thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X in Y ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = -infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is 1 ; assume x in I ; q is from 0 ; assume c in x ; 'not' p > 0 ; assume x in Z ; assume x in Z ; 1 <= kLet ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; \bf 2 > 0 ; assume q in A ; W is non bounded ; f is that g is that f is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is negative ; b ` <= c ` ; A meets W ; i ` <= j ` ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is iso ; Q halts_on s ; x in \in \rbrack ; M < m + 1 ; T2 is open ; z in b set ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PP is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , b be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < k + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o \mathord 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y |^ 0 ; rng f <= w ; b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , M be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is L~ f ; H = G . i ; 1 <= i ^2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aZ <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Subset of V ; s is trivial & s is non empty ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , a be Element of T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; v|^ n < n ; Smax is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U , S ; pp = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj ; set A = Cl A ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_\cdot the \mathclose { or } ; assume x0 <= m ; T is increasing ; e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper implies H = G i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is connected implies union M is connected ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= CN ; mm <> {} ; let x be Element of Y ; let f be let ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v Let ( \HM { the } \HM { carrier } \HM { of G } ) ; - y in I ; let A be non empty set , a be Element of A ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be \lbrack set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let I1 ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom g ; assume t . 1 in A ; let Y be non empty TopSpace , x be Point of Y ; assume a in ]. s , t .[ ; let S be non empty RelStr ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected hh) ; assume f is IExec bbbr-r) ; let x , y ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len G ; f | A is continuous ; f . x ^2 <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cf in X ; q2 c= C1 & q2 c= C1 ; a2 < c2 & b2 < c ; s2 is 0 -started ; IC s = 0 ; s4 = s4 & s4 = c ; let V ; let x , y ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be PI of L ; y " <> 0 ; y " <> 0 ; 0. V = u-uw ; y2 , y are_\! to w ; R8 in X ; let a , b be Real , x be Element of REAL ; let a be object of C ; let x be Vertex of G ; let o be object of C , a be object of C ; r '&' q = P \lbrack l , l .] ; let i , j be Nat ; let s be State of A , a be element ; s4 . n = N ; set y = ( x `1 ) ^2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CH ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A9 is dense & A2 is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars C , Y = Vars C ; let o be OperSymbol of S ; let R be connected RelStr ; n + 1 = succ n ; x9 c= Z1 & x9 c= Z1 implies x9 c= y9 dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent ; assume a1 = b1 & a2 = b2 ; A = ( sInt A ) . i ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , s be State of S ; assume r2 > x0 & x0 in dom f ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom ( ( g | X ) ^ ) ; n in dom g1 & n in dom g2 ; k + 1 in dom f ; the still not bound in { s } ; assume x1 <> x2 & y1 <> y2 ; v2 in V1 & v2 in V1 ; not [ b `1 , b `2 ] in T ; i9 + 1 = i ; T c= ] ( T ) ; ( l - 1 ) * ( l - 1 ) = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AA is_integrable_on M & AA c= M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; [: C , C :] misses [: C , C :] ; product ( F | n ) is non empty ; e <= f or f <= e ; cluster -> non empty for normal sequence ; assume c2 = b2 & c1 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume v-4 is Cauchy & lim vK = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int G1 <> {} & Int G1 <> {} ; ( z `2 ) ^2 = 0 ; p10 <> p1 & p10 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one , one-to-one ; A \/ { a } c= B ; 0. V = 0. Y ; let I be Instruction of S , s be State of S ; fp . x = 1 / ( x ^2 ) ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & l2 in NAT ; f " P is compact ; assume x1 in REAL n + 1 ; p1 = K1 & p2 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; MMML is closed ; assume z0 <> 0. L ; n < N . k ; 0 <= seq . 0 - lim seq ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , S :] is stable ; set GR = Vertices R , S = R ; pp c= P3 & px c= P3 ; x in [. 0 , 1 .] ; f . y in dom F ; let T be Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , T ; downarrow a = downarrow b & downarrow b = { a } ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. an - y .|| <= r ; assume Y c= field Q & Y <> {} ; a ~ , b ~ ; assume a in A ( ) ; k in dom ( q ^ <* x *> ) ; p is \rbrack ; i - 1 = i-1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster -> of \rm from in \rm ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gik } ; W-min C in C & W-min C in C ; assume x in { Gik } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume k in dom C & k <> i ; 1 + 1-1 <= i + 1-1 ; dom S = dom F & rng F c= dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non empty non void ManySortedSign ; let f be ManySortedSet of I ; let z be Element of F_Complex , a be Element of F_Complex ; u in { b9 , g } ; 2 * n < 2 * n ; x , y be set ; BW c= V1 & V c= V ; assume I is_closed_on s , P ; U2 = U & U2 = U \/ { {} } ; M /. 1 = z /. 1 ; x9 = x9 & x9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; f9 <= ( f | n ) . ( f . n ) ; l be Element of L ; x in dom ( F | k ) ; let i be Element of NAT ; r8 is ( COMPLEX , n ) -valued ; assume <* o2 , o *> <> {} ; s . ( x |^ 0 ) = 1 ; card K1 in M & card K1 in M ; assume X in U & Y in U ; let D be Subset-Family of Omega ; set r = { - k + 1 } ; y = W . ( 2 * x9 ) ; assume dom g = cod f & cod g = cod g ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict SubSublattice of L -> strict ; a1 in B . s1 & a1 in B . s1 ; let V be finite VectSp of F , a be Element of V ; A * B on B implies A on B fg = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & f | X is continuous ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; sqrt ( PI / 2 ) < Arg z ; reconsider z9 = 0 as Nat ; LIN a , d , c ; [ y , x ] in IN ; ( Q ) * ( 3 , 3 ) = 0 ; set j = x0 div m ; assume a in { x , y , c } ; j2 - ( jj - 1 ) > 0 ; I -phi = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B |^ C ) * ( A |^ C ) ; s1 , s2 are_/ 2 ; j1 - 1 = 0 & j1 - 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 ; assume X is lower & 0 <= r ; ( p1 `1 ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 - 1 & i1 - 1 <= i1 - 1 ; 1 <= i1 - 1 & i1 - 1 <= i1 - 1 ; i + i2 <= len h ; x = W-min ( P ) & x in P ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . ( g . I ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h1 (*) h2 ; assume x in ( X0 /\ X1 ) ; ||. h .|| < dx0 & 0 < dx0 ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl2 - l ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; P , Q be ] Subset of s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty transitive RelStr , N be net of L ; S-20 is x -basis of i , K ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z ) ; P [ len F ] implies F ( len F ) = F ( len F ) assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 implies M = 0 cluster z * seq -> summable ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> Element of AllTermsOf S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; TT2 is SubSpace of T2 & TT2 is SubSpace of T2 ; Q1 /\ Q19 <> {} ; let k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of of zero M ; assume n <> 0 & n <> 1 ; set en = EmptyBag n , em = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root implies ( p `1 ) ^2 = ( p `2 ) ^2 not r in ]. p , q .] ; let R be FinSequence of REAL , a be Element of REAL ; S7 does not destroy b1 & S7 does not cluster b2 ; IC SCM R <> a & IC R <> b ; |. - |[ x , y ]| .| >= r ; 1 * ( seq . n ) = seq . ( seq . n ) ; let x be FinSequence of NAT , a be Element of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT & s . NAT = s . NAT ; H + G = F- ( G-G ) ; C1 . x = x2 & C1 . x = y2 ; f1 = f .= f2 .= f1 ^ f2 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a1 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 ; IN is reflexive & IN is reflexive implies IN is reflexive IC is antisymmetric implies [: C , C :] is antisymmetric sup rng ( H1 , H2 ) = e ; x = a9 * a9 & y = c9 * a9 ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 - 1 ; rng s c= dom f1 & rng s c= dom f2 ; assume support a misses support b & not a in support b ; let L be associative non empty doubleLoopStr , a be Element of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , I2 ) = I1 " ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster -> non empty for Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* *> . N , \subseteq <* 1 *> . N -> complete ; ( 1 - a " ) = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume ( 1 - 2 ) ^2 <= t ^2 ; card B = k + 1 ; x in union rng ( f | n ) ; assume x in the carrier of R & y in the carrier of R ; d in dom f ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= the vertices of G ; let G be : ww] ; e , v9 , e , f ; c . ( i9 - 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* q is divergent_to+infty ; set z1 = - z2 , z2 = - z2 , z2 = - z2 ; assume w is_lllof S , G ; set f = p \! \mathop { t } , g = p \! \mathop { t } , h = p ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL-NS m ; let IK be Subset-Family of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , a be Int-Location ; p is FinSequence of ( the InstructionsF of SCM+FSA ) * ; stop I c= P & stop I c= P & card I = card J ; set ci = fc /. i , cj = fc /. i , cj = c /. i , cj = c /. i , cj = c /. i , cj = c w ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ t ^ s ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ s ^ t ^ W1 /\ W = W1 /\ W ` + W ; f . j is Element of J . j ; let x , y be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 ; ord ( x ) = 1 & x is \sum ( x ) is \sum ( x ) ; set g2 = lim ( seq ^\ k ) , g1 = lim seq ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F1 . L1 ) = 0 ; h \/ R1 = ( the carrier of X ) \/ R1 ; ( ( - sin ) (#) ( sin - cos ) ) . x <> 0 ; ( ( exp_R * exp_R ) `| Z ) . x > 0 ; o1 in [: X , Y :] /\ [: X , Y :] ; e , v9 , e , f ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed Ideal of R , I be Ideal of R ; h . p1 = f2 . O & h . p2 = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q | M ) = width M & width ( q | M ) = width M ; the carrier of .|| c= A & the carrier of .|| c= A ; dom f c= union rng ( F | -10 ) ; k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( InnerVertices R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 |^ ( the carrier of X ) ; reconsider w = |. s1 .