thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S `1 is Cauchy q in X ; V in X ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a >= X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in rng f ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` = b ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `2 <= b `2 ; assume b in X ; assume k <> 1 ; f = Product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `2 = x `2 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , F be Subset-Family of G ; let G be _Graph , F be Subset-Family of G ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b be Element of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; let y be Real ; X c= f . a ; let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom f ; let x be element ; k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = |^ n ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} ; assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Point of V ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is not discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , I be Program of SCM+FSA ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 in dom f ; cluster uparrow x -> means : cluster uparrow x -> be ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; 2 >= ks ; G . y <> 0 ; let X be RealNormSpace , x be Point of X ; a in A ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , M be Subset of V ; assume x in - M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_equipotent ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `2 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= i + ( i + 1 ) ; 1 <= i + ( i + 1 ) ; px c= PI ; 1 <= ii & ii <= len f ; 1 <= ii & ii <= len f ; LMP C in L ; 1 in dom f ; let seq , seq1 , seq2 ; set C = a * B ; x in rng f ; assume f is Lipschitzian ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; FF is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 & b2 >= Z1 ; assume w = 0. V ; assume x in A . i ; g in the carrier of X ; y in dom t ; i in dom g ; assume P [ k ] ; if C c= f holds C c= f ; xx is increasing & xx is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; Gseq is non-decreasing implies seq is non-decreasing Gseq is non-decreasing implies seq is non-decreasing assume v in H . m ; assume b in [#] B ; let S be non void non empty ManySortedSign , f be Function of S , X ; assume P [ n ] ; assume union S is independent & A is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ( ) ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , f be FinSequence of I ; b `1 c= b9 `1 & b `2 c= b9 `2 ; assume not x in REAL + Q ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster Product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 & i2 < i2 implies i1 < i2 a * h in a * H ; p , q in Y ; Observe sqrt I ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n ; assume A c= dom f ; Re ( f ) is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_continuous_in x0 ; assume O is symmetric & O is symmetric ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 is_halting_on s , P ; d , c // a , b ; let t , u be set ; let X be set with a non-empty ManySortedSet of X ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , f be Function of X , X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , C be Subset of A ; let S be non empty ManySortedSign ; let x be variable , f be Function ; let b be Element of X , f be Function of X , REAL ; R [ x , y ] ; x ` ` = x ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( n - 1 ) ; h2 . a = y ; P [ n + 1 ] ; Observe G * F is pre| ; let R be non empty multMagma , I be Element of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co & y in rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `2 ; let M be mamamaid ; let N be non empty Subset of M ; let R be RelStr with finite or R is finite ; let n , k be Nat ; let P , Q be be be be be _ RelStr ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I does not destroy a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < ( v - u ) ; x <= c2 . x ; x in F ` & y in F ` ; Observe S --> T is ManySortedSet of I ; assume t1 <= t2 & t2 <= t2 ; let i , j be even Integer ; assume F1 <> F2 & F2 <> F1 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> A6 & A2 <> A6 ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & dom g2 = A ; i < len M + 1 ; assume not -infty in rng G ; N c= dom ( f1 + f2 ) ; x in dom ( sec | [. 0 , PI / 2 .] ) ; assume [ x , y ] in R ; set d = ( x - y ) / ( x - y ) ; 1 <= len g1 & 1 <= len g2 ; len s2 > 1 & len s2 > 1 ; z in dom ( f1 + f2 ) ; 1 in dom D2 & 1 in dom D2 ; ( p `2 ) ^2 = 0 ; j2 <= width G & j2 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; gcd ( i , i ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be cluster cluster -> functor of on ; cluster m * n -> invertible ; let k9 be Nat , n be Nat ; i - 1 > m - 1 ; R is transitive implies field R c= field R & field R c= field R set F = <* u , w *> ; ( p `1 ) c= P3 `1 & p `2 c= P3 `2 ; I is_halting_on t , Q ; assume [ S , x ] is real ; i <= len ( f2 | i ) ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 - f2 ) ; assume [ X , p ] in C ; B9 c= ( X \/ Y ) ; n2 <= ( 2 |^ ( n + 1 ) ) ; A /\ cP ` c= A ` ; cluster x -valued -> x -valued for Function ; let Q be Subset-Family of S , f be Function of Q , S ; assume n in dom g2 & m + 1 in dom g2 ; let a be Element of R ; t `2 in dom e2 & t `2 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , f be Function of S , REAL ; i . y in rng i ; REAL c= dom f & dom f c= dom g ; f . x in rng f ; mt <= ( r / 2 ) * ( 1 / 2 ) ; s2 in r-5 & s2 in r-5 ; let z , z be complex number ; n <= NN . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = |[ S \to T ]| ; let x be non positive ExtReal ; let m be Element of M ; f in Union ( F1 , A ) ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , f be FinSequence of K ; let i be Element of NAT , k be Nat ; rng ( F * g ) c= Y dom f c= dom x & dom f c= dom x ; n1 < n1 + 1 & n2 < n2 + 1 ; n1 < n1 + 1 & n2 < n2 + 1 ; cluster ( T . X ) /\ T . X -> thesis ; [ y2 , 2 ] = z ; let m be Element of NAT , n be Element of NAT ; let S be Subset of R ; y in rng ( S . k ) ; b = sup dom f & a = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom ( h2 ^ ) ; w + 1 = ( a - 1 ) ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 ; let i be Element of NAT , k be Nat ; Support u = Support p & Support u c= Support p ; assume X is complete e e e ; assume that f = g and p = q ; n1 <= n1 + 1 & n2 <= n1 + 1 ; let x be Element of REAL m , y be Element of REAL m ; assume x in rng s2 & y in rng s2 ; x0 < x0 + 1 & x0 < x0 + 1 ; len ( L * F ) = W ; P c= Seg ( len A ) ; dom q = Seg n & dom q = Seg n ; j <= width M *' ; let r8 be real-valued Real_Sequence , f be FinSequence ; let k be Element of NAT , n be Nat ; Integral ( M , P ) < +infty ; let n be Element of NAT , x be Element of REAL ; assume z in being atatlen } _ _ 0 ( A ) ; let i be set ; n - 1 = n-1 - 1 ; len ( n - m ) = n ; \mathop { \rm Set } ( Z , c ) c= F assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , f be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q & dom q = Seg n ; let s be Element of E -tuples_on E ; let B1 be Basis of x , B ; Carrier ( L /\ L2 ) = {} ; L1 /\ L2 /\ L2 = {} ; assume downarrow x = downarrow y ; assume b , c // b , c ; LIN q , c , c ; x in rng ( f . -129 ) ; set n8 = n + j ; let D7 be non empty set , f be FinSequence of D ; let K be add-associative right_zeroed right_complementable non empty addLoopStr , f be Function of K , K ; assume that f `1 = f and h `2 = h ; R1 - R2 is total & R1 - R2 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & ( TOP-REAL 2 ) | K1 is open ; assume a , b are_maximal in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster nson -> neson ; not u in { ag } ; the carrier of f c= B ( ) ; reconsider z = x as Vector of V ; cluster *> is \rangle for non empty RelStr ; r (#) H is as as as as as as as as {} -defined Function of X , REAL ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict non-empty MSAlgebra over S , o be OperSymbol of S ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in : ( ex y st y in : x = y ) ; let x , y be Element of X ; let A , I be such that A is such that I is such that A c= I ; [ y , z ] in O ; ( } Macro i ) = 1 ; rng Sgm A = A ; q |- p -<* All ( y , q ) *> ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b & LIN o , a , c ; p . 2 = Z / Y ; ( D `2 ) ^2 = {} ; n + 1 + 1 <= len g ; a in [: NAT , NAT :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f1 + f2 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 ] in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i - k + 1 <= S ; cluster associative for non empty multMagma ; x in support ( ( support t ) * ( support b ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `2 <= len ( y | i ) ; assume p divides b1 + b2 & p divides b2 + b3 ; p0 <= upper_bound M1 & ( for i st i in Seg n holds M * ( i , j ) <= 0 ) implies M1 is bounded assume x in W-min ( X ) & y in W-min ( X ) ; j in dom ( z | Seg n ) ; let x be Element of D ( ) ; IC s4 = l1 .= l1 .= l1 .= l1 ; a = {} or a = { x } ; set u9 = Vertices G , u9 = Vertices G , u9 = Vertices G ; seq " is non-zero & seq " is non-zero implies seq " is non-zero for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; h-4 c= h-14 & hh2 c= h-14 ; ]. a , b .[ c= Z ; X1 , X2 are_separated & X2 , X1 are_separated implies X1 union X2 , X2 union X1 union X2 are_separated a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 - 1 = k - 1 ; cluster -> real-valued for Relation of NAT , REAL ; ex v st C = v + W ; let IT be non empty thesis , F be Function of IT , IT ; assume V is Abelian add-associative right_zeroed right_complementable non empty addLoopStr ; XY \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper & sup B = sup B ; let L be non empty reflexive RelStr , x be Element of L ; R is reflexive & X is transitive implies R is transitive E , g |= ( g ) / ( g . H ) ; dom G `2 /. y = a ; ( 1 - 4 ) / ( 1 - 4 ) >= - ( 1 / 4 ) ; G . p0 in rng G & G . I in rng G ; let x be Element of F , y be Element of F ; D [ P , 0 ] & P [ 0 ] ; z in dom id B & z in dom id B ; y in the carrier of N & z in the carrier of N ; g in the carrier of H & h in the carrier of G ; rng ( f | X ) c= NAT & rng ( f | X ) c= dom f ; j `2 + 1 in dom s1 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL , f be PartFunc of REAL , REAL ; f . z1 in dom h & f . z2 in dom h ; P . k1 in rng P & P . k2 in rng P ; M = ( A +* ( {} .