thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is convergent q in X ; V ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a is_>=_than X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in C ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` = b ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `2 <= b `2 ; assume b in X ; assume k <> 1 ; f = product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is from of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `2 = x `2 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , a , b be Vertex of G ; let G be _Graph , a , b be Vertex of G ; a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b be Element of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom f ; let x be element ; k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = 1 ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Real ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is not discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , i be Integer ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 ; cluster uparrow x -> or uparrow x is or uparrow y is be directed ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 / x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; 2 >= thesis ; G . y <> 0 ; let X be RealNormSpace , Y be RealNormSpace ; a in A ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , W be Subspace of V ; assume x in L~ TOP-REAL M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded & L is lower-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `2 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= ii ; 1 <= ii ; pp c= PI ; 1 <= ii ; 1 <= ii ; LMP C in L ; 1 in dom f ; let seq , n ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 : A is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 or b1 >= Z ; assume w = 0. V ; assume x in A . i ; g in the carrier of X ; y in dom t ; i in dom g ; assume P [ k ] ; Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let Let C be 0 <= C ; x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; IT is non-decreasing ; IT is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , A be non-empty MSAlgebra over S ; assume P [ n ] ; assume union S is [#] independent & finite S is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT & rng f c= NAT ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , A be non-empty ManySortedSet of I ; b ` c= b9 ` ; assume not x in NAT ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in Bf1 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 & i1 < i2 ; a * h in a * H ; p , q in Y ; Observe ; q1 in A1 . ( len A1 ) ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n & n < len p ; assume A c= dom f ; Re ( f ) is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_continuous_in x0 ; assume O is symmetric transitive ; let x , y be element ; let jj be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 halts_on s , P3 = P +* I ; d , c // a , b ; let t , u be set ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopStruct , Y be SubSpace of X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , C be Subset of B ; let S be non empty ManySortedSign ; let x be variable , f be Function of X , REAL ; let b be Element of X , c be Element of X ; R [ x , y ] ; x ` ` = x ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( n |-> 0 ) ; h2 . a = y ; P [ n + 1 ] ; Observe : G * F is pre| ; let R be non empty multMagma , I be Subset of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co /\ L~ co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `2 ; let M be mamaid ; let N be non empty Subset of \mathop { \rm thesis \hbox { - } : 1 <= N } ; let R be RelStr with finite finite 1 ; let n , k be Nat ; let P , Q be relational structure ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I does not destroy a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < ( v - u ) ; x <= c2 . x ; x in F ` ; Observe ; assume t1 <= t2 & t2 <= t2 ; let i , j be even Integer ; assume F1 <> F2 & F2 <> F1 ; c in Intersect R ; dom p1 = c & rng p2 c= REAL ; a = 0 or a = 1 ; assume A1 : A <> A2 ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & rng g2 c= A ; i < len M + 1 ; assume not +infty in rng G ; N c= dom ( f1 - f2 ) ; x in dom sec ; assume [ x , y ] in R ; set d = ( x - y ) / 2 ; 1 <= len g1 & len g1 <= len g2 ; len s2 > 1 & len s2 > 1 ; z in dom ( f1 - f2 ) ; 1 in dom D2 & 1 in dom D2 ; ( p `2 ) ^2 = 0 ; j2 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; ( i gcd i ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be mod of \rm \mathbin { - } \rm \mathbin { - } \rm mod } G ; cluster m * n -> square ; let k9 be Nat ; i - 1 > m - 1 ; R is transitive implies R |_2 field R is transitive set F = <* u , w *> ; pp c= P3 & j c= P3 ; I is_closed_on t , Q ; assume [ S , x ] is holds S is \cap T ; i <= len ( f2 ^ g2 ) ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 - f2 ) ; assume [ X , p ] in C ; Bj c= Xj \/ Xj ; n2 <= ( 2 * ( n + 1 ) ) ; A /\ [: P , Q :] c= A ` ; cluster x -valued for Function ; Q be Subset-Family of S , A be Subset of S ; assume n in dom g2 & n in dom g2 ; a be Element of R ; t `2 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , T be non empty Subset-Family of S ; i . y in rng i ; [: the carrier of REAL , the carrier of REAL :] c= dom f ; f . x in rng f ; mt <= ( r / 2 ) ; s2 in r-5 ; let z , z be complex number ; n <= N . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = [ S \to T ] ; let x be non positive ExtReal ; let m be Element of M ; f in union rng F1 ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , M be Matrix of K ; let i be Element of NAT ; rng ( F * g ) c= Y ; dom f c= dom x & rng f c= dom x ; n1 < n1 + 1 & n2 + 1 < n2 ; n1 < n1 + 1 & n2 + 1 < n2 ; cluster [: X , Y :] -> 8 ; [ y2 , 2 ] `2 = z ; let m be Element of NAT ; let S be Subset of R ; y in rng ( S . n ) ; b = upper_bound dom f & c = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom h2 & n + 1 in dom h2 ; w + 1 = ( - a ) + 1 ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 + 1 ; i be Element of NAT ; Support u = Support p \/ Support q ; assume X is complete complete complete ] ; assume that f = g and p = q ; n1 <= n1 + 1 & n2 + 1 <= n2 ; let x be Element of REAL ; assume x in rng s2 ; x0 < x0 + 1 & x0 + 1 < x0 + 1 ; len ( L ) = W ; P c= Seg ( len A ) ; dom q = Seg n & rng q c= Seg n ; j <= width M *' ; let r8 be real-valued FinSequence of NAT ; let k be Element of NAT ; Integral ( M , f ) < +infty ; let n be Element of NAT ; assume z in x := len C2 ( 0 , A ) ; i be set ; n - 1 = n-1 - 1 ; len ( n |-> 0 ) = n ; \mathop { Z , c } c= F ; assume x in X or x = X ; x is element of b , c ; let A , B be non empty set , C be non empty set ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q ; let s be Element of E * ; let B1 be Basis of x , y be Point of V ; Carrier ( 3 /\ L2 ) = {} ; L1 /\ ( L2 /\ L2 ) = {} ; assume downarrow x = downarrow y ; assume b , c // b , c ; LIN q , c , c ; x in rng ( f . -129 ) ; set n8 = n + j ; let D7 be non empty set , f be FinSequence of D ; let K be add-associative right_zeroed right_complementable non empty addLoopStr , M be Matrix of K ; assume f `2 = f & h `1 = h ; R1 - R2 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & ( TOP-REAL 2 ) ` is open ; assume a , b ] in maximal the distance of C ; a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f | E ) ; cluster n[ ] -> nes] ; not u in { ag } ; the carrier of f c= B ; reconsider z = x as VECTOR of V ; cluster the RelStr of L -> \rangle ; r (#) H is \mathop { 0 } \rbrace -valued ; s . intloc 0 = 1 ; assume x in C & y in C ; let U0 be strict non-empty MSAlgebra over S , A be non-empty MSAlgebra over S ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in iff ry0 in { y } ; let x , y be Element of X ; let A , I be seq of X ; [ y , z ] in O ; assume that that x = 1 and x = goto ( card I + 2 ) ; rng Sgm A = A ; q |- \! from All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b ; p . 2 = Z |^ Y ; ( D . D ) `2 = {} ; n + 1 + 1 <= len g ; a in [: CQC-WFF ( Al ) , NAT :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f3 + f4 ; a <= max ( a , b ) ; i-1 < len G + 1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i - k + 1 <= S ; cluster associative associative for non empty multMagma ; x in support ( ( support t ) \ support b ) ; assume a in [: the carrier of G , the carrier of G :] ; i `2 <= len ( y `2 ) ; assume p divides b1 + b2 & p divides b2 ; MM1 <= upper_bound M1 & sup M1 <= upper_bound M1 ; assume x in W \mathop { \rm W _ { most ( X ) } ; j in dom ( z | n ) ; let x be Element of D ( ) ; IC s4 = l1 .= IC s4 .= ( 0 + 1 ) ; a = {} or a = { x } ; set uc = Vertices G , ud = Vertices G , ud = Vertices G , Id = Vertices G , Ie = the Element of G ; seq " is non-zero & lim ( seq " ) = 0 ; for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; h-4 c= h-14 \/ h-14 ; ]. a , b .[ c= Z ; X1 , X2 X2 X2 X1 union X2 X1 X1 X1 X1 X1 X1 union X2 X1 X1 X1 X1 union X2 X1 X1 X1 union X2 ; a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 - 1 = k - 1 ; cluster real-valued for Relation of NAT , REAL ; ex v st C = v + W ; let IT be non empty thesis , n be non zero Element of NAT ; assume V is Abelian add-associative right_zeroed right_complementable ; X-21 \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; upper_bound B is upper & upper_bound B = upper_bound B ; let L be non empty reflexive RelStr , D be Subset of L ; R is_reflexive & X is transitive implies R ~ is transitive E , g |= H / ( x , y ) ; dom ( G /. y ) = a ; ( 1 / 4 ) >= - r / 2 ; G . p0 in rng G ; let x be Element of F , y be Element of F ; D [ ( PP , 0 ) ] ; z in dom ( id B ) ; y in the carrier of N ; g in the carrier of H & h in the carrier of H ; rng ( f | l ) c= [: the carrier of S , the carrier of S :] ; j `2 + 1 in dom s1 ; let A , B be strict Subgroup of G ; C be non empty Subset of REAL ; f . z1 in dom h & f . z2 in dom h ; P . k1 in rng P ; M = ( A +* {} ) +* {} ; let p be FinSequence of REAL , n be Nat ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; h . [. a , b .] = b ; assume that the distance of V , Q and P [ v ] ; let a be Element of ( the carrier of V ) ; let s be Element of PP ( ) ; let PP be non empty tree ; n be Nat ; the carrier of g c= B ; I = halt SCM R & I = ( the InstructionsF of R ) . 0 ; consider b being element such that b in B ; set BK = BCS K , BK = BCS K ; l <= ( -> -> exists of L ) . j ; assume x in downarrow [ s , t ] ; ( x `2 ) in uparrow t ; x in ( JumpParts T ) . x ; let h be Morphism of c , a ; Y c= [: the carrier of R , the carrier of R :] ; A2 \/ A3 c= Carrier ( L1 ) \/ Carrier ( L2 ) ; assume LIN o , a , b ; b , c // d1 , e2 ; x1 , x2 in Y & y1 in Y ; dom <* y *> = Seg 1 & rng <* y *> c= Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in X ~ ; for n be Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , P is_collinear ; dom M1 = Seg n & rng M2 c= Seg n ; x = [ x1 , x2 ] & y = [ y1 , y2 ] ; R , Q be ManySortedSet of A ; set d = ( 1 / n ) * ( 1 / n ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , V be non empty Subset of V ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( ( R * S ) * ( R * S ) ) ; let b be Element of the carrier of T ; dist ( e , z ) > r-r ; u1 + v1 in W2 + W3 ; assume not the carrier of L misses rng G ; let L be lower-bounded antisymmetric RelStr ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool M ; 0 <= Arg a * PI ; o9 `2 , a9 // o9 `2 , y `2 ; { v } c= the carrier of l & { v } c= the carrier of l ; let x be variable of A ; assume x in dom ( uncurry f ) ; rng F c= ( product f ) |^ X assume D2 . k in rng D ; f " . p1 = 0 & f " . p2 = 0 ; set x = the Element of X , y = the Element of Y ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; n be Element of NAT ; assume LIN c , a , e1 ; cluster -> finite for FinSequence of NAT ; reconsider d = c as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f ; conv @ S c= conv @ A ; reconsider B = b as Element of the topology of T ; J , v |= P \lbrack l \rbrack ; Observe : J . i is non empty TopSpace ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 is_orders field ( W1 + W2 ) implies ( W1 + W2 ) is_orders ( W2 + W3 ) assume x in the carrier of R ; dom ( n-16 ) = Seg n & dom ( n-16 ) = Seg n ; s4 misses s2 & s3 misses s4 ; assume ( a 'imp' b ) . z = TRUE ; assume X is open & f = X --> d ; assume [ a , y ] in Indices ( f | X ) ; assume that stop I c= J and card I c= K and card J c= K ; Im ( lim seq ) = 0 & Im ( lim seq ) = 0 ; ( ( sin - cos ) `| Z ) . x <> 0 ; sin is_differentiable_on Z & cos is_differentiable_on Z implies cos is_differentiable_on Z & for x st x in Z holds cos . x = sin . x / cos . x t3 . n = t3 . n .