thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in A ; a <> c T c= S D c= B c in X ; b in X ; X in F ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is 1 -element ; assume x in I ; q is there 0 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k12 ; assume m <= i ; assume G is cyclic ; assume a divides b ; assume P is closed ; \bf 2 > 0 ; assume q in A ; W is non bounded ; f is Then f is simple ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= A-2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A , B be Subset of E ; let C be Category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is subset of TOP-REAL 2 ; Q halts_on s ; x in such ; M < m + 1 ; T2 is open ; z in b there a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; P3 is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p4 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , A be Subset of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o \mathord 4 ; O <> O2 ; let r be Real ; f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , X be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m2 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A , B be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 meets L~ f ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aa <= b ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , A , B be Subset of V ; s is non trivial & s is non trivial ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , A , B be Subset of T ; the object map of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vA2 < n ; S\mathopen { - } S } is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U2 ; pp `2 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj ; set A = Cl A ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has \cdot the \rangle ; assume x0 <= m ; T is increasing for sequence of REAL ; e2 <> e1 & e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; X0 be set ; c = sup N ; R is connected implies union M in M assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in [: A , B :] ; C c= C1. R ; mm <> {} ; x be Element of Y ; let f be For oriented Chain , g be Function ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v | ( \cal G ) ; - y in I ; let A be non empty set , B be Subset of A ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be |^ |^ X ; rng f c= NAT ; assume P [ k ] ; f9 <> {} ; o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IF ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in NAT ; assume t . 1 in A ; Y be non empty TopSpace , A be Subset of Y ; assume a in ]. s , t .[ ; let S be non empty RelStr ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected connected hhhhhhhh; assume f is (#) marrrrr-r\lbrack ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re ( y ) = 0 ; k1 <= j1 & j1 <= j2 ; f | A is continuous ; f . x real <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CH in X ; q2 c= C1 & q2 c= C1 ; a2 < c2 & c2 < c2 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; x be Element of T ; assume a in rng F ; x in dom T ` ; let S be MSAlgebra over L ; y " <> 0 ; y " <> 0 ; 0. V = uw -] ; y2 , y , z is_collinear ; R8 ; let a , b be Real , r be Real ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , a , b be Object of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; s be State of A , a , b be element ; s4 . n = N ; set y = ( x - 1 ) / 2 ; NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in C0 ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in NH ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A9 is dense & open is dense ; |. f . x .| <= r ; x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars C ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x9 c= Z1 & y9 c= Z1 ; dom f = [: C1 , C2 :] ; assume [ a , y ] in X ; Re ( seq . n ) is convergent ; assume a1 = b1 & a2 = b2 ; A = ( sInt A ) ` ; a <= b or b <= a ; n + 1 in dom f ; let F be instruction of S , T ; assume r2 > x0 & x0 < r2 ; Y be non empty set , M be Matrix of Y ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 ; k + 1 in dom f ; not the still not bound in { s } ; assume x1 <> x2 & x2 <> x3 ; v1 in V1 & v2 in V1 ; not [ b `1 , b `2 ] in T ; i9 + 1 = i ; T c= \rangle ( T ) ; ( l - 1 ) * ( l - 1 ) = 0 ; n be Nat ; ( t `2 ) ^2 = r ; Aj is_integrable_on M & f is_integrable_on M ; set t = Bottom t ; let A , B be real-membered set ; k <= len G + 1 ; [: V , C :] misses [: V , C :] ; Product seq is non empty ; e <= f or f <= e ; cluster -> non empty for normal sequence ; assume c2 = b2 & c2 = b3 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume v9 is Cauchy & vseq is convergent ; IC Comput ( P3 , s3 , 0 ) = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p10 <> p1 & p2 <> p1 & p1 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one , full ; A \/ { a } \not c= B ; 0. V = 0. V .= 0. V ; let I be the \cal SCM , S be Instruction of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 |^ n ; let B be sequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = K0 & p2 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; MMMorder A is closed ; assume z0 <> 0. L ; n < N7 . k ; 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , R :] is stable implies R is stable set R = Vertices R , S = Vertices R ; p0 c= P3 & p4 c= P2 ; x in [. 0 , 1 .] ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; sup downarrow a = sup downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 |^ i < 2 |^ m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. \mathopen { \Vert } yielding .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( ) ; k in dom ( q | 4 ) ; p is card $ S ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i1 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= j2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict \mathbb 1 -> strict for 2 -element ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & rng I c= Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + 1-1 ; dom S = dom F ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void holds cluster non void holds S is with_b1 -\HM } -NAT ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x , y be Element of COMPLEX ; u in { \hbox { \boldmath $ g } } ; 2 * n < 2 * n ; x , y in X ; B-11 c= V1 & V c= V1 ; assume I is_halting_on s , P ; U2 = U2 | U2 .= U2 | U2 ; M /. 1 = z /. 1 ; x9 = x9 & y9 = y9 & x9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; f9 <= ( f . x ) `1 & f . x <= 1 ; l be Element of L ; x in dom ( F . -17 ) ; let i be Element of NAT ; r8 is ( len r ) -element ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be \rangle in \in \in \in Omega ; set r = { q + 1 } ; y = W . ( 2 * x9 ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , A be Subset of X ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for Sublattice of L ; a1 in B . s1 & a2 in B . s1 ; let V be finite VectSp of F , F be Function of V , W ; A * B on B , A ; f-3 = NAT --> 0 .= 0 ; A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; sqrt 2 / 2 < Arg z ; reconsider z9 = 0 as Nat ; LIN a , d , c ; [ y , x ] in II ; ( Q Q ) * ( 3 , 1 ) = 0 ; set j = x0 div m , n = 0 ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! phi = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( sqrt B ) / 2 ; s1 , s2 are_` , T & s1 , s2 are_` ; j1 -' 1 = 0 & j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & n mod 2 = 1 ; set g = f | D-21 ; assume that X is lower bounded and 0 <= r ; ( 1 - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p4 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 + 1 ; 1 <= i1 -' 1 + 1 ; i + i2 <= len h ; x = W-min ( P ) & x in P ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . -3 ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 ; assume x in ( 3 /\ 4 ) /\ ( X /\ 4 ) ; ||. h .|| < d1 & ||. h .|| < d ; not x in the carrier of f & not x in { v } ; f . y = F ( y ) ; for n holds X [ n ] ; k -' l = kl2 ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of T ; P , Q be EqRel of s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty reflexive transitive RelStr , F be Function of L , L ; S-20 is x -min min i , min K -min i let r be non positive Real ; M , v |= x \hbox { y } } ; v + w = 0. ( Z ) ; P [ len F ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the carrier of M = 0 ; cluster z (#) seq -> summable ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> non \vert for Element of S ; reconsider l1 = l-1 as Nat ; v9 is Vertex of r2 & v2 is Vertex of r2 ; T3 is SubSpace of T2 | D ; Q1 /\ Q1 <> {} ( T | A ) ; k be Nat ; q " is Element of X ; F . t is set of S -by M ; assume n <> 0 & n <> 1 ; set e = EmptyBag n , f = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root implies ( p . x ) `2 = ( p . x ) `2 not r in ]. p , q .[ ; let R be FinSequence of REAL , r be Real ; S7 does not destroy b1 , b1 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * ( seq . n ) = seq . n * ( seq . n ) ; x be FinSequence of NAT ; f be Function of C , D , a , b be Element of C ; for a holds 0. L + a = a IC s = s . NAT .= s . NAT ; H + G = F-GG ; C1 . x = x2 & C1 . x = x2 ; f1 = f . x .= f2 . x .= f2 . x ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; b3 , o _|_ o , a3 ; IX is reflexive & IX is reflexive implies X is reflexive Iy is antisymmetric implies [: C , C :] is antisymmetric sup ( rng H1 ) = e & sup ( rng H2 ) = e ; x = ( a * a9 ) * ( a * b ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < j2 -' 1 ; rng s c= dom f1 & rng s c= dom f2 ; assume support a misses support b & not b in support b ; let L be associative non empty doubleLoopStr , F be non empty doubleLoopStr ; s " + 0 < n + 1 ; p . c = f9 . 1 .= f . c ; R . n <= R . ( n + 1 ) ; Directed ( I1 ) = I1 . 0 .= 1 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full full full SubRelStr of L ; cluster <* I1 . N , \rbrack .] -> complete for non trivial Real ; sqrt ( 1 - a " ) = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume sqrt ( 1 - 2 ) <= t `1 ; card B = k + 1 - 1 ; x in union rng ( f | -9 ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . F . 1 ; the vertices of G = { v } ; let G be : *> is : Let ; e , v9 , v , w , y is_collinear ; c . ( i9 - 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* ( f1 /* s ) is divergent_to+infty ; set z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z1 , z2 = - z2 ; assume w is llllas of S , G ; set f = p \! \mathop { t } , g = p \! \mathop { t } ; c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL-NS m ; let IX be Subset-Family of X , Y be Subset of X ; reconsider p = p as Element of NAT ; v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM & q is FinSequence of the carrier of SCM ; stop I c= P3 +* stop I ; set ci = fT2 /. i , cj = f /. i ; w ^ t seq seq seq seq ^ s ; W1 /\ W = W1 /\ W /\ W ` ; f . j is Element of J . j ; let x , y be Element of T2 , T be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is \sum x ; set g2 = lim ( seq ^\ k ) , g1 = lim ( seq ^\ k ) ; 2 * x >= 2 * sqrt ( 1 + ( 2 * x ) ^2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F1 = 0 & L1 . F1 = 1 ; ( the InternalRel of X ) \/ R1 = the InternalRel of X ; ( sin * sin ) . x <> 0 & ( sin * cos ) . x <> 0 ; ( ( - exp ) * ( exp_R ) ) . x > 0 ; o1 in ( X /\ O2 ) /\ O2 ; e , v9 , v , w , y is_collinear ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ) ; J be closed Ideal of R , f be left ideal of R ; h . p1 = f2 . O & h . O = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q - p ) = width M & width ( q - p ) = width M ; the carrier of K c= A & K c= A ; dom f c= union rng ( F | X ) ; k + 1 in support ( ( support ( n ) ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( ( InnerVertices R ) * ( the InternalRel of R ) ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = f . x2 ; F c= 2 -tuples_on the carrier of X & F is one-to-one ; reconsider w = |. s1 .