thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is 1 ; assume x in I ; q is \cup by A1 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= kLet ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; I > 0 ; assume q in A ; W is not bounded ; f is Assume f is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is negative ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 3-2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is \rangle ; Q halts_on s ; x in \in \in such that x in \in \in \in \in $ ; M < m + 1 ; T2 is open ; z in b set ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of X ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o \mathord 4 , o ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be complex let X , Y be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is L~ of f ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aZ <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , A be Subset of V ; s is trivial & s is non trivial ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , S ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S`| X is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U2 ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj ; set A = Cl A ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_structure or H is \rrangle ; assume x0 <= m ; T is increasing ; e2 <> e2 & e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected union M ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 \/ C-26 ; mm <> {} ; let x be Element of Y ; let f be ] [#] of G , x be set ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v `2 ; - y in I ; let A be non empty set , x be set ; P0 = 1 ; assume r in F . k ; assume f is simple function ; let A be \lbrack countable set ; rng f c= NAT * ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let I1 , I2 ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in C ; assume t . 1 in A ; let Y be non empty TopStruct , x be Point of Y ; assume a in ]. s , t .[ ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f | A ) ; [ a , c ] in X ; mm . m <> {} ; M + N c= M + M ; assume M is \llangle hhL , M \rrangle ; assume f is cmarr-r) ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is continuous ; f . x Let x be Real ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CX in S ; q2 c= C1 & q2 c= C1 ; a2 < c2 & a2 < c2 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be MSAlgebra over L ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y , v , w as u1 <> u2 ; R8 in X ; let a , b be Real , f be PartFunc of REAL , REAL ; let a be object of C ; let x be Vertex of G ; let o be object of C , a be object of C ; r '&' q = P \lbrack l , l .] ; let i , j be Nat ; let s be State of A , a be element ; s4 . n = N ; set y = ( x `1 ) * ( x `2 ) ; [: i , j :] in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in C0 ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in Nf1 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume X0 is dense & A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x9 c= Z1 & x9 c= Z1 ; dom f = C1 & dom g = C1 ; assume [ a , y ] in X ; Re ( seq ) is convergent ; assume that a1 = b1 and b1 = b2 ; A = ( sInt A ) . x ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , s be State of S ; assume that r2 > x0 and x0 in dom f ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom ( g2 | n ) ; n in dom ( g1 | X ) ; k + 1 in dom f ; not the still of { s } is finite ; assume that x1 <> x2 and x2 <> x3 ; v1 in V1 & v2 in V1 & v1 in V1 ; not [ b `1 , b ] in T ; i9 + 1 = i ; T c= \rangle ( T ) ; ( l `1 ) ^2 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; A\llangle f , A ] is_integrable_on M & A\llangle f , A ] is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; [: C , D :] misses [: C , D :] ; product seq is non empty ; e <= f or f <= e ; cluster non empty ordinal for set ; assume c2 = b2 & c1 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that v9 is Cauchy and vseq is Cauchy ; IC s3 = 0 & IC s2 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int ( G1 \/ G2 ) <> {} ; ( z `2 ) ^2 = 0 ; p10 `2 <> p1 `2 & p2 `2 <> p1 `2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete reflexive non empty reflexive RelStr ; q |^ m >= 1 ; a is_>=_than X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one implies G is one-to-one ; A \/ { a } c= B ; 0. V = 0. Y & 0. V = 0. Y ; let I be the \cal Instruction Instruction of S , s be State of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be sequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact ; assume x1 in REAL + ( - 1 ) ; p1 = K1 & p2 = K1 or p2 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSML is closed ; assume z0 <> 0. L & 0. L in W ; n < N . k ; 0 <= seq . 0 & 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , S :] is stable Subset of R ; set [: R , S :] = Vertices R ; pp c= P4 & P4 c= P4 ; x in [. 0 , 1 .] ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ ] ; assume a in A ( ) ; k in dom ( q | k ) ; p is $ y is $ y & p is one-to-one ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= j2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster -> of of \HM { \rm \cal `2 } -> strict for strict \rm Real ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s1 - s2 > 0 ; assume x in { Gik } ; W-min C in C & W-min C in C ; assume x in { Gik } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom S = dom F ; let s be Element of NAT , n be Nat ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void ManySortedSign ; let f be ManySortedFunction of I , P ; let z be Element of F_Complex , x be set ; u in { \hbox { \boldmath $ g $ } } ; 2 * n < 2 * ( 2 * n ) ; let x , y be set ; B-11 c= V1 & B-15 c= V1 ; assume I is_halting_on s , P ; U2 = U2 \/ ( U2 \/ C ) ; M /. 1 = z /. 1 ; x9 = x9 & x9 = y9 or x9 = y9 & y9 = x9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; f7 <= f6 & f7 <= len f6 ; let l be Element of L ; x in dom ( F . -17 ) ; let i be Element of NAT , a be Element of REAL ; r8 is ( COMPLEX * -valued FinSequence of COMPLEX ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card ( K1 | K1 ) in M & card ( K1 | K1 ) in M ; assume X in U & Y in U ; let D be \rangle of Omega ; set r = q q | { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict Sublattice for SubLattice of L ; a1 in B . s1 & a2 in B . s1 ; let V be finite VectSp of F , A be Subset of V ; A * B on B & A on B ; f-3 = [: NAT , { 0 } :] --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f /\ dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 as Nat of 0 -tuples_on REAL ; LIN a , d , c ; [ y , x ] in IX ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 div m , m = x0 div m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! \mathop { N } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B \/ C ) \ { {} } ; s1 , s2 , s1 , s2 , s1 , s2 , s2 , s1 , s2 ; j1 -' 1 = 0 & j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_congruent_mod m ; set g = f | D-21 ; assume X is lower bounded & 0 <= r ; ( ( p1 `1 ) / |. p1 .| ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 <= i2 ; 1 <= i1 -' 1 & i1 -' 1 <= i2 ; i + i2 <= len h ; x = W-min ( P ) & x in P ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . -3 , I = h . -3 , H = h . -3 ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 ; assume x in ( ( X1 union X2 ) union ( X2 union 4 ) ) ; ||. h .|| < dx0 & 0 < dx0 ; not x in the carrier of f & x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl2 - k ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be c9 of s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty transitive RelStr , f be Function of L , L ; S-20 is x -\leq i -f1 ; let r be non positive Real ; M , v |= x 'in' y ; v + w = 0. ( Z , n ) ; P [ len F ] implies P [ F ( ) ] ; assume InsCode ( i9 ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the carrier of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> the string of S for string of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is \overline { v } ; T1 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q1 <> {} & Q1 /\ Q1 <> {} ; let k be Nat ; q " is Element of X & q " in X ; F . t is set of of non zero & F . t = M ; assume n <> 0 & n <> 1 ; set en = EmptyBag n , e = EmptyBag n , u = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root implies ( p `1 ) ^2 = ( p `2 ) ^2 not r in ]. p , q .] ; let R be FinSequence of REAL , x be set ; S7 does not destroy b1 & not a1 in S1 & a2 in S2 ; IC SCM R ( ) <> a & IC SCM R ( ) <> b ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT , n be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= s . NAT ; H + G = F- ( GG ) ; CS1 . x = x2 & CS2 . x = y2 ; f1 = f .= f . 1 .= f2 . 1 .= f /. 1 .= f /. 1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 ; Ix is_reflexive implies C is reflexive & C is reflexive IX is_antisymmetric implies C is antisymmetric & C is antisymmetric upper_bound rng ( H1 | i ) = e & upper_bound rng ( H1 | i ) = e ; x = ( a * a9 ) * ( a * b ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < len f ; rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and not a in support b ; let L be associative commutative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 .= p . 1 ; R . n <= R . ( n + 1 ) ; Directed I1 = I1 & card I1 = card I1 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster -> non empty for Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* *> . <* N . N *> -> complete continuous for non trivial TopSpace ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume ( 1 - 2 ) / t `1 <= 1 ; card B = k + 1 - 1 ; x in union rng ( f | n ) ; assume x in the carrier of R & y in the carrier of R ; d in D ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } ; let G be : for w be : w in G holds w = 0 ; let e , v9 be set ; c . i9 in rng c & c . i9 in rng c ; f2 /* q is divergent_to+infty & f2 /* ( f1 /* s ) is divergent_to+infty ; set z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z2 ; assume w is \mathop { l\mathop ( S , G ) } ; set f = p \! \mathop { t } , g = p \! \mathop { t } , h = p \! \mathop { t } , n = p \! \mathop { t } , m = p \! \mathop let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Point of REAL-NS m ; let I1 be Subset-Family of X , G be Subset-Family of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of NAT & q is FinSequence of NAT implies p is FinSequence of NAT stop I c= P_(#) ( 1 , 1 ) ; set ci = f// f11 /. i , f21 /. i ; w ^ t connected w ^ <* s *> ; W1 /\ W = W1 /\ W ` .= ( W1 + W2 ) /\ W ; f . j is Element of J . j ; let x , y be Element of T2 , a , b be Real ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is \sum p implies x is \sum p set g2 = lim ( seq , n ) , g1 = lim ( seq , n ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Partial_Sums ( q | m ) > m ; L1 . F1 = 0 & L1 . F1 = 1 ; / ( X \/ R1 ) = / ( X \/ R1 ) ; ( ( - sin ) `| Z ) . x <> 0 ; ( ( exp_R * exp_R ) `| Z ) . x > 0 ; o1 in [: X , Y :] /\ [: X , Y :] ; let e , v9 be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed Subset of R , I be Ideal of R ; h . p1 = f2 . O & h . O = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q * M ) = width M & len ( q * M ) = width M ; the carrier of LK c= A & the carrier of LK c= A ; dom f c= union rng ( F | n ) ; k + 1 in support ( support ( support ( n ) ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( \mathclose R ) \/ ( ( R ~ ) * ( R ~ ) ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 |^ ( the carrier of X ) ; reconsider w = |. s1 .