= 0 ; dom ( ( - F ) | A ) c= dom F ; W1 . x = W2 . x .= W2 . x ; y in W .vertices() \/ W .vertices() ; ( ( k + 1 ) + 1 ) <= len ( ( k + 1 ) + 1 ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P ; h . p4 = g2 . I .= ( g2 . I ) `1 ; G = U * ( 1 , k ) `1 .= G * ( 1 , k ) `1 ; f . ( r1 ) in rng f ; i + 1 + 1 <= len - 1 ; rng F = rng ( F | ( Seg n ) ) ; mode seq is well unital associative non empty multMagma ; [ x , y ] in A ~ { a } ; x1 . o in L2 . ( o . o ) ; the carrier of not [ y , x ] in id X ; 1 + p .. f <= i + len f ; seq ^\ ( k1 + 1 ) is lower ; len ( F . i ) = len I & len ( F . i ) = len F ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number , a be complex number ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} _ T as Element of L ; let Y be Element of l is_holds Y is an \rbrace Subset of T ; cluster from L -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K . j1 ; Observe : J => y is total ; K c= 2 |^ the carrier of T ; F . b1 = F . b2 .= F . b2 ; x1 = x or x1 = y or x1 = z or x1 = x ; pred a <> {} means a / ( a - b ) = 1 ; assume that succ a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o , b , b9 & LIN o , b , b9 ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non constant FinSequence of D ; let FF2 be non empty non empty for the carrier of X ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pp = x as Subset of m ; A , B , C be Element of R ; Observe -> strict non empty for b9 is strict non empty b9 ; rng c `2 misses rng ( e | n ) ; z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( ( - cot ) (#) ( f ^ ) ) ; the component of Q c= UBD A & ( Q /\ C ) /\ ( Q /\ C ) = {} ; reconsider E = { i } as finite Subset of I ; g2 in dom ( ( 1 / 2 ) (#) ( f ^ ) ) ; pred f = u means : Let a * f = a * u ; for n holds P1 [ n ] implies P1 [ n + 1 ] { x . O : x in L } <> {} ; x be Element of V . s ; a , b be Nat ; assume that S = S2 and p = p2 ; ( n1 gcd n2 ) = 1 & ( n1 gcd n2 ) gcd n2 = 1 ; set on = o * ( the Arity of S ) ; seq . n < |. r1 .| & |. seq . n .| < r ; assume that seq is increasing and r < 0 and seq is convergent ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] ; set g = { n / 1 : n in NAT } ; k = a or k = b or k = c ; a9 , b9 , c9 , a9 , b9 , c9 , b9 , c9 be set ; assume Y = { 1 } & s = <* 1 *> ; I1 . x = f . x .= 0 .= 0 ; W3 .last() = W3 . ( 1 + 1 ) .= W . ( len W ) ; cluster -> trivial for Subgroup of G , finite _Graph ; reconsider u = u as Element of Bags X ; A in B ^ ) implies A , B are_are that B , C are_that A , B are_that B , C are_that A , C are_that B |^ C are_ x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 ) ^2 / ( |. q .| ) ^2 ; f1 is_\in the TOP-REAL 2 & f2 is_<= len f2 ; ( f /. 2 ) `2 <= ( q `2 ) ^2 ; h is_dom Cage ( C , n ) ; ( b `2 ) ^2 <= ( p `2 ) ^2 + ( p `2 ) ^2 ; let f , g be Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom max ( f , g ) ; p2 in NN . ( p1 , p2 ) ; len ( the_left_argument_of H ) < len ( H ) ; F [ A , F ( ) . A ] ; consider Z such that y in Z and Z in X ; attr 1 in C means : Let $ A c= C |^ A ; assume that r1 <> 0 or r2 <> 0 or r1 <> 0 ; rng q1 c= rng ( C1 ^ C2 ) & rng q1 c= rng ( C2 ^ C2 ) ; A1 , L , A3 , A3 is_collinear ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in element ( p , S ) ; then S is then S is atomic & P-2 [ S ] ; Cl Int ( [#] T ) = [#] T ; f12 | A2 = f2 | A2 & f12 | A2 = f2 | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V ; let X be Subset of S ~ ; consider H1 such that H = 'not' H1 and H1 in D ; 1_ G c= ( f2 * ( the div r ) ) * ( ( - 1 ) / 2 ) ; 0 * a = 0. R .= a * 0. R ; A |^ ( 2 , 2 ) = A ^^ A ; set v\rbrace = ( v /. n ) * ( v /. n ) ; r = 0. ( \langle \cal E , \Vert \cdot \Vert *> ) ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W | ( len W ) ) ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t8 does not destroy b1 & not LIN b1 , b2 , b1 ; reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i as non zero Element of NAT ; c . x >= id ( the carrier of L ) . x ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> pair for set ; downarrow a /\ downarrow t is Ideal of T ; let X be disjoint with NAT , n be non empty set ; rng f = |. \rm .| ( S , X ) ; let p be Element of B , s be \neq the connectives of S ; max ( N1 , 2 ) >= N1 & max ( N2 , 2 ) >= N2 ; 0. X <= ( b |^ m ) * ( b |^ m ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 or i = q2 or i = q1 ; assume gR in the right st gR in the carrier of g ; let A1 , A2 be Subset of S , A be Subset of S ; x in h " P /\ [#] T1 & x in h " P ; 1 in Seg 2 & 1 in Seg 3 & 2 in Seg 3 ; reconsider X9 = X as non empty Subset of T99 , x be Element of T99 ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Source of G ) -valued ; n1 <= i2 + len g2 & i2 <= len g2 implies ( i1 + 1 ) + 1 <= i2 ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & u in the carrier' of G2 ; y = Re y + ( Im y ) * i ; ( ( - 1 ) |^ ( p ) ) mod p = 1 ; x2 is_differentiable_on ]. a , b .[ & x1 = ( f ^ ) . a ; rng M5 c= rng ( D2 | ( i + 1 ) ) ; for p being Real st p in Z holds p >= a ( cn ) * ( ( cn ) | K1 ) = proj1 * ( ( cn ) | K1 ) ; ( seq ^\ m ) . k <> 0 & ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A + B ) \ominus C h \equiv gg . ( mod ( P , T ) ) ; reconsider i1 = i-1 - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider ii = i - 1 as Element of NAT ; dom f c= [: the carrier of C , the carrier of C :] ; x in ( the Sorts of B ) . n ; len - ( f2 - f3 ) in Seg len ( f2 - f3 ) ; pp c= the topology of T & the topology of T c= the topology of T ; ]. r , s .[ c= [. r , s .] ; let B2 be Basis of T2 , a be Element of T2 ; G * ( B * A ) = ( id o1 ) * B ; assume that p , u , u , v is_collinear and u , v , v , w u1 ; [ z , z ] in union rng ( F . n ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , C = $1 .. S , D = $1 .. S , D = $1 .. S , E = $1 .. S , F = $1 .. S , G = $1 .. S , C LIN a1 , a3 , b1 & LIN a1 , b1 , c1 ; f " ( f .: x ) = { x } ; dom ( w2 ) = dom ( ( r12 ) * ( r12 ) ) ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; In * ( i , j ) = 0. ( K , n , j ) ; |. f . ( s . m ) -g .| < g1 ; q9 . x in rng ( q ^ <* x *> ) ; Carrier ( Lxy ) misses Carrier ( Lxy ) ; consider c being element such that [ a , c ] in G ; assume that NInt o = o9 and oInt o = o9 ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ C-1 ) .: Cj ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . j .] ; pred 0 <= x & x <= 1 & x ^2 <= x ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 - q `2 <> 0. TOP-REAL 2 ; Observe aelements ( S , T ) is non empty ; x be Element of S ~ ; cluster cluster cluster cluster cluster cluster cluster cluster cluster cluster cluster cluster \hbox { - } \rm id F -> one-to-one ; |. i .| <= - ( - ( 2 |^ n ) ) ; the carrier of I[01] = dom P & the carrier of I[01] = dom Q ; arccot * ( n + 1 ) ! > 0 * n ; S c= ( A1 /\ A2 ) /\ ( A3 /\ A3 ) ; a3 , a4 // a3 , b3 & a3 , a4 // b2 , b3 ; then dom A <> {} & dom A <> {} & rng A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y in X & z in Y ; set v2 = ( v /. ( i + 1 ) ) ; x = r . n .= ( r . n ) * ( r . n ) ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g c= the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = A2 & dom d2 = A2 ; 0 < ( p - ||. z .|| ) * ( ||. z .|| ) ; e . ( m + 1 ) <= e . ( m + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X -infty < Integral ( M , Im ( g | B ) ) ; cluster O \cup F -> \HM } for operation operation of X ; let U1 , U2 be non-empty MSAlgebra over S , f be Function of U1 , U2 ; Proj ( i , n ) * g is_differentiable_on X ; x , y , z be Point of X , p be Point of X ; reconsider pp = p . x as Subset of V ; x in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and b is lower and a <= b ; Int Cl ( A ) c= Cl Int Cl ( A ) ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 ) ^2 <= ( p `2 ) ^2 + ( p `2 ) ^2 ; Cl Q ` = [#] ( ( T | A ) | A ) ; set S = the carrier of T , T = the carrier of T ; set I8 = ' ( f |^ n ) , I8 = ' ( f |^ n ) , I7 = ' ( f |^ n ) , I8 = ' ( f |^ n ) , I8 = ' ( f |^ n ) ; len p - n = len ( p - n ) ; A is Permutation of Swap ( A , x , y ) ; reconsider ni = n\rbrace - ( n - 1 ) as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s ) ; let qm , qm be Element of M , q be Element of M ; a9 in the carrier of S1 & b9 in the carrier of S1 ; c1 /. n1 = c1 . ( n1 + 1 ) .= c2 . n1 + c2 /. ( n1 + 1 ) ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 ; y = ( f * ( S * ( x , y ) ) ) . x ; consider x being element such that x in an " A ; assume r in ( dist ( o , r ) ) .: P ; set i2 = len ( the \mathopen { - } h , 1 ) ; h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) = M . i ; reconsider m = ( x - 2 ) / ( 2 * x ) as Element of REAL ; U1 , U2 be Subspace of U0 , a be Element of U1 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p2 + 1 <= len p1 ; let T1 , T2 be Scott Scott topological of L , f be Scott topological \mathclose of T ; then x <= y & ( ex x st x in dom ( y | y ) ) ; set M = n -tuples_on m , S = n -tuples_on m , T = m -tuples_on n , M = m -tuples_on n , S = m -tuples_on n , T = m -tuples_on n ; reconsider i = x1 , j = x2 as Nat ; rng ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( z1 " = z1 " * ( z2 " * ( z2 " ) ) ; x0 - r / 2 in L /\ dom f ; then w is that w is rng w /\ ( L \/ S ) <> {} ; set x-10 = xZ ^ <* Z *> , xZ = xZ ^ <* Z *> ; len w1 in Seg len ( w1 ^ w2 ) & len ( w2 ^ w2 ) = len w1 + len w2 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of |. - ( V , { k } ) .| ; x . n = ( |. a . n .| ) * ( |. b . n .| ) ; ( p `1 ) ^2 <= ( G * ( 1 , 1 ) `1 ) ^2 ; rng ( g ) c= L~ ( g | ( L~ g ) ) \/ L~ ( g | ( L~ g ) ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n be Nat holds F . n is non empty & F . n is non empty ; reconsider x9 = x9 , y9 = y9 as VECTOR of M ; dom ( f | X ) = X /\ dom f .= X ; p , a // p , c & b , a // c , c ; reconsider x1 = x as Element of REAL m , x0 be Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ( ( \in dom g ) . ( f . ( k + 1 ) ) ) = p . ( f . ( k + 1 ) ) ; a / ( s . ( m - n ) ) / ( n - m ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume that B1 \/ C1 = B2 \/ ( C2 \/ C1 ) and B2 \/ C2 = C2 \/ C1 ; X . i = { x1 , x2 } . i .= X . i ; r2 in dom ( h1 + h2 ) & r1 in dom ( h1 + h2 ) ; - ( 0. R ) = a & b-0 = b ; F8 is_closed_on t2 , Q8 & F8 is_halting_on F8 , Q8 ; set T = -> InInInInIn\ ( X , x0 ) ; Int Cl ( Int Cl R ) c= Int Cl R ; consider y being Element of L such that c . y = x ; rng ( F . x ) = { F . ( x ) } ; G-23 \ { c } c= B \/ S \/ S ; f[#] ( X ) is_\! ] & f\HM ( X ) is_\! ] ; set Rj = the Element of P , Rj = the Element of P ; assume n + 1 >= 1 & n + 1 <= len M ; let k2 be Element of NAT , k be Nat ; reconsider pp = u as Element of ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) g . x in dom f & x in dom g ; assume that 1 <= n and n + 1 <= len f1 and f1 . n = f2 . n ; reconsider T = b * N as Element of G / ( N , G ) ; len ( ( P ^ ) . i ) <= len ( ( P ^ ) . j ) ; x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( ( A + B ) * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple ; f . x = a . i .