thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m ; assume f is prime ; not x in Y ; z = +infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is 1 ; assume x in I ; q is as : 0 in n ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k-2 ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; \bf 2 > 0 ; assume q in A ; not W is bounded ; f is IC ; assume A is boundary ; g is_sequence_on G ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is (#) ; Q halts_on s ; x in such that x in \in \in \in ' ; M < m + 1 ; T2 is open ; z in b < a < a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of REAL ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , x1 ; let E be Ordinal ; o \mathord o1 , o * ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be complex let M be non empty set , f be PartFunc of V , V ; not s in Y to_power 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , M be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a-0 <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Subset of V ; s is trivial & s is non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing Nat st v < n ; S.: S is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , E , f ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= j9 & j <= width G ; set A = -> non empty set ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has \cdot F ; assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be let \Omega , g be 1 -element Function ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v \overline ( X /\ Y ) ; - y in I ; let A be non empty set , B be non empty set ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be TOP-REAL countable set ; rng f c= NAT & f is one-to-one assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IB , C ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in D ; assume t . 1 in A ; let Y be non empty TopSpace , x be Point of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} & mm <> {} ; M + N c= M + M ; assume M is connected & hhz is connected ; assume f is additive inbr-r) ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is continuous ; f . x being Real ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max ( A , B ) ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cc ; q2 c= C1 & q2 c= C2 ; a2 < c2 & b2 < c2 ; s2 is 0 -started ; IC s = 0 ; s4 `1 = s4 `1 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be function of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y are_not zero ; R8 ; let a , b be Real , x be Point of REAL ; let a be object of C ; let x be Vertex of G ; let o be object of C , a be object of C ; r '&' q = P \lbrack l , r .] ; let i , j be Nat ; let s be State of A , x be set ; s4 . n = N ; set y = ( x `1 ) / ( 1 + x `2 ) ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; not V2 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A is dense and A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xY c= Z1 & xY c= Z1 ; dom f = [: C1 , C2 :] ; assume [ a , y ] in X ; Re ( seq . n ) is convergent ; assume a1 = b1 & a2 = b2 ; A = ( sInt A ) ` ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , n be Nat ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 /\ dom g2 ; k + 1 in dom f ; not the still of s is finite ; assume that x1 <> x2 and x1 <> x3 ; v1 in V1 & v2 in V2 ; not [ b `1 , b ] in T ; i9 + 1 = i ; T c= \rangle ( T ) ; ( l . 1 ) `1 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AA is_integrable_on M & f is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; [: C , C :] misses [: V , C :] ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for NAT -defined Function ; assume c2 = b2 & c1 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is Cauchy and vseq is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 1 ; k in N or k in K ; F1 \/ F2 c= F ; Int ( G1 \/ G2 ) <> {} ; ( z `2 ) ^2 = 0 ; p11 `2 <> p1 `2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete up-complete non empty reflexive transitive RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. Y ; let I be <= halting Instruction of S , i be Nat ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 `1 = ( K `1 ) * ( 1 , 1 ) `1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMMA is closed ; assume z0 <> 0. L & z0 <> 0. L ; n < N7 . k ; 0 <= seq . 0 - seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , R :] is stable Subset of R ; set [: R , R :] = Vertices R ; pp c= P3 & P3 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott Scott Scott TopLattice of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b & downarrow b = { a } ; P , C , K , L ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_equipotent ; assume a in A ( ) ; k in dom ( q ^ <* p *> ) ; p is FinSequence of S ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict } -valued strict for Relation ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gik } ; W-min ( C ) in C & W-min ( C ) in C ; assume x in { Gik } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom F = dom G ; let s be Element of NAT , k be Nat ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void non empty ManySortedSign ; let f be ManySortedSet of I ; let z be Element of COMPLEX , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < 2 * ( n + 1 ) ; let x , y be set ; B-11 c= ( V . i ) ; assume I is_closed_on s , P ; U2 = U ( ) & U2 = U ( ) ; M /. 1 = z /. 1 ; x9 = x9 & y9 = y9 or x9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; f7 <= ( f . i ) `1 ; let l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT ; r8 is ( len ( D * ) ) -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card ( K1 ) in M & card ( K1 ) in M ; assume that X in U and Y in U ; let D be st D is st D is open holds D is open set r = { Seg ( k + 1 ) } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , x be Point of X ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for LATTICE ; a1 in B . s1 & a2 in B . s1 ; let V be finite VectSp non empty VectSpStr over F , F be FinSequence of V ; A * B on B , A ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F (#) C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be non empty set ; ( cos ( x ) ) ^2 < ( cos ( x ) ) ^2 ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in IX ; ( Q ) / ( 3 / ( 4 * ( 1 + 3 ) ) ) = 0 ; set j = x0 div m , i = m mod m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I not ( I , phi ) = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B |^ C ) ; s1 , s2 s2 s2 s2 , s3 be Element of R ; j1 -' 1 = 0 or j1 -' 1 = 1 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_congruent_mod m ; set g = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 + 1 & i1 -' 1 + 1 <= len f ; 1 <= i1 -' 1 + 1 & i1 -' 1 + 1 <= len f ; i + i2 <= len h - 1 ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 2 ; set H = h . g , I = h . i ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 ; assume x in ( ( X /\ X1 ) \/ ( X /\ X1 ) ) ; ||. h .|| < dx0 & 0 < dx0 ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k -' l = kLIN ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be succ s ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty transitive RelStr , x be Element of L ; S-20 is x -\leq i -basis i ; let r be non positive Real ; M , v |= x , y |= x ; v + w = 0. ( Z ) ; P [ ( len F ) - 1 ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero Element of M = 0 & the carrier of M = 0 ; cluster z (#) seq -> summable for Real_Sequence ; let O be Subset of the carrier' of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> / for Element of AllSymbolsOf S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is \overline of r2 ; T2 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q1 <> {} & Q1 /\ Q1 <> {} ; let k be Nat ; q " is Element of X & q is Element of Y ; F . t is set & F . t is set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root & y is root implies x <= y `1 not r in ]. p , q .[ ; let R be FinSequence of REAL , x be set ; S7 does not destroy b1 , b2 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * ( seq . n ) = seq . n ; let x be FinSequence of NAT , k be Nat ; let f be Function of C , D , g be Function ; for a holds 0. L + a = a IC s = s . NAT .= ( n + 1 ) ; H + G = F-GG ; CS1 . x = x2 & CS2 . x = y2 ; f1 = f .= f2 . i .= f2 . i ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d2 , o _|_ o , a3 ; Iz is reflexive & Iz is reflexive implies z in Cz Iz is antisymmetric implies ( for n holds n in Cz iff n <= z ) sup rng H1 = e & sup rng H1 = e ; x = a9 * ( a * b ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < j2 -' 1 ; rng s c= dom f1 /\ dom f2 ; assume support a misses support b & not a in support b ; let L be associative commutative associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 ) = I1 . 0 .= i ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* \rangle . N -> complete for non trivial RelStr ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume ( 1 - t ) / 2 <= t `1 / 2 ; card B = k + 1 - 1 ; x in union rng ( f | n ) ; assume x in the carrier of R & y in the carrier of R ; d in D ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & v in { v } ; let G be "\/" "\/" wgraph ; e , v6 be set ; c . i9 in rng c & c . i9 in rng c ; f2 /* q is divergent_to+infty & f2 . ( lim ( f2 , x0 ) ) = 0 ; set z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z2 , z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z2 , z2 assume that w is \mathop { llas of S , G ; set f = p |-count ( t . a ) , g = p |-count ( t . a ) , h = p |-count ( t . a ) , e = p |-count ( t . a ) , f let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Real ; let Iy be Subset-Family of X , x be set ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , k be Nat ; p is FinSequence of SCM+FSA & q is FinSequence of NAT ; stop I ( ) c= P ( ) ; set ci = fSet /. i , fI = fconsider i ; w ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ seq1 /\ W = seq1 /\ W ` .= ( seq1 + seq2 ) /\ W ; f . j is Element of J . j ; let x , y be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 ; ord x = 1 & x is positive ; set g2 = lim ( s , x0 ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F-21 ) = 0 ; / ( X \/ R1 ) = / ( X \/ R1 ) ; ( sin . x ) ^2 <> 0 ; ( ( exp_R * f ) `| Z ) . x > 0 ; o1 in ( X /\ O2 ) /\ O2 ; e , v6 be set ; r3 > ( 1 - r ) * 0 ; x in P .: ( F -ideal ) ; let J be closed ideal non empty Subset of R ; h . p1 = f2 . O .= ( f . O ) `1 ; Index ( p , f ) + 1 <= j ; len ( q ^ <* x *> ) = width M ; the carrier of CK c= A & the carrier of CK c= A ; dom f c= union rng ( F | X ) ; k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in \/ ( R ~ ) ; i = D1 or i = D2 ; assume a mod n = b mod n .= b mod n ; h . x2 = g . x1 .