| as Real_Sequence ; sqrt ( 1 - m * r + r ) < p ; dom f = dom ( I --> -4 ) .= I ; [#] ( P-17 | K1 ) = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal equals - x ; then { d } c= A ; cluster [: TOP-REAL n , TOP-REAL n :] -> finite-ind ; let w1 be Element of M ; x be Element of dyadic ( n ) ; u in W1 & v in W2 & u in W2 ; reconsider y = y as Element of L2 ; N is full full full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n |^ 1 .= n ; h . J = EqClass ( u , J ) ; let seq be \Vert for x be Point of X ; dist ( x `1 , y `2 ) < sqrt ( r ^2 ) ; reconsider mm = m as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 + x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * ( idseq q " ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower bounded ; D2 . ( I . 8 ) in { x } ; cluster -> subcondensed for Subset of T ; P be compact non empty Subset of TOP-REAL 2 , a , b , c , d be Real ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; n be Element of NAT , x be Element of NAT ; reconsider S8 = S as Subset of T | A ; dom ( i .--> X ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( { {} } , {} ) c= { [ {} , {} ] } reconsider m = .[ as Element of NAT ; reconsider d = x as Element of [: the carrier of C , the carrier of C :] ; let s be 0 -started State of SCMPDS , P be Initialize s of SCMPDS ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , x , y is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N2 >= sqrt ( c ^2 - sqrt ( c ^2 - d ^2 ) ) ; reconsider t7 = T" as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . 4 /\ Q2 . 6 /\ Q1 . 6 /\ Q2 . 6 ; A |^ 0 = { <* \rangle *> } ; len W2 = len W + 2 & len W1 = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 & len h2 = len h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom f /\ dom g ; assume p2 = E-max ( K ) & p4 = E-max ( K ) ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & f2 (#) f1 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster seq + seq - seq -> summable for Real_Sequence ; assume j in dom M1 & i in dom M1 ; let A , B , C be Subset of X ; x , y , z be Point of X , a , b , c be Real ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* y *> \subseteq x ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 & len p1 = len p2 ; ex x being element st x in dom R ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s , P1 = Initialize Initialized s , P2 = P +* stop I ; consider w be Nat such that q = z + w ; x ` ` is ` iff x ` is ` & x ` is ` ; k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence of REAL ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in ]. p , q .[ & not c in { p } ; reconsider V = V as Subset of the carrier of _ { n } ; N , M be 1 -element implies N , M are_isomorphic then z >= compactbelow x & z >= compactbelow y ; M [. f , f .] = f & M [. g , g .] = g ; ( ( ( to_power 1 ) 1 ) to_power 1 ) /. 1 = TRUE ; dom g = dom f .: X ; mode \cal If is Int st G is \cal holds W is \cal [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of dom Subformulae p & f . x = 0 ; F1 . ( a1 , - a2 ) = G1 . ( a1 , a2 ) ; cluster rectangle ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / 2 ) & rng s c= dom ( 1 / 2 ) ; ( curry ( F , -19 ) ) . k is additive ; set k2 = card ( dom B ) , s3 = card ( dom B ) ; set G = coprod X ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of Mx , M be Matrix of n , K ; reconsider s1 = s as Element of S1 . s ; rng p c= the carrier of L & p . 1 c= the carrier of L ; d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & Ik in dom stop I ; g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & rng f c= the carrier of S ; rng h c= union ( the carrier of J ) & rng h c= the carrier of J ; cluster All ( x , H ) -> One -reconsider ; d * N1 ^2 > N1 * 1 / 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 | D1 , f = f " D2 ; dom ( p | ( m + 1 ) ) = NAT ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arctan * arccot ) . x ; x in rng ( f /^ ( p -' 1 ) ) ; f , g be FinSequence of D ; [: p , q :] in the carrier of S1 & [: p , q :] in the carrier of S2 ; rng f " { 0 } = dom f /\ dom g " { 0 } ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G - 1 & width G - 1 < width G ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( ( g2 | A ) | A ) ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of ( TOP-REAL 2 ) | K1 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S *> is in the carrier of C-20 & <* S *> is in the carrier of C-20 ; i <= len ( G | -6 -' 1 ) + 1 ; let p be Point of ( TOP-REAL 2 ) | K1 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q " ) .= Q " ( Q " ) ; ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) - p + I c= - p + A + A ; n < LifeSpan ( P1 , s1 ) + 1 & n < LifeSpan ( P2 , s2 ) ; CurInstr ( p1 , s1 ) = i .= ( m + 1 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; g be Function of S , V ; f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of ( Ids L ) . s ; f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be Sub\/ C2 , F be subfunctor of C ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and f .: X c= dom g ; H |^ a " is Subgroup of H |^ a ; let A1 be Let A2 of O , E1 be Element of O ; p2 , r3 , r3 is_collinear & q2 , q2 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( ( TOP-REAL 2 ) | B ) & p in [#] ( ( TOP-REAL 2 ) | B ) ; 0 . E < M . ( E8 ) ; ( c / c ) / c = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> \uparrow -| distributive -> | for distributive LATTICE ; set i1 = the natural number , i2 = the Element of NAT , n = the Element of NAT ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . len f = f /. len f .= f /. len f ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def1 : cos .: X c= cos .: Y ; y be upper bound of Y , T , x be element ; cluster ( x `1 ) / 2 -> non number equals ( x `1 ) / 2 ; set S = <* Bags n , i9 *> , R = <* i *> ; set T = [. 0 , 1 / 2 .] , G = [. 1 / 2 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; sqrt ( 4 * PI ) < sqrt ( 2 * PI ) ; x2 in dom f1 /\ dom f2 & x1 in dom f1 /\ dom f2 ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . h . i ; ( p `1 ) ^2 = ( p1 `1 ) ^2 & ( p `2 ) ^2 = ( p2 `1 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & len <* P *> = len P ; set NN = the verify that the subsets of N = the InternalRel of N and the InternalRel of N = the InternalRel of N ; len g-f - ( x + 1 ) - 1 <= x ; a on B & b on B & a on B implies a on B reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d and a [= c ; given u such that u in W and x = v + u ; len f /. len f = len f - n ; set q2 = E-max L~ Cage ( C , n ) , q2 = E-max L~ Cage ( C , n ) ; set S = { S1 , S2 } , T = { S2 } , F = { S2 } , G = { S2 } , H = { S2 } , S = { S2 } , T = { S2 } , T = { S2 } , MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 ; f " D meets h " V & h " V meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = the_left_argument_of H '&' ( the_right_argument_of H ) ; assume t is Element of ( \mathfrak F ) . X ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( a1 , b1 ) ; the carrier' of G ` = E \/ { E } ; reconsider m = len \mathbb k - 1 as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume P c= Seg m & M is \HM { \vert } is ' ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * ( 1 / p ) ; p0 . i = p1 . i & p2 . i = p2 . i ; let PA , PA be a_partition of Y , G be a_partition of Y ; attr 0 < r & 1 < 1 & r < 1 implies 1 / 2 < r ; rng \lbrace \lbrace a , X , Y \rbrace = [#] ( X , Y ) ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k and k <= n ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card s ; reconsider x2 = x1 , y2 = x2 as Element of L2 ( ) ; Q in FinMeetCl ( ( the topology of X ) | the topology of X ) ; dom ( f | 0 ) c= dom u & rng ( u | 0 ) c= dom u ; pred n divides m & m divides n & n divides m ; reconsider x = x as Point of [: I[01] , I[01] :] | K1 ; a in // // // // the carrier of T2 , the carrier of T2 ; not y0 in the still of f & not ( not y in dom ( f . x ) ) ; Hom ( ( a , b ) \times c , c ) <> {} ; consider k1 such that p " < k1 and p " < k1 and p " < p ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g & k in dom g ; set S1 = l1 = m2 & l1 = m2 & l1 = m2 & l2 = m2 & l2 = y2 ; x0 in dom u /\ ( ( u + v ) (#) ( u + v ) ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 ; I[01] = ( I[01] | B ) | B01 .= ( I[01] | B ) | B01 ; f . p4 <= f . p1 & f . p2 <= f . p2 ; ( F . x ) `1 <= ( x `1 ) / 2 & x `2 <= ( x `2 ) / 2 ; ( x `2 ) ^2 = ( ( W . n ) `1 ) ^2 .= ( W . n ) `1 ; for n being Element of NAT holds P [ n ] ; J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K & 0 < a ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] implies P [ succ a ] ; reconsider s\rbrace = seq . t as terminal of D , X ; ( Seg i -' 1 ) <= len \mathbb j - 1 ; [#] S c= [#] T & the TopStruct of T c= the TopStruct of T ; for V being strict real number holds V in W1 iff V in W2 assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K , n , m be Nat ; - a * b - b * a = a * b ; for A being being_line holds A // K implies A // K ( id o2 ) in <* o2 , o2 , o1 *> & ( id o2 ) in dom ( the InternalRel of o1 ) ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a , b be Element of G ; j >= len ( upper_volume ( g , D1 ) | j1 ) ; b = Q . ( len Q - 1 ) + 1 ; f2 * f1 /* s is divergent_to+infty & f2 * f1 is divergent_to+infty ; reconsider h = f * g as Function of [: N2 , G :] , G ; assume that a <> 0 and integral ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of T7 & v | n is Element of T7 ; {} = the carrier of L1 + L2 & L2 + L2 = the carrier of L2 ; Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized ( p ) = Initialize ( ( p +* q ) +* ( i , k ) ) ; reconsider N2 = N1 as strict net of R2 , the carrier of S2 ; reconsider Y = Y as Element of <* Ids L , \subseteq \rangle ; "/\" ( { p } \ { p } , L ) <> p ; consider j be Nat such that i2 = i1 + j and j < len f ; not [ s , 0 ] in the carrier of S2 & [ s , 0 ] in the carrier of S2 ; m in ( B '&' C ) '/\' D /\ D ; n <= len ( P6 + len ( P6 ) ) + len ( P6 + 1 ) ; ( x1 - x2 ) / ( x2 - x1 ) = ( x2 - x1 ) / ( x2 - x1 ) ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTTTTTTTTTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h " .