--> a ) ) +* ( {} .--> a ) ; let p be FinSequence of REAL , n be Nat ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; ( h | [. a , b .] ) = b-a ; assume the distance of V , Q is_V ; let a be Element of ^ ( V ) ; let s be Element of P , x be Element of X ; let PA be non empty RelStr , x be Element of Y ; n be Nat ; the carrier of g c= B & the carrier of g c= B ; I = halt SCM ( R ) .= ( the InstructionsF of SCM ) . I ; consider b being element such that b in B ; set BM = BCS K , BM = BCS M ; l <= ( GoB ( F . j ) ) . i ; assume x in downarrow [ s , t ] ; ( x `2 ) / ( |. x .| ) in uparrow t ; x in ( JumpParts JumpParts T ) . ( 1 , T ) ; let h be Morphism of c , a ; Y c= 1. ( K , the_rank_of ) & card Y = card X ; A2 \/ A3 c= Carrier ( L ) \/ Carrier ( L ) ; assume LIN o , a , b & LIN o , a , c ; b , c // d1 , e2 & b , c // d2 , e2 ; x1 , x2 , x3 , x4 , 8 , 7 , 8 , 8 , 8 , 6 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 dom <* y *> = Seg 1 & dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in X ~ ; for n being Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> -> sqrt closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , q1 is_collinear & q2 , q1 , q2 is_collinear ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] & y = [ y1 , y2 ] ; let R , Q be ManySortedSet of A ; set d = ( 1 / ( n + 1 ) ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , v be Element of V ; let I be Program of SCM+FSA , J be Program of SCM+FSA ; assume x in rng ( ( S * R ) * S ) ; let b be Element of the carrier of T ; dist ( e , z ) - r > re ; u1 + v1 in W2 & v1 in W1 + W2 ; assume the carrier of L misses rng G ; let L be lower-bounded antisymmetric transitive RelStr ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool M , a be Element of Bool M ; 0 <= Arg a < 2 * PI ; o , a9 // o , y & o , a // o , y ; { v } c= the carrier of l ; let x be variable of A ; assume x in dom ( uncurry f ) & y in dom ( uncurry f ) ; rng F c= ( Product f ) |^ X ; assume D2 . k in rng D & D . k in rng D ; f " . p1 = 0 & f " . p2 = 0 ; set x = the Element of X , y = the Element of Y ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; let n be Element of NAT , x be Element of REAL ; assume LIN c , a , e1 ; cluster -> natural for FinSequence of NAT ; reconsider d = c , e = d as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of f ; conv @ S c= conv A & conv @ S c= conv @ S ; reconsider B = b as Element of the carrier of T ; J , v |= P \lbrack l , P \lbrack l , P \rbrack ; redefine func J . i -> non empty TopSpace ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 \/ Y2 , T ; W1 is_not field ( W1 + W2 ) implies R + ( W2 + W1 ) is_not field R assume x in the carrier of R & y in the carrier of R ; dom ( n --> 0 ) = Seg n & dom ( n --> 0 ) = Seg n ; s4 misses s2 & s3 misses s2 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in Indices ( f | A ) ; assume that function I c= J and function I c= K and I c= K ; Im ( ( lim seq ) - ( lim seq ) ) = 0 ; ( ( ( - 1 ) (#) ( sin * cos ) ) `| Z ) . x <> 0 ; sin * ( ( - 1 ) (#) ( ( id Z ) (#) ( ( - 1 ) (#) ( ( id Z ) (#) ( ( id Z ) (#) ( ( id Z ) (#) ( ( id Z ) (#) ( t3 . n = t3 . n & t2 . n = t3 . ( n + 1 ) ; dom ( ( - F ) | A ) c= dom F ; W1 . x = W2 . x & W2 . x = W2 . x ; y in W { W ( ) } \/ W { W ( ) } ; ( k + 1 ) <= len ( v ^ w ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P & proj2 .: S c= proj2 .: P ; h . p4 = g2 . I & h . p4 = g2 . I ; Gij `1 = U /. 1 & Gij `1 = G * ( 1 , k ) `1 ; f . rr1 in rng f & rr2 in rng f ; i + 1 + 1 + 1-1 <= len - 1 ; rng F = rng ( F . 0 ) & rng ( F . 0 ) c= rng ( F . 0 ) ; mode Subset of \HM { the } \HM { is well unital non empty multMagma ; [ x , y ] in A ~ ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of support ( m ) c= B ; not [ y , x ] in id X & x in id X ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower & seq ^\ k1 is lower implies seq ^\ k1 is lower len ( F . ( I . i ) ) = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number , f be FinSequence of REAL ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be Element of \HM { the } \HM { InternalRel of T : not contradiction } ; cluster directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K . j1 ; Observe J => y is total for I be Element of J ; K c= 2 -tuples_on the carrier of T ; F . b1 = F . b2 & F . b2 = F . b2 ; x1 = x or x1 = y or x1 = z or x1 = z ; pred a <> {} means : Def4 : ( a - 1 ) / a = 1 ; assume that succ a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o , b , b9 & LIN o , b , c ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non constant non trivial FinSequence of D ; let FS2 be non empty \cal X , f be FinSequence of X ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pp = x , pp = y as Subset of m ; let A , B , C be Element of R ; Observe non empty for D-be \overline of V ; rng c `1 misses rng ( e | rng e1 ) ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( ( - 1 / 2 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) / 2 ) ) ) ; ( L~ Q ) c= UBD A & ( L~ Q ) /\ L~ Q c= UBD A ; reconsider E = { i } as finite Subset of I ; g2 in dom ( ( 1 / 2 ) (#) ( f ^ ) ) ; pred f = u means : Def4 : a * f = a * u ; for n holds P1 [ n ] implies P1 [ n + 1 ] { x . O : x in L } <> {} ; let x be Element of V . s ; let a , b be Nat ; assume that S = S2 and p = S2 and q = S1 and p = S2 ; gcd ( n1 , n2 , n3 ) = 1 & gcd ( n1 , n2 , n3 ) = 1 ; set o9 = a * ( ( - b ) * ( - c ) ) ; seq . n < |. r1 .| & |. seq . n .| < r1 ; assume that seq is increasing and r < 0 and seq is increasing ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] & c < n ; set g = { n / 1 : n in dom f } ; k = a or k = b or k = c ; aa , ax , by , z be set ; assume that Y = { 1 } and s = <* 1 *> ; I1 . x = f . x .= f . x .= 0 ; W3 .last() = W3 . 1 & W .last() = W . ( 1 + 1 ) ; cluster trivial -> trivial for subgraph of G , finite _Graph ; reconsider u = u as Element of Bags X ; A in B ^ ) implies A , B are_that A , B are_that B , A are_that A , B are_that B , A are_that A , B are_that B , A |^ ; x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; f1 is_as as such that f2 is_as as such such that f1 = f2 & f2 is and f1 . 1 = f2 ; ( f `2 ) ^2 / ( |. q .| ) ^2 <= ( q `2 ) ^2 / ( |. q .| ) ^2 ; h is_\! \smallfrown Cage ( C , n ) ; ( b `2 ) ^2 / ( p `2 ) ^2 <= ( p `2 ) ^2 / ( p `1 ) ^2 ; let f , g be Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( max ( - f , - f ) ) ; p2 in NN . p1 & p2 in NN . p2 implies p2 in NN . p1 len ( the_left_argument_of H ) < len ( H ) ; F [ A , FF . A ] implies F ( A , B ) = F ( A , B ) consider Z such that y in Z and Z in X ; attr 1 in C means : Def4 : A c= C ; assume r1 <> 0 or r2 <> 0 or r1 <> 0 ; rng q1 c= rng ( C1 ^ C2 ) & rng ( C1 ^ C2 ) c= rng C1 ; A1 , L , A2 , A3 , A3 , A1 , A2 be Element of L ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in R ( p , Sp ) & c in R ( p , Sp ) ; then S is atomic & P-2 [ S ] ; Cl Int [#] T = [#] T & Cl ( [#] T ) = [#] T ; ( f | A2 ) | A2 = f2 | A2 & ( f | A2 ) | A2 = f2 ; 0. M in the carrier of W & 0. M in the carrier of V ; let v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V ; let X be Subset of S ~ ; consider H1 such that H = 'not' H1 and H1 in X ; 1_ ( 1 ) c= ( ( t * p1 ) / ( t * p2 ) ) ; 0 * a = 0. R .= a * 0. R ; A |^ ( 2 , 2 ) = A ^^ A ; set vbeing /. n = ( v4 /. n ) * ( v4 /. n ) ; r = 0. ( REAL-NS n ) & ||. ( f . n ) - ( f . n ) .|| < r ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W .last() ) .= len ( W .last() ) ; f /* ( s * G ) is divergent_to+infty & f . ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t16 does not destroy b1 & W7 does not destroy b1 implies not ( t in dom ( t +* ( q +* ( q +* ( s +* ( s +* ( p , t ) ) ) ) ) ) reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i - 1 as non zero Element of NAT ; c . x >= id L . x & c . x >= id L . x ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 , x3 , x4 ] -> non pair ; sup downarrow a /\ downarrow t is Ideal of T ; let X be \hbox { NAT , F , G , H be Element of X ; rng f = S1 \/ S1 & f in S1 -element ; let p be Element of B , x be SortSymbol of S ; max ( N1 , 2 ) >= N1 & max ( N1 , 2 ) >= N2 ; 0. X <= b |^ ( m * mm1 ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 & p2 = q2 implies q1 = q2 assume gR in the right of g & FR in the carrier of g ; let A1 , A2 be Point of S , x be Point of S ; x in h " P /\ [#] T1 & x in h " P /\ [#] T1 ; 1 in Seg 2 & 1 in Seg 3 & 2 in Seg 3 ; reconsider X-5 = X , Tor = Y as non empty Subset of Tsuch that X = [: X , Y :] ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Source of G ) -valued ; n1 <= i2 + len g2 & i2 + len g2 <= i2 + len g2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & v in the carrier' of G2 ; y = Re y + ( Im y ) * i ; ( - ( ( - 1 ) * p ) .| ) gcd p = 1 ; x2 is_differentiable_on ]. a , b .[ & ( for x st x in ]. a , b .[ holds ( x - b ) (#) ( f `| ]. a , b .[ ) ) . x = f . x - ( f `| ]. a , b rng M5 c= rng D2 & rng D c= rng D2 ; for p be Real st p in Z holds p >= a ( ( cn ) * f ) . x = proj1 . x ; ( seq ^\ m ) . k <> 0 & ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) \ominus C h \equiv gg . ( mod P ) , g . ( mod P ) ; reconsider i1 = i-1 - 1 , i2 = i-1 - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider i-7 = i , iq2 = j as Element of NAT ; dom f c= [: C , D :] & dom f = [: C , D :] ; x in ( ( the Sorts of B ) . n ) . ( ( the Sorts of B ) . n ) ; len that len that len that len that len [ that x , y ] in Seg len ( f2 | i ) ; ( p c= the topology of T ) & ( p c= the topology of T ) ; ]. r , s .