| as Real_Sequence ; sqrt ( 1 / m * m + r ) < p ; dom f = dom ( I --> finite Function ) ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal equals - x + x ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W2 implies u in W2 reconsider y = y as Element of L2 ; N is full SubRelStr of ( T |^ the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be \mathclose of X , n be Element of NAT ; dist ( x , y ) < ( r / 2 ) ; reconsider mm = m as Element of NAT ; x- x0 < r1 - x0 & r1 - x0 < r1 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) , g2 = idseq ( q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( ID2 . ( ID2 . ( ID2 . n ) ) ) in { x } ; cluster -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gik in LSeg ( PI , 1 ) /\ LSeg ( Gik , Gij ) ; let n be Element of NAT , x be Element of X ; reconsider SK = S as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = k-1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , P be Subset of SCMPDS ; let t be 0 -started State of SCMPDS , Q ; b , b ` , x , y is_collinear ; assume i = n \/ { n } & j = k \/ { k } ; let f be PartFunc of X , Y ; Nx0 >= sqrt ( c ^2 + sqrt ( c ^2 ) ) ; reconsider t7 = T" as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 . ( z2 . ( y2 ) ) /\ Q1 . ( z2 . ( y2 . ( z2 . ( z2 . ( z2 . ( z2 . ( z2 . ( z2 . ( z2 . A |^ 0 = { <* \rangle *> } & A |^ 1 = { <* E *> } ; len W2 = len W + 2 & len W2 = len W ; len ( h2 ) in dom h2 & len ( h2 ) = len h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom g1 /\ dom g ; assume p2 `1 = E-bound ( K ) & p2 `2 <= N-bound ( K ) ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & f2 (#) ( f1 (#) f2 ) is convergent ; cluster s-10 + s\in + ( |. s .| + 1 ) ; assume j in dom ( M1 ^ M2 ) ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b / ( 4 * a * c ) >= 0 ; <* xxy *> ^ <* y *> \subseteq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* I , P3 = Comput ( P +* I , s2 , 1 ) , P4 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of L & x ` is ` ; k = 0 & n <> k or k > n ; then X is discrete for X being Subset of X ; for x st x in L holds x is FinSequence of L ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in ]. p , q .[ & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; N , M be being being being being being being being \hbox of L ; then z is_>=_than compactbelow x & z is_>=_than compactbelow y ; M [. f , g .] = f & M [. g , f .] = g ; ( ( L~ z ) /. 1 ) = TRUE ; dom g = dom f & g = f |^ X ; mode Pholds of G is \cal holds G is : 1 <= len G ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of ( Subformulae p ) -tuples_on the carrier of Subformulae q ; F1 . ( a1 , - a2 ) = G1 & F2 . ( a1 , - a2 ) = G2 ; Observe ( a , b , r ) is compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / 2 ) & rng s c= dom ( 1 / 2 ) ; curry ( ( F . -19 ) , k ) is additive ; set k2 = card dom B - 1 , k1 = card dom B - 1 ; set G = coprod ( X ) ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of Mf , M be Subset of V ; reconsider s1 = s as Element of ( the carrier of S1 ) * ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the Sorts of A ; ( x | x ) = 0 iff x = 0. W ; I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( the carrier of J ) & rng h c= the carrier of J ; cluster All ( x , H ) -> reconsider reconsider All of x , H ; d * N1 ^2 > N1 * 1 / 2 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 , g1 = f " D2 ; dom ( p | ( Seg m ) ) = REAL m ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( ( #Z 2 ) * ( exp_R + arccot ) ) . x ; x in rng ( f /^ ( p .. f ) ) ; let f , g be FinSequence of D ; [: p , q :] in the carrier of S1 & [: p , q :] in the carrier of S2 ; rng f " = dom f & rng f = dom f ; ( the Source of G ) . e = v ; width G - 1 < width G - 1 ; assume v in rng ( S | E1 ) & v in rng ( S | E1 ) ; assume x is root or x is root of g or x is root ; assume 0 in rng ( ( g2 ) | A ) ; let q be Point of TOP-REAL 2 , a , b be Real ; let p be Point of TOP-REAL 2 , a be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_the ] of the Matrix of C-20 ; i <= len ( G | ( i1 -' 1 ) ) ; let p be Point of TOP-REAL 2 , a be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " . ( Q . ( Q . ( Q . i ) ) ) ; ( ( 1 / 2 ) |^ ( n + 1 ) ) is summable ; - p + I c= - p + A + - A ; n < LifeSpan ( P1 , s1 ) & n < len s1 ; CurInstr ( p1 , s1 ) = i & CurInstr ( p2 , s2 ) = i ; A /\ Cl { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of CompactSublatt ( L ) ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ( A , B ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be SubFunctor of C , D ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def3 : All ( x , p ) is valid ; assume X c= dom f & f .: X c= dom g & g .: X c= dom g ; H |^ a " * a is Subgroup of H & H is Subgroup of H ; let A1 be Let B1 of O , A1 , A2 be Element of E ; p2 , r3 , q3 is_collinear & q2 , q1 , q2 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B0 ) & p in the carrier of ( TOP-REAL 2 ) | K1 ; 0 ( ) < M . ( EN . n ) ; ^ ( c ^ ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> from ---`1 ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def6 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x , y be Element of X ; cluster ( x `1 ) ^2 -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> cluster -> -> -> -> -> -> -> -> natural for FinSequence ; set S = <* Bags n , i9 *> , T = <* `| n , Let S *> ; set T = [. 0 , 1 / 2 .] , G = [. 0 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; sqrt ( 4 * PI ) < sqrt ( 2 * PI ) ; x2 in dom ( f1 + f2 ) /\ dom ( f1 + f2 ) ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G ` ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 / ( 1 + ( p `2 ) ^2 ) = ( p `1 ) ^2 / ( 1 + ( p `2 ) ^2 ) ; i + 1 <= len Cage ( C , n ) ; len <* P *> |^ 1 = len P & len <* P *> = 1 ; set NN = the b9 of N , NN = the over N ; len g: x + ( x + 1 ) - 1 <= x ; a on B & b on B & a on C ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a \in d ; given u such that u in W and x = v + u ; len f /. \downharpoonright n = len \mathbb n - n ; set q2 = N-min L~ Cage ( C , n ) , q1 = Cage ( C , n ) ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . r2 ; f " D meets h " ( V /\ W ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( F . X ) . ( ( id X ) . s ) ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( a1 , b1 ) ; the carrier' of G ` = E \/ { E } ; reconsider m = len ' - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume P c= Seg m & M is Seg m ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * ( 1 / p ) ; pp . i = p9 . i & pp . i = p9 . i ; let PA , G be a_partition of Y , BOOLEAN , a be Function of Y , BOOLEAN ; pred 0 < r & 1 < 1 implies 1 < r & r <= 1 ; rng ( AffineMap ( a , X ) ) = [#] X & rng ( AffineMap ( a , X ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s & len ( canFS ( s ) ) = card s ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of Y ) ; dom ( f | u ) c= dom ( u | v ) ; pred n divides m & m divides n ; reconsider x = x as Point of I[01] , I = the carrier of I[01] ; a in ; not y0 in the still of f & not ( ex g st g in the bound of f & not ( g in the bound of f ) ) ; Hom ( ( a , b ) --> c , c ) <> {} ; consider k1 such that p " < k1 and k1 < len p ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g & k in dom g ; set S1 = Let x , y = y , z = x , y = y ; l2 = m2 & l2 = i2 & l2 = j2 & E = i2 ; x0 in dom ( u01 /\ A01 ) & x0 in dom ( u01 /\ A01 ) ; reconsider p = x as Point of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; I[01] = ( I[01] | B01 ) | B01 .= ( the carrier of I[01] ) /\ B01 ; f . p4 <= _ P P . p1 & f . p2 <= _ P . p2 ; ( ( F . n ) `1 ) ^2 <= ( x ^2 ) ^2 + ( x ^2 ) ; ( x `2 ) ^2 = ( W . ( n + 1 ) ) ^2 ; for n being Element of NAT holds P [ n ] ; J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) & 0 -tuples_on the carrier of K = 0 ; X . i in 2 |^ ( A . i ) \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] implies P [ succ a ] ; reconsider sp2 = sp2 as } of D ( ) ; ( Seg ( i -' 1 ) ) <= len r1 - j ; [#] S c= [#] ( T | the carrier of S ) & the TopStruct of T = the TopStruct of T ; for V being strict non empty addLoopStr holds V in iff V in W assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K ; - a * - b = a * b - b * a ; for A being Subset of AA holds A // A & A c= A ; id o2 in <* o2 , o2 , o1 , o2 , o2 *> ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len ( upper_volume ( g , D1 ) | divset ( D2 , D1 ) ) ; b = Q . ( len QK - 1 ) + 1 ; f2 * f1 /* ( s ^\ k ) is divergent_to+infty & f2 * f1 /* ( s ^\ k ) is divergent_to+infty ; reconsider h = f * g as Function of N4 , G ; assume that a <> 0 and Polynom ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of TT & v | n in TT ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 ; Directed I is_closed_on Initialized s , P & Directed I is_closed_on Initialized s , P ; Initialized ( p ) = Initialize ( p +* q ) , p2 = p +* q , s2 = p +* q , s3 = p +* q , s3 = p +* q , s4 = p +* q , s4 = p +* q , s4 = p +* q , reconsider N2 = N1 as strict net of R2 , R2 ; reconsider Y = Y as Element of <* Ids ( L ) , \subseteq \rangle ; "/\" ( ( uparrow p ) \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the InternalRel of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( P + Q ) + len ( P + Q ) ; ( x1 - x2 ) / ( y1 - y2 ) = ( x2 - y2 ) / ( y1 - y2 ) ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , 7 , 8 , 8 } ; let x , y be Element of FTTTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p `2 = p `2 ; g * 1_ G = h " * g * h .= g * h ; let p , q be Element of U ( V , C ) ; x0 in dom ( x1 - x2 ) /\ dom ( y1 - y2 ) ; ( R qua Function ) " = R " & ( R " ) " = R ; n in Seg ( len ( f /^ n ) ^ p ) ; for s be Real st s in R holds s <= s2 & s <= 1 ; rng s c= dom ( ( f2 * f1 ) ^ ) /\ dom ( f2 * f1 ) ; synonym for for for for for X being Subset of ex f being Function of X , the carrier of X st f = X & f is one-to-one ; 1_ K * 1_ K = 1_ K & 1_ K * ( 1_ K ) = 1_ K ; set S = Segm ( A , P1 , Q1 ) , Q1 = Segm ( A , s1 , Q1 ) ; ex w st e = ( w - f ) . w & w in F ; curry ( P+* ( k , X ' ) ) # x is convergent ; cluster -> open for Subset of TK st F is open & F is open holds F is open ; len f1 = 1 .= len ( f3 ^ f2 ) .= len f3 + len f3 ; sqrt ( i * p ) < ( 2 * p ) ^2 ; let x , y be Element of \rm Sub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // c , c9 ; consider p being element such that c1 . j = { p } ; assume f " { 0 } = {} & f is total ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I + card J + 3 ) not a in dom J ; goto ( card I + 1 ) not c on c , P & not c in dom I ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p2 , s2 ) ; IC SCMPDS in dom ( Initialize ( s ) +* ( a , k1 ) ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of Let ( V , C ) ; Cl ( union F ) c= Cl ( union F ) ; the carrier of X1 union X2 misses ( A1 \/ A2 ) \/ ( A1 \/ A2 ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , v ) / ( y , x ) ) ; consider m being element such that m in Intersect ( FF . 0 ) and x = ( Intersect ( FF . 0 ) ) . m ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume a1 <> a3 & a2 <> a3 & a3 <> a4 & a3 <> a4 ; cluster s -\mathop { V } -> .| for string of S ; L2 /. n2 = L2 . n2 & L2 /. n2 = L2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and r-7 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices ( D * ( k , m ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / p ; ( F . N ) | EN . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y * z ) * ( z * z ) <> 0. I & ( y * z ) * ( z * y ) = 0. I ; 1 + card ( X-18 ) <= card ( u \/ { w } ) ; set g = z \circlearrowleft ( ( L~ z ) | ( L~ z ) ) ; then k = 1 implies p . k = <* x , y *> . k ; cluster -> ( the Element of C ) -one-to-one for Function of X , the carrier of S ; reconsider B = A as non empty Subset of TOP-REAL n , a be Real ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & Line ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 & n <= len D1 ; ( ( ( g2 ) . O ) `1 ) ^2 = - 1 & ( ( g2 ) . O ) ^2 = - 1 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , S = N-bound C , E = E-bound C , N = E-bound C ; S1 . ( a ` , e ) = a + e .