= g " * h " ; let p , q be Element of V , C be Element of V ; x0 in dom ( x1 - x2 ) /\ dom ( x2 - x3 ) ; ( R qua Function ) " = R " " ( R " ) ; n in Seg len ( f /^ ( len p -' 1 ) ) ; for s be Real st s in R holds s <= s2 & s <= 1 rng s c= dom ( f2 * f1 ) & rng s c= dom ( f2 * f1 ) ; synonym ex X being Subset of ex R being Subset of \rm st X = R & R is \hbox { - } \sum R } ; 1_ K * 1_ K = 1_ K * 1_ K .= 1_ K * 1_ K ; set S = Segm ( A , P1 , Q1 ) , Q1 = Segm ( A , Q1 ) ; ex w st e = ( w - f ) * w & w in F ; ( curry ( PZ , k ) # x ) # x is convergent ; cluster -> open for Subset of T7 | P ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 .= len f3 + 1 ; sqrt ( i * p ) < sqrt ( 2 * p ) ; let x , y be Element of ( the Sorts of U0 ) . 0 ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } and p in F ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) not a := s , a ; Macro ( card I + 1 ) not c does not destroy c , b ; set m1 = LifeSpan ( p3 , s3 ) , m2 = LifeSpan ( P3 , s3 ) , P4 = Comput ( P3 , s3 , 1 ) , P4 = P3 ; IC SCMPDS in dom Initialize ( ( intloc 0 ) .--> 1 ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( E-max L~ f ) .. f = 1 & ( E-max L~ f ) .. f = 1 ; let a , b be Element of V , C be Element of V ; Cl ( union Int F ) c= Cl Int union F ; the carrier of X1 union X2 misses ( A1 \/ A2 ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in A ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , x ) / ( x , y ) |= H ; consider m be element such that m in Intersect ( F ) and m in dom F ; reconsider A1 = support u1 as Subset of X | ( support b1 ) ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume a1 <> a3 & a2 <> a4 & a3 <> a4 & a4 <> a4 ; cluster s \! \mathop { V } -> 0 -element for string of S ; L2 /. ( n2 + 1 ) = L2 . ( n2 + 1 ) ; let P be compact non empty Subset of TOP-REAL 2 , a , b , c be Real ; assume that r-7 in LSeg ( p1 , p2 ) and r-7 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a , b , c be Real ; assume [ k , m ] in Indices ( D1 ^ D2 ) ; 0 <= ( ( 1 / 2 ) |^ p ) / 2 ; ( F . N | E8 ) . x = +infty ; attr X c= Y & Z c= V & X \ V c= Y \ Z ; ( y * z ) * ( z * ( z * x ) ) <> 0. I ; 1 + card ( X \ u ) <= card u + card v - u ; set g = z \circlearrowleft ( E-max L~ z ) , h = z .. z ; then k = 1 implies p . k = <* x , y *> . k ; cluster -> total for Element of C -\to ( X , Y ) ; reconsider B = A as non empty Subset of TOP-REAL n , a , b be Real ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & P c= Q ; n <= indx ( D2 , D1 , j1 ) + 1 & indx ( D2 , D1 , j1 ) + 1 <= len D2 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . I ) `1 = - 1 ; j + p .. f -' len f <= len f - 1 ; set W = W-min ( C ) , S = E-max ( C ) ; S1 . ( a , e ) = a + e .= a + e ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f ) ) = dom ( Im f ) ; being being being W . x `1 = W . ( a *' ( a , p ) ) ; set Q = ( ( empty ( g , f , h ) ) . x ; cluster -> binary for ManySortedSet of U1 means ex U1 being ManySortedSet of U1 st U1 is MS\rm ] ; attr F = { A } means : Def1 : F is discrete ; reconsider z9 = *> as Element of product G . ( i + 1 ) ; rng f c= rng f1 \/ rng f2 & rng ( f1 - f2 ) c= dom f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f is ( the carrier of F_Complex ) --> 0. F_Complex ; E , j |= All ( x1 , x2 ) & E , j |= H ; reconsider n1 = n as Morphism of o1 , o2 , o2 be Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R .: P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( x \ B1 ) /\ B1 = 0 ; g + R in { s : g-r - r < s & s < g + r } ; set q\it \it \it ' = ( q , <* s *> ) := ( s , <* s *> ) ; for x being element st x in X holds x in rng f1 ; h1 /. ( i + 1 ) = h1 . ( i + 1 ) ; set mw = max ( B , ( min B ) ) , mw = min ( B , NAT ) ; t in Seg width ( I ^ ( n , n ) ) & t in dom ( I ^ ( n , n ) ) ; reconsider X = dom f \ C , Y = rng f as Element of Fin NAT ; IncAddr ( i , k ) . x = ( 0. SCM+FSA ) . x + k .= i ; ( E-max L~ f ) .. f <= ( q `2 ) .. f & ( q `2 <= ( q `2 ) .. f ) .. f ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; attr 0 <= a & b <= 1 & a * b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( d /\ b ) ) /\ e ) /\ f /\ j ; u in ( ( c /\ ( d /\ e ) ) /\ b ) /\ f /\ j ; len C + - 2 >= 9 + - 3 + 3 ; x , z , y is_collinear & x , z , x is_collinear implies x , z , y is_collinear a |^ n1 + 1 = a |^ n1 * a |^ n1 ; <* \underbrace ( 0 , 0 , 0 ) , x *> in Line ( x , a ) ; set y1 = <* y , c *> ; F2 /. 1 in rng Line ( D , 1 ) & F /. 1 in rng Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) , r /. ( m + 1 ) ; ( p `2 ) ^2 = ( f /. i1 ) `2 .= ( f /. i1 ) `2 ; ( W-min ( X \/ Y ) ) `1 = W-bound ( X \/ Y ) & ( W-min ( X \/ Y ) ) `1 = E-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of \mathop { \rm \hbox { - } \rm Real } ; p \! \mathop { Product ( Sgm X ) } = 0 & p \! \mathop { PI ( Sgm X ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set i2 = card I + 4 .--> goto 0 , goto 0 = goto 0 ; x in { x , y } & h . x = {} T & h . y = {} T ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( A ) ) & len ( the charact of ( A ) ) = len the charact of ( A ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : \HM { G2 : G2 is open } c= the carrier of G ; rng F c= the carrier of gr ( { a } , the carrier of G ) ; ( ( the means Q \ F ) . K , n , r ) is a finite sequence ; f . k , f . ( mod n ) in rng f ; h " P /\ [#] T1 = f " P /\ [#] T2 .= f " P ; g in dom ( f2 \ f2 " { 0 } ) \ f2 " { 0 } ; g\cal X /\ dom f1 = g1 " { g } .= g1 " { g } ; consider n be element such that n in NAT and Z = G . n ; set d1 = ]. b , x1 .[ , d2 = ]. b , x1 .[ , d2 = ]. b , x2 .[ , d2 = ]. b , x1 .[ , d2 = ]. b , x1 .[ ; b `1 + sqrt ( 1 + ( b `1 / b ) ^2 ) < ( 1 + ( b `1 / b ) ^2 ) ; reconsider f1 = f as VECTOR of the carrier of X , Y be bounded bounded bounded Function of X , Y ; attr i <> 0 implies i ^2 mod ( i + 1 ) mod ( i + 1 ) = 1 ; j2 in Seg len ( ( g2 ) . i2 ) & ( ( g2 ) . i2 ) `2 = ( ( ( g2 ) . i2 ) `2 ; dom ( i - j ) = dom ( i - j ) .= a .= a ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of ]. PI / 2 , PI .[ , R^1 ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of S , IF ( ) | IF ( ) | IF ( ) | IF ( ) | IF ( ) | IF ( ) | o ; reconsider R1 = x , R2 = y as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( - 1 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) is_differentiable_on Z ; cluster -> total for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C7 = 1GateCircStr ( <* z , x *> , f3 ) ; Esuch that E8 . e2 = E8 . ( e2 + 1 ) -T . ( e2 + 1 ) ; ( ( arctan * arctan ) `| Z ) . x = ( arctan * arctan ) . x .= ( arctan * arccot ) . x ; sup A = ( cos * 3 ) / 2 & inf A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F . ( cod f , - F ) ) ; reconsider p9 = q9 as Point of ( TOP-REAL 2 ) | K1 , ( TOP-REAL 2 ) | K1 = ( TOP-REAL 2 ) | K1 ; g . W in [#] ( Y | 0 ) & [#] ( Y | 0 ) c= [#] ( Y | 0 ) ; let C be compact non vertical non vertical non horizontal Subset of TOP-REAL 2 , n be Nat ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , x0 .[ & for x st x in ]. - r , x0 .[ holds f . x < 0 assume x in { ( idseq 2 ) . ( ( idseq 2 ) . ( i + 1 ) ) } ; reconsider n2 = n , m2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 ) , Bf = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R ~ . a c= R ~ . b & R ~ . b c= R ~ . a ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; attr x1 <> x2 means x1 - x2 > 0 & |. x1 - x2 .| > 0 ; assume p2 - p1 , p3 - p1 , p4 - p1 , p2 - p1 is_collinear ; set q = ( \mathbb f ) ^ <* 'not' A *> ; f be PartFunc of \langle REAL-NS 1 , \Vert * \Vert \rangle , REAL-NS 1 , REAL-NS 1 ; ( n mod 2 * k ) + 1 - k = n mod 2 ; dom ( T * succ t ) = dom ( succ t ) .= dom <* t *> ; consider x be element such that x in w and x in c and x in c ; assume ( F * G ) . v = v . ( x3 . x3 ) ; assume the Sorts of D1 c= the Sorts of D2 & the Sorts of D2 c= the Sorts of D2 ; reconsider A1 = [. a , b .] as Subset of R^1 | [. a , b .] ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) ; n1 -' len f + 1 - 1 <= len g + 1 - 1 ; ConsecutiveSet ( q , O1 ) = [ u , v , a , b , a , b , b , c ] ; set C-2 = ( ( `1 ) `1 ) . ( k + 1 ) , CG = ( ( `1 ) `1 ) . ( k + 1 ) ; Sum ( L * p ) = 0. R * Sum p .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( ) & $1 < 1 implies P [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , s4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 l be variable of k , A , A1 be Subset of A ; reconsider U2 = union ( G . k ) as Subset-Family of T | A , T | A ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p2 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p0 = <* - c , 1 , 1 *> .= <* - c , 1 , 1 *> ; synonym f is real-valued means : Def1 : rng f c= NAT & rng f c= NAT ; consider b be element such that b in dom F and a = F . b ; x9 < card ( ( X \ Y ) \/ card ( Y \ { x } ) ) + 1 & card ( ( X \ Y ) \/ { x } ) = 1 ; attr X c= B1 means : Def1 : for B holds \mathop { \rm _ X } c= succ B ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( \HM { the } \HM { function } , 0 , 0 ) ; attr 1 <= len s means : Def1 : len ( s , 0 ) = 0 & for i being Element of NAT holds s . i = s . i ; fY. c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in TAUT ( A ) means q '&' p in TAUT ( A ) & q '&' p in TAUT ( A ) ; - ( t `1 ) < ( - t `1 ) / 2 ; U1 . 1 = U2 /. 1 .= U2 /. 1 .= U2 . 1 .= U2 . 1 .= U2 /. 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O * ( i , j ) ) = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) then V in M @ ; ex f being Element of F-9 st f is_if and f is w.r.t. A9 & f . x = f . x ; [ h . 0 , h . 3 ] in the InternalRel of G & [ 1 , 0 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) . intloc 0 = s3 . intloc 0 .= s . intloc 0 ; |[ w1 , v1 ]| `1 - |[ w1 , w2 ]| `2 <> 0. TOP-REAL 2 ; reconsider t = t as Element of INT ( ) , X ( ) ; C \/ P c= [#] ( ( G | ( [#] G \ A ) ) \ A ; f " V in ( ( X \ V ) /\ D ) . ( \alpha , the carrier of X ) ; x in [#] ( ( [#] \alpha ) /\ A ) /\ ( A ` ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , yz , zx } & InputVertices ( y , z ) = { xy , yz , zx } ; for n be Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) * Line ( M , i ) ; assume M1 is being_line & M2 is being_line & M2 is being_line & M3 is being_line ; reconsider a = f0 . ( i0 -' 1 ) as Element of K ; len ( B ^ ( Len F1 ) ) = Sum ( ( Len F1 ) ^ ( Len F2 ) ) .= Sum ( ( Len F1 ) ^ ( Len F2 ) ) ; len ( ( the R of n ) * ( i , j ) ) = n & len ( ( R * ( i , j ) ) = n ; dom max ( f + g , f + g ) = dom ( f + g ) ; ( for n holds seq . n = sup Y1 ) implies for n holds seq . n = sup Y1 dom ( p1 ^ p2 ) = dom ( f ^ p2 ) .= dom ( f ^ p2 ) ; M . [ 1 , y ] = 1 * v1 .= v1 * v1 .= v1 * v1 .