| as Real_Sequence of TOP-REAL 2 ; ( 1 / m * m + r ) < p ; dom f = dom I-4 & dom I = dom I-4 ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - x -> ExtReal -> ExtReal for ExtReal ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W2 implies u in W2 reconsider y = y as Element of L2 ( ) ; N is full SubRelStr of [: T , T :] , S be full SubRelStr of T , T ; sup { x , y } = c "\/" c ; g . n = n / 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x , y ) < ( r / 2 ) / 2 ; reconsider mm = m - n as Element of NAT ; x- x0 < r1 - x0 & x0 < r2 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) , g2 = idseq ( q `2 ) , g1 = idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . I2 in { x } & D2 . I2 in { x } ; cluster subcondensed closed -> subcondensed for Subset of T ; let P be compact connected non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( Gik , Gij ) \/ LSeg ( Gik , Gij ) ; let n be Element of NAT , x be set ; reconsider Ss = S as Subset of T | A ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q be Subset of SCMPDS ; b , b , b , x , y , z is_collinear ; assume that i = n \/ { n } and j = k \/ { n } ; let f be PartFunc of X , Y ; N1 >= ( sqrt c / sqrt 2 ) ^2 + ( sqrt c / sqrt 2 ) ^2 ; reconsider t7 = T" as Point of Euclid n ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 . ( z2 . z2 ) ; A |^ 0 = { <* \rangle *> } \/ { <* E *> *> } ; len W2 = len W + 2 & len W2 = len W + 2 ; len ( h2 | 1 ) in dom ( h2 | 1 ) ; i + 1 in Seg ( len s2 ) & i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume that p2 = W-min ( K ) and p1 in K and p2 in K ; len G + 1 <= i1 + 1 & 1 <= i2 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster ( s1 + s2 ) ^\ k -> summable for Real_Sequence ; assume that j in dom ( M1 * ( i , j ) ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* y *> \subseteq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & R . x = x ; len q = len ( K * G ) ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* stop I , s2 = LifeSpan ( P2 , s2 ) , P2 = P +* stop I , P2 = P +* stop I ; consider w being Nat such that q = z + w ; x ` ` is Element of L ` & x ` is Element of L ` ; k = 0 & n <> k or k > n & n > k ; then X is discrete for Subset of X ; for x st x in L holds x is FinSequence of L ||. f /. c - f /. c .|| <= r1 ; c in ]. p , q .[ & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be \hbox { S } , L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M | [. f , g .] = f & M | [. g , g .] = g ; ( ( L~ z ) /. 1 ) `1 = TRUE ; dom g = dom ( f / X ) .= dom f ; mode \cal \cal of G is \cal \cal \cal p\rangle ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H ( ) ; let f be Element of dom ( Subformulae p ) , x be set ; F1 . ( a1 , - 1 ) = G1 . ( a1 , - 1 ) ; Observe that \HM { the } \HM { carrier } \HM { of } \HM { , } b , r ) is compact ; let a , b , c , d , e , f , g , h be Real ; rng s c= dom ( 1 / 2 ) & rng s c= dom ( 1 / 2 ) ; curry ( ( F . -19 ) , k ) is additive & ( F . -19 ) . k is additive ; set k2 = card dom B - 1 , k1 = card dom B - 1 , k2 = card dom B - 1 , k2 = card dom B - 1 ; set G = coprod X , A = ( the carrier of S ) --> NAT ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of Mr , M be Matrix of REAL ; reconsider s1 = s as Element of ( S | 0 ) | ( the carrier of S ) ; rng p c= the carrier of L & p in the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W & x = 0. W I-21 in dom stop I & y in dom stop I ; g be continuous Function of X | B , Y ; reconsider D = Y as Subset of Euclid n , G = { p } ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( the carrier of J ) .= ( the carrier of J ) ; cluster All ( x , H ) -> reconsider reconsider H1 = H as " ; d * N1 ^2 > N1 * 1 / ( d * 1 ) ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 | D1 , p = f | D1 , q = f | D2 ; dom ( p | [: m , m :] ) = [: m , m :] ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( ( tan * arccot ) `| Z ) . x ; x in rng ( f /^ ( p -' 1 ) ) ; let f , g be FinSequence of D ; [: p , q :] in the carrier of S1 & [: p , q :] in the carrier of S2 ; rng ( f " ) = dom f & rng ( f " ) = dom f ; ( the Source of G ) . e = v ; width G -' 1 < width G -' 1 & 1 < width G ; assume v in rng ( S | ( E . 1 ) ) ; assume x is root & x is root implies x is root & x is root ; assume 0 in rng ( ( g2 | A ) | A ) ; let q be Point of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S *> is in the carrier of C-20 & <* S *> is in the carrier of C-20 ; i <= len G -' 1 & 1 <= i & i + 1 <= width G ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; x1 in the carrier of [: I[01] , I[01] :] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < x0 + r } ; Q2 = Sp2 " ( Q \ { x } ) .= Sp2 " ( Q \ { x } ) ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) (#) ( 1 / 2 ) is summable ; - p + I c= - p + A + A ; n < LifeSpan ( P1 , s1 ) + 1 & n < len s1 ; CurInstr ( p1 , s1 ) = i & CurInstr ( p2 , s2 ) = i ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of CompactSublatt ( L ) ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b ; [ s , I ] in S ~ ( A , I ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be SubFunctor of C , C2 , a be object of C ; reconsider V1 = V as Subset of ( X | B ) | B ; attr p is valid means : Def21 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom g ; H |^ ( a " ) is Subgroup of H |^ ( a " ) ; let A1 be Let be Let : A1 on A1 & A2 on A1 ; p2 , r3 , q1 , q2 is_collinear & q2 , q1 , q2 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } \/ { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B0 ) & p in [#] ( I[01] | B0 ) ; 0 . 0 < M . ( Ed . n ) ; ^ ( c / 2 ) / 2 = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster *> -> \rbrace -\cal \mathclose \mathclose { \rm \hbox { - } \rm \hbox { - } \rm _ 1 L ; set i1 = the Nat of G , i2 = the Element of G , n = the Element of NAT ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def6 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of Y ; cluster ( x `1 ) ^2 -> transitive for Relation ; set S = <* Bags n , i9 *> , i = <* <* <* i *> *> , j = <* i *> *> ; set T = [. 0 , 1 / 2 .] , S = [. 0 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; sqrt ( 4 * PI ) < ( 2 * PI ) / 2 ; x2 in dom ( f1 + f2 ) /\ dom ( f1 + f2 ) ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z , u , v , w , u1 , v1 , v2 , u1 , v1 , v2 , u1 , v1 , v2 , v1 , v2 , u1 , v1 , v2 , v1 , v2 , u1 , v1 , v2 , u1 , h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> / 2 = len P & len <* P *> = len P ; set N-26 = the \cup of N , NN = the carrier of N ; len g: g: + ( x , x + 1 ) - 1 <= x ; a on B & b on B & a on B ; reconsider rv = r * I . v as FinSequence of REAL ; consider d such that x = d and a \in d ; given u such that u in W and x = v + u ; len ( f /^ n ) = len f -' n ; set q2 = N-min L~ Cage ( C , n ) , q2 = q2 ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 ; f " D /\ h " D meets h " V & f " D /\ h " V c= h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( S ( ) ) . ( X , Y ) ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( b2 , b1 ) ; the carrier' of G ` = E \/ { E } ; reconsider m = len such that len such that k = len such that p = k - 1 and m <= n ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { \mathbb N } and P is of M ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 .= p * L /. 1 ; pp . i = p1 . i .= p1 . i .= p2 . i ; let PA , PA , G be a_partition of Y ; pred 0 < r & r < 1 & 1 < ( 1 - r ) / 2 ; rng \mathop { \rm AffineMap ( a , X ) = [#] ( X ) ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of X ) ; dom ( f0 * u ) c= dom ( ( u - v ) * ( v - u ) ) ; pred n divides m & m divides n & n = m ; reconsider x = x as Point of [: I[01] , I[01] :] | K1 ; a in ; not y0 in the carrier of f & not ( ex g st g in f & g in f . x ) ; Hom ( ( a \times b ) , c ) <> {} ; consider k1 such that p " < k1 and p . k1 = 0 ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g & [ x , y ] in dom g ; set S1 = Let Let S1 , S2 = \rm many ( x , y , z ) ; l1 = m2 & l1 = i2 & l1 = j2 & l2 = j2 ; x0 in dom ( ( u - x0 ) * ( y - x0 ) ) /\ dom ( ( u - x0 ) * ( y - x0 ) ) ; reconsider p = x as Point of TOP-REAL 2 , q = x `2 / |. q .| as Point of TOP-REAL 2 ; [: I[01] , I[01] :] = [: the carrier of I[01] , the carrier of I[01] :] .= [: the carrier of I[01] , the carrier of I[01] :] ; f . p4 `2 <= f . p1 `2 & f . p1 `2 <= f . p2 `2 ; ( ( F . n ) `1 ) ^2 <= ( ( F . n ) `1 ) ^2 ; ( x `2 ) ^2 = ( ( W . ( n + 1 ) ) `1 ) ^2 .= ( W . ( n + 1 ) ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume that 1 <= i and i <= len <* a " *> and <* a *> . i = a ; 0 |-> a = <*> ( the carrier of K ) .= ( the carrier of K ) --> a ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider sbeing p2 = s\rbrack as cluster cluster ( the ObjectMap of D ) | ( the carrier of D ) ; - ( i -' 1 ) <= len such that ( - j ) <= len such that ( - j ) = - j ; [#] S c= [#] ( T | ( the carrier of S ) ) & [#] S = [#] ( T | S ) ; for V being strict RealUnitarySpace holds V in ex W being Subspace of V st W in \mathbb V & W is Subspace of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n , K , n , m be Nat ; - a * ( - b ) = a * b ; for A being Subset of A9 holds A // A & A // A implies A = B ( id o2 ) in <* o2 , o1 , o2 *> & ( id o2 ) in { o1 , o2 } ; then ||. x - y .|| = 0 & x = 0. ( X , Y ) ; let N1 , N2 be strict normal Subgroup of G , x be Element of G ; j >= len ( upper_volume ( g , D1 ) | j1 ) & j <= len ( upper_volume ( g , D1 ) | j1 ) ; b = Q . ( len Q - 1 ) .= Q . ( len Q - 1 ) ; f2 * f1 /* s is divergent_to+infty & lim ( f2 * f1 ) = x0 ; reconsider h = f * g as Function of [: N , G :] , G ; assume that a <> 0 and Polynom ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T | E ) | n ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( ( p +* q ) +* ( i , 1 ) ) ; reconsider N2 = N1 as strict net of R2 , a be Element of R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j < len f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '&' C ) \/ D \ { {} } ; n <= len ( P6 + len ( P6 + 1 ) ) + len ( P6 + 1 ) ; ( x1 - x2 ) `1 = ( x2 - x1 ) `1 .= ( x2 - x1 ) `1 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 } ; let x , y be Element of ( F_ 1 ) . n ; p = |[ p `1 , p `2 ]| .= |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * g * h .= g " * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( x1 - x2 ) /\ dom ( x1 - x2 ) ; ( R qua Function ) " = R " ( dom R ) .= R " ( rng R ) ; n in Seg len ( f /^ ( len p -' 1 ) ) ; for s being Real st s in R holds s <= s2 & s2 <= s1 ; rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym ex X being Subset of ex Y being Subset of \mathop { \rm ex X st X in \mathop { \rm ex Y st Y in X & X c= Y ( 1_ K ) * ( 1_ K ) = 1_ K & ( 1_ K ) * ( 1_ K ) = 1_ K ; set S = Segm ( A , P1 , Q1 ) , Q1 = Segm ( A , B , Q1 ) ; ex w st e = ( w - f ) . ( w - f ) & w in F ; curry ' ( P+* ( k , X ) ) # x is convergent ; cluster -> open for Subset of [: T , T :] | [: S , T :] ; len f1 = 1 .= len ( f1 | 1 ) .= len ( f1 | 1 ) .= 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of \mathop { \rm OSSub ( U0 ) ; b1 , c1 // b9 , c9 & c1 , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total and f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) = n ; Reloc ( J , card I + 1 ) is not empty ; \frac { ( card I + 1 ) * 1 } not f in { c } ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) IC Comput ( P , s , k ) in dom Initialize ( ( intloc 0 ) .--> 1 ) ; dom t = the carrier of ( SCM R ) | ( the carrier of R ) .