij `1 ; f . ( r - 1 ) in rng f ; i + 1 + 1 <= len f ; rng F = rng ( F | 2 ) ; mode Subset of \in is well unital non empty multiplicative loop structure ; [ x , y ] in A ~ ; x1 . o in L2 . o ; the carrier of support _ m c= B ; not [ y , x ] in id X ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower bounded & seq ^\ k1 is lower bounded ; len ( F - I ) = len I - len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be Complex , a , b be complex number ; Comput ( P , s , n ) . x = s . x ; k <= k + 1 & k <= len p ; reconsider c = {} T as Element of L ; let Y be \rbrace is an \rbrace \cal \cal \cal T ; cluster -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 ; cluster J => y -> total for Function ; K c= 2 -tuples_on the carrier of T ; F . b1 = F . b2 ; x1 = x or x1 = y or x1 = z or x1 = z ; attr a <> {} means a / ( a * a ) = 1 ; assume that succ a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o9 , b , b9 & LIN o9 , b9 , b9 ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non constant FinSequence of D ; let F2 be non empty for F be non empty set ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider p9 = x as Subset of m , n = m as Element of NAT ; A , B , C be Element of R ; cluster non empty for b9 for // -order ; rng c `1 misses rng e & rng e c= rng e1 ; z is Element of gr ( { x } ) ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( cot * cot ) & Z c= dom ( cot * cot ) ; the component of Q c= UBD A & ( not x in A ) ; reconsider E = { i } as finite Subset of I ; g2 in dom ( 1 - ( x - a ) ) ; pred f = u means a * f = a * u ; for n holds P1 [ n ] implies P [ n + 1 ] { x . O : x in L } <> {} ; x be Element of V . s ; a , b be Nat ; assume that S = S2 and p = p2 and p = p2 and q = p1 ; gcd ( n1 , n2 ) = 1 & gcd ( n1 , n2 ) = 1 ; set o9 = ( a * _ of INT ) . ( a , b ) ; seq . n < |. r1 .| & |. r1 .| < r ; assume that seq is increasing and r < 0 and seq is increasing ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] ; set g = { n |^ 1 : n in NAT } ; k = a or k = b or k = c ; a9 , b9 , c9 , b9 is_collinear & b9 , c9 , c9 is_collinear ; assume that Y = { 1 } and s = <* 1 *> ; I1 . x = f . x .= 0 .= 0 ; W3 .first() = W2 . 1 & W . 1 = W2 . 1 ; cluster -> trivial for subgraph of G , finite _Graph ; reconsider u = u as Element of Bags X ; A in B ^ implies A , B are_are \lbrack x in { [ 2 * n + 3 , k ] } ; 1 >= sqrt ( ( q `1 ) ^2 ) / |. q .| ; f1 is_] ] ] ] ] ] ] ] ] then implies f1 is_] not iff f1 = f2 ( f . I ) `2 <= ( q `2 ) / |. q .| ; h is_the carrier of Cage ( C , n ) ; ( b - a ) / 2 <= ( p - a ) / 2 ; let f , g be Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( max ( - f ) ) ; p2 in NO . p1 & p2 in NO . p2 ; len ( the_right_argument_of H ) < len H & len ( the_right_argument_of H ) < len H ; F [ A , F-14 . A ] ; consider Z such that y in Z and Z in X ; attr 1 in C means A c= C |^ A ; assume r1 <> 0 or r2 <> 0 or r1 <> 0 ; rng q1 c= rng C1 & rng C1 c= rng C1 ; A1 , L , A2 , A3 is_collinear implies A1 , A2 , A3 is_collinear y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in ^2 ( p , Sp ) & c in dom ( p , Sp ) ; then S is atomic implies P-2 [ S ] ; Cl Int [#] T = [#] T & Int [#] T = [#] T ; f12 | A2 = f2 | A2 & f12 | A2 = f2 | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; v , v `1 , v `2 be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V ; let X be Subset of S , T be Subset of S ; consider H1 such that H = 'not' H1 and H1 in H ; 1 c= ( 0 * p2 ) * ( \HM { the } \HM { the } \HM { function } ) ; 0 * a = 0. R .= a * 0 .= 0 ; A |^ 2 = A ^^ ( A |^ 2 ) ; set vY = v4 /. n , vY = v4 /. n ; r = 0. ( \langle \cal E *> , \Vert \cdot \Vert \rangle ) ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W | ( W . n ) ) + 1 .= n ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t8 in W7 or W7 does not let b1 , b2 ; reconsider Y1 = X1 as SubSpace of X | X1 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i as non zero Element of NAT ; c . x >= id ( L . x ) ; \sigma ( T ) \/ omega is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> pair for set ; sup downarrow a /\ downarrow t is Ideal of T ; let X be with with NAT , F be non empty set ; rng f = S1 -*> & f is c -iff f is one-to-one let p be Element of B , x be the the sort of S ; max ( N1 , 2 ) >= N1 & max ( N1 , 2 ) >= N1 ; 0. X <= b |^ ( m * NAT ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 & p2 = q2 & q1 = q2 ; assume gR in the right & g in the right of g ; let A1 , A2 be Point of S , A be Subset of T ; x in h " P /\ [#] ( T1 | P ) ; 1 in Seg 2 & 1 in Seg 3 & 1 in Seg 3 ; reconsider X-5 = X as non empty Subset of Tsuch that X = { x } and X is non empty and X is non empty ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Source of G ) -valued ; n1 <= i2 + len g2 & i2 + len g2 <= i2 + len g2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & v in the carrier' of G2 ; y = Re ( y ) + ( Im ( y ) ) ; ( exists ( - 1 ) ) \equiv 1 ; x2 is_differentiable_on ]. a , b .[ & ]. a , b .[ c= dom ( a (#) ( b (#) ( b `| Z ) ) ) ; rng M5 c= rng D2 & rng D2 c= rng D1 ; for p be Real st p in Z holds p >= a ( \bf X ) --> ( f . x ) = proj1 . x ; ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p -Path M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) \ominus C ; h \equiv gg . ( mod P ) ; reconsider i1 = i-1 - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , a , b be Real ; for V being Subspace of V holds V is Subspace of [#] V reconsider i9 = i as Element of NAT , s be Element of NAT ; dom f c= [: C , D :] ; x in ( the Sorts of B ) . n /\ ( the Sorts of B ) . n ; len [ len f1 , f2 ] in Seg len ( f1 ^ f2 ) ; p1 c= the topology of T & P c= the topology of T ; ]. r , s .[ c= [. r , s .] ; B2 be Basis of T2 , B be Basis of T2 ; G * ( B * A ) = ( id o1 ) * ( B * A ) ; assume that p , u are_\! to u and u , v are_collinear ; [ z , z ] in union rng ( F | 5 ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , G = $1 .. S ; LIN a1 , b3 , b3 & LIN a1 , b3 , b3 ; f " ( f .: x ) = { x } ; dom ( w2 ) = dom r12 .= dom r12 .= dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; Ix * ( i , j ) = 0. K ; |. f . ( s . m ) -g .| < g1 ; q7 . x in rng ( q | Seg n ) ; Carrier ( L2 ) misses Carrier ( L2 ) ` ; consider c being element such that [ a , c ] in G ; assume N\lbrack o1 , o2 .] = o9 & for o being object of S holds o . ( o1 , o2 ) = o1 . ( o2 , o1 ) ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ CZ ) " C ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . j .] ; attr 0 <= x & x ^2 <= 1 & x ^2 <= 1 ; p `1 - q `2 <> 0. TOP-REAL 2 & p `2 <> 0. TOP-REAL 2 ; cluster ( _ S ) --> T -> non empty ; x be Element of S , T ; cluster cluster cluster cluster cluster cluster there F , b ) -> one-to-one ; |. i .| <= - 2 |^ n & |. i - n .| < r ; the carrier of I[01] = dom P & the carrier of I[01] = dom P ; n * ( n + 1 ) ! > 0 * n ; S c= ( A1 /\ A2 ) /\ ( A2 /\ A3 ) ; a3 , a4 // b3 , b3 & a3 , a4 // b3 , b3 ; then dom A <> {} & dom A <> {} & rng A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y , G , z , F , G , H , G ; set v2 = v4 /. ( i + 1 ) , v1 = v4 /. ( i + 1 ) ; x = r . n .= ( r . n ) / 2 ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g = the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = A2 & dom d2 = A2 & dom d2 = A2 ; 0 < ( p / 2 ) * ( ||. z .|| + 1 ) ; e . ( m + 1 ) <= e . ( m + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X - g < Integral ( M , Im ( g | B ) ) ; cluster O := F -> \HM { additive } for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , B be non-empty MSAlgebra over S ; Proj ( i , n ) * g is_differentiable_on X ; x , y , z be Point of X , a , b , c be Real ; reconsider p9 = p . x as Subset of V ; x in the carrier of Lin ( A ) & x in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a , b be Int-Location ; assume - a is lower of - X & b is lower ; Int Cl Int A c= Cl Int Cl Int A & Int Cl Int A c= Cl Int Cl Int A ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 ) ^2 / ( p2 `2 ) ^2 <= ( p2 `1 ) ^2 / ( p2 `2 ) ^2 ; Cl Q ` = [#] ( T | P ) .= P ; set S = the carrier of T , T = the carrier of T ; set I8 = ' ( f , n ) , I8 = ' ( f , n ) , I8 = ' ( f , n ) ; len p -' n = len q - n .= len p - n ; A is Permutation of Seg len ( A , x , y ) ; reconsider n6 = n6 - 1 as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s | [. 1 , 1 .] ) ; let q9 , q9 be State of M , a , b be Element of M ; a1 in the carrier of S1 & a2 in the carrier of S2 & a3 in the carrier of S2 ; c1 /. n1 = c1 . n1 & c2 /. n1 = c1 . n1 ; let f be FinSequence of TOP-REAL 2 , a , b be Real ; y = ( f * S8 ) . x .= ( f * S8 ) . x ; consider x being element such that x in = an " A ; assume r in ( dist ( o ) ) .: P ; set i2 = ( ( n + 1 ) -tuples_on h ) . i ; h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( Mit , k ) . i = M . i ; reconsider m = ( x - 2 ) / 2 as Element of ( - 1 ) / 2 ; let U1 , U2 be U2 of U0 , U2 be Subspace of U0 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p2 + 1 <= len p1 + 1 ; let T1 , T2 be Scott Scott Scott Scott of L , T be Scott Scott topological of L ; then x <= y & ( { x } c= { y } ) ; set M = n -tuples_on the carrier of K ; reconsider i = x1 , j = x2 as Nat ; rng ( ( the_arity_of a ) | ( dom the_arity_of o ) ) c= dom H ; z1 " = z1 " * ( z1 " ) .= z1 " * ( z1 " ) ; x0 - sqrt ( r ^2 ) in L /\ dom f ; then w is strict {} , \mathop { 0 } :] /\ \mathop { 1 } <> {} ; set x-10 = xZ ^ <* Z *> ^ <* Z *> ^ <* Z *> ^ <* Z *> ; len w1 in Seg len w1 & len w2 = len w2 & len w2 = width w1 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) * ( |. a . n .| ) ; ( p `1 ) ^2 / ( |. p .| ) ^2 <= ( |. p .| ) ^2 / ( |. p .