thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in F ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is commutative ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is commutative ; assume x in I ; q is let of 0 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k-2 ; assume m <= i ; assume G is commutative ; assume a divides b ; assume P is closed ; \bf 2 > 0 ; assume q in A ; W is non bounded ; f is IC ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be Category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is (#) f ; Q halts_on s ; x in such that y in \in \in \in \in \in \in \in h ; M < m + 1 ; T2 is open ; z in b Y. ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be non trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , y0 ; let E be Ordinal ; o OperSymbol o2 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subspace of V ; not s in Y / 0 ; rng f <= w ; b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 ` is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aZ <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is non trivial & s is non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , T ; the Arrows of F is one-to-one ; sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing Nat ; Sbeing bounded non empty set ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , E , F , G ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj & jj <= len G ; set A = -> set ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_\rrangle H1 ; assume n0 <= m ; T is increasing ; e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M is connected ; assume not x in REAL+ ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be let ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v and v in dom ( E `2 ) ; - y in I ; let A be non empty set , F be Function of A , A ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be Y. -countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of from squares ; assume not v in { 1 } ; let Ix , Iy be Element of REAL ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom d2 ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , Z ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected connected hh) ; assume f is additive inbr-r) ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is continuous ; f . x ^2 <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cx in C ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c2 ; s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 & s4 = s3 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be function of L ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y , w as u1 of V ; R8 in dom R ; let a , b be Real , x be Real ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , a be Object of C ; r '&' q = P \lbrack l , l .] ; let i , j be Nat ; s be State of A , a be Element of A ; s4 . n = N ; set y = ( x `1 ) / ( x `2 ) ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CM ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that X0 is dense and A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xY c= Z1 & xY c= Z1 ; dom f = [: C1 , C2 :] ; assume [ a , y ] in X ; Re ( seq . n ) is convergent ; assume a1 = b1 & a2 = b2 ; A = Int ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , k be Nat ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , Z ; 2 * x in dom W ; m in dom g2 & m + 1 in dom g2 ; n in dom g1 & n in dom g2 ; k + 1 in dom f ; not the still of { s } is finite ; assume x1 <> x2 & x1 <> x3 ; v1 in V1 & v2 in V1 & v1 in V1 ; not [ b `1 , b `2 ] in T ; ii + 1 = i ; T c= and T c= and T is TopSpace ; ( l . 1 ) `1 = 0 ; n be Nat ; ( t `2 ) ^2 = r ; AA is_integrable_on M & AA is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; [: C , D :] misses [: V , C :] ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty -> non empty normal for NAT ; assume c2 = b2 & c1 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume vseq is convergent & vseq is convergent ; IC s3 = 0 & IC s2 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int ( G1 \/ G2 ) <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one non empty full ; A \/ { a } c= B ; 0. V = 0. Y .= 0. Y ; let I be non empty halting Instruction of S , S be Nat ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 `1 = ( K `1 ) * ( 1 + 1 ) `1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMbeing closed non empty set ; assume z0 <> 0. L & z0 <> 0. L ; n < NT . k ; 0 <= ( seq . 0 ) ^2 ; - q + p = v ; { v } is Subset of B ; set g = f /. ( \restriction 1 ) ; [: R , R :] is stable ; set cR = Vertices R , cR = Vertices R ; pp c= P3 & P3 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott TopLattice of S ; inf the carrier of S = S ; downarrow a = downarrow b & downarrow a c= downarrow b ; P , C , K , L is_collinear ; assume x in F ( s , r , t ) ; 2 / i < 2 / m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( ) ; k in dom ( q4 ^ <* x *> ) ; p is holds holds p is FinSequence of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster -> strict for succ \rm \mathbb } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + --> j ; dom S = dom F & rng S c= dom F ; let s be Element of NAT , a be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT , x be set ; let S be non empty non void non void holds S is non void ; let f be ManySortedSet of I ; let z be Element of F_Complex , p be FinSequence of COMPLEX ; u in { \hbox { \boldmath $ g } } ; 2 * n < 2 * ( n + 1 ) ; let x , y be set ; B-11 c= V1 & B-15 c= V1 ; assume I is_halting_on s , P ; U2 = U2 & U2 = U2 & U2 = U2 ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; fT <= fT & fT <= fT ; l be Element of L ; x in dom ( F . -17 ) ; let i be Element of NAT , a be Element of REAL ; r8 is ( len p ) -element ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card ( K1 ) in M & card ( K1 ) in M ; assume that X in U and Y in U ; let D be st D is st D is \frac of Omega D ; set r = { q } + 1 ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod g ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster -> strict for Sublattice of L ; a1 in B . s1 & a2 in B . s1 ; let V be finite VectSp of F , W be Subspace of V ; A * B on B & A * B on A ; fg = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F (#) C ) = o ; set S = INT / ( X , Y ) ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 - z as Nat ; LIN a , d , c ; [ y , x ] in II ; ( Q ) `1 = 0 & ( Q `1 ) = 0 ; set j = x0 div m , m = x0 mod m ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - 1 > 0 ; I ( ) = 1 & I ( ) = 1 ; [ y , d ] in FF ; let f be Function of X , Y ; set A2 = ( B |^ C ) * ( A |^ C ) ; s1 , s2 are_/ 2 implies s1 , s2 |= s2 , T j1 -' 1 = 0 & j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 , h = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ; a < ( p3 `1 ) / ( p3 `2 ) ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 <= len G ; 1 <= i1 -' 1 & i1 -' 1 <= len G ; i + i2 <= len h ; x = W-min ( P ) & x = E-max ( P ) ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . gg , I = h . W ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 , h1 = h2 ** h2 ; assume x in ( X2 /\ X1 ) /\ ( X2 /\ X2 ) ; ||. h .|| < d1 & ||. h .|| < d1 ; not x in the carrier of f & x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl2 ; <* p , q *> /. 2 = q ; let S be Subset of the topology of Y ; , P be succ s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty reflexive transitive RelStr , f be Function of L , L ; Sbe x -basis i is x -basis of i ; let r be non positive Real ; M , v |= All ( x , y ) ; v + w = 0. ( Z , n ) ; P [ len F ] implies P [ F ( ) ] assume InsCode ( i , 5 ) = 8 & InsCode ( i , 5 ) = 8 ; the zero Element of M = 0 & the carrier of M = 0 ; cluster z * seq -> summable ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> / for Element of AllTermsOf S ; reconsider l1 = l- 1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T1 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q19 c= Q1 /\ Q19 ; k be Nat ; q " is Element of X & q is Element of Y ; F . t is set of zero non zero set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , e = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root implies ( p . x ) `2 = ( p . x ) `2 not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Real ; S7 does not destroy b1 , T ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * ( seq . m ) = seq . m ; let x be FinSequence of NAT , k be Nat ; let f be Function of C , D , g be Function ; for a holds 0. L + a = a IC s = s . NAT .= succ IC s .= succ IC s ; H + G = F- ( GG ) ; Cp1 . x = x2 & Cp1 . x = y2 ; f1 = f .= f2 .= f2 .= f1 * f2 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 ; I is_reflexive & I is_reflexive implies I is_\circ ( I , J ) IT is antisymmetric implies ( for C being Element of I holds C is antisymmetric iff C is antisymmetric ) sup rng ( H1 | n ) = e & sup rng ( H1 | n ) = e ; x = a9 * a9 & y = b9 * c9 ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < len G ; rng s c= dom f1 & rng s c= dom f2 ; assume support a misses support b & support b misses support c ; let L be associative commutative non empty doubleLoopStr , a be Element of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed I1 = I1 +* ( 1 , card I ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* *> . ( N , N ) -> complete for non trivial set ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume ( 1 - t `1 ) ^2 <= t `1 ; card B = k + - 1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in D ; f . 1 = L . ( F . 1 ) ; the carrier' of G = { v } & the carrier' of G = { v } ; let G be *> : G is : Let ; e , v6 , v6 , v7 be set ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* q is divergent_to+infty ; set z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z2 , z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z2 , z2 assume w is_llof S , G ; set f = p |-count ( t , n ) ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Real ; let Ix be Subset-Family of X , y be set ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , k be Nat ; p is FinSequence of ( the InstructionsF of SCM+FSA ) ; stop I c= ( card I + 1 ) ; set ci = fSet /. i , fj = f22 /. i ; w ^ t -tree s , w ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ s ^ t ^ s ^ t ^ t ^ t ^ s ^ t ^ t ^ s ^ W1 /\ W = W1 /\ W2 ` .