[ c= [. r , s .] ; let B2 be Basis of T2 , x be Point of T2 ; G * ( B * A ) = ( id o1 ) * ( id o2 ) ; assume that p , u are_not zero and u , v , w , y ; [ z , z ] in union rng ( F * G ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , G = $1 .. S ; LIN a1 , a3 , b1 & LIN a1 , a2 , b2 & LIN a2 , a3 , b3 ; f " ( f .: x ) = { x } ; dom ( w2 ) = dom r12 & dom ( r12 ) = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; Ia * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; q9 . x in rng ( ( q - p ) | ( Seg n ) ) ; Carrier ( ( Carrier ( f ) ) misses Carrier ( f ) ` ) ; consider c being element such that [ a , c ] in G ; assume Nreal = o9 & for o be Element of O st o in o holds o <= i & o <= i ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ C ) " { C } ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . ( j + 1 ) .] ; pred 0 <= x & x <= 1 implies x ^2 <= x ^2 ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 <> 0. TOP-REAL 2 ; Observe aa] ( S , T ) is non empty ; let x be Element of S ~ ; cluster cluster cluster cluster cluster cluster cluster cluster cluster cluster cluster cluster \hbox { - } , F ) -> one-to-one ; |. i .| <= - ( - 2 |^ n ) / ( n + 1 ) ; the carrier of I[01] = dom P & the carrier of I[01] = dom P ; } * ( n + 1 ) ! > 0 * n ; S c= ( A1 /\ A2 ) /\ A3 \/ A3 /\ A3 /\ A3 /\ ( A2 \/ A3 ) ; a3 , a4 // b3 , b2 & a3 , a4 // b3 , b2 ; then dom A <> {} & dom A <> {} & rng A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y , G implies x = y & x = y ; set v2 = ( v4 /. ( i + 1 ) ) ; x = r . n .= ( r . n ) * ( r . n ) ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & dom g = the carrier of I[01] ; p in Lower_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: A2 , A2 :] & dom d2 = A2 ; 0 < ( p / ( ||. z .|| + 1 ) ) / ( ||. z .|| + 1 ) ; e . ( m + 1 ) <= e . ( mm + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y - -infty < Integral ( M , Im ( g | B ) ) ; cluster O \cup F -> \HM { \HM { F } } -> } for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , f be Function of U1 , U2 ; Proj ( i , n ) * g is_differentiable_on X & Proj ( i , n ) * g is_differentiable_on X ; let x , y , z be Point of X , f be Function of X , Y ; reconsider pp = p . x , pp = p . y as Subset of V ; x in the carrier of Lin ( A ) & x in the carrier of Lin ( B ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and b is lower and a in - b ; Int Cl ( A /\ B ) c= Cl Int Cl ( A /\ B ) ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 ) ^2 / ( p2 `2 ) ^2 <= ( p `2 ) ^2 / ( p `1 ) ^2 ; Cl Q ` = [#] ( ( T | P ) | R ) ; set S = the carrier of T , T = the carrier of T ; set I8 = ' ( f |^ n ) , I8 = ' ( f |^ n ) , I8 = ' ( f |^ n ) , I8 = ' ( f |^ n ) , I8 = ' ( f |^ n ) , I8 len p - n = len ( an - n ) - ( n - 1 ) ; A is Permutation of Swap ( A , x , y ) ; reconsider n6 = ni - 1 as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s | Seg n ) ; let qbeing { q , q9 , q , s , t , q , s , t , q , s , t , q , s , t , q , s , t , q , s , t , s , q , s , t , q a1 in the carrier of S1 & a2 in the carrier of S2 ; c1 /. n1 = c1 . n1 & c2 /. n2 = c1 . n2 & c1 /. n2 = c2 . n2 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 ; y = ( ( f * S8 ) . x ) * ( f . ( S8 . x ) ) ; consider x being element such that x in Assume Assume that x in Assume Assume that A c= R ; assume r in ( ( dist ( o ) ) .: P ) ; set i2 = ( n + 1 ) - ( n + 1 ) ; h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) = M . i & Line ( M29 , k ) = M . i ; reconsider m = ( x - 2 ) / ( x - 1 ) as Element of ( len x - 1 ) -tuples_on REAL ; let U1 , U2 be Subspace of U0 , a be Element of U1 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p1 + 1 <= len p2 ; let T1 , T2 be being being being Scott + of L , x be Element of L ; then x <= y & .. ( x ) c= .. ( y ) ; set M = n -tuples_on the carrier of K , N = n -tuples_on the carrier of K ; reconsider i = x1 , j = x2 , k = x3 as Nat ; rng ( the_arity_of a ) c= dom ( H . ( s . a ) ) ; z1 " = ( z1 " ) * ( z2 " ) .= ( z1 " ) * ( z2 " ) .= z2 " * ( z2 " ) * ( z2 " ) ; x0 - r / 2 in L /\ dom f /\ dom ( f | X ) ; then w is that rng w /\ L <> {} & rng w /\ L <> {} ; set xx = xx ^ <* Z *> , Z = ( x , Z ) --> ( x , y ) ; len w1 in Seg ( len w1 + len w2 ) & len w2 in Seg ( len w1 + len w2 ) ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) * ( A . n ) ; ( p `1 ) ^2 / ( p `2 ) ^2 <= ( G * ( 1 , 1 ) ) ^2 / ( G * ( 1 , 1 ) ) ^2 ; rng ( g ) c= L~ ( g ) /\ L~ ( g ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n being Nat holds F . n is \HM { -infty } & F . n <> +infty ; reconsider xx = xx , xx = xx , xx = xx , xx = xx , xx = 1 as Vector of M ; dom ( f | X ) = X /\ dom f /\ X .= dom f /\ X ; p , a // p , c & b , a // c , d ; reconsider x1 = x , y1 = y , y2 = z as Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ( ag ) = p . ( cg ) ; a / ( s . m - n ) / ( s . n - m ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume B1 \/ C1 = B2 \/ C2 & C2 \/ C2 = C1 \/ C2 ; X . i = { x1 , x2 , x3 , x4 , x5 , 6 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 9 } ; r2 in dom ( h1 + h2 ) & r1 in dom ( h1 + h2 ) ; that - 0. R = a and b-0 = b ; FF is_closed_on t3 , Q8 & I is_halting_on t3 , Q8 & I is_halting_on t3 , Q8 ; set T = ^2 (# such that for x0 , x0 , x1 , x2 , x3 , x4 , x4 , x5 , x5 , x5 , W , W , W , N , W , S , S , W , S , N , S , W , W Int Cl ( Int Cl R ) c= Int Cl R & Int Cl R c= Cl R ; consider y being Element of L such that c . y = x ; rng ( FF . x ) = { FF . x } & rng ( FF . x ) = { F . x } ; G-23 ( { c } ) c= B \/ S \/ S ; ( f ^ ) is Relation of [: X , X :] , X & f is Function of [: X , X :] , X ; set RE = the \mathclose of P , RE = the \mathclose of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; let k2 be Element of NAT , k be Nat ; reconsider p/. n = u as Element of ( TOP-REAL n ) | ( ( TOP-REAL n ) | P ) ; g . x in dom f & x in dom g implies f . x = g . x assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of G / ( N * N ) ; len ( Pt ) <= len ( Pt ) - len ( Pt ) ; x " in the carrier of A1 & x in the carrier of A2 ; [ i , j ] in Indices ( ( A + B ) * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple ; f . x = a . i .= a1 . k .= a1 . k ; let f be PartFunc of REAL i , REAL n , x be Element of REAL m ; rng f = the carrier of ( Carrier A ) * ( i , 1 ) ; assume s1 = sqrt ( ( 2 * p ) ^2 + ( 2 * p ) ^2 ) ; pred a > 1 & b > 0 & a / b > 1 ; let A , B , C be Subset of [: I , B :] ; reconsider X0 = X , Y0 = Y , Y0 = Z as RealNormSpace ; let f be PartFunc of REAL , REAL , g be PartFunc of REAL , REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , tt2 be Relation of S , X ; Q [ e-14 \/ { v-5 } , f ] implies f . ( v-5 ) = f . ( v-5 ) ; g \circlearrowleft ( L~ z ) = z implies ( g /. 1 ) .. z = ( g /. 1 ) .. z |. |[ x , v ]| - |[ x , y ]| .| = v12 ; - f . w = - ( L * w ) ; z - y <= x iff z <= x + y & z <= y - x ; ( 7 * p1 ) / ( 1 - e ) > 0 ; assume X is BCK-algebra & 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 & ( f | X ) . x2 = f . x2 ; ( ( ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) . x = f . x ; i2 = ( f /. len f ) * ( len f ) .= f /. ( len f ) ; X1 = X2 \/ ( X1 \ X2 ) & X2 = X2 \/ X1 \ X2 ; [. a , b , 1_ G .] = 1_ G & a = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be FinSequence of V ; dom g2 = the carrier of I[01] & dom g2 = the carrier of I[01] & rng g2 c= the carrier of I[01] ; dom f2 = the carrier of I[01] & dom f2 = the carrier of I[01] & rng f2 = the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: X & ( proj2 | X ) .: Y = proj2 .: Y ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & x0 < a1 . n ; |. ( f /* s ) . k - G . ( n + 1 ) .| < r ; len Line ( A , i ) = width A & width Line ( A , i ) = width A ; Sbeing / op = ( S . g ) / op ( S . g ) ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom ( Initialized p +* ( 1 , k ) ) ; i1 , i2 , i3 , i3 , a5 , a5 , 6 , 7 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 ( ( arccos r ) * ( arccos ) ) + ( ( arccos r ) * ( 1 / 2 ) ) = ( PI / 2 ) + 0 ; for x st x in Z holds f2 is_differentiable_in x & ( f2 * f1 ) . x > 0 ; reconsider q2 = ( q - x ) / ( q - x ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 + 1 ; assume f in the carrier of [ X \to Omega Y , Omega Y ] ; F . a = H / ( ( x , y ) / ( x , y ) ) ; ( {} T ) at ( C , u ) = TRUE & ( T . ( C , u ) ) at ( C , u ) = TRUE ; dist ( ( a * seq ) . n , h ) < r / 2 ; 1 in the carrier of [. 0 , 1 .] & 1 in dom ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( p2 `1 - x1 ) - x1 > - g / 2 ; |. r1 - `2 .| = |. a1 .| * |. or - W .| = |. a1 .| * |. or - W .| ; reconsider S-14 = 8 , S-14 = 8 as Element of Seg 8 ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W .2 = DW .2 ( n ) + 1 ; i1 = ( a + n ) + i2 & i2 = ( a + n ) + ( n + 1 ) ; f . a [= f . ( f .: O1 "\/" f . ( a "\/" a ) ) ; pred f = v & g = u & f + g = v + u ; I . n = Integral ( M , F . n ) + Integral ( M , F . n ) ; chi ( T1 , T1 ) . s = 1 & chi ( T2 , T2 ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k2 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R * ( i , 1 ) ) & LSeg ( R * ( i , 1 ) , R * ( i , 1 ) ) meets L~ ( R * ( i , 1 ) ) ; set h = ( the continuous Function of X , R ) , f = ( the Sorts of X ) * ( ( id X ) * ( f | X ) ) ; set A = { L . ( ( k . n ) . x ) : not contradiction } ; for H st H is atomic holds P [ H ] implies P [ H ] set b\frac = S5 ^\ ( i + 1 ) , S5 = S5 ^\ ( i + 1 ) , S5 = ( S ^\ ( i + 1 ) ) ; Hom ( a , b ) c= Hom ( a `1 , b `2 ) ; ( 1 - ( n + 1 ) ) / ( n + 1 ) < ( 1 - ( n + 1 ) ) / ( n + 1 ) ; ( l `1 ) = [ dom l , cod l ] & ( l `2 ) = dom l ; y +* ( i , y /. i ) in dom g ; let p be Element of QC-WFF ( Al ( ) ) , x be Element of D ( ) ; X /\ X1 c= dom ( f1 - f2 ) /\ dom ( f2 - f1 ) ; p2 in rng ( f /^ ( len p1 + 1 ) ) & p1 <> p2 implies p2 = f /^ ( len p1 + 1 ) 1 <= indx ( D2 , D1 , j1 ) + 1 - 1 ; assume x in ( ( ( TOP-REAL 2 ) | K0 ) \/ ( ( TOP-REAL 2 ) | K0 ) ) ; - 1 <= ( ( f2 ) . O ) `2 & - 1 <= ( ( f2 ) . I ) `2 ; let f , g be Function of I[01] , TOP-REAL 2 , a , b , c be Real ; k1 - k2 = k1 - k2 - k2 .