= the carrier of ( R ) | ( the carrier of R ) ; ( ( N-min L~ f ) .. f ) .. f = 1 & ( N-min L~ f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union F ) c= Cl ( Cl union F ) ; the carrier of X1 union X2 misses ( A1 \/ A2 ) \/ ( A1 \/ A2 ) ; assume not LIN a , f . ( a , f . a ) , g ; consider i being Element of M such that i = d6 and i in A ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , v ) . x ) ; consider m being element such that m in Intersect ( F9 . 0 ) and x = ( Intersect ( F9 . 0 ) ) . m ; reconsider A1 = support u1 as Subset of X | ( { x } ) ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -\mathop { V } -> .| for string of S ; LG2 /. ( n2 + 1 ) = LG2 . ( n2 + 1 ) .= LG2 /. ( n2 + 1 ) ; let P be compact connected non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , p be Point of TOP-REAL n ; assume that [ k , m ] in Indices ( D1 | j1 ) and m in dom D1 ; 0 <= ( ( 1 / 2 ) to_power p ) . ( p / 2 ) ; ( F . N ) | E8 . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `1 ) <> 0. I ; 1 + card ( X \/ Y ) <= card u + card ( X \/ Y ) ; set g = z \circlearrowleft ( ( N-min L~ z ) .. z ) ; then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\hbox { - } \rm \hbox { - } \rm \hbox { - } \rm such that for Function of C , D ; reconsider B = A as non empty Subset of TOP-REAL n , p be Point of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= f . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x5 , v2 , P ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 & n <= len D1 ; ( ( ( g2 ) . O ) `1 ) ^2 = - 1 ; j + p .. f -' len f <= len f - 1 + 1 ; set W = W-bound C , S = S-bound C , E = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound S1 . ( a ` , e ) = a + e .= a ` ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f ) ) = dom ( Im ( f ) ) .= dom ( Im ( f ) ) ; Diff . ( x `1 , x `2 ) = W . ( a , p `2 ) ; set Q = contradiction \ contradiction ( g , f , h ) ; cluster -> many sorted for Relation of U1 , U2 ; attr F = { A } means : Def6 : F is discrete ; reconsider z9 = *> . y as Element of product ( G . i ) ; rng f c= rng ( f1 + f2 ) \/ rng ( f1 + f2 ) ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & ( the carrier of F_Complex ) c= ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 , x3 , x4 ) ; reconsider n1 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ ( B \ B1 ) ) = 0 ; g + R in { s : g-r - s < s & s < g + r } ; set q00 = ( q , <* s *> ) -\hbox { - } ; for x being element st x in X holds x in rng f1 & x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , min ( B , R ) ) ; t in Seg width ( I ^ ( n , n ) ) & t in Seg n ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% x %> + k .= x ; ( ( GoB f ) * ( 1 , 1 ) ) `2 <= ( ( GoB f ) * ( 1 , 1 ) ) `2 ; attr R is condensed means : Def6 : ( Cl R is condensed & Cl R is condensed & Cl R is condensed ) ; pred 0 <= a & a <= 1 & b <= 1 & a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ j ; len C + - 2 >= 9 + ( - 3 ) + ( - 3 ) ; x , z , y is_collinear & x , z , y is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ ( n1 + 1 ) * a ; <* \underbrace ( 0 , \dots , 0 } , x ) in Line ( x , a * x ) ; set y1 = <* y , c *> ; FG2 /. 1 in rng Line ( D , 1 ) & FG2 /. 1 in rng Line ( D , 1 ) ; p . m > r /. m & r /. ( m + 1 ) in rng r ; ( p `2 ) ^2 = ( f /. ( i1 + 1 ) ) `2 .= ( f /. ( i1 + 1 ) ) `2 ; ( W-bound X \/ Y ) = W-bound X + ( W-bound Y ) / 2 & ( W-bound X + E-bound Y ) = W-bound Y ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g & g . x in dom g f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of Pmin ( X , Y ) , f be VECTOR of X ; p \! \mathop { Product ( X , Y ) } = 0 & p in ( X * Y ) " { 0 } ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = ( card I + 4 ) .--> ( 0 + 4 ) , i2 = goto 0 ; x in { x , y } & h . x = {} T & y in T ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of ( A ) ) .= len ( the charact of ( A ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set NN = : \leq |. GN - GN .| ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; ( \vert p2 \vert ) . ( K . ( K , n , r ) , n ) is min ; f . k , f . ( Let ( n ) , n ) in rng f ; h " P /\ [#] T1 = f " P & h " P = f " P ; g in dom ( f2 \ f2 " { 0 } ) \ f2 " { 0 } ; gN /\ dom f1 = g1 " ( { g } ) .= g1 " ( { g } ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = c9 ( x1 , y1 , y2 ) , d2 = c9 ( y1 , y2 , z2 ) , d1 = h . ( y1 , y2 ) , d2 = h . ( y1 , y2 ) , d1 = h . ( y1 , y2 ) , d2 = h . ( y1 , b `1 + ( 1 - sqrt 2 ) < ( 1 - sqrt 2 ) ^2 + ( 1 - sqrt 2 ) ^2 ; reconsider f1 = f as VECTOR of the carrier of X , g be Function of X , Y ; pred i <> 0 means : Def7 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( ( g2 . i2 ) * ( ( g2 . i2 ) * ( 1 , j ) ) ) ; dom ( i - 1 ) = dom ( i - 1 ) .= Seg ( i - 1 ) .= Seg ( i + 1 ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of S , IF , I be Function of S , IF ; reconsider R1 = x , R2 = y , R2 = x as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL & <* n *> in RL ; S1 +* S2 = S2 +* S1 & S2 +* S2 = S2 +* S2 & S1 +* S2 = S2 +* S2 ; ( ( ( id Z ) (#) ( ( id Z ) ^ ) ) `| Z ) = f ; cluster -> continuous for Function of C , REAL n , x be element ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C7 = 1GateCircStr ( <* z , x *> , f3 ) ; E8 . e2 = E8 . ( e2 . e2 ) .= ( 2 to_power ( e2 + 1 ) ) * T ; ( ( arctan * arctan ) `| Z ) . x = ( ( arctan * arccot ) `| Z ) . x .= ( ( arctan * arccot ) `| Z ) . x ; upper_bound A = ( cos * 3 ) / 2 & lower_bound A = 0 & lower_bound A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F ) ; reconsider pp = q8 as Point of Euclid 2 , q = q `2 / |. q .| as Point of TOP-REAL 2 ; g . W in [#] ( Y | X0 ) & [#] ( Y | X0 ) c= [#] ( Y | X0 ) ; let C be compact connected non vertical non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) \/ LSeg ( g , k ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 - r , x0 + r .[ ; assume x in { idseq ( 2 ) , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , n1 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g . y <= g . x for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bx = f .: ( the carrier of X1 ) , Bx = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume that R ~ c= R ~ and R ~ c= R ~ and R ~ c= R ~ and R ~ c= R ~ ; t in ]. r , s .] or t = r or t = s & s = s ; z + v2 in W & x = u + ( z + ( z + v2 ) ) ; x2 |-- y2 iff P [ x2 , y2 , y2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 , z2 ; pred x1 <> x2 means : Def21 : |. x1 - x2 .| > 0 & x1 <> x2 ; assume that p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 is_collinear and p2 - p1 , p3 - p1 , p3 - p1 , p2 - p1 is_collinear ; set q = ( Ant f ) ^ <* 'not' 'not' A *> ; let f be PartFunc of \langle REAL-NS 1 , \Vert * \Vert \rangle , REAL-NS 1 , REAL-NS 1 , REAL-NS 1 ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( \mathop { \rm \lbrace t } ) ) = dom ( \mathop { \rm <* t *> *> ) ; consider x being element such that x in wX and x in c and x in c ; assume ( F * G ) . ( v . x3 ) = v . x3 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 = the carrier of D2 and the carrier of D2 = the carrier of D2 ; reconsider A1 = [. a , b .] as Subset of R^1 | [. a , b .] ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-min L~ Cage ( C , n ) ; n1 -' len f + 1 - 1 <= len - 1 + 1 - 1 ; ConsecutiveSet ( q , O1 ) = [ u , v , v , a , b , c , d ] ; set C-2 = ( ( \mathclose { \mathclose { i } ) \/ G ) . ( k + 1 ) ; Sum ( L * p ) = 0. R * Sum p .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 <= len Q & Q [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I , s4 = P2 +* I , P4 = P2 +* I , s4 = Comput ( P2 , s2 , k ) , P4 = P2 +* I , P4 = P3 ; let l be variable of k , A , B be Subset of V ; reconsider U2 = union G-24 as Subset-Family of [: T , T :] | A , G be Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p9 /. ( n + 1 ) ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; psqrt 5 = <* - ( c * c9 ) , - ( c * c9 ) *> .= <* - ( c * c9 ) *> ; synonym f is complex-valued for rng f c= NAT & rng f c= NAT & rng f c= { f . n } ; consider b being element such that b in dom F and a = F . b ; x9 < card ( X0 \/ ( X0 \/ Y ) ) & card ( Y \/ ( X0 \/ Y ) ) < card ( X0 \/ Y ) ; attr X c= B1 means : Defp) for X st X c= succ B1 holds X in succ B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( \HM { the } \HM { function } , 0 , \HM { the } \HM { function } ) pred 1 <= len s means : Def8 : len ( s * ( 0 , 0 ) ) = s & for i being Nat st i in dom s holds s . i = 0 ; fReconsider c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in TAUT ( A ) means : Def: q '&' p in TAUT ( A ) & q '&' p in TAUT ( A ) ; - ( t `1 ) < ( ( t `2 ) - ( t `1 ) ) / ( 1 - t `1 ) ; U2 . 1 = U2 /. 1 .= ( U2 /. 1 ) .= ( ( B * A ) + ( B * A ) ) . 1 .= ( B * A ) . 1 .= ( B * A ) . 1 .= ( B * A ) . 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( ( - O ) * ( i , j ) ) = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M ^ \square & ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is \cup ( A * B ) & ( f is unital implies f is unital ) ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = 0. TOP-REAL 2 ; reconsider t = t as Element of ( Z , X ) * ; C \/ P c= [#] ( ( G | [#] ( ( ( G | A ) \ A ) ) \ A ) ; f " V in ( for X being Subset of [ X , the carrier of S ] ) /\ D ( ) ; x in [#] ( ( the carrier of X ) /\ A ) /\ ( the carrier of ( X | A ) ) ; g . x <= h1 . x & h . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , y , z } \/ { xy , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = Line ( M , i , a * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M1 is being_line and M2 is being_line and M1 is being_line and M2 is being_line ; reconsider a = f0 . i0 -' 1 as Element of K ( ) ; len B2 = Sum Len ( ( F1 ^ F2 ) ^ <* F1 *> ) .= len F1 + len F2 .= len F2 + len <* F2 *> ; len ( ( the _ of K ) * ( i , j ) ) = n & ( ( the _ of K ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , - ( f + g ) ) = dom ( f + g ) ; ( the superior of seq ) . n = upper_bound Y1 & ( the \upharpoonright of seq ) . n = upper_bound Y1 + upper_bound Y2 ; dom ( p1 ^ p2 ) = dom ( ( f ^ ) | ( dom p2 + 1 ) ) .= dom ( f ^ ) .= dom ( f ^ ) ; M . [ 1 , y ] = 1 / ( 1 - M ) * v1 .= ( 1 - M ) * v1 .= ( 1 - M ) * v1 ; assume that W is non trivial and W .vertices() c= the \frac of G2 , { v } } and W c= the \frac { v } , G ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) & C6 * ( i1 , i2 ) = G2 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f"\/" f"\/" b <= b - 1 - ( ( q `1 ) / |. q .| - sn ) = 1 - ( ( q `1 ) / |. q .| ) ; ( LSeg ( c , m ) \/ [: l , k :] ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in LSeg ( x , p ) and p in L~ f and x = f /. p ; Indices ( X @ ) = [: Seg n , Seg n :] & dom ( X @ ) = Seg n ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & ( Partial_Sums F ) . m is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D ( ) ; consider g being Function such that g = F . t and Q [ t , g . t ] ; p in LSeg ( ( N-min L~ Cage ( C , n ) ) , ( NW-corner L~ Cage ( C , n ) ) ) ; set R8 = R ^ 1 \ ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , db ) .= I . ( da + k ) ; seq . m <= ( ( the Sorts of seq ) . m ) . ( ( seq ^\ k ) . n ) ; a + b = ( a ` *' ) *' ( b ` *' ) .= ( a ` *' ) *' ( b ` *' ) .= ( a ` *' ) *' ( b ` *' ) ; id ( X /\ Y ) = id ( X /\ Y ) /\ id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ m /\ m ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable set of R such that card A = ( R * A ) and for x being set st x in A holds x in A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & not p2 in rng <* p1 *> ; len s1 - 1 > 0 & len s2 - 1 > 0 & len s1 - 1 > 0 ; ( ( N-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ) `2 = ( N-min L~ Cage ( C , n ) ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` ` = f . ( a1 ` ` ` ) .= f . ( a1 ` ` ) .= f . ( a1 ` ) .