= a ` ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f ) ) = dom ( Im f ) /\ dom Im ( f ) ; being ' ( x ) ` = W ( a *' ( a , p ) ) ; set Q = |= ( >= g , f , h ) , S = g ; cluster -> many sorted for ManySortedSet of U1 means : Let : for ManySortedSet of U1 holds it = an Carrier F ; attr ex A st F = { A } & F is discrete ; reconsider z9 = reproj ( i , x ) as Element of product G ; rng f c= rng f1 \/ rng f2 & rng f1 c= dom f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & ( the carrier of F_Complex ) c= ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 ) & E , j |= H ; reconsider n1 = n as Morphism of o1 , o2 , o2 , o2 be Morphism of o2 , o2 ; assume P is idempotent & R is idempotent & P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ A1 ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set qi2 = ( q , <* s *> ) \mathop { 1 } , qi2 = ( q , <* s *> ) \mathop { 1 } ; for x being element st x in X holds x in rng f1 & x in X ; h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , min ( NAT , { 0 } ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f , C = C as Element of Fin NAT ; IncAddr ( i , k ) = ( ( l + k ) + k ) ; ( ( GoB f ) * ( 1 , 1 ) ) `2 <= ( q `2 ) * ( 1 , 1 ) `2 ; attr R is condensed means : Def6 : ( Cl R ) is condensed & Cl R is condensed ; pred 0 <= a & b <= 1 & a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ; len C + ( - 2 ) >= 9 + ( - 3 ) ; x , z , y is_collinear & x , z , y is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 , 0 ) *> in Line ( x , a * x ) ; set yc = <* y , c *> ; F2 /. 1 in rng Line ( D , 1 ) & F2 /. 1 in rng Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; ( p `2 ) ^2 = ( f /. i1 ) ^2 & ( f /. i1 ) ^2 = ( f /. i1 ) ^2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = E-bound X ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of P(# X , Y #) , the carrier of X #) ; p \! \mathop { Product ( Sgm X ) . ( Product ( Sgm X ) ) . ( len p ) ) = 0 ; len <* x *> < i + 1 & i <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = card I + 4 , goto 0 = ( card I + 4 ) ; x in { x , y } & h . x = {} T & y in T ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of ( A ) ) & len ( the charact of ( A ) ) = len ( the charact of ( A ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set NN = : G-15 : G-15 ( G-15 , G-15 ) ; rng F c= the carrier of gr { a } implies F is one-to-one f in implies ( for K holds F . K , n , r ) is Function-yielding ; f . k , f . ( Let n ) in rng f & f . ( n + 1 ) in rng f ; h " ( P ) /\ [#] T1 = f " ( P /\ [#] T2 ) ; g in dom ( f2 " ) \ f2 " { 0 } & ( f2 " ) . g in dom ( ( f2 " ) " { 0 } ) ; gN /\ dom f1 = g1 " ( g " ) .= ( g " ) * ( g " ) ; consider n be element such that n in NAT and Z = G . n ; set d1 = being dist of ( dist ( x1 , y1 ) ) , d2 = dist ( x2 , y2 ) ; b `1 + sqrt ( 1 + ( b `1 / b `1 ) ^2 ) < ( 1 + sqrt ( 1 + ( b `1 / b `2 ) ^2 ) ) ; reconsider f1 = f as VECTOR of the carrier of X , Y be Subset of Y ; pred i <> 0 implies i |^ ( i + 1 ) mod ( i + 1 ) = 1 ; j2 in Seg ( len ( g2 . i2 ) ) & 1 <= j2 & j2 <= len ( g2 . i2 ) ; dom ( i - 1 ) = dom ( i - 1 ) .= Seg ( len G - 1 ) .= dom G ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of S , IF ( ) , IF ( ) ; reconsider R1 = x , R2 = y as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RN ; S1 +* S2 = S2 +* ( S1 +* S2 ) & S2 +* ( S1 +* S2 ) = S1 +* ( S2 +* S2 ) ; ( ( ( #Z n ) * ( exp_R + exp_R + exp_R ) ) `| Z ) = ( exp_R + exp_R + exp_R + exp_R + exp_R + exp_R - exp_R + exp_R - exp_R ) ; cluster -> continuous for Function of C , REAL n , REAL n ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C7 = 1GateCircStr ( <* x , y *> , f3 ) ; E8 . e2 = ( e2 . e2 ) -T & E8 . e2 = ( e2 . e2 ) -T ; ( ( arctan * arccot ) `| Z ) = ( ( arctan * arccot ) `| Z ) . ( ( exp_R . x ) ^2 ) .= ( ( #Z 2 ) * ( ( #Z 2 ) * ( exp_R . x ) ^2 ) ) .= ( ( #Z 2 ) * ( exp_R . x ) ) ^2 ; sup A = ( PI * 3 ) / 2 & inf A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F ) ; reconsider p9 = q9 as Point of TOP-REAL 2 , q = ( q `2 ) / |. q .| as Point of TOP-REAL 2 ; g . W in [#] ( Y | the carrier of X ) & [#] ( Y | the carrier of X ) c= [#] ( Y | the carrier of X ) ; let C be compact non vertical non vertical non horizontal non horizontal Subset of TOP-REAL 2 , a , b be Real ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , x0 .[ & f | ]. - r , x0 .[ is bounded ; assume x in { ( idseq 2 ) . ( ( idseq 2 ) . ( len p ) ) } ; reconsider n2 = n , m2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 , X2 ) , Bg = f .: ( the carrier of X2 , X2 ) ; ex d being Element of L st d in D & x << d ; assume R ~ ( a , b ) c= R ~ ( b , a ) ; t in ]. r , s .] or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; pred x1 <> x2 means : Def3 : |. x1 - x2 .| > 0 & x1 <> x2 ; assume p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p2 set q = ( } f ^ <* 'not' 'not' 'not' 'not' A *> ) ^ <* 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , REAL-NS n , x be Element of REAL n ; ( n mod ( 2 * k ) ) ! = n mod k ; dom ( T * succ t ) = dom ( \rbrack t , dom succ t ) ; consider x being element such that x in wf and x in c ; assume ( F * G ) . ( v . x3 ) = v . x3 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 c= the carrier of D2 and the carrier of D1 = the carrier of D2 ; reconsider A1 = [. a , b .] as Subset of R^1 | [. a , b .] ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) , s = S-bound L~ Cage ( C , n ) , s = S-bound L~ Cage ( C , n ) , s = S-bound L~ Cage ( C , n ) , w = n1 - len f + 1 - len f + 1 <= len g - len f + 1 - len f ; ConsecutiveSet ( q , O1 , a ) = [ u , v , a , b , c ] ; set C-2 = ( ( `1 ) `1 ) . ( k + 1 ) , C-2 = ( ( n + 1 ) ) `1 ; Sum ( L * p ) = 0. R .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & for n holds P [ n ] ; set s3 = Comput ( P1 , s1 , k ) , s4 = Comput ( P2 , s2 , k ) , P4 = P2 ; let l be variable of k , A , B be Element of l ; reconsider U2 = union Gf1 as Subset-Family of [: T , T :] , the topology of T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p9 /. ( i + 1 ) ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p9 = <* - c9 , 1 , - c9 , - c9 , - T *> & p9 = <* - c9 , - c9 , - T *> ; synonym f is complex-valued means : Def6 : rng f c= NAT & rng f c= NAT & f is one-to-one ; consider b being element such that b in dom F and a = F . b ; x9 < card ( X0 \/ Y ) & x9 in ( X1 \/ X2 ) \/ ( Y \/ X2 ) ; pred X c= B1 means : Defost X c= succ B1 & X c= succ A1 & X c= B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( \HM { the } \HM { function } , 0 , PI ) ; pred 1 <= len s means : Def8 : len ( s , 0 ) = len s & for i being Nat holds s . i = s . i ; fm c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in the carrier of W means : Def8 : q '&' p in the carrier of W & q '&' p in the carrier of W ; - ( t `1 / t `2 ) ^2 < ( ( t `1 ) ^2 / t `2 ) ^2 ; U2 . 1 = U /. 1 .= ( W /. 1 ) .= ( W . 1 ) ; f .: ( the carrier of x ) = the carrier of x & f . ( the carrier of x ) = f . ( the carrier of x ) ; Indices ( ( - A ) * ( i , j ) ) = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M .: \square & ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is_\upharpoonright Aand x = f & y = f . x ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = |[ w1 , v1 ]| ; reconsider t = t as Element of INT ( ) * ; C \/ P c= [#] ( ( the carrier of ( ( the carrier of ( ( | | A ) \ A ) ) \ A ) ) ; f " V in ( the topology of X ) /\ ( the topology of Y ) . ( the carrier of V ) ; x in [#] ( ( the carrier of F ) /\ A ) /\ the carrier of ( F ) /\ the carrier of ( F ) ; g . x <= h1 . x & h . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , yz , zx , \mathop { xy , A1 , cin } , { xy , cin , cin } } ; for n be Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) * ( Line ( M , i ) ) ; assume M1 is being_line & M2 is being_line & M3 is being_line & M2 is being_line & M3 is being_line & M2 is being_line ; reconsider a = f0 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) & len ( F1 ^ F2 ) = len ( F1 ^ F2 ) + len ( F2 ^ B2 ) ; len ( ( the _ of K ) * ( i , j ) ) = n & ( ( the _ of K ) * ( i , j ) ) = n ; dom ( f + g ) = dom ( f + g ) /\ dom ( g + h ) ; ( the Sorts of seq ) . n = ( the Sorts of Y1 ) . n & ( the Sorts of seq ) . n = ( the Sorts of X1 ) . n ; dom ( p1 ^ p2 ) = dom ( f ^ g ) .= dom ( f ^ g ) .= dom ( f ^ g ) ; M . [ 1 , y ] = 1 * v1 .= ( 1 - 1 ) * v1 .= ( 1 - 1 ) * v1 ; assume that W is non trivial and W { x } c= the \frac of G2 and W . x in the carrier of G2 ; C6 /. i1 = G1 * ( i1 , i2 ) & C6 = G2 * ( i1 , i2 ) ; C8 |- 'not' All ( x , p ) 'or' 'not' p . ( x , y ) ; for b st b in rng g holds inf rng fmb <= b - 1 - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 - cn ) ) = 1 ; ( LSeg ( c , m ) \/ { ml } ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in { x } and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & len ( X @ ) = width ( X @ ) ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) = ( Partial_Sums F ) . m & Im ( ( Partial_Sums F ) . m ) = ( Partial_Sums F ) . m ; cluster f . ( x1 , x2 ) -> Element of D ( ) ; consider g being Function such that g = F . t & Q [ t , g . t ] ; p in LSeg ( ( N-min Z ) . ( 1 , 1 ) , ( NW-corner Z ) . ( 1 , 1 ) ) ; set R8 = R |^ 1 , R8 = R |^ 1 , R8 = R |^ 2 , R8 = R |^ 2 , R8 = R |^ 2 , R8 = R |^ 2 , R8 = R |^ ( 1 + 1 ) , R8 = R |^ ( 1 + 1 ) , R8 = IncAddr ( I , k ) = AddTo ( d , d1 ) .= goto ( ( card I + 1 ) + k ) ; seq . m <= ( ( seq ^\ k ) ^\ n ) . ( ( seq ^\ k ) ^\ n ) ; a + b = ( a ` *' ) + ( b ` ` ) .= ( a ` + b ` ) + ( b ` ) ; id ( X /\ Y ) = id ( X /\ Y ) /\ id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ m ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable Subset of R such that card A = card ( R ~ ) and card A = card ( R ~ ) ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 0 & len s2 - 1 > 0 & len s1 - 1 > 0 ; ( ( N-min L~ f ) | ( len f ) ) `2 = ( ( N-min L~ f ) | ( len f ) ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & e in LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a1 = ( a1 ` ) ` ; ( seq ^\ k ) . n in ]. x0 - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . seq = g . ( ( seq | X ) . n ) .= ( g | X ) . ( seq . n ) ; the InternalRel of S is Real & the InternalRel of S is connected implies the InternalRel of S is connected deffunc F ( Ordinal , Ordinal ) = phi . ( $2 , $2 ) ; F . ( s1 . a1 ) = F . ( s2 . a1 ) & F . ( s1 . a1 ) = F . ( s1 . a1 ) ; x `1 = A . o .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " P1 & ( f " P1 ) " P1 c= ( f " P1 ) " P1 ; FinMeetCl ( ( the topology of S ) | the topology of T ) c= the topology of T ; synonym o is " means : Def11 : o <> \ast & o <> * & o <> * ; assume that X = Y + 1 and card X <> card Y and card Y <> card X and X c= Y ; the finite empty empty Subset of S <= 1 + ( the card of s ) * ( the card s ) ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // a1 , c1 ; e2 . 1 = 0 & e2 . 2 = 1 & e2 . 3 = 0 ; EK in SK & EK in [: { N } , K :] & EK in [: { N } , K :] ; set J = ( l , u ) \mathop { {} } ; set A1 = 1GateCircStr ( a9 , b9 , c ) , A2 = Following ( s , 2 ) , A2 = Following ( s , 2 ) ; set c9 = [ <* c9 , d9 *> , '&' ] , A2 = [ <* A1 , cin *> , '&' ] , us = [ <* cin , non } , '&' ] , us = [ <* cin , non } , '&' ] ; x * z ` * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = f3 . x + g . x Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min ( C , n ) , E-max ( C , n ) & ( E-max C ) `1 = E-bound C & ( E-max C ) `1 <= E-bound C ; set f9 = f @ @ g "/\" @ @ f ; attr S1 is convergent & S2 is convergent means : Def7 : S1 - S2 is convergent & for n holds S1 . n = ( S1 . n ) - ( S2 . n ) ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + b .= a + b ; cluster -> \mathclose for RelStr -be reflexive non empty reflexive transitive RelStr -symmetric -symmetric for non empty non empty non empty RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l |^ ( ( a |^ 0 ) .--> x ) ) = len l ; t4 ^ {} ( {} \/ { {} } ) is ( {} \/ rng t4 ) -valued Function ; t = <* F . t *> ^ ( C . p ^ q ) .