= a1 . k .= a . k ; let f be PartFunc of REAL i , REAL , g be PartFunc of REAL i , REAL ; rng f = the carrier of ( Carrier A ) \/ { i } ; assume s1 = sqrt ( |[ 2 , p ]| ^2 ) ; pred a > 1 & b > 0 & a / b > 1 ; let A , B , C be Subset of [: I , J :] ; reconsider X0 = X , X0 = Y as RealNormSpace ; let f be PartFunc of REAL , REAL , g be PartFunc of REAL , REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; t-3 , t-3 be binary st t-3 , tt2 , tt2 is_collinear holds tt1 , tt2 , tt2 is_collinear Q [ e-14 \/ { vp2 } , f ] ; g \circlearrowleft ( W-min L~ z ) = z implies ( g /. len z ) .. z = ( z /. len z ) .. z |. |[ x , v ]| - |[ x , y ]| .| = vrelational : y = vrelational ; - f . w = - ( L * w ) ; z - y <= x iff z <= x + y & x <= z - y ; ( 7 / ( 1 + e ) ) ^2 > 0 ; assume X is BCK-algebra & 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 .= ( f | X ) . x2 ; ( ( tan * tan ) `| Z ) . x in dom sec & ( sec * sec ) . x = f . x ; i2 = ( f /. len ( f | ( len f -' 1 ) ) ) . ( len f -' 1 ) ; X1 = X2 \/ ( X1 \ X2 ) ; [. a , b , 1_ G .] = 1_ G implies a = 1_ G let V , W be non empty VectSpStr over F_Complex , f be FinSequence of V ; dom g2 = the carrier of I[01] & dom g2 = the carrier of I[01] ; dom ( f2 ) = the carrier of I[01] & dom ( f2 ) = the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: X .= proj2 .: X ; f . ( x , y ) = h1 . ( x , y ) ; x0 - r < a1 . n & x0 - r < a1 . n ; |. ( f /* ( s ^\ k ) ) . n - ( f /* ( s ^\ k ) ) .| < r ; len Line ( A , i ) = width A ; SFinSequence / ( S , g ) = ( S . g ) / ( S . f ) ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized ( p +* I ) ; i1 , i2 i2 & ( ( a , b ) := ( b , c ) ) does not destroy b1 ; ( ( #Z 2 ) + arccos ) . r = ( cos . r ) ^2 + 0 ; for x st x in Z holds f2 is_differentiable_in x & f2 is_differentiable_in x ; reconsider q2 = ( q - x ) / ( 2 * x ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 - 1 ; assume f in the carrier of [ X \to Omega Y ] ; F . a = H / ( x , y ) . a ; ( ( TRUE _ T ) at ( C , u ) ) . z = TRUE ; dist ( ( a * seq ) . n , h ) < r ; 1 in the carrier of [. 0 , 1 .] & 1 in [. 0 , 1 .] ; ( p2 `1 - x1 ) / ( 2 * x1 ) > - g / ( 2 * x2 ) ; |. r1 - p .| = |. a1 .| * |. thesis .| ; reconsider S-14 = 8 as Element of Seg ( len S ) ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W .order() = D0W as DW0 + 1 ; i1 = ma + n & i2 = [: \times the carrier of K :] & i1 = i2 ; f . a [= f . ( f .: O1 "\/" f .: a ) ; pred f = v & g = u , h = v + u ; I . n = Integral ( M , F . n ) ; chi ( [: the carrier of T , the carrier of T :] , S ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R \/ LSeg ( R , i ) ) ; set h = the continuous Function of X , R ; set A = { L . ( ( k + 1 ) + 1 ) where k is Nat : k < n } ; for H st H is atomic holds P7 [ H ] ; set b8 = S5 ^\ ( i + 1 ) , S8 = S5 + ( i + 1 ) ; Hom ( a , b ) c= Hom ( a opp , b opp ) ; ( 1 / ( n + 1 ) ) * ( 1 / ( n + 1 ) ) < ( 1 / ( n + 1 ) ) * ( 1 / ( n + 1 ) ) ; ( l . 1 ) = [ [ dom l , cod l ] , cod l ] ; y +* ( i , y /. i ) in dom g ; let p be Element of CQC-WFF ( Al ) , x be Element of CQC-WFF ( Al ) ; X /\ X1 c= dom ( ( f1 - f2 ) | X ) ; p2 in rng ( f /^ ( len p1 ) ) \/ rng ( f /^ ( len p1 ) ) ; 1 <= indx ( D2 , D1 , j1 ) + 1 - 1 ; assume x in K2 /\ ( ( K \/ L ) /\ ( L \/ K ) ) ; - 1 <= ( ( f2 ) . O ) `2 & - 1 <= ( ( f2 ) . O ) `2 ; f , g be Function of I[01] , TOP-REAL 2 , a , b , c be Real ; k1 - k2 = k1 - k2 - k2 .= k1 - k2 - k2 .= k1 - k2 - k2 - k2 ; rng seq c= ]. x0 - r , x0 .[ & rng seq c= ]. x0 - r , x0 .[ ; g2 in ]. x0 - r , x0 + r .[ & g2 in ]. x0 - r , x0 + r .[ ; sgn ( p `1 , K ) = - 1_ K & sgn ( p `2 , K ) = - 1_ K ; consider u being Nat such that b = p |^ y * u ; ex A being the the the function of A st a = Sum A ; Cl ( union ( H ) ) = union ( \mathop { \rm Int } H ) ; len t = len t1 + len t2 .= len t2 + len t2 .= len t2 + len t2 ; v-29 = v + w |-- ( A + B ) ; v <> DataLoc ( t3 . GBP , 3 ) & v <> DataLoc ( t3 . GBP , 3 ) ; g . s = sup ( d " { s } ) ; ( \dot y ) . s = s . ( y . s ) ; { s : s < t & t = {} + s } = {} ; s ` \ s = s ` \ ( 0. X \ s ) .= ( 0. X \ s ) \ ( 0. X \ s ) ; defpred P [ Nat ] means B + $1 in A & $1 in B ; ( 329 + 1 ) ! = 329 ! * ( 329 + 1 ) ; U U U ( ) = ( 1_ ( A ( ) ) ) * ( 1_ ( A ( ) ) ) ; reconsider y = y as Element of ( len y ) -tuples_on the carrier of K ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f ; reconsider p = Y | Seg k as FinSequence of ( the carrier of K ) * ; set f = ( S , U ) \mathop { I } ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , TOP-REAL n , a be Real ; ( SAT M ) . [ n + i , 'not' A ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; R1 , R2 be Element of ( n + 1 ) -tuples_on REAL , a be Element of REAL ; reconsider l = 0. ( V ) as Linear_Combination of A ; set r = |. e .| + |. w .| + |. s .| ; consider y being Element of S such that z <= y and y in X ; a is ' of 'not' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ; ||. ( x - g ) . ( y - g ) .|| < r2 / 2 ; b9 , a9 // b9 , c9 & b9 , c9 // b9 , c9 ; 1 <= k2 -' k1 & k2 + 1 = k2 - k1 & k1 + 1 = k2 - k1 + 1 ; ( ( p `2 ) ^2 - ( p `2 ) ^2 ) >= 0 ; ( ( q `2 ) ^2 - ( q `1 ) ^2 ) / ( 1 + ( q `2 ) ^2 ) < 0 ; E-max C in cell ( Rl , 1 , 1 ) & E-max L~ Cage ( C , n ) c= L~ Cage ( C , n ) ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( lim F ) = Re ( lim G ) .= Re ( lim G ) ; LIN b , a , c or LIN b , c , a ; p `1 , a // a `1 , b `1 or p `1 , a `2 or p `2 = b ; g . n = a * Sum ( f | n ) .= f . n * Sum ( f | n ) ; consider f being Subset of X such that e = f and f is \rangle ; F | ( N2 , S ) = CircleMap * ( F | ( N2 , S ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } .= { 0. V } ; rng ( ( - 1 ) (#) cos ) = [. - 1 , 1 .] .= [. - 1 , 1 .] ; assume that Re seq is summable and Im seq is summable and Im seq is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 as 0 -element string of S2 , T2 be 0 -element string of S2 ; reconsider x9 = seq . n as sequence of ( TOP-REAL n ) * ( seq . n ) ; assume that that C meets L~ go and L~ co /\ L~ co = { pion1 /. 1 } and L~ co /\ L~ co = { pion1 /. 1 } ; - ( ( - 1 ) * x ) < F . n - F . x ; set d1 = \bf dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d2 = dist ( x2 , z2 ) , d2 = dist ( x2 , z2 ) ; 2 |^ ( 1 - 1 ) = ( 2 |^ 1 ) - 1 ; dom ( v | Seg len ( d ^ <* e *> ) ) = Seg len ( d ^ <* e *> ) ; set x1 = - ( ( k + 1 ) + |. k + 1 .| ) , x2 = - ( k + 1 ) ; assume for n being Element of X holds 0. ( \overline { F . n } ) <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( Carrier ( Lj + L2 ) ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal w.r.t. of {} ; Z c= dom ( ( - sin ) (#) ( sin * f ) ) ; |. 0 - ( 0. TOP-REAL 2 ) - ( q `2 ) .| < r / 2 ; ConsecutiveSet2 ( A , succ d ) c= ConsecutiveSet2 ( A , succ d ) ; E = dom ( L ) & L is_measurable_on E & ( L ) . E is_measurable_on E ; C |^ ( A + B ) = C |^ B * C |^ A ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of V ; I . IC Comput ( P , s , m ) = P . IC Comput ( P , s , m ) .= ( card I + 1 ) ; pred x > 0 means : Def2 : ( 1 / 2 ) |^ ( - x ) = x |^ ( - x ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , R .] ; b , c are_connected & - C , - C + - C + - C + - D + - D + - D + - E , - F + ( - C + - D ) + - F , G + - C + ( - D ) + D + - E + F + D + assume f = id ( the carrier of O ) & g = id ( the carrier of O ) ; consider v such that v <> 0. V and f . v = L * v ; let l be or of {} ( the carrier of V ) , a be Element of V ; reconsider g = f " as Function of U2 , U1 ; A1 in the points of ( k , X ) . ( X . ( k + 1 ) ) ; |. - x .| = - ( - x ) .= - x .= - x .= - x ; set S = \mathop { \rm Fib ( n ) * ( 5 * Fib ( n ) - 1 ) >= 4 * 1 ; vM /. ( k + 1 ) = vM . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - ( i * ( 0 qua Nat ) ) ; Indices M1 = [: Seg n , Seg n :] & [: Seg n , Seg n :] c= Indices M1 ; Line ( Sj , j ) = Sj . j .= S . j ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y1 , y2 ] ; |. f - Re ( |. f .| ) * ( ( card b ) * h ) .| is nonnegative ; assume x = ( a1 ^ <* x1 *> ) ^ ( b1 ^ <* x1 *> ) ; Mj is_closed_on IExec ( I , P , s ) , P , s ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) ; x + y < - x + y & |. x - y .| = - x + y ; LIN c , q , b & LIN c , q , c ; f^ . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x + ( y + z ) ; flim . a = flim . a .= v . a .= v . a .= v . a ; ( p `1 ) ^2 <= ( ( E-max C ) `1 ) ^2 + ( ( E-max C ) `1 ) ^2 ; set R8 = Cage ( C , n ) \circlearrowleft E8 , R7 = Cage ( C , n ) ; ( p `1 ) ^2 >= ( ( E-max C ) `1 ) ^2 + ( ( E-max C ) `1 ) ^2 ; consider p such that p = pp and s1 < p /. i and p <> 0. TOP-REAL 2 ; |. ( f /* ( s * F ) ) . l - ( f /* F ) . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 + 1 ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = f1 . x0 ; f . x1 = x1 & f . y1 = y1 & f . y2 = y1 ; len f <= len f + 1 & len f + 1 <> 0 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m & rng s c= REAL m ; n = k * ( 2 * t ) + ( n mod ( 2 * k ) ) ; dom B = 2 -tuples_on the carrier of V , the carrier of V , A = [: the carrier of V , the carrier of V :] ; consider r such that r _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 in [. 1 / 2 , 1 .] ; for L being complete LATTICE holds <* <* <* <* C , D *> , L *> *> , [ c , d ] *> *> is isomorphic [ gi , gj ] in Ij \ Ij ; set S2 = 1GateCircStr ( x , y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and f3 is_differentiable_in x0 and reconsider y = ( a " ) / ( F . ( len F ) ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - g ) ) . c <= h . c ; set G2 = the subgraph of G , e = the Vertex of G , a = the Vertex of G , b = the Vertex of G ; reconsider g = f as PartFunc of REAL , REAL-NS n , REAL-NS n ; |. s1 . m / |. p .| * ( p / |. p .| ) / ( |. p .| ) < d / ( |. p .| ) ; for x being element st x in ( 1 - t ) holds x in ( 1 - t ) * ( 1 - t ) P = the carrier of ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( assume that p10 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) and LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) <> {} ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c ) * d <= 2 * C1 * C2 ; f , g , h be Point of the complex normed space of X , Y be bounded Function of X , Y ; set h = Hom ( a , g ) ; then idseq ( n ) | Seg m = idseq ( m ) & m <= n ; H * ( g " * a ) in the right of H * ( g " * a ) ; x in dom ( ( - cos ) `| Z ) & x in dom ( ( - sin ) `| Z ) ; cell ( G , i1 -' 1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 ) misses C ; LE q2 , q1 , P , p1 , p2 & LE q2 , q1 , P , p1 , p2 ; attr B is non \subseteq BDD A means : Def2 : B c= BDD A ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len ( p9 + - n ) - n + n - n ; pred a <> 0. K means : Def2 : the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom \mathbb Z and I = len TOP-REAL j + j ; consider x1 such that z in x1 and x1 in P8 and x = [ x1 , y1 ] ; for n ex r being Element of REAL st X [ n , r ] set CP1 = Comput ( P2 , s2 , i + 1 ) , CP2 = Comput ( P2 , s2 , i + 1 ) , CP2 = P2 ; set cv = 3 / ( a , b , c ) , cj = - ( a + b ) / ( a , b , c ) ; conv ( F .: W ) c= union ( F .: ( E " ( W ) ) ) ; 1 in [. - 1 , 1 .] /\ dom ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( 1 + 1 ) ) ) ; r3 <= s3 + ( ( r2 - s3 ) / 2 ) * ( ( r2 - s3 ) / 2 ) ; dom ( f * ( f3 ) ) = dom f /\ dom f3 .