= v1 ; assume W is non trivial & W .first() c= the carrier of G2 & W .first() c= the carrier of G2 ; C6 * ( i1 , i2 ) `1 = G1 * ( i1 , i2 ) `1 & C6 * ( i2 , j1 ) `2 = G2 * ( i1 , j1 ) `2 ; C8 |- 'not' All ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds inf ( rng f-r ) <= b - sqrt ( ( q `1 ) ^2 + ( q `2 ) ^2 ) = 1 ; ( LSeg ( c , m ) \/ LSeg ( l , k ) ) c= R ; consider p be element such that p in element and p in L~ x and x in L~ f and x = f /. p ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid ; ( Im ( ( Partial_Sums F ) . m ) ) . x is_measurable_on E ; cluster f . x1 , x2 ( ) -> ( len x1 ) -element for Element of D ( ) ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( NW-corner Z , NW-corner Z ) \/ LSeg ( NW-corner Z , NW-corner Z ) ; set R8 = R |^ 1 , R8 = ]. b , + \infty .[ ; IncAddr ( I , k ) = AddTo ( d , I ) .= goto ( d + k ) ; seq . m <= ( the Sorts of seq ) . k & ( the Sorts of seq ) . k <= ( the Sorts of seq ) . k ; a + b = ( a ` *' ) *' ( b ` ` ` ` ` ` ` ) ; id ( X /\ Y ) = id X /\ id Y .= id X ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 as non empty Subset of U0 | U1 , U2 = U2 | U2 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( card R ) * 1 and A is finite ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & rng <* p1 *> c= rng <* p1 *> ; len s1 - 1 > 0 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( E-max ( P ) ) `2 = ( E-max ( P ) ) `2 .= ( E-max ( P ) ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` ` = f . a1 ` ` .= f . a1 ` ` .= ( f . a1 ) ` ; ( seq ^\ k ) . n in ]. - r , x0 .[ & ( seq ^\ k ) . n in ]. - r , x0 .[ ; gg . seq = g . ( seq . seq . k ) .= g . ( seq . k ) ; the InternalRel of S is non empty & ( the InternalRel of S ) c= ( the InternalRel of R ) \/ ( the InternalRel of S ) ; deffunc F ( Ordinal , set ) = phi . $2 & phi . $2 = phi . $2 ; F . s1 . a1 = F . ( s2 . a1 ) .= ( s2 . a1 ) . a1 ; x `1 = A . o .= Den ( o , A . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " P1 & f " P1 c= f " P1 ; FinMeetCl ( ( the topology of S ) | the topology of T ) c= the topology of T ; synonym o is J means : Def1 : o <> \ast p & o <> * p ; assume that X = Y and card Y = card X + 1 and card X <> 0 and card Y <> 0 ; the card of s <= 1 + ( the card ( the card of s ) ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // b1 , c1 ; e /. 1 = 0 & e /. 2 = 1 & e . 3 = 0 & e /. 4 = 0 ; EE in SE & not EE in SE & not EE in { N } ; set J = ( l , u ) If I is ( l , u ) If ; set A1 = ]| , A2 = ]| , C = and2 ( a9 , b9 , c ) , A2 = InputVertices S1 ; set c9 = [ <* c9 , A1 *> , '&' ] , A2 = [ <* A1 , cin *> , '&' ] , f4 ] , f4 = [ <* cin , A1 *> , '&' ] , f4 ] , f4 = [ <* A1 , cin *> , '&' ] , f4 = [ <* A1 , cin *> , '&' ] , f4 ] ; x * z * x " in x * ( z * N " ) ; for x being element st x in dom f holds f . x = g2 . x ; Int cell ( GoB f , 1 , width GoB f ) c= RightComp f \/ RightComp f \/ RightComp f ; U is_an_arc_of W-min C , W-min C , W-min C , W-min C , E-max C , W-min C , W-min C , W-min C , W-min C , W-min C , E-max C , E-max C , E-max C , E-max C , E-max C ; set f9 = f @ "/\" @ g , @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ ; attr S1 is convergent means for S2 , S2 being convergent convergent & S2 is convergent & lim S2 = x0 & lim S2 = x0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \mathclose { \rm c } -be reflexive transitive transitive for RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l | A ) = len l - ( 0 qua Nat ) .= len l - ( 0 qua Nat ) ; t4 *> \setminus {} is ( {} \/ rng ( t ^ <* t1 *> ) ) -valued FinSequence of rng t ; t = <* F . t *> ^ ( C . p ) ^ q .= ( C . p ) ^ q ; set pp = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-min L~ Cage ( C , n ) ; ( k -' i + 1 ) - ( i + 1 ) = ( k - i ) + 1 - ( i + 1 ) ; consider u being Element of L such that u = u ` ` ` and u in D and u in D ; len ( ( width ( b |-> a ) ) |-> a ) = width ( ( len ( b |-> a ) ) |-> a ) .= width ( b |-> a ) ; F3 . x in dom ( ( G * the_arity_of o ) . x ) ; set H2 = the carrier of H2 , H1 = the carrier of H1 , H2 = the carrier of H2 ; set H1 = the carrier of H1 , H2 = the carrier of H2 , H = the carrier of H1 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( P3 , t , k ) = ( l + 1 ) .= ( l + 1 ) ; dom ( ( ( - 1 ) (#) ( ( #Z 2 ) * ( #Z 2 ) ) ) `| Z ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 0 ) string of S ; set b9 = [ <* A1 , cin *> , '&' ] , c9 = [ <* cin , A1 *> , '&' ] , real ] , real ] ; Line ( Segm ( M , P , Q ) , x ) . x = L * Sgm Q . x ; n in dom ( ( the Sorts of A ) * the_arity_of o ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y and ||. \mathopen { \Vert \mathclose { \Vert } } <= r ; set x3 = t1 . DataLoc ( s . GBP , 2 ) , x4 = s . DataLoc ( s . GBP , 2 ) , P4 = s . DataLoc ( s . GBP , 2 ) , P4 = s . DataLoc ( s . GBP , 2 ) , P4 = s . DataLoc ( s . GBP , 2 ) , P4 = s set p0 = stop I , s2 = stop I , s3 = stop I ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 and b in W2 ; { A , B , C , D } = { A , B } \/ { C , D } ; let A , B , C , D , E , F , J be Function of A , B , M , N be set ; |. p2 .| ^2 - ( ( p2 `1 ) ^2 ) >= 0 ; l -' 1 + 1 = n-1 * ( l1 + 1 ) + 1 - 1 ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) ; the TopStruct of L = TopSpaceMetr (# the topology of L , the topology of T #) .= the TopStruct of ( T | L ) ; consider y being element such that y in dom H1 and x = H1 . y and x = H1 . y ; f9 \ { n } = ( Free All ( v1 , H ) ) \ ( Free ( v1 , H ) ) ; for Y being Subset of X st Y is summable holds Y is iff Y is iff Y is iff Y is iff Y is iff Y is iff X is iff Y is iff Y is iff Y is iff Y is iff Y is iff X is iff Y is iff Y is iff Y is iff Y is iff Y is iff Y is iff Y is iff Y is summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } ) = len s & len ( the { - } ) = len s for x st x in Z holds exp_R * ( exp_R * f ) is_differentiable_in x & for x st x in Z holds ( exp_R * f ) . x = 1 rng ( ( h2 * f2 ) | X ) c= the carrier of ( TOP-REAL 2 ) | X & rng ( ( g2 * f2 ) | X ) c= the carrier of ( TOP-REAL 2 ) | X ; j + 1- len f <= len f + ( len f - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( a - 1 ) .= C8 . ( a - 1 ) .= C8 . ( a - 1 ) .= C8 . ( a - 1 ) ; power ( F_Complex , n ) . ( z , n ) = 1 .= x |^ n .= x |^ n ; t at ( C , s ) . t = f . ( the connectives of S ) . t ; support ( f + g ) c= support f \/ ( support g ) ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] } is Subset of [: X1 , X2 :] , [: X2 , X3 :] :] ; h . i = j |-- h , id B = id B . i as Function of B , B . i ; ex x1 being Element of G st x1 = x & x1 * x1 c= A & x1 * x1 c= A ; set X = ( ( |. q .| ) . O1 ) `1 , Y = ( |. q .| ) . O , 4 = ( |. q .| ) . O , 5 = ( |. q .| ) . O , 6 = |. q .| ; b . n in { g1 : x0 - r < g1 & g1 < x0 & g1 < x0 } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) ; the lattice of the lattice of lattice Y = the lattice of the lattice of the lattice of Y & the carrier of T = the carrier of the lattice of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q2 ^ r1 ) + len r1 .= len ( q2 ^ r1 ) + len r1 .= len ( q2 ^ r1 ) + len r1 ; ( ( 1 / a ) (#) ( ( sec * f1 ) - id Z ) ) is_differentiable_on Z ; set K1 = upper ( lim ( f , H ) ) , D2 = lim ( f , H ) , H = lim ( f , H ) , N1 = lim ( f , H ) ; assume e in { \frac w1 , w2 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d6 = dom F `1 as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j + q .. f -' 1 ) ; assume X in { T . N2 , K : h . N2 = [: N , K :] } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f1 ; dom S.] = dom S /\ Seg n .= dom L6 /\ Seg n .= Seg n /\ Seg n .= Seg n /\ Seg n .= Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a ( a (#) ( 0 , 1 ) ) . ( a , 1 ) = a ' - ( 0 * n ) .= a ; D2 . j in { r : lower_bound A <= r & r <= upper_bound A } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ . c <= g @ @ @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * ( p / p ) .= p * ( p / p ) ; len g = len f + len <* x + y *> .= len f + 1 + 1 .= len f + 1 ; dom ( F | [: N1 , S1 :] ) = dom ( F | [: N1 , S1 :] ) .= [: N1 , S1 :] ; dom ( f . t ) * I . t = dom ( f . t ) * g . t ; assume a in ( "\/" ( T |^ \alpha ) ) .: D , F .: D ] ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g . ( len g ) c= dom g ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f = id b and f * f = id b and f * f = id a ; ( ( cos * cos ) | [. 0 , PI / 2 .] is increasing ; Index ( p , co ) <= len LS - Index ( Gij , LS ) + 1 - Index ( Gij , LS ) ; t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , ( ( ( ( Frege ( ( Frege F ) . h ) ) . h ) . h <= ( ( Frege ( ( curry G ) . h ) ) . h ) . h ; then P [ f . i0 ] & F ( f . i0 + 1 ) < j & F ( f . i0 + 1 ) < j ; Q [ D . ( [ D , 1 ] , F . ( D , 1 ) ] , F . ( D . ( D , 1 ) ) ] ; consider x being element such that x in dom ( F . s ) and y = F . s ; l . i < r . i & [ l . i , r . i ] is \setminus of G . i ; the Sorts of A2 = ( the Sorts of A2 ) --> ( the carrier of S2 ) .= ( the Sorts of A2 ) +* ( the Sorts of A1 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = { s } and s is one-to-one and rng s c= { s } ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b ) ; ( ( for n holds Cage ( C , n ) /. len Cage ( C , n ) ) `1 = W . ( n + 1 ) `1 ; q <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) .. ( ( UMP L~ Cage ( C , 1 ) ) + 1 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= II and A = ]. a , I .] and a < I and for i being element st i in I holds a < I . i ; consider a , b be Complex such that z = a and y = b and z + y = a + b ; set X = { b |^ n where b is Element of NAT : not contradiction } ; ( ( x * y ) \ z ) \ ( x * y ) = 0. X ; set xy = [ <* xy , yz , z1 *> , f2 ] , zx = [ <* yz , z1 *> , f3 ] , f4 ] , f4 = [ <* xy , z1 *> , f3 ] , f4 = [ <* z , x *> , f3 ] , f4 ] , f4 = [ <* z , x *> , f3 ] ; lk /. len ( lk ) = ( lk ) . ( len ( lk ) ) .= ( lk ) . ( ( k + 1 ) ) ; sqrt ( ( ( q `1 ) ^2 - ( q `2 ) ^2 ) = 1 - ( ( q `2 ) ^2 ) ; sqrt ( ( ( p `1 ) - ( p `2 ) ) ^2 < 1 ^2 / ( ( p `2 ) - ( p `2 ) ) ^2 ; ( ( ( ( X \/ Y ) \ Y ) \/ X ) \/ Y ) = ( ( X \/ Y ) \ Y ) \/ X .= X \/ Y ; ( s1 - ( s1 - s2 ) ) . k = s1 . k - s2 . k .= s1 . k - s2 . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of ( X , the carrier of X ) = the carrier of ( X , the carrier of Y ) --> 0. X & the carrier of ( X , Y ) --> 0. X = the carrier of Y ; ex p4 st p4 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set h = IExec ( X , A , J ) , A = IExec ( X , A , J ) , B = IExec ( I , A , J ) ; R |^ ( 0 * n ) = Il ( X , X ) .= R |^ n |^ 0 .= R |^ n ; ( Partial_Sums ( ( ( curry F ) . 0 ) ) . n is nonnegative & ( Partial_Sums ( ( ( curry F ) . 0 ) ) . n is nonnegative ; f2 = C7 . ( E7 , the carrier of V , the carrier of K ) .= C7 . ( C7 , the carrier of K ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & the connectives of S = ( the connectives of S ) . 11 ; set phi = ( l1 , l2 ) \HM { l2 } , phi = ( X , l2 ) \HM { l2 } ; synonym p is invertible means : Def1 : HT ( p , T ) = 1 & HT ( p , T ) = 1 ; ( Y1 `2 ) ^2 = - 1 & ( ( Y1 `1 ) ) ^2 <> 0 & ( ( Y1 `2 ) ^2 = 1 ) & ( ( Y1 `2 ) ^2 = ( Y1 `2 ) ^2 ; defpred X [ Nat , set , set ] means P [ $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 , $1 , $2 consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) , ( m -' n ) * ( m -' n ) ) = 1_ K ; sqrt ( b - sqrt ( b ^2 - 4 * a * c ) ) < 0 ; Cy . d = Cy . d mod Cy . d mod Cy . d .