= C . ( p ^ q ) ^ C . ( q ^ p ) ; set pp = W-min L~ Cage ( C , n ) , p1 = W-min L~ Cage ( C , n ) , p2 = W-min L~ Cage ( C , n ) ; ( k - i + 1 ) = ( k - i ) + ( k - i ) ; consider u being Element of L such that u = u ` and u in D and u in D and u in D ; len ( ( width ( ( ( B - G ) |-> a ) ) ^ ( b - G ) ) ) ) = width ( ( ( B - G ) ^ ( b - G ) ) ^ ( b - G ) ) ; F3 . x in dom ( ( G * the_arity_of o ) . x ) ; set H2 = the carrier of H2 , y2 = the carrier of H ; set H1 = the carrier of H1 , H2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( P3 , t , k ) = l + 1 & IC Comput ( P3 , s3 , k ) = 0 ; dom ( ( ( id Z ) (#) ( cos * sin ) ) `| Z ) = dom ( ( id Z ) (#) ( cos * cos ) ) ; cluster <* l *> ^ phi phi -> ( 1 + 1 ) -element for string of S ; set b9 = [ <* A1 , cin *> , '&' ] , Z = [ <* A1 , cin *> , '&' ] , e = [ <* A2 , A1 *> , '&' ] , f = [ <* A1 , cin *> , '&' ] , e = [ <* A2 , A1 *> , '&' ] , f = [ <* A1 , A2 *> , '&' ] , e = [ <* Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( the Sorts of A ) . ( ( the Sorts of A ) . ( o , n ) ) = ( the Sorts of A ) . ( ( the Sorts of A ) . ( o , n ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , REAL n , the carrier of S ; consider y being Point of X such that a = y and ||. y - x .|| <= r ; set x3 = ( t . DataLoc ( s2 . SBP , 2 ) , 2 ) , y1 = ( t . SBP ) , y2 = ( t . SBP ) , y1 = ( t . SBP ) , y2 = ( t . SBP ) , y2 = ( t . SBP ) , y1 = ( t . SBP ) , y2 = ( set pp = stop I , p1 = P +* I , p2 = Comput ( p1 , s1 , 1 ) , s2 = Comput ( p2 , s2 , 1 ) , p2 = Comput ( p2 , s2 , 1 ) , s2 = p2 ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D } = { A , B , C , D } \/ { E , F , J , M , N , F , J , M , N , N , F , J , M , N , N , N , A , N , A , N , A , J , M , N , let A , B , C , D , E , F , J , M , N , N , F , J , M , N , N , F , J , M , N , N , F , J , M , N , N , M , N , N , A , N , A , N , A , N , |. p2 .| ^2 - ( ( p2 `2 / |. p2 .| - cn ) / ( 1 - cn ) ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( l + 1 ) + ( 1 + 1 ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = TopSpaceMetr (# the TopStruct of N , the TopStruct of N #) & the TopStruct of N = the TopStruct of N ; consider y being element such that y in dom H1 and x = H1 . y and y in H . x ; f9 \ { n } = ( Free All ( v1 , H ) ) \ { n } & f . ( n + 1 ) = f . ( n + 1 ) ; for Y being Subset of X st Y is summable & Y is number holds Y is non empty iff Y is non empty 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the _ of A ) = len s & len ( the _ of A ) = len s & width ( the _ of A ) = width s for x st x in Z holds exp_R * ( exp_R * f ) is_differentiable_in x & exp_R * ( exp_R * f ) is_differentiable_in x ; rng ( h2 * ( f2 - g2 ) ) c= the carrier of ( TOP-REAL 2 ) | K1 .= the carrier of ( TOP-REAL 2 ) | K1 ; j + ( len f ) - len f <= len f + ( len f - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL n , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( a1 . x ) .= C8 . ( a1 . x ) .= C8 . ( a1 . x ) ; power F_Complex . ( z , n ) = 1 .= ( x |^ n ) * ( x |^ n ) .= ( x |^ n ) * ( x |^ n ) ; t at ( C , s ) = f . ( the that s in the that s in the elements of S & t in the Sorts of C & s = f . ( the connectives of S ) . s ; support ( f + g ) c= ( support f ) \/ ( { C } ) ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] } is Subset of [: X1 , X2 :] & { [ x1 , x2 ] } in the InternalRel of X1 ; h = ( i , j ) |-- ( id B , id B ) .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A ; set X = ( ( ConsecutiveSet ( q , O1 ) ) . ( O1 , O2 ) ) `1 , Y = ( ( ConsecutiveSet ( q , O1 ) ) . ( O1 , O2 ) ) `1 , Z = ( a , b ) `1 ; b . n in { g1 : x0 - r < g1 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim s1 = lim ( f /* s1 ) the lattice of lattice ( T ) = the lattice of the lattice of T & the carrier of T = the carrier of T & the carrier of T = the carrier of T ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( b . x ) '&' 'not' ( b . x ) '&' 'not' ( b . x ) = TRUE ; q2 = len ( ( q ^ r1 ) ^ r1 ) + len ( ( q ^ r1 ) ^ r2 ) .= len ( q ^ r2 ) + len ( ( q ^ r1 ) ^ r2 ) ; ( ( 1 / a ) (#) ( sec * f1 ) - id Z ) - ( id Z ) * ( ( id Z ) ^ ) is_differentiable_on Z ; set K1 = upper ( lim ( H , A ) | H ) , D2 = ( lim H ) | A , D1 = ( lim H ) | A ; assume e in { ( w1 - w2 ) / 2 : w1 in F & w2 in G & w1 in F } ; reconsider d' = dom a as Function of dom F `1 , dom F , dom F , dom F be finite set ; LSeg ( f /^ j , q ) = LSeg ( f , j + q .. f -' 1 ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = ( N . ( N2 , K1 ) ) `1 } ; assume ( for d , c holds <* f , g *> * f1 = <* f , g *> * f1 ) & ( for d holds f1 . d = <* f , g *> * f1 ) ; dom S[. S , n .] = dom S /\ Seg n .= dom ( L | Seg n ) .= Seg n /\ dom ( L | Seg n ) .= Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a ( a (#) ( n , 1 ) ) . ( a , 1 ) = a ` - ( 0 * n ) .= a ` - ( 0 * n ) .= a ` - ( 0 * n ) .= a ` - ( 0 * n ) ; D2 . j in { r : lower_bound A <= r & r <= D1 . i & D1 . i <= D2 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ c ^ @ g ^ @ c in @ @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X ; 1 = ( p * p ) * ( p * q ) .= p * ( q * p ) .= p * ( q * p ) ; len g = len f + len <* x + y *> .= len f + 1 + 1 .= len f + 1 ; dom ( F | [: N1 , S :] ) = dom ( F | [: N1 , S :] ) .= [: N , S :] ; dom ( f . t ) * I . t = dom ( f . t ) * g . t ; assume a in ( "\/" ( ( T |^ the carrier of S ) ) .: D ) .: D ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g . ( g . ( g . ( g . ( g . ( g . ( g . ( g . ( g . ( g . ( g . x ) ) ) ) ) ) ) ) = g . ( g . ( g . ( g . ( g ( ( x \ y ) \ z ) \ ( ( x \ y ) \ z ) = 0. X ; consider f such that f * f = id b & f * f = id b & f * f = id b ; ( ( cos * cos ) | [. 0 , PI / 2 .] ) is increasing ; Index ( p , co ) <= len LS - Index ( Gij , LS ) + 1 - Index ( Gij , LS ) ; t1 , t2 , 3 , 4 , 5 , 6 , 6 , 7 , 8 , 8 , 8 , 6 , 8 , 7 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 7 , 8 , 8 , 9 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 7 , 8 , ( ( ( Frege ( F ) ) . h ) . ( h . ( ( curry G ) . h ) ) ) <= ( ( Frege ( F ) ) . h ) . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h . ( h then P [ f . i0 , f . i0 ] & F ( f . i0 , i ) < j ; Q [ ( D . ( x , 1 ) ) `1 , 1 ] , F ( ( D . ( x , 1 ) ) `1 ) ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is r of G . i ; the Sorts of A2 = ( the Sorts of A2 ) +* ( the Sorts of A2 ) & the Sorts of A2 = ( the Sorts of A2 ) +* ( the Sorts of A1 ) ; consider s being Function such that s is one-to-one & dom s = NAT & rng s c= F & s is one-to-one ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( b2 , a ) ; ( ( C , n ) /. len ( C , n ) ) `1 = W & ( C , n ) /. len ( C , n ) ) `1 = W ; q `2 <= ( ( UMP C ) * ( ( UMP C ) * ( 1 , 1 ) ) + ( ( UMP C ) * ( 1 , 1 ) ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= IK and A = ]. a , IK .[ and a in A and b in A and c in A ; consider a , b being complex number such that z = a & y = b & z + y = a + b ; set X = { b |^ n where b is Element of NAT : b in X & a <= b } , Y = { b } ; ( ( x * y * z ) \ x ) \ z = 0. X ; set x9 = [ <* xy , \mathopen { z } , \mathopen { z } ] , y9 = [ <* y , z *> , f1 ] , z9 = [ <* z , x *> , f2 ] , x9 = [ <* y , z *> , f3 ] , y9 = [ <* z , x *> , f3 ] , y9 = [ <* z , y *> , f3 ] ; Carrier ( l ) /. len l = ( l . ( len l ) ) * ( l . ( len l ) ) ; sqrt ( ( q `2 / |. q .| - sn ) / ( 1 - sn ) ) ^2 ) = 1 ; sqrt ( ( p `2 / |. p .| - sn ) / ( 1 - sn ) ) ^2 ) < 1 ; ( ( ( ( X \/ Y ) \ { {} } ) \/ X ) \/ Y ) \/ X = ( ( X \/ Y ) \ X ) \/ Y ) \/ X .= ( ( X \/ Y ) \ Y ) \/ X .= ( X \/ Y ) \ Y ; ( ( s1 - s1 ) . k ) . k = ( s1 . k - s1 . k ) / ( s1 . k - s1 . k ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X = the carrier of X & the carrier of X = the carrier of X ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set h = ( chi ( X , A ) ) | ( X /\ Af ) ; R |^ ( ( 0 * n ) * n ) = \mathop Il ( X , X ) .= R |^ n * ( 0 * n ) .= R |^ ( n + 1 ) ; ( Partial_Sums ( ( F . -19 ) ) ) . n is nonnegative & ( Partial_Sums ( ( F . -19 ) ) ) . n is nonnegative & ( Partial_Sums ( ( F . -19 ) ) ) . n <= ( Partial_Sums ( ( F . I ) ) ) . n ; f2 = CK . ( EK . ( EK . ( len K ) ) , K . ( len K ) ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & 11 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) \mathop ( l , l2 ) , phi = ( l , l2 ) \mathop ( l , l2 ) , phi = ( l , l2 ) . ( l , l2 ) , phi = ( l , l2 ) . ( l , l2 ) , phi = ( l , l2 ) . ( l , l2 ) , phi = ( l , l2 ) . ( l , l2 ) , phi = synonym p is invertible means : Def6 : ( p = q ) & ( p = q ) & ( p = q implies p = q ) ; ( Y1 - Y2 ) / ( 1 - j1 ) = ( - 1 ) / ( 1 - j1 ) & ( - 1 ) / ( 1 - j1 ) <> 0 ; defpred X [ Nat , set , set , set ] means P [ $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( ( m -' n ) -' n ) , K ) = 1_ K & ( m - n ) * ( ( m - n ) * ( K |^ n ) ) = 1_ K ; sqrt ( - b ^2 - sqrt ( b ^2 - 4 * a * c ) ) < 0 ; CK . d = CK . ( dK . d ) mod CK . ( dK . d ) .= CK . ( dK . d ) mod K . ( dK . d ) ; attr X1 is dense & X2 is dense & X1 /\ X2 is dense implies X1 /\ X2 is dense SubSpace dense SubSpace of X1 ; deffunc F6 ( Element of E , Element of I , Element of I ) = ( $1 , $2 ) * $2 + ( $1 , $2 ) * $2 ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . ( t ^ <* n *> ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y \ x .= y \ x .= y \ x .= y \ x ; for X being non empty set holds X is Basis of <* X , product <* Y *> , product <* X *> *> synonym A , B are_means : as : Cl ( A \/ B ) misses Cl ( A \/ B ) & Cl ( A \/ B ) misses Cl ( A \/ B ) ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J = { x where x is Element of K : 0 < v & x < y & v = f . x } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 ) - D2 . ( k + k2 ) ; g . r1 = ( - 1 ) * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ w = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Comput ( P2 , s2 , n ) .= ( 0 + n ) + n ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= 5 + 9 .= 9 ; ( IExec ( W6 , Q , t ) ) . intpos ( 0 + 1 ) = t . intpos ( 0 + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x or y <= x ; integral ( f , C ) | X = f . ( upper_bound C ) - lower_bound C .= ( upper_bound C ) * ( lower_bound C ) - lower_bound C .= ( lower_bound C ) * ( lower_bound C ) - lower_bound C ; for F , G being one-to-one st rng F misses rng G & rng G misses rng G holds F ^ G is one-to-one ||. R /. ( h + c ) .|| < e1 * ( K + 1 ) * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r & q <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d and x c= y ; for y , x being Element of REAL st y ` in Y & x in X & y ` <= x ` holds y ` <= x ` func |. p ^ q .| -> \rbrack of A means : Def10 : for p , q st p in it holds it . p = ( p ^ q ) . ( p ^ q ) ; consider t being Element of S such that x ` , y ` '||' z , t & x , y '||' y , t ; dom x1 = Seg ( len x1 ) & len y1 = len y1 & len x1 = len y1 & len y1 = len y2 ; consider y2 be Real such that x2 = y2 and 0 <= y2 and y2 <= 1 and y2 <= 1 and y2 <= 1 and y2 <= 1 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X is convergent & lim ( f | X ) = lim ( f | X ) ; ( the InternalRel of A ) ~ = ( the InternalRel of A ) ~ /\ Y .= {} \/ ( the InternalRel of A ) ~ .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and P [ i + 1 ] and P [ i + 1 ] ; reconsider h = f | [: X , Y :] as Function of X , Y , X , Y ; u1 in the carrier of W1 & u2 in the carrier of W2 & u2 in the carrier of W1 & v2 in the carrier of W2 implies ( the carrier of W1 ) \/ the carrier of W2 = the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= g . $1 & f . $1 <= g . $1 ; succ ( u , a , v ) = s * x + ( - s ) * y + ( - s ) * y .= b - s * y + ( - s ) * y .= b - s * y + ( - s ) * y .= b - s * y + ( - s ) * y ; - ( an - y ) = - x + ( - y ) .= - x + y .= - y + ( - x ) .= - x + y .= - y + x .= - x + y ; given a being Point of Gf such that for x being Point of Gf holds a , x are_Assume f and a , x are_not collinear ; fY. = [ dom ( @ ( f2 , g2 ) ) , cod ( ( @ g2 ) . ( g , g2 ) ) ] ; for k , n be Nat st k <> 0 & k < n & k < n holds k divides n & k divides n implies k divides n for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; - ( ( - ( p `1 / |. p .