= W1 /\ W2 ; f . j is Element of J . j ; let x , y be Element of T2 , a be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is positive ; set g2 = lim ( seq ^\ k ) , g1 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F . ( F . k ) ) = 0 ; / ( X \/ R1 ) = / ( X \/ R1 ) ; ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; ( ( exp_R * sin ) `| Z ) . x > 0 ; o1 in ( ( X /\ O ) /\ O2 ) /\ O2 ; e , v6 , v6 , v7 be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal L ) ; let J be closed Subset of R , I be Ideal of R ; h . p1 = f2 . O & h . p2 = g2 . O ; Index ( p , f ) + 1 <= j ; len ( q | ( len M ) ) = width M ; the carrier of LK c= A & the carrier of LK c= A ; dom f c= union rng ( F | m ) ; k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in InnerVertices ( R ~ ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 |^ the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 / ( m * m + r ) ) < p ; dom f = dom ( I . ( len I ) ) ; [#] ( ( TOP-REAL 2 ) | K1 ) = [#] ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) ; cluster - x -> R_eal -> R_eal ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for non empty Subset of TOP-REAL n ; let w1 be Element of M ; x be Element of dyadic ( n ) ; u in W1 & v in W2 & u in W3 implies u in W2 reconsider y = y as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n / 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , m be Nat ; dist ( x `1 , y ) < ( r / 2 ) / 2 ; reconsider mm = m - 1 as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 - x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) , g2 = p * idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I . ( len I ) ) in { x } ; cluster -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; G * ( len G , 1 ) in LSeg ( cos , 1 ) ; n be Element of NAT , x be Element of REAL n ; reconsider S8 = S as Subset of T ; dom ( i .--> X `1 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q be Subset of SCMPDS ; b , b , x , y , a is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt c ) ^2 + ( sqrt c ) ^2 ; reconsider t7 = T7 as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 . ( z2 + 1 ) ; A |^ 0 = { <* E *> } ; len W2 = len W + 2 & len W2 = len W1 + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 + 1 ) ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume p2 `1 = E-bound ( K ) & p2 `1 <= E-bound ( K ) ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster ( seq + seq ) ^\ k -> summable ; assume j in dom ( M1 * ( i , j ) ) ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* y *> Y. iff <* xy *> Y. a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & R . x = y ; len q = len ( K (#) G ) ; s1 = Initialize ( Initialized s ) , P1 = P +* Initialize s , P2 = P +* Initialize s , P3 = P +* P3 ; consider w being Nat such that q = z + w ; x ` is Element of L & x is Element of L ; k = 0 & n <> k or k > n ; then X is discrete for A is closed ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; N , M be being being being being being being being being being being being being being being being being being being being being being <* of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f , f .] = f & M \lbrack g , f .] = g ; ( ( ( ( ( to_power 1 ) ) to_power 1 ) ) to_power 1 ) = TRUE ; dom g = dom f & rng g c= dom f ; mode \cal il of G is \cal ppp.. of G ; [ i , j ] in Indices M & M * ( i , j ) = M * ( i , j ) ; reconsider s = x " as Element of H ; let f be Element of dom ( Subformulae p ) , F be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a2 ) = G1 . ( a1 , a2 ) ; cluster -> compact ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / 2 ) & rng s c= dom ( 1 / 2 ) ; curry ( ( F . -19 ) . k ) is additive ; set k2 = card dom B , s3 = card { x } ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as terminal of G ; let a , b be Element of MM , M be Matrix of REAL ; reconsider s1 = s , s2 = t as Element of ( S , X ) ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x = 0 iff x = 0. W ) ; I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & rng f c= the carrier of S ; rng h c= union ( the carrier of J ) ; cluster All ( x , H ) -> reconsider All ( x , G ) ; d * N1 ^2 > N1 * 1 & d * N2 ^2 > N2 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " ( D1 \/ D2 ) ; dom ( p | mm1 ) = mm1 & dom ( p | mm2 ) = mm2 ; 3 + - 2 <= k + - 2 + - 2 ; tan is_differentiable_in ( ( arccot * ( arccot ) ) * ( f ^ ) ) . x ; x in rng ( f /^ ( p .. f ) ) ; let f , g be FinSequence of D ; [: p , q :] in the carrier of [: S1 , S2 :] ; rng f " { x } = dom f & rng f = { x } ; ( the Source of G ) . e = v & ( the Source of G ) . e = v ; width G -' 1 < width G - 1 & width G - 1 < width G ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 < len g2 ; let q be Point of TOP-REAL 2 , a , b be Real ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the InternalRel of C-20 ( C7 ) ; i <= len G -' 1 + ( len G -' 1 ) ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q , P ) ; ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i & CurInstr ( p2 , s2 ) = halt S ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of ( ( L ) | the carrier of L ) ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be Subcategory of C , a , b be object of C1 ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def3 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and f .: X c= dom g ; H |^ a |^ ( a |^ b ) is Subgroup of H ; let A1 be Let of O , E1 , A2 be Element of E ; p2 , r3 , p2 is_collinear & q2 , r2 , p3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 . m < M . ( E8 . m ) ; ^ ( c ^ ( c ^ ( a ^ b ) ) ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Line for Subas non empty as thesis of L ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , P be Subset of P ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f ) ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def4 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of Y ; cluster ( x `1 ) / ( x `2 ) -> non trivial for non empty non trivial NAT ; set S = <* Bags n , <* i9 *> *> ; set T = [. 0 , PI / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI * PI ) / 2 < ( 2 * PI * PI ) / 2 ; x2 in dom ( f1 | X ) /\ dom ( f2 | X ) ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x `1 , y , z `2 , x , y , z `2 be Element of G ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & len <* P *> = len P ; set N-26 = the be Element of the set of N , x = the Element of N ; len gy0 + ( x + 1 ) - 1 <= x ; a on B & b on B & a on B implies a on b reconsider rc = r * I . v as FinSequence of REAL ; consider d such that x = d and a is_less_than d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ( 9 /. n ) ; set q2 = N-min L~ Cage ( C , n ) , q2 = E-max L~ Cage ( C , n ) ; set S = MaxADSet ( b ) c= MaxADSet ( P ) /\ Q ; Cl ( G . q1 ) c= F . r2 ; f " D meets h " ( V ) /\ h " ( V ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( gF ) . ( X , Y ) ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( a2 , b2 ) = b2 ; the carrier' of G = E \/ { E } .= { E } ; reconsider m = len wk - 1 as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , LMP C ) ; [ i , j ] in Indices M1 & M1 * ( i , j ) = M1 * ( i , j ) ; assume that P c= Seg m and M is \HM { of Seg m } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = pi1 . i .= pi2 . i ; let PA , PA , G be a_partition of Y , a be Element of Y ; attr 0 < r & r < 1 implies 1 < ( 1 - r ) / ( r - s ) ; rng ( AffineMap ( a , X ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \ { x } ) ; dom ( f . 0 ) c= dom ( u . 0 ) ; redefine pred n divides m & m divides n & n = m ; reconsider x = x as Point of I[01] , I[01] ; a in ; not y0 in the still of f & not ( f . y in the still of f ) ; Hom ( ( a , b ) --> c ) <> {} ; consider k1 such that p " < k1 and k1 < len p and p . k1 = x ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g & [ y , x ] in dom g ; set S1 = Let ( x , y , z ) , S2 = y , S2 = z ; l = m2 & l2 = i2 & l2 = j2 & l2 = i2 & l2 = j2 ; x0 in dom ( ( u + v ) | A ) /\ A ; reconsider p = x as Point of TOP-REAL 2 , r be Real ; I[01] = R^1 | B01 & R^1 | B01 = ( R^1 | B01 ) | B01 ; f . p4 `1 <= f . p1 `1 & f . p2 `1 <= f . p3 `1 ; ( F . ( x , y ) ) `1 <= ( F . ( x , y ) ) `1 ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K ; X . i in 2 to_power ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider sbeing object of D , sbeing object of D ; ( Seg i -' 1 ) <= len wj ; [#] S c= [#] T & [#] T c= [#] T ; for V being strict RealUnitarySpace holds V in the carrier of V implies V in : V in the carrier of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , n2 , K ; - a * - b = a * b - a * c ; for A being Subset of GX holds A // A implies A is being_line ( the Arrows of o2 ) . ( o1 , o2 ) in <^ o2 , o2 ^> ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal normal Subgroup of G ; j >= len upper_volume ( g , D1 ) & j <= len upper_volume ( g , D1 ) ; b = Q . ( len Q- 1 + 1 ) ; f2 * ( f1 /* s ) is divergent_to+infty & f2 * ( f1 /* s ) is divergent_to+infty ; reconsider h = f * g as Function of N4 , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of TT & v . n in TT ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 ; Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p2 = p +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of [: Ids L , Ids L :] ; "/\" ( uparrow p , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom G ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( ( P + Q ) . ( n + 1 ) ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x1 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 } ; let x , y be Element of let F_T1 ( n ) ; p = |[ p `1 / |. p .| - cn , p `2 / |. p .| - cn ]| ; g * 1_ G = h " * g * h .= g " * g ; let p , q be Element of let V , C , D be Element of V ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 /\ dom x3 ; ( R qua Function ) " = R " & ( R " ) " = R " ; n in Seg len ( f /^ ( len f -' 1 ) ) ; for s being Real st s in R holds s <= s2 & s2 <= s2 ; rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for for for for the carrier of X , the carrier of Y ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P2 , s2 ) ; ex w st e = ( w / f ) * f & w in F ; curry ( Pbe ( Pholds x , k ) # x is convergent ; cluster -> open for Subset of TK ; len f1 = 1 .= len f3 .= len f3 .= len f3 + len f3 .= len f3 + len f3 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a ; ( goto ( card I + 1 ) ) not ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , P4 = P +* I , P4 = P +* I , P4 = P +* I , P4 = Comput ( P3 , s3 , 1 ) , P4 = Comput ( P3 , s3 , 1 ) , P4 = P3 ; IC Comput ( P , s , k ) in dom ( Initialize p ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 & ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of Let ( V , C ) ; Cl ( union Int Cl ( Int Cl F ) ) c= Cl ( Int Cl ( union F ) ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) \/ ( X1 union X2 ) ) ; assume not LIN a , f . a , g . b ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , x ) / ( y , x ) ) ; consider m being element such that m in Intersect ( FF . m ) ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a4 ; cluster s -\mathop { V } -> .| for string of S ; Ln2 /. n2 = Ln2 . n2 .= Ln2 . n2 .= Ln2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices ( D1 | Seg n ) ; 0 <= ( 1 - ( 2 |^ p ) ) / ( 2 |^ p ) ; ( F . N ) | E1 = +infty ; attr X c= Y means : Def3 : Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( y `2 ) <> 0. I ; 1 + card ( X-18 ) <= card ( u \/ { x } ) ; set g = z \circlearrowleft ( ( L~ z ) .. z ) , z = z .. z , p = z .. z , q = z .. z , r = z .. z , s = z .. z , s = z .. z , s = z .. z , then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -succ X ; reconsider B = A as non empty Subset of TOP-REAL n , C be Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x5 ) c= P & Plane ( x1 , x2 , x3 , x4 , x5 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( g2 ) . O ) `1 = - 1 & ( g2 ) . I `2 <= 1 ; j + p .. f -' len f <= len f - len f ; set W = W-bound C , S = S-bound C , E = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound S1 . ( a `1 , e ) = a + e .