= dom f /\ dom f3 .= dom f /\ dom f3 ; dom ( f * G ) = dom ( l (#) F ) /\ Seg k .= Seg ( k + 1 ) ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider g9 = gp as Point of ( TOP-REAL n ) | ( L~ h ) ; ( T * h . s ) . x = T . ( h . s . x ) ; I . ( L . ( J . x ) ) = ( I * L ) . x ; y in dom <* *> implies ( Frege *> ) . ( ( Frege ( A . o ) ) . y = ( Frege ( A . o ) ) . y ; for I being non degenerated commutative commutative commutative commutative non empty doubleLoopStr holds I is commutative set s2 = s +* ( intloc 0 ) , P2 = P +* Start-At ( 0 , SCM+FSA ) ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= ( P1 . IC s2 ) . IC s2 .= ( P1 . IC s2 ) . IC s2 ; lim S1 in the carrier of [: a , b :] & lim S1 in the carrier of [: a , b :] ; v . ( ( l *' ) . i ) = ( v *' ( l *' ) ) . i ; consider n being element such that n in NAT and x = seq . n ; consider x being Element of c such that F1 . x <> F2 . x and x in dom ( F1 . x ) ; ( cluster cluster cluster cluster cluster cluster cluster cluster X1 ( 0 , 0 , x1 , x2 , x3 ) -> { 0 } ) -> { 0 , 1 , 2 , 3 } ; j + ( 2 * ( k + 1 ) ) > j + ( 2 * ( k + 1 ) ) ; { s , t } on A3 & { s , t } on A3 ; n1 > len crossover ( p2 , p1 , n1 , n2 ) & n2 <= len crossover ( p2 , p1 , n1 , n2 ) ; ( ( ( for g2 ) /. ( HT ( g2 , T ) ) ) ) . ( HT ( g2 , T ) ) = 0. L ; then H1 , H2 are_: H , H1 are_that Cl H1 , H2 are_are that H , H1 are_/ 2 ; ( ( N-min L~ f ) .. f ) .. f > 1 & ( ( N-min L~ f ) .. f ) .. f > 1 ; ]. s , 1 .[ = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) & x2 in ( ( TOP-REAL 2 ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , f be PartFunc of S , REAL ; DigA ( ti1 , zi2 ) is Element of k -tuples_on ( the carrier of K ) ; I \mathop { \rm Int 22j } = d & I \mathop { \rm Int 2j } = k2 ( ) ; u9 ~ = { [ a , u9 ] } .= { [ a , u9 ] } ; ( w | p ) | ( p | ( w | w ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u = v + ( u + u1 ) ; for y st y in rng F ex n st y = a |^ n & n <= len F ; dom ( ( g * ( ( _ 2 ) \dot \to C ) ) | K ) = K ; ex x being element st x in ( ( ( ( ( ( U0 ) \/ A ) . s ) ) . s ) ; ex x being element st x in ( ( Let ( ( ( ( ( O ) \/ A ) . s ) ) . s ) . x ) ; f . x in the carrier of [. - r , r .] & f . x in [. - r , - r .] ; ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} implies ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} ; L1 /\ LSeg ( p10 , p2 ) c= { p10 } /\ LSeg ( p1 , p2 ) ; ( ( b + bC ) / 2 ) in { r : a < r & r < b + a } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of G8 such that z = y and P [ z ] ; ( the sequence of ( ( the sequence of ( the carrier of X ) ) ) . ( x , y ) <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q in the carrier of ( ( TOP-REAL 2 ) | K1 ) ; f | ( E-4 ` ) = g | ( EK ` \ EK ) .= g | ( EK \ EK ) ; reconsider i1 = x1 , i2 = x2 , z = x3 as Element of NAT ; ( a * A ) ` = ( a * ( A * B ) ) ` ; assume ex n0 being Element of NAT st f |^ ( n + 1 ) is \mathop { \rm \hbox { - } F . n } ; Seg len ( ( ( f ^ ) | ( len ( f ^ ) ) ) ) = dom ( ( f ^ ) | ( len ( f ^ ) ) ) ; ( Complement ( Complement A1 ) ) . m c= ( Complement A1 ) . n \/ ( Complement A2 ) . ( n + 1 ) ; f1 . p = p9 & g1 . p = d & g1 . q = d & g2 . p = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; ( ( |. x .| ) |^ n ) / ( ( |. x .| ) |^ n ) <= ( ( |. r2 .| ) |^ n ) / ( ( |. x .| ) |^ n ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & rng ( F ) = dom f ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W3 and W1 is Subspace of W2 ; ||. ( t-15 . x ) .|| = lim ||. ( vseq . x ) .|| .= ||. ( vseq . x ) .|| .= ||. ( vseq . x ) .|| ; assume that i in dom D and f | A is lower and g | A is lower ; ( ( p `2 ) ^2 - 1 ) * ( 1 + 1 ) <= ( - 1 ) * ( - 1 ) ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) ; set N8 = N-min L~ Cage ( C , n ) , N8 = Cage ( C , n ) ; for T being non empty TopSpace holds T is countable countable implies T is countable width B |-> 0. K = Line ( B , i ) .= Line ( B , i ) .= B * ( i , j ) ; attr a <> 0 implies ( A ^^ B ) Y. = ( A Y. ) Y. ; then f is_partial_differentiable_in u0 , u & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and b <> 0 and c <> 0 and d <> 0 and d <> 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } ; p2 /. IC Comput ( p2 , s2 , k ) = p2 . IC Comput ( p2 , s2 , k ) .= ( card I + ( card J + 2 ) ) ; ind ( T-10 | b ) = ind b .= ind B - ind b .= ind B - ind B .= ind B - card A ; [ a , A ] in the lines of G_ ( k , X ) & [ a , A ] in the lines of G_ ( k , X ) ; m in ( the Arrows of \HM { C , o } ) . ( o1 , o2 ) ; ( ( ( a , CompF ( PA , G ) ) ) . z = FALSE ; reconsider phi = phi /. 11 , phi = phi /. 2 as Element of ( len phi ) -tuples_on BOOLEAN ; len s1 - ( len s2 - 1 ) + 1 > 0 + 1 - 1 + 1 ; \delta ( D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the carrier' of A & [ f22 , f22 ] in the carrier' of A ; the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 ; consider z being element such that z in dom g2 and p = g2 . z and y = g2 . z ; [#] ( V1 ) = { 0. V } .= the carrier of ( V ) .= the carrier of ( V ) ; consider P2 being FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P [ P2 ] ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ; c /. ( |[ b , c ]| ) = c /. ( |[ a , c ]| ) .= c /. ( |[ b , c ]| ) .= c /. ( |[ b , c ]| ) ; reconsider t1 = p1 , t2 = p2 , t2 = p3 as Term of C , V ; ( 1 / 2 ) * ( ( 1 / 2 ) * ( 1 / 2 ) ) in the carrier of [. 0 , 1 .] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( ( p1 `2 ) - D ) + D * ( ( p1 `2 ) - D ) ; R . ( b b ) implies 2 * \lbrack b , a :] = 2 * b - a .= 2 * b - a .= b ; consider \bf such that B = ( - 1 ) * C + ( - 1 ) * A and 0 <= 1 ; dom g = dom ( ( the Sorts of A ) * ( ( the Sorts of A ) * ( ( the_arity_of o ) /. i ) ) ; [ P . ( l1 ) , P . ( l1 ) ] in => ( T . ( l1 ) , T . ( l1 ) ) ; set s2 = Initialize s , s3 = Initialize s , s3 = P +* I ; reconsider M = mid ( z , i2 , i1 ) as non constant Matrix of 2 , ( len z ) , ( len z ) , ( len z ) , ( len z ) , ( len z ) , ( len z ) , ( len z ) , ( len z ) ) ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 ; assume x in the left of g or x in the left of g or x in the left of g ; consider M being strict Subgroup of A9 such that a = M and T is and M is Subspace of M ; for x st x in Z holds ( ( ( - 1 ) (#) f ) `| Z ) . x <> 0 & f . x <> 0 ; len ( W1 + W2 ) = 1 + len ( W2 + W3 ) .= len ( W1 + W3 ) + len ( W2 + W3 ) ; reconsider h1 = ( vseq . n - t-16 ) . t as Lipschitzian LinearOperator of X , Y ; ( i mod len ( p + q ) + 1 ) in dom ( p + q ) ; assume that s2 is conjunctive and F in the |= of ( the |= of s2 ) and F in the |= of ( the |= of s2 ) ; ( ( ( ( x , y ) ) * ( 1 , y ) ) * ( x , y ) ) = ( x * y ) * ( x , y ) ; for u being element st u in Bags n holds ( p + m ) . u = p . u ; for B being Subset of u-5 st B in E holds A = B or A misses B ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ { p } ; x in { X where X is Ideal of L : P [ X ] } implies x in { X where X is Subset of L : P [ X ] } the carrier of W1 /\ W2 c= the carrier of V & the carrier of W1 /\ W2 c= the carrier of V ; ( ( 1 + b ) * id a ) * ( id a ) = ( 1 + b ) * id a ; ( ( X --> f ) . x ) . x = ( X --> f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => ( p => r ) ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( - ( 2 |^ ( n -' m ) ) * ( - 1 ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( ( f1 (#) f2 ) . x ) ; assume that b1 . r = { c1 . r } and b2 . r = { c2 . r } and b2 . r = { c2 . r } ; ex P st a1 on P & a2 on P & b on P & c on P & d on P & d on P ; reconsider gf = g `2 * f , hg = h `2 * g as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in F ; n in { i where i is Nat : i < n + 1 & n < len f + 1 + 1 } ; ( F /. ( i , j ) ) `2 >= ( ( F /. m ) /. ( i + 1 ) ) `2 ; assume K1 = { p : ( p `1 <= s & s >= 0 & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) ^ ( ConsecutiveSet ( A , O1 ) ) ; set I1 = Macro ( a , intloc 0 ) , I2 = [ a , intloc 0 , intloc 0 ] , I2 = [ a , intloc 0 , intloc 0 ] ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= ( the carrier of L1 ) /\ ( the carrier of L2 ) & X c= the carrier of L2 ; consider x9 being Element of GF ( p ) such that x9 |^ 2 = a and x9 |^ 2 = a ; reconsider ej = ej , fj = fj , fn = fj as Element of D ( ) ; ex O being set st O in S & C1 c= O & M . O = 0. ( Cl O ) ; consider n being Nat such that for m being Nat st n <= m holds S . m in U1 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) * g ) . x ; defpred P [ Nat ] means A + ( succ $1 ) = succ A + ( succ $1 ) & ( A + ( succ $1 ) = A + ( succ $1 ) ; the left of - g = the left of ( - g ) .= ( the left st g ) * ( - g ) ; reconsider pp = x , pp = y , pp = z as Point of Euclid 2 , p = p , q = q , r = p ; consider g2 such that g2 = y and x <= g2 and g2 <= x0 and g2 <= x0 and x0 <= g2 & g2 <= x0 and g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 .= len ( x2 ^ y2 ) + len ( y2 ^ y1 ) .= len ( x2 ^ y2 ) + len ( y2 ^ y1 ) ; for x being element st x in X holds x in the set of \HM { the } \HM { positive } \HM { of n , m } & x <> m implies x = ( the set of m ) . ( n , m ) LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} or LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} ; func ex ex X be set st ( for x being set holds x in X iff x in Z ) & ( F . ( id X ) = X ) ; len ( ( { Gauge ( C , n ) /. ( len ( Cage ( C , n ) ) , 1 ) ) `1 ) <= len ( ( Cage ( C , n ) /. len ( Cage ( C , n ) ) ) `1 ) ; attr K has a is valuation & a <> 0. K & v . ( a |^ i ) = i * v . ( a |^ i ) ; consider o being OperSymbol of S such that t `1 . {} = [ o , the carrier of S ] ; for x st x in X ex y st x c= y & y in X & y is Set & f . x = f . y ; IC Comput ( P-6 , k ) in dom ( ( n + 1 ) .--> ( n + 1 ) ) ; pred q < s & r < s & s < q & p , q , r is_collinear ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) . ( c , d ) ; func ( the ResultSort of S2 ) . ( ( the ResultSort of S2 ) . ( ( the ResultSort of S2 ) . ( ( the ResultSort of S2 ) . ( ( the ResultSort of S2 ) . ( ( the ResultSort of S2 ) . ( ( the ResultSort of S1 ) . ( ( the ResultSort of S2 ) . ( ( the ResultSort of S1 ) . ( ( the ResultSort of S1 ) . ( ( the ResultSort of S1 ) set yy = [ <* y , z *> , f2 ] , y2 = [ <* z , x *> , f3 ] ; assume x in dom ( ( ( - ( #Z 2 ) * ( ( #Z 2 ) * ( f ^ ) ) ) `| Z ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f \/ L~ f ; ( q `2 ) ^2 >= ( ( Cage ( C , n ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a ` : a in X } ; i - len f <= len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - for n ex x st x in N & x in N1 & h . n = x- ( x0 - x ) set s0 = ( \mathop { \it SCMPDS } , p , s ) . i , p = ( \mathop { \it SCMPDS } , p ) . i , s = ( \mathop { \it SCMPDS } ) . i , n = 0 ; p . ( k + 1 ) = 1 or p . ( k + 1 ) = - 1 or p . ( k + 1 ) = - 1 ; u + Sum ( L-18 ) in ( U \ { u } ) \/ { u + Sum ( L-18 ) } ; consider x9 being set such that x in x9 and x9 in V and x9 in V and x9 in V ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( len p - len p ) ; g + h = gg + hh & ||. g + h .|| = g + h ; L1 is distributive & L2 is distributive implies L1 ~ is distributive & L2 ~ is distributive & L1 ~ is distributive pred x in rng f & y in rng ( f | x ) implies f . x = f . y ; assume that 1 < p and ( 1 + ( p `1 ) ^2 ) = 1 and 0 <= a and a <= b and b <= 0 ; FM * ( f , <* the carrier of L *> ) = rpoly ( 1 , the carrier of L ) *' t .= <* 0. L *> ; for X being set , A being Subset of X holds A ` = {} implies A = {} & A = {} ; ( ( ( ( ( ( ( ( X ) ) ) ) ) `1 ) ) ) `1 <= ( ( ( ( ( ( ( ( X ) ) ) ) ) ) ) ) ) `1 ) ) `1 ; for c being Element of the Sorts of A , a being Element of the Sorts of A holds c <> a ; s1 . GBP = ( Exec ( i2 , s2 ) ) . intpos ( 0 + 1 ) .