= ( f . x2 ) `1 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 / ( m * m + r ) ) < p ; dom f = dom ( I * ( 1 , 1 ) ) ; [#] ( ( TOP-REAL 2 ) | K1 ) = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal -> R_eal ; then { d1 } c= A ; cluster ( TOP-REAL n ) | ( [#] TOP-REAL n ) -> finite-ind ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W2 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of [: T , T :] ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , k be Nat ; dist ( x `1 , y ) < ( r / 2 ) ; reconsider mm = m , mm = n as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 + r2 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * ( idseq q `1 ) , g2 = q `2 ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I1 ) in { x } ; cluster subcondensed closed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; let n be Element of NAT , x be set ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ' ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q be t -started State of SCMPDS ; b , b , b , x , y , z ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt ( c ^2 ) ) / ( sqrt ( c ^2 ) ) ; reconsider t7 = T-1 as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . ( y2 , y2 ) /\ Q2 . ( z2 , y2 ) ; A |^ 0 = { <* \rangle *> } ; len W2 = len W + 2 & len W2 = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & g1 . z in dom f ; assume p2 `1 = ( E-max ( K ) ) `1 ; len G + 1 <= i1 + 1 ; f1 (#) f2 is_differentiable_in x0 & f2 (#) ( f1 (#) f2 ) . x0 = lim ( f1 , x0 ) ; cluster seq + ( - seq ) -> summable ; assume j in dom ( M1 /. i ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* xy *> \subseteq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len q2 ; ex x being element st x in dom R ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s , P1 = P +* I +* I +* J ; consider w being Nat such that q = z + w ; x ` ` is being Element of L & x ` is ` ; k = 0 & n <> k or k > n ; then X is discrete for A is closed ; for x st x in L holds x is FinSequence ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be \mathbin { ts } in L ; then z is_>=_than waybelow x & z is_>=_than compactbelow x ; M \lbrack f , g .] = f & M \lbrack g , g .] = g ; ( ( ( ( L~ z ) --> 1 ) ) /. 1 = TRUE ; dom g = dom f |^ X & dom g = X ; mode : is \cal \mathfrak st G is \cal .. for W being Walk of G holds W is Walk ; [ i , j ] in Indices ( M * ( i , j ) ) ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a2 ) = G1 . ( a2 , - a2 ) ; redefine func being non empty TopSpace , a , b , r be Real ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 + f2 ) ) ; curry ( F-19 , k ) is additive ; set k2 = card ( dom B ) , b = card ( B ) ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as object of G ; let a , b be Element of MM , x be set ; reconsider s1 = s , s2 = t as Element of ( S ) * ; rng p c= the carrier of L & p . 1 = p . 2 ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & I-21 in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | K1 ; reconsider i0 = len p1 , j1 = len p2 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( ( the carrier of J ) --> 1 ) cluster All ( x , H ) -> Carrier <* x *> -> reconsider reconsider p *> ; d * N1 ^2 > N1 * 1 / ( 1 - d ) ; ]. a , b .[ c= [. a , b .] ; set g = f " ( D1 \/ D2 ) ; dom ( p | ( NAT ) ) = NAT ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( ( arccot * f ) `| Z ) . x ; x in rng ( f /^ ( n -' p ) ) ; let f , g be FinSequence of D ; [: p , q :] in the carrier of [: S1 , S2 :] ; rng f " { 0 } = dom f ; ( the Source of G ) . e = v & ( the Target of G ) . e = v ; ( G * ( i , 1 ) ) `1 < G * ( i + 1 , 1 ) `1 ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 < r ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of ( TOP-REAL 2 ) | K1 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 ( C ) ; i <= len G -' 1 + ( i -' 1 ) ; let p be Point of ( TOP-REAL 2 ) | K1 , r be Real ; x1 in the carrier of [: I[01] , I[01] :] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q ) .= Q " ( Q ) ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i & IC s2 = 0 ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function ; reconsider z = z , y = y as Element of ( L ) ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ( A , I ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be Subcategory of C , a be object of A ; reconsider V1 = V , V1 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g ; H |^ a " is Subgroup of H |^ a ; let A1 be Let of O , E1 , E be set ; p2 , r3 , q3 is_collinear & q2 , q2 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 in M . ( E8 ) ; ^ ( c , c ) / ( c , d ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> *> -| for LATTICE of L ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f ) ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def1 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be set ; cluster -> non empty for non empty Nat ; set S = <* Bags n , i9 *> , T = <* i *> , S = <* i *> , T = T ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / ( 2 * PI ) < ( 2 * PI ) / ( 2 * PI ) ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G ` , a , b be Element of G ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 / ( 1 + ( p `1 / p `2 ) ^2 ) = ( p `1 ) ^2 / ( 1 + ( p `2 / p `1 ) ^2 ) ; i + 1 <= len Cage ( C , n ) ; len <* P *> ^ <* Q *> = len P ; set N-26 = the max of N , N-26 = the max of N ; len gSet + ( x + 1 ) - ( x + 1 ) <= x ; a on B & b on B implies a on B reconsider r-12 = r * I . v , rc = r * I . v as FinSequence ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len \mathbb n ; set q2 = ( N-min C ) `1 , q2 = ( E-max C ) `1 , q2 = ( E-max C ) `2 ; set S = MaxADSet ( b ) c= MaxADSet ( P ) /\ Q ; Cl ( G . q1 ) c= F . r2 ; f " D meets h " V & f " V is open ; reconsider D = E , E = F as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( gF ) . ( X , S ) ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( b2 , b2 ) ; the carrier' of G ` = E \/ { E } ; reconsider m = len Int k - 1 as Element of NAT ; set S1 = LSeg ( n , LMP C ) , S2 = LSeg ( n , LMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { i } and M is \HM { i } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; pp . i = pp . i .= ( f . i ) `1 ; let PA , PA , G be a_partition of Y , a be set ; pred 0 < r & 1 < 1 & r < 1 ; rng ( AffineMap ( a , X ) ) = [#] X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card ( s ) ; reconsider x2 = x1 , y2 = x2 , z2 = y2 , z2 = z2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \ { 0 } ) ; dom ( f . 0 ) c= dom ( u . 0 ) ; pred n divides m & m divides n implies n = m ; reconsider x = x , y = y as Point of I[01] , z = z ; a in dom ( ; not y0 in the carrier of ( f . 0 ) & not ( ex x st x in the carrier of ( f . 0 ) ) ; Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f and f . k1 = f . k1 ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g ~ & [ y , x ] in dom k ; set S1 = Let ( x , y , z ) , S2 = y , S2 = z ; l1 = m2 & l2 = i2 & l2 = i2 & l2 = i1 & l2 = i2 implies l1 = i2 x0 in dom ( u01 /\ A ) & x0 in dom ( u01 /\ A ) ; reconsider p = x , q = y , r = z as Point of TOP-REAL 2 ; I[01] = R^1 | ( ( R^1 | B01 ) | B01 ) .= R^1 | B01 ; f . p4 <= _ { P . p1 , f . p2 } ; ( F . x ) `1 <= ( x `1 ) / ( 1 + x `2 ) ; ( x `2 ) ^2 = ( seq1 . i ) ^2 + ( seq2 . i ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] implies P [ succ a ] ; reconsider s\overline { s } = s\overline { s } as terminal of D ; ( - i -' 1 ) <= ( len wj ) - 1 ; [#] S c= [#] ( T ) & [#] T c= [#] ( T ) ; for V being strict real unitary space holds V in the carrier of V implies V is open assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K , n be Nat ; - a * ( - b ) = a * b ; for A being Subset of GX holds A // A implies A is being_line ( for o2 being object of o2 st o2 in <^ o2 , o2 ^> holds ( id o1 ) * ( id o2 ) = id o1 then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G ; j >= len upper_volume ( g , D1 ) - len upper_volume ( g , D2 ) ; b = Q . ( len Q - 1 + 1 ) .= Q . ( len Q - 1 ) ; f2 * f1 /* s is divergent_to+infty & f2 * ( f1 /* s ) is divergent_to+infty ; reconsider h = f * g as Function of N4 , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of T7 ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 ; Directed I is_closed_on Initialized s , P & I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) .= p +* ( q +* ( p +* q ) ) ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p , L \ { p } ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( ( B /\ C ) '/\' D ) \ { {} } ; n <= len ( P ^ Q ) + len ( Q ^ R ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x1 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , 7 } ; let x , y be Element of [: FTTTTT1 ( n ) , k :] ; p = |[ p `1 , p `2 ]| & p `1 = p `1 ; g * 1_ G = h " * g * h .= g * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( x1 - x2 ) /\ dom ( x1 - x2 ) ; ( R qua Function ) " = R " ( R " ( R " ( R ) ) ) ; n in Seg ( len ( f /^ ( i -' 1 ) ) ) ; for s being Real st s in R holds s <= s2 & s2 <= 1 rng s c= dom ( f2 * f1 ) /\ dom f2 ; synonym for for for for X is Subset of consider 2 , n st X is finite holds X is finite ; 1. K * ( 1. K , 1 ) = 1. K ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , Q1 , Q1 ) ; ex w st e = ( w - f ) / ( w - f ) & w in F ; curry ( P+* ( i , k ) ) # x is convergent ; cluster open for Subset of TY | the carrier of T ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of ( OSSub ( U0 ) ) . s ; b1 , c1 // b9 , c9 & b2 , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) in dom I ; Reloc ( J , card I ) does not destroy a ; ( goto ( card I + 1 ) ) not c in dom ( i .--> c ) ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p2 , s3 ) , P4 = LifeSpan ( p2 , s3 ) ; IC SCMPDS in dom ( Initialize p ) & IC SCMPDS in dom ( Initialize p ) ; dom t = the carrier of SCM & dom t = the carrier of SCM R ; ( ( ( ( f /. 1 ) ) .. f ) .. f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union Int ( F ) ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( A \/ B ) ; assume not LIN a , f . a , g . a , g . b ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = { x } ; M , v |= H1 / ( ( y , x ) / ( y , x ) ) ; consider m being element such that m in Intersect ( F0 . i ) ; reconsider A1 = support ( u1 ) , A2 = support ( v1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a3 <> a4 ; cluster s -\mathop { \rm \hbox { - } IC } ( V , p ) -> .| for string of S ; Ln2 /. n2 = Ln2 . n2 .= Ln2 . n2 .= Ln2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices ( D * ( i , j ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / ( 1 / 2 ) ; ( F . N ) | E8 ( ) . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) ^2 * ( z `2 ) ^2 <> 0. I ; 1 + card ( X-18 ) <= card ( u \/ { x } ) ; set g = z \circlearrowleft ( ( L~ z ) .. z ) , z = ( L~ z ) .. z , z = ( L~ z ) .. z , w = ( L~ z ) .. z , i = ( len z ) .. z , j = ( len z ) then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathop { \rm \hbox { - } :] ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | ( REAL n ) ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & Line ( x1 , x2 , x3 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( g2 ) . O ) `1 = - 1 & ( g2 ) . I = 1 ; j + p .. f -' len f <= len f - 1 + p .. f ; set W = W-bound C , E = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound S1 . ( a , e ) = a + e .= a + e ; 1 in Seg ( width ( M * ( ColVec2Mx p ) ) ) ; dom ( i (#) Im ( f ) ) = dom Im ( f ) ; Dx `1 = W . ( a , *' ( a , p ) ) ; set Q = / ( |= ( g , f , h ) ) ; cluster -> topological for ManySortedSet of U1 , A be non-empty MSAlgebra over U1 ; attr F = { A } means : Def1 : F is discrete ; reconsider z9 = <* : x , y *> in product ( G ) ; rng f c= rng f1 \/ rng f2 & f . 0 = f . 1 \/ f . 2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & g = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 , H ) / ( x1 , x2 ) ; reconsider n1 = n , n2 = m , n2 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 .= card B2 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set qI12 = ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , min ( NAT , { NAT } ) ) ; t in Seg ( ( width ( I ^ J ) ) , ( len ( I ^ J ) ) ) ; reconsider X = dom f , Y = C as Element of Fin NAT ; IncAddr ( i , k ) = <% - l %> + k .= i ; ( ( q `1 ) / |. q .| ) ^2 <= ( q `1 ) ^2 / ( |. q .| ) ^2 ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; pred 0 <= a & b <= 1 & a <= 1 implies a * b <= 1 ; u in ( ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ) /\ j ; u in ( ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ) /\ j ; len C + - 2 >= 9 + - 3 + 3 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ ( n1 + 1 ) * a ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set y9 = <* y , c *> , z9 = <* c , x *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. 1 in rng Line ( D , 1 ) ; p . m Joins r /. m , r /. ( m + 1 ) , G ; ( p `2 ) ^2 = ( f /. i1 ) ^2 .= ( f /. i1 ) ^2 ; ( W-bound X \/ Y ) `1 = W-bound X & ( W-bound X ) `1 = E-bound Y ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty & f2 . ( seq ^\ k ) = f2 . ( seq ^\ k ) ; reconsider u2 = u , v2 = v , u2 = w as VECTOR of \llangle X , Y :] ; p |-count ( Product ( Sgm ( X ) ) ) = 0 & p |-count ( ( Sgm ( X ) ) . p ) = 1 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = ( card I + 4 ) .--> ( - ( card I + 4 ) ) ; x in { x , y } & h . x = {} ( T . x ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of ( A ) ) .= len the charact of ( A ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : ( G . e ) `1 = ( G . e ) `1 ; rng F c= the carrier of gr ( { a } , gr { a } ) ; implies for n being Nat holds holds holds ( Q . ( K , n , r ) ) is in of D f . k , f . ( f . ( Let n ) ) in rng f ; h " P /\ [#] T1 = f " P /\ [#] T1 .= f " P ; g in dom ( f2 \ f2 " { 0 } ) \ ( f2 " { 0 } ) ; g1X /\ dom f1 = g1 " ( f " X ) .= ( f " X ) /\ ( f " X ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = being element , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `2 + ( 1 - r ) < ( 1 - r ) / 2 + ( 1 - r ) / 2 ; reconsider f1 = f , f2 = g as VECTOR of the carrier of X , Y ; pred i <> 0 means : Def1 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg ( len ( g2 . i2 ) ) & 1 in Seg ( len g2 ) ; dom ( i - 1 ) = dom ( i - 2 ) .= a ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = y0 , y2 = y1 , y2 = y2 as Function of S , T ; reconsider R1 = x , R2 = y , R1 = z , R2 = t as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rn ; S1 +* S2 = S2 +* ( S2 +* S1 +* S2 , S2 +* S2 ) ; ( ( exp_R * ( exp_R + cot ) ) `| Z ) = f ; cluster -> C -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; E8 . e2 = ( ( e2 . e2 ) -T . e2 ) . e2 .= T . e2 ; ( ( ( id Z ) (#) ( ln * f ) ) `| Z ) = f ; upper_bound A = ( cos * 3 ) / 2 & lower_bound A = 0 ; F . ( dom f , - ( f . ( cod f ) ) ) is_transformable_to F . ( cod f , - ( f . ( cod f ) ) ) ; reconsider pp = q8 , q8 = q , q8 = r as Point of TOP-REAL 2 ; g . W in [#] ( Y | ( the carrier of Y ) ) & [#] ( Y | ( the carrier of Y ) ) c= [#] ( Y | ( the carrier of Y ) ) ; let C be compact non vertical non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , x0 .[ & f . x0 in dom f /\ ]. x0 , x0 + r .[ ; assume x in { ( idseq 2 ) . ( ( idseq 2 ) . ( len ( idseq 2 ) ) ) } ; reconsider n2 = n , m2 = m , m2 = n , m2 = m , n1 = n , n2 = m , n2 = n , n2 = m ; for y being ExtReal st y in rng seq holds g . y <= y for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B9 = f .: ( the carrier of X1 ) , B9 = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume R ~ c= R ~ & R ~ c= R ~ & R ~ c= R ~ & R ~ c= R ~ ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; pred x1 <> x2 means : Def1 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume p2 - p1 , p3 - p1 - p1 , p2 - p1 is_collinear & p2 - p1 , p3 - p1 is_collinear ; set q = ( -1 f ) ^ <* 'not' 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) ^2 = n mod k ; dom ( T * ( \mathbin { ^ \smallfrown } \langle t *> ) ) = dom ( \mathop { \rm \rbrack } t , dom <* t *> ) ; consider x being element such that x in wc and x in c ; assume ( F * G ) . v = v . x3 ; assume that the carrier of D1 c= the carrier of D2 and for i being Nat holds [ i , j ] in the carrier of D2 iff [ i , j ] in the carrier of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ; n1 -' len f + 1 <= len - len f + 1 + 1 - 1 ; .| ( |. q , O1 , a , b , a , b , a , b , b ) = [ u , v , a , b ] ; set C-2 = ( \mathclose { \overline { G } } ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. R ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & 1 <= $1 & $1 <= len Q ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) ; let l be variable of k , A , A1 , A2 be Subset of k ; reconsider U2 = union ( G . n ) , G-24 = union ( G . n ) as Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 , D = the carrier of X2 , E = the carrier of X1 , F = the carrier of X2 , G = the carrier of X2 , G = the carrier of X2 , H = the carrier of X1 ; p[#] L = <* - ( c - 1 ) , 1 , 1 *> .= <* - ( c - 1 ) , 1 *> ; synonym f is real-valued means : Def1 : rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x20 < card ( ( X0 \/ ( X0 \/ Y2 ) ) ) + card ( ( X0 \/ Y2 ) \/ ( Y1 \/ Y2 ) ) ; pred X c= B1 means : Def1 : for B st X c= B holds \mathop { \rm len } \mathop { \rm lpst X c= B ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , 0 , 0 ) ; pred 1 <= len s means : Def1 : len ( s * s ) = 0 ; fReconsider fK1 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in TAUT ( A ) means : Def1 : q '&' p in TAUT ( A ) & q in TAUT ( A ) ; - ( t `1 / t `2 ) < ( - t `1 ) / t `2 / t `2 ; ( U . 1 ) `1 = ( U /. 1 ) `1 .= ( W /. 1 ) `1 .= ( W /. 1 ) `1 ; f .: ( the carrier of x ) = the carrier of x & f . ( the carrier of x ) = the carrier of x ; Indices ( O * ( i , j ) ) = [: Seg n , Seg n :] & len ( O * ( i , j ) ) = n ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is \setminus & f is \setminus & f is \setminus & f is \setminus & f is \setminus implies f is \setminus & f is \setminus & f is \setminus & f is \setminus & f is \setminus & f is \setminus & f is \setminus implies f is \setminus & f is \setminus & f [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| `1 ^2 - ( w1 `1 ) ^2 <> 0. TOP-REAL 2 ; reconsider t = t , s = ( t , 1 ) --> ( t , 1 ) as Element of INT ; C \/ P c= [#] ( ( ( G | [#] ( ( ( G | A ) \ A ) ) \ A ) ) ; f " V in ( the topology of X ) /\ D & D c= ( the topology of X ) /\ D ; x in [#] ( ( the carrier of Y ) /\ A ) /\ ( the carrier of Y ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , y9 , z9 , z9 } & InputVertices S = { xy , yz , z9 } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = ( Line ( M , i ) * ( a , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = ( f /. ( i0 -' 1 ) ) as Element of K ; len B2 = Sum ( Len ( F1 ^ F2 ) ) .= len ( ( len F1 + len F2 ) ) ; len ( ( the \it of n ) --> i ) = n & i in Seg n & j in Seg n implies ( ( n + 1 ) |-> i ) = n ; dom ( f + g ) = dom ( f + g ) .= dom f /\ dom g ; ( ( the Sorts of Y ) * ( n + 1 ) ) . x = upper_bound Y1 & ( the Sorts of Y ) . x = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom ( f ^ p2 ) .= dom ( f ^ p2 ) ; M . [ 1 / y , y ] = 1 / ( 1 / y ) .= y ; assume that W is non trivial and W .last() c= the \frac of G2 and W .last() c= the \frac { 2 } , 2 } ; C6 /. i1 = G1 * ( i1 , i2 ) & C6 /. ( i1 + 1 ) = G2 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng fmmmmb <= b / 2 - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ [: l , k :] ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in { x } and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & len ( X @ ) = n ; cluster s => ( q => p ) -> valid ( s => ( s => p ) ) ; Im ( ( Partial_Sums ( F ) ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D ( ) ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( NW-corner L~ f ) , ( E-max L~ f ) .. f ) /\ LSeg ( ( NW-corner L~ f ) , ( E-max L~ f ) .. f ) ; set R8 = R / ( 1 / ( b + r ) ) ; IncAddr ( I , k ) = SubFrom ( da , db ) .= ( - ( d + k ) ) ; seq . m <= ( ( the Sorts of seq ) . k ) . ( ( seq . k ) + ( seq . k ) ) ; a + b = ( a ` *' ) ` + ( b ` *' ) ` .= ( a ` ) ` + ( b ` *' ) ; id ( X /\ Y ) = id ( X /\ Y ) .= id X ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U1 = ( U1 \/ U2 ) /\ ( U2 /\ U1 ) as non empty Subset of U0 ; u in ( ( ( c /\ ( ( ( d /\ e ) /\ b ) /\ f ) ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable Subset of R such that card A = ( R * ) + 1 and A is finite ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng f \ { p1 } ; len s1 - 1 > 0 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( ( ( NW-corner ( P ) ) ) `2 ) ^2 = ( ( E-max ( P ) ) ) ^2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` ` ` = f . a1 ` ` .= ( f . a1 ` ) ` .= ( f . a1 ) ` ; ( seq ^\ k ) . n in ]. - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 .= G . ( G . s0 ) .= G . ( s . m ) ; the InternalRel of S is symmetric & the InternalRel of S is transitive implies the InternalRel of S is transitive deffunc F ( Ordinal , Ordinal ) = phi ( $1 , $2 ) & phi ( $1 , $2 ) = phi ( $1 , $2 ) ; F . a1 = F . a2 & F . a2 = F . a1 & F . a2 = F . a2 ; x `2 = A . o . a .