= ( f | ( a1 ` ) ) ` ; ( seq ^\ k ) . n in ]. x0 - r , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 - r , x0 + r .[ ; gg . seq = g . ( ( seq . 0 ) | G . ( seq . n ) ) .= g . ( seq . n ) ; the InternalRel of S is If & ( the InternalRel of S ) \/ ( the InternalRel of S ) is If & the InternalRel of S is thesis deffunc F ( Ordinal , Ordinal ) = phi . ( $1 , $2 ) ; F . ( s1 . a1 ) = F . ( s2 . a1 ) .= F . ( s2 . a1 ) ; x `1 = A . ( o . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( ( Cl P1 ) \/ ( Cl P1 ) ) ; FinMeetCl ( ( the topology of S ) \/ ( the topology of T ) ) c= the topology of T ; synonym o is " means : Def11 : o <> \ast & o <> * & o <> * ; assume that X = Y + 1 and card X = card Y and Y <> {} and X <> {} ; the Lin of s <= 1 + ( the Lin of s ) . ( len s ) & ( the Lin of s ) . ( len s ) = ( the Lin of s ) . ( len s ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // b1 , c1 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 3 = 0 ; EE in S1 & not EE in SE & not EE in { NE } ; set J = ( l , u ) \mathop { I } ; set A1 = qua non empty set , p = [ <* A1 , cin *> , '&' ] , A2 = [ <* A1 , cin *> , '&' ] ; set c9 = [ <* c9 , cin *> , '&' ] , A2 = [ <* c , d *> , '&' = [ <* d , c *> , '&' ] , \lbrack c , d *> , '&' = [ <* c , d *> , '&' ] ; x * z * x * x " in x * ( z * N ) * ( x * N ) " ; for x being element st x in dom f holds f . x = f3 . x & f . x = g2 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min ( C ) , W-min ( C ) , W-min ( C ) , W-min ( C ) , W-min ( C ) ; set f-17 = f @ "/\" @ g @ ; attr S1 is convergent & S2 is convergent means : Def21 : for n holds ( S1 - S2 ) . n = ( S1 - S2 ) . n ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + ( 0 qua Ordinal ) .= a ; cluster be such that for { reflexive , transitive } -symmetric RelStr holds the InternalRel of ( the InternalRel of C ) -symmetric is reflexive consider d being element such that R reduces b , d and R reduces c , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) \/ dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + ( a + y ) ; len ( l \lbrack ( a , A ) |^ 0 ) = len l .= len l ; t4 \/ {} is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng t4 ) * * , ( {} , rng t4 ) * ) -valued FinSequence ; t = <* F . t *> ^ ( C . p ) ^ ( C . q ) .= ( C . p ) ^ ( C . q ) ; set pp = W-min L~ Cage ( C , n ) , p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-min L~ Cage ( C , n ) ; ( k -' ( i + 1 ) ) = ( k - i ) + ( k - 1 ) ; consider u being Element of L such that u = u ` ` and u in D and u in D ` ; len ( ( width ( ( ( ( ( B ) ) |-> a ) ) ^ <* a *> ) ^ <* b *> ) ) = width ( ( ( A * B ) ^ <* a *> ) ^ <* b *> ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) ; set H2 = the carrier of H2 , H1 = the carrier of H2 , H2 = the carrier of H2 ; set H1 = the carrier of H1 , H2 = the carrier of H2 , H2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) ; dom ( ( - 1 ) (#) ( ( id Z ) * ( ( id Z ) * ( ( id Z ) * ( id Z ) * ( id Z ) ) ) ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* A1 , cin *> , '&' ] , b5 = [ <* A1 , cin *> , '&' ] , b5 = [ <* A1 , cin *> , '&' ] ; Line ( Segm ( M , P , Q ) , x ) = L * Sgm Q .= ( Sgm Q ) . x ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( ( the Sorts of A ) * ( the_arity_of o ) ) . n = ( the Sorts of A ) . ( the_arity_of o ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , REAL n , x be Point of S ; consider y being Point of X such that a = y and ||. y - x .|| <= r ; set x3 = t2 . DataLoc ( s2 . SBP , 2 ) , x2 = s2 . DataLoc ( s2 . SBP , 2 ) , x3 = s2 . DataLoc ( s2 . SBP , 2 ) , x4 = s2 . DataLoc ( s2 . SBP , 2 ) ; set pp = stop I , p1 = P +* stop I , p2 = Comput ( P2 , s2 , 1 ) , p2 = P +* stop I ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 and b in W2 ; { A , B , C , D } = { A , B , C , D , E , F , J , M , N , N , F , M , N , N , F , M , N , N , F , M , N , N , F , M , N , N , F , M ; let A , B , C , D , E , F , J , M , N , N , F , J , M , N , N , F , M , N , N , N , F , J , M , N , N , N , F , M , N , N , F , M , N , N , |. p2 .| ^2 - ( ( p2 `2 ) ) ^2 >= 0 & ( ( p2 `2 ) ) ^2 / ( 1 + ( p2 `1 ) ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( l1 + 1 ) + ( mm - 1 ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) .= c * ( ( c * w2 ) + ( c * w2 ) ) ; the TopStruct of L = TopSpaceMetr ( the Scott Scott functor of L ) & the TopStruct of L = TopSpaceMetr ( the topology of L ) ; consider y being element such that y in dom H1 and x = H1 . y and y in H1 . x ; fg \ { n } = ( Free All ( v1 , H ) ) \/ ( Free ( H1 , H ) ) ; for Y being Subset of X st Y is summable & Y is summable holds Y is \overline Y is \overline of Y 2 * n in { N : 2 * Partial_Sums ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the _ of K ) = len s & len ( the _ of K ) = len s & len ( the _ of K ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & exp_R * f is_differentiable_in x & f . x > 0 rng ( ( h2 * f2 ) | X ) c= the carrier of ( ( h1 * f2 ) | X ) .= the carrier of ( ( h1 * f2 ) | X ) ; j + ( - len f ) <= len f + ( len f - 2 ) - ( len f - 2 ) ; reconsider R1 = R * I as PartFunc of REAL , \langle REAL-NS n *> , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( ( a + b ) / 2 ) .= s1 . ( ( a + b ) / 2 ) .= s1 . ( ( a + b ) / 2 ) .= s1 . x ; ( power F_Complex ) . ( z , n ) = 1 .= ( x |^ n ) * ( x |^ n ) .= ( x |^ n ) * ( x |^ n ) ; t at ( C , s ) = f . ( ( the connectives of S ) . o ) .= f . ( ( the connectives of S ) . o ) ; ( support f + g ) c= ( support f \/ { C } ) \/ ( { C } \/ { D } ) ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 , x2 is Point of [: X , Y :] : x1 in X & x2 in Y } is Subset of [: X , Y :] ; h = ( i , j ) |-- ( id B ) . i .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in A & x1 in A ; set X = ( ( |. d ( q , O1 ) ) . ( 1 + 4 ) ) `1 , Y = ( ( d ( q , O1 ) ) . 2 ) `1 , Z = { [ q , p ] } ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x1 = lim ( f /* s1 ) & lim s1 = lim ( f /* s1 ) ; the lattice of T = the lattice of the lattice of Y & the carrier of T = the carrier of X & the carrier of T = the carrier of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = TRUE ; 2 = len ( ( q ^ <* r1 *> ) + ( len <* r1 *> ) ) + len ( <* r1 *> ) .= len ( ( q ^ <* r1 *> ) ^ <* r1 *> ) ; ( 1 / a ) * ( sec * f1 ) - id Z is_differentiable_on Z ; set K1 = upper ( ( lim ( H , A ) || H ) , ( lim ( H , A ) `| H ) ) ; assume that e in { ( ( w1 + w2 ) - ( w1 + w2 ) ) / 2 : w1 in F & w2 in G & w2 in G } ; reconsider d7 = dom a `1 , d6 = dom F , d6 = dom F , d6 = dom G as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j ) \/ LSeg ( f , j + q .. f -' 1 ) ; assume X in { T . ( N2 , K ) : h . ( N2 , K ) = N2 & h . ( N2 , K ) = K } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f1 ; dom S29 = dom S /\ Seg n .= dom S /\ Seg n .= dom ( L | n ) .= dom ( L | n ) .= dom ( L | n ) .= dom ( L | n ) ; x in ( H |^ a ) implies ex g st x = g |^ a & g in H |^ b a * ( ( n , 1 ) --> ( a , 1 ) ) = a ` - ( 0 * n ) .= a ` - ( 0 * n ) .= a ` ; D2 . j in { r : lower_bound A <= r & r <= D1 . i & D1 . i <= r } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ c ^ @ g ; dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X ; 1 = ( p * p ) * p .= p * ( p * ( 1 , 1 ) ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + len <* y *> .= len f + 1 .= len f + 1 ; dom ( F | [: N1 , S :] ) = dom ( F | [: N1 , S :] ) .= dom ( F | [: N1 , S :] ) .= dom ( F | [: N1 , S :] ) ; dom ( f . t * I . t ) = dom ( ( f . t ) * g . t ) ; assume a in ( "\/" ( ( T |^ \alpha ) , F ) ) .: D ) .: D & ( the carrier of S ) .: D in the carrier of S ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b & f * f = id b and f is one-to-one ; ( ( cos * cos ) | [. 2 * PI , 0 + 1 .] ) | [. 2 , 0 + 1 .] is increasing ; Index ( p , co ) <= len LS - Index ( Gij , LS ) + 1 - Index ( Gij , LS ) - 1 ; t1 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 ; ( ( Frege ( H ) ) . h ) . h <= ( ( Frege ( H ) ) . h ) . ( j + 1 ) .= ( ( Frege ( H ) ) . j ) . ( j + 1 ) ; then P [ f . i0 , f . i0 ] means F ( f . i0 , f . i0 ) < j & F ( f . i0 , f . i0 ) < j ; Q [ ( [ D . ( [ D . x , 1 ] ) , F . [ D . ( D . x , 1 ] ) ] ) ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is for of G . i , G . i ; the Sorts of A2 = ( the carrier of S2 ) --> TRUE .= ( the carrier of S2 ) --> TRUE .= ( the carrier of S2 ) --> TRUE .= ( the carrier of S2 ) --> TRUE ; consider s being Function such that s is one-to-one & dom s = NAT & rng s c= F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b ) + dist ( a , b ) ; ( Lower_Seq ( C , n ) ) /. len ( Cage ( C , n ) ) = W /. len ( Cage ( C , n ) ) ; q `2 <= ( ( UMP L~ Cage ( C , 1 ) ) * ( ( UMP L~ Cage ( C , 1 ) ) `1 ) ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= Ir and A = ]. a , I1 .[ and a in A and b in B ; consider a , b being complex number such that z = a & y = b & z + y = a + b ; set X = { b |^ n where b is Element of NAT : b in n & b in n } , Y = { b } ; ( ( x * y * z \ x ) \ z ) \ ( x * y * z \ x ) = 0. X ; set xy = [ <* xy , \mathopen { x , y } , f1 ] , yz = [ <* y , z *> , f2 ] , zx = [ <* z , x *> , f3 = [ <* y , z *> , f3 ] , f4 = [ <* z , x *> , f3 = [ <* y , z *> , f3 ] ; lk /. len ( lk ) = ( lk /. len ( lk ) ) .= ( ( k + 1 ) + 1 ) * ( ( k + 1 ) + 1 ) ; ( ( q `2 ) / |. q .| - sn ) / ( 1 + sn ) = 1 ; ( ( p `2 ) - ( |. p .| ) ) ^2 - ( ( p `2 ) ) ^2 < 1 - ( ( p `2 ) ) ^2 ; ( ( ( S \/ Y ) \/ { x } ) \/ { x } ) `2 = ( ( S \/ Y ) \/ { x } ) `2 ; ( s1 - s1 ) . k = s1 . k - s1 . k .= s1 . k - s1 . k .= s1 . k - s1 . k .= ( s1 - s1 ) . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of ( the carrier of X ) & the carrier of X = the carrier of ( X ) ; ex p3 st p3 = p4 & |. p3 - |[ a , b ]| .| = r & |. p3 - |[ a , b ]| .| = r ; set [: h , g :] = [: A , B :] , [: A , B :] , [: A , B :] :] ; R / ( 0 * n ) = \mathop { I*> ( X , X ) .= R / ( n * n ) .= R / ( n * n ) ; ( Partial_Sums ( ( curry ( F ) ) . n ) ) . ( ( Partial_Sums ( F ) ) . n ) is nonnegative & ( Partial_Sums ( ( F ) ) . n ) . ( ( Partial_Sums ( F ) ) . m ) is nonnegative ; f2 = C7 . ( ( E8 . ( V , K , len V ) ) * ( V , len V ) ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p11 ) \/ LSeg ( p1 , p10 ) /\ LSeg ( p1 , p10 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & 11 in ( the carrier' of S ) . 12 ; set phi = ( l1 , l2 ) \mathop { l1 } , phi = ( l1 , l2 ) \mathop { l1 } ; synonym p is invertible for p is invertible for ( p , T ) * ( p , T ) = 1 / p * ( p , T ) ; ( Y1 `2 ) ^2 = - 1 & ( 0. TOP-REAL 2 ) = ( - 1 ) * ( ( - 1 ) * ( 1 + ( sn - sn ) ) ) & ( - 1 ) * ( 1 + sn ) = ( - 1 ) * ( ( - 1 ) * ( 1 + sn ) ) ; defpred X [ Nat , set , set , set , set , set , set , set , set , set , $2 = $2 $2 $2 $2 = $2 & $2 = $2 ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g and g in dom f ; Det ( I ^ ( m -' n ) , ( m -' n ) * ( m -' n ) ) = ( 1_ K ) * ( m -' n ) .= ( 1_ K ) * ( m -' n ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / 2 * a < 0 ; CC . d = CC . ( dC . d ) mod CC . ( dC . d ) .= CC . ( CC . d ) mod C . ( CC . d ) ; attr X1 is dense dense means : DefLet : X1 is dense dense dense & X2 is dense dense dense SubSpace of X ; deffunc F6 ( Element of E , Element of I , Element of E ) = $1 * $2 + ( $1 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . ( i + 1 ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y \ 0. X .= 0. X ; for X being non empty set for X being Subset-Family of [: X , product <* Y *> :] holds X is Basis of [: X , product <* Y *> :] synonym A , B , C , A , B , C , D , E , F , J , M , N , N , F , M , N , N , N , F , M , N , N , F , J , M , N , N , M , N , N , F , M , N , N , F , J , M , N , N , N , M ; len ( M @ ) = len p & width ( M @ ) = width p & width ( M @ ) = width p & width ( M @ ) = width p ; J = { v where v is Element of K : 0 < v & v < 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + 1 ) = D2 . ( k + 1 - 1 ) .