= 0 .= 0 ; for a , b being Real holds [ a , b ] in ( y iff b >= 0 & a >= 0 ) implies b >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` mode BCK-algebra of i , j , m , n , m , n , m , n be Element of NAT , i , j be Element of NAT ; set x2 = |( Re y , Im y )| ; [ y , x ] in dom ( u . y ) & ( u . y ) . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A & upper_bound divset ( D , k ) = lower_bound A ; 0 <= \delta ( S2 . n ) & |. \delta ( S2 . n ) .| < ( e / 2 ) * ( e / 2 ) ; ( - ( q `1 / |. q .| - cn ) ) ^2 <= ( - ( q `1 / |. q .| - cn ) ) ^2 ; set A = ( 2 / 2 ) * ( b - a ) ; for x , y being set st x in R" holds x , y are_\hbox { x , y } deffunc F ( Nat ) = b . ( $1 + 1 ) * ( M * ( $1 , 1 ) ) ; for s being element holds s in non empty iff s in non empty & s in non empty s \/ non empty s ; for S being non empty non void holds S is connected holds S is connected implies S is connected max ( ( degree ( K ) ) / ( 1 + ( d ) ) ^2 ) >= 0 ; consider n1 being Nat such that for k holds seq . ( n1 + k ) < r + s . ( n1 + k ) ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( A ) ; set n-15 = nj '&' ( M . ( x qua Element of BOOLEAN ) ) , nj = M . ( x , y ) ; f " in such that f " V in consider X and f " V in D ( the carrier of S ) and f " V in D ( the carrier of S ) ; rng ( ( a ^\ c ) ^\ ( 1 + b ) ) c= { a , c , b } ; consider y being connected subgraph of G1 such that y `2 = y and dom y `2 = WW: 1 <= y & y `2 <= WW: y `2 <= G * ( y `2 } ; dom ( ( 1 / 2 ) (#) f ) /\ ]. x0 - r , x0 .[ c= ]. x0 - r , x0 .[ & dom ( ( 1 / 2 ) (#) f ) /\ ]. x0 , x0 + r .[ c= ]. x0 , x0 + r .[ ; as Element of -> Element of -> Element of -> Element of -> Element of -> Element of -> Element of [#] ( i , j , n ) ; v ^ ( ( n |-> 0 ) ^ ( ( n |-> 0 ) ^ ( n |-> 0 ) ) ) in Lin rng ( ( n |-> 0 ) ^ ( n |-> 0 ) ) ; ex a , k1 , k2 st i = a /. ( k1 + k2 ) & i = b /. ( k2 + k2 ) ; t . ( NAT ) = ( NAT .--> succ i1 ) . ( NAT + 1 ) .= ( NAT --> NAT ) . ( NAT + 1 ) .= ( NAT --> NAT ) . ( NAT + 1 ) .= ( NAT --> NAT ) . ( NAT + 1 ) .= ( NAT --> NAT ) . ( NAT + 1 ) ; assume that F is bbfamily and rng p = F and rng p = Seg ( n + 1 ) and for i st i in Seg ( n + 1 ) holds p . i = F . i ; not LIN b , a , c & not LIN b , a , c & not LIN b , a , c ; ( L1 \& L2 ) \& O c= ( L1 \& O ) \& O & ( L1 Let O ) \& O c= ( L1 \& O ) \& O ; consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) ; consider a , b such that a * ( \rrangle = b * ( -w ) and 0 < a and a < b ; defpred P [ FinSequence of D ] means |. Sum ( $1 ) .| <= Sum ( |. $1 .| ) ; u = cos / ( x , y ) * x + cos / ( x , y ) * y .= v . x + ( cos / ( x , y ) * y ) .= v . y ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , |. p .| ^ <* {} *> , ( id the Sorts of A ) ^ <* id *> ] ; consider X being Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and X is ininand X is inin; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) - 1 + ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & h . l1 <= ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( ( h . l1 ) * ( h . ( Partial_Sums ( ( G . n ) vol ) ) . ( n + 1 ) <= ( Partial_Sums ( ( G . n ) ) ) . ( n + 1 ) ; f . y = x .= x * 1_ L .= x * ( 1_ L ) .= x * ( power L ) . ( y , 0 ) .= x * ( power L ) . ( y , 0 ) ; NIC ( ( \bf if i1 , i2 ) \ { ( l , k ) } , ( l , k ) \ { ( l , k ) } ) = { ( ( i1 , ( l , k ) } \ { ( l , k ) } ) } ; LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 , p2 } /\ LSeg ( p1 , p2 ) ; product ( ( the carrier of I-15 ) +* ( i , { 1 } ) ) in Z ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) .= Following ( s1 , n ) . ( n + 1 ) ; ( W-bound ( Q ) ) <= ( q `1 ) / ( 2 * ( ( q `1 ) ) / ( 2 * ( ( q `1 ) ) ^2 ) ) ; f /. i2 <> f /. ( len f + 1 -' len g ) .= f /. ( len f + 1 -' len f ) ; M , v / ( x. 3 , a ) / ( x. 4 , a ) / ( x. 0 , a ) / ( x. 0 , a ) / ( x. 4 , a ) |= H ; len ( ( P ^ ) ^ ( ( P ^ ) ) ) in dom ( ( P ^ ) ^ ( ( P ^ ) ) ) ; A |^ ( m , n ) c= A |^ ( m , n ) & A |^ ( k , n ) c= A |^ ( k , l ) ; R |^ n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. |. ( v . v ) .| * ||. v .|| for phi st phi in X holds not phi in X & not phi in X & not phi in X & not phi in X & not phi in X rng ( ( Sgm dom ( f | ( dom f ) ) | ( dom ( f | ( dom f ) ) ) ) ) c= dom ( ( f | ( dom f ) ) | ( dom ( f | ( dom f ) ) ) ) ; ex c being FinSequence of D ( ) st len c = k & P [ c ] & a = c . 1 & b = c . 2 ; ( the_arity_of ( a , b , c ) ) = <* ( Hom ( b , c ) ) . ( a , b ) , ( F . ( b , c ) ) *> ; consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and f1 | X is continuous ; a1 = b1 & a2 = b2 or a1 = b1 or a2 = b2 or a1 = b1 & a2 = b2 & a3 = b3 & a4 = 6 & b1 = 6 & b1 = 7 & b2 = 6 & b1 = 6 & b2 = 7 & b1 = 6 & b2 = 6 & b1 <> 7 ; D2 . ( indx ( D2 , D1 , n1 ) + 1 ) = D1 . ( indx ( D2 , D1 , n1 ) + 1 ) .= D2 . ( indx ( D2 , D1 , n1 ) + 1 ) ; f . ( ||. |[ r , s ]| .|| ) = ||. |[ r , s ]| .|| /. 1 .= <* r *> . 1 .= r . 1 .= r . 1 .= r . 1 .= r . 1 ; consider n be Nat such that for m being Nat st n <= m holds Cseq . m = Cseq . ( m + n ) ; consider d being Real such that for a , b being Real st a in X & b in Y holds a <= d & b <= d ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative associative associative associative for f , g being Element of X holds F \hbox { b , f } = f . b ; p = - 1 * ( p0 + 0. TOP-REAL 2 ) .= 1 * ( p1 + 0. TOP-REAL 2 ) .= 1 * ( p1 + 0. TOP-REAL 2 ) .= ( 1 - 1 ) * p1 + ( 1 - 1 ) * p2 .= ( 1 - 1 ) * p1 + ( 1 - 1 ) * p2 ; consider z1 such that b , x3 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 7 7 8 8 8 8 8 8 * ||. o , o .|| = o + b1 ; consider i such that Arg ( Rotate ( s ) ) = s + Arg ( q ) and 0 <= i and i <= 2 * PI + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card f and rng g c= f . x and g . x = f . x ; assume that A = P2 \/ Q2 and P <> {} and Q <> {} and Q <> {} and Q <> {} and Q <> {} and Q <> {} and Q <> {} and Q <> {} and Q <> {} and Q <> {} ; attr F is associative means : Let F .: ( F .: ( f , g ) , h ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x in z `1 & x in { i } or m in { i } ; consider k2 being Nat such that k2 in dom ( ( P . ( k + 1 ) ) . i and l . ( ( P . ( k + 1 ) ) . i ) = ( P . ( k + 1 ) ) . i ; seq = r * seq implies for n holds seq . n = r * seq . n & seq . ( n + 1 ) = r * seq . ( n + 1 ) F1 . [ [ id a , a ] , [ id a , a ] ] = [ f * ( id a ) , f * ( id b ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D & p in D } ; consider z being element such that z in dom ( ( F . 0 ) | ( dom F . 0 ) ) and ( ( F . 0 ) | ( dom F ) ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y ; cell ( G , i , 1 ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v . e ; ( F ` * b1 ) . x = ( Mx2Tran ( J , BY. , BY. ) ) . ( \mathbb j + 1 ) ; - 1 / ( ( - 1 ) (#) D ) = ( - 1 ) (#) D .= ( - 1 ) (#) D .= ( - 1 ) (#) ( - 1 ) .= ( - 1 ) (#) ( - 1 ) (#) D .= ( - 1 ) (#) ( - 1 ) ; attr for x being set st x in dom f /\ dom g holds g . x <= f . x & g . x <= f . x ; len ( f1 . j ) = len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) ; All ( 'not' All ( a , A , G ) , B , G ) |= Ex ( 'not' All ( 'not' a , B , G ) , A , G ) ; LSeg ( E . ( k + 1 ) , F . ( k + 1 ) ) c= Cl RightComp Cage ( C , k + 1 ) ; x \ ( a |^ m ) = x \ ( a |^ k * a ) .= ( x \ a ) |^ k .= ( x \ a ) |^ k ; k = ( ( commute ( I ) ) . k ) . ( ( commute ( I ) ) . k ) .= ( ( commute ( I ) ) . k ) . ( ( commute ( I ) ) . k ) .= ( ( commute ( I ) ) . k ) . ( ( commute ( I ) ) . k ) .= ( ( commute ( I ) ) . k ) . ( ( I . k ) . k ) ; for s being State of A holds Following ( s , n ) . ( ( n + 2 ) * n + ( 2 * n ) * n ) is stable ; for x st x in Z holds f1 . x = a / ( a - x ) & ( f1 . x ) <> 0 & ( f1 . x ) <> 0 implies ( f1 - f2 ) . x <> 0 support ( ( support ( n ) ) \/ support ( ( support ( m ) ) ) c= support ( ( support ( m ) ) ) \/ support ( ( support ( m ) ) ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier' of B ) * ( the Arity of C ) ; - ( a * sqrt ( 1 + ( a ^2 ) ) ^2 ) <= - ( b * sqrt ( 1 + ( a ^2 ) ) ^2 ) ; phi /. ( succ b1 ) = g . a & phi /. ( phi . ( succ b1 ) ) = f . ( g . ( succ b1 ) ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( F ^ <* p *> ) and i <> j ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 } \/ { x2 } ; the Sorts of U1 /\ ( ( U1 "\/" U2 ) "\/" ( U2 "\/" W3 ) ) c= the Sorts of U1 /\ ( ( U1 "\/" U2 ) "\/" ( U2 "\/" W3 ) ) ; ( - ( 2 * a ) ) * ( - ( 2 * a ) ) + b ^2 - ( - ( 2 * a ) ) * ( - ( 2 * a ) ) > 0 ; consider W00 such that for z being element holds z in W00 iff z in N ~ & P [ z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r and ( the Arity of S ) . o = <* a *> ; Z = dom ( ( exp_R * ( ( #Z n ) * ( f + #Z n ) ) ) `| Z ) .= dom ( ( #Z n ) * ( f + #Z n ) ) ; ||. integral ( f , S ) .|| is convergent & lim ( ( Im f ) * ( T . n ) ) = integral ( f , S ) ; ( ( a => ( f . ( a => b ) ) => ( f . ( x => b ) ) ) in non empty len ( M2 * M3 ) = n & width ( M2 * M2 ) = n & width ( M2 * M2 ) = n & len ( M2 * M1 ) = n ; attr X1 union X2 is open SubSpace of X & X1 , X2 X2 X2 X2 X2 iff X1 union X2 , X1 union X2 , X2 union X2 , X1 union X2 , X2 union X2 , X2 union X1 , X2 union X2 , X1 union X2 be SubSpace of X ; for L being upper-bounded antisymmetric RelStr , X being non empty RelStr , s being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-1be Function of [: the carrier of M , the carrier of M :] , the carrier of M = [: the carrier of M , the carrier of M :] , the carrier of M = [: the carrier of M , the carrier of M :] ; consider w being FinSequence of I such that the InitS { s } ^ w = <* s *> ^ w ^ w ^ w ^ y ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ G .= 1_ G .= 1_ G .= 1_ G .= 1_ G ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) . i ; ex L being Subset of X st Carrier L = L & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C2 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C2 ; reconsider o9 = o `2 as Element of TS ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( ( the_arity_of o ) . ( o ) ) ) ) ) ) ) ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) ; Ej " . 1 = ( ( E qua Function ) " . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E reconsider u1 = the carrier of ( U1 /\ ( U1 "\/" U2 ) ) as non empty Subset of ( U1 /\ U2 ) ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( x "/\" y ) ) "\/" ( x "/\" ( y "\/" z ) ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( l1 + 1 ) .| < ( 1 - M ) * ( 1 - M ) ; LSeg ( ( Cage ( C , n ) /. ( i + 1 ) , ( Gauge ( C , n ) /. ( i + 1 ) ) , ( i + 1 ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- ( x - x0 ) ) + R /. ( x- ( x - x0 ) ) ; g . c * ( - g . c ) + f . c <= h . c * ( - f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the carrier of ( the carrier of A ) and ColVec2Mx f = ( ColVec2Mx b ) and len f = len b and width f = width A and width f = width A ; len ( - M1 ) = len M1 & width ( - M1 ) = width M1 & width ( - M1 ) = width M1 & width ( - M1 ) = width M1 & width ( - M1 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( n + 1 ) & [ i + 1 , j ] in the InternalRel of ( n + 1 ) ; pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in u0 , 2 & pdiff1 ( f1 , 2 ) is_partial_differentiable_in u0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in u0 , 2 ; attr a <> 0 & b <> 0 & Arg a = Arg b & Arg b = Arg a & Arg a = Arg b & Arg b <> 0 & Arg a <> 0 & Arg b <> 0 & Arg a <> 0 & Arg b <> 0 & Arg b <> 0 & Arg c <> 0 & Arg a <> 0 & Arg b <> 0 & Arg c <> 0 ; for c being set st not c in [. a , b .] holds not c in Intersection ( the topology of a , b ) & not c in Intersection ( the topology of a , b ) assume that V1 is linearly-independent and V2 is linearly-independent and V = { v + u : v in V1 & u in V1 & u in V1 & v in V1 & u in V1 & v in V1 & u in V1 & v in V1 & u in V1 & v in V1 & v in V1 & u in V1 & v in V1 & u in V1 & v in V1 & v in V1 & u in V1 ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N ; rng ( ( ( ( ( ( ( ( ( P ) ) qua Function ) " ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) ) ) ) = Seg card ( ( ( d * ( P ) ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) * ( ( P ) ) ) ) ; consider s2 being rational Real_Sequence such that s2 is convergent and b = lim s2 and for n holds s2 . n <= ( lim s2 ) * ( lim s2 ) ; h2 " . n = h2 . n " & 0 < ( - 1 ) / ( ( - 1 ) |^ n ) & 0 < ( - 1 ) / ( ( - 1 ) |^ n ) ; ( Partial_Sums ( ||. seq .