= Cy . d mod Cy . d ; attr X1 is dense means X1 is dense & X2 is dense & X1 meet X2 is dense implies X1 meet X2 is dense SubSpace dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = $1 * ( 2 |^ ( $1 + 1 ) ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . i *> } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ x ` .= 0. X ; for X being non empty set holds X is Basis of <* X , Y *> iff X is Basis of <* X , Y *> synonym A , B are_separated means A misses ( Cl A ) ` & ( Cl B ) misses ( Cl B ) ` ; len M8 = len p & width M8 = width p & width M8 = width p & width M8 = width p & width M8 = width p & width M8 = width p ; J . v = { x where x is Element of K : 0 < v . x } ; ( Sgm ( mod m ) ) . d - ( Sgm ( mod m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= 0 * ||. f .|| .= 0 ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ s = w ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = DataLoc ( s . a , 9 ) .= 5 + 9 .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( i + 1 ) = t . intpos ( i + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one ||. R /. L - R /. h .|| < e1 * ( K + 1 ) * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 1 ] , p1 = [ 2 , 1 ] .--> [ 2 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y in d and x in d ; for y , x being Element of REAL st y `1 in Y & x in X holds y `1 <= x `1 & y `1 <= x `1 func |. p \vert ^ <* p *> -> variable of A equals min ( NI , p ) ^ <* p *> ; consider t being Element of S such that x `1 , y '||' z , t and x `1 , z '||' y , t and x , z '||' y , t ; dom x1 = Seg len x1 & len x2 = len x1 & len x1 = len x2 & len x1 = len x2 & len x1 = width x2 & len x1 = width x2 ; consider y2 be Real such that x2 = y2 and 0 <= y2 and y2 <= 1 and 0 <= y2 and y2 <= 1 and x2 <= 1 and y2 <= 1 and - 1 <= y2 and y2 <= 1 ; ||. f /* s1 .|| = ||. f /* s1 .|| .= ||. f /. s1 .|| .= ||. f /. s1 .|| .= ||. f /. s1 .|| ; ( the InternalRel of A ) ~ = {} ( the carrier of A ) /\ Y .= {} ( the carrier of A ) /\ Y .= {} ( the carrier of A ) ; assume that i in dom p and for j be Nat st j in dom q holds P [ i , j ] and for i be Nat st i in dom p holds P [ i , j ] and i + 1 in dom p and i + 1 in dom p and i + 1 in dom q and i + 1 in dom q ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , [: X , Y :] ; u1 in the carrier of W1 & u2 in the carrier of W1 & u2 in the carrier of W1 & v2 in the carrier of W1 & u2 in the carrier of W1 & u2 in the carrier of W1 ; defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 ; T . ( u , a , v ) = s * x + ( - s * x ) .= b - s ; - ( - ( - y ) ) = - x + ( - y ) .= - x + ( - y ) .= - x + ( - y ) .= - x ; given a being Point of Gx such that for x being Point of Gx holds a , x ] in \rm \hbox { - } ; f9 = [ dom @ ( f2 @ ) , cod ( f2 @ ) ] & [ @ ( f2 @ ) , @ ( f2 @ ) ] in dom ( @ ( f2 @ ) ) ; for k , n being Nat st k <> 0 & k < n & n <> 0 holds k mod n = 1 for x being element holds x in A |^ d iff x in ( A ` ) |^ d ` consider u , v being Element of R , a being Element of A such that l /. i = u * a and u . i = a * v ; ( - sqrt ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; LS . k = LS . ( F . k ) & F . k in dom ( L . k ) ; set i2 = AddTo ( a , i , - n ) , n = AddTo ( a , i , - n ) , i = - n ; attr B is \cap S is \overline means : Def1 : for x holds S ( x , y ) = ( B ( ) . x ) `1 ; a9 " D = { a "/\" d where d is Element of N : d in D } ; |( \square , q9 )| * |( q , q9 )| - |( q , q )| * |( q , q )| >= |( q , q )| * |( q , q )| ; ( - f ) . sup A = ( - f ) . sup A .= ( - f ) . sup A .= ( - f ) . sup A ; ( G * ( len G , k ) `1 ) `1 = ( G * ( len G , k ) `1 ) `1 .= ( G * ( len G , k ) ) `1 .= ( G * ( 1 , k ) ) `1 ; ( Proj ( i , n ) * ( g - h ) ) . 3 = <* ( proj ( i , n ) ) . ( g - h ) *> . 3 .= ( proj ( i , n ) ) . 3 ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( reproj ( i , x ) . i ) ; attr ( tan * tan ) . x <> 0 & ( tan * tan ) . x <> 0 ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & t . a = h2 . a ; defpred C [ Nat ] means P8 . $1 is \HM { A } & A8 is } -then A2 is the carrier of A ; consider y being element such that y in dom ( p | i ) and q8 . i = ( p | i ) . y and q8 . i = ( p | i ) . y ; reconsider L = product ( { x1 } ) \mathbin ( index ( B ) , l ) as Basis of A ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & ( id c ) . ( id c ) = id d LE f , n , p , T , i , T , i , b be Element of ( f | n ) * ; ( f (#) g ) . x = f . ( g . x ) & ( f (#) h ) . x = f . ( h . x ) ; p in { 1 } * ( G * ( i + 1 , j ) + G * ( i + 1 , j ) } ; f `1 - p = ( f | ( n , L ) ) *' - ( f | ( n , L ) ) .= f . ( c - p ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . [ ( r2 - r2 ) / 2 , ( r1 - r2 ) / 2 ] in f1 .: [: W1 , W2 :] ; eval ( a | ( n , L ) , x ) = ( a | ( n , L ) ) . x .= a * ( b | ( n , L ) ) . x .= a * ( b | ( n , L ) ) . x ; z = DigA ( tk , x ) .= DigA ( tk , x ) .= DigA ( tk , x ) .= DigA ( tk , x ) .= DigA ( tk , x ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } ; consider S19 being Element of D such that S `1 = S19 ^ <* d *> and S `2 = d ^ <* d *> and S `2 = d ^ <* d *> ; assume x1 in dom f & x2 in dom f & x3 in dom f & x2 in dom f & f . x1 = f . x2 ; - 1 <= ( sqrt ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 / ( 1 + cn ) ^2 ; 0. V is Linear_Combination of A & Sum ( 0. V ) = 0. V & Sum ( 0. V ) = 0. V & Sum ( 0. V ) = 0. V ; let k1 , k2 , k2 , x4 , k2 , x4 , x5 , x5 , x5 be Int-Location , a , b , c , d be Int-Location , b , c , d be Int-Location ; consider j be element such that j in dom a and j in g " { k } and x = a . j and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 ; consider a being Real such that p = a * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 and a <= 1 ; assume that a <= c and d <= b and [ a , b ] c= dom f and [ a , b ] in dom g and g . a in dom g ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * ( b2 /. y ) .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - g . y .| ; ( log ( 2 , k ) ) ^2 >= ( log ( 2 , k ) ) ^2 / ( 2 * ( k + 1 ) ) ^2 ; then p => q in S & not x in the still of p & not x in S & not p in S ; dom ( the initial of r-10 ) misses dom ( the initial of r-10 ) & dom ( the initial of r-10 ) misses dom ( the initial of r-10 ) ; synonym f is ExtReal means : as : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f .: ( f .: X ) = f . union X ; i = len p1 .= len p1 + len <* x *> .= len p1 + len <* x *> .= len p1 + 1 + 1 .= len p1 + 1 + 1 .= len p1 + 1 + 1 .= len p1 + 1 + 1 ; ( l , 3 ) `1 = ( g . ( k + 3 ) ) `1 + ( k , 3 ) `1 .= ( g . ( k + 3 ) ) `1 + ( k , 3 ) `1 ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( IC SCM+FSA ) ; assume for n be Nat holds ||. ( seq . n ) - ( seq . n ) .|| <= R . n & R . n < r ; sin . ( \HM { the } \HM { function } ) = sin . r * cos . ( - ( cos . s ) ) .= 0 ; set q = |[ g1 `1 , g2 `2 ]| , g2 = |[ g2 `1 , g2 `2 ]| , f3 `2 = |[ g2 `1 , g2 `2 ]| , t = |[ g2 `1 , t `2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in holds G . n in holds ( ( the Sorts of F ) . n in ) ; consider G such that F = G and ex G1 , G2 being Subset of X st G1 in SX & G2 in SX & G = [: G1 , G2 :] & G = [: G1 , G2 :] ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( ( exp_R * ( exp_R + ( exp_R * f1 ) ) ) ; for k be Element of NAT holds ( r . k ) = ( ( Im f ) . k ) * ( ( Im g ) . k ) assume that - 1 < n and ( q `2 / |. q .| - cn ) < 0 and ( q `2 / |. q .| - cn ) < 0 and ( q `2 / |. q .| - cn ) < 0 ; assume that f is continuous and a < b and c < d and f . a = g and f . b = g . c and f . c = g . d ; consider r being Element of NAT such that seq = Comput ( P1 , s1 , r ) and r <= q and r <= q and r <= p ; LE f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } in the carrier of K and inf { x , y } in K ; assume f /^ ( i1 , \xi ) . ( i , \xi ) in ( proj ( F , i2 ) ) " ( proj ( F , i2 ) ) " ( ( proj ( F , i2 ) ) " ) ; rng ( ( ( Flow M ) | ( the carrier of M ) ) c= the carrier' of M & ( ( the carrier of M ) | ( the carrier of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : not contradiction } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - g .|| < g ; consider t be VECTOR of product G such that NAT = ||. D5 .|| and ||. t .|| <= 1 and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and v ^ <* 1 *> in dom p and v ^ <* 1 *> in dom p ; consider a being Element of the points of [ X1 , X2 ] , A being Element of the \rm element such that a on A and not a on A and a on A and b on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) " ) = 1 ; for D being set st i in dom p holds p . i in D & p . i in D holds p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] ; L~ f2 = union { LSeg ( p1 , p2 ) , LSeg ( p1 , p2 ) } .= LSeg ( p1 , p2 ) \/ LSeg ( p2 , p1 ) ; i -' len h11 + 2 - 1 < i + 2 - 1 + 1 & i + 1 - 1 + 1 < i + 1 - 1 + 1 ; for n be Element of NAT st n in dom F holds F . n = |. ( n -' 1 ) * ( n -' 1 ) .| for r , s1 , s2 being Real holds r in [. s1 , s2 .] iff r <= s1 & s1 <= s2 & s2 <= 1 & s1 <= 1 & s2 <= 1 & s1 <= 1 & s2 <= 1 assume v in { G where G is Subset of T2 : G in B & G c= B & G c= B & G c= B } ; let g be \subseteq G -:] , X be Element of INT , b be Element of INT -tuples_on ( X , b ) , c , d be Element of INT ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g . k , x ) ) . y ; consider q1 be sequence of CH such that for n holds P [ n , q1 . n ] and for n holds q1 . n = F ( n ) ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and f . n = F ( n ) ; reconsider B-6 = B /\ O , O = O /\ Z , Z = O as Subset of B | Z ; consider j be Element of NAT such that x = the holds 1 <= j and j <= n and 1 <= j and j <= n and 1 <= n and n <= len f and f . j = f . n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 and x in L2 and x in L2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( C * _ ( k , n2 ) ) . 0 ) .= C . ( ( k + 1 ) - 1 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = X & rng ( X --> f ) = dom ( X --> f ) ; ( E-max L~ Cage ( C , n ) ) `2 <= ( ( E-max L~ Cage ( C , n ) ) .. ( Cage ( C , n ) ) & ( E-max L~ Cage ( C , n ) ) `2 <= ( E-max L~ Cage ( C , n ) ) `2 ; synonym x , y are_not collinear means : as : x = y or ex l being there y being there r being there l being there of S st { x , y } c= l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L st a = x & b = y & x << y holds x << y iff x << y ; ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( #Z 2 ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A1 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( 0 + 1 ) .= 6 .= 6 + 1 .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g2 * ( g . g2 ) .= f . g2 * ( g . g2 ) .= f . g2 * ( g . g2 ) .= f . g2 * ( g . g2 ) .= f . g2 * ( g . g2 ) ; ( M * ( F . n ) ) . n = M . ( ( ( ( canFS ( Omega ) ) . n ) ) .