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & f " ( Cl P1 ) c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) . i ) c= the topology of T & the topology of S c= the topology of T ; synonym o is OperSymbol means : Def1 : o <> *' & o <> * ; assume that X |^ n = Y |^ n + card X and card X <> card Y ; the finite Subset of S <= 1 + ( the *> ^ the *> ) + ( the *> ^ the *> ^ the card of F ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // b1 , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; EE in SE & EE in { N } implies not EE in { N } set J = ( l , u ) If , K = I ; set A1 = ( a1 , a2 , a3 , a4 , a5 , a5 , 8 , 9 , 8 , 8 , 9 } ) ; set vs = [ <* c , d *> , '&' ] , xy = [ <* d , c *> , '&' ] , yz = [ <* c , d *> , '&' ] , \mathopen = [ <* d , e *> , '&' ] , e = [ <* c , e *> , '&' ] , ] , ] = [ <* d , e *> , '&' ] , x * z `2 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g2 . x & f . x = g2 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min C , W-min C , W-min C , W-min C , W-min C , W-min C , W-min C , W-min C ; set f-17 = f @ "/\" ( g @ ) ; attr S1 is convergent & S2 is convergent & S2 is convergent implies S1 - S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + a .= a ; cluster -> } -be reflexive transitive transitive transitive non empty transitive for RelStr ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) \/ dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( a |^ 0 ) * x , x \rbrack ) = len l ; t4 is ( {} \/ rng t4 ) -valued finite Function of ( {} \/ rng t4 ) , ( {} \/ rng t4 ) * ) * \ ( {} , { {} } ) * \ { {} } is empty * \ { {} } ; t = <* F . t *> ^ ( C . p ^ q ) .= C . ( p ^ q ) ; set pp = ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ; ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i + 1 ) ; consider u being Element of L such that u = u ` ` and u in D ` and u in D ` ; len ( ( ( ( ( G . ( i + 1 ) ) ) |-> a ) ^ ( ( G . ( i + 1 ) ) --> a ) ) ) = len ( ( G . i ) --> a ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) ; dom ( ( ( id Z ) (#) ( ( id Z ) ^ ) ) `| Z ) = REAL & dom ( ( id Z ) ^ ) = REAL ; cluster <* l *> ^ phi -> ( 1 + ( not not not not ( not ( not l is ( not m ) ) ) ) string of S ) for string of S ; set b9 = [ <* ap , bm *> , and2 ] , c9 = [ <* A1 , cin *> , and2 ] , z2 = [ <* cin , cin *> , and2 ] , e = [ <* A1 , cin *> , and2 ] , in = [ <* cin , cin *> , and2 ] , w = [ <* A1 , cin *> , and2 ] , e = [ <* Line ( Line ( M , P ) , x ) = L * Sgm Q .= ( Sgm Q ) . x ; n in dom ( ( ( the Sorts of A ) * ( the_arity_of o ) ) * ( the_arity_of o ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y being Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t2 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( s2 , s2 , 2 ) , x4 = Comput ( s2 , s2 , 2 ) , P4 = Comput ( P2 , s2 , 2 ) , P4 = P3 ; set pp = stop I , p1 = P +* I , p2 = P +* I ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D } = { A , B } \/ { C , D , E } ; let A , B , C , D , E , F , J , M , N , M , N , N , F , M , N , N , F , M , N , N , F , M , N , N , M , N , N , F , M , N , N , F , M , N , |. p2 .| ^2 - ( p2 `1 ) ^2 / ( 1 + ( p2 `2 / p2 `1 ) ^2 ) >= 0 ; l -' 1 + 1 = n-1 * ( ( mm + 1 ) + 1 ) ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) ; the TopStruct of L = reconsider the TopStruct of L , C = the Scott Scott Scott Scott Scott Scott Function of L , L ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H1 and x = H1 . y ; fv \ { n } = Free ( All ( x , H ) ) & not n in Free ( All ( x , H ) ) ; for Y being Subset of X st Y is summable & Y is summable holds Y is iff X is iff Y is iff X is iff Y is not empty 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the multF of A ) = len s & len ( the { F } ^ s ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & exp_R * f . x > 0 rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) ; j + ( - len f ) <= len f + ( len f - len f ) - len f + ( len f - len f ) ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( a , a ) .= C8 . ( a , a ) .= C8 . ( a , a ) ; power F_Complex . ( z , n ) = 1 .= x |^ n .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( ( the connectives of S ) . t ) & t . ( C , s ) = s . ( C , s ) ; support ( f + g ) c= support f \/ C /\ ( support g ) & support ( f + g ) c= support f ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 , x2 is Point of [: X1 , X2 :] : x1 in X & x2 in Y } is Subset of [: X1 , X2 :] ; h = ( i , j ) |-- ( id B , id B ) . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A ; set X = ( ( |. ( .| ( O1 , O2 ) ) ) . ( O1 , 4 ) ) , Y = { [ ( |. O1 .| ) . ( O2 , 4 ) ] } ; b . n in { g1 : x0 - r < g1 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /. x0 = lim ( f /* s1 ) the lattice of Y = the lattice of the lattice of Y & the carrier of Y = the carrier of the carrier of Y & the carrier of Y = the carrier of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = ( len ( ( q ^ r1 ) ^ ( q ^ r1 ) ) ) + len ( ( q ^ r1 ) ^ ( q ^ r1 ) ) .= len ( q ^ r1 ) + len ( q ^ r1 ) ; ( 1 / a ) (#) ( ( sec * f1 ) - id Z ) is_differentiable_on Z ; set K1 = ( upper ( lim ( H , A ) ) ) || ( H , A ) , D2 = ( lim ( H , A ) ) || ( H , A ) ; assume that e in { ( w1 /. i ) `1 : w1 in F & w2 in G } and w1 in G and w2 in G ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom F `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = G `1 , d8 = G `1 , d8 = G . ( i , j ) , d8 = G LSeg ( f /^ j , j ) = LSeg ( f , j ) /\ LSeg ( f , j + q .. f -' 1 ) ; assume X in { T . ( N2 , K ) : h . ( N2 , K ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom SA2 = dom S /\ Seg n .= dom ( LA2 * ( S . n ) ) .= dom ( LA2 * ( S . n ) ) ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a & g in H |^ a a * ( ( a , 1 ) to_power n ) = a `1 - ( 0 * n ) .= a `1 ; D2 . j in { r : lower_bound A <= r & r <= ( f . i ) `1 } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 >= 0 ; for c holds f . c <= g . c implies f ^ @ c c= g @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X ; 1 = ( p * p ) / p .= p * ( 1 / p ) .= p * 1 / p .= 1 / p ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 + 1 .= len f + 1 ; dom F-11 = dom ( F | ( N1 , S-23 ) ) .= [: N1 , { 0 } :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g . 0 = g . 1 ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f `2 = id b and f `2 = id b ; ( ( ( id Z ) (#) cos ) | [. 2 , PI / 2 .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS + 1 .= len LS - Gij .. LS + 1 .= len LS -' 1 + 1 ; let t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 "/\" ( ( Frege ( curry G ) ) . h , h ) <= "/\" ( ( Frege ( curry G ) ) . h , h ) ; then P [ f . ( i0 + 1 ) , f . ( i0 + 1 ) ] & F ( f . ( i0 + 1 ) , f . ( i0 + 1 ) ) < j ; Q [ ( D . [ D . x , 1 ] ) , F . [ D . ( D . x , 1 ) ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is Element of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> TRUE .= ( the carrier of S2 ) --> TRUE .= the carrier of S2 ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( ( Cage ( C , n ) ) /. len ( Cage ( C , n ) ) = ( W-min L~ Cage ( C , n ) ) ; q `2 <= ( LMP ( Lower_Arc ( C ) ) ) `2 & ( LMP ( Lower_Arc ( C ) ) ) `2 <= ( LMP ( C ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= IB and A = ]. a , IB .[ and B = ]. a , IB .] ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n in dom b } , Y = { b |^ n where n is Element of NAT : n in dom b } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , yz , \mathopen { x } , { y } ] , yz = [ <* z , x *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , zx = [ <* x , y *> , f3 ] , zx = [ <* z , x *> , f3 ] , ] ; lz /. len lz = ( lz /. len ( lz ^ ( i + 1 ) ) ) * ( ( i + 1 ) + 1 ) ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( ( ( ( X \/ Y ) \/ Y ) ) \/ Y ) /\ X ) ) `2 = ( ( ( X \/ Y ) \/ Y ) /\ X ) `2 ; ( s1 - s ) . k = ( s1 . k - s . k ) / ( 1 - s . k ) .= ( s1 . k - s . k ) / ( 1 - s . k ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X is the carrier of X & the carrier of X is the carrier of X implies X is non empty & X is non empty ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A ) , A5 = chi ( X , A ) , A5 = ( X * ) ; R to_power ( 0 * n ) = I----> Element of X * , X * ( 0 , 0 ) ; ( Partial_Sums ( curry ( f , n ) ) . 0 ) . n is nonnegative & ( Partial_Sums ( curry ( f , n ) ) . 0 = ( Partial_Sums ( curry ( f , n ) ) . 0 ) . n ; f2 = C7 . ( ( E7 , K , len ( V , len ( V , K , len ( V , len V , len V ) ) ) ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= ( s1 * s2 ) . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & o in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) support phi , phi = ( l1 , l2 ) . ( l + 1 ) , N = ( l1 , l2 ) . ( l + 1 ) ; synonym p is \cup g for ( p , T ) `1 , p `2 = 1 & ( p , T ) `2 = 1 ; ( Y1 `2 ) ^2 = - 1 & ( Y1 `2 ) ^2 + ( Y1 `2 ) ^2 <> {} or ( Y1 `1 ) ^2 = 1 ; defpred X [ Nat , set , set , set ] means P [ $1 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g / 2 ; Det ( I |^ ( ( m -' n ) -' n ) ) = 1. K & len ( I |^ ( m -' n ) ) = len ( I |^ ( m -' n ) ) ; ( - b ) / sqrt ( b ^2 - ( 4 * a * c ) ) < 0 ; Cz . d = Cz . d mod ( C . d ) .= Cz . d mod ( C . d ) .= ( C . d ) mod ( C . d ) ; attr X1 is dense means : Def1 : X2 is dense & X1 is dense implies X1 /\ X2 is dense SubSpace of X ; deffunc F6 ( Element of E , Element of I , Element of I ) = ( $1 * $2 ) * ( $2 , $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ x .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , product ( Y ) *> synonym A , B are_separated means : Def1 : Cl ( A \/ B ) misses Cl ( B \/ C ) & Cl ( A \/ B ) misses Cl ( B \/ C ) ; len ( M @ ) = len p & width ( M @ ) = width M & width ( M @ ) = width M & width ( M @ ) = width M ; J . v = { x where x is Element of K : 0 < x & x < 1 } ; ( ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ w = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) + n .= 0 ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( i + 1 ) = t . intpos ( i + 1 ) ; LSeg ( f /^ i , q /. i ) misses LSeg ( f /^ i , j ) \/ LSeg ( f /^ i , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( f , C ) , ( f | X ) . x ) = f . ( upper_bound C ) - ( f . ( lower_bound C ) ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. L - L /. h .|| < e1 * ( K + 1 ) * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 1 , 0 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y in Y & x in X & x in X holds y <= x & x <= y implies x <= y func |. p ^ <* 0 *> -> variable of A equals min ( p , NBI ) . ( p ^ <* 0 *> ) ; consider t being Element of S such that x ` , y ` '||' z , t and x , z '||' y , t ; dom x1 = Seg ( len x1 ) & len x1 = len y1 & for i st i in Seg ( len x1 ) holds x1 . i = ( x1 /. i ) * ( y1 /. i ) consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 / 2 and y2 <= 1 / 2 and y2 <= 1 / 2 ; ||. f | X /. s1 .|| = ||. f .|| /. ( ( ||. f .|| /. s1 ) - f /. ( lim s1 ) ) .= ||. f /. s1 .|| ; ( the InternalRel of A ) ` \ ( x ` \ Y ) = {} \/ ( the InternalRel of A ) ` .= {} \/ {} .= {} ; assume that i in dom p and for j be Nat st j in dom q holds P [ i , j ] and for i be Nat st i in dom q holds P [ i , j ] and P [ i , j ] ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , rng ( f | [: X , Y :] ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & u2 in the carrier of W1 & v2 in the carrier of W2 implies ( ( the carrier of W1 ) /\ ( the carrier of W2 ) ) c= the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; \bf T . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x - y ) = - x + ( - y ) .= - x + ( - y ) .= - x + y .= - x ; given a being Point of GX such that for x being Point of GX holds a , x / ( a , x ) / ( a , x ) / ( a , x ) / ( a , x ) / ( a , x ) / ( a , x ) = a ; f\mathopen { [ dom , cod ( f2 , g2 ) ] , [ cod ( f2 , g2 ) , cod ( f2 , g2 ) ] } = [ cod ( f2 , g2 ) , cod ( f2 , g2 ) ] ; for k , n being Nat st k <> 0 & k < n & n < k holds k , n are_relative_prime implies k divides n for x being element holds x in A |^ d implies x in ( ( A ` ) |^ d ) ` & f . x = ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; Carrier ( Z ) . k = Carrier ( L ) . ( F . k ) & F . k in dom Carrier ( L ) ; set i2 = AddTo ( a , i , - n ) , i1 = - ( n + 1 ) , i2 = - ( n + 1 ) ; attr B is atomic means : Def1 : for S being Subsqrt of ( B , Sz ) holds ( S is non empty implies S is non empty ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D } .= D ; |( \square , q29 )| * |( q29 , q29 )| , ( 2 * q ) * ( b ^2 ) )| >= |( \square , ( 2 * q ) * ( b ^2 ) )| ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= ( - f ) . ( upper_bound A ) ; ( G * ( len G , k ) ) `1 = ( G * ( len G , k ) ) `1 .= G * ( 1 , k ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . ( ( proj ( i , n ) ) . LM ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) * reproj ( i , x ) ) . x ) & f2 + ( ( reproj ( i , x ) * reproj ( i , x ) ) . x ) = ( ( reproj ( i , x ) * reproj ( i , x ) ) . x ) ; pred ( for x st x <> 0 holds ( ( x / 2 ) * ( x / 2 ) ) ^2 = ( x / 2 ) * ( x / 2 ) ; ex t being sort symbol of S st t = s & h1 . t = h2 . t & h1 . x = h2 . x & h2 . x = t ; defpred C [ Nat ] means P8 . $1 is non empty & A8 : A is non empty & A is n -element implies A is n -element ; consider y being element such that y in dom ( p9 . i ) and q9 . i = p9 . y and 1 <= y and y <= 1 ; reconsider L = product ( { x1 } +* ( index ( B ) , l ) ) as Subset of ( \bf SCM } ( A ) ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & ( id d ) . ( id c ) = id d every f , n , p = ( f | n ) ^ <* p *> .= f ^ <* p *> ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . g . x & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - cp = ( f | ( n , L ) ) *' ( - ( f . 0 ) ) .= ( f . ( - ( f . 0 ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ ( r . 8 ) , ( r . 8 ) ]| ) in f1 .: ( W1 /\ W2 ) ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a * eval ( b , x ) .= a * eval ( b , x ) ; z = DigA ( tz , xz ) .= DigA ( tz , xz ) .= DigA ( tz , xz ) .= DigA ( tz , xz ) .= DigA ( tz , xz ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , G = { Intersect S where S is Subset-Family of X : S is open & S is open } , H = { Intersect S where S is Subset of X : S is open } ; consider S19 being Element of D ( ) , d being Element of D ( ) such that S `1 = S19 ^ <* d *> and d = S19 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x1 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) ; ( ( 0. K ) * ( a * b ) ) is Linear_Combination of A & Sum ( ( 0. K ) * ( b * a ) ) = 0. K ; let k1 , k2 , k2 , x4 , k2 , x4 , 8 , 7 , 8 , 8 , 8 , 8 , 9 , 8 , 9 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 9 be Element of NAT ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = ( a * p1 + ( a * p2 ) ) + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & d <= b & [ a , b ] c= dom f and [ a , b ] c= dom g and g . a = g . b ; cell ( Gauge ( C , m ) , ( X , width Gauge ( C , m ) -' 1 ) , 0 ) is non empty ; Aid in { ( S . i ) `1 where i is Element of NAT : i in dom S & i in dom S } ; ( T * b1 ) . y = L * b2 /. y .= ( F /. b1 ) * ( G /. b2 ) .= ( F /. b2 ) * ( G /. b2 ) ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 / ( 2 * k ) ^2 ; then that p => q in S and not x in the still of p and not p in S and p => All ( x , p ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-10 ) & dom ( the InitS of r-10 ) = dom ( the InitS of r-10 ) ; synonym f is extended real means : Def1 : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p1 + len <* x *> .= len p1 + 1 .= len p1 + 1 + 1 .= len p2 + 1 ; ( l ) ^2 = ( g . ( 1 , 3 ) ) ^2 + ( k + 1 ) ^2 .= ( g . ( 1 , 3 ) ) ^2 + ( k + 1 ) ^2 .= ( k + 1 ) ^2 ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= halt SCM+FSA .= ( halt SCM+FSA ) ; assume for n be Nat holds ||. seq .|| . n <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin . ( \kern1pt \kern1pt ) = sin . r * cos ( ( - cos . ( sin . ( - r ) ) * sin ( ( - r ) * sin ( ( - r ) * sin ( ( - r ) * sin ( ( - r ) / sin ( ( - r ) ) * sin ( ( - r ) / sin ( ( - r ) / sin ( ( - r ) ) * sin ( ( - r ) ) * sin ( ( - r ) ) ) ) ) ) ) set q = |[ g1 . ( t1 . t ) , g2 . ( t2 . a ) ]| , r = |[ 0 , 0 ]| , s = |[ 0 , 1 ]| , s = |[ 0 , 1 ]| , t = |[ 0 , 1 ]| , s = |[ 0 , 1 ]| , s = |[ 0 , 1 ]| , t = |[ 0 , 1 ]| , s = |[ 0 , 1 ]| , s = |[ 0 , 1 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in <* /\ ( F . n ) , F . n *> ; consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) --> ( G1 , G2 ) ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s c= ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( ( exp_R + f1 ) (#) ( exp_R + f1 ) ) ) ; for k be Element of NAT holds ( ( Im ( Im ( f ) ) ) . k ) = ( ( Im ( Im ( f ) ) ) . k ) * ( ( Im ( f ) ) . k ) assume that - 1 < n and q `2 > 0 and q `2 / |. q .| < 1 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 and q `1 <= 0 ; assume that f is continuous and a < b and a < b and c < d and f . a = c and f . b = d and f . a = d ; consider r being Element of NAT such that s-> Element of NAT and r <= Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , f /. ( j + 1 ) , f /. ( len f + 1 ) , f /. ( len f + 1 ) , f /. ( len f + 1 ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } in the carrier of K and inf { x , y } in L ; assume f +* ( i1 , \xi ) . ( i1 , \xi ) in ( proj ( F , ( i2 + 1 ) ) " ( A . ( i1 , i2 ) ) ) " ( A . ( i1 , i2 ) ) ; rng ( ( ( ( ( ( ( the carrier' of M ) ) * ) | ( the carrier' of M ) ) ) | ( the carrier' of M ) ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) --> t where t is Element of T : t in { ( the carrier of G ) --> t } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - g .|| < g / 2 * ( ||. x .|| + ||. x .|| ) ; consider t be VECTOR of product G such that m5 = ||. D5 . t .|| & ||. t .|| <= 1 / 2 and ||. t .|| <= 1 / 2 ; assume that the carrier of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ v ^ <* 1 *> in dom p and v ^ <* 1 *> ^ <* 1 *> in dom p ; consider a being Element of the Points of X\mathopen { a } , A , B being Element of the lines of X\mathopen { a } , B , C such that a on A & b on B ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p1 ) , LSeg ( p1 , p2 ) } .= { LSeg ( p1 , p2 ) , LSeg ( p1 , p2 ) } ; i -' len h11 + 2 -' 1 < i - len h11 + 2 - 1 + 2 + 1 + 1 + 1 + 2 - 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( ( n -' 1 ) + 1 ) .| ; for r , s1 , s2 , r , s , t being Real holds r in [. s1 , s2 .] iff r <= s & s <= t & t <= q & q <= r & r <= s implies r <= s assume v in { G where G is Subset of T2 : G in B2 & G c= z & G c= z & z in G & G c= z } ; let g be :] :] , A , h be Element of INT , b , c , d , b be Element of INT , b , c , d be Element of INT ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n , q1 . n ] and P [ n , q1 . n ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B9 = B /\ O , O1 = O /\ O , Z1 = O , Z1 = I /\ O , Z1 = I /\ O , I = I /\ O , I = I /\ O , I = I /\ O , I = I /\ O , I = I /\ O , J = I /\ O , I = I /\ O , I = I /\ O , I = I /\ I , J = I /\ I , I = I /\ I , I consider j being Element of NAT such that x = ( the \it n ) --> ( j + 1 ) and j + 1 <= n and j + 1 <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x in L2 . O2 ; ( C * of _ T4 ( k , n2 ) ) . 0 = C . ( ( of of T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = X --> f ; ( ( ( ( TOP-REAL 2 ) ) * ( ( SpStSeq L~ Cage ( C , n ) ) ) ) `1 <= ( ( ( ( TOP-REAL 2 ) ) * ( ( SpStSeq L~ Cage ( C , n ) ) ) ) `1 ; synonym x , y are_collinear means : Def1 : x = y or ex l being Subset of S st { x , y } c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that that L is continuous and for x , y being Element of L for a , b being Element of L st a = x & b = y & a << b holds a << b iff a << b ; ( 1 / 2 ) (#) ( ( ( #Z 2 ) * ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( 1 + 0 ) ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( ( the partial of A1 ) . $1 ) . ( ( the partial of A1 ) . $1 ) = A1 . ( ( the partial of A2 ) . $1 ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( 6 + 1 ) .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * f . g2 .= f . g1 * ( f . g2 ) .= f . g1 * ( f . g2 ) .= f . g2 * ( f . g2 ) .= f . g2 ; ( M * F-4 ) . n = M . ( ( ( canFS ( Omega ) ) . n ) ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L2 ; pred a , b , c , x , y , c , a , b , c , x , y , y , z , x , y , z , y , z , x , y , z , y , x , y , z , x , y , z , y , z , x , y , z , y , z , x , y , z , x , y , z , y , z , x , y , z , x , y , y , z , x , y , z , z , y ( ( the partial of s ) . n ) . n <= ( ( the partial of s ) . n ) * ( ( the Sorts of s ) . n ) . ( ( the Sorts of s ) . n ) ; pred - 1 <= r & r <= 1 implies ( ( - 1 ) / r ) ^2 = - ( ( 1 - r ) / r ) ^2 ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & n in T1 } \/ { p ^ <* n *> : p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 , x4 ]| . 2 - |[ x1 , x2 , x3 ]| . 2 = ( x1 - x2 ) * ( y1 - y2 ) .= ( x1 - x2 ) * ( y1 - y2 ) ; attr for m being Nat holds F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( G . ( x , z ) ) ) = len ( ( ( G . ( x , y ) ) + ( G . ( y , z ) ) ) .= len ( G . ( x , y ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 and u in W2 /\ W3 ; given F be finite FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum F = k ; 0 = ( 1 * a2 ) * u] iff 1 = ( ( 1 - ( 1 - ( 1 - ( 1 - ( ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 / 2 ) ) ) ) ) ) ) ) ) ) ) ) * ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) .| < e / 2 ; cluster -> real for non empty implies L is \in ( ( { \rm o } _ 2 ) ) --> ( ( { o } _ 2 ) ) & ( ( { o } _ 3 ) --> ( ( { o } _ 3 ) ) ) is Boolean "/\" ( BB , L ) = "/\" ( BB , L ) .= "/\" ( ( the carrier of S ) \ { {} } , L ) .