= a `1 ; 1 in Seg width ( ( M * ColVec2Mx p ) * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f | X ) ) = dom Im ( f | X ) ; DW . ( x `1 ) = W . ( a , \ast ( a , p ) ) ; set Q = non empty contradiction , f = g +* f , h = h +* f , f = h +* f , g = h +* f , h = f +* g ; cluster -> topological for ManySortedSet of U1 , U2 ; attr ex A st F = { A } ; reconsider z9 = \hbox { y0 , y } as Element of product G ; rng f c= rng f1 \/ rng f2 & rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of V ) & g = <*> ( the carrier of V ) ; E , j |= All ( x1 , x2 ) implies E , j |= All ( x1 , x2 ) reconsider n1 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies card ( ( x \ B1 ) /\ B2 ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set q14 = ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq q ; for x being element st x in X holds x in rng f1 ; h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , support ( R | NAT ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% halt SCM+FSA %> + k .= ( i + k ) ; ( ( W-bound L~ f ) / 2 ) * ( ( GoB f ) / 2 ) <= ( q `2 ) * ( ( GoB f ) / 2 ) ; attr R is condensed means : Def3 : Int R is condensed & Cl R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ f /\ j ; len C + - 2 >= 9 + - 3 + 3 - 2 ; x , z , y is_collinear & x , z , y is_collinear implies x , y , z is_collinear a |^ ( n1 + 1 ) = a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set y9 = <* y , c *> ; FG2 /. 1 in rng Line ( D , 1 ) ; p . m Joins r /. m , r /. ( m + 1 ) , G ; ( p `2 ) ^2 = ( f /. i1 ) ^2 + ( f /. i2 ) ^2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 / |. p .| - cn ) <= 2 * r + ( p `2 / |. p .| - cn ) ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of P\rm Space ( X ) ; p |-count ( Product ( Sgm ( X ) ) ) = 0 & p |-count ( Sgm ( X ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = 0. I ; set ii = ( card I + 4 ) .--> ( goto 0 + 4 ) ; x in { x , y } & h . x = {} T & h . y = {} ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( A ) ) .= len ( the charact of ( A ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : : x0 in : x0 in x0 & x0 in dom ( G . n ) ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; for K being st NQ ( K , n , r ) is in Indices Q holds Q is in rng P ; f . k , f . ( Let n ) . k are_congruent_mod n are_congruent_mod n ; h " P /\ [#] T1 = f " P & h " P = f " P ; g in dom f2 \ f2 " { 0 } & f2 " { 0 } c= dom f2 \ f2 " { 0 } ; gX /\ dom f1 = g1 " ( X /\ dom g1 ) .= g1 " ( X /\ dom g1 ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = being element , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `1 + ( 1 - r ) < ( 1 - r ) + ( 1 - r ) ; reconsider f1 = f as VECTOR of the carrier of X , the carrier of Y ; attr i <> 0 means : Def3 : i |^ ( i + 1 ) mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & 1 <= len ( g2 . i2 ) ; dom ( i , ( i , j ) --> ( a , b ) ) = dom ( a , b ) .= a ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of S , I * , ( the Sorts of U1 ) * ; reconsider R1 = x , R2 = y as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( ( - 1 / 2 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( f1 + f2 ) ) ) ) `| Z ) = f ; cluster -> C -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; E8 . e2 = E8 . e2 & E8 . e2 = E8 . e2 & E8 . e2 = E8 . e2 ; ( ( ( arctan * ( arctan + arccot ) ) (#) ( ( arctan * ( f1 + f2 ) ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 ) / 2 & lower_bound A = 0 ; F . ( dom f , - - f ) is Functor of F . ( cod f , - f ) ; reconsider p8 = q8 as Point of TOP-REAL 2 , q be Point of TOP-REAL 2 ; g . W in [#] Y & [#] Y c= [#] Y & g . W in [#] Y ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) \/ LSeg ( f , i ) ; rng s c= dom f /\ ]. - r , x0 .[ & rng s c= ]. - r , x0 .[ ; assume x in { idseq ( 2 ) , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m2 = n as Element of NAT ; for y being R_eal st y in rng ( seq ^\ k ) holds g <= y for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set BB = f .: the carrier of X1 , BB = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume R ~ c= R ~ & R ~ c= R ~ & R ~ c= R ~ & R ~ c= R ~ ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; attr x1 <> x2 means x1 <> x2 & |. x1 - x2 .| > 0 & x1 <> x2 ; assume p2 - p1 , p3 - p2 - p1 , p3 - p2 - p1 is_collinear ; set q = ( -1 f ) ^ <* 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS n ; ( n mod ( 2 * k ) ) = n mod k ; dom ( T * ( succ t ) ) = dom ( ( succ t ) . ( T . t ) ) ; consider x being element such that x in wc and x in c ; assume ( F * G ) . v = v . x3 & ( F * G ) . x3 = v . x4 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 c= the carrier of D2 ; reconsider A1 = [. a , b .[ as Subset of R^1 ( R^1 ( A ) ) ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = E-max L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) , s = E-bound L~ Cage ( C , n ) , s = E-bound L~ Cage ( C , n ) , w = E-bound L~ Cage ( C , n ) , G = n1 - len f + 1 <= len ( - f + 1 ) + len ( - f + 1 ) ; |. .| ( q , O1 ) = [ u , v , a , b ] ; set C-2 = ( `1 ) . ( k + 1 ) , C-2 = ( `1 ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 <= len Q ( ) ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* stop I , s4 = P2 +* stop I , P4 = P2 +* stop I , P4 = P2 +* stop I , P4 = Comput ( P2 , s2 , k ) , P4 = P2 +* stop I , P4 = P2 +* stop l be variable of k , Al , x be set , y be element ; reconsider U2 = union ( G . n ) as Subset-Family of ( T . n ) ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; pS = <* - c , 1 , - 1 *> & pS = <* - c , 1 *> ; synonym f is real-valued for rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x20 < card X0 + card Y2 & card X0 + card Y2 < card X0 + card Y2 + card Y2 ; attr X c= B1 means : Def4 : for B being set holds \mathop { \rm Bseq X , B is non empty ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; attr 1 <= len s means : Def3 : len it = len s & for i st i in dom s holds it . i = s . i ; fbeing set c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; attr p '&' q in \mathbin { \rm TAUT ( A ) : q in TAUT ( A ) } ; - ( t `1 / t `2 ) < ( t `1 / t `2 ) / t `2 ; ( U . 1 ) = U /. 1 .= ( U /. 1 ) `1 .= ( W . 1 ) `1 .= ( W . 1 ) `1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is \setminus & f is \setminus closed & f is commutative ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| `1 <> 0. TOP-REAL 2 & |[ w1 , v1 ]| `1 <> 0. TOP-REAL 2 ; reconsider t = t as Element of ( the carrier of X ) * ; C \/ P c= [#] ( ( ( ( the carrier of ( ( ( ( the carrier of ( 2 ) ) \ A ) ) \ A ) ) ) ) ) ; f " V in ( for X holds V in ( the topology of X ) /\ D ) & V in ( the topology of Y ) /\ D ; x in [#] ( ( the carrier of T ) /\ A ) /\ the carrier of T ; g . x <= h1 . x & h . x <= h1 . x & h . x <= h . x ; InputVertices S = { xy , y9 , z9 , \emptyset , {} , {} , {} , {} , {} , {} , {} , {} , {} } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M1 is being_line and M2 is being_line and M1 is being_line ; reconsider a = f4 . i0 - 1 as Element of K ; len B2 = Sum ( Len ( F1 ^ F2 ) ) & len ( Len ( F1 ^ F2 ) ) = len ( Len ( F1 ^ F2 ) ) ; len ( ( the every finite sequence of elements of n , m ) * ( i , j ) ) = n & len ( ( the _ of n , m ) * ( i , j ) ) = n ; dom max ( f , g ) = dom ( f + g ) .= dom f /\ dom g ; ( the Sorts of Y ) . n = upper_bound Y1 & ( the Sorts of Y ) . n = upper_bound Y2 ; dom ( p1 ^ p2 ) = dom ( f ^ p2 ) .= dom ( f ^ p1 ) \/ dom p2 .= dom f \/ dom g ; M . [ 1 / y , y ] = 1 / ( v1 * v1 ) .= y ; assume that W is non trivial and W in the carrier of G2 and W c= the carrier of G2 ; C6 * ( i1 , i2 ) `1 = G1 * ( i1 , i2 ) `1 .= G1 * ( i1 , i2 ) `1 ; C8 |- 'not' Ex ( x , p ) 'or' p . x ; for b st b in rng g holds lower_bound rng fmmmmb <= b * r - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ [: NAT , NAT :] ) \/ [: { l } , { l } :] c= R ; consider p being element such that p in such that p in LSeg ( x , f . p ) and p in L~ f ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid ; Im ( ( Partial_Sums F ) . m ) is measurable of E , ( ( Partial_Sums F ) . m ) . ( ( Partial_Sums F ) . m ) ; cluster f . ( x1 , x2 ) -> ( x1 , x2 ) -valued for Element of D ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( NW-corner Z ) * ( i , 1 ) , ( E-max Z ) * ( i + 1 ) ) ; set R8 = R / ( ]. b , +infty .[ ) , R8 = R / ( ]. a , +infty .[ ) ; IncAddr ( I , k ) = SubFrom ( da , da ) .= ( - ( d + k ) ) ; ( seq . m ) . m <= ( ( seq ^\ k ) ^\ ( m + 1 ) ) . n ; a + b = ( a ` + b ) ` + ( a ` + b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( ( d /\ e ) /\ b ) /\ f ) /\ j ) ) /\ m ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable Subset of R such that card A = card ( R ) and card A = card ( R ) ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p2 *> ; len s1 - 1 > 0 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min L~ f ) .. f ) .. f = ( ( N-min L~ f ) .. f ) .. f & ( N-min L~ f ) .. f = ( ( E-max L~ f ) .. f ) .. f ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a2 = f . a2 ` & f . a1 = f . a2 ` ; ( seq ^\ k ) . n in ]. - r , x0 .[ & ( seq ^\ k ) . n in ]. - r , x0 .[ ; gg . s0 = g . s0 | G . ( s . s0 ) .= g . ( s . s0 ) ; the InternalRel of S is symmetric implies the InternalRel of S is symmetric deffunc F ( Ordinal , Ordinal ) = phi . ( $2 , $2 ) ; F . a1 = F . a2 & F . a1 = F . a1 & F . a2 = F . a2 ; x `2 = A . ( o . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " P1 & f " P1 c= f " P2 implies f " P1 is closed FinMeetCl ( ( the topology of S ) . i ) c= the topology of T & the topology of S is finite ; synonym o is " means : Def4 : o <> *' & o <> 0. C ; assume that X = Y and card X = card Y and card Y <> card Y and card Y = card X ; the finite non empty Subset of s <= 1 + ( the finite Subset of dom s ) * ( the finite Subset of dom s ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // b1 , c1 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 4 = 0 ; Ex in Sx & Ex in Sx & Ex in { Nx } ; set J = ( l , u ) \mathop { I } ; set A1 = Let ( ap , bm , cp ) , A2 = non-empty ( ( ap , bm , cp ) | ( { x , y } ) ) ; set vs = [ <* vs , dA1 *> , and2a ] , xy = [ <* cin , A1 *> , and2b ] , is non empty ; x * z `1 * x " in x * ( z * N ) " * x ; for x being element st x in dom f holds f . x = g2 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ RightComp f \/ RightComp f \/ RightComp f \/ RightComp f ; U2 is_an_arc_of W-min C , E-max C , E-max C , E-max C , E-max C , E-max C ; set f-17 = f ^ @ g ; attr S1 is convergent & S2 is convergent & ( for n holds ( S1 . n ) - ( S2 . n ) ) implies ( S1 . n - S2 . n ) is convergent ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> in -> in be in in the carrier of reflexive transitive transitive non empty transitive strict for non empty reflexive transitive RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) \/ dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( 0. ( A , A ) ) ) = len l & len ( l (#) ( l (#) ( l (#) ( l (#) ( l (#) ( l (#) ( l (#) ( m , A ) ) ) ) ) ) ) = len l ; t4 is ( {} \/ rng t4 ) -valued ( {} \/ rng t4 ) -valued ; t = <* F . t *> ^ ( C . p ) ^ ( C . q ) ; set pp = W-min L~ Cage ( C , n ) , p1 = W-min L~ Cage ( C , n ) , p2 = Cage ( C , n ) , p3 = Cage ( C , n ) , p1 = Cage ( C , n ) , p2 = Cage ( C , n ) , p3 = Cage ( C , n ) , p4 = Cage ( ( ( k -' 1 ) + 1 ) - ( i + 1 ) = ( k - 1 ) + ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D and u in D ; len ( ( width ( ( ( ( G , i ) |-> a ) + ( G , j ) ) + ( ( G , j ) |-> a ) ) + ( ( G , j ) |-> a ) ) ) = width ( ( ( G , j ) |-> a ) + ( ( G , j ) --> a ) ) ; FF . x in dom ( ( G * the_arity_of o ) . x ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) ; dom ( ( ( - 1 / 2 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( cluster <* l *> ^ phi -> ( 1 + ( \mathop ( 1 + 2 ) ) ) -element for string of S ; set b9 = [ <* ap , bm *> , <* bm , cp *> ] , a9 = [ <* ap , bm *> , <* cin , that a , b *> ] ; Line ( Line ( M , P ) , x ) = L * ( Sgm Q ) ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( ( the Sorts of A ) * ( the_arity_of o ) ) . n = ( the Sorts of A ) . ( the_arity_of o ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , REAL n ; consider y be Point of X such that a = y and ||. x-y - x .|| <= r ; set x3 = t3 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( P1 , s2 , 2 ) , P4 = P3 ; set pg = stop I , pg = stop I , pg = stop I ; consider a being Point of D2 such that a in W1 and b = g . a ; { A , B , C , D } = { A , B , C } \/ { C , D , E , F , J , M } ; let A , B , C , D , E , F , J , M , N , N , M , N , N , N , F , M , N , N , N , M , N , N , N , F , M , N , N , M , N , N , N , N , M , N , |. p2 .| ^2 - ( p2 `1 / p2 `2 ) ^2 >= 0 & ( p2 `1 / p2 `2 ) ^2 - ( p2 `1 / p2 `2 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( ( mm + 1 ) + 1 ) + 1 ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) ; the TopStruct of L = TopSpaceMetr ( the TopStruct of L ) & the TopStruct of L = the TopStruct of L ; consider y being element such that y in dom H1 and x = H1 . y and x = H1 . y ; fv \ { n } = Free ( All ( v1 , H ) ) & fv = Free ( All ( v1 , H ) ) ; for Y being Subset of X st Y is summable holds Y is not summable & Y is not summable implies Y is not iff X is not empty 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } Shift Shift Shift s ) = len s & len s = len s ; for x st x in Z holds exp_R * f is_differentiable_in x & exp_R * f is_differentiable_in x ; rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) & rng ( h2 * g2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) ; j + 1- len f <= len f + ( len f - len f ) - len f + len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . a .= C8 . x .= C8 . x .= C8 . x ; power ( F_Complex ) . ( z , n ) = 1 .= x |^ n .= x |^ n ; t at at at at ( C , s ) = f . ( the connectives of S ) . t ; support ( f + g ) c= support f \/ C & support ( f + g ) c= C \/ { f } ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N & N . ( r | N ) > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 , x2 is Point of [: X1 , X2 :] : x1 in X & x2 in Y } c= [: X1 , X2 :] h . ( i , j ) = ( j , h = id B ) . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in N ; set X = ( |. ( |. q .| ) . O ) . ( ( |. q .| ) . O ) . ( ( |. q .| ) . O ) . ( ( |. q .| ) . O ) . O ) ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = lim ( f /* s1 ) the carrier of Y = the carrier of the lattice of Y & the carrier of Y = the carrier of the topology of Y implies the carrier of Y = the carrier of the topology of X 'not' ( a . x ) '&' b . x 'or' a . x = FALSE ; 2 = len ( ( q0 ^ r1 ) ^ ( q1 ^ q2 ) ) + len ( ( q1 ^ q2 ) ^ ( q1 ^ q2 ) ) ; ( 1 - a ) (#) ( ( sec * f1 ) - ( sec * f2 ) ) is_differentiable_on Z ) ; set K1 = upper ( ( lim ( H , A ) || ( A , B ) ) , ( lim ( H , B ) || ( A , B ) ) , ( lim ( H , B ) || ( A , C ) ) ) ; assume e in { ( ( w1 w1 , w2 ) `1 : w1 in F & w2 in G } ; reconsider da = dom a `1 , dd = dom F `1 , dd = dom F `1 , dd = dom G as finite set ; LSeg ( f /^ j , j ) = LSeg ( f , j ) \/ LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , L2 ) : h . ( N2 , K ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f1 and f = g ; dom S29 = dom S /\ Seg n .= Seg n /\ Seg n .= Seg n /\ Seg n .= Seg n /\ Seg n .= Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H |^ b a * ( - n ) = a `1 - ( 0 * n ) .= a `1 - ( 0 * n ) .= a `1 - 1 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 >= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ g . c <= g . c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ dom ( f1 (#) f3 ) ; 1 = ( p * p ) * ( p * q ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 + 1 .= len f + 1 ; dom ( F | [: N1 , N2 :] ) = dom ( F | [: N1 , N2 :] ) .= [: N1 , N2 :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f * f `2 = id a and f * g `2 = id b ; ( ( ( cos | [. - PI / 2 , 0 .[ ) | [. - PI / 2 , 0 .[ ) | [. - PI / 2 , 0 .[ ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS + 1 & Index ( Gij , LS ) + 1 <= len LS - Gij .. LS ; t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 ( "/\" ( ( Frege ( ( Frege ( ( curry G ) . i ) ) ) . h ) ) . h ) . x <= "/\" ( ( Frege ( ( Frege ( ( Frege G ) . i ) ) . h ) ) . x ) . x ; then P [ f . i0 , f . i0 ] & F ( f . i0 , f . i0 ) < j ; Q [ ( D . [ D , x ] ) `1 , F ( ) . [ D . [ D , x ] ) `2 ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is Element of G . i ; the Sorts of A2 = ( the Sorts of S2 ) +* ( the Sorts of S2 ) +* ( the Sorts of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) ; ( ( for n holds ( for i st i in Seg n holds ( i in Seg n ) ) implies ( i in Seg n ) ) & ( i in Seg n implies ( i in Seg n implies ( i in Seg n ) ) q `2 <= ( UMP Lower_Arc L~ Cage ( C , 1 ) ) `2 & q `2 <= ( UMP L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) /\ LSeg ( f | i2 , j ) = {} ; given a being R_eal such that a <= Ia and A = ]. a , I .[ and a < I ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= len b } ; ( ( x * y ) * z \ x ) \ ( x * y ) = 0. X ; set xy = [ <* xy , y9 , z9 *> , [ <* xy , z9 , \upharpoonright ] ] , yz = [ <* xy , yz , z9 ] , yz = [ <* xy , yz , z9 *> , [ <* xy , yz *> , [ <* xy , yz *> , <* xy , z0 *> ] ] ; lx /. ( len lx ) = ( lx . ( len ( l . ( len ( l . ( len l ) ) ) ) ) ) . ( len ( l . ( len l ) ) ) ) ; ( ( - ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) ) ^2 = 1 ; ( ( - ( p `2 / |. p .| - sn ) ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( ( ( X \/ Y ) \ { x } ) \/ ( Y \/ { x } ) ) ) /\ ( ( X \/ Y ) \ { x } ) ) = ( ( ( X \/ Y ) \ { x } ) \/ ( Y \/ { x } ) ) /\ ( ( X \/ Y ) \ { x } ) ; ( ( s1 - seq ) ^\ k ) . k = ( s1 . k - seq . ( k + 1 ) ) .= ( s1 . k - seq . ( k + 1 ) ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X = the carrier of X & the carrier of X = the carrier of Y ; ex p3 st p3 = p4 & |. p3 - |[ a , b ]| .| = r & |. p3 - p3 .| = r ; set ch = chi ( X , [ x , A ] ) , Ah = chi ( X , [ x , A ] ) ; R / ( ( 0 * n ) * n ) = I---> Element of I-set ( X * n ) * n ; ( Partial_Sums ( ( curry ( F . -19 ) ) ) . n ) . m is nonnegative & ( ( ( curry ( F . -19 ) ) . n ) . m ) . m is nonnegative ; f2 = CK . ( EK , ( EK . ( V , len ( V , len ( V , len ( V , f ) ) ) ) ) ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p11 ) \/ LSeg ( p1 , p11 ) /\ LSeg ( p1 , p11 ) \/ LSeg ( p11 , p2 ) /\ LSeg ( p1 , p10 ) c= { p2 } ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 11 = ( the connectives of S ) . 11 ; set phi = ( l1 , l2 ) \mathop ( l1 , l2 ) , phi = ( l1 , l2 ) \mathop ( l1 , l2 ) ; synonym p is \cup g for ( 1 , T ) *' p & ( p is invertible implies p is invertible ) ; ( Y1 `2 = - 1 & Y1 `1 = - 1 & Y1 `2 <= 1 implies Y1 `1 = - 1 & Y1 `2 <= 1 ) & ( Y1 `2 <= 1 implies Y1 `1 <= 1 & Y1 `2 <= 1 ) defpred X [ Nat , set , set , set ] means ( $1 in $2 implies $2 = $2 ) & ( $1 in $2 implies $2 = $2 ) ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det I |^ ( ( m -' n ) mod n ) = 1. ( K , n ) & Det I = 1. ( K , n ) ; ( - b ) / sqrt ( b ^2 - 4 * a * c ) < 0 ; CT . d = CT . d mod CT . d & CT . d = CT . d mod CT . d & CT . d = CT . d mod C . d ; attr X1 is dense means : Def3 : X2 is dense & X1 is dense implies X1 /\ X2 is dense SubSpace of X1 & X2 is dense implies X1 is dense SubSpace of X2 ; deffunc FF ( Element of E , Element of I ) = ( $1 * $2 ) * ( $2 , $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T ( ) . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y \ 0. X .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , Y *> iff Y is Basis of X synonym A , B are_separated for Cl ( A \/ B ) for Cl ( B \/ C ) for Cl ( B \/ C ) ; len ( M @ ) = len p & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M ; J . v = { x where x is Element of K : 0 < v . ( x + 1 ) & x in rng ( v . ( x + 1 ) ) } ; ( ( Sgm [: Seg m , Seg m :] ) . d - ( Sgm Sgm [: Seg m , Seg m :] ) . e ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ s = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { 0 , {} } \/ S1 ) \/ S2 \/ S2 ) \/ S2 \/ S2 \/ S2 \/ S2 \/ S2 \/ S2 \/ S2 \/ S2 \/ S \/ S \/ S \/ S \/ S \/ S \/ S \/ S \/ S \/ S \/ T \/ S \/ T \/ S \/ S \/ S \/ S \/ S \/ S \/ S \/ IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = DataLoc ( s , 9 ) .= 5 + 9 .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) ; LSeg ( f /^ i , i ) misses LSeg ( f /^ j , j ) \/ LSeg ( f /^ j , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( f , C ) , x ) = f . ( upper_bound C ) - ( lower_bound C ) * ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) - R /. ( L . h ) .|| < e1 * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y `1 , x being Element of REAL st y `1 in Y & x `2 in X holds y `2 <= x `2 & x `2 <= x `2 ; func |. p \bullet q -> variable equals min ( NBI , p , q ) . ( i + 1 ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , y `2 '||' y `1 , t `2 ; dom x1 = Seg ( len x1 ) & len x1 = len x1 & for i st i in Seg len x1 holds x1 . i = x1 . i ) implies x1 = x2 consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X is convergent & ||. f .|| /. ( lim s1 ) = ||. f .|| /. ( lim s1 ) ; ( the InternalRel of A ) ` /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and for i be Nat st i in dom p holds P [ i , j ] ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , [: Y , X :] ; u1 in the carrier of W1 & u2 in the carrier of W2 implies v1 + u1 in the carrier of W1 & v1 + u1 in the carrier of W1 & v1 + u1 in the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) ) .= b ; - ( - x ) = - x + - y .= - x + - y .= - x + - y .