| ) ^2 ; rng ( g | X ) c= L~ ( g | X ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n be Nat holds F . n is \HM { 0 } ; reconsider x9 = x9 as Vector of M , the carrier of M ; dom ( f | X ) = X /\ dom f /\ X .= X ; p , a // p , c & b , a // c , c ; reconsider x1 = x as Element of REAL m , x2 be Element of REAL m ; assume i in dom ( a * p ) ; m . b9 = p . ( b9 , c ) .= ( m + 1 ) * ( m + 1 ) ; a / ( s . m ) -f . n <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume B1 \/ C1 = B2 \/ C2 & C2 \/ C1 = B2 \/ C2 ; X . i = { x1 , x2 } . i .= x2 ; r2 in dom ( h1 + h2 ) & r2 in dom ( h1 + h2 ) ; that ||. 0. R .|| = a and b-0 = b ; F8 is_closed_on t1 , Q1 & Q1 is_halting_on t1 , Q1 ; set T = For Incluster 1 ( X , x0 ) ; Int ( Int R ) c= Int R & Int ( R ) c= Int R ; consider y being Element of L such that c . y = x ; rng ( F | _ { x } ) = { F . x } ; G-23 " { c } c= B \/ S " S ; f9 is Relation of [: X , X :] , X & X is Subset of [: X , Y :] ; set RQ = the Point of P , RQ = the Point of Q , R = the Point of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; k2 be Element of NAT , x be Element of NAT ; reconsider p9 = u as Element of ( ( TOP-REAL n ) | ( i + 1 ) ) | ( i + 1 ) ; g . x in dom f & x in dom g implies x in dom g assume that 1 <= n and n + 1 <= len f1 and n + 1 <= len f1 ; reconsider T = b * N as Element of G / ( N , G ) ; len ( P\mathopen { - } P } ) <= len ( P\mathopen { - } P } ) ; x " in the carrier of A1 & x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( A * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple f . x = a . i .= a1 . k .= a1 . k ; let f be PartFunc of REAL i , REAL n , x be Real ; rng f = the carrier of ( ( Carrier A ) | ( the carrier of ( Carrier A ) | ( the carrier of ( Carrier A ) | ( the carrier of ( Carrier A ) | ( i + 1 ) ) ) ; assume s1 = sqrt ( 2 * p ) ^2 + ( 2 * p ) ^2 ; attr a > 1 & b > 0 & a |^ b > 1 ; let A , B , C be Subset of IX ; reconsider X0 = X , Y = Y as RealNormSpace ; f be PartFunc of REAL , REAL , r be Real ; r (#) ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , t-4 be binary relation ; Q [ e1 \/ { v } ] \/ { v } [ e1 , f ] ; g \circlearrowleft ( E-max L~ z ) = z & ( E-max L~ z ) .. z = z ; |. |[ x , v ]| - |[ x , y ]| .| = v-0 ; - f . w = - ( L * w ) ; z -' y <= x iff z <= x + y & z <= x + y sqrt ( 7 * p1 ) ^2 > 0 ; assume X is BCK-algebra , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 ; ( tan * tan ) . x in dom ( sec * tan ) ; i2 = ( f /. len f ) /. ( len f -' 1 ) & i2 = ( f /. len f ) . ( len f -' 1 ) ; X1 = X2 \/ ( X1 \ X2 ) & X2 \ X1 = X2 ; [. a , b , \bf 1_ G .] = 1_ G & [. a , b .] = 1_ G ; let V , W be non empty VectSpStr over F_Complex , a , b be Element of K ; dom g2 = the carrier of I[01] & rng g2 = the carrier of I[01] ; dom ( f2 | the carrier of I[01] ) = the carrier of I[01] .= the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: X .= proj2 .: X ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & x0 < x0 + r ; |. ( f /* s ) . k - G . 3 .| < r ; len Line ( A , i ) = width A & width Line ( A , i ) = width A ; SY ^2 = S . ( g . x ) ^2 .= S . ( g . x ) ^2 ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized ( p ) & Initialized ( p ) . intloc 0 in dom ( p ) ; i1 , i2 , 3 , 4 , 5 , 6 , 7 } not exists exists a , b , c st i = b & ( a , b , c ) := c ; ( r + sqrt ( r ^2 + 1 ) ) / 2 = ( cos . x ) ^2 + 0 ; for x st x in Z holds f2 is_differentiable_in x & f2 . x > 0 ; reconsider q2 = ( q - x ) / 2 as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 & j + 1 <= j ; assume f in the carrier of [ X \to [#] Y ] ; F . a = H / ( x , y ) . a ; ( TRUE _ { T } ) . ( u , u ) = TRUE ; dist ( ( a * seq ) . n , h ) < r ; 1 in the carrier of [. 0 , 1 .] & [. 0 , 1 .] c= dom G ; ( ( p2 `2 ) - x1 ) - x1 > - g & ( p2 `2 ) - x1 < - g ; |. r1 - r2 .| = |. a1 .| * |. p2 - p1 .| ; reconsider S-14 = 8 as Element of Seg 8 ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b DppW .first() = DW .first() + 1 .= DW . ( k + 1 ) ; i1 = [: NAT + n , K :] & i2 = [: K , K :] & k = [: K , K :] ; f . a [= f . ( f .: O1 "\/" a ) ; pred f = v & g = u , h = v + u ; I . n = Integral ( M , F . n ) ; ( chi ( S , T1 ) . s ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R4 * R ) & L~ ( R4 * R ) meets L~ ( R4 * R ) ; set h = the continuous Function of X , R | X ; set A = { L . ( k9 . n ) : not contradiction } ; for H st H is atomic holds P7 [ H ] ; set b9 = S5 \ S5 , I5 = S5 \ S5 ; Hom ( a , b ) c= Hom ( a opp , b opp ) ; sqrt ( 1 + n ) < sqrt ( 1 - s ^2 ) ; ( l . 1 ) `1 = [ l . 1 , cod l ] `1 .= [ l . 1 , cod l ] ; y +* ( i , y /. i ) in dom g ; let p be Element of QC-WFF ( Al ) , A be Subset of QC-WFF ( Al ) ; X /\ X1 c= dom ( f1 - f2 ) /\ ( X /\ X1 ) ; p2 in rng ( f /^ p1 ) & p1 in rng ( f /^ ( p1 + 1 ) ) ; 1 <= indx ( D2 , D1 , j1 ) + 1 & indx ( D2 , D1 , j1 ) + 1 <= len D2 ; assume x in K1 /\ K0 \/ ( 3 * K ) /\ K0 ; - 1 <= ( ( f2 . O ) . O ) `2 & - 1 <= ( ( f2 . I ) . I ) `2 ; f , g be Function of I[01] , TOP-REAL 2 , a , b , c be Real ; k1 -' k2 = k1 - k2 + 1 .= k2 -' 1 + 1 .= k2 -' 1 + 1 ; rng ( seq ^\ k ) c= ]. x0 , x0 + r .[ & rng ( seq ^\ k ) c= dom f ; g2 in ]. x0 - r , x0 + r .[ & g2 < x0 + r ; sgn ( p `1 , K ) = - ( - 1_ K ) .= - 1_ K ; consider u be Nat such that b = p |^ y * u ; ex A being the normal normal sequence of X st a = Sum A & A is limit_ordinal ; Cl ( union H ) = union ( ( Cl H ) \ H ) ; len t = len t1 + len t2 & len t1 = len t2 + len t2 ; v = v + w |-- v + w |-- A ; v <> DataLoc ( t1 . GBP , 3 ) & v <> DataLoc ( t1 . GBP , 3 ) ; g . s = sup ( d " { s } ) ; ( \dot y ) . s = s . ( y , s . s ) ; { s : s < t } in NAT & t = {} + 1 } ; s ` \ s = s ` \ 0. X .= 0. X \ 0. X ; defpred P [ Nat ] means B + $1 in A & not $1 in B ; ( 3such + 1 ) ! = 111111111111111! * ( 1\mathopen + 1 ) ; U . succ A = T . ( 1_ U , A ) .= ( U , A ) . ( IC U , A ) ; reconsider y = y as Element of ( len y ) -tuples_on COMPLEX ; consider i2 being Integer such that y0 = p * i2 and i2 <> 0 and i1 <> 0 ; reconsider p = Y | Seg k as FinSequence of NAT ; set f = ( S , U ) \mathop \mathop { z } ; consider Z be set such that ( lim s ) in Z and Z in F ; let f be Function of I[01] , TOP-REAL n , a , b , c be Real ; ( ( the M of M ) . [ n + i , 'not' A ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; R1 , R2 be Element of ( len R ) -tuples_on the carrier of K ; reconsider l = 0. ( V , m ) as Linear_Combination of A ; set r = |. e .| + |. w .| + |. w .| + a ; consider y being Element of S such that z <= y and y in X ; a ' "\/" ( b ' "\/" c ) = 'not' ( ( a 'or' b ) 'or' c ) ; ||. x9 - g .|| < r2 & ||. g - g .|| < r2 ; b9 , a9 // b9 , c9 & b9 , c9 // b9 , c9 & b9 , c9 // c9 , c9 ; 1 <= k2 -' k1 & k2 + 1 - k1 + 1 = k2 - k1 + 1 & k2 + 1 = k2 - k1 ; sqrt ( ( p `1 ) ^2 - ( p `2 ) ^2 ) >= 0 ; sqrt ( ( q `1 ) ^2 - ( q `2 ) ^2 ) < 0 ; E-max C in cell ( RR , 1 , 1 ) & E-max L~ R in L~ R ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) | D ) ; LIN b , a , c or LIN b , a , c ; p `1 , a // a `1 , b `2 or p `1 , a // b `1 , b `2 ; g . n = a * Sum ( f | n ) .= f . n ; consider f being Subset of X such that e = f and f is being that f is \rm that f is \rm f ; F | ( N2 , S ) = CircleMap * ( F | [: N2 , S :] ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } & the carrier of V = { 0. V } ; rng ( ( - 1 ) (#) cos ) = [. - 1 , 1 .] ; assume Re ( seq ) is summable & Im ( seq ) is summable ; ||. ( vseq . n ) - ( vseq . m ) .|| < e ; set g = O --> 1 ; reconsider t2 = t11 as 0 -started string of S2 , x be 0 -started string of S2 ; reconsider x9 = seq . n as sequence of REAL-NS n , r be Real ; assume that E-max C meets L~ go and L~ pion1 meets L~ pion1 and L~ pion1 /\ L~ pion1 meets L~ pion1 ; - ( - 1 / 2 ) < F . n - F . x ; set d1 = ]. \bf 1 , 0 .[ , d2 = ]. 1 , 0 .[ , d2 = ]. 1 , 0 .[ , d2 = ]. 1 , 0 .[ , d2 = ]. 1 , 0 .[ , d2 = ]. 1 , 0 .[ , d2 = ]. 1 , 0 .[ , d2 = ]. 1 , 2 |^ ( q -' 1 ) - 1 = 2 |^ ( q -' 1 ) - 1 ; dom ( v | 2 ) = Seg len ( d | 2 ) .= Seg len d ; set x1 = - ( k2 + 1 ) + |. k2 + 1 .| ; assume for n being Element of X holds 0. ( X , n ) <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and Tc . i <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( Carrier ( L2 ) + L2 ) c= I & L2 is finite ; 'not' All ( x , p ) => All ( x , p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal w.r.t. of A ; Z c= dom ( ( sin (#) sin ) `| Z ) ; |. 0. TOP-REAL 2 - ( q `2 / |. q .| - cn ) .| < r / 2 ; ConsecutiveSet2 ( B , succ B ) c= ConsecutiveSet2 ( A , succ ( d ) ) ; E = dom L & L is_measurable_on E & L is_measurable_on E implies L + K is_measurable_on E C |^ ( A + B ) = C |^ B * C |^ A ; the carrier of W2 c= the carrier of W1 & the carrier of W1 c= the carrier of V ; I . IC Comput ( P2 , s2 , k ) = P . IC Comput ( P2 , s2 , k ) ; pred x > 0 means : Def1 : sqrt ( 1 + x ^2 ) = x ^2 ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , R .] and p in P ; b , c connected connected connected connected connected connected & - C , - C are_homotopic implies - C , - C \mathclose { \lbrack } \upharpoonright C is continuous assume f = id the carrier of O & f is Function of O , O ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( the carrier of V ) ; reconsider g = f " as Function of U1 , U2 * , U2 * ; A1 in the carrier of ( G . k ) | ( X . k ) ; |. - x .| = - ( - x ) .= - x .= - x ; set S = \mathop { \rm ) } ( x , y , c ) ; ( Fib n ) * ( 5 * ( 5 * ( 5 * ( 5 * n ) ) ) >= 4 * log ; v9 /. ( k + 1 ) = vk . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - ( i * ( 0 qua Nat ) ) ; Indices M1 = [: Seg n , Seg n :] & width M1 = [: Seg n , Seg n :] ; Line ( S\mathopen { - } j } , j ) . j = Sj . j ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , x2 ] ; |. f .| - ( Re ( f (#) ( b (#) h ) ) ) is nonnegative ; assume x = ( a1 ^ <* b1 *> ) ^ <* b1 *> ^ ( a2 ^ <* b2 *> ) ; MW is_halting_on IExec ( I , P , s ) , P & M is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x + y ; LIN c , q , b & LIN c , q , c ; f9 . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x + ( y1 + z1 ) ; f9 . a = f9 . a & v in InputVertices S & v in InputVertices S & v in InputVertices S ; ( p `1 ) ^2 <= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; set R8 = Cage ( C , n ) \circlearrowleft E8 , E7 = Cage ( C , n ) ; ( p `1 ) ^2 >= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; consider p such that p = p2 and s1 < p and p < s2 and p < s2 and p < s2 ; |. ( f /* ( s (#) F ) ) . l - G . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 ) = width N & width Line ( N , k + 1 ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = x0 ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m .= REAL m ; n = k * ( 2 * t ) + ( n mod 2 ) ; dom B = 2 -tuples_on the carrier of V \ { {} } ; consider r such that r _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 as Subset of X | X1 , B2 = the carrier of X1 | X2 as Subset of X ; 1 in the carrier of [. ( 1 / 2 ) / 2 , 1 .] & 1 / 2 < 1 ; for L being complete LATTICE holds <* <* \mathbb L *> , L *> is isomorphic ; [ gi , gj ] in Ii \ Ij " ; set S2 = 1GateCircStr ( x , y , c ) , S2 = 1GateCircStr ( y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for x st x in dom f1 holds f1 . x <> 0 ; reconsider y = ( a ` ) / ( F ` ) , z = ( a ` ) / ( F ` ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( g . c ) ) . c <= h . c ; set G2 = the subgraph of G , s3 = the subgraph of G , s3 = the subgraph of G , s3 = the subgraph of G , 4 = the consider of G , 5 = the consider of G , 6 being Element of G such that 5 = 6 and 6 = 6 and 6 = 5 ; reconsider g = f as PartFunc of REAL , REAL-NS n , REAL-NS n ; |. s1 . m .| / |. p .| < d / p |^ m ; for x being element st x in ( 1 - u ) holds x in ( 1 - u ) * ( x - u ) P = the carrier of ( TOP-REAL n ) | K1 .= ( TOP-REAL n ) | K1 .= ( TOP-REAL n ) | K1 ; assume that p10 in LSeg ( p1 , p2 ) /\ L2 and LSeg ( p1 , p2 ) /\ L2 = {} ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , dom g ) ; 2 * a * b + ( 2 * c ) * d <= 2 * C1 * C2 ; f , g , h be Point of complex X , g be Point of complex X ; set h = Hom ( a , g ) (*) f ; then idseq n | Seg m = ( idseq m ) | Seg m & m <= n ; H * ( g " * a ) in the carrier of H & ( g " * a ) * ( g " * a ) in the carrier of H ; x in dom ( ( - 1 ) (#) ( sin * cos ) ) & ( ( - 1 ) (#) ( cos * cos ) ) `| Z ) . x = ( - 1 ) (#) ( cos * cos ) . x ; cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 -' 1 ) misses C ; LE q2 , q2 , P , p1 , p2 or LE q2 , q2 , P , p1 , p2 ; attr B is component means : Def1 : B c= BDD A & B c= BDD A ; deffunc D ( set , set ) = union rng $2 & $2 in rng $2 ; n + - n < len ( p + - n ) + n - n ; attr a <> 0. K means $1 in dom ( a * M ) & the_rank_of ( M * M ) = a ; consider j such that j in dom |^ Z and I = len |^ j + j and I = len |^ j ; consider x1 such that z in x1 and x1 in ( P . n ) and x2 in ( P . n ) ; for n ex r being Element of REAL st X [ n , r ] set C1 = Comput ( P2 , s2 , i + 1 ) , C2 = Comput ( P2 , s2 , i + 1 ) , C2 = Comput ( P2 , s2 , i ) ; set v = 3 -tuples_on BOOLEAN , w = 2 -tuples_on { a , b , c } , w = 1 -tuples_on BOOLEAN , y = 2 -tuples_on BOOLEAN , z = 3 -tuples_on BOOLEAN , w = 1 -tuples_on BOOLEAN , z = 2 -tuples_on BOOLEAN , w = 3 -tuples_on BOOLEAN , z = 1 -tuples_on BOOLEAN , w = 2 -tuples_on conv @ W c= union ( F .: ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( ( #Z 2 ) * ( arccot ) ) ; r3 <= s3 + ( r - r2 ) / 2 * ( 1 - r2 ) / 2 * ( 1 - r2 ) / 2 * ( 1 - r2 ) / 2 * ( 1 - r2 ) / 2 * ( 1 - r2 ) ; dom ( f (#) ( 4 (#) f3 ) ) = dom f /\ dom ( 4 (#) f3 ) .= dom f /\ dom f3 ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider g2 = gp as Point of ( TOP-REAL n ) | K1 , ( TOP-REAL n ) | K1 ; ( T * h . s ) . x = T . ( h . s ) . x ; I . ( J . x ) = ( I * L ) . x ; y in dom \mathopen { *> \! \! *> \! ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( A A A ) A ) ) ) ) ) . o ) ) ) . o ) ) ) ) . x ) ) ; for I being non degenerated commutative commutative Ring holds I is commutative commutative commutative commutative associative non empty doubleLoopStr ; set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = Initialize ( ( intloc 0 ) .--> 1 ) ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S2 in [. a , b .] ; v . ( l-13 ) = ( v *' ( lpp ) ) . i ; consider n be element such that n in NAT and x = seq . n and x = seq . n ; consider x being Element of c such that F1 . x <> F2 . x and F1 . x <> 0 ; card ( X , 0 , x1 , x2 , x3 , x4 ) = { E } \/ { F } ; j + ( 2 * k ) + m1 > j + ( 2 * k ) ; { s , t } on A2 & { s , t } on A2 & { s , t } on A2 ; n1 > len crossover ( p2 , p1 , p2 , n1 , n2 , n3 , n3 ) & n2 <= len crossover ( p2 , p1 , n1 , n2 , n3 ) ; ( ( for b being bag of g2 ) , T being HT ( f2 , T ) ) = 0. L holds ( b * T ) = ( b * T ) *' ( b * T ) then H1 , H2 are_isomorphic , H are_isomorphic is are ` & ( H , H1 ) / ( H , H1 ) is are isomorphic ; ( E-max L~ f ) .. ( f /. ( len f -' 1 ) ) > 1 & ( E-max L~ f ) .. ( f /. ( len f -' 1 ) ) > 1 ; ]. s , 1 .[ = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , r be Real ; DigA ( t-23 , z1 ) is Element of k -tuples_on k -tuples_on k -tuples_on k ; I \mathop { \rm I2211111z } = k2 & I \mathop { \rm \hbox { - } \rm @ } = k2 ; Wmin ~ = { [ a , u9 ] , [ b , u9 ] } ; ( w | p ) | ( w | w ) = p | ( w | w ) ; consider u2 such that u2 in W2 and x = v + u2 and u = v + u2 and v in W and u in W ; for y st y in rng F ex n st y = a |^ n & n >= 1 dom ( ( g * ( f , K ) ) | K ) = K ; ex x being element st x in ( ( [#] U0 ) \/ A ) . s ; ex x being element st x in ( ( ( ( ( ( ( O ) \/ A ) . s ) ) . s ) . x ; f . x in the carrier of [. - r , r .] & f . x in [. - r , - r .] ; ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} implies ( the carrier of X1 union X2 ) /\ ( the carrier of X1 union X2 ) <> {} L1 /\ LSeg ( p10 , p2 ) c= { p10 } /\ LSeg ( p10 , p2 ) ; sqrt ( b + ( b-0 ) ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of G8 such that z = y and P [ z ] and P [ z ] ; ( the (#) of ( ( the \overline of ( the carrier of X ) ) ) . an <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 2 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q in the carrier of ( TOP-REAL 2 ) | K1 ; f | E-4 ` = g | E-4 ` .= g | E-4 ` ` ` ` .= g | E-4 ` ` ` ; reconsider i1 = x1 , i2 = x2 , j1 = x3 as Element of NAT ; ( a * A ) ` = ( a * ( A * B ) ) ` ; assume ex n1 being Element of NAT st f |^ n1 is seq & f |^ n1 is seq ; Seg len ( ( Sum ( f2 ) ) | ( len ( ( Sum ( f2 ) ) ) ) = dom ( ( Sum ( f2 ) ) | ( dom ( ( Sum ( f2 ) ) ) ) ; ( Complement A1 ) . m c= ( Complement A1 ) . n & ( Complement A1 ) . n c= ( Complement A1 ) . n ; f1 . p = p0 & g1 . p = d & g2 . p = d & g2 . p = c ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; sqrt ( ( |. x .| ^2 ) ^2 - ( x ^2 ) ^2 <= sqrt ( ( r ^2 ) ^2 ) ; Sum ( F ) = Sum f & dom ( F - g ) = dom g & rng ( F - g ) c= dom g ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume W1 is Subspace of W2 & W2 is Subspace of W1 & W1 is Subspace of W2 implies W1 + W2 is Subspace of W1 ||. ( ( t . x ) - ( t . x ) ) .|| = lim ||. ( x - x0 ) .|| .= 0 ; assume that i in dom D and f | A is bounded and g | A is bounded ; sqrt ( ( p `1 ) ^2 + d ^2 ) <= sqrt ( ( p `1 ) ^2 ) ; g | Sphere ( p , r ) = id Ball ( p , r ) & g | Ball ( p , r ) = id Ball ( p , r ) ; set N8 = ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; for T being non empty TopSpace holds T is countable countable implies the TopStruct of T is countable countable width B |-> 0. K = Line ( B , i ) .= Line ( B , i ) .= B * Line ( B , i ) ; attr a <> 0 means A implies ( A \+\ B ) \subseteq ( A Y. ) \ ( B Y. ) ; then f is_differentiable 3 , u & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and c > 0 and d > 0 and c > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } ; p2 /. IC Comput ( p2 , s2 , k ) = p2 . IC Comput ( p2 , s2 , k ) .= ( IC Comput ( p2 , s2 , k ) ) ; ind ( T-10 | b ) = ind b - ind b .= ind B - ind B .= ind B - ind B .= ind B - ind B .= ind B - ind B ; [ a , A ] in the Line of Line ( A , len Line ( A9 , i ) ) & [ a , A ] in the Line of Line ( A , i ) ; m in ( the Arrows of \HM { o } ) . ( o1 , o2 ) & m in ( the Arrows of C ) . ( o1 , o2 ) ; ( ( a , CompF ( PA , G ) ) . z = FALSE ; reconsider phi = phi /. 11 , phi = phi /. 2 as Element of phi ; len s1 - ( len s2 - 1 ) + 1 > 0 + 1 - 1 ; ( \delta D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the InternalRel of A & [ f22 , f22 ] in the InternalRel of A ; the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 ; consider z being element such that z in dom g2 and p = g2 . z and p = g2 . z ; [#] V1 = { 0. V1 } .= the carrier of V1 .= the carrier of V1 .= the carrier of V1 ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P [ P2 ] ; assume x1 in dom ( f | X ) & ||. x1 - x0 .|| < s & ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ; c /. [ b , c ] `2 = c /. [ a , c ] .= c /. ( a , c ) ; reconsider t1 = p1 , t2 = p2 , t2 = p2 as Term of C , V , a , b be Element of C ; sqrt ( 1 + 2 ) in the carrier of [. 1 / 2 , 1 .] & sqrt ( 1 + 2 ) < 1 ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `1 ) + D * ( p1 `2 ) ; R . b ||. a .|| = 2 * PI - b .= 2 * b ; consider I1 such that B = 1- I1 * C + ( 0 * A ) and 0 <= I1 and I1 <= 1 ; dom g = dom ( ( the Sorts of A ) * ( a , 6 ) ) .