= k1 - k2 - k2 .= k1 - k2 - k2 ; rng seq c= ]. x0 - r , x0 .[ & rng seq c= ]. x0 - r , x0 .[ ; g2 in ]. x0 - r , x0 .[ & g2 in ]. x0 - r , x0 .[ ; sgn ( p `1 , K ) = - ( 1_ K ) ; consider u being Nat such that b = p |^ y * u ; ex A being \mathopen or ex A being ' of W st a = Sum A & A c= A ; Cl ( union ( H ) ) = union ( ( H ) . n ) .= ( ( H ) . n ) \/ ( ( H . n ) . n ) ; len t = len t1 + len t2 & len t1 = len t2 + len t2 ; v-29 = v + w |-- v + AA ; v <> DataLoc ( ( t . GBP ) , 3 ) & v <> DataLoc ( ( t . GBP ) , 3 ) ; g . s = sup ( d " { s } ) .= sup ( d " { s } ) ; ( \dot { y } ) . s = s . ( y , s ) ; { s : s < t } in REAL & t = {} implies s = t s ` \ s = s ` \ ( s ` \ s ) .= ( s ` \ s ) \ ( s ` \ s ) ; defpred P [ Nat ] means B + $1 in A & B + $1 in B ; ( 329 + 1 ) ! = 33331! * ( 329 + 1 ) ; ( 1. ( A , B ) ) * ( 1. ( A , B ) ) = 1. ( A , B ) ; reconsider y = y as Element of ( len y ) -tuples_on the carrier of K ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f ; reconsider p = Y | Seg k as FinSequence of ( len Y ) -tuples_on NAT ; set f = ( S , U ) \mathop { I } , g = S . I ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , TOP-REAL n , x be Point of TOP-REAL n , r be Real ; ( not 1 M . [ n + i , 'not' A ] ) <> 1 ; ex r being Real st x = r & a <= r & r <= b ; let R1 , R2 be Element of REAL n , x be Element of REAL n ; reconsider l = 0. ( { 0. V } ) as Linear_Combination of A ; set r = |. e .| + |. n .| + |. w .| + a * s ; consider y being Element of S such that z <= y and y in X ; a 'or' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ; ||. ( x - g ) .|| < r2 & ||. ( x - g ) .|| < r2 ; b9 , a9 // b9 , c9 & b9 , c9 // b9 , c9 & a , b // c , c9 ; 1 <= k2 -' k1 & k2 + 1 = k2 & k2 + 1 = k2 + 1 & k2 + 1 = k2 ; ( ( p `2 / |. p .| - cn ) / ( 1 + cn ) ) ^2 >= 0 ; ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 < 0 ; E-max C in cell ( RCage ( C , n ) , 1 , 1 ) /\ L~ Cage ( C , n ) ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) . m ) ; LIN b , a , c or LIN b , c , a & LIN b , c , c ; p `2 , a `2 // a `2 , b `2 or p `2 , a `2 // b `2 , a `2 ; g . n = a * Sum ( f | n ) .= f . n * ( f | n ) ; consider f being Subset of X such that e = f and f is being being element ; F | ( N2 , S ) = CircleMap * ( F | ( N2 , S ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( m , r0 ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } .= { 0. V } ; rng ( ( ( - 1 ) (#) ( ( id Z ) ^ ) ) `| Z ) = [. - 1 , 1 .] ; assume Re ( seq ) is summable & Im ( seq ) is summable & Im ( seq ) is summable ; ||. ( ( ( vseq . n ) - ( vseq . m ) ) - ( vseq . n ) ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t2 as ( 0 , 1 ) -element string of S2 , t2 = t2 as ( 0 , 1 ) -element string of S2 ; reconsider xx = seq . ( n + 1 ) as sequence of REAL n , r be Real ; assume that C meets L~ Cage ( C , n ) and C meets L~ Cage ( C , n ) and C meets L~ Cage ( C , n ) ; - ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) ) ) < F . n - ( - 1 ) * ( - 1 ) ; set d1 = being being dist of dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d2 = dist ( y2 , z2 ) ; 2 |^ ( q -' 1 ) - 1 = 2 |^ ( q -' 1 ) - 1 ; dom ( v | Seg len ( v | i ) ) = Seg len ( v | i ) ; set x1 = - ( k2 + 2 ) , x2 = - ( k2 + 2 ) , x3 = - ( k2 + 2 ) , x4 = - ( k2 + 2 ) , x4 = - ( k2 + 2 ) , x4 = - ( k2 + 2 ) , x4 = - ( k2 + 2 assume for n being Element of X holds 0. X <= F . n & 0. X <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of Carrier ( Carrier ( LT + L2 ) ) c= I2 & Carrier ( ( Carrier ( LT + L2 ) ) + ( Carrier ( LT + L2 ) ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal w.r.t. of A ; Z c= dom ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( f1 + f2 ) ) ) ; |. 0. TOP-REAL 2 - ( q `2 / |. q .| - cn ) .| < r / 2 ; ConsecutiveSet2 ( B , L ) c= ConsecutiveSet2 ( A , succ ( d , L ) ) ; E = dom Carrier ( L ) & Carrier ( L ) c= E & Carrier ( L ) c= E ; C / ( A + B ) = C / B * C / A ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of W2 implies W1 + W2 c= W2 + W1 I . IC s2 = P . IC s2 .= ( I +* ( IC s2 , n ) ) .= ( I . IC s2 ) ; pred x > 0 means : Def4 : ( 1 - x ) / ( 1 - x ) = x / ( 1 - x ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , q .] and p in C ; b , c are_connected & - C , - ( - C , - C ) where C is Path of - C , - C is Path of - C , - C : C , - C are_connected } ; assume f = id the carrier of O & g = id the carrier of O & h = id the carrier of O ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( ( the carrier of V ) \ { 0. V } ) ; reconsider g = f " as Function of U2 , U1 , U2 ; A1 in the points of ( G . k ) . ( X . k ) ; |. - x .| = - ( - x ) .= - x .= - ( - x ) .= - x ; set S = ) +* ( x , y , c ) ; Fib ( n ) * ( 5 * Fib ( n ) ) / ( 5 * Fib ( n ) ) >= 4 * ( 5 * / / ( 5 * n ) ) ; vM /. ( k + 1 ) = vM . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) - ( i * ( 0 qua Nat ) ) ) ; Indices M1 = [: Seg n , Seg n :] & len M2 = n & width M2 = n ; Line ( S\mathopen ( i , j ) , j ) = S\mathopen ( j , i ) ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , x2 ] ; |. f .| - ( Re ( |. f .| ) * ( ( card b ) * h ) ) is nonnegative ; assume x = ( a1 ^ <* x1 *> ) ^ b1 & y = ( a1 ^ <* x1 *> ) ^ b1 ; MW is_halting_on IExec ( I , P , s ) , P & M is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= intpos ( 0 + 4 ) ; x + y < - x + y & |. x - y .| = - x + y - y ; LIN c , q , b & LIN c , q , c & LIN c , q , b ; f\rbrack . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x1 + ( y1 + z1 ) ; fE . a = ( f . a ) . a & v in InputVertices S & ( f . b ) . v in InputVertices S ; ( p `1 ) ^2 / ( ( E-max C ) `1 ) ^2 <= ( ( E-max C ) `1 ) ^2 / ( ( E-max C ) `1 ) ^2 ; set R8 = Cage ( C , n ) \circlearrowleft E8 , E8 = Cage ( C , n ) ; ( p `1 ) ^2 >= ( ( E-max C ) `1 ) ^2 / ( ( E-max C ) `1 ) ^2 ; consider p such that p = ( p . i ) `1 and s1 < p . i and p . i in rng s1 ; |. ( f /* ( s * F ) ) . l - G . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 + 1 ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = f1 . x0 & lim ( f2 /* s1 ) = f2 . x0 ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 & f . y2 = x2 ; len f <= len f + 1 & len f + 1 <> 0 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m & rng ( Proj ( i , n ) * s ) = REAL m ; n = k * ( 2 * t ) + ( n mod ( 2 * k ) ) ; dom B = 2 -tuples_on the carrier of V , C = { {} } --> 0. V ; consider r such that r \not _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 , B1 = the carrier of X2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 / 2 .] & 1 / 2 in dom ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) ; for L being complete LATTICE holds <* <* \mathclose { \rm c } , L *> , L *> *> is isomorphic [ gi , gj ] in Ij \ ( Ij \ ( i \ { i } ) ) ; set S2 = 1GateCircStr ( x , y , c ) , S2 = 1GateCircStr ( x , y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r be Real st x0 < r ex g be Real st g < r & g < x0 & g < x0 & g < x0 & g in dom ( f1 + f2 ) ; reconsider y = ( a " ) / ( F . ( a * F . ( a * b ) ) ) as Element of L ; dom s = { 1 , 2 , 3 , 4 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - g ) ) ) . c <= h . c ; set G2 = the subgraph of G , s3 = the \mathopen of G , v = the Vertex of G , e = the set of G , v = the Vertex of G , w = the set of G ; reconsider g = f as PartFunc of REAL n , REAL-NS m , REAL-NS n ; |. s1 . m - p .| / |. p .| < d / ( p - q ) / ( p - q ) ; for x being element st x in ( \HM { u } ) holds x in ( \HM { the } \HM { carrier } \HM { of } L ) P = the carrier of ( TOP-REAL n ) | P & Q = the carrier of ( TOP-REAL n ) | P ; assume that p01 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p01 ) and LSeg ( p1 , p01 ) /\ LSeg ( p01 , p2 ) = { p1 } ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c ) * d <= 2 * C1 * C2 ; let f , g , h be Point of the carrier of X , f be Function of X , Y ; set h = Hom ( a , g ) ; then ( idseq n ) | Seg m = ( idseq n ) | Seg m & m <= n ; H * ( g " * a ) in the right of H * ( g * a ) ; x in dom ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 -' 1 ) misses C ; LE q2 , p4 , P , p1 , p2 & LE q2 , q1 , P , p1 , p2 & LE q2 , q2 , P , p1 , p2 & LE q2 , q2 , P , p1 , p2 ; attr B is BDD of A means : Def4 : B c= BDD A ; deffunc D ( set , set , set ) = union rng $2 & $2 in rng $2 & $2 = ( $1 + 1 ) * $2 ; n + - n < len ( p + - n ) + ( - n ) ; pred a <> 0. K means : Def4 : the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom \mathbb \cap dom ' ( I , J ) and I = len b1 + j ; consider x1 such that z in x1 and x1 in P8 and x = [ x1 , x1 ] ; for n ex r being Element of REAL st X [ n , r ] & r <= n ; set CS1 = Comput ( P2 , s2 , i + 1 ) , CS2 = Comput ( P2 , s2 , i + 1 ) , CS2 = Comput ( P2 , s2 , i + 1 ) , CS2 = Comput ( P2 , s2 , i + 1 ) , CS2 = Comput ( P2 , s2 set cv = 3 / ( a , b , c ) / ( a , b , c ) ; conv @ W c= union ( F .: ( E " W ) ) & conv ( F " W ) c= union ( F " ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( ( ( - 1 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) ) ; r3 <= s0 + ( r0 - ( v2 - v1 ) ) / ( 2 * ( v2 - v1 ) ) ; dom ( f * f4 ) = dom f /\ dom ( f * f4 ) .= dom f /\ dom ( f * f4 ) ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ( ) ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider g9 = gp , gq = gq , gq = gq , gp = g1 as Point of TOP-REAL n ; ( T * h . ( s . x ) ) . x = T . ( h . ( s . x ) ) ; I . ( L . ( J . x ) ) = ( I * L ) . ( J . x ) ; y in dom <* *> & ( Frege *> ) . ( ( Frege ( A . o ) ) . ( x , y ) ) ; for I being non degenerated commutative commutative distributive non empty doubleLoopStr holds I is commutative iff I is commutative set s2 = s +* ( ( intloc 0 ) .--> 1 ) , P2 = P +* ( ( intloc 0 ) .--> 1 ) , P3 = P +* ( ( intloc 0 ) .--> 1 ) , s4 = P +* ( ( intloc 0 ) .--> 1 ) , P4 = P +* ( ( intloc 0 ) .