| - cn ) ) / ( 1 - cn ) ) ^2 ) > 0 ; U-13 . k = LS . ( F . k ) & F . k in dom ( L . k ) & F . k in rng ( L . k ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( - n + 1 ) , i2 = goto ( - n ) , i2 = goto ( - n ) ; attr B is >= ) means : Def5 : for S holds -\mathop ( B , S ) . S = ( B , S ) . ( S ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D } ; |( exp_R . ( q9 - q9 ) , q9 . ( q9 - q9 ) )| * |( exp_R . ( q9 - q9 ) , exp_R . ( q9 - q9 ) )| >= |( exp_R . ( q9 - q9 ) , exp_R . ( q9 - q9 ) )| ; ( - f ) . ( sup A ) = ( - f ) . ( sup A ) .= - ( f . ( sup A ) ) .= - ( f . ( sup A ) ) ; ( G * ( len G , k ) ) `1 = ( G * ( len G , k ) ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) * ( h ) ) . x = <* ( proj ( i , n ) * ( h ) ) . x *> ; f1 + f2 * reproj ( i , x ) = ( ( f1 + f2 ) * reproj ( i , x ) ) . x0 .= ( f1 + f2 ) . x ; pred ( ( - cos * cos ) `| Z ) . x <> 0 & ( ( - cos * cos ) `| Z ) . x = ( ( - cos * cos ) `| Z ) . x ; ex t being SortSymbol of S st t = s & h1 . t = h2 . ( t . {} ) & t . {} = ( t | ( the Sorts of A ) ) . ( t | ( the Sorts of A ) ) ; defpred C [ Nat ] means P8 . $1 is n -AN & A8 : A8 : A8 : A8 : A8 : A8 : A8 : A8 : A8 : A8 : A8 : A8 c= A8 & A8 c= A8 & A8 c= A8 ; consider y being element such that y in dom p9 and q9 . i = p9 . y and y in dom p9 and x = p9 . i ; reconsider L = product ( { x1 } +* ( indx ( B ) , l ) ) as product of Carrier A ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & ( id d ) . ( id d ) = id d ( f | n , p ) = ( f | n ) ^ <* p *> .= f /^ n ^ <* p *> .= f /^ n ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f ` - { p } = ( ( c | n ) *' ( - ( f | n ) ) ) *' ( - ( f | n ) ) .= ( - ( f | n ) ) *' ( - ( f | n ) ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ ( r2 - r2 ) / 2 , ( r2 - r2 ) / 2 ]| ) in f1 .: ( ( r2 - r2 ) / 2 , ( r2 - r2 ) / 2 ) ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) , x ) .= a . ( ( n , L ) * x ) .= a . ( ( n , L ) * x ) ; z = DigA ( t9 , x9 , y9 ) .= DigA ( t9 , x9 , y9 ) .= DigA ( t9 , x9 , y9 ) .= DigA ( t9 , x9 , y9 ) .= F9 . ( x , y , z ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G & S c= G } ; consider S19 being Element of D * , d being Element of D such that S `1 = S19 ^ <* d *> and d in S and S /. ( len S ) = d ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) ) / ( 1 - sn ) ) ^2 / ( 1 - sn ) ^2 ; 0. K is Linear_Combination of A & Sum ( l ) = 0. K implies Sum ( l ) = Sum ( l ) & Sum ( l ) = Sum ( l ) let k1 , k2 , k2 , k2 , x4 , x5 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 9 , 8 , 7 , 8 , 8 , 9 , 8 , 8 , 7 , 8 , 9 be Element of NAT ; consider j being element such that j in dom a and j in g " { k } and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . ( x1 . x2 ) or H1 . ( x1 . x2 ) c= H1 . ( x2 . x1 ) or H1 . ( x2 . x1 ) c= H2 . ( x2 . x1 ) ; consider a being Real such that p = ( 1 - a ) * p1 + ( a * p2 ) * p2 and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c & c <= d & [ a , b ] c= dom f and [ a , b ] in dom g ; cell ( Gauge ( C , m ) , ( len Gauge ( C , m ) ) -' 1 , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * b2 /. y .= ( F * b2 ) . y .= ( F * b2 ) . y .= ( F * b2 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - g . y .| ; ( log ( 2 , k ) ) to_power ( k + 1 ) >= ( log ( 2 , k ) ) to_power ( k + 1 ) ; then p => q in S & not x in the still of S & not x in the carrier of S & not x in the carrier of S ; dom ( the State of r-10 ) misses dom ( the State of r-10 ) & dom ( the --> ( the InstructionsF of r-10 ) ) = dom ( the --> ( the \mathclose of r-10 ) ) ; synonym f is extended real means : Def3 : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f .: ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p1 + len <* x *> .= len p1 + len <* x *> .= len p1 + len <* x *> .= len p1 + len <* x *> ; ( l , 3 ) `1 = ( g /. ( k + 1 ) ) `1 + ( k + 1 ) - ( k + 1 ) ) .= ( g /. ( k + 1 ) ) `1 + ( g /. ( k + 1 ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( ( 0 + l ) + 1 ) .= ( 0 + l ) ; assume for n be Nat holds ||. seq .|| . n <= ( seq . n ) * ( seq . n ) & ( seq . n ) * ( seq . n ) <= ( seq . n ) * ( seq . n ) ; sin . st ( for r2 holds sin . r2 = sin . ( cos . r2 - cos . ( 2 * PI * ( 2 * PI * ( 2 * PI * ( 2 * PI * ( 2 * PI * ( 2 * PI / 2 ) ) ) ) ) ) / 2 ) ) .= 0 ; set q = |[ g1 . ( t1 , t2 ) `1 , g2 . ( t2 , t1 ) `2 ]| , g1 = |[ g1 . ( t2 , t1 ) `1 , g2 . ( t2 , t1 ) `2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in holds G . ( F . n ) in ) & G . ( F . n ) in GAAAAS ; consider G such that F = G and ex G1 st G1 in SX & G = ( the carrier of G ) \/ { x } ; the root of ( x , s ) . [ x , s ] in ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of C ) . s ) ; Z c= dom ( exp_R * ( exp_R * ( exp_R + exp_R * ( exp_R + exp_R * ( exp_R + exp_R * f1 ) ) ) ) ) ; for k be Element of NAT holds rF . k = ( ( Im f ) | ( S . k ) ) . k + ( ( Im f ) | ( S . k ) ) . k assume that - 1 < n and ( q `2 / |. q .| - sn ) / ( 1 - sn ) < 0 and ( q `2 / |. q .| - sn ) / ( 1 - sn ) < 0 ; assume that f is continuous and a < b and a < b and c < d and f . a = c and f . b = d ; consider r being Element of NAT such that s8 = Comput ( P1 , s1 , i ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f & LSeg ( f , i ) = LSeg ( f /. ( i + 1 ) , f /. ( i + 1 ) ) ; assume x in the carrier of K & y in the carrier of K & inf { x , y } in the carrier of K ; assume f +* ( i1 , \xi ) in ( proj ( F , i1 ) ) " ( ( proj ( F , i2 ) ) " ) " ( ( proj ( F , i2 ) ) " ) ) ; rng ( ( ( the InternalRel of M ) ~ ) | ( the carrier of M ) ) c= the carrier of M & the InternalRel of M = the InternalRel of M ; assume z in { ( the carrier of G ) * : ex t being Element of G st t in { ( the carrier of G ) * : ex s being Element of G st s = ( the carrier of G ) * ( s , t ) } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - g .|| < s / 2 ; consider t be VECTOR of product G such that mt = ||. Dt . t .|| & ||. t .|| <= 1 ; Suppose the carrier of v = 2 implies v ^ <* 0 *> in dom p & v ^ <* 1 *> in dom p & v ^ <* 1 *> in dom p & p ^ <* 1 *> in dom p & p ^ <* 1 *> in dom p ; consider a being Element of the points of Xas , A being Element of the lines of X\llangle A , B :] such that a on A and not a on A & b on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ k ) " = 1 * ( ( - x ) |^ k ) " ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] ; L~ f2 = union { LSeg ( p10 , p2 ) , LSeg ( p10 , p2 ) } \/ LSeg ( p1 , p2 ) } \/ LSeg ( p2 , p1 ) \/ LSeg ( p1 , p2 ) ; i - len ( h11 + 2 ) + 1 - 1 < i - len ( h11 + 2 ) - 1 + 2 - 1 ; for n be Element of NAT st n in dom F holds F . n = |. ( n -' 1 ) * ( n -' 1 ) .| ; for r , s1 , s2 holds r in [. s1 , s2 .] iff s1 <= r & s1 <= s2 & s2 <= s2 & s1 <= s2 & s2 <= s2 & s2 <= s1 & s1 <= s2 & s2 <= s2 & s2 <= s2 & t1 <= s2 & t1 <= t2 & t1 <= t2 assume v in { G where G is Subset of T2 : G in B2 & G c= B1 & G c= B1 & G c= B2 & G c= B1 & G c= B2 & G c= B2 & G c= B1 & G c= B2 & G c= B1 & G c= B2 & G c= B2 & G c= B1 & G c= B2 & G c= B1 & G c= B2 & G c= B2 & G c= B1 & G c= B2 & G c= B2 & G c= B1 & let g be Element of A , X be Element of INT , b be Element of INT , c be Element of ( 0 -tuples_on the carrier of K ) | ( b , c ) | ( b , c ) <> 0 ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g . k , k ) ) . y ; consider q1 being sequence of Cf such that for n holds P [ n , q1 . n ] and P [ q1 , q2 . n ] ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) & f . ( n + 1 ) = F ( n ) ; reconsider B-6 = B /\ [: B , C :] , \llangle Z , Z :] as Subset of [: B , C :] ; consider j being Element of NAT such that x = the \ of ( n + 1 ) and 1 <= j and j <= n and 1 <= n and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O1 ) & x in ( x . O1 ) & x in ( x . O1 ) & x in ( x . O1 ) . ( x . O1 ) ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( the ] of T4 ( k , n2 ) ) . 0 ) .= C . ( ( the sequence of T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & rng ( X --> f ) = dom ( X --> f ) ; ( ( L~ SpStSeq C ) * ( i , j ) ) `2 <= ( ( L~ SpStSeq C ) * ( i , j ) ) `2 & ( ( L~ Cage ( C , n ) ) * ( i , j ) ) `2 <= ( ( L~ Cage ( C , n ) ) * ( i , j ) ) `2 ; synonym x , y are_collinear means : Def1 : x = y or ex l being card of S st { x , y } c= l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L st a = x & b = y & x << y holds a << b iff a << b & a << b ; ( 1 / 2 * ( ( #Z n ) * ( ( #Z n ) * ( #Z n ) ) ) ) is_differentiable_on REAL & ( #Z n ) * ( ( #Z n ) * ( #Z n ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( for n holds ( ( $1 + 1 ) |^ n ) |^ ( n + 1 ) ) = A1 . ( ( $1 + 1 ) |^ n ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= ( g1 * g2 ) . g2 .= ( g1 * g2 ) . g2 .= ( g1 * g2 ) . g2 .= ( g1 * g2 ) . g2 .= ( g1 * g2 ) . g2 .= ( g1 * g2 ) . g2 ; ( M * ( F-4 ) ) . n = M . ( ( ( ( \Omega ( [#] ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( n | | n | n ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) .= M . ( ( ( ( ( ( ( ( ( ( ( the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L1 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , c , x , y , z , y , x , z , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y ( the PartFunc of S , s ) . n <= ( the PartFunc of S , s ) . ( n + 1 ) * ( ( the PartFunc of S , s ) . n ) ; pred - 1 <= r & r <= 1 implies ( ( - 1 ) (#) ( ( #Z 2 ) * ( r / 2 ) ) ) `| Z ) = - ( ( - 1 ) (#) ( ( #Z 2 ) * ( r / 2 ) ) ) ; s8 in { p ^ <* n *> where p is FinSequence of T : p ^ <* n *> in T1 & p ^ <* n *> in T2 } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 ]| . 2 - |[ y1 , y2 ]| . 2 = x2 - y2 ; attr for m be Nat holds F . m is nonnegative means : every Nat holds ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( \overline ( G , z ) ) * ( x , y ) ) = len ( ( \overline ( G , y ) ) * ( x , y ) ) + ( ( \overline ( G , y ) ) * ( x , y ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 and u in W2 /\ W3 ; given F being FinSequence of NAT such that F = x & dom F = n & rng F c= { 0 , 1 } & for k st k in dom F holds F . k = k ; 0 = ( 1 * ] ) * u] iff 1 = ( ( - ( 1 - ( ] ) ) * ( ( - ( ] ) ) * ( ( - ( ( @ ) ) * ( @ @ ) ) ) ) ) / ( ( - ( ( - ( ( @ ) ) * ( @ @ ) ) ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> Boolean -> Boolean for \hbox { ( 1 / 2 ) , ( 1 / 2 ) , ( 1 / 2 ) , ( 1 / 2 ) , ( 1 / 2 ) , ( 1 / 2 ) is Boolean ; "/\" ( BB , L ) = Top ( ( the carrier of S ) --> ( {} , L ) ) .= "/\" ( [#] S , L ) .= "/\" ( ( the carrier of S ) --> ( {} , L ) ) .= "/\" ( ( the carrier of S ) --> ( {} , L ) ) .= "/\" ( ( the carrier of S ) --> ( {} , L ) ) .= "/\" ( {} , L ) ; sqrt ( ( r ^2 + ( r ^2 ) ) ^2 ) + ( r ^2 + ( r ^2 ) ) ^2 ) <= sqrt ( ( r ^2 + ( r ^2 ) ) ^2 ) + sqrt ( ( r ^2 + ( r ^2 ) ^2 ) ) ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - c ) * |[ b , c ]| = 0. TOP-REAL 2 - ( 2 * r1 - c ) * |[ b , c ]| ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( - ( - ( K , n ) ) ) ) * ( ( 0. K , n ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and y = [ y1 , y2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( g | ( len g ) ) | ( len g ) ) . n consider y , z being element such that y in the carrier of A & z in the carrier of A & i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 & H = H1 & H = H2 & H1 , H2 // H , H1 & H = H2 ; for S , T , T being non empty RelStr , d being Function of T , S st d is complete holds d is monotone & d is monotone & d is monotone [ a + i , b ] in ( the carrier of F_Complex ) \/ ( the carrier of F_Complex ) & [ a , b ] in the carrier of K ; reconsider mm = max ( len F1 , len ( p . n ) * ( x | ( n -' 1 ) ) ) as Element of NAT ; I <= width GoB ( ( GoB ( h ) ) * ( 1 , width GoB ( h ) ) ) , ( GoB ( ( h ) ) * ( 1 , width GoB ( h ) ) ) ) , ( GoB ( ( h ) ) * ( 1 , width ( h ) ) ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* ( f1 /* s ) .= ( f2 * f1 ) . ( ( f1 /* s ) ^\ k ) .