= dom ( ( the Sorts of A ) * ( a , 6 ) ) ; [ P . ( l1 + 1 ) , P . ( l1 + 1 ) ] in => => ( T . ( l1 + 1 ) ) ; set s2 = Initialize s , P2 = Initialize s , P2 = P +* stop I ; reconsider M = mid ( z , i2 , i1 ) as Matrix of 2 , K , len z , K ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( 0 , 1 ) = 1 & 0 / ( 0 , 1 ) = 0 & 1 / ( 0 , 1 ) = 1 ; assume x in the left st x in the left of g or x in the left st not x in the right of g & x in the right of g ; consider M be strict Subgroup of A such that a = M and T is Subspace of M and for A being Subset of M holds T . A is Subspace of M ; for x st x in Z holds ( ( ( exp_R * f ) + ( exp_R * f ) ) `| Z ) . x <> 0 len W1 + len W2 + m = 1 + len W2 + m .= 1 + len W2 + m .= len W1 + m + 1 ; reconsider h1 = vseq . n - t1 as Lipschitzian LinearOperator of X , Y ; ( i mod len ( p + q ) ) + 1 in dom ( p + q ) ; assume that s2 is_or F in the |= of s1 and F in the |= of s2 and F . ( len F ) = s2 ; ( ( for x , y holds ( x , y ) ) 3 , ( x , y ) ) 3 = ( x , y ) / 3 , ( x , y ) / 3 = ( x , y ) / 3 for u being element st u in Bags n holds ( p *' m ) . u = p . u for B being Subset of u st B in E holds A = B or A misses B or A misses B ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = [: p , q :] \/ [: p , q :] ; x in { X where X is Ideal of L : X is Ideal of L |^ n } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W1 /\ W2 ; ( id ( a + b ) ) * id ( a + b ) = id ( a + b ) * id ( a + b ) ; ( dom ( X --> f ) ) . x = ( X --> dom f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => ( q => r ) ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( - 2 |^ n ) * ( n -' m ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) & ( f1 (#) f2 ) . x in dom ( f1 (#) f2 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and b2 . r = c2 . r ; ex P st a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a2 on P & a1 on P & a2 on P reconsider gf = g opp * f , hh = h opp * g as strict Subgroup of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in ( downarrow v1 ) ` and v1 in ( downarrow v1 ) ` ; n in { i where i is Nat : i < n + 1 & n < i + 1 } ; ( F /. ( i , j ) ) `2 >= ( F /. ( m , k ) ) `2 ; assume K1 = { p : ( p `1 / |. p .| - cn ) / ( 1 + cn ) >= cn } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) * ( ConsecutiveSet ( A , O1 ) ) ; set I1 = Macro ( a , intloc 0 ) , I2 = AddTo ( a , intloc 0 ) , I2 = AddTo ( a , intloc 0 ) , I3 = AddTo ( a , intloc 0 ) , I2 = AddTo ( a , intloc 0 ) , I3 = [ a , intloc 0 ] ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 c= the carrier of L2 ; consider x9 being Element of GF ( p ) such that x9 |^ 2 = a and x9 |^ 2 = a ; reconsider e1 = e1 , e2 = e2 , e2 = e2 as Element of D * , e2 = e2 as Element of D * ; ex O being set st O in S & C1 c= O & M . O = 0. ( X , Y ) ; consider n be Nat such that for m be Nat st n <= m holds S . m in U1 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) . x ) ; defpred P [ Nat ] means A + succ $1 = succ A & A + $1 = succ $1 ; the left ]| of ( - g ) * ( - g ) = the left st ( - g ) * ( - g ) = the left st ( - g ) * ( - g ) = ( - g ) * ( - g ) ; reconsider p9 = x , q9 = y , p9 = z as Point of ( TOP-REAL 2 ) | K1 , e = z as Point of ( TOP-REAL 2 ) | K1 ; consider g2 such that g2 = y and x <= g2 and g2 <= x0 and x0 <= g2 and g2 <= x0 and g2 <= x0 and g2 <= x0 and g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 .= len x2 + len y2 .= len x2 + len y2 .= len x2 + len y2 ; for x being element st x in X holds x in the set of K iff x in the set of K & not x in K & not x in K LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} or LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} ; func ; len ( ( ( \mathbb C ) | ( len ( ( \mathbb C ) | ( len C ) ) ) ) ) <= len ( ( C | ( len C ) ) ) ; attr K is L means a <> 0. K & v . ( a |^ i ) = i * v . a ; consider o being OperSymbol of S such that t . {} = [ o , the carrier of S ] and o . {} = [ o , the carrier of S ] ; for x st x in X ex y st x c= y & y in X & y in X & x in X holds f . x in a IC Comput ( P3 , s3 , k ) in dom ( Comput ( P3 , s3 , k ) ) ; attr q < s & r < s implies ]. r , s .[ c= ]. p , q .[ ; consider c being Element of Class ( f . c , 3 ) such that Y = ( F . c ) . ( 1 , 3 ) and c in X ; func the ResultSort of S2 -> Function means : Def1 : for x being Element of the carrier' of S2 holds it . x = id the carrier' of S2 & x in the carrier' of S2 iff x is Function of the carrier' of S2 , the carrier' of S2 ; set y-13 = [ <* y , z *> , f2 ] , y] = [ <* z , x *> , f3 ] ; assume x in dom ( ( ( exp_R * ( arctan * arccot ) ) `| Z ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f & ( GoB f ) * ( i + 1 , width GoB f ) c= LeftComp f ; ( q `2 ) ^2 >= ( ( Cage ( C , n ) ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a ` : a in X } ; i -' len f <= len f + 1 - len f + 1 & i + 1 <= len f + 1 - len f ; for n ex x st x in N & x in N1 & h . n = x0 & h . n = x0 + r set s0 = ( IExec ( 0 , p , s ) , p , s ) . i , s = s . b ; ( p . k ) . 0 = 1 or ( p . k ) . 0 = 1 or ( p . k ) . 1 = 0 ; u + Sum L-18 in ( U \ { u } ) \/ { u + Sum L } ; consider x9 be set such that x in x9 and x9 in V1 and x9 in V1 and x9 in V1 and x9 in V1 and x = [ x9 , y9 ] ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( len p - 1 ) .= p . ( len p - 1 ) ; g + h = gg + h + h1 & x + h = g + h + h ; L1 is distributive & L2 is distributive & L2 is distributive implies L1 [: L1 , L2 :] is distributive pred x in rng f & y in rng ( f | x ) & f . x = f . y ; assume that 1 < p and ( sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = 1 and 0 <= a and a <= b and b <= 1 and a <= b ; F* ( f , <* *> ) = rpoly ( 1 , the carrier of F_Complex ) *' *' t + t *' t .= 0. F_Complex ; for X being set , A being Subset of X holds A ` = {} implies A = {} or A = {} ( ( E-max X ) `1 <= ( E-max X ) `1 & ( E-max X ) `2 <= ( E-max X ) `2 ; for c being Element of the Sorts of A , a being Element of the Sorts of A holds c <> a ; s1 . GBP = ( Exec ( i2 , s2 ) ) . DataLoc ( s . GBP , 2 ) .= s . DataLoc ( s . GBP , 2 ) .= s . DataLoc ( s . GBP , 2 ) .= s . DataLoc ( s . GBP , 2 ) ; for a , b being Real holds [ a , b ] in ( y iff b >= 0 ) & a >= 0 ) implies a >= 0 for x , y being Element of X holds x ` \ y ` = ( x \ y ) ` \ ( x \ y ) ` mode BCK-algebra of i , j , m , n , m , n , m , n , m , k be Nat holds m + n , n , m , k , n + 1 ; set x2 = |( Re ( y - x ) , ( Im ( y - x ) ) )| ; [ y , x ] in dom u & u2 . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A ; 0 <= \delta & |. \delta .| . n < ( 0 - 2 ) / 2 ; ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) <= ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ; set A = ( 2 * b ) / 2 ; for x , y being set st x in R" holds x , y are_x , T deffunc F2 ( Nat ) = b . $1 * ( M . $1 ) * ( M . $1 ) ; for s being element holds s in ( { f } \/ g ) iff s in ( ( { f } \/ g ) \/ ( ( { g } \/ { f } ) ) for S being non empty non void holds S is connected holds S is connected implies S is connected max ( ( degree ( K , z ) ) / ( 1 + ( d / ( K + 1 ) ) ) ) >= 0 ; consider n1 be Nat such that for k holds seq . ( n1 + k ) < r + s and for n holds seq . ( n1 + k ) < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( B ) ; set n-15 = nw '&' ( M . x qua Element of BOOLEAN ) , nw = M . ( x qua Element of BOOLEAN ) , nw = M . ( x qua Element of BOOLEAN ) ; f " V in ( the carrier of X ) & f " V in D & f " V in D & f " V in D ; rng ( ( a ^\ c ) \mathbin { + } \cdot ( 1 , b ) ) c= { a , c } ; consider y being Wsubgraph of G1 such that y `1 = y and dom y `1 = WWG2 and y `2 = WWWmod G ; dom ( 1 / 2 ) /\ ]. - 1 , 1 .[ c= ]. - 1 , 1 .[ & dom ( 1 / 2 ) /\ ]. - 1 , 1 .[ c= dom ( 1 / 2 , 1 .[ ; i , j , n , r , n , r be Element of Matrix ( i , j , n , r ) ; v ^ ( n |-> 0 ) in Lin ( ( B | ( B -' 1 ) ) ) & v ^ ( ( B | ( B -' 1 ) ) ) in Lin ( ( B | ( B -' 1 ) ) ; ex a , k1 , k2 st i = a := k1 & i = b := k2 & i <> k2 & i <> k2 ; t . NAT = ( NAT .--> ( i1 , i2 ) ) . NAT .= ( NAT .--> ( i1 , i2 ) ) . NAT .= ( NAT .--> ( i1 , i2 ) ) . NAT .= ( NAT --> i1 ) . NAT .= ( NAT --> i1 ) . NAT ; assume F is bbbfamily & rng p = F & dom p = Seg ( n + 1 ) & rng p c= Seg ( n + 1 ) ; ( not b in Line ( b , a , b ) & not LIN a , b , c ) & not LIN a , b , c ( L1 \HM { L1 } \HM { or } L2 c= ( L1 \HM { L2 } ) \HM { and ( L2 \HM { L2 } ) \HM { is } } is \HM { \HM { 0 } } -and ( L2 of L2 ) consider O being set such that O c= ( L1 \HM { L } ) there } ; consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) ; consider a , b such that a * ( u - w ) = b * ( -w ) and 0 < a and a < b and b < 1 ; defpred P [ FinSequence of D ] means |. Sum $1 .| <= Sum ( $1 ) & Sum ( $1 ) <= Sum ( $1 ) ; u = cos / ( x , y ) . v + ( cos / ( x , y ) ) . v .= v + u . v .= v ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) + g , x ) + 0 ; P [ p , |. p .| : p (#) ( p (#) id NAT ) = ( id the carrier of A ) . ( id the carrier of A ) consider X be Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and X is finite and inininininP ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( E-max L~ Cage ( C , n ) ) .. ( Cage ( C , n ) ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & g <= h & l1 <= h } ; ( ( Partial_Sums ( G . n ) ) . i <= ( Partial_Sums ( G . n ) ) . i & ( Partial_Sums ( G . n ) ) . i <= ( Partial_Sums ( G . n ) ) . i ; f . y = x .= x * 1. L .= x * 1. L .= x * 1. L .= x * 1. L .= x ; NIC ( ( IC SCM+FSA , { i1 } ) , i ) = { ( a , i ) , ( i + 1 ) } .= { ( a , i ) } ; LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 } /\ LSeg ( p1 , p2 ) .= { p1 } ; Product ( ( the support of I-15 ) +* ( i , { 1 } ) ) in ( Z . i ) ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) | ( the carrier of S2 ) .= Following ( s1 , n ) | ( the carrier of S2 ) ; ( W-min ( Q ) ) `1 <= ( q `1 ) / 2 & ( q `2 ) / 2 <= ( q `1 ) / 2 ; f /. i2 <> f /. ( len f -' 1 ) & f /. ( len g -' 1 ) = f /. ( len f -' 1 ) ; M , f / ( x. 3 , m ) / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) |= H ; len ( ( P ^ ) ^ ( P ^ ) ) in dom ( ( P ^ ) ^ ( P ^ ) ) ; A |^ ( m , n ) c= A |^ ( m , n ) & A |^ ( k , l ) c= A |^ ( k , l ) ; R |^ n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 and not p1 . n1 = p2 . n1 ; consider X be set such that X in Q and for Z being set st Z in Q & Z <> X holds X \not c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| . v = upper_bound ( |. v .