--> 1 ) , P4 = Comput P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S1 = b & lim S1 = a & lim S2 = b ; v . ( l-13 . i ) = ( v *' ( lpp . i ) ) . i ; consider n being element such that n in NAT and x = ( sn " ) . n ; consider x being Element of c such that F1 . x <> F2 . x and F1 . x <> 0 ; Funcs ( X , 0 , x1 , x2 , x3 , x4 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 7 , 8 , 8 , j + ( 2 * ( k + 1 ) ) + m1 > j + ( 2 * ( k + 1 ) ) ; { s , t } on A3 & { s , t } on A3 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 , n3 , n3 , n3 , n4 , n4 , n4 , W , W , W ) ; ( mg1 ) . ( HT ( mg2 , T ) ) = 0. L ; then H1 , H2 are_that H , H1 are_isomorphic & card H1 , H1 is_|^ H2 ; ( ( N-min L~ f ) .. ( fp ) ) .. ( fp ) > 1 & ( E-max L~ f ) .. ( fp ) > 1 ; ]. s , 1 .[ = ]. s , 2 .] /\ [. 0 , 1 .] & ]. s , 1 .] c= [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) & x2 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , f be PartFunc of REAL , the carrier of S ; DigA ( t-23 , z9 ) is Element of k -tuples_on ( the carrier of K ) ; I which not 2222) = d\vert & I is not empty & not I is non empty ; u9 ~ = { [ a , u9 ] , [ b , u9 ] } ; ( w | p ) | ( p | ( w | w ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u1 in W2 and u2 in W2 ; for y st y in rng F ex n st y = a |^ n & F . n = a |^ n dom ( ( g * ( {} V \dot \to C ) ) | K ) = K ; ex x being element st x in ( ( ( ( ( U0 ) \/ A ) ) \/ B ) . s ) ; ex x being element st x in ( ( \HM { the } \HM { carrier of S } ) \/ A ) . s ; f . x in the carrier of [. - r , r / 2 .] & f . x in [. - r , r / 2 .] ; ( ( the carrier of X1 union X2 ) /\ ( ( the carrier of X1 ) \/ ( the carrier of X2 ) ) <> {} ; L1 /\ LSeg ( p01 , p2 ) c= { p01 } /\ LSeg ( p01 , p2 ) ; ( b + ( be ) ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of GX such that z = y and P [ z ] and z in A and z <> y ; ( ( the sequence of ( ( the sequence of ( X ) ) | ( the carrier of X ) ) ) . ( ( the carrier of X ) | ( the carrier of X ) ) . ( ( the carrier of X ) /\ ( the carrier of X ) ) . ( ( the carrier of X ) | ( the carrier of len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 2 + 1 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q <> 0. TOP-REAL 2 ; f | E-4 ` = g | E-4 ` .= g | E-4 ` .= g | E-4 ` .= g | E-4 ` .= g | E-4 ; reconsider i1 = x1 , i2 = x2 , z = x3 , n = x4 , m = x4 , n = 6 , n = 7 , m = 6 , n = 8 , m = 6 , n = 6 , m = 7 , n = 6 , m = 6 , n = 6 , m = 6 , n = 6 , m = 6 , n = ( a * A * B ) @ = ( a * ( A * B ) ) @ ; assume ex n0 being Element of NAT st f |^ n0 is min & f . ( n0 + 1 ) = R ; Seg len ( ( ( ( ( ( f2 ) * f1 ) ) | Seg ( len ( f2 ) ) ) ) ) = dom ( ( ( ( f1 ) * f2 ) | Seg ( len ( f2 ) ) ) ) ; ( Complement A1 ) . m c= ( Complement A1 ) . n & ( Complement A1 ) . n c= ( Complement A1 ) . n ; f1 . p = p8 & g1 . ( p8 ) = d & g2 . ( p8 ) = d & f1 . ( ( - d ) * p ) = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; ( ( |. x .| ) |^ n ) / ( ( |. x .| ) |^ n ) <= ( ( |. x .| ) |^ n ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & rng ( F ) c= dom g ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W1 and W1 /\ W2 is Subspace of W2 ; ||. ( t . x ) - ( t . x ) .|| = lim ( ||. ( x - y ) - ( x - y ) .|| ) ; assume that i in dom D and f | A is lower and g | A is lower ; ( ( p `2 ) ^2 + ( p `2 ) ^2 ) <= ( ( - ( p `2 ) ) / ( 1 + ( p `2 ) ^2 ) ) ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) & g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) ; set N8 = ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; for T being non empty TopSpace holds T is countable countable implies the TopStruct of T is countable countable width B |-> 0. K = Line ( B , i ) .= Line ( B , i ) .= B * ( i , i ) ; pred a <> 0 means : Def4 : ( A \diffsym B ) c= ( A Y. ) \diffsym ( B Let a ) ; then f is_is_\cal 2 2 2 , u & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and c > 0 and d > 0 and c > 0 and d > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } implies w1 in { w1 , w2 } p2 /. IC Comput ( p2 , s2 , k ) = p2 . IC Comput ( p2 , s2 , k ) .= ( IC Comput ( p2 , s2 , k ) ) .= ( card I + ( card I + 1 ) ) ; ind ( T-10 | b ) = ind b .= ind B .= ind b .= ind b ; [ a , A ] in the \mathclose of Line ( A ) & [ a , A ] in the carrier of Line ( A , 1 ) ; m in ( the Arrows of C ) . ( o1 , o2 ) & ( the Arrows of C ) . ( o2 , o1 ) = ( the Arrows of C ) . ( o1 , o2 ) ; ( ( a , CompF ( PA , G ) ) ) . z = FALSE or ( ( a , CompF ( PA , G ) ) ) . z = FALSE ; reconsider phi = phi /. 11 , phi = phi /. 2 , phi = phi /. 3 as Element of ( be Element of z1 ) ; len s1 - ( len s2 - 1 ) > 0 + 1 - ( len s2 - 1 ) ; delta ( D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the carrier' of A ~ & [ f22 , f22 ] in the carrier' of A ; the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z and q = g2 . z ; [#] V1 = { 0. V1 } .= the carrier of ( ( the carrier of V1 ) \ { 0. V1 } ) \ { 0. V1 } .= { 0. V1 } ; consider P2 being FinSequence such that rng P2 = M and P2 is one-to-one and len P2 = len M and for k be Nat st k in Seg len P2 holds P2 . k = F ( k ) ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and s < ( f | X ) . x1 ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ^ <* p *> ; c / ( |[ b , c ]| ) = c .= c / ( |[ a , c ]| ) .= c / ( |[ a , c ]| ) ; reconsider t1 = p1 , t2 = p2 , t2 = p3 , t1 = p2 as Term of C , V ; ( 1 - ( 2 * PI ) ) / ( 1 - ( 2 * PI ) ) in the carrier of ( ( TOP-REAL 2 ) | P ) ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D * ( p1 `2 ) ; R . ( b - a ) = 2 * \cal - b .= 2 * PI - b .= 2 * PI - b ; consider \rangle such that B = ( - 1 ) * C + ( - 1 ) * A and 0 <= 1 ; dom g = dom ( ( the Sorts of A ) * ( a , I ) ) & dom ( ( the Sorts of A ) * ( b , I ) ) = dom ( ( the Sorts of A ) * ( b , I ) ) ; [ P . ( l ) , P . ( l ) ] in => ( ( T . ( l ) ) , T . ( l ) ) ; set s2 = Initialize s , P2 = P +* I ; reconsider M = mid ( z , i2 , i1 ) , N = mid ( z , i2 , i1 ) as non empty Subset of TOP-REAL 2 ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 & 1 / ( |[ 0 , 1 ]| ) = 1 ; assume x in the left of g or x in the left of g or x in the right of g & x = g ; consider M being strict Subspace of A9 such that a = M and T is Subspace of M and M is o of M ; for x st x in Z holds ( ( ( ( 1 / 2 ) (#) f ) `| Z ) . x <> 0 & ( ( ( 1 / 2 ) (#) f ) `| Z ) . x <> 0 len W1 + len W2 + m = 1 + len W3 + m + len W2 .= len ( W1 + W2 ) + len W2 ; reconsider h1 = ( ( vseq . n ) - ( t - t ) ) as Lipschitzian LinearOperator of X , Y ; ( i mod len ( p + q ) ) + 1 in dom ( p + q ) ; assume that s2 is from s1 , s1 and F in the |= of s2 and F in the v of s2 and F in the v of s2 ; ( ( gcd ( x , y ) ) * ( 1 , 3 ) ) = gcd ( x , y , 3 ) * ( 1 , 2 ) ; for u being element st u in Bags n holds ( p `2 + m ) . u = p . u + m for B being Subset of u9 st B in E holds A = B or A misses B or B misses E ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ W1 , W1 = tree ( q ) , W2 = tree ( p ) , W1 = q ; x in { X where X is Ideal of L : X is Ideal of L & X <> {} } ; the carrier of W1 /\ W2 c= the carrier of W1 + W2 & the carrier of W1 + W2 c= the carrier of W1 + W2 ; ( + 1 ) * ( a + b ) = + ( 1 / ( a + b ) ) * ( b + c ) ; ( ( X --> f ) . x ) = ( X --> dom f ) . x .= ( X --> dom f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => q ) in carrier ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( C |^ ( n -' m ) ) - 1 ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( ( f1 (#) f2 ) . ( x - x0 ) ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and c1 . r = c2 and c2 . r = c2 ; ex P st a1 on P & a2 on P & a1 on P & a2 on P & a1 on P & a2 on P & a2 on P & a1 on P & a2 on P & a2 on P & a1 on P & a2 on P & a2 on P & a2 on P & a1 on P & a2 on P & a2 on P & a2 on P reconsider gf = g `2 * f `2 , hg = h `2 * g `2 as strict Subgroup of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in F and v2 in G ; n in { i where i is Nat : i < n0 + 1 & i < n + 1 } ; ( F * ( i , j ) ) `2 >= ( F * ( m , k ) ) `2 ; assume K1 = { p : p `1 >= cn & p <> 0. TOP-REAL 2 } & K1 <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) . ( succ O1 ) .= ( ConsecutiveSet ( A , O1 ) ) . ( succ O1 ) ; set I1 = Macro ( a , intloc 0 ) , I2 = AddTo ( a , intloc 0 ) , I2 = AddTo ( a , intloc 0 ) , I2 = intloc 0 , I2 = intloc 0 , I2 = intloc 0 , I2 = intloc 0 , I2 = intloc 0 , I3 = intloc 0 , I5 = intloc 0 , I5 = intloc 0 , I5 = intloc 0 , I for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 & z /. ( 1 + i ) <> z /. ( 1 + i ) X c= ( the carrier of L1 ) /\ ( the carrier of L2 ) & X c= ( the carrier of L1 ) /\ ( the carrier of L2 ) ; consider xx be Element of GF ( p ) such that xx |^ 2 = a & xx |^ 2 = b ; reconsider e3 = e4 , f5 = f5 , f6 = ( f . ( x + 1 ) ) * ( f . ( x + 1 ) ) as Element of D ; ex O being set st O in S & C1 c= O & M . O = 0. ( M . O ) ; consider n being Nat such that for m being Nat st n <= m holds S . m in U1 and S . m in U1 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) * reproj ( i , x ) ) . x ; defpred P [ Nat ] means A + succ $1 = succ A + ( succ $1 ) & A c= succ $1 implies A c= succ $1 ; the left of - g = the left of - ( g - f ) .= ( - g ) * ( - f ) .= ( - g ) * ( - f ) ; reconsider pp = x , pp = y , pp = z , pp = z , pp = w , pp = z , y2 = w , j1 = z , y2 = y , y2 = z as Point of TOP-REAL 2 ; consider g2 such that g2 = y and x <= g2 and g2 <= x0 and x0 <= g2 and g2 <= x0 and g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] & X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 .= len x2 + len y2 + len y2 .= len x2 + len y2 + len y2 .= len x2 + len y2 + len y2 ; for x being element st x in X holds x in the set of the set of f & x in the set of f & f . x = f . ( n + 1 ) ; LSeg ( p01 , p2 ) /\ LSeg ( p1 , p01 ) = {} or LSeg ( p1 , p01 ) /\ LSeg ( p1 , p01 ) = {} ; func for X be set means : Def4 : for f being Function of X , X holds it = <* h . ( id X ) , h . ( id X ) , h . ( id X ) *> ; len ( ( { Gauge ( C , n ) * ( len Gauge ( C , n ) , 1 ) ) * ( len Gauge ( C , n ) , 1 ) ) <= len C ; attr K is being being being being being being being being being Field of K , a , b , c being Element of K ; consider o being OperSymbol of S such that t `1 . {} = [ o , the carrier of S ] and o in dom ( t `1 ) ; for x st x in X ex y st x c= y & y in X & y in Y & x <> y IC Comput ( P1 , s1 , k ) in dom ( Comput ( P2 , s2 , k ) +* I ) ; pred q < s & r < s implies ]. r , s .] /\ ]. p , q .] c= ]. r , s .] & ]. s , q .] c= ]. p , q .] ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) `1 and c in { F . c , F . c , F . c } ; func the ResultSort of S2 -> Function means : Def4 : the ResultSort of it = id the carrier' of S2 & the ResultSort of it = id the carrier' of S2 ; set y9 = [ <* y , z *> , f2 ] , z9 = [ <* z , x *> , f3 ] , y9 = [ <* x , y *> , f3 ] ; assume x in dom ( ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f \/ L~ f \/ L~ f /\ L~ f \/ L~ f /\ L~ f \/ L~ f /\ L~ f ; ( q `2 ) ^2 >= ( ( Cage ( C , n ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a ` : a in X } ; i - len f <= len f + len f1 - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - for n ex x st x in N & x in N1 & h . n = x- ( x0 - r / 2 ) set s0 = ( ( \mathop { \it true } ( a , I , p , s ) ) +* ( i , n ) ) . a ; ( p . k ) . 0 = 1 or ( p . k ) . 0 = - 1 or p . k = - 1 & p . k = - 1 ; u + Sum ( L-18 in U \ { u } ) \/ { u + Sum ( L-18 ) } ; consider xx being set such that x in xx and xx in V1 and x = [ xx , xx ] ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( ( len p ) - k ) ; g + h = gg + h1 & A1 + h = g + h + X & A2 + h = g + h + X ; L1 is distributive & L2 is distributive implies L1 ~ is distributive & L2 ~ is distributive & L1 ~ is distributive & L2 is distributive & L1 is distributive & L2 is distributive & L1 is distributive & L2 is distributive implies L1 * L2 is distributive pred x in rng f & y in rng ( f | x ) implies f . x = f . y & f . y = f . x ; assume that 1 < p and ( 1 - p ) * q + ( 1 - p ) * q = 1 and 0 <= a and a <= 1 and p <= 1 ; F* ( f , <* <* *> *> ) = rpoly ( 1 , the carrier of F_Complex ) *' + ( 1. F_Complex ) *' .= 1. F_Complex ; for X being set , A being Subset of X holds A ` = {} implies A = {} & A = {} & A = {} ; ( ( E-max X ) `1 ) ^2 / ( ( E-max X ) `1 ) ^2 <= ( ( E-max X ) `1 ) ^2 / ( ( E-max X ) `1 ) ^2 / ( ( E-max X ) `1 ) ^2 ; for c being Element of the Sorts of A , a being Element of the Sorts of A holds c <> a implies c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= Exec ( i2 , s2 ) . GBP .= Exec ( i2 , s2 ) . GBP .= 0 ; for a , b being Real holds [ a , b ] in ( y >= 0 ) implies b >= 0 & a >= 0 & b >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y \ x = ( x \ y ) ` implies x = y mode BCK-algebra of i , j , m , n , m , n , m , m , n , m , n , m , m , n , m , m , n , m , n , m , n , m , m , n , m , n , m , n ; set x2 = |( ( Re y ) , ( Im x ) * ( Im y ) )| ; [ y , x ] in dom u9 & u9 . ( y , x ) = g . y & u9 . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A & A c= B & B c= A ; 0 <= delta ( S2 . n ) & |. delta ( S2 . n ) .| < ( e / 2 ) / 2 ; ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) <= ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ; set A = ( 2 / ( 2 * b-a ) ) ; for x , y being set st x in R" holds x , y are_\hbox { - } implies x , y are_\hbox { - } deffunc FF ( Nat ) = b . ( $1 + 1 ) * ( M * G . $1 ) ; for s being element holds s in -> Element of -> Element of -> Element of S holds s in -> Element of -> Element of S \/ x2 ; for S being non empty non void non void non empty RelStr for T being connected non empty TopSpace st S is connected holds S is connected iff T is connected max ( ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z ) ) / ( 1 - ( degree ( z consider n1 being Nat such that for k holds seq . ( n1 + k ) < r + s and for n holds seq . ( n + k ) < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( B ) ; set n-15 = n-13 '&' ( M . x qua Element of BOOLEAN ) , n-15 = M . ( M . x ) , n-15 = M . ( M . x ) , n-15 = M . ( M . x ) , n-15 = M . ( M . x ) , n-15 = M . ( M . x ) , n-15 = M . ( n + 1 ) ; f " V in such that V ( X ) in D ( ) & f " V in D ( Y , p ) & p in D ( ) & p in D ( ) ; rng ( ( ( a , c ) sequence of c ) +* ( 1 , b ) ) c= { a , c , b , c } ; consider y being connected Walk of G1 such that y `1 = y and dom y `1 = WW: 2 and dom y `1 = WWW: 2 ; dom ( ( 1 / f ) (#) ( ]. x0 - r , x0 .[ ) ) c= ]. x0 - r , x0 .[ /\ dom ( f | ]. x0 , x0 .[ ) ; as Matrix of i , j , n , r , s be Element of v1 ( i , j , n , - r ) ; v ^ ( ( n |-> 0 ) ^ ( n |-> 0 ) ) in Lin ( rng ( ( B | c1 ) +* ( n |-> 0 ) ) ) ; ex a , k1 , k2 st i = a := k1 & k2 = b := k2 & k2 = b := k2 & k2 = b := k2 ; t . ( NAT ) = ( NAT .--> succ i1 ) . ( NAT + 1 ) .= succ i1 .= succ i1 .= succ i1 .= succ i1 .= succ i1 .= succ i1 ; assume that F is bbfamily and rng p = F and dom p = Seg ( n + 1 ) and for k be Nat st k in Seg ( n + 1 ) holds p . k = F ( k ) ; not LIN b , b9 , a & not LIN a , b , c & LIN a , b , c & LIN a , b , c & LIN b , c , a & LIN a , c , b ; ( L1 v v v or L2 . O c= ( L1 => L2 ) . O ) & ( L1 . O ) => ( L2 . O ) in L ; consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) and for d be Element of E holds F . d = G ( d ) ; consider a , b such that a * ( contradiction ) = b * ( -w ) and 0 < a and a < b ; defpred P [ FinSequence of D ] means |. Sum ( $1 ) .| <= Sum ( $1 ) & ( Sum ( $1 ) ) = Sum ( $1 ) ; u = cos / ( x , y ) . v * x + ( cos / ( x , y ) . v ) .= v ; dist ( seq . n ) . ( n + x , g + x ) <= dist ( ( seq . n ) . ( n + x , g ) ) + 0 ; P [ p , |. p .| ^ |. p .| ^ |. p .| , ( id the Sorts of A ) . p ] ; consider X being Subset of Al such that X c= Y and X is non empty and X is non empty and X is non empty and X is non empty ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h . l1 & l1 <= h . l1 } ; vol ( ( G . n ) . ( vol ( G . n ) ) ) <= ( ( G . n ) . ( vol ( G . n ) ) ) * vol ( G . n ) ; f . y = x .= x * 1. L .= x * ( 1. L ) .= x * ( ( power L ) . ( y , 0 ) ) ; NIC ( ( a , i1 ) --> ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ i1 ) ) ) ) ) ) ) ) = { i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 , succ ( i1 LSeg ( p01 , p2 ) /\ LSeg ( p1 , p01 ) = { p1 } /\ LSeg ( p1 , p01 ) .= { p1 } /\ LSeg ( p1 , p01 ) ; Product ( ( ( the support of I-15 ) +* ( i , { 1 } ) ) +* ( i , { 1 } ) ) in Z ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) +* Following ( s2 , n ) .= Following ( s1 , n ) +* Following ( s2 , n ) ; ( W-bound Q2 ) / ( 1 - ( p `1 / |. p .| - cn ) / ( 1 - cn ) ) <= ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) / ( 1 - cn ) ; f /. i2 <> f /. ( ( i1 + len g -' 1 ) + ( len g -' 1 ) ) ; M , v / ( x. 3 , a ) / ( x. 4 , a ) / ( x. 0 , a ) / ( x. 4 , a ) / ( x. 0 , a ) / ( x. 4 , a ) / ( x. 0 , a ) / ( x. 0 , a ) / ( x. 4 , a ) / ( x. 0 , a ) / ( x. 0 , a ) / ( x. 4 , a ) / ( x. 0 , a ) ) ; len ( P ^ Q ) in dom ( P ^ Q ) & len ( P ^ Q ) = len ( P ^ Q ) + len ( P ^ Q ) ; A |^ ( n , m ) c= A |^ ( m , n ) & A |^ ( k , m ) c= A |^ ( k , l ) ; R |^ n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . ( n1 + 1 ) and 1 <= n1 and n1 <= len p1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X \not c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( the Sorts of l ) . v .| & ||. v .|| = upper_bound rng |. ( the Sorts of l ) . v .| for phi holds phi in X implies phi in X & phi in X & phi in X & phi in X & phi in X implies phi in X rng ( ( ( Sgm dom ( f | dom ( f | dom ( f | dom ( f | dom ( i + 1 ) ) ) ) ) | dom ( ( f | dom ( f | dom ( i + 1 ) ) ) ) ) ) c= dom ( ( f | dom ( f | dom ( i + 1 ) ) ) | dom ( ( f | dom ( i + 1 ) ) ) | dom ( ( f | dom ( i + 1 ex c being FinSequence of D ( ) st len c = k & P [ c ] & a = c & b = c ; the_arity_of ( ( a , b , c ) --> ( b , c ) ) = <* \in ( b , c ) --> ( a , b ) , ( c , d ) --> ( b , d ) *> ; consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and f1 . 0 = ( f1 - f2 ) . 1 ; a1 = b1 & a2 = b2 or a1 = b1 & a2 = b2 & a3 = b3 & a4 = b2 & a4 = b3 & a5 = 6 & a5 = 6 & a5 = 6 & a5 = 6 & a5 = 7 & 8 = 6 & 8 = 6 & 8 = 6 & 8 = 6 & 8 = 6 & 8 = 6 & 8 = 6 & 8 = 6 & 8 = 6 & 7 = 6 & 8 = 6 & 8 = 6 D2 . indx ( D2 , D1 , n1 + 1 ) = D1 . ( n1 + 1 ) & D2 . indx ( D2 , D1 , n1 ) = D2 . ( n1 + 1 ) ; f . ( ]. r , r .[ ) = ( |. r .| ) /. 1 .= <* r .| /. 1 .= <* r *> . 1 .= x ; consider n being Nat such that for m being Nat st n <= m holds C-25 . m = C-25 . m and C . m = C-25 . ( m + 1 ) ; consider d be Real such that for a , b be Real st a in X & b in Y holds a <= d & b <= d holds a <= b ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) - ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative associative means : Def4 : for b being Element of X holds F \hbox { b } = f . b & F . ( b , f . b ) = f . b ; p = - ( - ( p0 + 0. TOP-REAL 2 ) ) * ( ( p0 - 0. TOP-REAL 2 ) * ( ( p0 - 0. TOP-REAL 2 ) * ( ( p0 - 0. TOP-REAL 2 ) * ( p - 0. TOP-REAL 2 ) ) ) ) .= 1 * ( ( p - 0. TOP-REAL 2 ) * ( p - 0. TOP-REAL 2 ) ) .= ( ( p - 0. TOP-REAL 2 ) * ( p - 0. TOP-REAL 2 ) ) * ( p - consider z1 such that b , x1 , z1 is_collinear and o , x1 , z1 is_collinear and o , x1 , z1 is_collinear and o , x1 , z1 is_collinear and o <> z1 and o <> z1 and o <> z2 ; consider i such that Arg ( ( Rotate ( s ) ) . q ) = s + Arg ( q ) + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = f . x and rng g c= f . x and g . x = f . x ; assume that A = P2 \/ Q2 and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 <> {} and P2 attr F is associative means : Def4 : F .: ( F .: ( f , g ) , h ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x in z `1 & m < i or m in { i } & i in { i } ; consider k2 being Nat such that k2 in dom P-2 and l = P-2 . k2 and ( l + 1 ) <= k2 + 1 ; seq = r * seq implies for n holds seq . n = r * seq . n & seq . n = r * seq . ( n + 1 ) F1 . [ ( ( id a ) * [ a , b ] ) , ( id b ) * [ b , a ] ] = f * ( id a ) ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 } & { p "\/" q where q is Element of L : q in D2 } = { p "\/" q : q in D2 } ; consider z being element such that z in dom ( ( dom F ) . 0 ) and ( ( F . 0 ) . 