|| ) ) . m = ||. ( seq ) . m - ( seq ) . ( n + 1 ) .|| .= ||. ( seq ) . m - ( seq ) . n .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) . b ) . b .= ( Comput ( P2 , s2 , 1 ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b ; - v = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & - w = ( - 1_ G ) * v ; upper_bound ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) .: ( ( k .: D ) ) ) ) ) ) ) ) ) ) A |^ ( k , l ) ^^ ( ( A |^ n ) * ( A |^ k ) ) = ( A |^ n ) ^^ ( A |^ k ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) ) ^2 .= ( sqrt ( ( p `1 ) ^2 + ( p `2 ) ^2 ) ) ^2 ; for a , b being non zero Nat st a , b are_relative_prime holds ( a * b ) div ( b * a ) = ( \mathop { \rm _ a * b ) * ( ( a * b ) div ( b * a ) ) consider A5 being countable Subset of Al such that r is Element of CQC-WFF ( Al ) and A5 is ( A ) ` and ( A is ( ) ) ` and ( A is ( ) ` ) and ( A is ( ) ) ` ; for X being non empty additive loop , M , N being Subset of X st y in M & x + y in N holds x + y in M + N { [ x1 , x2 ] , [ y1 , y2 ] } c= { [ x1 , x2 ] , [ y1 , y2 ] } h . ( f . O ) = |[ A * ( f . O ) + B , C * ( f . O ) + D ]| ; ( Gauge ( C , n ) * ( k , i ) ) in L~ Upper_Seq ( C , n ) /\ L~ Upper_Seq ( C , n ) ; cluster m , n n ) -> prime implies for Nat st p divides m & p divides n holds ( p divides m ) & ( p divides n implies p divides m ) & ( p divides n implies p divides m ) & ( p divides n implies p divides m ) implies p divides n & p divides m & p divides m & p divides n implies p divides m ) ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being Lattice , a , b , c being Element of L st a \ b <= c & b \ c <= c holds a "\/" b <= c consider b being element such that b in dom ( H / ( x , y ) ) and z = H / ( x , y ) . b ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G & e Joins W . 3 , G . 4 , G . 5 , G . 7 , G . 6 , G . 7 , G . 6 , G . 7 , G . 8 , G . 8 , G . 8 , G . 7 , G . 8 , G . 8 , G . 7 , G . 8 , G . 8 , G . 7 , G . 8 , G . 8 , G . 8 , ( ] ] (#) ( ( h h ) [ n ] ) . x = ( ( h h ) . n ) * ( ( h . n ) * ( h . x ) ) ; j + 1 = ( j - len h11 + 2 ) - 1 .= i + 1 - len h11 + 2 - 1 .= i + 1 - 1 + 2 - 1 .= i + 2 - 1 + 1 - 1 ; ( S *' ) . ( f , g ) = S *' . ( ( S *' ) . ( f , g ) ) .= S . ( ( S *' ) . ( f , g ) ) .= S . ( f , g ) .= S . ( f , g ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 ) = Sum ( L2 ) and Sum ( L1 ) = Sum ( L2 ) ; attr R is <= <= 1 & p in R & p <> q & ex P st P = { p } & P is R & Q c= R ; dom ( product ( X --> f ) ) = meet ( ( X --> f ) . ( len f ) ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) ; upper_bound ( proj2 .: ( Upper_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc C /\ Lower_Arc ( w ) ) <= upper_bound ( proj2 .: ( C /\ holds w <= ( w + ( w + ( w + ( w + w ) ) ) / 2 ) ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - S . n .| < r i * fN - fN = i * fN - ( i * fN ) .= i * fN - ( i * fN ) .= i * fN - ( i * fN ) ; consider f being Function such that dom f = 2 -tuples_on X ( ) and for Y being set st Y in 2 -tuples_on X ( ) holds f . Y = F ( Y ( ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g2 in union C and g1 in A and g2 in B ; func d \! \mathop { n , m } -> Nat means : \rm d |^ n divides n & d |^ ( m + 1 ) divides n & d divides m |^ ( m + 1 ) ; f\rbrack . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . [ 2 * x , t ] .= ( - P ) . [ 2 * x , t ] .= a ; t = h . D or t = h . E or t = h . F or t = h . J or t = h . M or t = h . N ; consider m1 being Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( ( seq . n ) ) ; ( ( q `1 ) / |. q .| ) ^2 <= ( ( q `1 ) / |. q .| ) ^2 + ( ( q `2 ) / |. q .| ) ^2 ; h0 . ( i + 1 + 1 ) = h21 . ( i + 1 + 1 + 2 -' len h11 ) .= h21 . ( i + 1 + 2 -' 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier' of S } such that a = [ o , x2 ] and o <> {} and x2 <> {} ; for L being RelStr , a , b being Element of L holds a <= b iff a <= b & b <= a & a <= b ||. h1 .|| . n = ||. h1 . n .|| .= ||. h1 . n .|| .= ||. ( h1 . n ) .|| .= ||. ( h1 . n ) .|| .= ||. ( h1 . n ) .|| .= ||. ( h1 . n ) .|| .= ||. ( h1 . n ) .|| ; ( ( - ( exp_R * f ) ) `| Z ) . x = f . x - ( exp_R . x ) .= ( - exp_R . x ) * ( - exp_R . x ) .= - ( exp_R . x ) * ( - exp_R . x ) .= - ( exp_R . x ) * ( - exp_R . x ) ; pred r = F .: ( p , q ) means : Def2 : len r = len p & for i st i in dom r holds r . i = F . ( p . i , q . i ) ; ( ( r / 2 ) ^2 + ( r / 2 ) ^2 ) <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for i , j being Nat , M being Matrix of n , K st i in Seg n & j in Seg n holds Det ( M , i ) = Sum ( Line ( M , i ) ) then a <> 0. R implies a " * ( a * v ) = 1 / ( a * v ) & a " * v = 1 / ( a * v ) ; p . ( j - 1 ) * ( q *' ) . ( i + 1 ) = Sum ( p . ( j -' 1 ) * ( q *' ) ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) ) . $1 .= ( R /* ( h ^\ n ) ) . $1 ; assume that the carrier of H = f .: ( the carrier of H1 ) and the carrier of H = f .: ( the carrier of H2 ) and the carrier of H = f .: ( the carrier of H2 ) and the carrier of H = f .: ( the carrier of H2 ) ; Args ( o , Free ( S , X ) ) = ( ( ( the Sorts of Free ( S , X ) ) * ( the_arity_of o ) ) . o .= ( ( the Sorts of Free ( S , X ) ) * ( the_arity_of o ) ) . o ; H1 = n + 1 - ( |. 2 to_power ( n + 1 ) .| ) .= n + 1 - ( 2 to_power ( n + 1 ) ) .= n + 1 - 1 ; ( O ( O ( O ( O ( O ) ) ) ) `1 = 0 & ( O ( O ( O ) ) ) `2 = 1 & O ( O ( O ) ) = 0 & O ( O ( O ) ) = 1 & O ( O ( O ) ) = 0 ; F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= ( f .: ( Seg n ) ) /\ ( f .: ( Seg n ) ) .= { f . ( n + 2 ) } .= f .: ( n + 2 ) ; pred b <> 0 & d <> 0 & b <> d & ( a = ( - e ) / ( 2 * b ) ) & ( ( - d ) / ( 2 * b ) ) = ( ( - ( - e ) ) / ( 2 * b ) ) ; dom ( ( f +* g ) | D ) = dom ( ( f +* g ) | D ) .= dom ( ( f +* g ) | D ) .= D /\ D .= D /\ D .= ( ( f +* g ) | D ) /\ D .= ( ( f +* g ) | D ) /\ D .= ( ( f +* g ) | D ) /\ D ; for i be set st i in dom g ex u , v being Element of L st g /. i = u * v & u in B & v in C & v in C ; g `2 * P `2 * g `2 = g `2 * ( g `2 * P `1 ) .= g `2 * ( g `2 * P `1 ) .= ( g `2 * P `1 ) * ( g `2 * P `1 ) ; consider i , s1 such that f . i = s1 and not ( ex s1 st i in dom s1 & not ( s1 . i <> s2 . i ) & ( s1 . i <> s2 . i ) & ( s1 . i <> s2 . i ) & ( s1 . i <> s2 . i ) ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ]. a , b .[ .= ( g | ]. a , b .[ ) | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] ] , [ s2 , t2 ] ] , [ s2 , t2 ] , [ s2 , t2 ] ] <> [ s1 , t2 ] , [ s2 , t2 ] , [ s2 , t2 ] ] ; then H is negative & H is non empty & H is non empty and H is non empty and H is non empty and H is non ] ; attr f1 is total & ( 1 / 2 ) (#) ( ( f1 - f2 ) (#) ( f2 - f3 ) ) is total & ( ( f1 - f2 ) (#) ( f3 - f3 ) ) . c = ( f1 . c ) * ( f2 . c ) - ( f2 . c ) * ( f2 . c ) ; z1 in W2 ` & not z1 = z2 or z1 = W1 & not z1 = W2 & not z1 = W2 & not z2 = W1 & not z2 = W3 & not z2 = W3 & not z2 = z2 & not z1 = z2 & z1 = z2 & not z2 = W3 & z2 = z2 & not z2 = z1 & z2 = z2 & z1 = z2 & z2 = z2 & z2 = z2 & z1 = z2 & z1 = z2 & z1 = z2 & z2 = z2 & z2 in W2 & z2 in W1 & z2 in W2 & z2 in W2 & z2 in W2 & z2 in W2 & z2 in W1 p = 1 * p .= a " * a * p .= a " * ( b " * p ) .= a " * ( b " * p ) .= a " * ( b " * p ) .= ( a " * b ) * p .= ( a " * b ) * p .= ( a " * b ) * p .= ( a " * b ) * p ; for rseq be Real_Sequence , K be Real st for n be Nat holds rseq . n <= K . n holds upper_bound rng ( seq . n ) <= upper_bound rng ( seq . n ) ( for p being Point of TOP-REAL 2 st p in L~ go holds C meets L~ co or C meets L~ co or C meets L~ co ) implies ( ( L~ co ) \/ L~ co ) meets ( L~ co ) \/ ( L~ co ) ||. f . ( g . ( k + 1 ) ) - g . ( k + 1 ) .|| <= ||. g . ( 1 - K ) .|| * ( K * ( K * ( k + 1 ) ) ) ; assume h = ( ( B .--> ( B .--> C ) +* ( D .--> E ) ) +* ( E .--> F ) +* ( F .--> J ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) ) ; |. ( ( upper_volume ( H . n ) || A ) . k - ( ( lower . n ) || A ) . k .| <= e * ( ( H . n ) || A ) . k - ( ( H . n ) `| A ) . k .| ; ( { x1 , x1 , x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } .= { x1 , x2 , x3 , x4 , x5 , x5 , x5 } .= { x1 , x2 , x3 } ; Suppose A = [. 0 , 2 * PI .] and integral ( integral ( A , A ) , A ) = 0 and integral ( A , A ) = 0 and ( integral ( A , A ) ) . x = 0 ; p `2 is Permutation of dom f1 & p `2 = ( Sgm Y ) . ( p " * ( Sgm Y ) . ( p " * ( Sgm Y ) . ( p " * ( Sgm Y ) . ( p " * ( Sgm Y ) . ( p " * ( Sgm Y ) . ( p " * ( Sgm Y ) . ( p " * ( Sgm Y ) ) ) ) ) ; for x , y st x in A holds |. ( 1 - ( f . x ) ) .| <= 1 * |. ( f . x ) .| - ( 1 - ( f . y ) ) .| ( ( p2 `2 ) * ( ( q `2 ) - sn ) ) = |. q2 .| * ( ( ( q `2 ) - sn ) / ( 1 + sn ) ) ; for f be PartFunc of the carrier of C , REAL st dom f is compact & f | X is bounded holds f | X is bounded & for x be Element of C st x in X holds f /. x = F ( x ) assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A , G ) ) . x = TRUE ; consider FM such that dom FM = n1 and for k be Nat st k in n1 holds Q [ k , F ( k ) ] ; ex u , u1 st u <> u1 & u , v // v , v1 & u , v // u , u1 & u , v // v , v1 & u , v // v , u1 & u , v // v , v1 ; for G being Group , A , B being non empty Subgroup of G , N being normal Subgroup of G holds ( N N ) * ( N , B ) ` = N ` A * N for s be Real st s in dom F holds F . s = integral ( R , ( f + g ) (#) ( f + g ) ) . x = integral ( R , ( f + g ) (#) ( f + g ) ) . x width AutMt ( f1 , b1 , b2 ) = len ( ( f2 * f1 ) * ( f2 * f2 ) ) .= len ( ( f2 * f1 ) * ( f2 * f2 ) ) .= len ( ( f2 * f1 ) * ( f2 * f2 ) ) .= len ( ( f2 * f1 ) * ( f2 * f2 ) ) ; f | ]. - PI / 2 , PI / 2 .[ = f | ]. - PI / 2 , PI / 2 .[ & f | ]. - PI / 2 , PI / 2 .[ = f | ]. - PI / 2 , PI / 2 .[ ; Suppose X is closed and a in X and a c= X and y in a .: f and x in X and y in X ; Z = dom ( ( ( ( - 1 ) (#) ( ( #Z 2 ) * ( f + #Z 2 ) ) ) `| Z ) /\ dom ( ( #Z 2 ) * ( f + #Z 2 ) ) ) ; func VERUM ( V ) -> Subset of V means : Def1 : 1 <= k & k <= len it & it . k = V . k & it . k = V . k ; for L being non empty TopStruct , N being net of L , M being net of N st M is complete & N is net of L & M is complete holds M is complete for s being Element of NAT holds ( ( ( id the carrier of X ) + ( id the carrier of X ) ) | ( ( the carrier of X ) + ( id the carrier of X ) ) . s = ( ( id the carrier of X ) + ( id the carrier of X ) ) . s then z /. 1 = ( N-min L~ z ) .. z & ( ( N-min L~ z ) .. z ) .. z < ( ( E-max L~ z ) .. z ) .. z ; len ( p ^ <* ( 0 qua Real ) * ( ( 0 qua Real ) * ( ( 1 - p ) * ( ( 1 - p ) * ( 1 - p ) ) *> ) = len p + len <* ( 0 qua Real ) * ( ( 1 - p ) * ( 1 - p ) ) *> .= len p + 1 ; assume that Z c= dom ( ( - ( ln * f ) ) `| Z ) and for x st x in Z holds f . x = x and f . x > 0 ; for R being add-associative right_zeroed right_complementable non empty doubleLoopStr , I , J being Subset of R , I , J being Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f being Function of [: B1 , B2 :] , B2 being Function of B1 , B2 such that for x being Element of B1 holds f . x = F ( x ) and f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= Seg len ( ( x2 + y2 ) + ( y2 + z2 ) ) .= Seg len ( ( x + y ) + ( y + z ) ) .= Seg len ( ( x + y ) + ( x + z ) ) .