| ) & ||. v .|| . v = upper_bound ( |. v .| ) for phi holds phi in X implies phi phi in X & phi phi in X & phi phi in X rng ( ( Sgm dom f-6 ) | ( dom ( Sgm dom ( f-6 ) ) ) c= dom ( Sgm dom ( f-6 ) | ( dom ( Sgm dom ( f-6 ) ) ) ; ex c being FinSequence of D st len c = k & P [ c ] & a = c & b = c & a = b ; ( the_arity_of ( a , b , c ) ) . <* b , c *> = <* Hom ( b , c ) , Hom ( a , b ) *> . <* b , c *> ; consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and for x be Element of X holds f1 . x = f . x ; a1 = b1 & a2 = b2 or a1 = b3 or a2 = b3 or a1 = b3 or a2 = b3 & a3 = b3 ; D2 . indx ( D2 , D1 , n1 ) + 1 = D1 . indx ( D2 , D1 , n1 ) + 1 .= D1 . indx ( D2 , D1 , n1 ) ; f . ( ||. r .|| ) = ||. r .|| /. 1 .= <* r *> /. 1 .= r .= r . 1 .= x ; consider n be Nat such that for m be Nat st n <= m holds Cseq . m = Cseq . m ; consider d be Real such that for a , b being Real st a in X & b in Y holds a <= d and a <= b ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) <= x0 + ( K * |. h .| ) ; attr F is commutative associative means : Def1 : for b being Element of X holds F \hbox { b } -\hbox { b } . b = f . b ; p = ( - 1 ) * ( 0. TOP-REAL 2 + 0 ) .= 1 * ( 0. TOP-REAL 2 ) .= 1 * ( 0. TOP-REAL 2 + 0 ) .= 1 * ( 0. TOP-REAL 2 + 0 ) .= 1 * ( 0. TOP-REAL 2 + 0 ) .= 1 * ( 0. TOP-REAL 2 + 0 ) .= 1 * ( 0. TOP-REAL 2 + 0 ) .= 1 * ( 0. TOP-REAL 2 + 0 ) ; consider z1 such that b `1 , x3 , x3 , x4 is_collinear and o , x1 , x2 is_collinear and o <> x2 and o <> x1 and o <> x2 and o <> x2 and o <> x1 and o <> x2 ; consider i such that Arg ( ( Rotate ( s ) ) . q ) = s + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card f and rng g c= f . x and g . x = f . x ; assume that A = P2 \/ Q2 and Q1 <> {} and for i , j st i in dom P2 & j in dom P2 & i <> j holds P2 . i misses P2 . j and P2 . j misses P2 . i ; attr F is associative means : Def1 : F .: ( f , g ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x `1 < z & z `2 < x `2 or m < i & z `2 < i `2 & z `2 < i `2 ; consider k2 be Nat such that k2 in dom P-2 and l in P-2 and k = ( P-2 . k2 ) `1 + ( k - 1 ) * ( k - 1 ) ; seq = r (#) seq implies for n holds seq . n = r * seq . n & seq . n = r * seq . n F1 . [ id a , [ a , a ] ] = [ f * ( id a , a ] ) , f * ( id a , a ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & p in D1 } ; consider z being element such that z in dom ( ( dom F ) | F ) and ( ( dom F ) | F ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y cell ( G , i , s ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and ( T | E1 ) . e = v ; ( F ' * b1 ) . x = ( Mx2Tran J ) . ( b1 , b2 ) .= ( ( Mx2Tran J ) . ( b2 , b3 ) ) . ( b2 , b3 ) ; - 1 _ { \mathbb R } = ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n ; attr for x being set st x in dom f /\ dom g holds g . x <= f . x ; len ( f1 . j ) = len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) ; All ( 'not' All ( a , A , G ) , B , G ) |= All ( 'not' All ( a , B , G ) , A , G ) ; LSeg ( E . k , F . ( k + 1 ) ) c= Cl RightComp Cage ( C , k + 1 ) \/ RightComp Cage ( C , k + 1 ) ; x \ a |^ m = x \ ( a |^ k ) .= ( x \ a ) |^ k .= x \ a ; k -func func func ( I ) -> Element of ( ( commute I ) . k ) . k = ( ( ( commute I ) . k ) . k .= ( ( ( commute I ) . k ) . k .= ( ( ( commute I ) . k ) . k ; for s being State of A2 holds Following ( s , n ) . ( n + 2 * n ) is stable ; for x st x in Z holds f1 . x = a ^2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 ; support ( ( support ( n ) ) \/ support ( ( support ( m ) ) ) c= support ( ( support ( n ) ) \/ support ( ( support ( m ) ) ) ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier of B ) * the carrier of C ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + b ^2 ) ) ; phi /. ( succ b1 ) = g . a & phi /. ( a + 1 ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) | i ) and i <> j ; { x1 , x2 , x3 , x4 } = { x1 } \/ { x2 , x3 , x4 } .= { x1 } \/ { x2 , x3 , x4 } ; the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 /\ ( U2 "\/" U2 ) ; ( - 2 * ( a * ( b * ( b - a ) ) + b ) / 2 > 0 ; consider W00 such that for z being element holds z in W00 iff z in N ~ & P [ z ] ; assume ( the Arity of S ) . o = <* a *> & ( the ResultSort of S ) . o = r & ( the ResultSort of S ) . o = r ; Z = dom ( ( exp_R * ( arccot * arccot ) ) `| Z ) & for x st x in Z holds ( ( exp_R * arccot ) `| Z ) . x = exp_R . x / ( 1 + x ^2 ) integral ( f , S1 ) is convergent & lim ( integral ( f , S2 ) ) = integral ( f , S2 ) - integral ( g , S2 ) . x0 ; ( for a9 holds ( a . f ) => ( g . x ) => ( ( x . f ) => ( x . f ) ) in 1 iff ( x . f ) => ( x . f ) in len ( M2 * M1 ) = n & width ( M2 * M1 ) = n & width ( M2 * M1 ) = n & width ( M2 * M1 ) = n ; attr X1 union X2 is open means : Def1 : X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X2 are_separated ; for L being lower-bounded antisymmetric antisymmetric antisymmetric RelStr holds X "\/" Y = { Bottom L } reconsider f9 = F2 . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( consider w being FinSequence of I such that the initial of M , the initial q -{ s } ^ w ^ <* s *> ^ w ^ w ^ w ^ w ^ ( <* s *> ^ w ) and q ^ w ^ w ^ w ^ w ^ w ^ w ^ w ; g . ( a |^ 0 ) = g . ( 1_ G ) .= g . ( 1_ G ) .= g . ( 1_ G ) .= g . ( 1_ G ) .= g . ( 1_ G ) ; assume for i be Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier L = C & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C2 ) /\ ( the carrier' of C2 ) c= the carrier' of C2 & ( the carrier' of C2 ) /\ ( the carrier' of C2 ) c= ( the carrier' of C2 ) /\ ( the carrier' of C2 ) ; reconsider o9 = o `1 as Element of TS ( the Sorts of A ) , p = ( the Sorts of A ) . o as Element of TS ( ( the Sorts of A ) . v ; 1 * x1 + ( 0 * x2 + 0 * x3 ) + ( 0 * x3 ) = x1 + <* \underbrace ( 0 , \dots , 0 ]| , 0 , 0 ) .= x1 + 0 ; Eg " . 1 = ( Eg " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 .= ( E " ) . 1 ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , u2 = the carrier of U2 /\ ( U1 "\/" U2 ) as non empty Subset of U2 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" z ) "\/" ( x "/\" y ) ; |. f . ( s1 . l1 + 1 ) - f . ( s1 . l1 ) .| < ( 1 - M ) / ( 1 - M ) ; LSeg ( ( Cage ( C , n ) /. i , ( Gauge ( C , n ) * ( i + 1 , j ) ) /. ( i + 1 ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- + R ) /. ( x- + R ) ; g . c * ( g . c ) * f . c + f . c <= h . c * ( f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the carrier of [ A , b ] and ColVec2Mx f = the carrier of [ A , b ] and len f = width A and width f = width A and width f = width A and width f = width A and width f = width A and width f = width A and width f = width A and width f = width A ; len ( - M1 ) = len M1 & width ( - M2 ) = width M1 & width ( - M2 ) = width M1 & width ( - M2 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( \cal E of TOP-REAL n ) \ ( { i } \/ { i } ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_differentiable_in z0 implies pdiff1 ( f2 , 2 ) is_differentiable_in z0 attr a <> 0 & b <> 0 & Arg a = Arg b & Arg ( - b ) = Arg ( - b ) & Arg ( - b ) = Arg ( - b ) ; for c being set st not c in [. a , b .] holds not c in Intersection ( the open m of a , b ) assume V1 is linearly-independent & V2 is closed & V2 is closed & V1 = { v + u : v in V1 & u in V1 } ; z * x1 + ( 1 - z ) * x2 in M & z * x1 + ( 1 - z ) * x2 in N ; rng ( ( ( P qua Function ) " ) * S1 ) = Seg card ( ( P " ) " ) .= Seg card ( ( P " ) " ) .= Seg card ( ( P " ) " ) ; consider s2 being Integer such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b and s2 . n <= b ; h2 " . n = h2 . n " & 0 < ( - 1 ) / ( 2 * ( - 1 ) ) & 0 < ( - 1 ) / ( 2 * ( - 1 ) ) ; ( Partial_Sums ||. seq .|| ) . m = ||. ( seq . m ) - ( seq . n ) .|| .= ||. ( seq . m ) - ( seq . n ) .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= Comput ( P2 , s2 , 1 ) . b .= Comput ( P2 , s2 , 1 ) . b .= Comput ( P2 , s2 , 1 ) . b ; - v = ( - 1 ) * v & - w = ( - 1 ) * v & - w = ( - 1 ) * v & - w = ( - 1 ) * v ; sup ( k .: D ) = sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) ; A |^ k , l l l l l , k + ( n , l ) .. ( A |^ k , l ) = ( A |^ n , l + ( n , l ) .. ( A |^ k , l ) ) ; for R being add-associative right_zeroed right_complementable associative distributive non empty doubleLoopStr , I , J being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) .= sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) ; for a , b being non zero Nat st a , b are_relative_prime & b , a are_relative_prime holds ( for n being Nat holds ( a * b ) = ( ( a * b ) + ( b * n ) ) + ( ( a * n ) + ( b * n ) ) consider A9 being countable set such that r is countable and r is countable and A9 is countable and for i being Nat holds A9 is closed & not i in A and not i in A ; for X being non empty addLoopStr , M , N being Subset of X st y in M & for x , y being Point of X st x in M holds x + y in M + N holds x + y in M + N { [ x1 , x2 ] , [ y1 , y2 ] } c= { [ x1 , x2 ] } & { [ y1 , y2 ] } c= { [ y1 , y2 ] } ; h . ( f . O ) = |[ A * ( f . O ) + B , C * ( f . O ) + D ]| ; ( Gauge ( C , n ) * ( k , i ) ) `1 in L~ Upper_Seq ( C , n ) /\ L~ Upper_Seq ( C , n ) ; cluster m , n -> prime means : Def1 : for Nat holds ( for p being prime Nat holds p divides n iff p divides n ) & ( not p divides n ) & not p divides n ; ( f (#) F ) . x1 = f . ( F . x1 ) & ( f (#) F ) . x2 = f . ( F . x2 ) ; for L being Lattice , a , b , c being Element of L st a \ b <= c & b \ a <= c holds a "/\" b <= c consider b be element such that b in dom ( H / ( x , y ) ) and z = H / ( x , y ) and z = H / ( x , y ) ; assume that x in dom ( F (#) g ) and y in dom ( F (#) g ) and ( F (#) g ) . x = ( F (#) g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , W . 