= D2 . ( k + 1 - 1 ) .= D2 . ( k + 1 - 1 ) ; g . r1 = ( 2 * r1 ) * r1 + 1 & dom h = [. 0 , 1 .] & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ w = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ ( { [ 0 , {} , {} ] } \/ { [ 1 , {} , {} ] } ) ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) + n .= ( n + 1 ) ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 1 ) .= ( 5 + 1 ) .= 5 + 1 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( 8 + 1 ) = t . intpos ( 8 + 1 ) ; LSeg ( f /^ ( q -' i + 1 ) , i ) misses LSeg ( f /^ ( q -' i + 1 ) , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or x <= y ; \displaystyle { \int \limits ( C , f ) . x } = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G & rng F misses rng G holds F ^ G is one-to-one ||. R /. ( L . h ) - R /. ( L . h ) .|| < e1 * ( K + 1 ) * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r & q <= p & q <= p } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y ` in Y & x in X & y in Y holds y ` <= x ` ; func |. p : p ^ <* p *> -> variable of A , p ^ <* p *> ) = ( p ^ <* NBI *> ) . 1 ; consider t being Element of S such that x ` , y ` , z , t is_collinear and x , y , t is_collinear and x , y , t is_collinear ; dom x1 = Seg len ( x1 ^ y1 ) & len y1 = len ( x1 ^ y1 ) & len x1 = len ( x1 ^ y1 ) + len ( y1 ^ y2 ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 and y2 <= 1 and y2 <= 1 and y2 <= 1 ; ||. f | X /* s1 .|| = ||. f | X .|| | ( X /\ dom s1 ) .= ||. f /. s1 .|| ; ( the InternalRel of A ) ~ \ ( x ` \ x ` ) = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and for i st i in dom p holds P [ i , j ] ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , [: X , Y :] ; u1 in the carrier of W1 & u2 in the carrier of W2 implies ( ( the carrier of W1 ) + ( the carrier of W2 ) ) = the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b * x + y .= b ; - ( y - x ) = - x + ( - y ) .= - x + ( - y ) .= - x + ( - y ) .= - x + y ; given a being Point of Gs such that for x being Point of Gs holds a , x , a , x , y is_collinear ; fY. = [ [ dom @ ( @ ( @ ( @ f2 ) ) , cod ( @ f2 ) ) , cod ( @ f2 ) ] , fY. = [ @ ( @ f2 ) , @ ( @ f2 ) ] ; for k , n being Nat st k <> 0 & k < n & k < n holds ( k |^ n ) divides ( k |^ n ) for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = Lt . ( F . k ) & F . k in dom ( Lt . k ) & F . k in dom ( Lt . k ) ; set i2 = AddTo ( a , i , - n ) , n = - ( n + 1 ) ; attr B is max means : Def5 : for S being Subsqrt of ( B , S9 ) holds S is ( B , S9 ) `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D & a in D } ; |( \square , exp_R . ( q9 - q ) * |( \square , q )| >= |( \square , q )| * |( \square , q )| ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= ( - f ) . ( upper_bound A ) ; ( G * ( len G , k ) ) `1 = ( G * ( len G , k ) ) `1 .= ( G * ( len G , k ) ) `1 .= ( G * ( len G , k ) ) `1 ; ( Proj ( i , n ) ) . ( Lx ) = <* ( proj ( i , n ) ) . ( Lx ) *> .= <* ( proj ( i , n ) ) . ( Lx ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) ) . x0 ) .= ( ( reproj ( i , x ) ) . x0 ) * diff ( f1 , x ) ; pred ( ( - tan ) `| Z ) . x <> 0 & ( ( tan ) `| Z ) . x = ( tan . x ) ^2 ; ex t being SortSymbol of S st t = s & h1 . t = ( h2 . t ) . x & t . x = ( h2 . t ) . x ; defpred C [ Nat ] means P8 . $1 is empty & P8 is as as S -connected Subset of ( TOP-REAL 2 ) | A ; consider y being element such that y in dom p9 and q9 . i = p9 . y and y in dom p9 and p = p9 . i ; reconsider L = product ( { x1 } +* ( index ( B ) , l ) ) as Subset of product A ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & ( id c ) . ( id c ) = id d Comput ( f , n , p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f ` - { p } = ( f | ( n , L ) ) *' - ( f | ( n , L ) ) .= ( f - ( - ( - ( g | ( n , L ) ) ) ) ) *' - ( ( - ( g | ( n , L ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s and m < m + s ; f1 . ( |[ ( 8 - r ) , ( 8 - r ) ]| ) in f1 .: ( W1 /\ W2 ) & f2 . ( |[ 8 - r , ( 8 - r ) ]| ) in f1 .: ( W2 /\ W3 ) ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a * ( x | ( n , L ) ) .= a * ( x | ( n , L ) ) .= a * ( x | ( n , L ) ) ; z = DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) ; set H = { Intersect S ( S ) where S is Subset-Family of X : S c= G ( S ) & S c= G ( S ) & S c= G ( S ) } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S29 ^ <* d *> and S `2 = d ^ <* e *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 ) / |. q .| - sn ) / ( 1 + sn ) ; ( 0. ( V , m ) ) is Linear_Combination of A & Sum ( ( 0. ( V , m ) ) * ( 0. ( V , m ) ) = 0. ( V , m ) ) ; let k1 , k2 , k1 , k2 , k2 , x4 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 be Element of NAT ; consider j being element such that j in dom a and j in g " { k } and x = a . j and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = 1- p1 * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 and a <= 1 ; assume that a <= c and c <= d and [ a , b ] c= dom f and f . [ a , b ] c= dom g ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; A-1 in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * ( b2 /. y ) .= L * ( ( F * b1 ) . y ) .= ( F * b2 ) . y .= ( ( F * b2 ) . y ) * ( ( F * b2 ) . y ) ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - ( s . y ) .| ; ( log ( 2 , k + 1 ) ) / 2 >= ( log ( 2 , k + 1 ) ) / 2 ; then that not p => q in S and not x in the still of p and not x in S and not p in S ; dom ( the \subseteq of ( the consider of r\in ) ) misses dom ( the \subseteq of ( the consider of r\in ) ) & dom ( the --> ( r\in ) ) = dom ( the --> ( r-10 ) ) ; synonym f is extended real means : Def21 : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f .: ( f .: X ) = f . union X ; i = len p1 .= len p1 + len <* x *> .= len p1 + len <* x *> .= len p1 + len <* x *> .= len <* x *> + len <* x *> .= len <* x *> + len <* x *> .= len <* x *> + len <* x *> .= len <* x *> + len <* x *> ; ( l , 3 ) `1 = ( g . ( 1 , 3 ) ) `1 + ( g . ( 1 , 3 ) ) `1 .= ( g . ( 1 , 3 ) ) `1 + ( g . ( 1 , 3 ) ) `1 ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = ( halt SCM+FSA ) . IC SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( IC SCM+FSA ) .= ( IC SCM+FSA ) ; assume for n be Nat holds ||. seq . n - seq . n .|| <= ( ||. seq . n - seq . n .|| ) & ( for n be Nat holds ||. seq . n - seq . n .|| < p ) ; sin . st = sin . r2 * cos ( - 1 ) * cos ( - 1 ) .= sin ( ( - 1 ) * cos ( - 1 ) ) .= 0 ; set q = |[ g1 . t1 , g2 . t2 ]| , g1 = |[ g2 . t2 , g2 = |[ g2 . t2 , g2 . t2 ]| , g2 = |[ g2 . t2 , g2 . t2 ]| , g1 = |[ g2 . t2 , g2 = |[ g2 . t2 ]| , g2 = |[ g2 . t2 , g2 = |[ g2 . t2 , g2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in G\overline ( F . n ) and G is : contradiction ; consider G such that F = G and ex G1 , G2 st G1 in SX & G2 in SX & G = ( X \/ Y ) & G2 in SX ; the root of [ x , s ] in ( ( the Sorts of Free ( C , X ) ) * ( the Arity of S ) ) . s & ( ( the Sorts of Free ( C , X ) ) . ( o , s ) ) . s = ( ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( exp_R + ( exp_R + f ) ) ) /\ dom ( exp_R * ( exp_R + f ) ) ; for k being Element of NAT holds rV . k = ( ( Im ( f , S ) ) . k ) * ( ( Im ( f , S ) ) . k ) assume that - 1 < n and ( q `2 / |. q .| - sn ) < 0 and ( q `2 / |. q .| - sn ) < 0 and ( q `2 / |. q .| - sn ) < 0 ; assume that f is continuous and a < b and a < b and c < d and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that s1 = Comput ( P1 , s1 , 1 ) and r <= q and r <= q and q <= r ; LE f /. ( i + 1 ) , f /. j , L~ f & LE f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } in the carrier of K and x in { y } ; assume that f +* ( i1 , \xi ) . ( i1 , j1 ) in ( proj ( F , i2 ) ) . ( i1 , j1 ) and f . ( i1 , j1 ) in ( proj ( F , i2 ) ) . ( i1 , j1 ) ; rng ( ( ( Flow M ) | ( the carrier of M ) ) | ( the carrier of M ) ) c= the carrier of M | ( the carrier of M ) ; assume z in { ( the carrier of G ) \times { t } where t is Element of T : t in X & t in Y } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - g .|| < g / 2 ; consider t being VECTOR of product G such that mt = ||. Dt . t .|| and ||. t . t - x .|| <= 1 / 2 ; assume that the carrier of degree v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p ^ <* 1 *> in dom p ; consider a being Element of the topology of [: X1 , X2 :] , A being Element of the topology of X such that a on A and A c= { a } and a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 / ( ( - x ) |^ k ) " ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . i in D defpred R [ element , element ] means ex x , y st [ x , y ] = $1 & $2 = [ x , y ] ; L~ f2 = union { LSeg ( p10 , p1 ) , LSeg ( p10 , p2 ) } .= LSeg ( p1 , p2 ) \/ LSeg ( p10 , p2 ) ; i -' len h11 + 2 -' 1 + 2 - 1 < i -' len h11 + 2 - 1 + 1 + 1 - 1 + 2 - 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( ns1 . n ) - ( 1 - n ) .| ; for r , s1 , s2 , s1 , s2 , s3 , s3 , s3 , s1 , s2 , s3 , s3 , s1 , s2 , s3 , s3 , s1 , s2 , s3 , s3 , s3 , s1 , s2 , s3 , s3 , s3 , s1 , s3 , s3 , s3 , s1 , s2 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s1 , s3 , s3 , s3 , s1 assume v in { G where G is Subset of T2 : G in ( B \/ C ) & G in ( B \/ C ) & G in ( B \/ C ) & G in ( B \/ C ) & G in ( B \/ C ) & G in ( B \/ C ) ; let g be Element of A , X be Element of INT , f | X , g | X , g | X , f | X be Function of X , REAL n , g | X , 0 ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g , k ) ) . ( y , z ) ; consider q1 being sequence of CP such that for n holds P [ n , q1 . n , q1 . n ] and for n holds q1 . n = q2 . n ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ B , O = O /\ ( A /\ B ) , Z = O /\ ( A /\ B ) as Subset of T ; consider j being Element of NAT such that x = the the H of n and j in dom ( the _ of n ) and 1 <= j and j <= n and n <= len ( ( the _ of n ) * ( j , n ) ) ; consider x such that z = x and card ( x . O ) in card ( x . O ) and x in L1 . O and x in L1 . O ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( _ T4 ( k , n2 ) ) . 0 ) .= C . ( ( _ T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) . x ) = dom ( X --> f ) ; ( ( N-min L~ Cage ( C , n ) ) `2 <= ( ( N-min L~ Cage ( C , n ) ) `2 ) / 2 & ( ( N-min L~ Cage ( C , n ) ) `2 <= ( ( N-min L~ Cage ( C , n ) ) `2 ) / 2 ; synonym x , y , z means : Def1 : x = y or ex l being Nat st { x , y } c= l & ex x being Subset of S st { x , y } c= l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that ( for k , x , y being Element of L st a = x & b = y & x = y holds x << y ) and ( for a , b being Element of L st a = b & b = y holds a << b ) ; ( 1 / 2 * ( ( $1 + 1 ) * ( ( ( $1 + 1 ) * ( ( $1 + 1 ) / 2 ) ) ) ) * ( ( ( $1 + 1 ) * ( ( ( $1 + 1 ) / 2 ) * ( ( $1 + 1 ) / 2 ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( ( the partial of A1 ) * ( $1 , 1 ) ) . ( $1 , 1 ) = A1 . ( $1 , 1 ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 2 ) .= IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= ( f . g1 ) * ( f . g2 ) .= ( f . g1 ) * ( f . g2 ) .= ( f . g2 ) * ( f . g2 ) .= ( f . g2 ) * ( f . g2 ) .= ( f . g2 ) * ( f . g2 ) ; ( M * ( F . n ) ) . n = M . ( ( F . n ) . x ) .= M . ( ( ( ( ( M * ( F . n ) ) ) . x ) ) .