= ( f2 * f1 ) . ( ( f1 /* s ) ^\ k ) ; attr A1 \/ A2 is linearly-independent means : Def8 : A1 : A1 misses A2 & A2 misses A1 & A2 /\ A1 = A2 & A1 /\ A2 = A2 /\ A1 & A2 /\ A1 = A2 /\ A1 ; func A -the carrier of C -> set means : Def7 : union it = union { A ( s ) where s is Element of C : s in A & s in A } ; dom ( ( Line ( v , i + 1 ) ) (#) ( ( ( ( v ^ ) ) (#) ( ( ( p ^ <* m *> ) (#) ( ( v ^ <* m *> ) (#) ( v ^ <* m *> ) ) ) ) ) ) ) = dom ( F ^ <* m *> ) ; cluster [ x , ( x , 4 ) , ( x , x ) , ( x , y ) , x ) -> Function of x , x , y , z ; E , ( All ( x2 , x3 ) ) |= All ( x2 , x3 ) '&' ( x2 '&' x3 ) '&' ( x3 '&' x4 ) ) & E , ( x2 '&' x3 ) |= x3 '&' ( x2 '&' x3 ) ; F .: ( ( id X ) , g ) . x = F . ( id X , g . x ) .= F . ( g . x , g . x ) .= F . ( g . x , g . x ) .= F . ( g . x , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) + ( h . m ) + ( h . m ) ; cell ( G , ( X -' 1 , Y + 1 ) , ( Y -' 1 ) + ( Y -' 1 ) ) \ ( ( X -' 1 ) + ( Y -' 1 ) ) meets ( ( X -' 1 ) + ( Y -' 1 ) ) \ ( X -' 1 ) ; IC Comput ( P2 , s2 , LifeSpan ( P2 , s2 ) ) = IC Comput ( P2 , s2 , LifeSpan ( P2 , s2 ) ) .= ( card I + 1 ) .= card I + ( card J + 2 ) .= card I + ( card J + 2 ) .= card I + card J + 2 .= card I + card I + 2 .= card I + card I + 2 ; sqrt ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom a and y = ( a " ) . x0 and x0 in { a . x0 } and a . x0 = ( a " ) . x0 ; dom ( r1 (#) ( chi ( A , A ) ) , C ) = dom ( ( A * ( B * C ) ) , D ) .= dom ( ( A * ( B * C ) ) , D ) .= dom ( ( A * ( B * C ) ) , D ) .= dom ( ( A * ( B * C ) ) , D ) ; d-7 . [ y , z ] = ( ( y , z ) `2 ) * ( y , z ) .= ( y , z ) `2 * ( y , z ) ; pred for i being Nat holds C . i = A . i /\ B . i & C . i c= C . ( i + 1 ) /\ C . ( i + 1 ) ; assume that x0 in dom f and f is continuous and f is continuous & for x st x in dom f holds f . x = - ( f . x ) / ( a - x ) ^2 ) and ( for x st x in dom f holds f . x = - ( a * x ) / ( a - x ) ^2 ) ; p in Cl A implies for K being Basis of p st K in K & for Q being Subset of T st Q in K holds A meets Q & A meets Q & A meets Q & A meets Q & A meets Q & A meets Q & A meets Q & A meets Q implies A meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func the \emptyset of <*> a -> Ordinal means : Def1 : a in it & for b being Ordinal st a in it holds it c= b & for b being Ordinal st b in a holds it . b = a ; [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of B ) & ( the InternalRel of A ) \/ ( the InternalRel of B ) = ( the InternalRel of A ) \/ ( the InternalRel of B ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. ( vseq . n ) - ( vseq . m ) .|| < e / ( ||. x .|| * ||. x .|| ) ; then for Z being set st Z in { Y where Y is Element of IK : F c= Y & Z c= Y } holds z in Z ; sup compactbelow ( s , t ) = [ sup compactbelow ( s , t ) , ( compactbelow ( s , t ) ) . ( s , t ) ] .= [ s , ( compactbelow ( s , t ) ) . ( s , t ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . i ] in [: I , I :] and [ f . i , f . j ] in [: I , I :] and [ f . i , f . j ] in [: I , I :] ; for D being non empty set , p , q being FinSequence of D st p c= q & q in D holds ex x being FinSequence of D st p ^ q = q ^ x & p ^ ( q ^ x ) = p ^ x consider e1 being Element of the carrier of X such that c9 , a9 // a9 , c9 and a9 <> c9 and a9 <> c9 and c9 <> b9 and a9 <> c9 and c9 <> c9 and a9 <> c9 and c9 <> b9 and c9 <> b9 ; set U2 = I \! \mathop { {} } , N = I \! \mathop { {} } , F = S \! \mathop { {} } , N = S \! \mathop { {} } , F = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , N = S \! \mathop { {} } , F = S \! \mathop { {} } , F = S \! \mathop |. q2 .| ^2 = ( ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 ) + ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 ) .= |. q2 .| ^2 + ( |. q2 .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom signature ( U1 ) = dom ( the charact of U1 ) & rng ( the charact of U1 ) = dom ( the charact of U2 ) & rng ( the charact of U2 ) = dom ( the charact of U2 ) ; dom ( h | X ) = dom h /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) /\ X .= dom ( h | X ) ; for N1 , N1 for K1 , N2 being Element of [: the carrier of G , the carrier of G :] holds ( h . ( h . K1 ) ) = ( h . K1 ) & ( h . ( h . K1 ) ) = ( h . K1 ) & ( h . ( h . K1 ) ) = ( h . K1 ) ; ( mod ( u , m ) ) . i = ( mod ( v , m ) ) . i + ( mod ( v , m ) ) . i .= ( mod ( v , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - cn ) / ( 1 + cn ) < - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; pred r1 = f9 & r2 = f9 & r1 = f9 & r2 = f9 * ( f | i ) & s1 = ( f | i ) . ( ( f | i ) . ( g | i ) ) ; v-4 . m is bounded Function of X , the carrier of Y & x9 . m = ( vseq . m ) * ( vseq . m ) & x9 . m = ( vseq . m ) * ( vseq . m ) ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = PI & angle ( b , c , a ) = PI ; consider i , j , r being Nat such that p1 = [ i , r ] and p2 = [ j , r ] and r < j and i < j and r < j and j < n ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 ; consider p1 , q1 being Element of ( X * ) such that y = p1 ^ q1 and q1 ^ q2 = p1 ^ q1 and p1 ^ q1 = q1 ^ q2 and q1 ^ q2 = q2 ^ q2 and p1 ^ q1 = q2 ^ q2 ; , , r2 = ( 1 - r1 ) * ( s1 , s2 ) , s1 = ( s1 - s2 ) * ( s1 , s2 ) , s2 = ( s1 - s2 ) * ( s1 , s2 ) , s2 = ( s1 - s2 ) * ( s1 , s2 ) , s2 = ( s1 - s2 ) * ( s1 , s2 ) ; ( ( LMP A ) . ( w , z ) ) `2 = inf ( proj2 .: ( A /\ holds w in ( proj2 .: ( A /\ holds w in A ) ) ) & ( proj2 .: ( A /\ B ) ) . ( w , z ) is non empty ; s , ( H , H1 ) |= H2 iff s |= H1 & s , ( H , H2 ) |= H2 iff s , ( H , H1 ) |= H2 & s , ( H , H1 ) |= H2 len ( s + t ) = card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z >= y ; LSeg ( ( UMP D ) . ( ( ( ( ( ( D ) . ( ( ( ( D ) ) . ( n + 1 ) ) ) ) + ( ( ( D ) . ( n + 1 ) ) ) + ( ( D ) . ( n + 1 ) ) ) ) ) , ( ( D ) . ( ( n + 1 ) ) + ( ( n + 1 ) ) + 1 ) ) ) /\ D = { ( ( n + 1 ) + 1 ) } ; lim ( ( ( f `| N ) / g ) /* b ) = ( ( f `| N ) / g ) . b .= ( ( f `| N ) . b ) / ( ( g `| N ) . b ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] , pr1 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( seq . k ) .|| < r for X being set , P being a_partition of X , x , y being set st x in a & y in P & x in P & y in P & x = a & y in P holds a = b Z c= dom ( ( ( id Z ) ^ ) (#) ( ( #Z 2 ) ^ ) ) \ ( ( #Z 2 ) ^ ) " ) " { 0 } ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j ; for u , v being VECTOR of V for r being Real st 0 < r & u in N holds r * u + ( r * v ) in N holds r * u + ( r * v ) in N A , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , C ) , Cl ( A , B ) , Cl ( A , C ) , Cl ( A , B ) , Cl ( A , C ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , B ) ) are_equipotent ; - Sum <* v , u , w *> = - ( v + u ) + ( v + u ) .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM+FSA = ( Exec ( a := b , s ) ) . IC SCM R .= succ IC s .= succ IC s .= ( ( 0 + 1 ) + 1 ) .= succ IC s .= succ IC s .= succ IC s .= ( ( 0 + 1 ) + 1 ) .= ( ( 0 + 1 ) + 1 ) .= ( ( 0 + 1 ) + 1 ) ; consider h being Function such that f . a = h and dom h = I & for x being element st x in I holds h . x = ( the support of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty Subset of S1 , f being Function of S1 , S2 holds cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or x = y & x = y or x = y & y = x or x = y & x = y or x = y or x = z & y = z or x = z & y = z & x = z or x = z or y = z & x = z or x = z & y = z or x = z & y = z & z = z & x = z or x = z & x = z & x = z & x = z & x = z & x = z & x = ( E-max L~ Cage ( C , n ) ) in rng ( Cage ( C , n ) ) & ( E-max L~ Cage ( C , n ) ) .. ( Cage ( C , n ) ) = ( E-max L~ Cage ( C , n ) ) .. ( Cage ( C , n ) ) ; for T , T , p , q being decorated tree , T being Element of dom T st p ^ q ^ T = q ^ p holds ( T -tree ( p , T ) ) . q = T . ( q ^ p ) & ( T -tree ( p , T ) ) . q = T . ( q ^ p ) [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k , n ) divides ( k , n ) & k divides ( k , n ) implies n divides k & ( k divides ( k + 1 ) ) & ( k divides ( k + 1 ) ) & ( k divides ( k + 1 ) ) & ( k divides ( k + 1 ) ) & ( k divides ( k + 1 ) implies ( k divides ( k + 1 ) ) implies ( k divides ( k + 1 ) ) & ( k divides ( k + 1 ) implies ( k divides ( k + 1 ) ) & ( k divides ( k + 1 ) implies ( k divides ( k + 1 ) ) & dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " is one-to-one & rng F = the carrier of X2 & F " is one-to-one & rng F = the carrier of X2 & rng F = the carrier of X1 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X1 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & consider C being finite Subset of V such that C c= A and card C = thesis and the carrier of W = A and the carrier of W = the carrier of W and the carrier of W = the carrier of W ; V is prime implies for X , Y being Element of <* the topology of T , the topology of T *> st X /\ Y c= V holds X c= V or Y c= V or X c= V or Y c= V & X c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Z = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 - cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) .= - ( ( q `2 / |. q .| - cn ) / ( 1 - cn ) ) ^2 .= - ( - ( q `2 / |. q .| - cn ) ) ^2 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p2 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 ; pred f is_PartFunc u0 coordinate .] means : Def8 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . ( 2 * u ) - SVF1 ( 2 , pdiff1 ( f , 2 ) , u0 ) . ( 2 * u ) = ( proj ( 2 , 3 ) ) . ( u - y0 ) ; ex r , s st x = |[ r , s ]| & ( G * ( len G , 1 ) , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & s < G * ( 1 , 1 ) `1 & r < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= ( ( G * ( t , width G ) ) `2 ) `2 and ( G * ( t , width G ) `2 ) `2 >= ( ( G * ( t , width G ) `2 ) `2 ) `2 ; pred i in dom G means : Def8 : r * ( f (#) reproj ( i , x ) ) . i = r * ( reproj ( i , x ) . i ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and ( decomp c ) /. k = <* c1 , c2 *> & ( decomp c ) /. k = c1 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 & s1 < G * ( 1 , 1 ) `2 & s1 < G * ( 1 , 1 ) `2 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . ( k2 + k ) .= ( C ^ ( i + k ) ) . ( ( k + 1 ) + 1 ) .= ( C ^ ( i + k ) ) . ( ( k + 1 ) + 1 ) .= ( C ^ ( i + k ) ) . ( ( k + 1 ) + 1 ) .= ( C ^ ( i + k ) ) . ( ( k + 1 ) + 1 ) .= ( C ^ ( i + 1 ) + 1 ) .= ( C ^ ( i + 1 ) + 1 ) . ( ( i + 1 ) + 1 ) .= pred len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 implies M1 = M2 - M1 + M2 - M2 - M1 - M1 - M1 - M1 - M1 - M1 = M1 - M1 + M1 - M1 - M1 - M1 - M1 - M1 - M1 - M1 + M1 - M1 - M1 - M1 - M1 + M1 - M1 + M1 - M1 + M1 - M1 - M1 + M1 - M1 - M1 - M1 consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & g2 . ( y - x0 ) - g2 . ( y - x0 ) .|| < g2 . ( y - x0 ) + g2 . ( y - x0 ) ; assume x < ( - b + sqrt ( a , b , c ) ) * ( - sqrt ( a , b , c ) ) or x > - sqrt ( a , b , c ) * ( - sqrt ( a , b , c ) ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( G1 ^ G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( G1 ^ G2 ) . i = ( G1 ^ G2 ) . i & ( G1 ^ G2 ) . i = ( G1 ^ G2 ) . i ; for i , j st [ i , j ] in Indices ( ( M + ( i + 1 ) ) * ( i , j ) ) ) holds ( ( M + ( i + 1 ) ) * ( i , j ) ) < ( M + ( i + 1 ) ) * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f holds i divides f /. ( i + 1 ) & i divides f /. ( i + 1 ) & i divides f /. ( i + 1 ) & i divides f /. ( i + 1 ) assume F = { [ a , b ] where a , b is set : for c st c in B & c in C holds a c= c & b c= c } ; b2 * ( ( b2 - b3 ) * q3 ) + ( b2 - b3 ) * ( ( a1 - b2 ) * ( b1 - b2 ) ) + ( b2 - b3 ) * ( b2 - b3 ) = 0. TOP-REAL n + ( b2 - b3 ) * ( b1 - b2 ) .