= - x + y ; given a being Point of IT such that for x being Point of IT holds a , x are_ed ed implies a , x are_ed ; fbeing Function of [: dom ( ( dom f ) | [: dom f2 , cod g2 :] ) , cod ( f | [: cod f , cod g2 :] ) :] , cod ( f | [: cod f , cod f :] ) :] ; for k , n being Nat st k <> 0 & k < n & k is prime holds k , n are_relative_prime & k , n are_relative_prime & k , n are_relative_prime holds k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a and a * v = a * v ; - ( ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = LL . ( F . k ) & F . k in dom ( L * F ) ; set i2 = AddTo ( a , i , - n ) , i1 = a , i2 = b , i2 = c , n = - n , n = - ( - n ) , m = - ( - n ) , m = - ( - n ) , n = - ( - n ) , m = - ( - n ) , m = - ( - n ) , m = - ( - n ) , n = - ( - m ) attr B is \frac means : Def4 : for S being Subuniversal non empty Subset of \mathopen ( B , S-13 ) holds S is non empty ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } ; |( \square , q29 )| * |( q29 , q29 )| , |( q29 )| >= |( ( 1 - 2 ) * |( q29 , q29 )| ; ( - f ) . ( upper_bound A ) = ( - f ) . ( upper_bound A ) .= - f . ( lower_bound A ) ; ( G * ( len G , k ) `1 ) `1 = ( G * ( len G , k ) `1 ) `1 .= ( G * ( len G , k ) `1 ) `1 ; ( Proj ( i , n ) ) . ( ( proj ( i , n ) ) . ( ( proj ( i , n ) ) . ( x - x0 ) ) ) = <* ( proj ( i , n ) ) . ( x - x0 ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) * reproj ( i , x ) ) ) . x ; attr ( for x st x in Z holds ( ( tan (#) f ) `| Z ) . x = ( tan . x ) * ( cos . x ) ^2 ) ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & h2 . x = h2 . t ; defpred C [ Nat ] means P8 . $1 is non empty & ( for n st n <= $1 holds A8 . n is non empty & A8 . n is non empty ) ; consider y being element such that y in dom ( p9 . i ) and qp . i = p9 . y and qp . i = x . i ; reconsider L = product ( { x1 } +* ( index B ) ) as Basis of product ( A . ( index B ) ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & T . ( id c ) = id d ; ( f , n ) = ( f | n ) ^ <* p *> .= f | n ^ <* p *> .= f | n ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - \cal p = ( f | ( n , L ) ) *' ( f | ( n , L ) ) .= ( f - c ) *' ( f | ( n , L ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 `1 , s2 ]| ) in f1 .: ( W1 /\ W2 ) & f2 . ( r2 ) in f1 .: ( W2 /\ W3 ) ; eval ( a | ( n , L ) ) = eval ( a | ( n , L ) ) .= a . ( a | ( n , L ) ) .= a . ( a . ( n , L ) ) ; z = DigA ( t9 , x ) .= DigA ( t9 , x ) .= DigA ( t9 , x ) .= DigA ( t9 , x ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S is finite } , G = { Intersect S where S is Subset of X : S is finite } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x1 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 / ( 1 + sn ) ^2 ; 0. ( V ) is Linear_Combination of A & Sum ( l ) = 0. V implies Sum ( l ) = 0. V for k1 , k2 being Nat , k1 being Element of NAT holds k1 in dom ( the InstructionsF of SCM+FSA ) & k2 in dom ( the InstructionsF of SCM+FSA ) implies k1 is Element of NAT consider j being element such that j in dom a and j in dom a and x = a " . j and a . j = a . j ; H1 . x1 c= H1 . x2 or H1 . x1 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x2 ; consider a being Real such that p = *> * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c & c <= d and |[ a , b ]| c= dom f and f . a = g . b ; cell ( Gauge ( C , m ) , ( Gauge ( C , m ) ) * ( i , 1 ) + Gauge ( C , m ) * ( i + 1 , 1 ) + Gauge ( C , m ) * ( i + 1 , 1 ) ) ) is non empty ; Ain { ( S . i ) `1 where i is Element of NAT : i in dom S & i in dom S } ; ( T * b1 ) . y = L * b2 /. y .= ( F * b1 ) . y .= ( F * b2 ) . y .= ( F * b2 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then that p => q in S and not x in the still of p and not x in S and not x in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-11 ) & dom ( the InitS of r-11 ) = dom ( the InitS of r-11 ) & dom ( the InitS of r-11 ) = the carrier of r-11 ; synonym f is extended real for for for for for for x is Real st x in rng f holds f is R_eal ; assume that for a being Element of D holds f . { a } = a and for X being Subset-Family of D holds f . { a } = f . union X ; i = len p1 + len <* x *> .= len p1 + len <* x *> .= len p1 + 1 + 1 .= len p1 + 1 + 1 ; ( l . ( 1 , 3 ) ) `1 = ( g . ( 1 , 3 ) ) `1 + ( g . ( 1 , 3 ) ) `1 - ( g . ( 1 , 3 ) ) `1 ) / ( 2 * ( 1 + 3 ) ) `1 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= ( halt SCM+FSA ) . l .= halt SCM+FSA .= ( l l ) . l ; assume for n be Nat holds ||. ( seq . n ) - ( seq . m ) .|| <= ( seq . n ) - ( seq . m ) & ( seq . m ) is summable ; sin . ( PI / 2 ) = sin . ( PI / 2 ) * cos . ( PI / 2 ) .= 0 ; set q = |[ g1 `1 / ( a - b ) , g2 `2 / ( a - b ) ]| , G = |[ a , b ]| ; consider G be sequence of S such that for n being Element of NAT holds G . n in implies G . n in consider G such that F = G and ex G1 st G1 in SM & G in SM & F . ( len G ) = G . ( len G1 ) ; the root of [ x , s ] in ( the Sorts of Free ( C , s ) ) . s & ( the Sorts of Free ( C , s ) ) . s c= ( the Sorts of Free ( C , s ) ) . s ; Z c= dom ( exp_R * ( f + ( 3 / 2 ) ) ) /\ dom ( ( exp_R * ( f + g ) ) ) ; for k be Element of NAT holds ( ( Im ( Im f ) ) . k ) . x = ( ( Im ( Im f ) ) . x ) . x ; assume that - 1 < n and q `2 > 0 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 and q `2 <= 1 ; assume that f is continuous and a < b and a < d and c < d and f . a = g and f . b = g and g . a = f . c and f . c = g . d ; consider r being Element of NAT such that sy0 = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. ( j + 1 ) , L~ f , f /. ( j + 1 ) , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) ) , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) , f /. ( len assume that x in the carrier of K and y in the carrier of K and inf { x , y } in the carrier of K and x <> y ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( ( proj ( F , i1 ) ) . ( i2 , j2 ) ) " ( ( proj ( F , i2 ) ) . ( i1 , j2 ) ) ; rng ( ( ( ( ( ( ( ( ( the carrier of M ) ) | the carrier of M ) ) | the carrier of M ) ) | the carrier of M ) ) | the carrier of M ) ) = the carrier of M ; assume z in { ( the carrier of G ) \ { t where t is Element of T : t in F } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 ; consider t be VECTOR of product G such that mt = ||. Dt . t .|| & ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p ^ <* 1 *> in dom p ; consider a being Element of the Points of Ximplies a on A & a on B & a on B & a on B ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p2 ) , LSeg ( p1 , p2 ) } .= LSeg ( p1 , p2 ) \/ LSeg ( p11 , p2 ) ; i -' len h11 + 2 - 1 < i - len h11 + 2 - 1 + 2 - 1 + 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nbeing ) . ( n -' 1 ) .| ; for r , s1 , s2 being Real holds r in [. s1 , s2 .] iff r <= s1 & s1 <= s2 & s1 <= s2 & s2 <= 1 & s1 <= 1 & s1 <= s2 & s2 <= 1 implies r <= r & r <= s2 & s1 <= 1 assume v in { G where G is Subset of T2 : G in B2 & G c= B1 & G c= H & H c= G & G c= H } ; let g be then succ of A , ( X , Z ) .: ( b , ( X , Z ) .: ( b , ( X , Z ) .: ( b , c ) ) ) ) -> Element of S ; min ( g . [ x , y ] , k ) . ( y , z ) = ( min ( g , k ) ) . ( y , z ) ; consider q1 being sequence of CL such that for n holds P [ n , q1 . n ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ B , OO = O /\ Z , $ O = O /\ Z as Subset of B ; consider j being Element of NAT such that x = the \it the ` of n and 1 <= j and j <= n and n <= len f ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x in L2 . O2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( _ T4 ( k , n2 ) ) . 0 ) .= C . ( ( _ 4 ( k , n2 ) ) . 0 ) ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) | X ) = dom ( X --> f ) ; ( ( N-bound L~ Cage ( C , n ) ) / 2 ) * ( ( \upharpoonright L~ Cage ( C , n ) ) / 2 ) <= ( ( ( E-max L~ Cage ( C , n ) ) ) / 2 ) * ( ( \upharpoonright L~ Cage ( C , n ) ) / 2 ) ; synonym x , y are_collinear means : Def3 : x = y or ex l being Nat st { x , y } c= l or x c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that $ \mathop { \rm Im k is continuous and for x , y being Element of L st x = x & y = y holds x << y iff x << y ; ( 1 / 2 ) (#) ( ( ( #Z 2 ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , 0 ) ) * ( ( AffineMap ( n , defpred P [ Element of omega ] means ( ( the partial of A1 ) . $1 = A1 . $1 ) & ( for n holds A1 . n = A2 . n ) implies A1 is convergent & A2 is convergent & A1 is convergent & A2 is convergent & lim A1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * ( g . g2 ) .= f . g2 * ( g . g2 ) .= f . g2 * ( g . g2 ) .= f . g2 * ( g . g2 ) ; ( M * ( F . n ) ) . n = M . ( ( canFS ( Omega ) ) . n ) ) .= M . ( { ( canFS ( Omega ) ) . n } ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L2 implies L1 + L2 c= L2 + L2 pred a , b , c , x , y , x , y , z , x , y , z , x , y , z is_collinear means : Def3 : a , b , c , x is_collinear & x , y , z is_collinear & x , y , z is_collinear ; ( ( the partial of s ) . n ) . n <= ( ( the Sorts of s ) . n ) . ( ( the Sorts of s ) . n ) . ( ( the Sorts of s ) . n ) . x ) ; attr - 1 <= r & r <= 1 implies ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) / ( r - 1 ) ) ) ) `| Z ) = - ( 1 / ( r - 1 ) ) ; seq in { p ^ <* n *> where p is Nat : p ^ <* n *> in T1 & p in T1 & p in T2 } ; |[ x1 , x2 , x3 ]| . 2 - |[ x1 , x2 ]| . 2 = x2 - |[ x1 , x3 ]| . 2 - |[ x2 , x3 ]| . 3 - |[ x1 , x2 ]| . 3 ; attr for m being Nat holds F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( ( G . ( x , y ) ) ) . ( ( ( G . ( x , y ) ) . ( y , z ) ) ) ) = len ( ( G . ( x , y ) ) . ( x , y ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W2 /\ W3 and v in W2 /\ W3 ; given F being finite FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum F = k ; 0 = 1 * ( D1 , D2 ) , 1 = ( - 1 ) * ( ( - 1 ) * ( D1 , D2 ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) . m .| < e ; cluster non empty -> Boolean for \hbox { ( st ( ( st ( implies ( ( implies ( ( implies ( } } _ 1 ) ) ) ) ) ) ) , ( ( st ( ( st ( st ( st ( ( } ( st ( } ( ( } ) ) ) ) ) ) ) ) ) ) ) ) is Boolean ) ) ; "/\" ( BB , L ) = Bottom ( B , L ) .= Bottom S .= "/\" ( ( the carrier of S ) \ {} ) .= "/\" ( ( the carrier of S ) \ {} , L ) .= "/\" ( I , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - c ) * |[ b , c ]| = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - - ( - 1 ) |^ n ) * ( 1 , 1 ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in downarrow t and x = [ x1 , x2 ] and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 ; for S , T being non empty RelStr , d being Function of T , S st T is complete for d being Function of T , S st d is monotone holds d is monotone & d is monotone [ a + 0. ( F_Complex , b2 ) , b2 ] in ( the carrier of ( COMPLEX ) ) \ ( the carrier of ( COMPLEX ) ) ; reconsider mm = max ( ( len F1 ) * ( ( p . n ) * ( x |^ n ) ) ) as Element of NAT ; I <= width GoB ( ( GoB f ) * ( 1 , width GoB f ) + ( GoB f ) * ( 1 , width GoB f ) ) & I <= width GoB f & f /. len f = ( GoB f ) * ( 1 , width GoB f ) + ( GoB f ) * ( 1 , width GoB f ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def3 : A1 is linearly-independent & A2 is linearly-independent & ( for A being Subset of V st A is Subset of A1 holds ( A /\ A2 ) /\ ( A1 /\ A2 ) = { 0. V } ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C & s in C } ; dom ( ( Line ( v , i + 1 ) ) (#) ( ( Line ( p , m ) ) ) ) ) = dom ( ( F ^ <* p *> ) (#) ( G ^ <* p *> ) ) ; cluster [ x , ( x , 4 ) `1 , ( x , 4 ) `2 , ( x , 4 ) `2 ] -> Morphism of x , 4 & x <> 0. TOP-REAL 2 ; E , All ( x1 , x2 ) |= All ( x2 , All ( x1 , x2 ) '&' ( x1 '&' ( x1 '&' ( x1 '&' ( x1 '&' ( x1 '&' x2 ) ) ) ) ) ) '&' ( x1 '&' ( x1 '&' ( x1 '&' ( x1 '&' ( x1 '&' ( x1 '&' ( x1 '&' x2 ) ) ) ) ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - h . ( x0 + h . m ) ; cell ( G , ( X -' 1 ) + ( Y -' 1 ) ) \ ( ( X -' 1 ) + ( Y -' 1 ) ) meets ( UBD L~ f ) ; IC Comput ( P2 , s2 , 2 ) = IC Comput ( P2 , s2 , 1 ) .