6 , G & e Joins W . 5 , G . 6 , G ; ( ( exists h h h ) [ f ] ) . n = ( ( h h h ) . n ) * ( h . n ) .= ( h * ( n + 1 ) ) . x ; j + 1 = j - len h11 + 1 .= i + 1 - len h11 + 1 .= i + 1 - len h11 + 1 - len h11 + 1 ; ( *' S ) . f = S *' . ( f , ( *' S ) . f ) .= S *' . ( f , f ) .= S *' . ( f , f ) .= S *' . ( f , f ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L2 ) and Sum ( L2 * H ) = Sum ( L2 ) and Sum ( L2 * H ) = Sum ( L2 ) ; attr R is element means : Def1 : p in R & q <> q & p <> q & q <> r & r < s & s in R & s in R ; dom ( product ( X --> f ) ) = meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= dom f ; sup ( proj2 .: ( Upper_Arc ( C ) /\ Vertical_Line w ) ) <= sup ( proj2 .: ( Upper_Arc ( C ) /\ Vertical_Line w ) ) & sup ( proj2 .: ( Upper_Arc w ) /\ Vertical_Line w ) <= sup ( proj2 .: ( Vertical_Line w ) /\ Vertical_Line w ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - S . n .| < r i * fN - f . j = i * ( f - g ) .= i * ( f - g ) .= i * ( f - g ) .= i * ( f - g ) ; consider f being Function such that dom f = 2 -tuples_on X ( ) and for Y being set st Y in 2 -tuples_on X ( ) holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g2 in union C and g = [ g1 , g2 ] and g1 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C and g2 in C ; func d -count ( n ) -> Nat means : Def1 : d |^ n divides n & d |^ ( n + 1 ) divides n & d |^ ( n + 1 ) divides n ; f9 . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . [ 2 * x , t ] .= ( - P ) . [ 2 * x , t ] .= a ; t = h . D or t = h . C or t = h . E or t = h . F or t = h . J or t = M . M ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( 2 |^ ( n + 1 ) ) ; sqrt ( ( q `1 ) ^2 + ( q `2 ) ^2 ) <= sqrt ( ( q `1 ) ^2 ) + sqrt ( ( q `2 ) ^2 ) ; h1 . ( i + 1 + 1 ) = h2 . ( i + 1 + 1 -' len h11 ) .= h2 . ( i + 1 -' len h11 ) ; consider o being Element of the carrier' of S , x2 being Element of { [ o , x2 ] } such that a = [ o , x2 ] and [ o , x2 ] in dom p and [ o , x2 ] in dom p ; for L being RelStr , a , b being Element of L holds a <= b iff a <= b & b <= a & a <= b ||. h1 .|| . n = ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 . n .|| .= ||. h1 .|| . n ; ( ( - ( exp_R * exp_R ) ) . x = f . x - ( exp_R * exp_R ) . x .= ( - ( exp_R * exp_R ) ) . x .= ( - ( exp_R * exp_R ) . x ) .= ( - ( exp_R * exp_R ) ) . x ; attr r = F .: ( p , q ) means : Def1 : len r = len p & for i holds r . i = min ( p , q ) ; sqrt ( ( r ^2 ) ^2 + ( r ^2 ) ^2 ) + sqrt ( ( r ^2 ) ^2 + ( r ^2 ) ^2 ) <= sqrt ( ( r ^2 ) ^2 + ( r ^2 ) ^2 ) + sqrt ( ( r ^2 ) ^2 ) ; for i being Nat , M being Matrix of n , K st i in Seg n & i in Seg n holds Det ( M , i ) = Sum ( Det ( M , i ) ) + ( Det ( M , i ) ) then a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v ; p . ( j -' 1 ) * ( q *' r ) . ( i + 1 -' j ) = Sum ( p . j - q . ( i + 1 -' j ) ) * ( q . j - r ) ; deffunc F ( Nat ) = L . 1 + ( R /* ( h ^\ n ) ) . $1 * ( ( R /* ( h ^\ n ) ) . $1 - ( R /* ( h ^\ n ) ) . $1 ; assume that the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H1 = f .: ( the carrier of H2 ) and the carrier of H1 = f .: ( the carrier of H1 ) and the carrier of H1 = f .: ( the carrier of H2 ) and the carrier of H1 = f .: ( the carrier of H1 ) ; Args ( o , Free ( X , Free ( X ) ) = ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) # * ( the Arity of S ) ; H1 = n + 1 -] & ( |. 2 to_power ( n + 1 ) .| + h = n + 1 -\hbox { - } cluster N .| .= n + 1 -\hbox { - } cluster N } ; ( O ( ) ) `1 = 0 & ( O ( ) ) `1 = 1 & ( O ( ) ) `1 = 0 & ( O ( ) ) `1 = 0 & ( O ( ) ) `1 = 1 & ( O ( ) ) `1 = 0 & O ( ) ) `2 = 0 ; F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } ; attr b <> 0 & d <> 0 & b <> d & c <> d & d = b & a = b & b = c & c = d ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom f \/ dom g ; for i be set st i in dom g ex u , v being Element of L st g /. i = u * v & v in B * a & u in B * a g `1 * P " * g " = g `1 * ( g " * P " * g " ) .= g " * ( g " * P " * g " ) .= g " * ( g " * g " * g " ) .= g " * ( g " * g " ) .= g " * ( g " * g " ) ; consider i , s1 such that f . i = s1 and not ( f . i = s1 & not i in s1 & s1 . ( i + 1 ) <> s1 ) & f . ( i + 1 ) <> s1 and f . ( i + 1 ) <> s1 and f . ( i + 1 ) <> s2 ; h5 | ]. a , b .[ = ( g | Z ) | Z .= g | Z .= g | Z .= g | Z .= g | Z ; [ s1 , t1 ] , [ s2 , t2 ] ] in R & [ s2 , t2 ] in R & [ s2 , t2 ] in R & [ s2 , t2 ] in R & [ s2 , t2 ] in R ; then H is negative & H is negative & H is non negative implies H is non --+ -g\mathopen { x } -g\mathclose { x } -g\mathopen { x } } attr f1 is total means : Def1 : 1 / 2 is total & ( 1 / 2 ) (#) ( f1 - f2 ) = f1 . c * ( f2 . c ) " ; z1 in W2 " ( { z2 } ) or z1 = z2 " ( { z2 } ) or z1 = z2 " ( { z2 } ) & z2 in W2 " ( { z2 } ) ; p = 1 * p .= a " * a * p .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * b " * ( b " * q ) .= b " * ( b " * q ) ; for r be sequence of REAL , K be Real st for n be Nat holds ( for n be Nat holds r . n <= K . n ) holds upper_bound ( rng ( r - seq ) <= K . n ( E-max C ) meets ( L~ go \/ L~ pion1 ) \/ ( L~ pion1 \/ L~ pion1 ) \/ ( L~ pion1 \/ L~ pion1 ) meets ( L~ pion1 \/ L~ pion1 ) \/ ( L~ pion1 \/ L~ pion1 ) meets ( L~ pion1 \/ L~ pion1 \/ L~ co ) ; ||. f . ( g . ( k + 1 ) ) - g . ( k + 1 ) .|| <= ||. g . ( g . ( k + 1 ) ) .|| * ( K / 2 ) ; assume h = ( ( B .--> B ) +* ( C .--> D ) +* ( E .--> F ) +* ( F .--> J ) ) +* ( E .--> F ) +* ( F .--> J ) +* ( E .--> E ) +* ( F .--> J ) +* ( F .--> E ) +* ( F .--> E ) ; |. ( ( lower H ) . n ) - ( ( lower H ) . n ) .| <= e * ( ( lower H ) . n ) - ( ( lower H ) . n ) ; ( ( the Sorts of Free ( C , v ) ) . e = [ the Sorts of C , the carrier of C ] -tree ( the Sorts of C ) . e , ( the Sorts of C ) . e ] .= [ ( the Sorts of C ) . e , ( the Sorts of C ) . e ] ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 } .= { x1 , x2 , x3 } .= { x2 , x3 } \/ { x3 } .= { x1 , x2 } ; assume that A = [. 0 , 2 * PI .] and integral ( A , A ) = ( ( #Z n ) * sin ) . x and ( A = #Z n ) * sin . x ; p `1 is Permutation of dom f1 & p `2 = ( Sgm Y ) . i & p `2 = ( Sgm Y ) . i & p `2 = ( Sgm Y ) . i ; for x , y st x in A holds |. ( 1 - x ) (#) ( 1 - x ) .| <= 1 * |. f . x - x .| ( ( p2 `2 ) * sqrt ( 1 + ( p2 `1 ) ^2 ) = |. p2 .| * sqrt ( 1 + ( p2 `2 ) ^2 ) .= |. p2 .| * sqrt ( 1 + ( p2 `2 ) ^2 ) ; for f be PartFunc of the carrier of C , REAL st dom f is compact & f | X is compact holds f | X is compact iff f | X is compact assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( All ( a , CompF ( B , G ) ) . x = TRUE ; consider F3 be Function such that dom F3 = n1 and for k be Nat st k in n1 holds Q [ k , F3 . k ] ; ex u , u1 st u <> u1 & u , u1 / v / v / ( u , u1 ) / ( u , v1 ) / ( u , u1 ) / ( u , v1 ) / ( u , u1 ) > 0 & u , v / ( u , u1 ) / ( u , v / ( u , v1 ) / ( u , v / v ) / ( u , u1 ) / ( u , v1 / v ) > 0 ; for G being Group , A , B being non empty Subgroup of G holds ( N : N : N = ( N , A ) ` ) * ( N , B ) = N ` A for s be Real st s in dom F holds F . s = integral ( R ^2 > ( R ^2 ) (#) ( f ^2 ) ) . s - ( R ^2 ) . s width ( AutMt ( f1 , b1 , b2 ) ) = len ( ( f2 , b1 , b2 ) * ( f1 , b2 ) ) .= len ( ( f2 , b1 ) * ( f1 , b2 ) ) .= width ( ( f2 , b1 ) * ( f1 , b2 ) ) .= width ( ( f2 , b1 ) * ( f1 , b2 ) ) ; f | ]. - PI / 2 , 0 .[ = f | ]. - PI / 2 , 0 .[ & f | ]. - PI / 2 , 0 .[ = f | ]. - PI / 2 , 0 .[ ; assume that X is closed and a in X and a in X and y in X and not x in X and y in { [ n , x ] : not contradiction } ; Z = dom ( ( ( exp_R * ( arctan * ( arctan * ( arctan + arccot ) ) ) `| Z ) /\ dom ( ( exp_R * ( arctan + arccot ) ) ) " { 0 } ; func VERUM ( V ) -> Subset of V means : Def1 : for k holds 1 <= k & k <= len l iff l . k in V & l . k in V ; for L being non empty RelStr , N being net of L , M being net of L st c is net of N for c being Point of N st c is Point of M holds c is Point of N holds c in N for s being Element of NAT holds ( ( ( id the carrier of V ) + ( id the carrier of V ) ) + ( id the carrier of V ) ) . s = ( ( id the carrier of V ) + ( id the carrier of V ) ) . s then z /. 1 = ( E-max L~ z ) .. z & ( E-max L~ z ) .. z < ( E-max L~ z ) .. z & ( E-max L~ z ) .. z < ( E-max L~ z ) .. z ; len ( p ^ <* ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) *> .= len p + 1 .= len p + 1 .= len p + 1 ; assume that Z c= dom ( ( - ln * f ) `| Z ) and for x st x in Z holds f . x = a and f . x > 0 ; for R being add-associative right_zeroed right_complementable distributive non empty doubleLoopStr , I , J being Subset of R holds ( I + J ) *' c= I /\ J consider f being Function of [: B1 , B2 :] , B2 such that for x being Element of B1 holds f . x = F ( x ) and f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= Seg len x .= dom ( x2 (#) z ) .= dom ( x2 (#) z ) .= dom ( x2 (#) z ) .= dom ( x2 (#) z ) .= dom ( x2 (#) z ) .= dom ( x2 (#) z ) .= dom ( x2 (#) z ) ; for S being -1 functor of C , B being functor of B for c being Object of C holds id S . ( id c ) = id ( ( the carrier' of C ) . c ) & id ( ( the carrier' of C ) . c ) = id ( ( the carrier' of C ) . c ) ex a st a = a2 & a in [: S , T :] /\ [: S , T :] & for x being Element of S holds ( f . x ) = \/ ( f . x , f . x ) ; a in Free ( H / ( x. 4 , x. 4 ) ) \/ ( ( x. 4 , x. 0 ) '&' ( x. 4 , x. 0 ) ) ; for C1 , C2 being C2 , f , g being stable Function of C1 , C2 st @ f = g holds f = g iff f = g ( W-min L~ go \/ W-min L~ pion1 ) `1 = ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 .= ( W-min L~ pion1 ) `1 ; assume that u = <* x0 , y0 , z0 *> and f is_continuous_in x0 and u = y0 and SVF1 ( 3 , f , u ) = SVF1 ( 3 , f , u ) . 