1 ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y cell ( G , i , 1 ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and ( T | E1 ) . e = v ; ( F `1 ) * b1 . x = ( Mx2Tran ( J , b1 , b2 ) ) . ( \mathbb j + len ( b1 . j ) ) .= ( ( Mx2Tran J ) * b2 ) . j ; - 1 / ( - 1 / 2 ) = ( - m ) (#) D .= ( - m ) (#) D .= ( - m ) (#) D .= ( - m ) (#) D .= ( - m ) (#) D .= ( - m ) (#) D ; attr x be set means : Def4 : x in dom f /\ dom g holds g . x <= f . x & g . x <= f . x ; len ( f1 . j ) = len ( f2 /. j ) .= len ( f2 . j ) .= len ( ( f2 . j ) . ( i + 1 ) ) .= len ( ( f2 . j ) . ( i + 1 ) ) ; All ( 'not' All ( a , A , G ) , B , G ) '<' Ex ( 'not' All ( 'not' All ( a , B , G ) , A , G ) , B , G ) ; LSeg ( E . ( k + 1 ) , F . ( k + 1 ) ) c= Cl RightComp Cage ( C , n + 1 ) /\ L~ Cage ( C , n + 1 ) ; x \ a |^ m = x \ ( a |^ k * a ) .= ( ( x \ a ) |^ k ) \ a ; k >= ( ( commute th ) . k ) . ( ( commute >= 0 ) . k ) .= ( commute ( I ) . k ) . ( ( commute I ) . k ) .= ( commute I ) . ( ( commute I ) . k ) .= ( commute I ) . ( ( commute I ) . k ) .= ( commute I ) . ( ( commute I ) . k ) ; for s being State of Athere being State of A1 holds Following ( s , n ) . ( 0 + ( 2 * n + 1 ) ) is stable ; for x st x in Z holds f1 . x = a / ( 2 * x ) & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 ) implies f1 - f2 <> 0 support ( ( support ( m ) ) \/ support ( ( m ) ) c= support ( ( m ) ) /\ support ( ( m ) ) ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier' of B ) * the Arity of C , s be Element of the carrier' of C ; - ( a * sqrt ( 1 + ( a ^2 + b ^2 ) ) / ( 1 + ( a ^2 + b ^2 ) ) ) <= - ( b * sqrt ( 1 + ( a ^2 + b ^2 ) ) / ( 1 + ( a ^2 + b ^2 ) ) ) ; phi /. ( succ b1 ) = g . a & phi /. ( succ b1 ) = f . ( g . a ) & phi /. ( succ b1 ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) . i ) and i <> j ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , the Sorts of ( U1 /\ ( U1 "\/" U2 ) ) c= the Sorts of ( U1 "\/" U2 ) ; ( - ( 2 * a ) * ( b - a ) ) / ( 2 * a ) + ( - 2 * a ) / ( 2 * a ) > 0 ; consider W00 such that for z being element holds z in W00 iff z in N ~ & P [ z ] and P [ z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r and ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r ; Z = dom ( ( ( exp_R * ( ( ( #Z n ) * ( f1 + #Z n ) ) ) / ( f1 + #Z n ) ) ) ; sum ( f , SS1 ) is convergent & lim ( upper_volume ( f , SS1 ) ) = integral ( f , S ) - integral ( f , S ) ; ( for a9 holds ( a . ( f . ( a ) ) => ( g . ( x9 ) ) ) in len ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n ; attr X1 union X2 is open means : Def4 : X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X1 are_separated implies X1 , X2 are_separated & X2 , X1 union X2 are_separated ; for L being lower-bounded antisymmetric RelStr , X being non empty RelStr , X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-1-1be ( b ) `2 = ( F . ( b ) ) `2 , f-1b = ( F . ( b ) ) `2 , f-1b = ( F . ( b ) ) `2 , f-1b = ( F . ( b ) ) `2 ; consider w being FinSequence of I such that the InitS of M is_ststst<* s *> ^ w ^ w ^ q and q ^ w ^ w ^ w ^ w ^ q in dom q ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ G .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & z in dom f & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier L = L & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 ; reconsider o9 = o `1 , t = o `2 , p = o `1 , q = o `2 , r = o `2 , s = o `2 , s = o `2 , t = o `2 , s = s , w = t , w = s , s = t , w = t , s = s , w = t , w = s , w = t , s = s , w = t , s = s , w = t , s = s , w = s , w = s , 1 * x1 + ( 0 * x2 + ( 0 * x3 ) ) + ( 0 * x2 + ( 0 * x3 ) ) = x1 + ( ( 0 * x2 ) + ( 0 * x3 ) ) .= x1 + ( ( 0 * x3 ) + ( 0 * x4 ) ) .= x1 + ( ( 0 * x2 ) + ( 0 * x3 ) ) .= x1 + x2 ; EP " . 1 = ( EP " ) . 1 .= ( ( ( P " ) * ( ( P " ) * ( P " ) ) ) * ( 1 - 1 ) ) .= ( ( 1 - 1 ) * ( ( P " ) * ( P " ) ) ) * ( 1 - 1 ) ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , v1 = the carrier of U1 , v2 = the carrier of U2 , f = ( U1 "\/" U2 ) "\/" ( U1 "\/" U2 ) as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" ( y "\/" x ) ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . l1 ) .| < ( 1 / ( M . ( l1 + 1 ) ) - f . ( s1 . l1 ) ) ; LSeg ( ( Upper_Seq ( C , n ) ) * ( i , j ) , ( Upper_Seq ( C , n ) ) * ( i + 1 , j ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- - x0 ) + R /. ( x- - x0 ) ; g . c * ( - g . c ) + f . c * f . c <= h . c * ( - f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) .= f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the set of \HM { the } \HM { set , b , c , d } and len f = width A and width f = width B and width A = width B and width A = width B ; len ( - M1 ) = len M1 & width ( - M2 ) = width M1 & width ( - M2 ) = width M2 & width ( - M2 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( \cal E ( n ) ) \ the InternalRel of ( TOP-REAL n ) \ the InternalRel of ( TOP-REAL n ) ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 ; pred a <> 0 & b <> 0 & Arg a = Arg b & Arg ( - a ) = Arg ( - b ) & Arg ( - a ) = Arg ( - b ) & Arg ( - a ) = Arg ( - b ) ; for c being set st not c in [. a , b .] holds not c in Intersection ( the } of assume that V1 is linearly closed and V2 is closed and V = { v + u : v in V1 & u in V1 & u in V1 } and v in V1 and u in V1 and v in V1 and u in V1 and v in V1 ; z * x1 + ( 1 - z ) * x2 in M & z * ( x1 + x2 ) in N & ( z * x1 + ( 1 - z ) * x2 ) in N ; rng ( ( ( P qua Function ) " ) * S6 ) = Seg ( card d6 ) .= Seg ( card d6 ) .= Seg ( card d6 ) .= Seg ( card d6 ) .= Seg ( card d6 ) ; consider s2 being rational Real_Sequence such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b . n and s2 . n <= b . n ; h2 " . n = h2 . n " & 0 < ( - 1 / ( n + 1 ) ) / ( n + 1 ) & 0 < ( - 1 / ( n + 1 ) ) / ( n + 1 ) ; ( Partial_Sums ( ||. ( seq1 ) .|| ) . m ) = ||. ( seq1 . m ) - ( seq2 . m ) .|| .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b .= Comput ( P2 , s2 , 1 ) . b ; - v = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & - w = - ( - 1_ G ) * v ; sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: D ) .= sup ( ( k .: D ) .: D ) .= sup ( ( k .: D ) .: D ) .= sup ( ( k .: D ) .: D ) ; A |^ ( k , l ) ^^ ( A |^ ( n , l ) ) = ( A |^ ( n , l ) ) ^^ ( A |^ ( k , l ) ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J , K being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( p `1 ) ^2 + ( p `2 ) ^2 .= ( p `1 ) ^2 + ( p `2 ) ^2 + ( p `2 ) ^2 ; for a , b being non zero Nat st a , b are_congruent_mod n holds support ( a * b ) = support ( a ) + support ( b ) & support ( a * b ) = support ( a ) + support ( b ) consider A5 being countable Nat such that r is countable and A5 is ( len A5 ) -element & ( for n being Nat holds A5 . n = ( n + 1 ) ! ) & ( n + 1 ) in dom ( ( n + 1 ) ! ) ; for X being non empty addLoopStr , M being Subset of X , x , y being Point of X st x in M & y in M holds x + y in M + N { [ x1 , x2 ] , [ y1 , y2 ] } c= { x1 , x2 , x3 , x4 , x5 , x5 , D2 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , h . ( f . O ) = |[ A * ( f . O ) `1 + B , C * ( f . O ) `2 + D * ( f . I ) `2 ]| ; ( Gauge ( C , n ) * ( k , i ) ) `2 in L~ Upper_Seq ( C , n ) /\ L~ Upper_Seq ( C , n ) ; cluster m , n are_relative_prime -> prime for Nat means : Def4 : for p being prime Nat holds p divides m & p divides n & p divides n implies p divides n ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ c <= c holds a /\ b <= c consider b being element such that b in dom ( H / ( ( x , y ) / ( x , y ) ) ) and z = H / ( ( x , y ) / ( x , y ) ) . b ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , W . ( 5 + 1 ) , G or e Joins W . 3 , W . ( 5 + 1 ) , G ; ( \cal x0 ) / ( h . n ) . x = ( r (#) ( f . n ) ) / ( 2 * n ) . x + ( r (#) ( f . n ) ) / ( 2 * n ) . x ; j + 1 = ( len h11 + 2 ) - len h11 + 2 .= i + ( 1 + 2 ) - len h11 + 2 - 2 .= i + 2 - 2 + 2 - 1 ; ^ ( S /* ( S /* f ) ) . f = S *' ( S ^ ) .= S . ( ( S ^ ) . f ) .= S . ( f . f ) .= S . ( f . f ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L2 ) and Sum ( L2 * H ) = Sum ( L2 ) ; attr R is <= .| means : Def4 : p in R & p <> q & q <> p & p <> q & q <> p & p <> q & q <> p & p <> q & q <> p & p <> q ; dom Product ( ( X --> f ) ) = meet ( dom ( X --> f ) ) .= meet ( ( X --> f ) . ( dom f ) ) .= meet ( X --> f ) .= dom f .= dom f .= dom f ; sup ( ( proj2 .: Lower_Arc C ) /\ Lower_Arc C ) <= sup ( ( proj2 .: ( Lower_Arc C ) ) /\ Vertical_Line ( w ) ) & sup ( ( proj2 .: ( Lower_Arc C ) /\ Vertical_Line w ) ) <= sup ( ( proj2 .: ( Lower_Arc C ) ) /\ Vertical_Line w ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - p .| < r / 2 ; i * ( f - f-28 ) = i * ( f - ( i * y ) ) .= i * ( f - ( i * y ) ) .= i * ( f - ( i * y ) ) ; consider f being Function such that dom f = 2 -tuples_on X ( ) & for Y being set st Y in 2 -tuples_on X ( ) holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g1 = [ g1 , g2 ] ; func d |-count n -> Nat means : Def4 : d |^ ( n + 1 ) divides n & ( d |^ ( n + 1 ) ) divides ( d |^ ( n + 1 ) ) & ( d |^ ( n + 1 ) ) divides ( ( d |^ n ) * ( ( d |^ n ) * ( ( d |^ n ) * ( ( d |^ n ) * ( ( d |^ n ) * ( d |^ n ) ) ) ) ; f\rbrack . [ 0 , t ] = f . [ 0 , t ] .= f . [ 0 , t ] .= ( - P ) . ( 2 * x ) .= a ; t = h . D or t = h . B or t = h . C or t = h . D or t = h . E or t = h . F or t = h . J or t = h . M ; consider m1 being Nat such that for n st n >= m1 holds dist ( ( seq . n ) - ( seq . m ) ) < 1 / ( ( seq . n ) - ( seq . m ) ) ; ( ( q `1 ) / |. q .| ) ^2 / ( 1 + cn ) ^2 <= ( ( q `2 ) / ( 1 + cn ) ) ^2 / ( 1 + cn ) ^2 / ( 1 + cn ) ^2 ; h0 . ( i + 1 + 1 ) = h0 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) .= h0 . ( i + 1 + 2 - 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier' of S } such that a = [ o , x2 ] and o <> x2 ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & b <= a & a <= b & b <= a & a <= b implies a <= b ||. h1 .|| . n = ||. h1 . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| ; ( ( - ( ( #Z n ) * ( exp_R + f ) ) `| Z ) . x = f . x - ( exp_R . x ) / ( exp_R . x ) ^2 ) .