= ( ( a1 - a2 ) * ( b2 - b3 ) ) + ( ( b2 - b2 ) * ( b2 - b3 ) ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st B = Cl ( D ) & D in Cl ( B ) & B c= Cl ( D ) & D c= Cl ( B ) & B c= Cl ( D ) & D c= Cl ( B ) & B c= Cl ( D ) & B c= Cl ( D ) & B c= Cl ( D ) ; attr seq is summable means : Def8 : seq is summable & seq is summable & seq is summable & lim seq = Sum seq & seq is summable & lim seq = Sum seq & seq is summable & lim seq = Sum ( seq + seq ) ; dom ( ( cn " ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) ; [ X \to Z ] is full full SubRelStr of ( [#] Z ) |^ the carrier of Z & [ X \to Y ] is full SubRelStr of ( the carrier of Z ) |^ the carrier of Z ; ( G * ( 1 , j ) ) `2 = ( G * ( i , j ) ) `2 & ( G * ( i , j ) ) `2 <= ( G * ( i , j ) ) `2 ; synonym m1 c= m2 & ( for p be set st p in P holds ( m1 in P iff p in P & not p in P & not p in P & not p in P ) & not p in P & not p in P & q in P & not q in P & not p in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P implies q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in P & q in consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of B ( ) : P [ b ] } and P [ a ] ; cluster multiplicative multiplicative for multiplicative over N for multiplicative over N , s being State of the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N , the carrier of N #) is Element of the carrier of N ; ( n , b ) + ( d , 1 ) = b + ( c , d ) + ( d + 1 ) .= n + ( b + d ) .= n + ( d + 1 ) .= n + ( b + d ) .= n + ( b + d ) .= n + ( b + d ) .= n + ( d + 1 ) ; cluster strict non empty for Element of INT means : Let : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = ( i1 + i2 ) * ( i1 , i2 ) + ( i1 + i2 ) * ( i1 , i2 ) ; - ( ( s2 * p1 + ( s1 * p2 ) - ( s1 * p2 ) ) ) = ( ( 1 - s1 ) * ( p2 + s2 ) ) * ( p2 + s2 * p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty Subset of S st D in the topology of T holds D meets the topology of T and for V being non empty Subset of T st V in the topology of T holds V meets the topology of T and V is open ; assume 1 <= k + 1 & k <= len w + 1 implies T-7 ( ( ( ( q , w ) -succ k ) ^ <* ( q , w ) . k *> ^ w ) ^ w ) . k = ( ( ( q , w ) -succ ( ( q , w ) -w ) ^ w ) . k ; 2 * ( a |^ ( n + 1 ) ) + ( 2 * ( b |^ ( n + 1 ) ) ) >= ( a |^ n ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ; M , v / ( x. 3 , x. 0 ) / ( x. 0 , x. 4 , x. 0 ) / ( x. 0 , x. 0 ) |= All ( x. 4 , x. 0 , x. 0 ) / ( x. 4 , x. 0 ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . ( x - x0 ) or 0 < f . ( x - x0 ) & f . ( x - x0 ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G2 st e in W & e in W holds not ( W is Walk & e in W iff e in W & e in W & e in W implies e in W & e in W & e in W c9 is non empty iff ( not ( ( ex y1 , y2 st y1 is not empty & y2 is not empty & not y1 is not empty & not y2 is not empty ) & not y1 is not empty ) & not ( not ( ( not y1 in not y1 in not y1 in not y1 & y2 in not y1 in not y1 & not y2 in y2 ) & not y1 in y2 ) & not y2 in y1 & not y2 in y1 & not y2 in y2 ) & not y2 in y1 & not y2 in y2 & not y2 in y2 & not y2 in y2 & not y1 in y2 & y1 in y2 & y1 in y2 & not y2 in y2 & y1 in y2 & not y2 in y2 & y1 in y2 & not y2 in y2 & y1 in y2 & y1 in y2 & Indices GoB ( f ) = [: dom GoB ( f ) , dom GoB ( f ) :] & ( GoB ( f ) ) * ( i1 , j1 ) + ( GoB ( f ) ) * ( i1 , j1 + 1 ) ) = ( GoB ( f ) ) * ( i1 , j1 + 1 ) ; for G1 , G2 , G2 , G1 , G2 being strict Subgroup of O st G1 is_stable & G2 is_stable & G1 is_stable & G2 is_stable & G1 is stable holds G1 * G2 is stable Subgroup of G & G2 * ( G1 * G2 ) is stable Subgroup of G & G1 * ( G1 * G2 ) is stable UsedIntLoc ( ( the int of f ) +* ( 1 , ( the InstructionsF of S ) +* ( 1 , ( the InstructionsF of S ) +* ( 1 , ( the InstructionsF of S ) +* ( the InstructionsF of S ) +* ( the InstructionsF of S ) +* ( the InstructionsF of S ) +* ( the InstructionsF of S ) +* ( the InstructionsF of S ) +* ( the InstructionsF of S ) +* ( the carrier' of S ) ) ) ) ) = { f , g , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , h , ( the Sorts of S ) , h , h , ( the Sorts of S for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & ( for i being Element of NAT holds Q [ i ] implies Q [ f1 ^ f2 ] ) & Q [ f1 ^ f2 ] holds Q [ f1 ^ f2 ^ f2 ] sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) = sqrt ( ( q `1 ) ^2 + ( q `2 ) ^2 ) .= sqrt ( ( q `1 ) ^2 + ( q `2 ) ^2 ) .= sqrt ( q `1 ) ^2 + ( q `2 ) ^2 ) .= sqrt ( q `1 ) ^2 + ( q `2 ) ^2 ; for x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , Real st ( x1 - x2 ) <> 0 & y1 <> 0 & y2 <> 0 & y2 <> 0 holds |( y1 , y2 )| = |( x1 , y1 - y2 )| + |( y1 , y2 )| for x st x in dom ( ( the Sorts of A ) | A ) holds ( ( the Sorts of A ) | A ) . ( ( the Sorts of A ) | A ) = - ( ( the Sorts of A ) | A ) . ( ( the Sorts of A ) | A ) for T being non empty TopSpace , P being Subset of T st P c= the topology of T & P is Basis of T holds ex B being Basis of T st B c= P & P is Basis of T & P is Basis of T ( a 'or' b ) 'imp' c . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x 'or' c . x .= 'not' ( a . x 'or' b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x 'or' c . x ) .= 'not' ( 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x ) 'or' 'not' ( b . x for e being set st e in A8 ex X1 , Y1 being Subset of Y st e = X1 & Y1 = Y1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is for i being set st i in the carrier of S for f being Function of [: S1 , S2 :] , S1 . i st f = H . i & f . i = F . i holds F . i = f | [: S1 , S2 :] . i for v , w st for y st x <> y & w . y = v . y holds J . ( ( VERUM ( Al ) ) . ( y , w ) ) = Valid ( Al ( Al ) ) . ( y , w ) ) card D = card D1 + card D2 - card D1 + card D2 - 1 .= ( i + 1 ) - 1 + 1 - 1 .= ( i + 1 ) - 1 + 1 .= ( i + 1 ) - 1 + 1 .= ( i + 1 ) - 1 + 1 .= ( i + 1 ) - 1 + 1 .= ( i + 1 ) - 1 + 1 .= ( i + 1 ) - 1 + 1 .= ( i + 1 ) - 1 + 1 ; IC Exec ( i , s ) = ( i .--> ( 0 qua Nat ) ) . ( 0 + 1 ) .= ( ( 0 .--> s ) . 0 ) . 0 .= ( ( 0 .--> s ) . 0 ) . 0 .= ( ( 0 .--> s ) . 0 ) . 0 .= ( ( 0 .--> s ) . 0 ) . 0 .= ( ( 0 .--> s ) . 0 .= ( ( 0 .--> s ) . 0 ) .= ( ( 0 .--> s ) . 0 ) . 0 .= ( ( 0 .--> s ) . 0 .= ( ( 0 .--> s ) . 0 .= ( ( 0 .--> s ) . 0 .= ( ( 0 .--> s ) . 0 .= ( ( 0 .--> s ) . 0 .= ( ( 0 .--> s len f /. ( \downharpoonright i1 -' 1 ) + 1 - 1 + 1 = len f -' ( i1 -' 1 ) + 1 - 1 + 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f - ( i1 -' 1 ) + 1 - 1 .= len f - ( i1 -' 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & a < b holds a <= b or a = b or a = b & b = c or a = b + b-2 or a = b + b-2 or a = b-2 or a = b-2 or a = b-2 or b = b-2 or a = b-2 or a = b-2 or a = b-2 or a = b-2 ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 st p in LSeg ( f , i ) & f . ( Index ( p , f ) + 1 ) = f . ( Index ( p , f ) + 1 ) holds Index ( p , f ) <= i & Index ( p , f ) + 1 <= len f lim ( ( curry ' ( k , X , 0 ) ) # x ) = lim ( ( curry ' ( k , X , 0 ) ) # x ) + lim ( ( ( curry ' ( k , X , 0 ) ) # x ) ) ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 2 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B st G = { [ X , Y ] where X is Subset of A ( ) : X in F & Y in G & X in G } holds ( Intersect ( F ) ) . ( X , Y ) = ( Intersect ( F ) ) . ( X , Y ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + 1 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 + 1 ) ) .= CurInstr ( P1 , Comput ( P2 , s2 , m1 ) ) .= ( CurInstr ( P2 , Comput ( P2 , s2 , m1 ) ) ) .= ( CurInstr ( P2 , s2 ) ) .= ( CurInstr ( P2 , s2 ) ) ; assume that a on M and b on M and c on N and d on N and p on N and d on M and p on N and c on N and d on M and p on N and p on M and d on N and p on M and c on N and d on N and p on M and c on N and p on N and p on M and c on N and p on N and p on M and c on N and p on N and c on N and d on N and d on M and d on N and d on N and d on N and d on N and d on N and d on N and d on N and d on M and p on N and d on M and d on N and d on N and d on N and d on N and d on N and d on N and d on N and d on N and d on N and d on N attr T is \hbox { T _ 4 4 4 } means : Def4 : ex F being Subset-Family of T st F is closed & for n being Element of NAT holds F . n is finite-ind & ind F <= 0 & ind F <= 0 & ind F <= 0 & ind F <= 0 & ind F <= 0 ; for g1 , g2 st g1 in ]. r1 - r2 , r .[ & g1 in ]. r1 - r2 , r .[ & |. g1 - g2 .| < g1 & g1 in ]. g1 - g2 , r .[ holds |. ( f - g ) . g1 - ( g - g2 ) . g2 .| <= ( ( f - g ) . g2 ) / ( |. g2 .| - ( g - g2 ) ) ( ( exp_R * z ) + ( z1 * z ) ) + ( ( exp_R * z ) + ( - z2 ) ) = ( ( exp_R * z ) + ( ( - z2 ) * z ) + ( ( - z2 ) * z ) ; F . i = F /. i .= 0. R + r2 .= <* ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( n + 1 ) -tuples_on ( ( n + 1 ) ) .= <* ( ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = [: A , B :] & for n holds f . ( n + 1 ) = [: A , B :] . ( n + 1 ) ; func f (#) F -> FinSequence of V means : Def6 : len it = len F & for i be Nat st i in dom F holds it . i = F . ( f . i ) * F . ( F . i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 8 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 8 , x5 , 8 , x5 , x5 , x5 , x5 , x5 for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & h . ( n + 1 ) in InnerVertices S ( x , n ) & h . ( n + 1 ) in InnerVertices S ( x , n ) & h . ( n + 1 ) in InnerVertices S ( x , n ) ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l ) = S1 & ( P , l ) . ( l + 1 ) = ( P , l ) . ( l + 1 ) & ( P , l ) . ( l + 1 ) = ( P , l ) . ( l + 1 ) & ( P , l ) . ( l + 1 ) = P . ( l + 1 ) ; consider P being FinSequence of GK such that p9 = product P and for i being Element of dom P st i in dom P ex tK being Element of the carrier of K st P . i = tK & tK . i = t & tK . i = t . i & tK . i = t . i ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T2 st the topology of T1 = the topology of T2 & the topology of T2 = the topology of T2 & the topology of T2 = the topology of T2 & the topology of T1 = the topology of T2 holds P is Basis of T2 Suppose f is_partial u0 coordinate u0 coordinate coordinate u & r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 & pdiff1 ( r (#) pdiff1 ( f , 3 ) , 3 ) is_partial_differentiable_in u0 , 2 & pdiff1 ( r (#) pdiff1 ( f , 3 ) , 3 ) . ( 3 + 1 ) = r * pdiff1 ( f , 3 ) . ( 3 + 1 ) ; defpred P [ Nat ] means for F , G being FinSequence of ( Seg $1 ) st len F = $1 & G = F & G = G holds not ( for s being Permutation of Seg $1 st len s = $1 & s = G . ( len s ) holds Sum ( F ^ G ) = Sum ( F ^ G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex Fa1 being Subset-Family of T st $1 = Fa1 & $2 = ( the topology of T ) . $1 & ( for n holds union ( Fa1 . $1 ) is open & ( union ( Fa1 . $1 ) is open implies $2 is open ) & ( union ( Fa1 . $1 ) is open implies $2 is open ) & ( union ( F . $1 ) is open implies $2 is open ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p2 , P & LE p1 , p2 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p1 , p2 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 f in the carrier of E ( H ( H ( H ( ) ) ) ) & for g st g . y <> f . y holds g in the carrier of E ( ) & g in the carrier of E ( ) & f in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) implies f in the carrier of E ( ) & g in the carrier of E ( ) & g in the carrier of E ( ) & g ex p9 being Point of TOP-REAL 2 st x = p9 & ( ( for p st p in the carrier of TOP-REAL 2 holds ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) ^2 ) & ( ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) ^2 >= 0 & ( p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) = 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) = 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) . p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) & ( p <> 0. TOP-REAL 2 ) . p <> 0. TOP-REAL 2 ) . p <> 0. TOP-REAL 2 ) & ( assume for d7 being Element of NAT st d7 <= ( ( n + 1 ) -tuples_on the carrier of K ) & d7 <= ( n + 1 ) -tuples_on the carrier of K holds s1 . ( ( n + 1 ) -tuples_on the carrier of K ) = s1 . ( ( n + 1 ) -tuples_on the carrier of K ) & s1 . ( ( n + 1 ) -tuples_on the carrier of K ) . ( ( n + 1 ) -tuples_on the carrier of K ) ) = s1 . ( ( n + 1 ) -tuples_on the carrier of K ) . ( ( n + 1 ) . ( ( n + 1 ) -tuples_on the carrier of K ) . ( ( n + 1 ) . ( ( n + 1 ) -tuples_on the carrier of K ) . ( ( n + 1 ) -tuples_on the carrier of K ) . ( ( ( ( K ) . ( ( n + 1 ) . ( ( n + 1 ) . ( ( n + 1 assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and s is not zero and ex e being Point of TOP-REAL n st e = Ball ( x , r ) & e = Ball ( x , r ) & e = Ball ( x , r ) ; given r such that 0 < r and for s holds 0 < s or ex x1 , x2 being Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s & ||. f /. x1 - f /. x2 .