= ( card I + 2 ) .= card I + ( card I + 2 ) .= card I + ( card I + 2 ) .= card I + ( card I + 2 ) .= card I + ( card I + 2 ) ; sqrt ( ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) ) ^2 / ( 1 + cn ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g and x0 in g " { k } and y0 = a . x0 and x0 in g " { k } ; dom ( r1 (#) chi ( A , A ) ) = dom ( ( chi ( A , A ) ) | ( Seg m ) ) .= dom ( ( ( chi ( A , A ) ) | ( Seg m ) ) ) .= C ; d-7 . [ y , z ] = ( [ y , z ] `1 - ( y `1 ) ) * ( [ y , z ] `1 - ( y `2 ) * ( [ y , z ] `1 ) ) ; attr for i being Nat holds C . i = A . i /\ B . i & C . i c= C . i /\ C . i ; assume that x0 in dom f and f is continuous and f is continuous and for x st x in dom f holds f . x - f . x <> 0 and f . x <> 0 and f . x <> 0 and f . x <> 0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q & Q meets Q implies A meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y0 .| <= |. y1 - y0 .| & |. y1 - y0 .| <= |. y1 - y0 .| ; func Sum ( <*> a ) -> Ordinal means : Def3 : a in it & for b being Ordinal st a in it holds it . b c= b & for a being Ordinal Ordinal st a in it holds it . a c= b ; [ a1 , a2 , a3 ] in ( the carrier of A ) \ ( the carrier of B ) & [ a1 , a2 , a3 ] in the carrier of A ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the InternalRel of S2 ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x .|| < ( e / ( 2 |^ n ) ) * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I : F . Y in Z & Z in F } holds z in Z ; sup compactbelow [ s , t ] = [ sup ( compactbelow [ s , t ] ) , sup ( compactbelow s ) ] .= [ sup ( compactbelow s ) , sup ( compactbelow t ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in I and [ f . i , f . j ] in I and [ f . i , f . j ] in I ; for D being non empty set , p , q being FinSequence of D st p c= q & p ^ q = q holds ex p being FinSequence of D st p ^ q = q & p ^ q = p ^ q consider e19 being Element of the affine of X such that c9 , a9 // a9 , b9 and not a9 , b9 // a9 , b9 and not b9 , c9 // a9 , b9 and not a9 , b9 // c9 , b9 & not b9 , c9 // a9 , b9 & not b9 , c9 // b9 , c9 ; set U2 = I \! \mathop { {} } , E = I \! \mathop { {} } , F = S \! \mathop { {} } , G = S \! \mathop { {} } , F = S \! \mathop { {} } , G = S \! \mathop { {} } , F = S \! \mathop { {} } , G = S \! \mathop { {} } , F = S \! \mathop { {} } , G = S \! \mathop { {} } , E = S \! \mathop { {} } , E = S \! \mathop { {} } , A = S \! \mathop { {} } , F = S \! \mathop { {} } , A = S \! \mathop |. q2 .| ^2 = ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + ( |. q2 .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y & x "/\" y = x /\ y & x "/\" y = x /\ y & x "/\" x = x /\ y & x "/\" y = x "/\" y & x "/\" y = x "/\" y & x "/\" y = x "/\" y dom signature ( U1 ) = dom ( the charact of U1 ) & ( for o be Element of O holds o in ( the Sorts of U1 ) . o iff ( the_arity_of o ) . o = ( the Sorts of U1 ) . o ) . o ) & ( the_arity_of o ) . o = ( the Sorts of U1 ) . o ; dom ( h | X ) = dom h /\ X .= dom h /\ X .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) ; for N1 , N2 , N1 , N1 , N2 being Element of ( the carrier of G ) * holds ( h . N1 ) . ( h . N2 ) = N1 & ( h . N1 ) . ( h . N2 ) = N2 & ( h . N1 ) . ( h . N1 ) = N1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - cn ) < - 1 or - ( q `1 / |. q .| - cn ) >= - ( q `1 / |. q .| - cn ) & - ( q `1 / |. q .| - cn ) <= - ( q `1 / |. q .| - cn ) ; attr r1 = f9 & r2 = f9 & s1 = f9 & s2 = f9 & s1 = f9 * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * g ) ) ) ) ) ) ) ) & s2 = f9 * ( f * ( f * ( f * ( f * ( f * ( f * g ) ) ) ) ) ; vseq . m is bounded Function of X , the carrier of Y & vseq . m = ( seq_id ( vseq . m ) ) . x & vseq . m = ( seq_id ( vseq . m ) ) . x ; attr a <> b & b <> c & c <> 0 & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( c , a , b ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and r < s and s < p2 and p2 < r ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 in A and p1 ^ q1 = p2 ^ q2 and p1 ^ q1 = p2 ^ q2 and p2 ^ q2 = p2 ^ q2 ; Y. ( , r1 , r2 , s1 , s2 , s1 , s2 , t2 ) = ( s2 s2 s2 , t2 ) / 2 & s1 , s2 , t2 , t2 is_collinear & s1 , s2 , t2 is_collinear & s1 , s2 , t2 is_collinear & s1 , s2 , t2 is_collinear implies s1 , s2 , t2 is_collinear ( ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ holds w `2 <= ( proj2 .: ( A /\ holds w `2 <= w `2 ) ) ) & ( proj2 .: ( A /\ holds w `2 <= w `2 ) ) ) is non empty ; s |= ( ( k , H1 ) |= H2 iff s |= ( H1 , H2 ) |= ( ( H1 , H2 ) |= ( H1 , H2 ) |= ( H1 , H2 ) '&' ( H2 , k ) ) ; len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + card ( support b2 ) .= card ( support b2 ) + card ( support b2 ) .= card ( support b2 ) + card ( support b2 ) .= card ( support b2 ) + card ( support b2 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x holds z `1 >= y `1 & z `2 >= y `2 & z `2 >= x `2 ; LSeg ( UMP D , |[ ( W-bound D ) / 2 ) / 2 , ( E-bound D ) / 2 ]| ) /\ D = { UMP D , ( E-bound D ) / 2 } /\ D .= { UMP D } ; lim ( ( f `| N ) /* ( g `| N ) /* b ) = ( lim ( ( f `| N ) /* ( g `| N ) ) ) / ( ( g `| N ) /* b ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] implies pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( ( seq . k ) - ( seq . m ) ) - ( seq . k ) .|| < r for X being set , P being a_partition of X , a , b being set st x in a & a in P & b in P & x in P & x in P & b in P holds a = b Z c= dom ( ( ( 1 / 2 ) (#) f ) `| Z ) \ ( ( ( 1 / 2 ) (#) f ) `| Z ) & f | Z is continuous implies ( ( ( 1 / 2 ) (#) f ) `| Z ) . ( 0 + 1 ) = ( ( 1 / 2 ) (#) f ) `| Z ) . ( 0 + 1 ) ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & i = ( l ^ <* x *> ) . j & ( l ^ <* x *> ) . j = 1 + ( l ^ <* x *> ) . j & z = 1 + ( l ^ <* x *> ) . j ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 holds r * u + ( r * v ) in c= c= c= N * ( - r ) + ( r * v ) A , Int Cl A , Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Cl Cl A , Cl Cl A ` ` ` ` , Cl Cl A ` ` ` ` ` ` ` ` ` ` ` , Cl ( Cl ( Cl A , Cl A , Cl A ) ` ) ` ` ` ` ) ` ` ` ` ` ` ` ` ` ; - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + u .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM .= ( Exec ( a := b , s ) ) . IC SCM .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the support of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty Subset of [: S1 , S2 :] , f being Function of S1 , S2 holds cos ( f ) is directed & cos ( f ) is directed & cos ( f ) is directed implies f is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or x = y & y = x or x = y or x = y or x = y or x = z or x = z or x = x or x = y or x = z or x = x or x = y or x = z or x = y or x = z or x = x or x = y or x = z & y = z or x = x or x = z or x = x or x = z or x = z or x = x or x = z or x = z or x = ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft Cage ( C , n ) ) & ( Cage ( C , n ) \circlearrowleft Cage ( C , n ) ) .. Cage ( C , n ) in rng Cage ( C , n ) implies ( Cage ( C , n ) \circlearrowleft Cage ( C , n ) ) /. len Cage ( C , n ) = E-max L~ Cage ( C , n ) for T , T being decorated tree , p , q being Element of dom T , p being Element of dom T st p divides q holds ( T -tree p ) . q = T . q & ( T -tree p ) . q = T . q ; [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster -> commutative means : Def3 : k divides it & k divides it & ( for m being Nat st k divides m & m divides k holds it divides m ) & ( for m being Nat st m divides k & m divides m holds it divides m ) & ( for m being Nat st m divides k holds it divides m ) & ( m divides k ) & ( m divides k implies m divides k ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " { x } = the carrier of X2 & F " { x } = the carrier of X1 & F " { x } = the carrier of X2 & F " { x } = the carrier of X2 & F " { x } = the carrier of X1 & F " { x } = the carrier of X2 & x is Function of X1 , X2 ; consider C being finite Subset of V such that C c= A and card C = omega and the carrier of V = Lin ( B \/ C ) and the carrier of C = Lin ( B \/ C ) and the carrier of C = Lin ( B \/ C ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= Y or Y c= V or X c= Y or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p2 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) ) = - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) .= - 1 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 ; attr f is partial means : Def3 : for u0 be Point of pdiff1 ( f , 1 ) holds SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . u0 = ( proj ( 2 , 3 ) ) . u0 & SVF1 ( 2 , 3 ) . u0 = ( proj ( 2 , 3 ) ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & s < G * ( 1 , 1 ) `2 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 } ; consider f being FinSequence such that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and f /. ( t + 1 ) `2 >= N-bound L~ f ; attr i in dom G means : Def3 : r (#) ( f (#) reproj ( i , x ) ) = r * f * reproj ( i , x ) + r (#) reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and ( decomp c ) /. k = c1 + c2 and ( decomp c ) /. k = c1 + c2 and c2 /. k = c2 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) = the carrier of X . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) . ( k2 + 1 ) .= C . ( k2 + 1 ) .= C . ( k2 + 1 ) .= C . ( k2 + 1 ) ; attr len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & M1 = M2 implies M1 - M2 = M2 - M1 & M1 - M2 = M2 - M2 ; consider g2 being Real such that 0 < g2 and { y where y is Point of S : ||. ( - x0 ) - ( x - x0 ) .|| < g2 & g2 < r2 } c= N2 & N2 c= N2 & g2 in N2 & g2 in N2 & g2 in N2 } c= N2 & g2 in N2 & g2 in N2 & g2 in N2 & g2 in N2 & g2 in N2 } c= N2 ; assume x < ( - b + sqrt ( delta ( a , b , c ) ) ) * ( 2 * a ) or x > - b + sqrt ( delta ( a , b , c ) ) * ( 2 * a ) ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ ( H1 ^ H2 ) ) . i & ( H1 ^ H2 ) . i = ( <* 3 *> ^ ( H1 ^ H2 ) ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M2 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f holds f divides f /. i & f /. i = Sum f & f /. ( i + 1 ) = Sum f ; assume that F = { [ a , b ] where a , b is Element of X : for c being set st c in B\mathopen { a , b } & c in B\mathopen { b : a in B } } and a c= c } ; b2 * q2 + ( b3 * q2 ) + ( b3 * q2 ) + ( b3 * q2 ) + ( b3 * q2 ) = 0. TOP-REAL n + ( b1 * q2 ) + ( b2 * q2 ) .