= "/\" ( [#] S , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - c ) = 0. TOP-REAL 2 - ( 2 * r1 - c ) ; reconsider p = P * ( 1 , 1 ) , q = a " * ( ( - ( - ( K , n , 1 ) ) ) * ( ( - ( K , n , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in downarrow t and x = [ x1 , x2 ] and x = [ x1 , x2 ] and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) & q2 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) ; consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 , H2 / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) / ( x , y ) ) ; for S , T , T being non empty RelStr , d being Function of T , S st T is complete & d is directed-sups-preserving holds d is monotone & d is monotone [ a + 0 , b + b2 ] in ( the carrier of COMPLEX ) \/ ( the carrier of COMPLEX ) & [ a + b2 , b2 + b2 ] in the carrier of COMPLEX ; reconsider mm = max ( ( len F1 . n ) * ( p . n ) * ( x . n ) ) , m5 = max ( ( len F1 . n ) * ( x . n ) * ( x . n ) ) as Element of NAT ; I <= width GoB ( ( GoB ( h ) ) * ( 1 , 1 ) , ( GoB ( h ) ) * ( 1 , 1 ) ) & ( GoB ( h ) ) * ( 1 , 1 ) = ( GoB ( h ) ) * ( 1 , 1 ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 /* ( f1 /* s ) ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 is linearly-independent & A2 is linearly-independent & ( ( 1 - 1 ) * A1 ) * A2 = ( 1 - 1 ) * A2 & ( 1 - 1 ) * A2 = ( 1 - 1 ) * A1 ; func A -_ C -> set equals union { A . s where s is Element of R : s in C & s in C } ; dom ( ( Line ( v , i + 1 ) ) (#) ( ( ( Line ( v , m ) ) (#) ( ( ( v , m ) * ( x , 1 ) ) ) ) ) ) = dom ( F ^ <* x , m *> ) ; cluster [ x , ( x , 4 ) ] -> to & [ x , ( x , 4 ) ] in R & [ x , ( x , 4 ) ] in R ; E , f |= All ( x2 , All ( x2 , ( x2 , x1 ) ) '&' ( x2 , x1 ) ) '&' ( x2 , ( x2 , x1 ) ) '&' ( x2 , ( x2 , x2 ) ) '&' ( x2 , x1 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - h . x0 .= ( h . x0 + h . x0 ) - ( h . x0 ) ; cell ( G , ( XX -' 1 , Y1 + ( t + 1 ) ) , ( t + 1 ) ) \ L~ f meets ( UBD L~ f ) ` & ( t + 1 ) in ( UBD L~ f ) ` ; IC Comput ( P2 , s2 , 2 ) = IC Comput ( P2 , s2 , 2 ) .= IC Comput ( P2 , s2 , 2 ) .= ( card I + 1 ) .= ( card I + 2 ) .= ( card I + 2 ) .= ( card I + 2 ) .= ( card I + 2 ) ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y0 = a . ( k + 1 ) and x0 = a . ( k + 1 ) and y0 = a . ( k + 1 ) ; dom ( r1 (#) chi ( A , A ) ) = dom ( chi ( A , A ) ) /\ dom ( chi ( A , A ) ) .= dom ( chi ( A , A ) ) /\ dom ( chi ( A , A ) ) .= dom ( ( r1 (#) chi ( A , A ) ) ) ; d-7 . [ y , z ] = ( ( [ y , z ] `1 ) ^2 - ( ( y , z ) `2 ) ^2 + ( z `2 ) ^2 .= ( ( y , z ) `2 ) ^2 - ( z `2 ) ^2 ; pred for i being Nat holds C . i = A . i /\ B . i & C . i c= A . i /\ B . i ; for x0 st x0 in dom f & f is_differentiable_in x0 & f is_differentiable_in x0 & for r st r < x0 & x0 < r ex g st g in dom f & f . g = r & g in dom ( f /* x0 ) & ( for r st r in dom f & g . r in dom ( f /* x0 ) holds ( f /* x0 ) . r = ( f /* x0 ) . r p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K & A meets Q holds A meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func Sum <*> a -> Ordinal means : Def1 : a in it & for b being Ordinal st a in it holds it . b c= b & for a being Ordinal st a in it holds it . a c= b ; [ a1 , a2 , a3 ] in ( the carrier of A ) ~ & [ a1 , a2 , a3 ] in ( the carrier of A ) ~ & [ a2 , a3 ] in ( the carrier of A ) ~ ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( ( vseq . n ) - ( vseq . m ) ) .|| * ||. x .|| < ( e / ( ||. x .|| + ||. x .|| ) * ||. x .|| ) * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I : F ( Y ) c= Z & Z c= x & z in Z & z in Z } implies z in Z ; sup compactbelow [ s , t ] = [ sup compactbelow ( [ s , t ] ) , sup compactbelow ( [ s , t ] ) ] .= sup { sup { s . ( s , t ) } where s is Element of L : s in compactbelow ( s , t ) } ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ij and [ f . i , z ] in Ij and [ f . i , z ] in Ij ; for D being non empty set , p , q being FinSequence of D st p c= q & q c= p holds ex p being FinSequence st p = q & q = p ^ q & p = q consider e19 being Element of the affine \bf of X such that c9 , a9 // a9 , e29 and not a9 , b9 // a9 , e29 and not a9 , c9 // b9 , e29 and not b9 , c9 // a9 , e29 and not c9 , e // b9 , e ; set U2 = I \! \mathop { + } , E = S \! \mathop { + } ; |. q1 .| ^2 = ( q1 `1 ) ^2 + ( q2 `2 ) ^2 .= ( q1 `1 ) ^2 + ( q2 `2 ) ^2 .= ( q2 `1 ) ^2 + ( q2 `2 ) ^2 .= ( q2 `1 ) ^2 + ( q2 `2 ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x "\/" y & x "/\" y = x /\ y dom ( signature U1 ) = dom ( ( the charact of U1 ) * ( the charact of U2 ) ) & Args ( o , ( ( the charact of U1 ) * ( the charact of U2 ) ) ) = dom ( ( the charact of U1 ) * ( the charact of U2 ) ) ; dom ( h | X ) = dom h /\ X .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= X /\ dom ( ( |. h .| ) | X ) .= X ; for N1 , N1 , N2 being Element of [: the carrier of G , the carrier of G :] holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N2 ( ( mod ( u , m ) ) + mod ( v , m ) ) . i = ( ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - cn ) ^2 / ( 1 + cn ) ^2 < - ( q `1 / |. q .| - cn ) ^2 / ( 1 + cn ) ^2 / ( 1 + cn ) ^2 & - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ^2 <= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ^2 ; pred r1 = f9 & r2 = g9 & r3 = g9 & r2 = f9 & r3 = r2 & r3 = r2 & r2 = ^2 & r3 = ^2 & r2 = ^2 ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( seq_id ( vseq . m ) , X . m ) & x9 . m = ( seq_id ( vseq . m , X . m ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and r < j and i < j and j <= len s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 + |. q .| ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 = p1 ^ q1 and q2 = q1 ^ q2 and q1 = q2 ^ q2 and q2 = q2 ^ q2 and q2 = q2 ^ q2 ; , r2 = ( s2 . r1 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 r2 , s2 . r2 , s2 . r2 , s2 . r2 , s2 . r2 r2 , ( ( LMP A ) `2 ) ^2 = lower_bound ( ( proj2 .: ( A /\ ( A /\ ( w /\ ( w /\ ( w /\ k ) ) ) ) ) ) ) & ( ( proj2 .: ( A /\ ( w /\ k ) ) ) ) ^2 is non empty ; s |= ( ( H , ( 1 , k ) ) |= H1 ) iff s |= ( ( H1 , ( k , k ) ) |= H2 ) & s |= ( H1 , ( k , k ) ) |= H2 ; ( len s5 + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + ( 1 + 1 ) .= card ( support b2 ) + ( 1 + 1 ) .= card ( support b2 ) + ( 1 + 1 ) .= card ( support b2 ) + ( 1 + 1 ) .= card ( support b2 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z >= x ; LSeg ( LMP D , |[ ( W-bound D ) / 2 , ( E-bound D ) / 2 ]| ) /\ D = { LMP D , ( E-bound D ) / 2 } /\ D .= { LMP D , ( E-bound D ) / 2 } ; lim ( ( ( f `| N ) / g ) /* b ) = ( lim ( ( f `| N ) / g ) .= ( ( f `| N ) / g ) . 0 .= ( ( f `| N ) / g ) . 0 ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( ( seq . k ) - ( R /. k ) ) - ( R /. k ) .|| < r for X being set , P , a , b , x being set st x in a & a in P & x in P & b in P & x in P holds a = b Z c= dom ( ( ( id Z ) ^ ) (#) f ) /\ ( ( id Z ) ^ ) \ ( ( id Z ) ^ ) " { 0 } implies f . x = ( ( id Z ) ^ ) (#) f . x - ( id Z ) ^ { 0 } ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & j < i implies ( l ^ <* x *> ) . j = 1 & ( i + 1 ) = i & ( i + 1 ) = i & ( i + 1 ) = i & ( i + 1 ) = i & ( i + 1 ) = i & ( i + 1 ) = j & ( i + 1 ) = j implies i = 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in dom ( - r ) & v in N holds r * u + ( r * v ) in N A , Int A , Cl ( A , B ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B ) ) , Cl ( A , B ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B ) ) ) \ ( Cl ( A , B ) ) , Cl ( A , B ) \ ( Cl ( A , B ) \ ( Cl ( A , B ) ) \ ( Cl ( A , B - Sum <* v , u , w *> = - ( v + u + u ) .= - ( v + u + u ) .= - ( v + u + u ) .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( ( a := b , s ) , s ) ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the support of J ) . x ; for S1 , S2 , S2 , D , D , E , F , G being non empty directed Subset of [: S1 , S2 :] , f being Function of S1 , S2 , g being Function of S1 , S2 st f . D = g & g . D = f . D holds cos ( f , D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or x = y or x = z or y = x or x = y or x = z or x = y or x = z or x = y or x = z or x = y or x = z or x = y or x = z or x = y ; ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft ( Cage ( C , n ) ) ) & ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) in rng Cage ( C , n ) ; for T , T , p , q , q , r , s , q , r , s , p , q , r , s , r , s , q , r , s , s , r , q , s , r , s , r , s , s , r , s , q , r , s , s , r , s , s , r , s , s , r , s , q , s , r , s , s , r , s , q , s , s , s , q , r , s , s , s , s , r , s , s , q , r , s , s [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) -> natural & k divides ( k -' n ) & n divides ( k -' n ) & ( k -' n ) divides ( k -' n ) implies ( k divides ( k -' n ) ) & ( k divides ( k -' n ) ) & ( k divides ( k -' n ) ) & ( k divides ( k -' n ) ) & ( k divides ( k -' n ) ) & ( k divides ( k -' n ) ) ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " { 0 } = the carrier of X2 & F " { 0 } = the carrier of X1 & F " { 0 } = the carrier of X2 & F " { 1 } is one-to-one ; consider C being finite Subset of V such that C c= A and card C = thesis and the carrier of V = C and the carrier of V = Lin ( B9 \/ C ) and the carrier of V = Lin ( B9 \/ C ) ; V is prime implies for X , Y being Element of \langle the topology of T , \subseteq the topology of T , \subseteq the topology of T , the topology of T , the topology of T , the topology of T *> st X = V holds X is open or Y is open set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Z = { F ( v2 ) where v2 is Element of B ( ) : P [ v2 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 ) = - sqrt ( ( q `1 / |. q .| - cn ) ^2 ) .= - sqrt ( ( q `1 / |. q .| - cn ) ^2 ) .= - sqrt ( ( q `1 / |. q .| - cn ) ^2 ) .= - sqrt ( 1 + ( q `2 / q `2 ) ^2 ) .= - 1 ; ex f being Function of I[01] , ( TOP-REAL 2 ) st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p2 & f . 1 = p3 & f . 1 = p4 ; attr f is partial means : Def1 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . ( u0 + 1 ) = ( proj ( 2 , pdiff1 ( f , 3 ) ) . ( u0 + 1 ) ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; for f being FinSequence of TOP-REAL 2 st 1 <= t & t <= len G & 1 <= t & t <= len G holds ( G * ( t , width G ) ) `1 >= ( ( G * ( t , width G ) ) `1 ) / 2 pred i in dom G & r (#) ( f (#) reproj ( i , x ) ) = r (#) ( f (#) reproj ( i , x ) ) & f . ( r (#) reproj ( i , x ) ) = r (#) ( reproj ( i , x ) ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c /. k = <* c1 , c2 *> and c1 /. k = c1 + c2 and c2 /. k = c2 /. k and c1 /. k = c2 /. k * c2 /. k ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) . ( k + 1 ) .= C . ( k2 + 1 ) .= C . ( k2 + 1 ) ; pred that len M1 = len M2 and width M1 = width M2 and width M2 = width M2 and width M1 = width M2 and width M1 = width M2 and width M1 = width M2 and width M2 = width M2 and width M1 = width M2 and width M1 = width M2 ; consider g2 being Real such that 0 < g2 and { y where y is Point of S : ||. ( y - x0 ) - ( x0 - r ) .