|| < r & ||. f /. x2 - f /. x2 .|| < r ; ( p | x ) | ( ( x | x ) | ( ( x | x ) | ( x | x ) ) ) = ( ( x | x ) | ( x | x ) ) | ( ( x | x ) | ( x | x ) | ( x | x ) ) ) | ( ( x | x ) | ( x | x ) | ( x | x ) ) ; Suppose x , h + x in dom sec and ( ( h + sec ) (#) ( sec * sec ) ) . x = ( 4 * ( sin . x ) + cos . x ) * ( sin . x ) ^2 + ( sin . x ) ^2 * ( cos . x ) ^2 + ( sin . x ) ^2 * ( sin . x ) ^2 + ( cos . x ) ^2 ) ; assume that i in dom A and len A > 1 and len A = width B and B = A * ( i , j ) and B = A * ( i , j ) and B = A * ( i , j ) and B = A * ( i , j ) and C = B * ( i , j ) ; for i being non zero Element of NAT st i in Seg n holds ( i divides n or i divides n or i divides n & i divides n & i divides n & h . i = ( n + 1 ) * ( i |^ n ) & h . ( i -' 1 ) = ( n + 1 ) * ( i |^ n ) ( ( b1 => b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( c1 '&' c2 ) '&' ( a1 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a1 '&' c2 ) '&' ( a2 '&' b2 ) '&' ( a1 '&' a2 '&' a3 ) '&' ( a1 '&' a2 '&' a3 ) '&' ( a1 '&' a2 '&' a3 ) '&' ( a1 '&' a2 '&' a3 ) '&' ( a2 '&' a3 ) '&' ( a2 '&' a3 ) '&' ( a1 '&' a3 ) '&' ( a1 '&' a3 ) '&' ( a2 '&' a3 ) '&' ( a1 '&' a3 ) '&' ( a1 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a4 '&' a4 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a3 '&' a4 '&' a3 '&' a3 '&' assume that for x holds f . x = ( ( - cot * ( sin * cos ) ) ) . x and for x st x in dom ( ( cot * cos ) * ( sin * cos ) ) holds ( ( - cot * cos ) `| Z ) . x = ( ( - cot * cos ) `| Z ) . x ; consider RK , IK be Real such that RK = Integral ( M , F . n ) & IK = Integral ( M , F . n ) & I = Integral ( M , F . n ) & I = Integral ( M , F . n ) & I = Integral ( M , F . n ) ; ex k being Element of NAT st ' = k & 0 < d & for q be Element of product G st q in X & ||. q - x .|| < r holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| . ( k + 1 ) - partdiff ( f , x , k ) . ( k + 1 ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 8 , x5 , x5 , x5 , 8 , x9 } ; ( G * ( j , ii ) ) `2 = ( G * ( 1 , jj ) ) `2 .= ( G * ( 1 , jj ) ) `2 .= ( G * ( 1 , jj ) ) `2 .= ( G * ( 1 , jj ) ) `2 .= ( G * ( 1 , jj ) ) `2 .= ( G * ( 1 , jj ) ) `2 .= ( G * ( 1 , jj ) ) `2 ; f1 * p = p .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) ; func tree ( T , P , T1 ) -> Function of T , T1 means : Def1 : q in T iff q in T & q = T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . 1 ) ) ) ) ) ) ) ) ) ) ) or ex p st p in T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T F /. ( k + 1 ) = F . ( ( p . ( k + 1 ) ) -' 1 ) .= Fx0 . ( ( p . ( k + 1 ) ) -' 1 ) .= Fx0 . ( ( p . k ) -' 1 ) .= Fx0 . ( ( p . k ) -' 1 ) .= Fx0 . ( ( p . k ) -' 1 ) .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k ) - 1 .= ( p . k + ( p . k + ( p . k ) - 1 .= ( p . k + ( p . k + ( p . k + 1 ) for A , B , C , D being Matrix of len C st len B = len C & C = len C & len A = width C & C * ( len A , C ) = C * ( A , B ) & len ( A * B ) = width C & width ( A * B ) = width C & width ( A * B ) = width C & width ( A * B ) = width C implies A * B ) = C * ( A * B ) seq . ( k + 1 ) = 0. ( ( seq ^\ k ) + seq ^\ k ) .= ( seq ^\ k ) + seq ^\ k .= ( seq ^\ k ) + seq ^\ k .= ( seq ^\ k ) + seq ^\ k .= ( seq ^\ k ) + seq ^\ k .= ( seq ^\ k ) + seq ^\ k .= seq ^\ k + seq ^\ k .= seq ^\ k + seq ^\ k .= seq ^\ k + seq ^\ k .= seq ^\ k + seq ^\ k .= seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k .= seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k + seq ^\ k assume x in ( the carrier of C1 ) & y in ( the carrier of C1 ) & z in the carrier of C1 & x = ( the carrier of C1 ) \/ ( the carrier of C2 ) & y = ( the carrier of C1 ) \/ ( the carrier of C2 ) ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k in dom f holds ( ( f | k ) . k ) . f = ( ( ( f | k ) . ( k + 1 ) ) . f ) . ( ( ( f | k ) . k ) . f ) * ( ( ( ( f | k ) . k ) . f ) . ( ( f | k ) . f ) . f ) ) ; assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i , j ) and [ i , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and ( q `2 / |. q .| - sn ) ^2 > 0 and ( p `2 / |. q .| - sn ) ^2 >= 0 and ( p <> 0. TOP-REAL 2 ) and ( p <> 0. TOP-REAL 2 ) ^2 >= 0 ; for M being non empty TopSpace , x being Point of M st x = x holds ex f being Function of M , M st for n being Element of NAT holds f . n = Ball ( x , r ) & f . n = Ball ( x , r ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & ( for x st x in Z holds f1 . x = 1 / ( x - a ) * ( x - a ) ) & ( for x st x in Z holds f1 . x = 1 / ( x - a ) * ( x - a ) ) ; defpred P1 [ Nat , Point of C , Point of C ] means ( $1 in Y & $2 in Y & $2 = ( $1 + 1 ) * ( $2 - 1 ) ) & ( $1 - 1 ) * ( $2 - 1 ) - ( $2 - 1 ) * ( $2 - 1 ) + ( $1 - 1 ) * ( $2 - 1 ) ) < ( $1 - 1 ) * ( $2 - 1 ) + ( $1 - 1 ) * ( $2 - 1 ) ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i + 1 ) .= ( g | ( i + 1 ) ) . ( i + 1 ) .= g . ( ( i + 1 ) + 1 ) .= g . ( ( i + 1 ) + 1 ) .= g . ( ( i + 1 ) + 1 ) .= g . ( ( i + 1 ) + 1 ) ; ( 1 - 2 * n2 + 2 * n2 + 2 * n2 + 1 * n2 + 2 * n2 + 1 * n2 + 2 * n2 + 1 * n2 + 2 * n2 + 1 * n2 + 2 * n2 + 1 * n2 + 2 * n2 + 2 * n2 + 2 * n2 + 2 * n2 + 2 * ( n2 + 1 ) * n2 + 2 * ( n2 + 1 ) * n2 + 2 * ( n2 + 1 ) * n2 + 2 * ( n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * ( n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * ( n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * n2 + 1 * ( n2 + 1 * n2 + 1 * ( defpred P [ Nat ] means for G being non empty finite strict finite RelStr st G is $1 , finite , symmetric , symmetric holds the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G & the carrier of G = the carrier of G & the carrier of G & the carrier of G & the carrier of G = the carrier of G & the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G & the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the carrier of G & the carrier of G = the assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and not ( f . m in Ball ( u , r ) & not ( f . m in Ball ( u , r ) ) & not ( ex u st u in Ball ( u , r ) & not u in Ball ( u , r ) ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) ) . ( $1 + 1 ) = Partial_Sums ( cos ) . ( $1 + 1 ) + ( Partial_Sums ( cos ) . ( $1 + 1 ) ) * ( ( Partial_Sums ( cos ) ) . ( $1 + 1 ) + 1 ) * ( ( Partial_Sums ( cos ) ) . ( $1 + 1 ) + 1 ) * ( ( Partial_Sums ( cos ) ) . ( $1 + 1 ) + 1 ) ) ; for x being Element of product F holds x is FinSequence of product F & dom x = I & x in dom ( the _ of F ) & for i being set st i in dom x holds x . i in ( the _ of F ) . i & x . i in ( the _ of F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) * x .= ( x |^ n ) |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) * x |^ ( n + 1 ) DataPart Comput ( P +* I , s1 , LifeSpan ( P +* I , s1 ) ) = DataPart Comput ( P +* I , s2 , LifeSpan ( P +* I , s1 ) + 3 ) .= DataPart Comput ( P +* I , s2 , LifeSpan ( P +* I , s1 ) + 3 ) .= DataPart Comput ( P +* I , s2 , LifeSpan ( P +* I , s2 ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 + r .[ c= dom ( f1 + f2 ) /\ ]. x0 - r , x0 + r .[ and for g st g in ]. x0 - r , x0 + r .[ holds ( f1 + f2 ) . g <= ( f1 + f2 ) . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous & ( f1 - f2 ) | X is continuous & ( f1 - f2 ) | X is continuous ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is prime & x is prime & l is prime & l is prime & l is prime & l is prime Support ( e ) in { ( m *' p ) where m is Element of NAT : i in dom ( m *' p ) & ( m = len p ) & ( m = len p ) & ( m = len p implies ( m = len p ) & ( m = len p ) implies ( m = len p ) & ( m = len p ) implies ( m = len p ) + ( m -' 1 ) ) ; ( f1 - f2 ) /* ( f1 /* s ) = lim ( f1 /* s ) - f2 /* ( f1 /* s ) .= ( f1 /* s ) - f2 /* ( f1 /* s ) .= ( f1 /* s ) - f2 /* s .= ( f1 /* s ) - f2 /* s .= ( f1 /* s ) - f2 /* s ; ex p1 being Element of CQC-WFF ( Al ) st F . ( p1 `1 ) = g . ( p1 `1 ) & for g being Function of [: Al , Al :] , D st g . ( p1 `1 ) = g . ( p1 `1 ) & g . ( p1 `1 ) = g . ( p1 `1 ) & g . ( p1 `1 ) = g . ( p1 `1 ) ; ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) ; ( ( p ^ q ) /^ k ) . ( len p + k ) = ( ( p ^ q ) /^ k ) . ( len p + k ) .= ( ( p ^ q ) /^ k ) . ( len p + k ) .= ( ( p ^ q ) /^ k ) . ( len p + k ) .= ( p ^ q ) /^ k .= ( p ^ q ) /^ k .= ( p ^ q ) /^ k .= ( p ^ q ) /^ k ; len ( mid ( f , D1 , j1 ) + 1 ) = len ( ( D2 | indx ( D2 , D1 , j1 ) + 1 ) ) + 1 .= len ( D2 | indx ( D2 , D1 , j1 ) + 1 ) .= len ( D2 | indx ( D2 , D1 , j1 ) + 1 ) ; x * y = ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= x * y * ( y * z ) .= x * y * ( y * z ) .= x * y * ( y * z ) * ( y * z ) .= x * ( y * z ) ; v . <* x , y *> = <* x0 , y0 *> * ( <* x0 , y0 *> - ( y - x0 ) * ( y - x0 ) ) + ( ( ( y - x0 ) * ( y - x0 ) ) * ( y - x0 ) ) + ( ( ( y - x0 ) * ( y - x0 ) ) * ( y - x0 ) ) ) ; i * i = <* 0 * ( 1 - i ) * ( 0 - i ) + ( 0 * ( i - i ) ) * ( i - i ) + ( 0 * ( i - i ) ) * ( i - i ) ) .= <* 0 * ( i - i ) + ( 0 * ( i - i ) ) * ( i - i ) + ( 0 * ( i - i ) ) * ( i - i ) ) .= ( 0 * ( i - i ) + ( 0 * ( i - i ) ) .= ( 0 * ( i - i ) + ( 0 * ( i - i ) + ( 0 * ( i - i ) ) + ( 0 * ( i - i ) ) .= ( 0 * ( i - i ) + ( 0 * ( i - i ) ) + ( 0 * ( i - i ) ) + ( 0 * ( i - i ) ) + ( 0 * ( i - i ) ) + ( 0 * ( i - i ) ) .= ( 0 * ( i - i ) + ( 0 * ( i - i ) + ( 0 * ( i Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( ( L (#) F ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) ) + Sum ( ( L (#) F ) ^ ( L (#) ( F1 ^ F2 ) ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( ( L (#) ( F1 ^ F2 ) ) ) + Sum ( ( L (#) ( F1 ^ F2 ) ) ) .= Sum ( ( L (#) ( ( L (#) ( F1 ^ F2 ) ) ) + Sum ( ( L (#) ( F1 ^ F2 ) ) ) .= Sum ( L (#) ( ( L (#) F2 ) ) + Sum ( ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) ( F1 ^ F2 ) ) + Sum ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( Y1 + Y2 ) . Y1 - ( Y1 + Y2 ) . Y1 .| < r ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i + 1 , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i + 1 , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i + 1 ) & ( GoB f ) * ( i + 1 , j + 1 ) ; ( ( - cos ) ^2 ) / ( ( cos * cos ) ^2 ) = ( ( r / ( cos * cos ) ^2 ) ) / ( ( cos * cos ^2 ) ) .= ( ( r / ( cos * cos ^2 ) ) ^2 ) / ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . x ) ) ) ) ) ^2 ) ) .= ( r / ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . x ) ) ) ) ) ) ^2 ) ) ) ) ^2 ) ) ^2 ) ) .= ( 1 / ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . ( cos . x ) ) ) ) ) ) ^2 ) ) ( - b + sqrt ( a , b , c ) ) * ( 2 * a + sqrt ( b , c ) ) > 0 & ( - b + sqrt ( a , b , c ) ) * ( 2 * a + sqrt ( b , c ) ) < 0 implies ( - b + sqrt ( a , b , c ) ) * ( 2 * a + sqrt ( b , c ) ) < 0 Suppose inf ( \mathopen { \uparrow X , C ) /\ C ) = "\/" ( ( the InternalRel of L ) /\ C , L ) and for X holds X is maximal implies "\/" ( ( the InternalRel of L ) /\ C , L ) = "\/" ( ( the InternalRel of L ) /\ C , L ) & "\/" ( ( the InternalRel of L ) /\ C , L ) = "\/" ( ( the InternalRel of L ) /\ ( the InternalRel of L ) /\ ( the InternalRel of L ) ) ; ( ( the Sorts of B ) . ( j , i ) ) . ( j , i ) = ( j , i ) --> ( ( j , i ) --> ( ( j , i ) --> ( ( j , i ) --> ( j , i ) ) ) ) . ( j , i ) ) & ( j = i implies ( j = i implies ( j = i ) & ( j = i implies ( j = i ) ) & ( j = i implies ( j = i implies ( j = i implies ( j = i implies ( j = i implies ( j = i ) implies ( j = i ) ) & ( j = i implies ( j = i implies ( j = i implies ( j = i ) implies ( j = i ) = ( j = i ) & ( j = i implies ( j = i implies ( j = i implies ( j = i implies i = i implies ( j = i implies i = i implies ( j = i implies i = i ) implies ( j = i implies ( j = i implies ( j = i implies ( j = i implies ( j = i implies ( j