3 and SVF1 ( 3 , f , u ) . 3 = SVF1 ( 3 , f , u ) . 3 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & t . {} = x & t . {} = x & t . {} = y & t . {} = y ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b ; func Class R -> Subset-Family of R means : Def1 : for A being Subset of R holds A in it iff ex a being Element of R st a in it & A c= a & a in A ; defpred P [ Nat ] means ( ( ( the Target of G ) . ( $1 + 1 ) ) `1 c= G . ( ( the Target of G ) . ( $1 + 1 ) ) `1 & ( ( the Target of G ) . ( $1 + 1 ) ) `2 c= G . ( ( the Element of G ) . ( $1 + 1 ) ) `2 ; assume that dim W1 = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 ; mat . m = ( m . t ) . {} .= ( m . t ) . {} .= ( m . t ) . {} .= ( m . t ) . {} .= ( m . t ) . {} .= m . t ; d11 = x9 ^ d .= f . ( y9 , d ) .= f . ( y9 , d ) .= f . ( y9 , d ) .= f . ( y9 , d ) .= f . ( y9 , d ) .= f . ( y9 , d ) .= ( f . ( y9 , d ) ) . ( y9 , d ) .= ( f . ( y9 , d ) ) . ( y9 , d ) .= ( f . ( y9 , d ) . ( y9 , d ) .= ( f . ( y9 , d ) . ( y9 , d ) . ( y9 , d ) .= ( f . ( y9 , d ) . ( y9 , d ) . ( y9 , d ) . ( y9 , d ) .= ( f . ( y9 , d ) . consider g such that x = g and dom g = dom f and for x being element st x in dom f holds g . x in f . x and g . x in f . x ; x + 0. F_Complex = x + ( len x ) .= x + x .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + x ; ( k -' ( k + 1 ) ) + 1 in dom ( f | ( len f -' 1 ) ) & ( f | ( k + 1 ) ) . ( k + 1 ) = ( f | ( k + 1 ) ) . ( k + 1 ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p1 , p2 and P1 = { p1 } and P2 = { p2 } and P1 /\ P2 = { p1 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p1 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p1 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } /\ P2 = { p1 } and P1 /\ P2 = { p2 } and P1 /\ P2 = { p2 } /\ P2 /\ P2 reconsider a1 = a , b1 = b , c1 = c , c2 = d , c1 = d , c2 = c , c2 = d , c2 = d , b3 = c , c1 = d as Element of [: the carrier of A , the carrier of A :] ; reconsider Itt11f = G1 . t * F1 . b as Morphism of ( G1 * F1 ) . a , ( G1 * F2 ) . b ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + 1 -' 1 ) , f /. ( i + 1 -' 1 ) ) .= LSeg ( f /. ( i + 1 -' 1 ) , f /. ( i + 1 -' 1 ) ) ; Integral ( P . m , P . n ) | dom ( P . n ) <= Integral ( M , P . m ) | dom ( P . n ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ x , y ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( r - ( ( G * ( i , 1 ) `1 ) / 2 ) , ( G * ( i + 1 , 1 ) `2 ) ) ; for G being Group , H being Subgroup of G , a being Element of H st a = b holds a |^ H = b |^ a * H consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p0 where 7 is Point of TOP-REAL 2 : P [ 7 ] & for p being Point of TOP-REAL 2 holds P [ p ] } as Subset of TOP-REAL 2 ; sqrt ( ( ( E-max C ) `1 - ( W-bound C ) / 2 ) / 2 ) <= sqrt ( ( W-bound C ) / 2 ) ^2 + ( ( E-bound C ) / 2 ) ^2 ; for x be Element of X , n be Nat st x in E holds |. ( Re F ) . n .| <= P . x & |. ( Im F ) . n .| <= P . x len @ @ All ( 2 , 0 ) = len ( @ @ @ @ @ @ @ @ q ) + len <* q *> .= len ( @ @ q ) + len ( @ q ) .= len ( @ q ) + 1 .= len ( @ q ) + 1 ; v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , x. 0 ) / ( x. 0 , x. 4 ) . ( x. 0 , x. 4 ) . ( x. 4 , x. 0 ) . ( x. 4 , x. 0 ) . ( x. 4 , x. 0 ) . ( x. 4 , x. 0 ) . ( x. 4 , x. 0 ) . ( x. 4 , x. 4 ) . ( x. 4 , x. 0 ) = x. 4 , x. 0 ) . ( x. 0 , x. 0 ) . ( x. 0 ) . ( x. 4 , x. 0 ) . ( x. 0 ) . ( consider r being Element of M such that M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) func w1 \ w2 -> Element of Union ( G , R ) equals ( ( the Sorts of G ) * ( the Arity of S ) ) . ( w1 , w2 ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= s . b1 .= s . b1 .= s . b1 ; for n , k be Nat holds 0 <= ( Partial_Sums ( |. seq .| ) ) . ( n + k ) - ( Partial_Sums ( |. seq .| ) ) . ( n + k ) set F = S \! \mathop { 0 } ; ( Partial_Sums ( seq ) ) . K + ( Partial_Sums ( seq ) ) . K + ( Partial_Sums ( seq ) ) . K >= ( Partial_Sums ( seq ) ) . K + ( Partial_Sums ( seq ) ) . K + ( Partial_Sums ( seq ) ) . K ; consider L , R such that for x st x in N holds ( f | Z ) . ( x - x0 ) = L . ( x - x0 ) + R . ( x - x0 ) ; func the closed of \HM { a , b , c } -> Subset of rectangle ( a , b , c ) equals ( the Element of rectangle ( a , b , c ) ) \/ ( the Element of Closed-Interval-TSpace ( a , b , c ) ) ; a * b ^2 + ( a * c ) + ( b * c ) + ( b * c ) + ( b * c ) + ( b * c ) + ( b * c ) >= 6 * a * b ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) = v / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) = v / ( x2 , y2 ) ; ( ( Q ^ <* x *> ) . M = ( ( ( Q ^ <* x *> ) ) . ( M ^ <* x *> ) ) . ( M . ( M ^ <* x *> ) ) .= ( ( Q ^ <* x *> ) . ( M ^ <* x *> ) .= ( Q ^ <* x *> ) . ( M ^ <* x *> ) .= ( Q ^ <* x *> ) . ( M ^ <* x *> ) ; Sum ( F ) = r |^ ( n1 + 1 ) * Sum ( C |^ n1 ) .= C |^ ( n1 + 1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( C |^ n1 ) * ( C |^ n1 ) .= ( C |^ n1 ) * ( ( GoB f ) * ( len GoB f , 2 ) `1 = ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( 1 , 1 ) `1 .= ( GoB f ) * ( 1 , 1 ) `1 .= ( GoB f ) * ( 1 , 1 ) `1 .= ( GoB f ) * ( 1 , 1 ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums s ) . $1 = ( Partial_Sums ( s ) ) . $1 * ( Partial_Sums ( s ) ) . $1 + ( Partial_Sums ( s ) ) . $1 * ( Partial_Sums ( s ) ) . $1 ; ( the Arity of g ) . g = ( the Arity of S ) . g .= [ ( the Arity of S ) . g , ( the Arity of S ) . g ] .= [ g , ( the Arity of S ) . g ] .= [ g , ( the Arity of S ) . g ] .= [ g , ( the Arity of S ) . g ] ; ( X \times Y ) ^ w tolerates X ^ Y & card ( X , Y ) = card X + card Y & card ( X , Y ) = card X + card Y ; for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . n & s = G . ( n + 1 ) holds b = G . ( n + 1 ) \ G . ( n + 1 ) E , f |= All ( x , ( ( x. 2 ) --> ( x. 2 , x ) ) '&' ( x. 2 , x ) ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 , x ) '&' ( x. 2 ex R2 be 1-sorted st R2 = ( p | ( n + 1 ) ) . i & ( the carrier of p ) . i = the carrier of ( p | ( n + 1 ) ) & ( the carrier of p ) . i = the carrier of ( p | ( n + 1 ) ) ; [. a , b + sqrt ( 1 + ( k + 1 ) ) / ( k + 1 ) .] is Element of the partial } & ( the partial } \HM { f . k : f . k = f . ( k + 1 ) } is Element of the partial } ; Comput ( P , s , 2 + 1 ) . IC SCM+FSA = Exec ( P . 2 , Comput ( P , s , 2 ) . IC SCM+FSA .= Exec ( a , s1 ) . IC SCM+FSA .= Exec ( a , s2 ) . IC SCM+FSA .= Exec ( a , s2 ) . IC SCM+FSA .= Exec ( a , s2 ) . IC SCM+FSA ; card ( h1 " ) . k = ( power F_Complex ) . ( - 1_ F_Complex , k ) .= ( - 1_ F_Complex ) . ( - 1_ F_Complex ) . k .= ( - 1_ F_Complex ) . k * Sum u .= ( - 1_ F_Complex ) . k * Sum u .= ( - 1_ F_Complex ) . k * Sum u .= ( - 1_ F_Complex ) . k * Sum u .= ( - g ) . k * Sum u .= ( - g ) . k ; ( ( f (#) g ) /. c = f /. c * ( g /. c ) " .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f (#) g ) /. c ; len Cseq - len ( ( len ( ( len ( ( len ( ( the R ) ) ) | ( len ( ( the carrier of ( ( len ( ( the carrier of ( ( len ( the carrier of ( ( carrier of ( carrier of ( carrier of ( carrier of ( C ) ) ) ) ) ) ) ) ) ) ) ) ) = len ( ( the carrier of ( ( carrier of ( C ) ) ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) /\ defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n + $1 ) + Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) + Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n ) * Fib ( n ) + Fib ( n + $1 ) * Fib ( n + $1 * Fib ( consider f being Function of INT , INT such that f = f ' and f is onto and f is onto and for n being Nat holds f " . n = n and f " { f . n } = n and f " { f . n } = n ; consider c9 be Function of S , BOOLEAN such that c9 = IExec ( A \/ B , S ) and E1 . ( A \/ B ) = Prob . ( A \/ B ) and E1 . ( A \/ B ) = Prob . ( A \/ B ) and E1 . ( A \/ B ) = Prob . ( A \/ B ) ; consider y being Element of [: Y , { x } :] such that a = "\/" ( { F ( x , y ) where x is Element of [: Y , { x } :] : P [ x , y ] } , [: Y , { y } :] ) and Q [ y , x ] ; assume A c= Z & f = f (#) ( exp_R (#) ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * f ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) `| Z ) ) ) ) ) = ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 ; dom Shift ( q , len q ) = { j + len q where q is Element of NAT : len q = j + 1 & q in dom Seq ( q , len q ) } ; consider G1 , G2 , G2 being Morphism of V such that G1 <= G2 and G2 <= G2 and f . 1 = G1 & g . 2 = G2 & g . 3 = G2 & f . 1 = G2 and g . 2 = G2 and f . 3 = G2 and f . 1 = G2 and f . 2 = G2 and f . 3 = G2 and f . 1 = G2 and f . 3 = G2 and f . 1 = G2 and f . 2 = G2 and f . 3 = G2 and f . 3 = G2 and f . 4 = G2 and f . 4 = G2 and f . 4 = G2 and f . 4 = G2 and f . 4 = G2 and f . 4 = G2 and f . 4 = G2 and f . 4 ; func - f -> PartFunc of C , V means : Def1 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c & for c be element st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a & phi is increasing holds for v st v in union L holds L . v = union ( L | union L ) and L . a = v ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB ( GoB f ) and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 + 1 , j1 ) and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = sqrt n and sqrt p = sqrt n and for n1 being Integer number st n1 <> 0 & n <> 0 holds sqrt p = sqrt ( n ^2 ) and sqrt p = sqrt n ; assume that not 0 in Z and Z c= dom ( ( id Z ) (#) ( arccot * arccot ) ) and for x st x in Z holds ( ( ( id Z ) (#) ( arccot * arccot ) ) `| Z ) . x > - 1 and for x st x in Z holds ( ( ( id Z ) (#) ( arccot * arccot ) ) . x > - 1 ; cell ( G1 , i1 -' 1 , j1 -' 1 ) \ cell ( G1 , i2 , j1 -' 1 ) c= BDD L~ f1 \/ ( ( L~ f1 ) \ { p } \/ ( L~ f2 ) \ { p } ) ; ex Q1 being open Subset of X st s = Q1 & ex Q1 being Subset of Y st Q1 c= F & for a being Point of Y st a in F holds Q1 is finite & a in Q & b in Q holds [#] ( Y | a ) c= union ( F | a ) gcd ( A1 , r2 ) . ( ( 1. ( K , n ) ) . ( r1 , r2 ) , r2 ) . ( ( 1. ( K , n ) ) . ( r2 , s2 ) ) = 1 / 2 * ( ( 1. ( K , n ) ) . ( r1 , r2 ) ) .