= M . ( ( canFS ( Omega ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z be set ; ( for n be Nat holds s . n <= ( ( - 1 ) (#) s ) . n & ( - 1 ) (#) s . n <= ( - 1 ) (#) s . n ; attr - 1 <= r & r <= 1 implies ( ( - 1 ) (#) ( arccot ) ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 ]| . 2 - |[ y1 , y2 ]| . 2 = x2 - y2 ; attr for m be Nat holds F . m is nonnegative means for n be Nat holds ( Partial_Sums F ) . n is nonnegative ; len ( ( G . z ) (#) ( G . y ) ) = len ( ( G . x ) (#) ( G . y ) ) .= len ( G . y ) .= len ( G . y ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W2 /\ W3 ; given F being FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and for k being Nat st k in n holds Sum F = k and Sum ( F | k ) = k ; 0 = 1-r * u , u2 = 1 * u , u1 = 1 * u - ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) . n .| < e ; cluster non empty for \mathclose { \rm c } } is distributive for \hbox { ( { \rm c } _ 2 ) , ( { \rm c } _ 2 ) } , ( { \rm c } _ 2 ) } is Boolean "/\" ( B , L ) = Bottom ( B , L ) .= "/\" ( B , L ) .= "/\" ( { {} } , L ) .= "/\" ( { {} } , L ) .= "/\" ( { {} } , L ) .= "/\" ( { {} } , L ) .= "/\" ( { {} } , L ) ; sqrt ( r ^2 + ( r ^2 + ( r ^2 + ( r ^2 ) ) ^2 ) <= sqrt ( r ^2 + ( r ^2 ) ) ^2 + ( r ^2 + ( r ^2 + ( r ^2 ) ) ^2 ) ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 2 * r1 - c * ( |[ a , c ]| - ( 2 * r1 - 1 ) ) = 0. TOP-REAL 2 + ( 2 * r1 - 1 ) * ( |[ b , c ]| - ( 2 * r1 - 1 ) ) ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - ( K / n ) ) ) ) ) ) ) ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in downarrow s and x2 in downarrow t and x = [ x1 , x2 ] and [ x2 , x3 ] in t and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_bound ( g , ( len g ) ) ) . n consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 , H2 are_isomorphic and H1 , H2 are_isomorphic and H1 , H2 are_isomorphic and H1 , H2 are_isomorphic ; for S , T being non empty RelStr , d being Function of T , S st T is complete holds d is monotone & d is monotone [ a + 0 , b ] in ( the carrier of cLin ( A ) ) \ ( the carrier of cW2 ) & [ b , a ] in the carrier of [: cW2 , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * <* x *> ) as Element of NAT ; I <= width GoB ( GoB ( GoB h , len GoB h ) , GoB ( GoB h , 1 ) ) & width GoB ( GoB h , width GoB h ) = width GoB ( GoB h , 1 ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( f2 * f1 ) ^\ k .= ( f2 * f1 ) /* s ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 : A2 misses A2 & A2 /\ ( A1 \/ A2 ) = { 0. V } & ( for x holds ( A1 /\ A2 ) /\ ( A2 \/ A1 ) = { 0. V } ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in A } ; dom ( Line ( v , i + 1 ) ) ^ ( ( Line ( v , m ) ) /. ( \square , 1 ) ) = dom ( F ^ <* G . ( i , 1 ) *> ) ; cluster [ x , 4 , 4 , 5 , 6 ] -> [ x , 4 , 5 , 7 ] , [ x , 4 , 7 ] , [ x , 4 , 7 ] ] -> to [ x , 4 , 7 ] , [ x , 5 ] , [ x , 6 ] ] -> to x , 4 , 5 , 6 , 8 , 7 , 8 , 8 , 8 ] ; E , ( All ( x2 , x1 ) ) . ( x2 , x1 ) = All ( x2 , x2 ) . ( x2 , x1 ) '&' All ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) '&' ( x2 , x1 ) |= ( x2 , x1 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - h . ( h . m ) .= F . x0 - F . x0 ; cell ( G , ( X -' 1 , Y ) , ( Y + 1 ) \ L~ f ) meets ( L~ f ) \/ ( L~ f ) ; IC Comput ( P2 , s2 , k ) = IC Comput ( P2 , s2 , k ) .= IC Comput ( P2 , s2 , k ) .= ( IC Comput ( P2 , s2 , k ) ) .= ( IC Comput ( P2 , s2 , k ) ) .= ( IC Comput ( P2 , s2 , k ) .= ( IC Comput ( P2 , s2 , k ) ) .= ( IC Comput ( P2 , s2 , k ) ) ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 be element such that x0 in dom a and x0 in dom g and y = g " . x0 and x0 in dom g and y = a . x0 and x0 in dom g and g . x0 = a . x0 ; dom ( r1 (#) ( ( r1 (#) ( b (#) ( A . m ) ) ) ) = dom ( ( a (#) ( b (#) ( A . m ) ) ) ) .= dom ( ( a (#) ( b (#) ( A . m ) ) ) .= dom ( ( a (#) ( b (#) ( A . m ) ) ) .= dom ( ( a (#) ( b (#) ( A . m ) ) ) ; d-7 . [ y , z ] = ( ( ( y , z ) `2 ) `1 - ( y , z ) `2 ) `2 .= ( ( y , z ) `2 ) - ( y , z ) `2 ; attr for i being Nat holds C . i = A . i /\ B . i & C . i c= C . i /\ C . i ; assume that x0 in dom f and f is continuous and f . x0 = ( f . x0 ) * ( f . x0 ) and for x st x in dom f holds f . x <> 0 and f . x0 <> 0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K & Q meets K holds A meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| func => <*> a -> set means : Def1 : a in it iff a in it & for b being Ordinal st a in it holds it . b c= b ; [ a1 , a2 , a3 , a4 ] in ( the carrier of A ) ~ & [ a1 , a2 , a3 ] in ( the carrier of A ) ~ ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ b , a ] in the carrier of S2 & [ a , b ] in the carrier of S2 & [ b , a ] in the carrier of S2 ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - y .|| < ( e * ||. x .|| ) * ||. x - y .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y } holds z in Z & z in Z ; sup compactbelow ( s , t ) = [ sup ( { s } ) , sup ( { s } ) ] .= sup { s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s , t ) ) ) ) ) where s is Element of S : s . ( s . ( s . ( s , t ) ) ) } , T ] } ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ij and [ f . i , f . j ] in Ij and [ f . i , f . j ] in Ij ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p = q & p ^ q = q & p ^ q = q consider e1 being Element of the affine of X such that c9 , a9 // a9 , b9 and a , a9 // a9 , c9 and a , a9 // a9 , c9 and a , a9 // c9 , c9 and a , a9 // c9 , c9 and a , b // a9 , c9 and a , b // c9 , c9 and a , c // a9 , c9 and a , b // a9 , c9 and a , b // c9 , c9 and a , b // a9 , c9 and a , b // c9 , c9 and a , b // c9 , c9 and a , b // a9 , c9 and set U2 = I \! \mathop { {} } , U2 = I \! \mathop { {} } , F = I \! \mathop { {} } ; |. q2 .| ^2 = ( ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 ; for T being non empty TopSpace , x , y being Element of [: T , T :] , T being Element of [: T , T :] holds x "\/" y = x "\/" y & x "/\" y = x "/\" y dom ( signature U1 ) = dom ( ( the charact of U1 ) | ( the carrier of U1 ) ) & dom ( ( the charact of U1 ) | ( the carrier of U1 ) ) = dom ( ( the charact of U1 ) | ( the carrier of U1 ) ) ; dom ( h | X ) = dom h /\ X .= dom h /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) .= dom ( h | X ) /\ X .= dom ( h | X ) .= dom ( h | X ) ; for N1 , N2 being Element of [: G , H :] holds dom ( h . K ) = N & rng ( h . K ) = [: N , I :] ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or ( q `2 / |. q .| - cn ) / ( 1 + cn ) <= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; attr r1 = f9 & r2 = f9 & r1 = f2 & r2 = f9 & r1 = f2 & r2 = f1 & r1 = f2 & r2 = f3 & r1 = f2 & r2 = f3 ; vseq . m is bounded Function of X , the carrier of Y & x9 = ( vseq . m ) . x & x9 = ( vseq . m ) . x ; attr a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( b , c , a ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ i , s ] and r < s and s < t and t < t and t < s and t < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 ^2 + |. q .| ^2 ; consider p1 , q1 be Element of [: X , Y :] such that y = p1 ^ q1 and q1 ^ q2 = p1 ^ q1 and p1 ^ q1 = p2 ^ q1 and q1 ^ q2 = p1 ^ q1 and p1 ^ q1 = p2 ^ q2 ; ( the carrier of ( A ) ) . ( r1 , r2 , s1 , s2 , s2 ) = ( ( A ) . ( r2 , s2 ) ) . ( s2 , s1 ) .= ( ( A ) . ( r2 , s2 ) ) . ( s2 , s1 ) .= ( ( A ) . ( r2 , s2 ) ) . ( s2 , s1 ) ; ( for w holds ( for w holds w in proj2 .: ( A /\ Vertical_Line w ) ) & ( proj2 .: ( A /\ Vertical_Line w ) ) /\ ( proj2 .: ( A /\ Vertical_Line w ) is non empty ) implies proj2 .: ( A /\ Vertical_Line w ) is non empty s , ( k |= H1 H1 ) implies s |= H1 iff s |= H2 iff s |= H1 |= H2 & s |= H1 '&' H2 iff s |= H1 '&' H2 len ( s + 5 ) = card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= ( len b1 ) + 1 .= ( len b1 ) + 1 .= ( len b1 ) + 1 .= ( len b1 ) + 1 .= len b2 + 1 .= len b1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x holds z >= y and z >= x ; LSeg ( UMP D , |[ ( ( E-bound D ) + E-bound D ) / 2 , ( ( E-bound D ) / 2 ]| ) / 2 , ( ( E-bound D ) / 2 ) / 2 ]| /\ D = { UMP D } ; lim ( ( ( ( f `| N ) / g ) /* b ) = ( ( f `| N ) / g ) /* b .= ( ( f `| N ) / g ) . b ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] , pr1 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R . k ) .|| < r holds ||. ( seq . k ) - ( R . k ) .|| < r for X being set , P , Q being a_partition of X st x in a & P in P & Q in P & x in Q & P in Q & P /\ Q <> {} holds a = b Z c= dom ( ( ( - exp ) (#) ( exp_R * f ) ) \ ( ( exp_R * f ) " { 0 } ) " { 0 } implies f " { 0 } c= dom ( ( - 1 ) (#) ( exp_R * f ) " { 0 } ) ex j be Nat st j in dom ( l ^ <* x *> ) & j < i & i < len ( l ^ <* x *> ) & y = i + 1 & z = i + 1 & z = i + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & u in N & v in N holds r * u + ( r * v ) in N A , Int ( A , B ) / A , Int ( A , B ) / A / B / C / A / ( A , B ) / A / ( A , B ) / A / ( A , B ) / ( A , B ) / A / ( A , B ) / ( A , B ) / ( A , B ) / ( A , B ) / ( A , B ) / ( A , B ) / A / B / A / B ) , A / ( A , B ) / ( A , B ) / ( A , B ) / ( A , B ) / ( A , B - Sum <* v , u , w *> = - ( v + u + u ) .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM = ( Exec ( a := b , s ) ) . IC SCM .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x ; for S1 , S2 being non empty reflexive RelStr for D being non empty Subset of S1 , S1 being non empty Subset of S2 holds cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or ex z st z in X & z = x & x = y or z = x & y = z or z = x & x = y or z = y ; E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , T being decorated tree , p , q being Element of dom T st p element T holds ( T -tree ( p , T ) ) . q = T . q & ( T -tree ( p , T ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster the _ of k , n ) divides k & k divides n & n divides m & n divides k & m divides n & n divides k ; dom F " = the carrier of X2 & rng F " { 0 } = the carrier of X1 & rng F " { 0 } = the carrier of X2 & rng F = the carrier of X2 & rng F c= the carrier of X1 & F " { 0 } = the carrier of X2 ; consider C be finite Subset of V such that C c= A and card C = n and the carrier of V = A and the carrier of W = A and C is linearly-independent and A is linearly-independent and C is linearly-independent ; V is prime implies for X , Y being Element of \langle the topology of T , \subseteq \rangle st X /\ Y c= V holds X c= Y or X c= Y or Y c= V or X c= V or X c= Y or X c= Y or X c= Y set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 .= - ( - ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 .= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p4 & f . 1 = p4 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 ; attr f is partial differentiable on on u0 means : Def1 : SVF1 ( 2 , 3 ) is_differentiable_in u0 & SVF1 ( 2 , 3 ) is_differentiable_in z0 & SVF1 ( 2 , 3 ) is_differentiable_in z0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and 1 <= width G and G * ( t , width G ) `2 >= G * ( t , width G ) `2 and G * ( t , width G ) `2 >= G * ( t , width G ) `2 ; attr i in dom G means r (#) ( f (#) reproj ( i , x ) ) = r (#) reproj ( i , x ) & r (#) reproj ( i , x ) = r (#) reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( ( decomp c ) /. k = <* c1 , c2 *> and ( ( decomp c ) /. k = <* c1 , c2 *> and ( ( decomp c ) /. k = c1 + c2 and ( decomp c ) /. k = c2 + c2 and ( decomp c ) /. k = c2 + c2 ; u in { |[ r1 , s1 ]| : r1 < s1 & s1 < 1 & s1 < 1 } ; Cl ( X ^ Y ) . k = the carrier of X . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) ; attr len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & g2 < x0 } c= N2 and for g be Real st g in N2 holds ||. ( y - x0 ) . g - ( g . x0 ) .|| < g2 . g ; assume x < ( - b + sqrt ( 2 * a , c ) ) / 2 or x > - b + sqrt ( 2 * a , c ) / 2 ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ H1 ) . i & ( G1 '&' G2 ) . i = ( <* 3 *> ^ H1 ) . i & ( G1 '&' G2 ) . i = ( <* 3 *> ^ H1 ) . i ; for i , j st [ i , j ] in Indices M2 holds ( M2 + M1 ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f holds i divides f /. i & i <= len f & i divides f /. i & i divides f /. i & i divides len f holds i divides f /. i assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B holds a c= c & b c= c & a c= c & b c= c & a c= b & b c= c & c c= c ; b2 * ( ( - b3 ) * ( - ( 3 * q2 ) + ( - ( 3 * q2 ) ) ) + ( - ( 3 * q2 ) ) * ( - ( 3 * q2 ) ) = 0. TOP-REAL n + ( 3 * q2 ) * ( - ( 3 * q2 ) ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & A /\ B c= Cl ( F | D ) } ; attr seq is summable means : Def1 : seq is summable & seq is summable & seq is summable & lim seq = 0 implies seq + seq is summable & lim ( seq + seq ) = ( lim seq ) * ( lim seq ) + ( lim seq ) * ( lim seq ) ; dom ( ( cn max D ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( TOP-REAL 2 ) | D .= the carrier of ( TOP-REAL 2 ) | D .= the carrier of ( TOP-REAL 2 ) | D .= the carrier of ( TOP-REAL 2 ) | D .= the carrier of ( TOP-REAL 2 ) | D ; [ X \to Z ] is full full full full full full full full full full full SubRelStr SubRelStr full SubRelStr non empty full SubRelStr of ( [#] Z ) |^ the carrier of Z , the carrier of Z ] means [ X \to Y ] is full holds X is full ( G * ( 1 , j ) `2 = ( G * ( 1 , j ) `2 ) `2 & ( G * ( 1 , j ) `2 <= ( G * ( 1 , j ) `2 ) `2 ; synonym m1 c= m2 means for for for for p , q being set st p in P & q in P holds the InternalRel of ( m1 + 1 ) . p <= ( the Subset of ( m1 + 1 ) ) . q & the Subset of ( m1 + 1 ) | ( m1 + 1 ) = ( the carrier of ( m1 + 1 ) ) | ( m1 + 1 ) ; consider a being Element of [: B , C :] such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ b ] ; func multiplicative empty multiplicative loop structure means : Def1 : the multiplicative of mas of it = \llangle the carrier of it , the carrier of it #) , the carrier of it = [: the carrier of it , the carrier of it :] ; the carrier of \mathop { a , b , d } + \mathop ( c , d ) = b + \mathop ( c , d ) .= b + \mathop { \rm \HM { c + d } : c in b } + d .= b + \mathop { \rm \HM { c + d } : c in d } ; cluster strict for non empty RelStr means : Def1 : for Element of INT holds ( for i , j being Element of INT st i in INT holds ( i , j ) = i + j & ( i , j ) = j + 1 ) & ( i = j implies ( i = j implies implies ( i = j ) = j ) ; ( - 2 * p1 ) + ( 2 * p2 ) - ( 2 * p2 ) = ( - 2 * p2 ) + ( 2 * p2 ) - ( 2 * p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty Subset of S st D in [#] T holds sup D meets ( [#] T ) and sup D meets ( [#] T ) and sup D meets ( [#] T ) and sup D meets ( [#] T ) and sup D meets ( [#] T ) /\ ( [#] T ) = [#] T ; assume 1 <= k & k <= len w + 1 implies T-7 . ( ( ( q , w ) -succ k ) . ( q , w ) ) = ( T11 . ( q , w ) ) . ( q , w ) & ( T . ( q , w ) ) . ( q , w ) = ( T . ( q , w ) ) . ( q , w ) ; 2 * ( a |^ ( n + 1 ) ) + ( 2 * ( b |^ ( n + 1 ) ) >= ( a |^ n ) + ( b |^ ( n + 1 ) ) + ( b |^ n ) ; M , v / ( x. 3 , 0 ) / ( x. 0 , 4 ) / ( x. 0 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 0 , x. 0 ) |= ( x. 0 , x. 0 ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 and for x1 st x1 in l holds f . x1 < f . x0 and f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G2 , e being Vertex of G2 st e in W holds not e in W iff not e in W & not e in W c9 is non empty iff ( ( ex x1 , x2 st x1 is non empty & x2 is non empty or ( ex y1 st y1 is non empty & y2 is non empty ) & ( ( ex y2 st y1 is non empty & y2 is non empty ) & ( ( ex y1 st y1 is non empty or y2 is non empty ) ) & ( ( ex y2 st y1 is non empty or y2 is non empty ) ) & ( not y1 is non empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] c= Indices GoB f & [: dom GoB f , Seg width GoB f :] c= Indices GoB f & [: dom GoB f , Seg width GoB f :] c= Indices GoB f & [: L~ f , Seg width GoB f :] c= Indices GoB f & [: L~ f , Seg width GoB f , Seg width GoB f :] c= Indices GoB f , Seg width GoB f :] c= Indices GoB f :] holds f /. 1 , Seg len GoB f :] c= Indices GoB f :] for G1 , G2 being Group , O being strict Subgroup of O st G1 is stable & G2 is stable holds G1 is stable iff G1 is stable & G2 is stable & G2 is stable & G1 is stable & G2 is stable UsedIntLoc ( ( ( intloc 0 ) .--> 1 ) ) = { intloc 0 , ( ( intloc 0 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) .--> 1 , ( ( intloc 0 ) .--> 1 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & for i being Nat st i in dom f1 holds Q [ i , f2 . i ] holds Q [ i , f1 . i ] sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) = sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) .= sqrt ( ( p `1 ) ^2 ) + ( p `2 ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x2 )| & |( x2 , x3 )| = |( x1 , x2 )| - |( x2 , x3 )| for x st x in dom ( ( - ( - x ) ) | A ) holds ( ( - x ) | A ) . x = - ( x ) | A for T being non empty TopSpace , P being Subset-Family of T st P c= the topology of T & for B being Basis of T ex x being Point of T st B c= P & P c= B holds P is Basis of T ( a 'or' b ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x ) 'or' b . x .= TRUE 'or' b . x .= TRUE ; for e being set st e in A1 ex X1 being Subset of X st e = X1 & X1 is open & [: X1 , Y1 :] c= [: X1 , Y1 :] & [: X1 , Y1 :] c= [: Y1 , Y2 :] & [: X1 , Y1 :] c= [: Y1 , Y2 :] for i be set st i in the carrier of S for f being Function of [: S1 , S2 :] , S1 . i st f = H . i & f . i = f | [: S1 , S2 :] holds F . i = f | [: S2 , S2 :] . i for v , w st for y st x <> y holds w . y = v . y holds J . ( v . y ) = Valid ( VERUM ( Al , J ) , J ) . ( v . y ) = Valid ( VERUM ( Al , J ) , J ) . ( v . y ) card D = card D1 + card D2 - 1 .= card D1 + card D2 - 1 .= card D1 + 1 - 1 .= len D1 + 1 - 1 .= len D1 + 1 - 1 .= len D1 - 1 + 1 - 1 .= len D1 - 1 + 1 - 1 .= len D1 - 1 + 1 - 1 .= len D1 - 1 .= len D1 + 1 - 1 .= len D1 - 1 + 1 .= len D1 - 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> s ) ) . 0 .= s . 0 .= s . 0 .= s . 0 .= s . 0 .= s . 0 .= s . 0 .= s . 0 .= s . 0 .= s . 0 ; len f /. ( \downharpoonright i1 -' 1 ) + 1 = len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k < n holds a <= b or a <= b + c or a = b + c or a = b + c for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 st p in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) + 1 <= Index ( p , f ) ( ( curry ( P , yielding ) ) # x + ( ( curry ( P , -19 ) ) # x ) . x = ( lim ( ( curry ( P , -19 ) ) # x ) + ( lim ( ( curry ( P , -19 ) ) # x ) ) . x ; z2 = g /. ( i -' n1 + 1 ) .= g /. ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in id ( the carrier of G ) ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A , R is Subset of A ( ) : R in F ( ) & R in F ( ) & R in F ( ) holds ( Intersect ( R , R ) ) . X = Intersect ( R , R ) . X CurInstr ( P1 , Comput ( P1 , s1 , m ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m ) ) .= CurInstr ( P1 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and d on N and p on M and a on M and p on M and a on N and p on M and a on M and b on N and c on N and d on N and a on M and b on N and a on N and b on N and c on N and a on N and a on M and b on N and c on N and d on N and d on N and d on N and d on N and d on N and d on N and d on N and d on N and a on N and a on N and a on N and a on N and c on N and a on N and a on M and a on M and c on N and d on N and d on N and d on N and c on N and d on N and d on N assume that T is \hbox { T _ 4 } and F is closed and ex F being Subset-Family of T st F is closed & for n being Nat holds F . n is finite-ind & for n being Nat holds F . n <= 0 and ind T <= n and ind T <= n and ind T <= n and ind T <= n and ind T <= n ; for g1 , g2 st g1 in ]. r - r , r .[ & g2 in ]. r - r , r .[ & g1 < g2 holds |. f . g1 - f . g2 .| <= ( r1 - r ) / 2 * ( r1 - r ) ( ( - 1 ) * ( ( - 1 ) * ( - 1 ) ) + ( - 1 ) * ( - 1 ) = ( - 1 ) * ( - 1 ) * ( - 1 ) + ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) ; F . i = F /. i .= 0. R + r2 .= b |^ ( n + 1 ) .= b |^ ( n + 1 ) .= b |^ ( n + 1 ) .= b |^ ( n + 1 ) .= b |^ ( n + 1 ) .= b |^ ( n + 1 ) ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n being Nat holds f . ( n + 1 ) = R ( n , f . n ) & f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom F holds it . i = F . i * f . ( i - 1 ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 } \/ { x4 , x5 , x5 } \/ { x5 , x5 , x5 } \/ { x5 , x5 , x5 } \/ { x1 , x2 , x3 } \/ { x2 , x3 , x4 } \/ { x4 , x5 , x5 } \/ { x1 , x2 , x4 } \/ { x2 , x4 } ; for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices ( S1 +* S2 ) & o . ( n + 1 ) in InnerVertices S1 & o . ( n + 1 ) in InnerVertices S2 ; ex S1 being Element of QC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( for i holds S1 . i = S2 . i ) & ( for i holds S1 . i = S2 . i ) & ( for i holds S1 . i = S2 . i ) & ( for i holds S1 . i = S2 . i ) ; consider P being FinSequence of GT2 such that p9 = product P and for i being Element of dom P ex t being Element of the carrier of K st P . i = t & ex i being Element of dom t st t = ( the multF of K ) . i & t . i = i and t . i = i and t . i = i and t . i = j ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the topology of T1 = the topology of T2 & the topology of T2 = the topology of T2 & the topology of T2 = the topology of T2 holds P is Basis of T2 assume that f is_partial_differentiable_in u0 , 3 and r (#) pdiff1 ( 3 , 3 ) is_differentiable_in u0 and r (#) pdiff1 ( 3 , 3 ) is_differentiable_in z0 and SVF1 ( 3 , 1 , 3 ) . z0 = r * SVF1 ( 3 , 1 , 3 ) . z0 ; defpred P [ Nat , FinSequence of bool REAL ] means for F , G being Permutation of bool $1 st len F = $1 & G = F & G = F & F = G holds Sum ( F ^ G ) = Sum ( F ) * Sum ( G ) & Sum ( F ) = Sum ( G ) * Sum ( G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex Fa1 being Subset-Family of T st $1 = Fa1 & for F being Subset-Family of T st F = Fa1 & F is discrete holds union F is discrete & union F is discrete & union F c= union ( Fa1 /\ the carrier of T ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p2 , P , p1 , p2 holds LE p4 , p2 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 f in St ( E , H ) & for g st g in f . y holds x = g . y iff for y st y in f . y holds f . y = f . ( y , x ) ex 8 being Point of TOP-REAL 2 st x = p2 & ( sqrt ( 1 - ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) >= 8 & ( sqrt ( 1 - cn ) ) ^2 >= 8 & ( sqrt ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 >= 8 ; assume for d being Element of NAT st d <= ( n - 1 ) holds s1 . ( n + 1 ) = s2 . ( n + 1 ) & s2 . ( n + 1 ) = s2 . ( n + 1 ) & s1 . ( n + 1 ) = s2 . ( n + 1 ) ; assume that s <> t and s is Point of Closed-Interval-TSpace ( x , r ) and s is Point of Closed-Interval-TSpace ( x , r ) and not ex e being Point of Closed-Interval-TSpace ( x , r ) st e = |[ s , r ]| and not e in Ball ( x , r ) /\ Ball ( y , r ) and e = |[ s , r ]| and e <> s and e <> s and e <> s and e <> s and s <> t and s <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> t and t <> s in Ball ( x in Ball ( x , r and t in Ball ( x , r and t in Ball ( x , r and t in Ball ( x , r ) and t given r such that 0 < r and for s being Point of C1 holds 0 < s or ex x1 , x2 be Point of C1 st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s & ||. x1 - x2 .