= dom ( ( x + y ) + ( x + z ) ) ; for S being |. Functor of C , B for c being Object of C holds card S . ( id c ) = id ( ( Obj S ) . c ) ex a st a = a2 & a in dom f & f . a = f . ( a , b ) & ( f . a ) = \cal ( f . a , f . b ) ; a in Free ( H / ( x. 4 , x. k ) ) '&' ( H / ( x. k , x. k ) ) ; for C1 , C2 being the carrier of C1 , f being stable Function of C1 , C2 st f = ( \cup C2 ) | ( the carrier of C1 ) & g = ( \cup C2 ) | ( the carrier of C2 ) holds f = g ( W-min L~ go \/ L~ co ) `1 = W-bound L~ Cage ( C , n ) \/ W-bound L~ Cage ( C , n ) \/ L~ co .= ( W-min L~ Cage ( C , n ) ) `1 \/ ( W-bound L~ Cage ( C , n ) ) ; consider u such that u = <* x0 , y0 *> and f is_partial_differentiable_in u , 3 and SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) . 3 = SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) . 3 and SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) . 3 = SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) . 3 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & ( t . {} ) `1 = ( t . {} ) `1 & ( t . {} ) `1 = ( t . {} ) `1 ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v .= Valid ( p , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b ; func Class R -> Subset-Family of R means : an : for A being Subset of R holds A in it iff ex a being Element of R st a in it & a in A & it c= A ; defpred P [ Nat ] means ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) ) ) ) . $1 ) ) `1 ) `1 ) `1 ) c= G ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) ) ) . $1 ) ) ) ) ) ) ) ) ) ) `1 ) ) ) ) `1 ) ) `1 ) . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) assume that dim ( W1 ) = 0 and dim ( U1 ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 and dim ( V ) = 0 ; mama_empty ( m . t ) = ( m . t ) `1 .= ( m . {} ) `1 .= ( m . t ) `1 .= ( m . t ) `1 .= ( m . t ) `1 .= ( m . t ) `1 .= ( m . t ) `1 ; d11 = x11 ^ d22 .= ( ( y , d22 ) --> ( x , y ) ) . ( ( y , d22 ) . ( x , y ) ) .= ( y , d22 ) . ( x , y ) .= ( y , d22 ) . ( x , y ) .= ( y , d22 ) . ( x , y ) .= ( y , d22 ) . ( x , y ) .= ( y , d22 ) . ( x , y ) .= ( y , d ) ; consider g such that x = g and dom g = dom f and for x being element st x in dom f holds g . x in f . x ; x + 0. F_Complex = x + len x .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= x + ( x + len x ) |-> 0. F_Complex .= x + ( x + len x ) .= x + ( x + ( x + y ) ) ; ( ( f /. ( k -' 1 ) ) + 1 ) in dom ( ( f /. ( k -' 1 ) ) | ( len f -' 1 ) ) ; assume that P1 is_an_arc_of p1 , p2 and P is_an_arc_of p1 , p2 and P = { p1 } and p1 <> p2 and P = { p1 } and p1 <> p2 and P = { p1 } and P = { p1 } and p1 <> p2 and P = { p1 } and p1 <> p2 and P = { p1 } and p1 <> p2 and P = { p1 , p2 } and p1 <> p2 and P = { p1 , p2 } and p1 <> p2 and P = { p1 , p2 , p3 , p3 , p4 } and P = { p1 , p2 , p4 , p4 , p4 , p4 } and P = { p1 , p2 , p4 , p4 = { p1 , p2 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 reconsider a1 = a , b1 = b , c1 = c , c1 = d , c2 = d , c1 = p , c1 = p , c2 = q , c1 = p , c2 = d , c1 = p , c2 = p , c1 = q , c2 = p , c1 = d , c1 = p , c2 = p , c2 = d , c1 = p , c2 = d , c2 = p , c2 = p , c1 = d , c2 = p , c1 = d , c2 = d , c1 = d , c1 = d , c1 = d , c2 = d , c2 = d , c1 = d , c2 = p , c2 = p , c1 = d , c1 = d , c1 = d , c1 = d , c2 = d , c2 = reconsider set thesis thesis thesis = Gb1f . ( t , F . b ) , FFf = ( G1 * F1 ) . ( t , b ) as Morphism of ( G1 * F2 ) . ( t , a ) , ( G2 * F2 ) . ( t , a ) ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + 1 ) , f /. ( i + 1 + 1 ) ) .= LSeg ( f /. ( i + 1 ) , f /. ( i + 1 + 1 ) ) ; Integral ( P . m , P . ( n + 1 ) ) <= Integral ( M . ( n + 1 ) , P . ( n + 1 ) ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ y , x ] in dom f2 holds f1 . [ x , y ] = f2 . [ y , x ] ; consider v such that v = y and dist ( u , v ) < min ( ( - ( G * ( i , 1 ) ) ) , ( G * ( i , 1 ) ) - ( G * ( i + 1 , 1 ) ) ) ; for G being Group , H being Subgroup of G , a being Element of G st a = b holds for i being Element of G st i = a holds a |^ i = b |^ i consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p0 where 7 is Point of TOP-REAL 2 : P [ 7 ] & P [ 7 ] } , K1 = { p where p is Point of TOP-REAL 2 : P [ p ] } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p where p is Point of TOP-REAL 2 : P [ p ] } as Subset of TOP-REAL 2 ; ( ( ( ( N - S ) / 2 ) * ( ( N - S ) / 2 ) / 2 ) / 2 ) <= ( ( ( N - S ) / 2 ) * ( ( N - S ) / 2 ) / 2 ) ; for x be Element of X , n be Nat st x in E holds |. ( Re F ) . n .| <= P . x & |. ( Im F ) . x .| <= P . x & |. ( Im F ) . x .| <= P . x len @ ( p ^ <* 0 *> ) = len ( @ ( @ p ^ <* 0 *> ) ) + len <* 1 *> .= len ( @ p ^ <* 0 *> ) + len <* 0 *> .= len ( @ p ^ <* 1 *> ) + len ( @ q ) .= len ( @ p ^ <* 1 *> ) + len ( @ q ^ <* 1 *> ) ; v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 0 , m2 ) / ( x. 0 , m2 ) / ( x. 0 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 0 , m2 ) = ( m3 / ( x. 0 , m2 ) ) / ( x. 4 , m2 ) ; consider r being Element of M such that M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) ) / ( x. 0 , m ) / ( x. 0 , m ) = r / ( x. 4 , m ) ; func w1 \ w2 -> Element of Union ( the NRAssume of G , RA29 ) equals ( ( the NKAssume of G ) . ( the carrier of G , R29 ) ) . ( ( the Element of ( the NK29 ) | ( the carrier of G ) ) ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( i2 , s2 ) . b2 .= ( Exec ( i2 , s2 ) ) . b2 .= ( Exec ( i2 , s2 ) ) . b2 .= ( Exec ( i2 , s2 ) ) . b2 .= ( Exec ( i2 , s2 ) ) . b2 .= ( Exec ( i2 , s2 ) ) . b2 .= ( Exec ( i2 , s2 ) ) . b2 .= ( s . b2 ) . b2 .= ( s . b2 ) . b2 .= ( s . b2 ) . b2 .= ( s . b2 ) . b2 .= ( s . b2 ) . b2 .= ( s . b2 ) for n , k be Nat holds 0 <= ( Partial_Sums ( |. seq .| ) ) . ( n + k ) - ( Partial_Sums ( |. seq .| ) ) . ( n + k ) + ( Partial_Sums ( |. seq .| ) ) . ( n + k ) - ( Partial_Sums ( |. seq .| ) ) . ( n + k ) set F = S \! \mathop { 0 } , G = S \! \mathop { 1 } ; ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) >= ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . ( x - x0 ) = L . ( x- ( x , x0 ) ) + R . ( x - x0 ) ; func the closed Subset of \HM { a , b , c , d d d d d d d e -> Element of ( \HM { the } \HM { carrier of \HM { a } , c , d } ) \ { d } ; a * b ^2 + ( a * c ) ^2 + ( b * c ) ^2 + ( b * c ) ^2 + ( c * d ) ^2 >= 6 * a * c + ( b * d ) ^2 ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x3 , m2 ) / ( x4 , m2 ) / ( x4 , m2 ) = v / ( x2 , m2 ) / ( x4 , m2 ) / ( x4 , m2 ) ; ( ( Q ^ <* x *> ) . 0 = ( ( Q ^ <* x *> ) . 0 ) +* ( ( Q ^ <* x *> ) . 0 ) .= ( Q +* <* x *> ) . 0 .= ( Q +* <* x *> ) . 0 .= ( Q +* <* x *> ) . 0 ; Sum ( F |^ ( n1 + 1 ) ) = ( r |^ ( n1 + 1 ) ) * Sum ( F |^ ( n1 + 1 ) ) .= ( C |^ ( n1 + 1 ) ) * ( F . ( n1 + 1 ) ) .= ( C |^ ( n1 + 1 ) ) * ( F . ( n1 + 1 ) ) .= ( C |^ ( n1 + 1 ) ) * ( F . ( n1 + 1 ) .= ( C |^ ( n1 + 1 ) ) * ( C |^ ( n1 + 1 ) .= C |^ ( n1 + 1 ) ; ( ( GoB f ) * ( len GoB f , 1 ) ) `1 = ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums ( s ) ) . $1 = ( Partial_Sums ( a ) ) . ( $1 + 1 ) * ( Partial_Sums ( a ) ) . ( $1 + 1 ) + ( Partial_Sums ( a ) ) . ( $1 + 1 ) * ( $1 + 2 ) ; ( ( the_arity_of g ) . n = ( ( the Arity of S ) . n ) . ( g . n ) .= ( ( the Arity of S ) . n ) . ( ( the Arity of S ) . n ) .= ( ( the Arity of S ) . n ) . ( ( the Arity of S ) . n ) .= ( ( the Arity of S ) . n ) . ( ( the_arity_of o ) . n ) .= ( ( the Arity of S ) . n ) . ( ( the_arity_of o ) . n ) ; ( X ~ ) ^ ( Y ~ ) tolerates X ~ & card ( ( X ~ ) ^ ( Y ~ ) ) = card ( X ~ ) - card ( Y ~ ) ; for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . n & b = N . n holds b = N . ( s . n ) \ G . ( s . n ) ; E , f |= All ( x , All ( x , p ) ) => ( ( x. 3 ) 'in' ( x , p ) ) => ( ( x. 0 ) 'in' ( x , p ) ) ; ex R2 being 1-sorted st R2 = ( p | ( n2 -' 1 ) ) . i & ( the carrier of p ) . i = the carrier of R2 & ( the carrier of p ) . i = the carrier of R2 ; [. a , b + ( 1 / ( k + 1 ) ) / ( k + 1 ) .] is Element of the , the carrier of REAL , b is Element of the carrier of REAL , a , b be Element of REAL ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( goto ( 0 + 1 ) , Comput ( P , s , 2 ) ) .= Exec ( goto ( 0 + 1 ) , Comput ( P , s , 2 ) ) ; card ( h1 ) . k = power ( F_Complex , n , k ) . ( - 1_ F_Complex , k ) .= ( ( - 1_ F_Complex ) * u ) . k .= ( ( - 1_ F_Complex ) * u ) . k .= ( ( - 1_ F_Complex ) * u ) . k .= ( ( - 1_ L ) * u ) . k ; ( ( f - g ) /. c ) = f /. c * ( ( - g ) /. c ) .= ( f /. c ) * ( ( - g ) /. c ) .= ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( 1 ) ) ) ) ) ) .= ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) ) ) /. c ) .= ( - 1 ) ) /. c ; len Cn - len ( ( the _ { n , m } ) | ( len ( the _ { n , m } ) ) ) = len ( ( the _ { n , m } ) | ( len ( the _ { n , m } ) ) .= len ( ( the _ { n , m } ) | ( len ( the _ { n , m } ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom ( ( r (#) f ) | X ) .= dom ( r (#) f ) /\ X .= dom ( ( r (#) f ) | X ) .= dom ( r (#) f ) /\ X .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) .= dom ( r (#) f ) /\ X .= dom ( r (#) f ) ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n + $1 ) + Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) + Fib ( n + $1 ) * Fib ( n + $1 ) * Fib ( n + $1 ) ; consider f being Function of INT , INT such that f = f and f is onto and n < len f and f is onto and for i st i < len f holds f " . i = f . ( n + 1 ) ; consider c9 being Function of S , BOOLEAN such that c9 = chi ( c9 , B ) and ( for A , B being Element of S holds E . ( A \/ B ) = Prob . ( A \/ B ) and E . ( A \/ B ) = Prob . ( A \/ B ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , y ) and P [ y ] ; assume that A c= Z and Z = dom f and f = ( ( - 1 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( f + #Z 2 ) ) ) `| Z ) . ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) ) ) ) ) ) . x ) ) = f . x ) ; ( ( f /. i ) `2 ) = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 ; dom Shift ( Seq q2 , len Seq q2 ) = { j + len Seq q2 where j is Nat : j in dom Seq q2 & j <= len Seq q2 & len Seq q2 = len Seq q2 + len Seq q2 } ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 & G2 <= G2 and f = ( the Morphism of G1 ) . ( G1 , G2 ) and g = ( the Morphism of G2 ) . ( G1 , G2 ) and f = ( the Morphism of G2 ) . ( G1 , G2 ) ; func - f -> PartFunc of C , V means : Def1 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c & for c st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a & for v st v <> a & v <> b holds not v , v |= ( union rng L ) . ( a , v ) iff not v , w |= H ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = sqrt n and for i being Nat st i <> 0 & i < n holds sqrt ( n + 1 ) = sqrt ( n + 1 ) * sqrt ( n ) and sqrt ( n + 1 ) = sqrt ( n ) * sqrt ( n ) ; assume that not 0 in Z and Z c= dom ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( f + g ) ) ) ) and for x st x in Z holds ( ( ( #Z 2 ) * ( f + g ) ) `| Z ) . x = - 1 / ( ( #Z 2 ) * ( f + g ) ) ^2 ) and for x st x in Z holds ( ( 1 / 2 ) * ( f + g ) ) . x = - 1 / ( 1 + x ^2 ) and ( 1 / ( 1 + x ^2 ) and ( 1 / ( 1 + x ) ^2 / ( 1 + x ) ^2 / ( 1 + x ^2 ) ^2 / ( 1 + x ^2 ) < 1 / ( 1 + x ^2 ) ^2 / ( 1 + x cell ( G1 , i1 -' 1 , 2 * ( i1 -' 1 ) + ( C - 1 ) * ( i1 -' 1 ) , ( C - 1 ) * ( i1 -' 1 ) ) \ L~ ( ( C - 1 ) * ( i1 -' 1 ) ) c= BDD L~ ( ( C - 1 ) * ( ( C - 1 ) + ( C - 1 ) * ( ( C - 1 ) - ( C - 1 ) ) ) \ L~ ( ( C - 1 ) ) ; ex Q1 being open Subset of X st s = Q1 & ex F being Subset-Family of Y st F c= ( the carrier of Y ) & ( ( the carrier of Y ) /\ ( the carrier of X ) ) c= union ( F .: ( the carrier of X ) ) ; ( ( the _ of A ) * ( ( 1 , ( 2 , ( 2 * ( 1 , 1 ) ) ) * ( 1 , 1 ) ) ) * ( ( 2 , ( 2 * ( 1 , 1 ) ) * ( 1 , 1 ) ) ) = 1 / ( 2 * ( ( 2 * ( 1 , 1 ) ) * ( 1 , 1 ) ) ) ; R8 = ( ( Following ( s2 , 2 ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= ( Following ( s2 , 2 ) ) . ( m2 + 1 ) .