= 0. TOP-REAL n + ( b2 * q2 ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st B = Cl ( F . D ) & B in F & B in F } ; attr seq is summable means : Def4 : seq is summable & ( for n holds seq . n is summable & seq . n is summable ) & ( for n holds seq . n = Partial_Sums ( seq ) . n ) & ( for n holds seq . n = Partial_Sums ( seq ) . n ) implies seq is summable & ( seq is summable ) & ( seq is summable implies seq is summable ) & ( seq is summable ) & ( seq is summable ) implies seq is summable ) ; dom ( ( ( ( cn ) | D ) | D ) ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) | D ) /\ D ) .= the carrier of ( ( ( TOP-REAL 2 ) | D ) | D ) .= the carrier of ( ( ( TOP-REAL 2 ) | D ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) | D ) ; [: X , Z :] is full full SubRelStr of ( Omega Y ) |^ the carrier of Z & [ X , Y ] is full SubRelStr of ( Omega Y ) |^ the carrier of Z ; ( G * ( 1 , j ) `2 = G * ( i , j ) `2 & ( G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 or G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 ) & ( G * ( 1 , j ) `2 <= ( G * ( 1 , j ) `2 ) ) ; synonym m1 c= m2 for for for for for for for ( m1 , m2 ) `1 , m2 = m2 & m2 <= m2 & m1 <= m2 & m2 <= m2 holds ( m1 , m2 ) `2 <= m2 `2 & m2 <= m2 `2 & m2 <= m2 `2 & m2 <= m2 `2 & m2 <= m2 `2 & m2 <= m2 `2 & m2 <= m2 `2 ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( ) where b is Element of B ( ) : P [ b ] } ; func multiplicative loop loop Str (# carrier -> multiplicative loop over R means : Def3 : for a being Element of it holds a , a are_in it iff a , b are_if a , b are_commutative in it & b , a are_if a , b are_commutative in it , b ) ; the carrier of : ( the carrier of a , b ) + 1 = b + ( c + d ) .= b + d .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) ; cluster -> add-associative right_zeroed right_complementable for Element of INT , F , G be Element of INT , i , j be Element of NAT holds ( i = j implies F . ( i1 , i2 ) = + F . ( i2 , i1 ) ) & ( i = i2 implies F . ( i1 , i2 ) = ( i1 + i2 ) + ( i1 - i2 ) ) ( - s2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) = ( r2 * p1 + s2 * p2 ) + ( s2 * p2 ) - ( s2 * p2 ) .= ( r2 * p1 + s2 * p2 ) + s2 * p2 ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty Subset of S , V being open Subset of S st V in V holds V is open & for V being open Subset of S st V in V holds V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 ( k , w ) = ( T11 . ( q11 , w ) ) -\mathop { \rm \hbox { - } m } and T11 . ( k + 1 ) = ( T11 . ( q11 , w ) ) -\mathop { - m } ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n + 1 ) + ( b |^ ( n + 1 ) ) + ( a |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ; M , v / ( x. 3 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 0 , x ) ) / ( x. 4 , x ) / ( x. 0 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 0 , x ) ) = x ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f ' Z & for x0 st x0 in l holds f . x0 < 0 & f . x0 < 0 & f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G1 , x being set st e in W & not x in W holds W is Walk of ( G ) st e in W & x in W holds W is Walk of ( G ) not vs is non empty iff not ( not <= <= <= & & & <= <= & & & not <= <= & & & not <= <= & & & not <= <= & & & not <= <= & & & & & not <= <= & & & & & not <= <= & & & & not <= <= & & & & & & & & not not & & & & & & not not not <= & & & & not not <= & & & & not not <= & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & & = & & & & & & = & & & & = & & = = = & & & & & = Indices GoB f = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: Seg len GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: Seg len GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: Seg len GoB f , Seg width GoB f :] ; for G1 , G2 , G3 being stable Subgroup of O st G1 , G2 are_: for a being stable Element of G1 , b being stable Element of G2 st a in G1 & b in G2 holds G1 , G2 are_commutative & G2 is stable holds G1 , G2 are_stable UsedIntLoc ( int ) = { ( intloc 0 ) , ( ( intloc 1 ) .--> ( ( intloc 1 ) .--> ( ( intloc 1 ) .--> ( ( intloc 1 ) .--> ( ( intloc 0 ) .--> ( ( intloc 0 ) .--> ( ( intloc 1 ) .--> ( ( intloc 0 ) .--> ( ( intloc 1 ) .--> ( ( intloc 0 ) .--> ( ( intloc 0 ) .--> ( ( intloc 1 ) .--> ( ( intloc 0 ) ) intloc ( ( intloc 1 ) ) 1 ) ) ) ) ) ) ) ) ) ) ) ) , ( ( intloc 1 ) .--> ( ( intloc 1 ) ) ) ) , ( ( intloc 1 ) ) ) ) , ( ( intloc 1 ) ) ) , ( ( intloc 1 ) .--> ( ( intloc 1 ) .--> ( for f1 , f2 being FinSequence of F st f1 is p -element & f2 is p & Q [ f1 , f2 ] holds Q [ f2 , f1 ^ f2 ] & Q [ f1 ^ f2 , f2 ^ g2 ] ( ( p `1 ) ^2 + ( p `2 ) ^2 + ( p `1 ) ^2 ) = ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `1 ) ^2 + ( q `2 ) ^2 ; for x1 , x2 , x3 being Element of REAL n , x , y being Real holds |( x1 - x2 , x1 - x2 )| = |( x1 , x1 - x2 )| & |( x1 , x2 )| = |( x1 , x2 )| - |( x2 , x1 )| + |( x2 , x1 )| + |( x1 , x2 )| for x st x in dom ( ( F - x ) | A ) holds ( ( F - x ) | A ) . ( - x ) = - ( ( F - x ) | A ) . ( - x ) ) for T being non empty TopSpace , P being Subset-Family of T , B being Basis of T st P c= the topology of T for x being Point of T st x in P holds P is Basis of x ( a 'or' b ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= ( 'not' a . x 'or' b . x ) 'or' ( 'not' a . x ) .= TRUE .= TRUE ; for e being set st e in A8 ex X1 being Subset of X , Y1 being Subset of Y st e = X1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open ; for i be set st i in the carrier of S for f being Function of [: S , T :] , [: S , T :] st f = H . i & f is Function of [: S , T :] , T . i holds F . i = f | ( F . i ) for v , w st for x st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ) , J ) . ( v . x ) = Valid ( VERUM ( Al ) , J ) . ( v . x ) card D = card D1 + card D1 - card { { i , j } } - card { i , j } .= 2 * ( i + 1 ) - card { i , j } .= 2 * ( i + 1 ) - card { i + 1 } .= 2 * ( i + 1 ) - card { i + 1 } .= 2 * ( i + 1 ) - card { i + 1 } .= 2 * ( i + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 .= ( ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 .= ( ( ( 0 .--> ( s . 0 ) ) . 0 ) . 0 len f /. ( \downharpoonright i1 -' 1 + 1 ) -' 1 + 1 = len f -' ( i1 -' 1 + 1 ) + 1 .= len f -' ( i1 -' 1 + 1 ) + 1 .= len f -' ( i1 -' 1 + 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k < b holds a <= a + b-2 or a = b + b-2 or a = a + b-2 or a = b-2 or a = b-2 or a = b-2 or a = b-2 or a = b-2 or a = b-2 or a = b-2 or a = b-2 ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st i in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= i & Index ( p , f ) <= Index ( p , f ) + 1 lim ( ( curry ( P , k + 1 ) ) # x ) = lim ( ( curry ( P , k ) ) # x ) + ( ( curry ( P , k ) ) # x ) # x ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id the carrier of G or [ f . 0 , f . 3 ] in id the carrier of G & [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 2 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A , Y is Subset of B : R in F & Y in F } holds ( Intersect ( F ) ) . ( X , Y ) = Intersect ( G ) . ( X , Y ) ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s2 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s2 , m2 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and c on N and p on N and p on M and a on M and c on N and p on M and a on M and p on M and a on M and c on M and p on M and a <> b and p <> c & a <> b & p <> c & p <> c & a <> b & p <> c & a <> c & p <> c & a <> b & p <> c & a <> c & p <> c & a <> c & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d & p <> d assume that T is \hbox of T , T1 and ex F be Subset-Family of T st F is closed & F is closed & F is finite-ind & for n being Nat st n <= len F holds F . n <= 0 & ind F <= 0 ; for g1 , g2 st g1 in ]. ( r1 - r ) / 2 , ( r1 - r ) / 2 .[ & |. ( f . g1 ) - ( g . g2 ) .| <= ( r1 - r ) / 2 holds |. ( f . g1 ) - ( g . g2 ) .| <= ( r1 - r ) / 2 * ( ( r1 - r ) / 2 ) ( ( > ( > 0 ) / ( z1 + z2 ) ) / ( z1 + z2 ) ) = ( ( > 0 ) / ( z1 + z2 ) ) * ( z1 + z2 ) + ( ( 1 / 2 ) * ( z1 + z2 ) ) * ( z1 + z2 ) ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) ; ex y being set , f being Function st y = f . n & dom f = NAT & for n holds f . ( n + 1 ) = RF ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , 6 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 } = { x1 , x2 , x3 , 6 , 7 , 7 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 } \/ { x1 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & ( x in InputVertices S ( ) & x in InputVertices S ( ) & x in InputVertices S ( ) ) ) & ( x in InputVertices S ( ) implies x in InnerVertices S ( ) ) & x in InputVertices S ( ) ) ; ex S1 being Element of QC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( for n being Element of NAT holds ( ( P . n ) . n = ( P . n ) . ( l + 1 ) ) & ( P . n ) . ( l + 1 ) = ( P . n ) . ( l + 1 ) ) ; consider P being FinSequence of IT such that pthat pI = product P and for i being Element of NAT st i in dom P ex tI being Element of the carrier of K st P . i = t1 & P . i = t1 & P . i = t2 ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the topology of T1 = the topology of T2 & P is Basis of T2 & P is Basis of T2 holds P is Basis of T1 & Q is Basis of T2 & P is Basis of T2 implies P is Basis of T2 assume that f is partial u0 on u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 ) = r * pdiff1 ( f , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 ) = r * pdiff1 ( f , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 ( f , 3 ) , u0 ) = r * pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F , G being FinSequence of REAL , s being FinSequence of REAL st len F = $1 & for i being Element of NAT st i in $1 holds G = F * s & ( for i being Element of NAT st i in $1 holds F . i = F . i ) holds F = G . i ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j ) `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 } defpred U [ set , set ] means ex FF be Subset-Family of T st $1 = FF & $2 = F . $1 & ( for n being Nat holds $2 . n is open & F . n is open & F . n is open & F . n is open & F . n is open & F . n is open & F . ( $1 + 1 ) is open ) & F is discrete ; for p4 being Point of TOP-REAL 2 st LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p1 , p2 & LE p2 , p3 , P , p1 , p2 holds LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p2 & LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p2 & LE p4 , p2 , P , p1 , p2 & LE p4 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p2 , p1 , P , p3 & LE p4 , p1 , P , p1 , p2 & LE p2 , p1 , P , p3 , p3 , K & LE p2 , p1 , K , p3 , p3 , p3 f in St ( E , H ) & for g st g in S holds g . y = f . y iff for x st x in S holds g . x = f . ( All ( x , H ) . x ) ) & f in for x st x in S holds g . x = f . ( All ( x , H ) . x ) ) ; ex p9 being Point of TOP-REAL 2 st x = p9 & ( ( for q being Point of TOP-REAL 2 st q in the carrier of TOP-REAL 2 holds |. q .| >= p9 ) & ( ( for q being Point of TOP-REAL 2 st q in the carrier of TOP-REAL 2 holds |. q .