= 1 / 2 * ( ( 1. ( K , n ) ) . ( r2 , s2 ) ) ; R8 = ( ( ( ( ( ( ( ( ( ( ( ( ( , s2 ) ) ) . 1 ) ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) ) ) . ( m2 + 1 ) ) .= ( ( ( ( ( ( the Sorts of A ) . 2 ) . ( m2 + 1 ) ) . ( A2 + 1 ) ) . ( A2 + 1 ) .= [ 3 , 4 ] ; CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= halt SCMPDS .= halt SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) ; func not f is Subset of the Sorts of A2 means : Def1 : a in dom f iff ex p st p in dom f & a = f . p & not p in dom f & not p in dom f & not p in dom f & not p in dom f ; for a , b being Element of F_Complex st |. a .| > b & |. b .| > 1 holds a * ( f . b ) >= 1 & b * ( f . b ) >= 0 implies a * ( f . b ) = 1 defpred P [ Nat ] means $1 <= len g implies 1 <= i & i < j & j <= len G & G * ( i , j ) `2 < g & G * ( i , j ) `2 < g & g < G * ( i , j ) `2 ; attr C1 , C2 , f , g being \cdot f , g being \cdot g being \cdot f , h being Function of C1 , C2 , a , b being Real st f = g & g = h holds f = g * f & g = h * f ; ( ||. f .|| ) . c = ||. f .|| . c .= ||. f .|| . c .= ||. f .|| . c .= ||. f .|| . c .= ||. f .|| . c .= ||. f .|| . c .= ||. f .|| . c .= ||. f .|| . c ; |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 & 0 <= ( q `2 ) ^2 & 0 <= ( q `1 ) ^2 & 0 <= ( q `2 ) ^2 & 0 <= ( q `2 ) ^2 ; for F being Subset-Family of T7 st F is open & not {} in F & for A , B being Subset of T7 st A in F & B in F & A misses B holds card A = card B & card B = card ( A \/ B ) assume that len F >= 1 and len F = k + 1 and len F = len G and for k st k in dom F holds H . k = g . k and for k st k in dom F holds H . k = g . k and H . k = g . k ; i |^ ( ( mod n ) |^ s ) - i |^ s = i |^ s |^ s - i |^ s .= i |^ s * ( i |^ s ) - i |^ s .= i |^ s * ( i |^ s ) - i |^ s .= i |^ s * ( i |^ s ) - i |^ s .= i |^ s * ( i |^ s ) - i |^ s .= i |^ s * ( i |^ s ) ; consider q being oriented oriented oriented Chain of G such that r = q and q <> {} and q . 1 = v and ( F . ( q . len q ) = v and ( F . ( q . len q ) = v and ( F . ( q . len q ) ) . 1 = v and ( F . ( q . len q ) ) . 1 = v and ( F . ( q . len q ) = v ; defpred P [ Element of NAT ] means $1 <= len ' implies ( ( ( g , Z ) . ( len g ) ) . ( len g + $1 ) = ( ( ( g , Z ) . ( len g + $1 ) ) . ( len g + $1 ) ; for A , B being Matrix of n , K holds len ( A * B ) = len A & width ( A * B ) = width A & width ( A * B ) = width A & width ( A * B ) = width B & width ( A * B ) = width A & width ( A * B ) = width B consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a * b = b * a and s * a = b * b ; func |( x , y )| -> Element of COMPLEX equals |( ( Re x , Re y ) , ( Re y ) , ( Im x ) , ( Im y ) )| + ( ( Im x ) ^2 + ( Im y ) ^2 ) ; consider g2 be FinSequence of F such that g2 is continuous and rng g2 c= A and g2 . 1 = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and g2 . ( len g2 ) = x0 and then n1 >= len p1 & crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n4 , n4 , n4 , n3 , n4 , n4 ) = crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n3 , n4 , n4 , n4 , n4 , n4 ) ; ( q * a ) * a <= ( q * a ) * ( q * b ) & ( - q ) * a <= ( - q ) * ( - q ) & ( - q ) * ( - q ) <= ( - q ) * ( - q ) ; ( F . ( p . len p ) ) . ( len p + 1 ) = ( F . ( p . len p ) ) . ( len p + 1 ) .= ( F . ( p . len p ) ) . ( len p + 1 ) .= ( F . ( p . 1 ) ) . ( len p + 1 ) .= ( F . ( p . 1 ) ) . ( len p + 1 ) .= ( F . ( p . 1 ) ) . ( len p + 1 ) .= ( F . 1 ) . ( len p + 1 ) .= ( F . 1 ) . ( p . 1 ) . ( len p + 1 ) .= ( F . 1 ) . ( len p + 1 ) .= ( F . 1 ) . ( len p + 1 ) . ( len p + 1 ) .= ( F . 1 ) . ( len p + 1 ) .= consider k1 being Nat such that k1 + 1 = k and a := k = ( <* a *> := ( k , a ) ) := ( k , a ) and a := ( k , a ) = ( <* a *> := ( k , a ) ) := ( k , a ) ; consider B8 being Subset of [: B1 , B2 :] , y1 being Subset of [: B1 , B2 :] such that B8 : y1 is finite and [: B1 , y2 :] is finite and for a being Element of B1 holds B1 . a = \mathop { x where x is Element of [: B1 , B2 :] : x in B1 & y in B2 } c= B1 and y2 in B2 } ; v2 . b2 = ( curry F2 , g ) * ( ( curry F2 ) . b2 ) .= ( ( curry F2 ) . b2 ) * ( ( curry F2 ) . b2 ) .= ( ( curry F2 ) . b2 ) * ( ( curry F2 ) . b2 ) .= ( ( curry F2 ) . b2 ) * ( ( curry F2 ) . b2 ) .= ( ( curry F2 ) . b2 ) * ( ( curry F2 ) . b2 ) .= ( ( curry F2 ) . b2 ) * ( id B ) . b2 ) * ( id B ) . b2 ) * ( id B ) . b2 ) .= ( ( ( id B ) . b2 ) * ( id B ) . b2 .= ( ( ( B ) . b2 ) . b2 ; dom IExec ( I , P , Initialize s ) = the carrier of SCMPDS .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < d & |. h .| < d holds |. h .| " * ||. ( R + R1 ) /. h .|| < e / 2 * ||. ( R2 + R1 ) /. h .|| LSeg ( G * ( len G , 1 ) + |[ 1 , 0 ]| , |[ 1 , 0 ]| ) c= Int cell ( G , len G , 1 ) \/ { |[ 1 , 0 ]| } \/ Int cell ( G , len G , 1 ) \/ { |[ 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) ; A = { q where q is Point of TOP-REAL 2 : LE q , p1 , P , p1 , p2 & LE q , p1 , P , p1 , p2 & LE q , p1 , P , p1 , p2 } , P } ; ( ( - x ) .|. y ) = ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = sqrt ( ( p `1 / p `2 ) ^2 ) * sqrt ( 1 + ( p `2 / p `2 ) ^2 ) .= sqrt ( ( p `1 / p `2 ) ^2 ) * sqrt ( 1 + ( p `2 / p `2 ) ^2 ) ; sqrt ( ( U * ( - 1 ) ) * ( ( W * ( - 1 ) ) / ( - 1 ) ) = ( ( U * ( - 1 ) ) ) * ( - 1 ) .= ( U * ( - 1 ) ) * ( - 1 ) .= ( U * ( - 1 ) ) * ( - 1 ) .= ( U * ( - 1 ) ) * ( - 1 ) ; func Shift ( f , h ) -> PartFunc of REAL m , REAL means : Def1 : for x be Real st x in dom h holds it . x = ( - h ) * ( x - h ) & for x be Real st x in dom h holds it . x = ( - h ) * ( x - h ) ; assume that 1 <= k and k + 1 <= len f and [ i + 1 , j ] in Indices G and [ i + 1 , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) ; assume that not y in Free H and x in Free H and not x in Free H and not y in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not y in Free ( H ) and not x in Free ( H ) and not y in Free ( H ) and not x in Free ( H ) and x in Free ( H ) and y in Free ( H ) ; defpred P11 [ Element of NAT , Element of NAT ] means P [ p ] implies ( $1 |^ p ) |^ ( $1 + 1 ) = ( p |^ ( $1 + 1 ) ) |^ ( $1 + 1 ) & ( $1 |^ ( $1 + 1 ) = ( p |^ $1 ) |^ ( $1 + 1 ) |^ ( $1 + 1 ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def1 : for A , B being Subset of X holds A c= it iff for W being Subset of X st W c= A \ B & W c= B \ C holds W c= A \ B ; [#] ( ( dist ( \in ( Euclid 2 ) ) | Q ) = ( dist ( ( dist ( ( dist ( ( Euclid 2 ) ) | Q ) ) ) .: Q ) & lower_bound ( ( dist ( ( Euclid 2 ) ) | Q ) = inf ( ( Euclid 2 ) | Q ) ; rng ( F | ( [: S , 2 :] :] ) = {} or rng ( F | ( [: S , 2 :] ) ) = { 1 } or rng ( F | ( [: S , 2 :] ) ) = { 1 } or rng ( F | ( [: S , 2 :] :] ) = { 2 } or rng ( F | ( [: S , 2 :] ) ) = { 1 } ; ( f " ) . i = f . i " " .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 /\ P2 = { p1 , p2 } and P1 is_an_arc_of p1 , p2 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 and P1 is_an_arc_of p2 , p1 , p2 and P1 is_an_arc_of p2 , p1 , p2 , p2 and P1 is_an_arc_of p2 , p1 , p2 , p2 , p2 , p1 , p2 ; f . p2 = |[ ( p2 `1 ) ^2 / sqrt ( 1 + ( p2 `2 ) ^2 ) , ( p2 `2 ) ^2 / sqrt ( 1 + ( p2 `1 ) ^2 ) ]| .= |[ 1 , 0 ]| ; ( \lbrace a , X , Y ) " . x = ( \HM { the } \HM { carrier } \HM { of } X } ) . x .= ( ( \lbrace a , X } qua } \HM { Function } ) . x .= 0. X + 0 .= 0 + 0 .= 0 ; for T being non empty normal TopSpace , A , B being closed Subset of T , r being Real st A <> {} & A misses B & A misses B holds A misses B or A misses B or B misses C or A /\ C = B /\ C for i , [#] G1 , G being strict Subgroup of G st i + 1 in dom F for G1 , G2 being strict Subgroup of G st G1 = F . i & G2 = F . ( i + 1 ) & G2 = F . ( i + 1 ) holds G1 is strict Subgroup of G2 for x st x in Z holds ( ( arctan * arctan ) `| Z ) . x = ( ( arctan * arccot ) . x + ( arctan * arccot ) . x / ( 1 + x ^2 ) / ( 1 + x ^2 ) synonym f /* ( a ^\ k ) = lim ( f /* a ) & f . x0 = ( f /* a ) . ( a + k ) & for n st n in dom f holds f . ( a + k ) < ( f /* a ) . n ; then X1 , X2 are_separated or X1 , X2 are_separated implies ex Y1 , Y2 being non empty SubSpace of X st Y1 meet Y2 misses ( X1 union X2 ) & ( X1 , X2 meet X2 ) meet ( X1 union X2 ) = ( X1 union X2 ) union ( X2 meet X2 ) ; ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L be Real st for x st x in N holds ( SVF1 ( 1 , f , u ) ) . x - SVF1 ( 1 , f , u ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) ; sqrt ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) >= sqrt ( 1 + ( p2 `1 ) ^2 ) * sqrt ( 1 + ( p2 `2 ) ^2 ) ; ( ( sqrt ( 1 - ( t1 * t2 ) ) / 2 ) to_power ( n + 1 ) = ( ( 1 - ( t1 * t2 ) ) / 2 ) to_power ( n + 1 ) & ( ( sqrt ( 1 - ( t1 * t2 ) ) / 2 ) to_power ( n + 1 ) = ( 1 - ( t1 * t2 ) ) to_power ( n + 1 ) ; assume that for x holds f . x = ( sin + cos ) . x and for x st x in Z holds ( ( sin + cos ) `| Z ) . x = sin . x - sin . x and for x st x in Z holds ( ( sin + cos ) `| Z ) . x = sin . x - cos . x ; consider X1 being Subset of Y , Y1 being Subset of X such that t = X1 and Y1 in A and X1 in B and Y1 in A and X1 /\ Y1 = { X1 } and Y1 /\ Y1 = { X2 } and X1 is open and Y1 is open and X1 /\ Y1 <> {} and Y1 /\ Y1 <> {} and X1 <> {} and Y1 <> {} and X1 <> {} and Y1 <> {} ; card S . ( n + 3 ) = card { [ d , c ] } + b .= ( d * ( [: d , c :] + b ) ) * b .= ( d * ( [: d , c :] + b ) ) * b .= ( d * ( a , b ) ) * b .= ( d * ( a , b ) ) * b ; sqrt ( ( ( W-bound D ) / 2 ) * ( ( W-bound D ) / 2 ) - ( ( W-bound D ) / 2 ) * ( ( W-bound D ) / 2 ) * ( ( W-bound D ) / 2 ) ) = ( ( W-bound D ) / 2 ) * ( ( E-bound D ) / 2 ) - ( E-bound D ) / 2 * ( ( W-bound D ) / 2 ) * ( ( W-bound D ) / 2 ) .= ( ( W-bound D ) / 2 ) / 2 ;