|| < g2 & g2 . y = ( g2 . y - r ) * ( x0 - r ) + R . ( y - x0 ) ; assume x < ( - b + sqrt ( delta ( a , b , c ) ) ) / ( 2 * a ) or x > ( - b + sqrt ( 2 * a ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ ( H1 ^ H2 ) ) . i & ( H1 ^ H2 ) . i = ( <* 3 *> ^ ( H1 ^ H2 ) ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M2 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f & i <> j holds f /. i divides f /. j & f /. j divides f /. j assume that F = { [ a , b ] where a , b is Subset of X : for c st c in B\mathopen { a , b } holds a c= c } and for c st c in B\mathopen { a , b } holds a c= c ; b2 * q2 + ( b3 * q2 ) + ( b3 * q2 ) + ( a * q2 ) + ( a * q2 ) + ( a * q2 ) + ( a * q2 ) + ( a * q2 ) = 0. TOP-REAL n + ( a * q2 ) .= 0. TOP-REAL n + ( a * q2 ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B is open & B in F & B c= Cl ( Cl F ) } ; attr seq is summable & seq is summable & ( for n holds seq . n = Partial_Sums ( seq ) . n ) implies Partial_Sums ( seq ) . n = Partial_Sums ( seq ) . ( Partial_Sums ( seq ) . n ) & Partial_Sums ( seq ) . ( Partial_Sums ( seq ) ) . n = Partial_Sums ( seq ) . ( Partial_Sums ( seq ) ) . n ; dom ( ( ( cn ) | D ) | D ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) ; |[ X \to Z ]| is full full SubRelStr of ( Omega Z ) |^ the carrier of Z & [ X \to Y , Z ] is full full SubRelStr of ( Omega Z ) |^ the carrier of Z ; ( G * ( 1 , j ) ) `2 = ( G * ( i , j ) ) `2 & ( G * ( 1 , j ) ) `2 <= ( G * ( i , j ) ) `2 ; synonym m1 c= m2 & ( for p be set st p in P & ( for p be set st p in P holds ( p in P implies p in P ) & ( for m be set st m in P holds m <= m holds p . m = ( m + 1 ) ) & ( m <= k implies p . m = ( m + 1 ) ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym the multMagma of K is \vert means : Def1 : the multF of K is multiplicative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative & the multF of K is associative ; directed ( a , b , 1 ) + \mathop ( c , d ) = b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) .= sequence ( a + c + d ) .= sequence ( a + c + d ) .= sequence ( a + c + d ) ; cluster + _ + -> strict for Element of INT means : Def1 : for i , j being Element of INT holds it . ( i , j ) = + ( i , j ) & j = j implies it . ( i , j ) = + ( i , j ) ; ( - s2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) = ( ( - s2 ) * p1 + ( s2 * p2 ) ) * p2 + ( ( - s2 ) * p2 ) .= ( ( - s2 ) * p2 ) + ( ( - s2 ) * p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty Subset of S , D being non empty directed Subset of S st D = the carrier of S & D is open holds D is open & for V being open Subset of S st V in V holds V is open & V is open & V is open & V is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( ( q11 , w ) -w , w ) ) = ( ( T11 . k ) -w ) . ( ( ( q11 , w ) -w ) . k ) and ( ( T . k ) -w ) . k = ( ( T . k ) -w ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n + 1 ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) + ( a |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ; M , v / ( x. 0 , x. 4 ) / ( x. 0 , x. 0 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 0 , x. 4 , x. 0 ) / ( x. 0 , x. 0 ) / ( x. 4 , x. 0 , x. 0 ) / ( x. 4 , x. 0 , x. 0 ) / ( x. 0 , x. 0 ) ) / ( x. 4 , x. 0 ) |= ( x. 0 , x. 4 , x. 0 ) ) |= ( x. 0 , x. 0 , x. 0 , x. 0 , x. 0 , x. 4 , x. 0 , x. 0 ) / ( x. 4 , x. 0 , x. 0 ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 or for x0 st x0 in l holds f . x0 < ( f . x0 ) ^2 and for x0 st x0 in l holds f . x0 < ( f . x0 ) ^2 and for x0 st x0 in l holds f . x0 < ( f . x0 ) ^2 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G2 , G2 being Walk of G2 , e being Vertex of G2 st e in W holds not ( e in W implies e in G & not ( e in G implies e in G ) implies e in G & e in G & e in G implies ( e in G ) implies ( e in G ) implies ( e in G ) not c01 is non empty iff ( not ( ( ex y st y is not empty & not ( y is not empty & not ( y is not empty & not ( not ( y is not empty & not ( y is not empty ) ) ) ) ) & not ( not not ( not not ( not ( y is not empty ) & not ( not ( y is not empty ) ) ) ) ) ; Indices GoB f = [: dom GoB f , Seg ( len GoB f ) :] & ( for i st i in dom GoB f holds f /. i = ( GoB f ) * ( i , j ) ) implies ( f /. i = ( GoB f ) * ( i , j ) ) & ( f /. i = ( GoB f ) * ( i , j ) ) for G1 , G2 , G2 , G3 being Group st G1 is stable & G2 is stable & G2 is stable & G1 is stable & G2 is stable & G2 is stable & G2 is stable holds G1 * ( G1 * G2 ) is stable & G2 * ( G2 * G2 ) is stable UsedIntLoc ( int ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 } \/ { intloc 0 , intloc 4 , intloc 0 } .= { intloc 0 , intloc 4 , intloc 5 } \/ { intloc 0 , intloc 4 , intloc 5 } .= { intloc 0 , intloc 4 , intloc 5 } ; for f1 , f2 being FinSequence of F st f1 is p -element & f2 is p -element & Q [ f1 ^ f2 , f2 . p ] & Q [ f1 ^ f2 , f2 . p ] holds Q [ f1 ^ f2 , f2 . p ] ( p `1 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ) ^2 = ( q `1 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ^2 .= ( q `1 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 , x2 , x3 )| = |( x1 , x2 , x3 )| & |( x1 , x2 , x3 )| = |( x1 , x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| for x st x in dom ( ( ( ( ( ( ( ( ( - x ) / 2 ) ) (#) ( ( id Z ) ^ 2 ) ) (#) ( ( id Z ) ^ 2 ) ) ) `| Z ) holds ( ( ( ( ( ( ( ( ( ( - x ) / 2 ) (#) ( ( id Z ) / 2 ) ) (#) ( ( id Z ) ^ 2 ) ) (#) ( ( id Z ) ^ 2 ) ) ) ) `| Z ) ) . x = - ( x + x ) (#) ( ( ( ( Z ) ^ 2 ) (#) ( ( id Z ) ^ 2 ) ) ) . x ) for T being non empty TopSpace , P being Subset-Family of T , x being Point of T st P c= the topology of T & x in P ex B being Basis of T st B c= P & x in B ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= ( ( a 'or' b ) . x ) 'or' c . x .= TRUE 'or' TRUE .= TRUE ; for e being set st e in A8 ex X1 , Y1 being Subset of X st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open ; for i be set st i in the carrier of S for f being Function of [: S , T :] , S1 . i st f = H . i & f is Function of [: S , T :] , S1 . i holds F . i = f | [: F . i , F . i :] for v , w st for x st x <> y holds w . y = v . y holds J . ( ( VERUM ( Al , J ) ) . v ) = J . ( ( VERUM ( Al , J ) ) . w ) card D = card D1 + card D2 - card D1 .= card D1 + card D2 - card D2 .= ( i + 1 ) - card D1 + ( i + 1 ) .= ( i + 1 ) - ( i + 1 ) .= ( i + 1 ) - ( i + 1 ) .= ( i + 1 ) + ( i + 1 ) - ( i + 1 ) .= ( i + 1 ) - ( i + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 ; len f /. ( \downharpoonright i1 -' 1 ) + 1 -' 1 = len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k <= m holds a <= a + b or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = b + b-2 ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st i in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= Index ( p , f ) + 1 & Index ( p , f ) + 1 <= Index ( p , f ) + 1 lim ( ( curry ( I , k + 1 ) ) # x ) = ( lim ( curry ( I , k ) ) ) + ( lim ( ( curry ( I , k ) ) # x ) .= lim ( ( curry ( I , k ) ) # x ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of C ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A ( ) , R is Subset of B ( ) , R is Subset of A ( ) st R is open & R is open & R is open & R is open holds ( Intersect R ) . ( ( Intersect R ) . ( ( Intersect R ) . ( x , y ) ) = Intersect ( G . ( x , y ) ) ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 + m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 + m2 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on N and p on M and a on M and p on N and d on N and p <> d and a <> b and p <> d and a <> b and p <> d and a <> d and a <> b and p <> d and a <> d and a <> d and a <> b ; Suppose T is \hbox of 4 , T _ 4 & B is closed and ex F being Subset-Family of T st F is closed & F is closed & for n st n <= 0 holds F . n <= 0 & ind F <= 0 and ind F <= 0 ; Then T <= 0 & ind T <= 0 ; for g1 , g2 st g1 in ]. r - g , r .[ & g2 in ]. r - g , r + g .[ & |. f . g1 - g .| <= ( f . g1 - f . g2 ) / ( r - g ) / ( r - g ) & |. f . g2 - f . g2 .| <= ( f . g1 - f . g2 ) / ( r - g ) / ( r - g ) / ( r - g ) .| ( ( - 1 ) / ( z1 + z2 ) ) / ( z1 + z2 ) = ( - ( 1 / z1 ) ) / ( z1 + z2 ) .= ( - 1 / z1 ) / ( z1 + z2 ) .= ( - 1 / z1 ) / ( z1 + z2 ) .= ( - 1 / z1 ) / ( z1 + z2 ) .= ( - 1 / z1 ) / ( z1 + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) * r2 .= ( ( n + 1 ) -tuples_on REAL ) .= ( ( n + 1 ) -tuples_on REAL ) .= ( ( n + 1 ) -tuples_on REAL ) ^ ( ( n + 1 ) -tuples_on REAL ) .= ( n + 1 ) -tuples_on REAL ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * F /. i & for i be Nat st i in dom it holds it . i = f /. i * F /. i ; { x1 , x2 , x3 , x4 , x4 , x5 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 } = { x1 , x2 , x3 , x4 , 8 } \/ { x4 , 8 , 7 , 8 } \/ { 8 , 8 , 7 } \/ { 8 , 8 , 7 } ; for n being Nat for x , n being set st x = h . n & h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) holds o ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of QC-WFF ( Al ( ) ) st [ P , l , e ] = S1 & ( for k being Element of NAT holds P [ k , l , e , e ] ) & ( for k being Element of NAT st P [ k , l , e ] ) & ( for k being Nat st P [ k , l , e ] holds P [ k , l , e ] ) ; consider P being FinSequence of G2 such that p9 = Product P and for i st i in dom P ex t7 , t7 st P . i = t & t7 = t . i & t7 = t . i & t7 = t . i & t7 = t . i & t7 = t . i ; for T1 , T2 being non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the topology of T1 = the topology of T2 & P is Basis of T2 & P is Basis of T2 holds P is Basis of T1 & Q is Basis of T2 consider f being PartFunc of REAL , REAL such that f is_partial_differentiable_in u0 , u0 & r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) & partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F , G be FinSequence of bool ( Seg ( $1 + 1 ) ) , G be FinSequence of REAL st len F = $1 & G = F * s holds Sum ( F ^ G ) = Sum ( F ^ G ) & Sum ( F ^ G ) = Sum ( F ^ G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s * ( 1 , j ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 & s * ( 1 , j + 1 ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex Fa1 be Subset-Family of T st $1 = Fa1 & $2 is open & union ( Fa1 , Fa1 ) is open & ( for n st n <= $1 holds Fa1 . n is open & ( for n st n <= $1 holds Fa1 . n is open implies $2 is open ) & ( for n st n <= $1 holds F . n is discrete implies F . n is discrete ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 holds LE p4 , p , P , p1 , p2 & LE p , q , P , p1 , p2 f in St ( E , H ) & for g st g . y <> f . y holds for x st x <> y holds g . x = f . ( g . x ) iff for x st x in dom ( f . x ) holds f . x = All ( x , H . ( x , y ) ) ex p9 being Point of TOP-REAL 2 st x = p9 & ( for q being Point of TOP-REAL 2 st q in the carrier of ( TOP-REAL 2 ) holds ( ( q `2 / |. q .| - sn ) ) ^2 >= 0 & ( ( q `2 / |. q .| - sn ) ) ^2 >= 0 & ( q `2 / |. q .