|| < s & ||. f /. x1 - f /. x2 .|| < r ; ( p | x ) | ( ( x | x ) | ( x | x ) ) = ( ( x | x ) | ( x | x ) ) | ( x | x ) ; assume that x , x + h in dom ( sec * sec ) and ( there exists $ h st ( \HM { the } \HM { function } ) = ( 2 * sec ) * ( sin * cos ) + ( 2 * cos ) * sin ) and for x st x in dom ( ( 2 * cos ) * sin ) holds ( ( 2 * cos ) `| Z ) . x = ( 4 * sin ) . x + ( 2 * cos . x ) ^2 ; assume that i in dom A and len A > 1 and len A > 1 and width B > 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and len A = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and width B = 1 and len A = 1 and width B = 1 and len A = 1 and len A = 1 and len A = 1 and len A = 1 and len A = 1 and len A = 1 and width B for i being non zero Element of NAT st i in Seg n holds i divides n or i divides n or h = n implies h = ( 1. F_Complex ( n , L ) ) * ( i |^ n ) & ( i divides n implies h = ( 1. F_Complex ( n , L ) ) * ( i |^ n ) ( ( b1 'imp' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'imp' b2 ) '&' ( c1 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c1 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c1 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c1 '&' c2 ) '&' ( c2 '&' c2 ) '&' ( c1 '&' c2 ) '&' ( c1 '&' c2 ) assume that for x holds f . x = ( ( - 1 ) (#) ( sin * cos ) ) . x and for x st x in dom ( ( - 1 ) (#) ( sin * cos ) ) holds ( ( - 1 ) (#) ( sin * cos ) ) . x = ( - 1 ) * ( sin . x ) and ( ( - 1 ) (#) ( sin * cos ) ) . x <> 0 ; consider R8 , I-8 be Real such that R8 = Integral ( M , F . n ) and I8 = Integral ( M , F . n ) and I = Integral ( M , F . n ) and Integral ( M , F . n ) = Integral ( M , F . n ) and Integral ( M , F . n ) = Integral ( M , F . n ) ; ex k be Element of NAT st ' = k & 0 < d & for q be Element of product G st q in X & 0 < q & ||. q] - f /. x0 .|| < r holds ||. partdiff ( f , q , x ) - partdiff ( f , x , y ) .|| < r x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } or x in { x1 , x2 , x3 , x4 } or x in { x2 , x3 , x4 } or x in { x1 , x2 , x4 } or x in { x2 , x3 , x4 } or x in { x2 , x4 , x4 } ; ( G * ( j , i ) `2 ) `2 = ( G * ( 1 , i ) `2 ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * ( 1 , i ) `2 .= ( G * f1 * p = p .= ( the arity of S1 ) . ( ( the arity of S2 ) . o ) .= ( the arity of S2 ) . ( ( the arity of S2 ) . o ) .= ( the arity of S2 ) . ( ( the arity of S2 ) . o ) .= ( the arity of S2 ) . ( ( the arity of S2 ) . o ) .= ( the arity of S2 ) . o ; func card T , P , T1 , T2 -> Tree means : Def1 : q in T iff q in T & not p in T or ex r st r in T & q = p ^ r or p in T & q in T & r in T & r in T ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= FH . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= FH . ( k + 1 -' 1 ) .= FH . ( k + 1 -' 1 ) .= FH . ( k + 1 -' 1 ) .= FH . ( k + 1 -' 1 ) ; for A , B , C being Matrix of K st len B = len C & width C = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width A = width C & width B = width C & width A = width C & width B = width C & width B = width C & width B = width C & width A = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C = width C & width B = width C & width B = width C = width C = width C & width B = width C = width C & width B = width C = width C = width seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + Partial_Sums ( seq ) . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + Partial_Sums ( seq ) . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + Partial_Sums ( seq ) . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k + 1 ) . ( k assume that x in ( the carrier of C1 ) & y in ( the carrier of C2 ) and z in ( the carrier of C2 ) and x = ( the carrier of C2 ) and y = ( the carrier of C2 ) and z = ( the carrier of C2 ) and x = ( the carrier of C2 ) . z ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k in $1 holds ( ( VAL g ) . k = ( ( VAL g ) . k ) ) . ( f /. ( $1 + 1 ) ) = ( ( VAL g ) . ( k + 1 ) ) . ( f /. ( $1 + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i + 1 , j ) and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) ; assume that s < 1 and ( q `1 / |. q .| - cn ) / ( 1 + cn ) >= 0 and ( q `2 / |. q .| - cn ) / ( 1 + cn ) >= 0 and ( p `2 / |. q .| - cn ) / ( 1 + cn ) >= 0 and ( p `2 / |. q .| - cn ) / ( 1 + cn ) >= 0 and ( p `2 / |. q .| - cn ) / ( 1 + cn ) >= 0 and ( p `2 / |. q .| - cn ; for M being non empty metric , x being Point of M , f being Point of M st x = f holds ex x being Point of M st x = f . ( n + 1 ) & ex f being sequence of TopSpaceMetr \overline ( M ) st for n being Element of M holds f . n = Ball ( x , f . n ) defpred P [ Element of omega ] means f1 . $1 - f2 . ( $1 + 1 ) / ( 2 * $1 ) . x = f1 . ( $1 + 1 ) / ( 2 * $1 - 1 ) . x & ( f1 - f2 ) . x = f1 . ( $1 + 1 ) / ( 2 * $1 - 1 ) . x ; defpred P1 [ Nat , Real ] means ( for r be Point of C st $1 in Y & ||. $2 - $2 .|| < r & ||. f /. $1 - f /. ( $1 + 1 ) .|| < r holds ||. f /. ( $1 + 1 ) - f /. /. ( $1 + 1 ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) ; sqrt ( 1 - 2 * ( n + 2 ) + 2 * ( n + 1 ) ) * ( 2 * ( n + 1 ) ) = ( sqrt ( 1 - 2 * ( n + 1 ) ) ) * ( 2 * ( n + 1 ) ) .= 1 * ( 2 * ( n + 1 ) ) .= 1 * ( 2 * ( n + 1 ) ) .= 1 * ( 2 * ( n + 1 ) ; defpred P [ Nat ] means for G being non empty finite RelStr , F being ( the carrier of G ) , R being non empty RelStr st G is the carrier of G & the carrier of G = the carrier of G holds the carrier of G = the carrier of R & the carrier of G = the carrier of R & the carrier of F = the carrier of R ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and for i st 1 <= i & i <= len f & 1 <= i & i <= len f holds not LSeg ( f , i ) /\ LSeg ( f , i ) <> {} and LSeg ( f , i ) /\ LSeg ( f , i ) <> {} ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) ) . $1 = ( Partial_Sums ( ( cos ) ) . $1 - ( Partial_Sums ( ( cos ) ) . $1 ) * ( Partial_Sums ( ( cos ) ) . $1 ) ; for x being Element of product F holds x is FinSequence of G & for i being Element of dom x st x in I & x . i in dom ( the _ of F ) & x . i in dom ( the _ of F ) holds x . i in ( the carrier of F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( x " ) |^ n * x " .= ( x " ) |^ n * x " .= ( x " ) |^ n * x " .= ( x " ) |^ n .= x " |^ n * x " .= x " |^ n ; DataPart ( Comput ( P +* I , s , LifeSpan ( P +* I , s ) ) ) = DataPart Comput ( P +* Directed I , Comput ( P +* Directed I , s , LifeSpan ( P +* Directed I , s ) ) ) .= DataPart Comput ( P +* Directed I , s , LifeSpan ( P +* Directed I , Initialize s ) ) .= DataPart Comput ( P +* Directed I , s , LifeSpan ( P +* Directed I , Initialize s ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom ( f1 (#) f2 ) and for g st g in ]. x0 - r , x0 .[ holds f1 . g <= ( f1 (#) f2 ) . g and for g st g in ]. x0 , x0 + r .[ holds f2 . g <= ( f1 (#) f2 ) . g ; assume that X c= dom f1 /\ X and f2 | X is continuous and for x st x in X holds ( f1 - f2 ) | X is continuous and for x st x in X holds ( f1 - f2 ) | X is continuous and for x st x in X holds ( f1 - f2 ) | X . x = ( f1 - f2 ) | X . x ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is ` & for x being Element of L st x in X holds x is ` & x is prime Support ( e *' A ) . i = { m *' ( m *' p ) where m is Element of NAT : m in dom ( m *' p ) & p . i = ( m *' ( m *' q ) ) . i } & ex m being Element of NAT st m in dom ( p *' q ) & p . i = ( m *' q ) . i } ; ( f1 - f2 ) /* s1 is convergent & ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f2 /* s1 ) - ( f2 /* s1 ) .= lim ( f2 /* s1 ) .= lim ( f2 /* s1 ) ; ex p1 being Element of QC-WFF ( Al ) st F . p = g . p1 & F . p = g . ( p `1 ) & for g being Function of QC-WFF ( Al ) , D st g = f . ( p `1 ) holds P [ g , g . ( p `1 ) ] ; ( mid ( f , i , len f -' 1 ) ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) /. j ; ( ( p ^ q ) . ( len p + k ) ) . n = ( ( p ^ q ) . ( len p + k ) ) . n .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . n .= ( p ^ q ) . n ; len mid ( D2 , D1 , j1 ) + 1 = indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 ; x * y * z = M5 * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= x * ( y * z ) .= x * ( y * z ) ; v . ( <* x , y *> ) - v . ( <* y *> ) = v . ( <* x , y *> ) * ( <* y *> ) + ( ( proj ( 1 , 1 ) * ( proj ( 1 , 1 ) ) ) . ( <* y *> ) + ( proj ( 1 , 1 ) * ( proj ( 1 , 1 ) ) ) . ( y - x0 ) ; i * i = <* 0 * ( 1 - i ) - ( 1 - i ) * ( 1 - i ) *> .= <* 0 * ( 1 - i ) - ( 1 - i ) * ( 1 - i ) *> .= <* 0 * ( 1 - i ) - ( 1 - i ) * ( 1 - i ) .= 0 ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) .= Sum ( L (#) F2 ) .= Sum ( L (#) ( F1 ^ F2 ) .= Sum ( L (#) ( F1 ^ F2 ) .= Sum ( L (#) ( F1 ^ F2 ) .= Sum ( L (#) ( F1 ^ F2 ) .= Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) + Sum ( L (#) ( F1 ^ F2 ) + Sum ( L (#) ( F1 ^ F2 ) + Sum ( F1 ^ F2 ) + Sum ( L (#) F2 ) + Sum ( F1 ^ F2 ) + Sum ( F1 ^ F2 ) .= Sum ( L (#) ( F1 ^ F2 ) + Sum ( L (#) ( F1 ^ F2 ) ex r be Real st for e be Real st 0 < e ex Y be finite Subset of X st Y is non empty & for x be Real st Y in Y & x in Y holds |. ( f | Y ) . x - f . x .| < r ( GoB f ) * ( i + 1 , j ) `2 = f /. ( k + 2 ) & ( GoB f ) * ( i + 1 , j ) `2 = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) ; ( ( - 1 ) (#) cos ) . x = ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) * ( cos . x ) * ( cos . x ) * ( cos . x ) * ( sin . x ) .= ( - 1 ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) * ( sin . x ) .= ( - 1 ) * ( - sqrt ( b - a , c ) ) / 2 + ( - sqrt ( b - a , c ) ) / 2 > 0 & ( - sqrt ( b - a , c ) / 2 < 0 ) implies ( - sqrt ( b - a , c ) / 2 + ( - sqrt ( b - a , c ) / 2 ) / 2 < 0 assume that inf ( \mathopen { \uparrow } X ) = "\/" ( X , L ) and for C being Subset of L st C in X holds C is maximal & for X being Subset of L st X in X holds "\/" ( X , L ) = "/\" ( X , L ) and "\/" ( X , L ) = "\/" ( X , L ) ; ( ( ( for B , i , j ) --> ( id the Sorts of B ) ) . ( i , j ) = ( i , j ) --> ( id the Sorts of B ) ) . ( i , j ) .= ( i |-> ( j , i ) ) . ( i , j ) .= ( i |-> ( j , i ) ) . ( i , j ) .= ( i |-> ( j , i ) ) . ( i , j ) ;