= M . ( ( ( M * ( F . n ) ) . x ) ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L2 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , z , u , v , w , y , z , w , y , z , w , y , z , w , y , w , z , w , y , w , x , y , z , w , w , y , w , w , x , y ; ( the partial of product s ) . n <= ( ( the partial of s ) . n ) * ( ( the partial of s ) . n ) ; pred - 1 <= r & r <= 1 & ( - 1 ) * ( ( arccot ) / ( 1 + r ) ) = - ( ( - 1 ) / ( 1 + r ) ) ; s in { p ^ <* n *> where p is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 & p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 , x4 ]| . 2 - |[ x1 , x2 , x3 , x4 ]| . 2 = x2 - x3 - x3 ; attr for m being Nat holds F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( such that ( for z be Element of X holds \mathopen { \Vert ( G , z ) - ( G . x ) ) .|| = len ( ( G . x ) - ( G . y ) ) + ( ( G . y ) - ( G . x ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 and u in W2 /\ W3 ; given F being FinSequence of NAT such that F = x & dom F = n & rng F c= { 0 , 1 } and for k being Nat st k in n holds F . k = G ( k ) ; 0 = ( 1 * exp_R ) * uu1 iff 1 = ( ( 1 - ( 1 - ( 1 - ( 1 - ( 1 / exp_R ) ) ) ) * ( 1 - ( 1 - ( 1 / exp_R ) ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) . n .| < e ; cluster -> \mathclose Boolean for non empty RelStr , ( ( len ( <* f *> ) ) | ( 2 , 1 ) ) , ( ( <* f *> ) | ( 2 , 1 ) ) | ( 2 , 3 ) ) is Boolean "/\" ( BB , {} ) = Top ( B ) .= "/\" ( B , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( ( f `| X ) `| A ) holds ( ( f `| X ) `| A ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * |[ b , c ]| - ( 2 * |[ b , c ]| ) ) = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - 1 ) * ( ( - 1 ) * ( 1 , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n being Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M ) ) | ( n + 1 ) ) . ( len q1 + 1 ) consider y , z being element such that y in the carrier of A & z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 & H1 , H2 // H2 , H1 & H2 = H2 and H1 , H2 // H2 .] ; for S , T being non empty RelStr , d being Function of T , S st T is complete & d is complete holds d is monotone & d is monotone [ a + 0 , i + b2 , b2 + b1 , b2 + b2 ] in ( the carrier of V ) \/ ( the carrier of V ) & [ a , b2 ] in the carrier of V ; reconsider mm = max ( len F1 . ( len F1 ) , len ( p . ( n + 1 ) * <* x *> ) ) as Element of NAT ; I <= width GoB ( ( GoB f ) * ( len GoB f , j ) , ( GoB f ) * ( len GoB f , j ) ) & ( GoB f ) * ( len GoB f , j ) = ( GoB f ) * ( 1 , j ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def21 : A1 is linearly-independent & A2 is linearly-independent & ( for x st x in A1 holds not x in A1 holds x in A2 ) & ( not x in A1 & x in A2 ) ; func A -carrier of C -> set means : Def7 : union { A . s where s is Element of R : s in A & s in C & s in C } ; dom ( Line ( v , i + 1 ) ^ ^ ( ( Subset ( p , m ) ) (#) ( 1. ( K , m ) ) ) ) = dom ( F ^ ) .= dom ( F ^ ) .= dom ( F ^ ) ; cluster [ ( x `1 ) , ( x `2 ) ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) ) ; E , All ( x2 , All ( x2 , x2 ) '&' All ( x1 , x2 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) '&' All ( x2 , x3 ) ) = E ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) + ( h . m ) - ( h . m ) ; cell ( G , ( [: X , Y :] -' 1 , t + 1 ) , ( Y + 1 ) \ ( { t } ) meets UBD L~ f ; IC Comput ( P2 , s2 , 2 ) = IC Comput ( P2 , s2 , 2 ) .= IC Comput ( P2 , s2 , 2 ) .= IC Comput ( P2 , s2 , 2 ) .= ( card I + 2 ) .= ( card I + 2 ) .= card I + 2 .= card I + 2 ; sqrt ( 1 - ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom g and g . x0 = a . ( k + 1 ) and x0 in dom g and g . ( k + 1 ) = a . ( k + 1 ) ; dom ( r1 (#) ( chi ( A , A ) ) | A ) = dom ( ( r1 (#) ( chi ( A , A ) ) ) | A ) .= dom ( ( r1 (#) ( A . m ) ) | A ) .= dom ( ( r1 (#) ( A . m ) ) | A ) .= dom ( ( r1 (#) ( A . m ) ) ) .= dom ( ( r1 (#) ( A . m ) ) ) ; d-7 . [ y , z ] = ( ( y , z ) `2 ) * ( ( y , z ) `2 ) - ( ( y , z ) `2 ) * ( ( y , z ) `2 ) ; pred for i being Nat holds C . i = A . i /\ B . i & C . i c= C . i /\ C . i ; assume that x0 in dom f and f is continuous and f is continuous & for x st x in dom f holds ||. f /. x - f /. x0 .|| < r and f /. x <> 0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K & P = { p } holds A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| func Sum ( a ) -> Ordinal means : Def6 : a in it & for a being Ordinal st a in it holds a in it iff a in b & a is Ordinal ; [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of B ) & [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of B ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the carrier of S2 ; ||. ( vseq . n ) - ( vseq . m ) - ( vseq . m ) .|| * ||. x - y .|| < ( e / ( ||. x - y .|| ) * ||. x - y .|| ) * ||. x - y .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z & z in Z & z in Z } holds z in x ; sup compactbelow ( [ s , t ] ) = [ sup { [ s , t ] where s , t is Element of L : s in compactbelow ( [ s , t ] ) & s in compactbelow ( [ s , t ] ) } ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ij and [ f . i , f . j ] in Ij and [ f . i , f . j ] in Ij ; for D being non empty set , p , q being FinSequence of D st p c= q & q in D holds ex p being FinSequence of D st p ^ q = q ^ p & p ^ q in D consider e1 being Element of the carrier of X such that c9 , a9 // a9 , c9 and not ( a9 , c9 // c9 , a9 & not ( a9 , c9 // c9 , a9 & a9 , c9 // c9 , a9 & not ( a9 , c9 // c9 , a9 ) & ( a9 , c9 // c9 , a9 ) & ( c9 , c9 // a9 , c9 ) ) ; set U2 = I \! \mathop { \rm \hbox { - } F } , E = I \! \mathop { \rm \hbox { - } F } , N = I \! \mathop { \rm \hbox { - } F } , N = I \! \mathop { \rm \hbox { - } F } , E = I \! \mathop { \rm \hbox { - } F } , N = I \! \mathop { - } N ; |. q2 .| ^2 = ( ( ( q `2 ) ) ^2 + ( q `2 ) ^2 ) + ( ( q `2 ) ) ^2 + ( ( q `2 ) ) ^2 .= ( |. q .| ) ^2 + ( |. q .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x "\/" y dom ( ( the charact of U1 ) * ( the charact of U2 ) ) = dom ( ( the charact of U1 ) * ( the charact of U2 ) ) & dom ( ( the charact of U2 ) * ( the charact of U2 ) ) = dom ( ( the charact of U2 ) * ( the charact of U2 ) ) ; dom ( h | X ) = dom h /\ X .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) for N1 , N2 , N1 , N1 , N2 being Element of [: G , F :] holds dom ( h . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . 1 j . 1 ) ) ) ) ) ) ) ) ) ) ) ) , ( ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( N1 . ( ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i .= ( mod ( v , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or ( q `2 ) ^2 / ( |. q .| ) ^2 < - ( q `2 ) ^2 & ( q `2 ) ^2 / ( |. q .| ) ^2 <= - ( q `2 ) ^2 ; attr r1 = f9 & r2 = f9 & for x , y being Element of REAL st x in dom f9 & y in dom ( f9 * ( x , y ) ) holds r1 * ( x , y ) = r2 * ( x , y ) ; vseq . m is bounded Function of X , Y & x9 . m = ( vseq . m ) * ( vseq . m ) & x9 . m = ( vseq . m ) * ( vseq . m ) ; pred a <> b & b <> c & c <> 0 & angle ( b , a , c ) = PI & angle ( b , c , a ) = PI & angle ( b , c , a ) = PI ; consider i , j being Nat , r being Real such that p1 = [ i , r ] & p2 = [ j , s ] and r < j and s < j and j < i ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + ( 2 * |( p , q )| ) ^2 = |. p .| ^2 + ( |. p - q .| ) ^2 ; consider p1 , q1 being Element of ( X * ) such that y = p1 ^ q1 and q1 in ( X * ) and ( p1 ^ q1 ) ^ q1 in ( X * q1 ) and ( p1 ^ q1 ) ^ q1 in ( X * q1 ) ; ( the addF of A ) . ( r1 , r2 , s1 , s2 , s1 ) = ( ( s2 - s1 ) * ( s1 , s2 ) ) / ( s1 , s2 ) .= ( s2 - s1 ) / ( s1 , s2 ) ; ( for w being Element of A st w = lower_bound ( proj2 .: ( A /\ holds w in A ) ) & ( proj2 .: ( A /\ ( A /\ { w } ) ) = lower_bound ( proj2 .: ( A /\ { w } ) ) ) ) & ( proj2 .: ( A /\ { w } ) = lower_bound ( proj2 .: ( A /\ { w } ) ) ) s , ( ( H / ( H1 , H2 ) ) |= H1 '&' H2 iff s |= All ( H1 , H2 ) ) & s |= All ( H2 , H1 ) & s |= All ( H2 , H2 ) len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z in x & z in { x } holds z >= x ; LSeg ( UMP D , |[ ( W-bound D ) / 2 , ( W-bound D ) / 2 + ( W-bound D ) / 2 ]| ) /\ D = { UMP D } ; lim ( ( ( f `| N ) / g ) `| N ) = ( ( f `| N ) / g `| N ) . b .= ( ( f `| N ) / g `| N ) . b .= ( ( f `| N ) / g `| N ) . b ; P [ i , ( pr1 ( f ) ) . i , ( pr1 ( f ) ) . ( i + 1 ) , ( pr1 ( f ) ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /. m ) .|| < r for X being set , P being a_partition of X , x , y , z being set st x in X & y in P & z in P & x in P & y in P & z in P & x = y holds x = z Z c= dom ( ( ( id Z ) ^ ) (#) ( ( id Z ) ^ ) \ ( ( id Z ) ^ ) " { 0 } ) \ dom ( ( id Z ) ^ ) " { 0 } ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & j < i & i = 1 + j & j = 1 + j & i = 1 + j & j = 1 + j ; for u , v being VECTOR of V st 0 < r & u < 1 & v in \cal N holds r * u + ( 1 - r ) * v in \cal N A , Int A , Cl ( A \/ B ) , B , C , D , E , F , J , M , N , N , N , F , M , N , N , F , J , M , N , N , F , M , N , N , F , J , M , N , N , F , M , N , N , F , J , M , N , N , F , M , N , N , F , M , N , N , N , F , M , N , N , N , N , N , N , N , F , N , N , N , N - Sum <* v , u , w *> = - ( v + u + u ) .= - ( v + u ) + ( u + w ) .= - ( v + u ) + ( u + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= ( Exec ( a := b , s ) ) . NAT .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I & for x being element st x in I holds h . x in ( the carrier of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty Subset of S1 , f being Function of S1 , S2 , g being Function of S2 , S2 st f is monotone & g is monotone holds ( cos * f ) * ( D , f ) is directed card X = 2 implies ex x , y st x in X & y in X & not ( ex x , y st x in X & y in X & not ( x in X & y in Y & not ( x in Y ) & x in X ) & not ( x in Y ) & ( ex x st x in X & x in Y ) & not ( x in X ) & x in Y ) ( E-max L~ Cage ( C , n ) ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) in rng Cage ( C , n ) ; for T , T , p , q , r , s being Element of dom T st p in dom T & q in dom T holds ( T -tree ( p , T ) ) . q = T . ( q , s ) [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster -> \llangle ( k -' n ) , ( k -' 4 ) , ( k -' n ) , ( k -' n ) , ( k -' 4 ) , ( k -' n ) + ( k -' 4 ) ) -> set ; dom F " = the carrier of X2 & rng F = the carrier of X1 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = n and the carrier of C = A \/ B and the carrier of V = A \/ B and the carrier of V = A \/ B \/ B ; V is prime implies for X , Y being Element of \langle the topology of T , \subseteq \rangle st X /\ Y c= V & Y c= V holds X c= Y or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] & P [ v1 ] } , Y = { F ( v1 ) : P [ v1 ] } , Z = { F ( v2 ) : P [ v2 ] } , Y = { F ( v2 ) : P [ v2 ] } , Z = { F ( v2 ) : P [ v1 ] } , Z = { F ( v2 ) : P [ v2 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p2 , p3 ) .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p2 , p3 ) .= angle ( p2 , p3 , p3 ) .= angle ( p3 , p3 , p2 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 .= - ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 .= - ( - 1 ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f is continuous one-to-one & f . 0 = p1 & f . 1 = p2 & f . 0 = p2 & f . 1 = p3 & f . 1 = p4 & f . 1 = p4 & f . 0 = p2 & f . 1 = p4 ; attr f is partial differentiable on // SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) means : Def: SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) is continuous ; ex r , s st x = |[ r , s ]| & ( G * ( len G , 1 ) `1 < r & r < s & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is special and 1 <= t and t <= len G and t <= width G and G * ( t , width G ) `2 >= s and s <= G * ( t , 1 ) `2 and G * ( t , 1 ) `2 >= N-bound L~ f ; pred i in dom G means : Def: r * ( f (#) reproj ( G , i ) ) = r * f * reproj ( G , i ) + r * reproj ( G , i ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and ( decomp c ) /. k = <* c1 , c2 *> and ( decomp c ) /. k = <* c1 , c2 *> ; u0 in { |[ r1 , s1 ]| : r1 < s1 & s1 < s1 & s1 < s2 & s1 < s2 & s2 < s1 & s2 < s1 & s1 < s1 & s1 < s1 & s1 < s2 & s2 < s2 & t1 < s1 & s1 < s2 & s2 < s2 & t1 in { s1 , s2 } } ; Cl ( X ^ Y ) = the carrier of X . ( ( k + 1 ) + 1 ) .