| - sn ) ^2 >= 0 ; assume for d7 being Element of NAT st d7 <= ( ( n + 1 ) -tuples_on NAT ) & d7 <= ( ( n + 1 ) -tuples_on NAT ) holds s1 . ( ( n + 1 ) -tuples_on NAT ) = s2 . ( ( n + 1 ) -tuples_on NAT ) & s2 . ( ( n + 1 ) -tuples_on NAT ) = s2 . ( ( n + 1 ) -tuples_on NAT ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st e = Ball ( x , r ) & e in Ball ( x , r ) /\ Ball ( x , r ) & e in Ball ( x , r ) /\ Ball ( x , r ) ; given r such that 0 < r and for s st 0 < s for x1 , x2 being Point of CNS st x1 in dom f & x2 in dom f & f /. x1 = f /. ( x1 - x2 ) holds |. f /. x1 - f /. x2 .| < r / ( 1 + 1 ) / ( 1 + 1 ) ; ( p | x ) | ( p | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x for x , h , x , h st x + h in dom sec & x + h in dom sec & x - h / 2 = ( 4 * ( ( 2 * x + h / 2 ) * ( x + h / 2 ) ) ) / ( x + h / 2 ) holds h / ( x + h / 2 ) = ( 4 * x + h / 2 ) / ( x + h / 2 ) for i st i in dom A & len A > 1 & i > 1 holds ( ( A * B ) * ( i , j ) ) = ( A * ( i , j ) ) * ( i , j ) & ( A * ( i , j ) ) = A * ( i , j ) & ( A * ( i , j ) ) = A * ( i , j ) for i be non zero Element of NAT st i in Seg n holds i divides n or ( i = n or i = n or i = n or i = n & i <> n implies h . i = <* 1. F_Complex , n * ( i , n ) *> & h . i = 1. F_Complex ( F_Complex , n ) ( ( ( b1 'imp' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) ) '&' ( ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) ) '&' ( ( b1 'or' b2 ) '&' ( b2 '&' c2 ) ) '&' ( b2 'or' c2 ) ) '&' ( b1 'or' b2 ) ) '&' ( b2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( b2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( b2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( a2 '&' c2 ) '&' ( assume that for x holds f . x = ( ( - 1 ) (#) ( cot * ( sin . x ) ) ) and for x st x in dom f holds f . x = ( - 1 ) * ( sin . x ) and for x st x in dom f holds f . x = - 1 / ( sin . x ) and f . x = - 1 / ( sin . x ) and f . x = - 1 / ( sin . x ) and f . x = 1 / ( sin . x - 1 / ( sin . x ) and f . x - 1 / ( sin . x - 1 / ( sin . x - 1 / ( sin . x ) and f . x = - 1 / ( sin . x ) and f . x = 1 / ( sin . x - 1 / ( sin . x - 1 / ( sin . x ) and for x - 1 / ( sin . x ) and f . x consider R8 , I8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im ( F . n ) ) and I = dom ( ( Im F ) . n ) and I = dom ( ( Im F ) . n ) and for n be Nat holds I . n = ( Im F ) . n ; ex k being Element of NAT st ( ex q being Element of NAT st ( for d be Element of product G st q in X & 0 < d & for q be Element of product G st q in X holds ||. ( qx0 , q ) - partdiff ( f , x , k ) .|| < r ) & ||. partdiff ( f , x , k ) - partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 } \/ { 8 , 8 , 8 , 7 , 8 } \/ { 8 , 8 , 8 } \/ { 8 , 8 , 7 } \/ { 8 , 8 , 7 } \/ { 8 , 8 , 7 } \/ { 8 , 8 , 7 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 , 8 } \/ { 8 } \/ { 8 , 8 } \/ { 8 , 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } \/ { 8 } ( G * ( j , i9 ) ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) * ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> Tree means : Def1 : q in it iff q in T & q in T or ex p , q st p in P & q in T & p ^ q in T & q in T & p ^ q in T & q in T & p ^ q in T ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= Fcontradiction . ( p . ( k + 1 -' 1 ) , p . ( k + 1 -' 1 ) ) .= Fcontradiction . ( p . k , p . ( k + 1 -' 1 ) ) .= Fcontradiction . ( p . k , p . ( k + 1 -' 1 ) ) .= FF] . k ; for A , B , C , D , E , F , G , G , C , D st len B = len C & len C = len C & len D = len C & len D = len C & len C > 0 & len D > 0 & for i st i in dom C holds A * ( B * C , C * D ) = A * ( B * C , C * D ) seq . ( k + 1 ) = 0. F_Complex .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= Partial_Sums ( seq ) . ( k + 1 ) .= Partial_Sums ( seq ) . ( k + 1 ) .= Partial_Sums ( seq ) . ( k + 1 ) .= Partial_Sums ( seq ) . ( k + 1 ) ; assume that x in ( the carrier of Cq ) ~ and y in ( the carrier of Cq ) and z in ( the carrier of Cq ) and x = [ x , y ] and y = [ z , x ] ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k in $1 holds f . k = ( ( the \it false ) --> ( f . k ) ) . ( k + 1 ) ) holds ( ( the \it false of K ) +* ( k + 1 ) ) . ( f . k ) = ( ( the \it false of K ) --> ( k + 1 ) ) . ( f . k ) ; assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i , j ) and [ i , j ] in Indices G and f /. ( k + 1 ) = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) ; ( for q st q < 1 & q `1 > 0 & q `2 > 0 & q `2 <= 0 holds ( q `1 / |. q .| - cn ) / ( 1 + cn ) >= 0 & ( q `1 / |. q .| - cn ) / ( 1 + cn ) >= 0 & ( q `1 / |. q .| - cn ) / ( 1 + cn ) >= 0 ) implies q `1 / |. q .| = q `1 / |. q .| / ( 1 + cn ) & q `1 / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn ) / ( 1 + cn for M being non empty metric space , x being Point of M , f being Point of M st x = x `1 & ex x being Point of M st f . n = Ball ( x `1 , ( 1 - x ) / ( 1 - x ) ) & for n being Nat holds f . n = Ball ( x `1 , ( 1 - x ) / ( 1 - x ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & Z c= dom ( f1 - f2 ) & for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = f1 . x - f2 . x & ( f1 - f2 ) `| Z ) . x = ( f1 . x - f2 . x ) / ( f2 . x ) ; defpred P1 [ Nat , Point of CNS ] means ( ( for r be Real st r in Y & $1 < $2 holds ||. ( f /. $1 ) - ( f /. $1 ) .|| < r ) & ||. ( f /. $1 ) - ( f /. $1 ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i + 1 ) .= ( mid ( g , 2 , len g ) ) . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) .= ( f /. ( i + 1 ) ) .= ( f /. i ) + ( f /. ( i + 1 ) ) ; ( 1 / 2 * ( n0 + 2 ) ) * ( 2 / ( n0 + 2 ) ) = ( ( 1 / 2 ) * ( ( 2 / ( n0 + 2 ) ) ) * ( 2 / ( n0 + 2 ) ) ) * ( 2 / ( n0 + 2 ) ) ) .= ( 1 / 2 ) * ( 2 / ( n0 + 2 ) ) .= 1 / 2 * ( 2 / ( n0 + 2 ) ) .= 1 / 2 ; defpred P [ Nat ] means for G being non empty finite strict finite RelStr st G is non empty finite & card G = $1 & for n being Element of NAT st n in $1 holds the carrier of G = ( the carrier of G ) \/ ( the carrier of G ) & the carrier of G = ( the carrier of G ) \/ the carrier of G ; assume that f /. 1 in Ball ( u , r ) and not 1 <= m and m <= len - 1 and for i st 1 <= i & i <= len - 1 holds LSeg ( f , i ) /\ LSeg ( f , m ) <> {} & LSeg ( f , i ) /\ LSeg ( f , m ) <> {} & LSeg ( f , m ) <> {} ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos , Z ) . ( n + 1 ) ) . ( ( Partial_Sums ( cos , Z ) . ( n + 1 ) ) . ( x + 1 ) ) = ( Partial_Sums ( cos , Z ) . ( n + 1 ) ) . ( x + 1 ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & for i be set st i in I holds x . i = ( ( the Sorts of F ) * ( i , x ) ) . i & for i be set st i in I holds x . i = ( ( the Sorts of A ) * ( i , x ) ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x .= ( x |^ n ) * x .= ( x |^ n ) * x .= ( x |^ n ) * x .= ( x |^ n ) * x .= ( x |^ n ) * x .= ( x |^ n ) * x .= x |^ n * x .= x |^ n * x ; DataPart Comput ( P +* I , s ( ) , LifeSpan ( P +* I ( ) + 1 ) ) = DataPart Comput ( P +* I ( ) +* I ( ) , Comput ( P +* I ( ) , s ( ) +* I ( ) , LifeSpan ( P +* I ( ) ) + 3 ) ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= ( dom f1 /\ dom f2 ) and for g st g in dom f1 /\ dom f2 holds f1 . g <= ( f2 . g ) . g and for g st g in dom ( f2 * f1 ) & g in dom ( f2 * f1 ) holds ( f2 * f1 ) . g <= ( f2 . g ) . g ; for X st X c= dom f1 /\ dom f2 & f1 | X is continuous & f2 | X is continuous & ( for x st x in X holds f1 . x = f1 . x ) & f2 | X is continuous & ( for x st x in X holds f1 . x = - 1 & f2 . x = 1 ) implies f1 + f2 is continuous & f2 | X is continuous & ( f1 + f2 ) | X is continuous & f2 | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 - f2 is continuous & ( f1 - f2 ) | X is continuous & ( f1 - f2 ) | X is continuous & ( f1 - f2 ) | X is continuous & ( f1 - f2 ) | X is continuous & ( f1 - f2 is continuous & ( for L being continuous LATTICE for l being Element of L st l = sup X ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is directed & x is directed & x is directed & x is directed & x is directed & x is directed Support ( ee ) in { ( m *' p ) where m is Polynomial of n , L : m in Support ( m *' p ) & p . i = m . ( p /. i ) & p /. i = m . ( p /. i ) } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) .= lim ( f2 /* s1 ) ; ex p1 being Element of QC-WFF ( A ) st F . p = g . p1 & for g being Function of [: Al ( ) , D ( ) :] , D ( ) st P [ g , p1 , g . ( len g ) ] & for g being Function st P [ g , p1 , g . ( len g ) ] holds P [ g , p1 ] ( mid ( f , i , len f -' 1 ) ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= f /. j ; ( ( p ^ q ) . ( len p + k ) ) = ( ( p ^ q ) . ( k + 1 ) ) . ( len p + k ) .= ( ( p ^ q ) . ( k + 1 ) ) . ( k + 1 ) .= ( ( p ^ q ) . ( k + 1 ) ) . ( k + 1 ) .= ( ( p ^ q ) . ( k + 1 ) ) . ( k + 1 ) ; len mid ( upper_volume ( f , D2 , indx ( D2 , D1 , j1 ) + 1 ) , indx ( D2 , D1 , j ) ) + indx ( D2 , D1 , j1 ) = indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 ; x * y * z = ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * y ) * ( x * z ) .= x * ( y * z ) .= x * ( y * z ) ; v . <* x , y *> * ( <* x0 , y0 *> ) . i = partdiff ( v , ( x - y ) * ( x - x0 ) ) + ( partdiff ( u , ( x - x0 ) * ( x - x0 ) ) ) + ( partdiff ( u , ( x - x0 ) * ( x - x0 ) ) ) + ( partdiff ( u , ( x - x0 ) * ( x - x0 ) ) ) ; i * i = <* 0 * ( - 1 ) * ( 1 / ( 2 * 1 ) ) - ( 1 / ( 2 * 1 ) ) * ( 1 / ( 2 * 1 ) ) + ( 1 / ( 2 * 1 ) ) * ( 1 / ( 2 * 1 ) ) * ( 1 / ( 2 * 1 ) ) + ( 1 / ( 2 * 1 ) ) * ( 1 / ( 2 * 1 ) ) ) .= ( - 1 / ( 2 * 1 ) ) * ( 1 / ( 2 * 1 ) ) ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( ( L (#) F1 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ) ) ) ) ) ) ) ) .= Sum ( ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ) ) ) + ( Sum ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ) ) ) .= Sum ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ) ) .= Sum ( ( ( L (#) F1 ) ) + Sum ( ( L (#) F1 ) ) + Sum ( ( ( L (#) F1 ) ) .= Sum ( ( L (#) F1 ) ^ ( ( L (#) F1 ) ) ) .= Sum ( ( L (#) F1 ) ) .= Sum ( L (#) F1 ) ) + Sum ( L (#) F2 ) ) ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of REAL st Y1 is non empty & for Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y & Y1 is non empty & Y is non empty & for Y1 be finite Subset of X st Y1 is non empty & Y1 is non empty holds |. ( Y1 - Y2 ) .| < r / 2 ( GoB f ) * ( i , j + 1 ) `1 = f /. ( k + 2 ) & ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) or ( GoB f ) * ( i + 1 , j + 1 ) `2 = f /. ( k + 2 ) ; ( ( - 1 ) (#) ( cos . x ) ) ^2 = ( - 1 ) * ( sin . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 ; ( - ( b - sqrt ( a , b ) ) + sqrt ( a , c ) ) / ( 2 * a ) > 0 & ( - b ) / ( 2 * a ) + sqrt ( b - sqrt ( a , b ) ) / ( 2 * a ) > 0 ; Suppose inf ( \mathopen { \uparrow } L ) /\ X = X and ex_sup_of X , L and for x st x in X holds x is maximal & x is maximal & x is ) and for x st x in X holds "\/" ( ( ( subrelstr X ) /\ ( subrelstr X ) ) , L ) = "/\" ( ( subrelstr X ) /\ ( subrelstr X ) , L ) ; ( ( for j holds ( ( j , i ) --> ( j , j ) ) ) . ( j , i ) = ( j , i ) --> ( j , j ) ) . ( j , i ) & ( j , i ) = j implies ( j , i ) = ( j , i ) --> ( j , i ) ) . ( j , i )