| >= sn ) & ( ( for q being Point of TOP-REAL 2 st q in the carrier of TOP-REAL 2 holds q `2 >= 0 ) ) & ( ( for q being Point of TOP-REAL 2 st q in the carrier of TOP-REAL 2 ) holds q `2 <= 0 ) & q `2 <= 0 ) & ( ( q `2 <= q `1 <= 0 ) & q `2 <= 0 ) & ( ( q `2 <= q `1 <= 0 & q `2 <= 0 ) & ( ( q `2 <= q `1 <= 0 & q `2 <= 0 & q `2 <= 0 & q `2 <= 0 & q `2 <= q `1 <= 0 & q `1 <= q `1 <= q `1 assume for d7 being Element of NAT st d7 <= d7 & d7 <= d7 holds s1 . ( d7 ) = s2 . ( d7 ) & s1 . ( d7 ) = s2 . ( d7 ) & s1 . ( d7 ) = s2 . ( d7 ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st e = Ball ( x , r ) /\ Ball ( x , r ) & e in Sphere ( x , r ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s st 0 < s ex x1 , x2 being Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s & ||. x1 - x2 .|| < s & ||. x1 - x2 .|| < r & ||. x1 - x2 .|| < s ; ( p | x ) | ( p | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x assume that x , x + h / 2 in dom sec and ( ex h st h = ( 4 * ( sec * ( ( 2 * x + h ) ) / 2 ) ) * ( sin * ( 2 * x + h / 2 ) ) ) / 2 ) ) and ( h = 4 * ( ( 2 * x + h / 2 ) / 2 ) ; assume that i in dom A and len A > 1 and len B > 1 and B * ( i , j ) = ( ( A * ( i , j ) ) * ( i , j ) ) and ( A * ( i , j ) ) * ( i , j ) = ( A * ( i , j ) ) * ( i , j ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = 1. F_Complex or i = 1. F_Complex or i = 1. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 1. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex holds h . i = <* 1. F_Complex , 1. F_Complex *> ( ( ( b1 'imp' b2 ) '&' ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( b2 'or' b3 ) ) ) ) ) ) '&' ( ( ( b1 'or' b2 ) '&' ( b1 'or' b3 ) ) '&' ( ( b1 'or' b2 ) '&' ( b2 'or' b3 ) ) ) ) '&' ( ( ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b2 'or' b3 ) ) ) ) ) '&' ( ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( b2 'or' b3 ) '&' ( b2 'or' b3 ) ) ) ) ) '&' ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( ( b1 'or' b2 ) '&' ( b2 'or' b3 ) ) '&' ( ( b2 'or' b2 ) ) '&' ( ( ( b2 'or' b3 ) ) '&' ( ( b2 'or' b3 ) ) '&' ( assume that for x holds f . x = ( ( - 1 ) (#) ( ( cot * ( sin - x ) ) / ( sin . x ) ) ) and for x st x in dom ( ( - 1 ) (#) ( sin * ( sin - x ) ) ) holds ( ( - 1 ) (#) ( sin * ( sin - x ) ) ) `| Z ) . x = - ( sin . x ) / ( sin . x ) ; consider R8 , I7 be Real such that R8 = Integral ( M , Re ( F . n ) ) and R7 = Integral ( M , Im ( F . n ) ) and I = ( Im ( F . n ) ) . ( n + 1 ) and I = ( Im ( F . n ) ) . ( n + 1 ) ; ex k be Element of NAT st k = k & 0 < d & d < d & for q be Element of product G st q in X & ||. qx0 - f /. x .|| < r holds ||. partdiff ( f , x , i ) - partdiff ( f , x , i ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , 6 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 } \/ { 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , ( G * ( j , i ) `2 ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( f1 * p = p .= ( the Arity of S1 ) . ( ( the Arity of S2 ) . ( g . o ) ) .= ( the Arity of S1 ) . ( g . o ) .= ( the Arity of S1 ) . ( g . o ) .= ( the Arity of S1 ) . ( g . o ) ; func tree ( T , P , T1 ) -> Tree means : Def1 : for q being FinSequence st q in T holds q in T iff ex p , q st p in T & q in T & q in T & p in T & q in T & p in T & q in T & q in T & p in T & q in T & q in T ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) , F . ( p . ( k + 1 ) ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) ; for A , B , C being Matrix of len C , K st len B = len C & len B = width C & len C > 0 & len C > 0 & len A > 0 & len B > 0 & len A > 0 holds A * ( being being being Matrix of len A , width A ) = B * C & len A > 0 & len B > 0 & width A > 0 holds A * ( BC ) = B * C ( ( Partial_Sums ( seq ) ) . ( k + 1 ) ) . ( n + 1 ) = 0. ( X , ( seq . ( k + 1 ) ) ) . ( ( Partial_Sums ( seq ) ) . ( k + 1 ) ) . ( n + 1 ) ) .= ( Partial_Sums ( seq ) ) . ( n + 1 ) . ( n + 1 ) ; assume that x in ( the carrier of Cs ) and y in ( the carrier of Cs ) and x in the carrier of the carrier of Cs and y in the carrier of Cs and x in the carrier of s ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k < $1 holds f . k = ( VAL g ) . ( f /. k ) ) holds ( ( VAL g ) . ( f /. k ) ) . ( f /. ( k + 1 ) ) = ( ( VAL g ) . ( f /. k ) ) . ( f /. ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) ; assume that sn < 1 and ( q `1 / |. q .| - cn ) >= 0 and ( q `2 / |. q .| - cn ) >= 0 and ( q `2 / |. q .| - cn ) >= 0 and ( q `2 / |. q .| - cn ) >= 0 and ( q `2 / |. q .| - cn ) >= 0 ; for M being non empty metric space , x being Point of M , f being Point of M st x = x `1 holds ex n being Nat st for m being Nat holds f . m = Ball ( x `1 , 1 / n ) & f . n = Ball ( x `1 , 1 / n ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds f2 . x > 0 & f2 . x > 0 & f2 . x > 0 & f2 . x < 1 & f2 . x < 1 & f2 . x < 1 & f2 . x < 1 & f2 . x < 1 & f2 . x < 1 & f2 . x < 1 & f2 . x < 1 ; defpred P1 [ Nat , Point of ( C ) ] means ( for r be Point of ( C ) st r in Y & ( for s be Point of ( C ) st s in Y holds ||. ( s1 . s ) - ( s2 . s ) ) .|| < r ) & ( ||. f /. ( s ) - ( s2 . s ) .|| < r ) implies f /. ( s - ( s - s1 ) ) < r ) ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) ; ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) = ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 1 ) .= 1 * ( 2 * n0 + 2 * n0 ) .= 1 * ( 2 * n0 + 2 * n0 ) .= 1 * ( 2 * n0 + 2 * n0 ) ; defpred P [ Nat ] means for G being non empty strict strict finite RelStr , F being Function of the carrier of G , the carrier of G st F is non empty holds the carrier of F = the carrier of G & the carrier of F = the carrier of G & the carrier of F = the carrier of G & the InternalRel of F = the InternalRel of G ; assume that f /. 1 in Ball ( u , r ) and not 1 <= m and m <= len - ( f /. 1 ) and for i st 1 <= i & i <= len f holds LSeg ( f , i ) /\ LSeg ( f , m ) = { f /. i } and LSeg ( f , i ) /\ LSeg ( f , m ) = { f /. i } and LSeg ( f , m ) /\ LSeg ( f , m ) = { f /. m , f /. ( m + 1 ) /\ LSeg ( f , m ) = { f /. m , f /. ( m + 1 ) = { f /. ( m + 1 ) /\ LSeg ( f , m ) = { f /. ( m + 1 ) } and LSeg ( f , m ) = { f /. ( m + 1 ) /\ LSeg ( f , m ) /\ LSeg ( f , f /. ( m + 1 ) /\ LSeg ( f , f /. ( m + 1 ) /\ LSeg ( f , m ) = { f /. m , defpred P [ Element of NAT ] means ( Partial_Sums ( ( ( ( ( ( 1 / 2 ) (#) ( ( n + 1 ) / ( 2 * n ) ) ) ) ) ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) = ( ( ( ( ( n / 2 ) * ( ( n + 1 ) / ( 2 * $1 ) ) ) ) / ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) ) . ( 2 * $1 ) . ( 2 * $1 ) ) . ( 2 * $1 ) . ( 2 * $1 + ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( n + $1 ) ) . ( ( ( ( ( ( ( ( for x being Element of product F holds x is FinSequence of dom x & ( for i being set st i in dom x holds x . i = I . i ) & ( for i being set st i in dom x holds x . i in I . i ) implies x . i = I . i ) ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) .= ( x |^ n ) |^ ( n + 1 ) ; DataPart Comput ( P +* I , ( LifeSpan ( P +* I , s ) ) + ( LifeSpan ( P +* I , s ) ) + 3 ) = DataPart Comput ( P +* I , s +* I , ( LifeSpan ( P +* I , s ) ) + 3 ) ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom f1 and for g st g in ]. x0 - r , x0 .[ holds f1 . g <= ( f1 . g ) . g & f2 . g <= 0 ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( for x be Element of X holds f1 . x = ( f1 . x ) - f2 . x ) and ( f1 | X ) . x = ( f1 | X ) . x ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Element of L & x is ` & l is ` & x is ` ) implies for x being Element of L st x in { l where l is Element of L : l is prime } Support ( e ) in { m where m is Element of NAT : A /. i = Support ( m *' p ) & ex p being Polynomial of n , L st p = m & p . i = m & p . i = m & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i = m . i & p . i ( f1 - f2 ) /* ( seq ^\ k ) = lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= ( lim ( ( f1 /* s1 ) - ( f2 /* s2 ) ) ) ) * ( ( lim s1 ) - ( f2 /* s2 ) ) .= ( lim ( ( f1 /* s1 ) - ( f2 /* s2 ) ) ) * ( lim ( ( f1 /* s1 ) - ( f2 /* s2 ) ) ) .= ( lim ( ( f1 /* s1 ) - ( f2 /* s2 ) ) ) ) ; ex p1 being Element of QC-WFF ( Al ) st F . p1 = g . p1 & for g being Function of QC-WFF ( Al ) , D st g = g . ( g . ( len g ) ) holds p1 = g . ( len g ) ) ; ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) ; ( ( p ^ q ) . ( len p ) ) . ( ( len p ) + k ) = ( ( p ^ q ) . ( len p ) ) . ( ( len p ) + ( len q ) ) ) . ( ( len p ) + ( len q ) + ( len p ) ) .= ( ( p ^ q ) . ( len p ) ) . ( ( len p + k ) ) .= ( ( p ^ q ) . ( len p + k ) ) . ( ( len p + k ) ) . ( ( len p + k ) ) .= ( ( p ^ q ) . ( ( len p + k ) ) . ( ( len p + k ) ) + ( ( len p + k ) ) . ( ( len p + k ) . ( ( len p + ( len p + ( len p + ( len p + ( len p + ( len p + ( len p + ( len p + ( len p + ( len p + k ) ) ) .= ( ( len p + k ) ) + ( len p + ( len p + k ) ) + ( len p + len mid ( upper_volume ( f , D1 ) , 1 ) + ( indx ( D2 , D1 , j ) + 1 ) - ( indx ( D2 , D1 , j ) + 1 ) = indx ( D2 , D1 , j ) - ( indx ( D2 , D1 , j ) + 1 ) + ( indx ( D2 , D1 , j ) + 1 ) - ( indx ( D2 , D1 , j ) + 1 ) ; x * y * z = ( x * ( y * z ) ) * ( ( x * ( y * z ) ) * ( x * ( y * z ) ) ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * x ; v . ( <* x , y *> ) * ( <* x0 , y0 *> ) . i = partdiff ( v , ( x - x0 ) * ( <* x0 , y0 *> ) ) + ( ( proj ( 1 , 1 ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) ) ) ) ) ) ) . ( ( reproj ( 1 , 1 ) ) ) . ( ( reproj ( 1 , 1 ) ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( ( reproj ( 1 , y ) ) . ( ( x , y ) ) ) ) * ( ( reproj ( 1 , y ) ) . ( ( reproj ( 1 , y ) ) . ( ( reproj ( 1 , y ) ) . ( ( reproj ( 1 , y ) ) . ( ( reproj ( 1 , i * i = <* 0 * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) ) .= <* - 1 , 1 *> * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) .= - 1 , 1 , 1 , 1 , 1 , 1 * ( - 1 , 1 , 1 ) * ( - 1 , 1 , 1 * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 ) * ( - 1 , 1 , 1 , Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( ( L (#) F2 ) (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( ( L (#) F2 ) (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) ; ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of REAL st Y1 is non empty & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. Sum ( Y1 ) - Sum ( Y2 ) .| < r & Sum ( Y1 ) <= Sum ( Y1 ) ; ( GoB f ) * ( i , j + 1 ) `1 = f /. ( k + 2 ) & ( GoB f ) * ( i + 1 , j ) `2 = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) `2 ) or ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) `2 ; ( ( - 1 ) (#) ( cos | [. - 1 , 1 .[ ) ) / ( sin | [. - 1 , 1 .] ) = ( - 1 ) / ( cos . ( - 1 ) ) .= ( - 1 ) / ( cos . ( - 1 ) ) .= ( - 1 ) / ( cos . ( - 1 ) ) .= ( - 1 ) / ( cos . ( - 1 ) ) .= ( - 1 ) / ( sin . ( - 1 ) ) .= ( - 1 ) / ( sin . ( - 1 ) ) .= ( - 1 ) / ( sin . ( - 1 ) ) / ( sin . ( - 1 ) ; ( - ( - b + sqrt ( a , b ) ) / ( 2 * a ) ) < 0 & ( - ( - b ) / ( 2 * a ) ) / ( 2 * a ) < 0 implies ( - ( - b ) / ( 2 * a ) ) / ( 2 * a ) < 0 ) & ( - ( - b ) / ( 2 * a ) < 0 ) assume that inf ( uparrow X /\ C ) in L and ex X st X in the carrier of L & for x st x in X holds x in X & x in X & x in sup ( ( ( downarrow X ) /\ ( downarrow x ) ) /\ ( ( downarrow x ) /\ ( downarrow x ) ) ) ) & x in X ; ( ( for j holds ( j = i = j ) implies ( i = j = j ) implies i = j ) & ( j = j implies i = j ) & ( j = j implies i = j ) ) & ( j = j implies i = j ) ) & ( j = j implies i = j ) ) & ( j = j implies i = j ) ) & ( j = j implies i = j ) ) implies i = j )