= ( C . ( k + 1 ) ) .= C . ( ( k + 1 ) + 1 ) .= C . ( ( k + 1 ) + 1 ) .= C . ( ( k + 1 ) + 1 ) .= C . ( ( k + 1 ) + 1 ) .= C . ( ( k + 1 ) + 1 ) ; attr len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & len M2 = width M2 & width M1 = width M2 & len M1 = width M2 & width M1 = width M2 & len M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & g2 . ( y - x0 ) < g2 & g2 . ( y - x0 ) < g2 . ( y - x0 ) & g2 is convergent & lim g2 = g2 . ( y - x0 ) ; assume x < ( - b + sqrt ( a , b , c ) ) / 2 * a or x > ( - b ) / 2 * a + ( - b ) / 2 * a ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( G1 ^ G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( G1 ^ G2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( ( M1 + M2 ) * ( i , j ) ) & ( M1 + M2 ) * ( i , j ) < M2 * ( i , j ) holds ( M1 + M2 ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f & f . i = f /. i holds i divides f /. ( i + 1 ) assume F = { [ a , b ] where a , b is Subset of X : for c st c in B & c in B & a in B & b in B holds b c= c & c c= a & b c= c ; b2 * q2 + ( b3 * q3 ) + ( ( - ( b2 * q2 ) ) * ( - ( b2 * q2 ) ) + ( - ( b2 * q2 ) ) * ( - ( b2 * q2 ) ) = 0. TOP-REAL n + ( ( - ( b2 * q2 ) ) * ( - ( b2 * q2 ) ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl ( B ) & B in F & D c= Cl ( B \/ C ) & D is closed & B c= D & D is closed & B c= D & D is closed ; attr seq is summable means : Def7 : seq is summable & for n holds seq . n is summable & ( for n holds seq . n = ( seq . n ) * ( seq . n ) ) & ( for n holds seq . n = ( seq . n ) * ( seq . n ) ) ; dom ( ( cn -FanMorphN ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( TOP-REAL 2 ) | D .= the carrier of ( TOP-REAL 2 ) | D .= D ; [ X \to Z ] is full full full full SubRelStr of ( ( [#] Z ) |^ ( \alpha , Y ) ) & [ X \to Z ] is full full SubRelStr of ( ( [#] Z ) |^ ( \alpha , Y ) ) |^ ( \alpha , Y ) ; ( G * ( 1 , j ) ) `2 = ( G * ( i , j ) ) `2 & ( G * ( 1 , j ) ) `2 <= ( G * ( 1 , j ) ) `2 ; synonym m1 c= m2 & ( for p , q being set st p in P & q in P & not p in P & not q in P & not p in P & not q in P & not p in P & not q in P & not p in P & not q in P & not p in P & p in P & p in P & q in P & p in P & p in P & q in P & p in P & p in P ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of B ( ) : P [ b ] } and a in A ( ) & P [ b ] ; attr IT is multiplicative means : Def21 : the carrier of it = [ the carrier of it , the carrier of it , the carrier of it #) = [ the carrier of it , the carrier of it , the carrier of it #) ; sequence ( a , b , 1 ) + sequence ( b , c , 1 ) = b + c + sequence ( b , c , 1 ) .= b + c + d .= b + ( c + d ) .= b + ( c + d ) .= sequence ( a + c + d ) .= b + ( b + c ) .= sequence ( a + c + d ) ; cluster ( 1 + 1 ) * -> real for Element of INT , i , j being Element of INT , k being Element of INT holds ( i + 1 ) * ( i , j ) = ( i + 1 ) * ( i , j ) + ( j + 1 ) * ( i , j ) ; ( - ( s2 * p1 + ( s1 * p2 ) ) + ( s1 * p2 ) ) = ( ( - 1 ) * ( ( s1 * p2 ) + ( s1 * p2 ) ) ) + ( ( s1 * p2 ) + ( s1 * p2 ) ) .= ( ( - 1 ) * ( ( s1 * p2 ) + ( s1 * p2 ) ) ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty TopSpace st D in the carrier of S & D in the carrier of S holds D meets [#] S and for V being Subset of S st V in the carrier of T holds V meets V and V is open ; assume that 1 <= k and k <= len w + 1 and T . ( ( q , w ) -to w ) = ( ( q , w ) -\hbox { - } m . ( q , w ) ) . k and T . ( ( q , w ) -\hbox { - } m . k ) = ( ( T , w ) -\hbox { - } m . k } ) ; 2 * ( a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ; M , v |= All ( All ( x , All ( x , H ) ) , All ( x , H ) ) implies M , v / ( All ( x , H ) ) |= All ( x , H ) '&' All ( x , H ) assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 or 0 < f . x0 & for x1 st x1 in l holds f . x1 - f . x0 < f . x1 - f . x0 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G2 , x being Vertex of G1 , y being Vertex of G2 st e in W & x in W & y in W holds not W is Walk of G c01 is not empty iff ( ex y1 st y1 is not empty & q1 is not empty & not ( ex x1 st y1 is not empty & not ( q1 is not empty & q1 is not empty & not q1 is not empty & not q1 is not empty & not q1 is not empty ) & not ( q1 is not empty & not q1 is not empty & q1 is not empty & not q1 is not empty & not q1 is not empty & not q2 is not empty ) & not ( q1 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 Indices GoB ( f ) = dom ( GoB f ) & ( for i st 1 <= i & i < len GoB f holds ( GoB f ) * ( i , 1 ) = ( GoB f ) * ( i , 1 ) & ( GoB f ) * ( i + 1 , 1 ) = ( GoB f ) * ( i + 1 , 1 ) for G1 , G2 , G2 , G1 , G2 being Subgroup of O st G1 is_stable _Subgroup O & G2 is_stable _Subgroup O & G1 is_stable _Subgroup O & G2 is_stable O & G2 is stable & G1 is stable & G2 is stable holds G1 is stable UsedIntLoc ( int ( f , n ) ) = { ( ( 0 qua Nat ) - 1 ) * ( ( 1 - 1 ) * ( 1 - 1 ) ) + ( ( 1 - 1 ) * ( 1 - 1 ) ) * ( 1 - 1 ) ; for f1 , f2 being FinSequence of F st f1 ^ <* p *> is p -element & f2 is p -element & p in rng f1 & <* p *> in F & <* p *> in F holds Q [ f1 ^ <* p *> ] ( ( p `1 ) ^2 + ( p `2 ) ^2 ) = ( ( q `1 ) ^2 + ( p `2 ) ^2 ) * ( ( q `2 ) ^2 ) .= ( ( q `1 ) ^2 + ( q `2 ) ^2 ) * ( ( q `2 ) ^2 ) ; for x1 , x2 , x3 , x4 , x5 , x2 , x3 , x4 , x5 , x5 , x5 , x2 , x4 , x5 , x5 , x2 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , M being Real st x1 , x2 , x2 , x3 , x4 , N , N , N , N being Real holds |( ( x1 , x2 , N , N , N , x1 , N , x1 , x2 , x2 , x4 , x5 , x5 , N , x1 , x1 , x2 , x4 , x5 , x2 , x4 , x5 , x5 for x st x in dom ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) ) `| Z ) holds ( ( - 1 ) (#) ( - 1 ) (#) ( - 1 ) ) `| Z ) . x = - ( ( - 1 ) (#) ( - 1 ) (#) ( - 1 ) ) . x for T being non empty TopSpace , P being Subset of T st P c= the topology of T & P is Basis of T & for x being Point of T st x in P ex B being Basis of x st B c= P & B c= P & P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( ( a 'or' b ) . x ) 'or' c . x .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE ; for e being set st e in Ad ex X1 being Subset of [: X , Y :] st e = [: X1 , Y1 :] & [: X1 , Y1 :] is open & [: X1 , Y1 :] is open & [: X1 , Y1 :] is open & [: X1 , Y1 :] is open & [: X1 , Y1 :] is open & [: Y1 , Y1 :] is open & [: Y1 , Y1 :] is open & [: Y1 , Y1 :] is open for i being set st i in the carrier of S for f being Function of [: S , T :] , S , g being Function of S , T st f = H . i & g is continuous & f is continuous holds g is continuous & g is continuous for v , w st for x , y st x <> y & w . y = v . y holds J . ( x , y ) = J . ( y , x ) & J . ( y , w ) = Valid ( x , y , w ) card D = card D1 + card D2 - card D1 .= card D1 + card D2 - card D2 .= card D1 + card D2 - 1 .= ( D1 + D2 ) - 1 .= ( D1 + D2 ) - ( D1 + D2 ) .= ( D1 + D2 ) - ( D1 + D2 ) .= ( D1 + D2 ) - ( D1 + D2 ) .= ( D1 + D2 ) - ( D1 + D2 ) .= ( D1 + D2 ) - ( D1 + D2 ) .= ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 + D2 ) - ( D1 IC Exec ( i , s ) = ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s . 0 ) ) . 0 .= ( s . 0 ) .= ( s . 0 .--> ( s . 0 ) ) . 0 .= ( s . 0 ) .= ( s . 0 ) ) . 0 .= ( s . 0 ) len f /. ( \downharpoonright i1 -' 1 + 1 ) = len f -' ( i1 -' 1 + 1 ) + 1 .= len f -' ( i1 -' 1 + 1 ) .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & a < b & b < a & c < b holds a + b < a + b or a = b + b + c for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , x being Point of TOP-REAL 2 st x in LSeg ( f , p ) & p in LSeg ( f , 1 ) & x = Index ( p , f /. 1 ) holds Index ( p , f /. 1 ) = x ( ( curry ( P , k + 1 ) ) # x ) . x = ( ( curry ( P , k ) ) # x ) . x + ( ( curry ( P , k ) ) # x ) . x ; z2 = g /. ( \downharpoonright n1 -' 1 ) .= g /. ( i -' 1 + ( i -' 1 ) + 1 ) .= g . ( i -' 1 + 1 ) .= g . ( i -' 1 + 1 ) .= g . ( i -' 1 + 1 ) .= g . ( i -' 1 + 1 ) .= ( g /^ 1 ) . ( i -' 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of ( G ) \/ the carrier of G ; for G being Subset-Family of B st G = { [ R , X ] where R is Subset of A ( ) , X is Subset of A ( ) st R in F & X in G & Y = ( Intersect ( R ) ) . X & X is finite } holds ( Intersect ( R ) ) . X = Intersect ( ( F ) ) . X CurInstr ( P1 , Comput ( P1 , s1 , m1 + 1 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 + 1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 + 1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and c on N and p in M and p in M and c in N and p in M and c in N and p in M and c in N and p in M and p in M and c in N and p in M and c in N and p in M and c in N and c in N and p in N and c in N and c in N and c in N and c in N and p in M and p in M and p in M and p in M and c in N and p in N and p in N and p in N and p in M and p in M and p in M and c in M and p in M and M in N and M in N and M in N and M in N and M in N and M in N and M in N and M in N and M in N assume that T is \hbox { 4 , T , 4 , B is _ of T and ex F being Subset-Family of T st F is closed & for n being Nat st n in dom F ex F be Subset-Family of T st F is finite-ind & ( for n being Nat st n <= 0 holds F . n <= 0 ) & ( for n being Nat st n <= 0 holds F . n <= 0 ) ; for g1 , g2 st g1 in ]. r - 1 , r + 1 .[ & g2 in ]. r - 1 , r + 1 .[ & |. f . g1 - g1 . g2 .| <= ( ( r1 - 1 ) * ( r - 1 ) ) / ( 1 - r ) & |. f . g2 - g1 . r .| <= ( r1 - 1 ) / ( 1 - r ) ( ( exp_R * z ) + ( - 1 ) ) * ( ( z + - 1 ) * ( z + - 1 ) ) = ( ( exp_R * z ) + ( - 1 ) ) * ( ( z + - 1 ) * ( z + - 1 ) ) .= ( ( exp_R * z ) + ( - 1 ) ) * ( ( z + - 1 ) * ( z + - 1 ) ) ; F . i = F /. i .= 0. R + ( 0 qua Element of R ) .= ( b |^ n ) * ( b |^ n ) .= ( b |^ n ) * ( b |^ n ) .= ( b |^ ( n + 1 ) ) * ( b |^ n ) .= ( b |^ ( n + 1 ) ) * ( b |^ n ) ; ex y being set , f being Function st y = f . n & dom f = NAT & rng f = NAT & for n being Nat holds f . ( n + 1 ) = R ( n , f . n ) & for n being Nat holds f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def6 : len it = len F & for i being Nat st i in dom F holds it . i = F . i * ( F . i ) & for i be Nat st i in dom F holds it . i = f . i * ( F . i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x5 } ; for n being Nat , x being set st x = h . n . n & h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( ) & o . ( n + 1 ) in InnerVertices S ( x , n ) & o . ( n + 1 ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ( ) ) st SubP ( P , l , e ) = S1 & ( for e being Element of Al ( ) st e in S ( ) holds ( S . e ) . e = S1 . e ) & ( S . e = e ) & ( S . e = e implies S . e = e ) ; consider P being FinSequence of GG2 such that p9 = product P and for i st i in dom P ex t being Element of the carrier of the carrier of K st P . i = t & t . i = i & t . i = j ; for T1 , T2 being strict non empty TopSpace , P being Subset of T1 , Q being Subset of T2 st the topology of T1 = the topology of T2 & P = the topology of T2 & P is Basis of T2 & Q is Basis of T2 holds P is Basis of T2 Suppose f is_partial differentiable on u0 and r (#) pdiff1 ( f , 3 ) is_differentiable_in u0 and r (#) pdiff1 ( f , 3 ) is_differentiable_in u0 & pdiff1 ( r (#) pdiff1 ( f , 3 ) , 3 ) is_differentiable_in u0 & partdiff ( r (#) pdiff1 ( f , 3 ) , 3 ) = r * SVF1 ( f , 3 ) . 3 and r (#) pdiff1 ( f , 3 ) = r * pdiff1 ( f , 3 ) . 