= ( Following ( s2 , 2 ) ) . ( m2 + 1 ) .= ( Following ( s2 , 2 ) ) . ( m2 + 1 ) .= ( Following ( s2 , 2 ) ) . ( m2 + 1 ) .= ( Following ( s2 , 2 ) ) . ( m2 + 1 ) .= ( Following ( s2 ) . ( m2 + 1 ) .= ( Following ( s2 ) . ( m2 + 1 ) .= ( Following ( s2 ) . ( m2 + 1 ) .= ( Following ( s2 ) . ( m2 + 1 ) .= ( Following ( s2 ) . ( m2 + 1 ) . ( m2 + 1 ) .= Exec ( s3 + CurInstr ( P3 , Comput ( P3 , s3 , m1 + 1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= halt SCMPDS .= halt SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) /\ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; func not f -> Subset of the Sorts of A2 equals { f . i : ex p st p in dom f & p = f . i & not p <> f . i & p <> f . i & p <> f . i & p <> f . i & p <> f . i ; for a , b being Element of F_Complex st |. a .| > |. b .| & for f being Polynomial of n , L st f is >= 0 & f . ( len f ) >= 0 holds f * ( f . ( len f ) ) is means : Let : len f = len f & f . ( len f ) = f . ( len f ) defpred P [ Nat ] means $1 <= len g implies for i , j st [ i , j ] in Indices G & [ i , j ] in Indices G & G * ( i , j ) = G * ( i , j ) & G * ( i , j ) = G * ( i , j ) ; assume that C1 , C2 , C2 *> \neq {} and for f being State of C1 , g being State of C2 , n being Nat st n = len f & g = f . n holds ( for n being Nat holds s1 . n = s2 . n ) & ( for n being Nat holds s1 . n = s2 . n ) ; ( ||. f .|| | X ) . c = ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f |. q .| ^2 = ( ( q `1 ) ^2 + ( q `2 ) ^2 ) + ( ( q `2 ) ^2 ) * ( ( q `1 ) ^2 + ( q `2 ) ^2 ) & 0 + ( ( q `2 ) ) ^2 < ( ( q `1 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of T7 st F is open & not {} in F & for A , B being Subset of T7 st A in F & B <> {} & A <> {} & A c= B & A c= B holds card A c= card B implies card B c= card A & card A c= card B assume that len F >= 1 and len F = k + 1 and len F = len G and for k st k in dom F holds H . k = g . ( k , i ) and for k st k in dom F holds H . k = g . ( k , i ) ; i |^ ( ( ( \mathop { \rm gcd } ( n , k ) ) |^ s ) - i |^ ( ( k + 1 ) ) * ( i |^ k ) ) = i |^ ( ( k + 1 ) * ( i |^ k ) ) - i .= i |^ ( ( k + 1 ) * ( i |^ k ) ) - i .= i |^ ( k + 1 ) * ( i |^ k ) - i |^ ( k + 1 ) ; consider q being oriented oriented Chain of G such that r = q and q <> {} and ( F . ( len q ) = v1 & ( F . ( len q ) = v2 ) and ( F . ( len q ) = v2 ) ; defpred P [ Element of NAT ] means $1 <= len ( ( g , Z ) ^ <* I . ( len g + $1 ) *> ) & ( ( ( g , Z ) ^ <* I . ( len g + $1 ) *> ) . ( len g + $1 ) = ( ( ( g , Z ) ^ <* I . ( len g + $1 ) *> ) . ( len g + $1 ) ; for A , B being square Matrix of n , K holds len ( A * B ) = len A & width ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width A & width ( A * B ) = width B ; consider s being FinSequence of the carrier of R such that Sum s = u and for i , j being Element of NAT st 1 <= i & i <= len s & s . i = a * b & s . j = b * c ; func |( x , y )| -> Element of COMPLEX equals |( ( Re x ) , ( Re y ) )| - ( ( Re y ) ^2 + ( Im y ) ^2 ) , ( Im y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 ; consider g2 being FinSequence of F such that g2 is continuous and rng g2 c= A and g2 is continuous and ( for n st n in dom g2 holds g2 . n = F ( n ) ) and g2 . ( len g2 ) = g2 . n and g2 . ( len g2 ) = g2 . n and g2 . ( len g2 ) = g2 . n ; then n1 >= len ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n1 , n2 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , p1 , n2 , n3 , n4 , n4 , n4 , n4 , n4 , p1 , p2 , n1 , n2 , n3 , n4 , n4 , 7 , n4 , p1 , p2 , n1 , n4 , n4 , p1 , p2 , n3 , p1 , p1 , n2 , n3 , n4 , n4 , p1 , p1 , n4 , p1 , p2 , n4 , n4 , p1 , p2 , n3 , n4 , n4 , n4 , p1 , n4 , p1 , n4 , p1 , n4 , p1 , p1 , n3 , n4 , p1 , p1 , p2 , n4 , n4 , p1 , ( q `1 ) * a <= ( q `1 ) * a & ( q `2 ) * a <= ( q `2 ) * a or ( q `1 ) * a <= ( q `1 ) * a & ( q `2 ) * a <= ( q `1 ) * a or ( q `1 ) * a <= ( q `1 ) * a or ( q `1 ) * a & ( q `1 ) * a <= ( q `1 ) * a ; ( F . ( p . ( len p ) ) ) = ( F . ( p . ( len p ) ) ) . ( p . ( len p ) ) .= ( F /. ( len p ) ) . ( p . ( len p ) ) .= ( F /. ( len p ) ) . ( len p ) .= ( F /. ( len p ) ) . ( len p ) .= ( F /. ( len p ) . ( len p ) ; consider k1 being Nat such that k1 + k = 1 and a = ( ( a := intloc 0 ) := ( ( intloc 0 ) .--> 1 ) ) . ( ( a + k ) + 1 ) and ( a := intloc 0 ) . ( ( a + k ) .--> 1 ) = ( a := intloc 0 ) . ( ( intloc 0 ) .--> 1 ) ; consider B8 being Subset of B1 , y8 being Subset of A1 such that B8 is finite and y1 is finite and D = the carrier of A1 and D = the carrier of A2 and D = the carrier of A2 and D = the carrier of A2 and D = the carrier of A2 ; v2 . b2 = ( curry ( F2 , g ) * ( ( curry ( F2 , g ) ) . b2 ) .= ( ( ( ( ( ( ( ( F ) . b2 ) ) * ( ( ( ( F . b2 ) ) . b2 ) ) . b2 ) ) . b2 .= ( ( ( ( ( ( ( F ) . b2 ) ) . b2 ) ) . b2 ) . b2 .= ( ( ( ( ( ( ( F ) . b2 ) ) . b2 ) ) . b2 ) ) . b2 ) . b2 .= ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( F ) . b2 ) . b2 ) ) . b2 ) ) . b2 ) ) . b2 ) ) . b2 ) ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) .= ( dom IExec ( I , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < d & |. h .| < d holds |. h .| " * ||. ( R + R ) /. h .|| < e / ( 2 * L ) * ||. h .|| ; LSeg ( G * ( len G , 1 ) + |[ 1 , 0 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 1 ) \/ { G * ( len G , 1 ) } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + 1 ) , h /. ( i + 1 + 1 ) ) .= LSeg ( h /. ( i + 1 + 1 ) , h /. ( i + 1 + 1 ) ) .= LSeg ( h /. ( i + 1 + 1 ) , h /. ( i + 1 + 1 ) ) .= LSeg ( h /. ( i + 1 + 1 ) , h /. ( i + 1 + 1 ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , p2 , P & LE p , q , P & LE p , q , P & LE q , p , P & LE p , q , P & LE p , q , P & LE q , p , P & LE p , q , P & LE q , p , P & LE p , q , P & LE p , q , P & LE q , p , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE q , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE p , q , P & LE q , ( ( - x ) .|. y ) = - ( ( - 1 ) .|. y ) .= ( - 1 ) .|. y .= ( - 1 ) .|. y .= ( - 1 ) .|. y .= ( - 1 ) .|. y .= ( - 1 ) .|. y .= ( - 1 ) .|. y .= ( - 1 ) .|. y .= ( - 1 ) .|. y ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( ( p `1 ) ^2 * sqrt ( 1 + ( p `2 / p `2 ) ^2 ) ) * sqrt ( 1 + ( p `2 / p `2 ) ^2 ) .= ( ( p `1 ) ^2 * sqrt ( 1 + ( p `2 ) ^2 ) ; ( ( U * ( W - p ) ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) * ( W - p ) ) ) ) ) ) ) = ( ( U * ( W - p ) ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) ) ) ) ) .= ( ( ( W - p ) * ( ( W - p ) ) ) * ( ( W - p ) * ( ( W - p ) ) ) * ( ( W - p ) * ( ( W - p ) * ( ( W - p ) ) ) .= ( ( W - p ) ) * ( ( W - func Shift ( f , h ) -> PartFunc of REAL , REAL means : Assume for x be Element of REAL holds it . x = ( - h ) . x + ( - h ) . x & for x be Element of REAL holds it . x = ( - h ) . x + ( - h ) . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that not y in Free H and not x in Free H and not x in Free H and not y in Free H and not x in Free H and not y in Free H and not x in Free H and not y in Free H and x in Free H and y in Free H ; defpred P11 [ Element of NAT , Element of NAT , Element of NAT ] means ( $1 = p |^ ( p |-count $1 ) & ( $1 divides p ) & ( $1 divides p implies $2 = ( p |^ ( p |-count $1 ) ) * ( p |-count $1 ) ) & ( $1 divides p |^ ( p |-count $1 ) ) * ( p |-count $1 ) = ( p |-count $1 ) * ( p |-count $1 ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def1 : for A , B being non empty Subset of X st A c= B & B c= C & A c= B holds it . ( A + B ) <= C . ( B + A ) ; [#] ( ( dist ( ( P ) ) .: Q ) ) = ( dist ( ( P ) ) .: Q ) .: Q & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) ; rng ( F | ( [: S , T :] ) ) = {} or rng ( F | ( [: S , T :] ) ) = { 1 , 2 } or rng ( F | ( [: S , T :] ) ) = { 2 , 3 } or rng ( F | ( [: S , T :] ) ) = { 1 , 2 } ; ( f " ( rng ( f | ( rng f ) ) ) . i = f . i .= ( f | ( rng f ) ) . i .= ( f | ( rng f ) ) . i .= ( f | ( rng f ) ) . i .= ( f | ( rng f ) ) . i .= ( f | ( rng f ) ) . i .= ( f | ( rng f ) ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 /\ P2 = { p1 , p2 } and C = { p1 , p2 } and P = { p1 , p2 } and p1 <> p2 and P = { p1 , p2 } and P = { p1 , p2 } and p1 <> p2 and P = { p1 , p2 } and p1 <> p2 and P = { p1 , p2 } and P = { p1 , p2 } and p1 <> p2 and P = { p1 , p2 , p3 } and P \/ { p1 , p2 , p3 } and P \/ P \/ { p1 , p2 , p3 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 = { p1 , p2 , p4 } and P \/ P \/ { p1 , p2 , p4 } and P \/ P \/ { p1 , p2 , p4 , p4 , p4 , p2 , p3 } \/ { p1 , p2 , p3 , p4 } and p1 <> p1 , p2 , p3 , p4 , p4 } \/ P \/ { p1 , p2 , p4 f . p2 = |[ ( ( p2 `1 ) / sqrt ( 1 + ( p2 `2 ) ^2 ) ) ^2 , ( ( p2 `2 ) / sqrt ( 1 + ( p2 `1 ) ^2 ) ]| .= |[ ( ( p2 `1 ) ) / sqrt ( 1 + ( p2 `2 ) ^2 ) , ( p2 `2 ) / sqrt ( 1 + ( p2 `1 ) ^2 ) ]| ; ( ( AffineMap ( a , X ) ) " . x = ( ( AffineMap ( a , X ) ) qua Function ) . x .= ( ( ( AffineMap ( a , X ) ) qua Function ) . x .= ( ( AffineMap ( a , X ) ) " ) . x .= ( - a ) * x .= - ( a + b ) * x .= - ( a + b ) * x .= - ( a + b ) * x .= - ( a + b ) * x + b * x .= - ( b + b ) * x .= - ( b + b ) * x .= ( ( - b ) * x + b ) * x + ( - b ) * x .= - ( b + b ) * x .= - ( b + b ) * x .= - ( b + b ) * x .= ( ( ( x ) * x ) * x + ( ( ( ( ( - b ) * x ) * x + ( ( - b ) * x ) * x + ( - b ) * x ) * x .= - ( ( - b ) * x + ( ( - b ) * x + for T being non empty non empty normal TopSpace , A , B being closed Subset of T , p being Point of T st A <> {} & A misses B & A misses B & p in B holds ( Initialized G ) . p = ( NAT - ( ( ( ( ( ( ( ( A ) ) . p ) ) ) . p ) ) * ( ( ( ( ( ( A ) . p ) ) . q ) ) ) ) for i , j st i + 1 in dom F for G being strict Subgroup of G st G = F . i & G = F . j & F . i = G . j holds G = F . ( i + 1 ) & G = F . ( i + 1 ) for x st x in Z holds ( ( ( arctan ) `| Z ) . x ) = ( ( ( arctan ) . x ) * ( ( arctan . x ) ) ^2 - ( ( arctan . x ) ^2 ) / ( 1 + x ^2 ) ) synonym f /* a -> convergent means : by for x0 st x0 in dom f & for a st a in dom f & a in dom f holds f /. ( a + a ) = f /. ( a + a ) + f /. ( a + b ) ; then X1 , X2 X2 X2 X2 iff ( X1 union X2 ) meets ( X1 union X2 ) & ( X1 union X2 ) meets ( X1 union X2 ) & ( X1 union X2 ) meets ( X1 union X2 ) & ( X1 union X2 ) meets ( X1 union X2 ) ; ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L st for x st x in N holds ( SVF1 ( 1 , f , u ) ) . x - ( SVF1 ( 1 , f , u ) ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) ; sqrt ( ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) >= sqrt ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) * sqrt ( 1 + ( p2 `2 ) ^2 ) ; ( ( 1 - ( t * ||. f1 .|| ) ) to_power ( n + 1 ) ) = ( ( 1 - t ) to_power ( n + 1 ) ) * ( ( 1 - t ) to_power ( n + 1 ) ) & ( ( 1 - t ) to_power ( n + 1 ) ) * ( ( 1 - t ) to_power ( n + 1 ) ) = ( ( 1 - t ) to_power ( n + 1 ) ) * ( ( 1 - t ) to_power ( n + 1 ) ; assume that for x holds f . x = ( ( - sin ) (#) ( sin - cos ) ) . x and x in dom ( ( - sin ) (#) ( cos - sin ) ) and for x st x in Z holds ( ( ( - sin ) (#) ( cos - sin ) ) `| Z ) . x = ( ( - sin ) (#) ( cos - cos ) ) . x ; consider X1 being Subset of Y , Y1 being open Subset of X such that t = X1 and Y1 in A and ex Y1 being Subset of X st Y1 in A & Y1 is open & ex Y1 being Subset of X st Y1 in A & Y1 c= Y1 & Y1 c= Y1 & Y1 meets Y1 ; card ( S . n ) = card { [ [ d , c ] , d ] where d is Element of GF ( p ) : [ d , c ] in R & [ d , b ] in R & [ d , c ] in R } .= R |^ p |^ ( p ) * R |^ ( p ) ; ( ( W-bound D - W-bound D ) / ( 2 |^ n ) ) * ( ( W-bound D - W-bound D ) / ( 2 |^ n ) ) = ( W-bound D - W-bound D ) / ( 2 |^ n ) * ( ( W-bound D - W-bound D ) / ( 2 |^ n ) ) .= ( W-bound D - W-bound D ) / ( 2 |^ n ) ;