3 ; defpred P [ Nat ] means for F , G being FinSequence of REAL , s being FinSequence of REAL st len F = $1 & for s being Permutation of Seg ( $1 + 1 ) st len s = $1 & len G = $1 & for s being Permutation of Seg ( $1 + 1 ) st s in Seg ( $1 + 1 ) holds s = ( Sum F ) . s ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= ( GoB f ) * ( 1 , j ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set , set ] means ex F9 being Subset-Family of T st $1 = $2 & $2 = ( union F ) . $1 & ( union F ) is open & ( union F ) is discrete & ( union F ) is discrete & ( union F ) is discrete & ( union F ) is discrete discrete & ( union F is discrete & union F is discrete & union F is discrete & union F is discrete & union F is discrete & union F is discrete ; for p4 being Point of TOP-REAL 2 st LE p4 , p2 , P & LE p4 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P holds LE p4 , p1 , P f in Funcs ( E , H ) & for g st g . y <> f . y & x = g . y holds x in the carrier of ( ( the carrier of X ) | E ) & g in the carrier of ( ( the carrier of X ) | E ) | E ) implies f in the carrier of ( ( the carrier of X ) | E ) | E ex p9 being Point of TOP-REAL 2 st x = p9 & ( ( for p being Point of TOP-REAL 2 st p in P holds ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) ^2 >= 0 & ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 >= 0 ; assume for d7 being Element of NAT st d7 <= 8 & d7 <= 8 holds s1 . ( d7 ) = ( s2 . ( |. 7 - 2 * ( t - 2 ) ) .| ) & s1 . ( |. 7 - 2 * ( t - 2 ) ) = s2 . ( |. 7 - 2 * ( t - 2 ) .| ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s in Sphere ( x , r ) and ex e being Point of TOP-REAL n st e in { x , y } & e in Ball ( x , r ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s holds 0 < s or ex x1 , x2 being Point of ( TOP-REAL 2 ) st x1 in dom f & x2 in dom f & ||. x1 - x2 - x0 .|| < s & ||. x1 - x2 .|| < r & ||. x1 - x2 - x0 .|| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | x ) | ( x | x ) ) | ( p | x ) .= ( ( x | x ) | x ) | ( x | x ) ) | p ; assume that x , x + h in dom sec and ( there exists exists $ h st ( for x st x in dom sec holds ( ( sec * sec ) `| Z ) . x = ( 4 * sec . x ) * ( sin . x ) + ( sin . x ) ^2 ) and ( for x st x in Z holds ( ( sec * sec ) `| Z ) . x = ( 4 * sec ) `| Z ) . x ; assume that i in dom A and len A > 1 and for i st i in dom B holds B * ( i , j ) = A * ( i , j ) and B * ( i , j ) = A * ( i , j ) and B * ( i , j ) = A * ( i , j ) ; for i being non zero Element of NAT st i in Seg n holds ( i divides n implies i = <* 1_ F_Complex *> ) & ( i divides n implies h . i = <* 1_ F_Complex *> ) & ( i divides n implies h . i = <* 1_ F_Complex *> ) & ( i divides n implies h . i = <* 1. F_Complex *> ) ( ( b1 'imp' b2 ) '&' ( c1 'or' c2 ) ) '&' ( ( b1 'or' c1 ) '&' ( c1 'or' c2 ) ) '&' ( ( b1 'or' c1 ) '&' ( c1 'or' c2 ) ) '&' ( ( c1 'or' c2 ) '&' ( c1 'or' c2 ) ) '&' ( ( c1 'or' c2 ) '&' ( c1 'or' c2 ) ) '&' ( ( c1 'or' c2 ) '&' ( c1 'or' c2 ) ) '&' ( ( c1 'or' c2 ) '&' ( c1 'or' c2 ) ) ) '&' ( c1 'or' c2 ) ) '&' ( c1 'or' c2 ) ) '&' ( c1 'or' c2 ) ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 'or' c2 ) '&' ( c1 assume that for x holds f . x = ( ( - 1 ) (#) ( cot * cot ) ) . x and for x st x in dom ( ( - 1 ) (#) ( cot * cot ) ) holds ( ( - 1 ) (#) ( cot * cot ) ) . x = ( - 1 ) * ( sin . x ) and ( ( - 1 ) (#) ( cot * cot ) ) . x = - 1 ; consider Rd , Id be Real such that Rd = Integral ( M , ( Re F ) . n ) & Rd = Integral ( M , ( Im F ) . n ) and I = Integral ( M , ( Im F ) . n ) and I = Integral ( M , ( Im F ) . n ) ; ex k being Element of NAT st ' = k & 0 < d & for q be Element of product G st q in X & 0 < q & ||. q - f /. x - f /. x0 .|| < d holds ||. partdiff ( f , q , k ) - diff ( f , x ) - diff ( f , q ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 6 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 } iff x in { x1 , x2 , x3 , x4 , 7 , 8 } & x in { x1 , x2 , x3 , x4 , 8 , 7 } ; ( G * ( j , jj ) ) `2 = ( G * ( 1 , i ) ) `2 .= ( G * ( 1 , i ) ) `2 .= ( G * ( 1 , j ) ) `2 .= ( G * ( 1 , j ) ) `2 .= ( G * ( 1 , j ) ) `2 .= ( G * ( 1 , j ) ) `2 .= ( G * ( 1 , j ) ) `2 .= ( G * ( 1 , j ) ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , j ) `2 .= ( G * ( 1 , f1 * p = p .= ( ( the Arity of S1 ) * ( the Arity of S1 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S1 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S1 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> Tree means : Def1 : q in it & q in P & p = T ^ <* x *> or p = T ^ <* x *> & q = T ^ <* x *> or p = <* x *> ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= F . ( p . ( k + 1 -' 1 ) , F /. ( k + 1 -' 1 ) ) .= F . ( p . ( k + 1 -' 1 ) , p . ( k + 1 -' 1 ) ) .= F . ( p . ( k + 1 -' 1 ) , p . ( k + 1 -' 1 ) ) .= 0. ( TOP-REAL n ) ; for A , B , C , D being Matrix of K st len B = len C & width B = len C & len C = width C & len B = width C & len C = width C & width B = width C & len C = width C & width B = width C & len B = width C & width B = width C & len B = width C & width B = width C holds B * C = C * ( B * C , C * C ) seq . ( k + 1 ) = 0. ( F_Complex ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of C1 ) and y in ( the carrier of C2 ) and z in ( the carrier of C2 ) and x = ( the carrier of C2 ) \/ ( the carrier of C2 ) and y in ( the carrier of C2 ) ; defpred P [ Element of NAT ] means for f st len f = $1 & for k st k = $1 holds ( for k st k in dom g holds g . k = ( ( VAL g ) | ( k -' 1 ) ) . ( f /. k ) ) '&' ( ( VAL g ) | ( k -' 1 ) ) . ( f /. k ) ) ; assume that 1 <= k and k + 1 <= len f and f is special and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) ; assume that sn < 1 and ( q `1 / |. q .| - sn ) > 0 and ( q `2 / |. q .| - sn ) >= 0 and ( q `2 / |. q .| - sn ) >= 0 and ( q `2 / |. q .| - sn ) >= 0 and ( q `2 / |. q .| - sn ) < 0 ; for M being non empty metric , x being Point of M , f being Point of M st x = x & f = x & ex g being Point of M st g in Ball ( x , ( 1 / 2 ) * f ) & for n being Nat st n in dom f holds f . n = Ball ( x , ( 1 / 2 ) * f ) defpred P [ Element of omega ] means ( f1 is differentiable & f2 is differentiable on Z & for x st x in Z holds f1 . x = 1 / ( x - a ) * ( x - a ) ) & ( f1 - f2 ) is_differentiable_on Z & ( f1 - f2 ) `| Z = ( f1 - f2 ) `| Z ) . x = ( f1 - f2 ) . x - ( f1 - f2 ) . x ; defpred P1 [ Nat , Point of C1 , Point of C ] means ( $1 in Y & $2 in Y & ||. $2 - x0 .|| < r & ||. $2 - x0 .|| < r ) & ||. $2 - x0 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= ( mid ( g , 2 , len g ) ) . i .= ( ( mid ( g , 2 , len g ) ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) /. i .= ( g /^ 1 ) /. i .= ( g /^ 1 ) /. i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . i .= ( g /^ 1 ) . ( ( ( len g ) . ( ( ( len g ) . ( ( len g ) . ( len g ) . ( i -' 1 ) . ( i -' 1 ) .= ( g /^ 1 ) . ( 1 - 2 * ( n + 2 ) ) * ( 2 * ( n + 1 ) + 2 * ( n + 1 ) ) = ( ( 1 - 2 ) * ( n + 1 ) ) * ( 2 * ( n + 1 ) ) .= ( 1 - 2 ) * ( n + 1 ) .= ( 1 - 2 ) * ( n + 1 ) .= ( 1 - 2 ) * ( n + 1 ) ; defpred P [ Nat ] means for G being non empty RelStr , A being non empty finite RelStr , x being set st G is $1 -symmetric symmetric & x in A & x in A & y in A holds ( the RelStr of G ) . ( x , y ) = ( the RelStr of G ) . ( x , y ) ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len - 1 and for i st 1 <= i & i <= len - 1 & i <= len f holds not LSeg ( f , i ) /\ LSeg ( f , m ) <> {} ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) ) . $1 = ( Partial_Sums ( cos ) ) . ( $1 + 1 ) * ( Partial_Sums ( cos ) . ( $1 + 1 ) ) + ( Partial_Sums ( cos ) . ( $1 + 1 ) * ( Partial_Sums ( cos ) ) . ( $1 + 1 ) * ( Partial_Sums ( cos ) ) . ( $1 + 1 ) ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & for i being set st i in I holds x . i = ( ( the carrier of F ) | I ) . i & x . i = ( ( the carrier of F ) | I ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) * x ) |^ n .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) .= ( x " ) * ( x " ) * ( x " ) .= ( x " ) * ( x " ) ; DataPart Comput ( P +* I , ( LifeSpan ( P +* I , s ) ) , k ) = DataPart Comput ( P +* I , ( LifeSpan ( P +* I , s ) ) + 3 ) .= DataPart Comput ( P +* I , ( LifeSpan ( P +* I , s ) ) + 3 .= DataPart Comput ( P +* I , s ) ; given r such that 0 < r and ]. x0 - r , x0 + r .[ c= dom ( f1 + f2 ) /\ dom ( f1 + f2 ) and for g st g in ]. x0 - r , x0 + r .[ /\ dom ( f1 + f2 ) holds ( f1 + f2 ) . g <= 0 ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( for x st x in X /\ dom f2 holds f1 . x = f1 . x ) and ( f1 | X is continuous implies f2 | X is continuous ) & ( for x st x in X /\ dom f2 holds f1 . x = f2 . x ) ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x in X & x is directed & x is Ideal of L holds x is prime Support ( e *' A ) = { m *' ( p *' A ) where m is Element of NAT : m in Support ( m *' p ) & p <> 0 & ( p *' A ) . m = ( p *' A ) . m & ( p *' A ) . m = ( p *' A ) . ( m + 1 ) ; ( f1 - f2 ) /. ( lim s1 ) = lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p = g . p & for g being Element of D ( ) st F . p = g . p & for g being Function st g in D ( ) holds P [ g . p , p1 , g . g ] ; ( mid ( f , i , len f -' 1 ) ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) /. j .= ( mid ( f , i , len f -' 1 ) /. j ) ; ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . k ) . ( len p + k ) .= ( ( p ^ q ) ^ q ) . ( k + 1 ) .= ( ( p ^ q ) . ( k + 1 ) .= ( p ^ q ) . ( k + 1 ) .= ( p ^ q ) . ( k + 1 ) .= ( p ^ q ) . ( k + 1 ) .= ( p ^ q ) . ( k + 1 ) . ( k + 1 ) .= ( p ^ q ) . ( k + 1 ) .= ( ( p ^ q ) . ( k + 1 ) .= ( ( p + q ) .= ( p ^ q ) . ( k + 1 ) . ( k + 1 ) .= ( p ^ q ) . ( k + 1 ) .= ( p ^ q ) len mid ( upper_volume ( f , D1 , j1 ) , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 ; x * y * z = ( M * ( x * y ) ) * ( x * z ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) ; v . <* x , y *> - ( <* x0 *> ) . i = ( <* x0 , y0 *> ) . i * ( <* y , y0 *> ) + ( diff ( <* x0 , y0 *> , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( y , y0 ) ) + ( diff ( u , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( y , y0 ) ) ) ; i * i = <* 0 * ( 1 - i ) - ( 0 * i ) + ( 0 * i ) - ( 0 * i ) + ( 0 * i ) - ( 0 * i ) .= <* 0 * ( 1 - i ) + 0 * i - ( 0 * i ) + 0 * i - ( 0 * i ) .= 0 * ( 1 - i ) + 0 * i - 0 * i ; Partial_Sums ( L * F ) = Partial_Sums ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) ) + 0. V .= ( L * ( F1 ^ F2 ) .= ( L * ( F1 ^ F2 ) ) + ( L * ( F1 ^ F2 ) .= ( L * ( F1 ^ F2 ) .= ( L * F1 ^ F2 ) + ( L * ( F2 ^ F2 ) .= ( L * ( F1 ^ F2 ) ) + ( L * ( F2 ^ F2 ) + ( L * ( F2 ^ F2 ) + ( L * ( F1 ^ F2 ) ) + ( L * ( F1 ^ F2 ) .= ( L * ( F1 ^ F2 ) .= ( L * ( F2 ^ F2 ) ) + ( L * F2 ) .= ( L * ( F1 ^ F2 ) ex r be Real st for e be Real st 0 < e ex Y be finite Subset of REAL st 0 < Y & Y c= dom ( ||. f .|| ) & for Y1 be finite Subset of X st Y1 in Y & Y c= Y holds |. ( f | Y ) . Y1 - 0 .| < r ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i + 1 , j ) = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) = f /. ( k + 2 ) ; ( ( - 1 ) (#) cos ) . x = ( ( r / ( 2 * x ) ) * ( cos . x ) ) ^2 .= ( ( r / ( 2 * x ) ) * ( cos . x ) ) ^2 .= ( ( r / ( 2 * x ) ) * ( cos . x ) ) ^2 .= ( r / ( 2 * x ) ) ^2 .= ( r / ( 2 * x ) ) ^2 ; ( - b + sqrt ( a , b , c ) ) * a + ( - b + sqrt ( a , b , c ) ) * a < 0 & ( - b + sqrt ( a , b , c ) ) * a < 0 & ( - b ) < 0 ; Suppose ex_inf_of uparrow ( "\/" ( X , L ) /\ C ) and for X st X in L & X in C holds not X in C & not X in C & not Y in C & not Y in C & not Y in C & not Y in C & Y in C & not Y in C & Y in C & Y in C & Y in C & Y in C ) implies X in C & Y in C & X in C & Y in C & X in C & X in C & X in C & Y in C & X in C & Y in C & X in C & Y in C & X in C & Y in C implies "/\" ( ( ( \mathopen ( "/\" ) /\ C ) implies X in C & X in C & Y in C & X in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & Y in C & ( for B holds ( ( the Sorts of B ) . ( j , i ) ) . ( j , i ) = ( j |-> id ( the carrier of S ) ) . ( j , i ) ) & ( j = i implies ( j = i implies j = i ) ) implies ( j = i )