= ( - ( exp_R . x ) / ( exp_R . x ) ^2 ) / ( exp_R . x ) ^2 ; pred r = F .: ( p , q ) means : Def4 : len r = min ( len p , len q ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 / 2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 / 2 ; for i being Nat , M being Matrix of n , K st i in Seg n holds Det ( M , i ) = Sum ( ( L * M ) * ( i , j ) ) then a <> 0. R & a " * ( a * v ) = 1 / ( a * v ) & a " * ( a * v ) = 1 / ( a * v ) ; p . ( j - 1 ) * ( q *' ) . ( i + 1 - j ) = Sum ( p . ( j - 1 ) * ( q . ( i - 1 ) ) ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* h ^\ n ) * ( h ^\ n ) ) . ( h ^\ n ) " .= ( ( R /* h ) ^\ n ) . ( h ^\ n ) " ; assume that the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H2 = f .: ( the carrier of H2 ) and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H1 = the carrier of H2 ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * the Arity of S ) . o .= ( ( the Sorts of Free ( S , X ) ) * the Arity of S ) . o ; H1 = n + 1 - ( 2 to_power ( n + 1 ) ) .= n + 1 - ( 2 to_power ( n + 1 ) ) .= n + 1 - ( 2 to_power ( n + 1 ) ) ; ( O = 1 & 3 ) = 0 & ( O = 1 or O = 1 or O = 1 or O = 1 & O = 1 or O = 1 & O = 1 & O = 1 or O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 ) & O = O & O = O & O = O & O = O & O = O & O = I & O = I & O = I = I & O = I & O = I = I & O = I F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 1 ) } .= { f /. ( n + 2 ) } .= { f /. ( n + 1 ) } .= { f /. ( n + 2 ) } ; pred b <> 0 & d <> 0 & b <> 0 & ( a = e & b = e ) implies ( a / b ) / ( b / ( d - c ) ) = ( ( - e ) / ( d - c ) ) / ( d - c ) ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) ; for i be set st i in dom g ex u , v being Element of L st g /. i = u * a & v in B & u in A & v in B & v in A & u in B ; g `2 * P `2 * g `2 = g `2 * ( g `2 * P `2 ) * ( g `2 * P `2 ) " .= g `2 * ( g `2 * P `2 ) * ( g `2 * P `2 ) " .= g `2 * ( g `2 * P `2 ) * ( g `2 * P `2 ) ; consider i , s1 such that f . i = s1 and not ( ex s st s in dom ( s1 . i ) & ( not s1 in dom ( s2 . i ) & s <> s1 ) & not s1 in { s2 . i } ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] Point ( X | Y ) & [ s2 , t2 ] , [ t2 , t2 ] Point ( X | Y ) . [ t2 , t2 ] ] <= [ s2 , t2 ] ; then H is atomic & H is non negative & H is non ] & H is non empty implies H is non -\sqrt @ for f , g ; attr f1 is total means : Def4 : ( 1 - ( f1 + f2 ) ) (#) ( f1 - f2 ) = f1 . c * ( f2 - f3 ) (#) ( f1 - f3 ) ; z1 in W2 " ( W2 " ( { z } ) ) or z1 = W2 " ( W2 " { z } ) & z2 in W2 " { z } & z in W2 " { z } ; p = 1 * p .= a " * p .= a " * a * p .= a " * ( b * q ) .= a " * ( b * q ) .= a " * ( b * q ) * q .= ( a * ( b * q ) ) * q ; for r9 be Real_Sequence , K be Real st for n be Nat holds seq1 . n <= K holds upper_bound rng ( seq1 ^\ K ) <= K * ( seq1 ^\ K ) C meets L~ go \/ L~ pion1 or C meets L~ pion1 or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ Cage or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ co or C meets L~ ||. f . ( g . ( k + 1 ) ) - g . ( k + 1 ) .|| <= ||. g . 1 - g . ( k + 1 ) .|| * ( K * K / ( 1 + 1 ) ) ; assume h = ( ( B .--> B ) +* ( C .--> D ) +* ( E .--> F ) +* ( F .--> J ) +* ( F .--> J ) +* ( M .--> N ) +* ( F .--> N ) +* ( F .--> N ) +* ( M .--> N ) +* ( F .--> N ) +* ( M .--> N ) +* ( F .--> N ) +* ( M .--> N ) ) +* ( M .--> N ) ; |. ( ( upper_volume ( H . n ) ) `| A ) . k - ( ( upper_volume ( H , n ) ) . k ) .| <= e * ( ( delta ( H , n ) ) . k - ( delta ( H , n ) ) . k ) ; ( ( { x1 , x1 , x1 , x2 , x3 , x4 , x5 , x5 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 assume that A = [. 0 , 2 * PI .] and integral ( A , ( ( ( #Z n ) * ( f1 + #Z n ) ) * ( ( f1 + #Z n ) * ( ( f1 + #Z n ) * ( ( f1 + #Z n ) * ( f1 + #Z n ) ) ) ) = 0 ; p `2 is Permutation of dom f1 & p `2 * p `2 = ( Sgm Y ) . i " * p " * p " .= ( Sgm Y ) . i " * p " * p " * p " ; for x , y st x in A holds |. ( 1 / ( f . x - 1 ) ) * ( f . y - 1 / ( f . y ) ) .| <= 1 * |. f . x - 1 / ( f . y ) .| ( p2 `2 ) ^2 = |. q2 .| * ( ( q2 `2 ) ^2 + ( q2 `2 ) ^2 ) .= ( q2 `2 ) * ( ( q2 `2 ) ^2 + ( q2 `2 ) ^2 ) .= ( q2 `2 ) * ( ( q2 `2 ) ^2 + ( q2 `2 ) ^2 ) .= ( q2 `2 ) * ( ( q2 `2 ) ^2 + ( q2 `2 ) ^2 ) ; for f be PartFunc of the carrier of CNS , REAL st dom f is compact & f | X is continuous holds rng f = dom f & f | X is continuous & f | X is continuous & f | X is continuous & f | X is continuous & f | X is continuous & f | X is continuous & f | X is continuous & f | X is continuous assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A ) ) . x = TRUE ; consider FF such that dom FF = n1 and for k be Nat st k in n1 holds Q [ k , FF . k ] and for k be Nat st k in n1 holds Q [ k , FF . k ] ; ex u , u1 st u <> u1 & u , u1 / ( a , v ) / ( a , v ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) / ( a , b ) for G being Group , A , B being non empty Subset of G holds ( N ` A ) * ( N ` A ) = N ` A * ( N ` B ) for s be Real st s in dom F holds F . s = integral ( R / ( f + g ) , ( f - g ) / ( f - g ) ) / ( f - g ) . x width AutMt ( f1 , b1 , b2 , b3 ) = len b2 .= len ( b2 * ( b1 , b2 ) ) .= len ( b1 * ( b2 , b3 ) ) .= len ( b1 * ( b2 , b3 ) ) .= len ( b1 * ( b2 , b3 ) ) .= len ( b1 * ( b2 , b3 ) ) ; f | ]. - PI / 2 , PI / 2 .[ = f & f | ]. - PI / 2 , PI / 2 .[ = f | ]. - PI / 2 , PI / 2 .[ & f | ]. - PI / 2 , PI / 2 .[ = f | ]. - PI / 2 , PI / 2 .[ ; assume that X is closed and a in X and a in X and y in a and x in { [ n , x ] } \/ y and x in X ; Z = dom ( ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) /\ dom ( ( ( 1 / 2 ) (#) ( f1 + #Z 2 ) ) (#) ( f1 + #Z 2 ) ) ; func Let ( V ) -> Subset of V means : Def4 : 1 <= k & k <= len l & for k st 1 <= k & k <= len l holds it . k in V . k ; for L being non empty TopSpace , N being net of L , M being net of N st M is net of N & M is net of N holds M is net of N for s being Element of NAT holds ( ( ( ( id the carrier of X ) + ( id the carrier of X ) ) + ( id the carrier of X ) ) . s = ( ( ( id the carrier of X ) + ( id the carrier of X ) ) + ( id the carrier of X ) ) . s then z /. 1 = ( N-min L~ z ) .. z & ( E-max L~ z ) .. z < ( E-max L~ z ) .. z ; len ( p ^ <* ( 0 qua Real ) * ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) * ( 0 qua Real ) *> .= len p + 1 .= len p + 1 ; assume that Z c= dom ( ( - ( ln * f ) ) `| Z ) and for x st x in Z holds f . x = x / ( a + x ) ^2 and f . x > 0 ; for R being add-associative right_zeroed right_complementable associative non empty doubleLoopStr , I being Ideal of R , J being Subset of R , I being Ideal of R , I being Ideal of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f being Function of [: B1 , B2 :] , B2 such that for x being Element of B1 , y being Element of B2 holds f . ( x , y ) = F ( x , y ) ; dom ( x2 + y2 ) = Seg len x .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= dom ( x2 + y2 ) ; for S being -1 Functor of C , B , c being Object of C holds card S . ( id c ) = id ( ( Obj S ) . ( id c ) ) & S . ( id c ) = id ( ( Obj S ) . ( id c ) ) ex a st a = a2 & a in dom ( f | ( rng f ) ) & ( for x st x in dom ( f | ( rng f ) ) holds f . ( x , a ) = \rbrace implies f . ( x , a ) = lim ( f , a ) ; a in Free ( ( H / ( x. 4 , x. k ) ) '&' ( ( H / ( x. 3 , x. k ) ) / ( x. k , x. k ) ) ) ; for C1 , C2 being 1 , f being Function of C1 , C2 st ( ex g being Function of C1 , C2 st f = g & g is stable ) holds f = g & f = g ( W-min L~ go ) `1 = ( W-min L~ go ) `1 .= ( W-bound L~ go ) * ( 1 , 1 ) `1 .= ( W-bound L~ Cage ( C , n ) ) * ( 1 , 1 ) `1 .= ( W-bound L~ Cage ( C , n ) ) `1 .= ( W-bound L~ Cage ( C , n ) ) `1 ; assume that u = <* x0 , y0 , z0 *> and f is_partial_differentiable_in z0 , 2 and SVF1 ( 3 , f , u ) is_partial_differentiable_in z0 , 3 and SVF1 ( 3 , f , u ) . 3 = SVF1 ( 3 , f , u ) . 3 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & t . {} = x & t . {} = y & t . {} = s ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v '&' Valid ( q , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b & b >= a ; func Class R -> Subset-Family of R means : Def4 : for A being Subset of R holds A in it iff ex a being Element of R st a in it & A c= a & it . a = Class ( R , a ) ; defpred P [ Nat ] means ( ( \HM { the } \HM { \Rightarrow ( G ) ) . $1 ) `1 c= G . ( ( the Source of G ) . $1 ) `1 , G . ( ( the Source of G ) . $1 ) `2 ) ; assume that dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W2 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 ; mama-\hbox { m ( t ) -> Element of C ) , m ( ) -> Element of C ( ) , A ( ) -> Element of C ( ) , t ( ) -> Element of C ( ) , f ( set ) ] means for m being Element of C ( ) holds it . m = [ m , the carrier of C ] ; d11 = xx ^ d22 .= f . ( ( y9 , d22 ) . ( x , y ) ) .= f . ( ( y9 , d22 ) . ( x , y ) ) .= ( f ^ d22 ) . ( x , y ) .= ( f ^ d22 ) . ( x , y ) .= ( f ^ d22 ) . ( x , y ) .= ( f ^ <* x *> ) . ( x , y ) .= ( f ^ <* x , y *> ) . ( x , y , y *> .= ( f ^ <* x , y *> .= ( f ^ <* x , y *> .= ( f ^ <* x , y *> ) . ( x , y *> ) . ( x , y *> .= ( f ^ <* x consider g such that x = g and dom g = dom ( f . 0 ) and for x being element st x in dom ( f . 0 ) holds g . x in f . x ; x + 0. F_Complex = x + len x .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= x + ( x + 0. F_Complex ) .= x + ( x + 0. F_Complex ) .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex .= x + 0. F_Complex ; ( ( k -' ( k + 1 ) ) + 1 ) in dom ( f /. ( ( k -' 1 ) + 1 ) ) /\ dom ( f /^ ( k + 1 ) ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 = { p1 , p2 } and P2 = { p1 , p2 } and P1 = { p1 , p2 } and P2 = { p1 , p2 } and P1 = { p2 , p1 } and P2 = { p1 , p2 } and P1 = P2 and P2 = { p1 , p2 } and P2 = { p1 , p2 } and P1 = P2 and P2 = { p2 , p1 , p2 } and P1 = P2 and P2 = { p1 , p2 , p2 , p3 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 ; reconsider a1 = a , b1 = b , c1 = c , c1 = d , c2 = c , c1 = d , c2 = p , c1 = p , c2 = q , c2 = p , c1 = d , c2 = p , c2 = q , c1 = p , c2 = d , c2 = p , c1 = q , c2 = p , c2 = q , c2 = p , c2 = q , c2 = p , c1 = q , c2 = p , c1 = q , c2 = p , c1 = q , c2 = p , c1 = p , c2 = q , c1 = p , c2 = p , c1 = q , c2 = p , c1 = p , c1 = q , c2 = p , c1 = p , c1 = q , c2 = reconsider thesis thesis tbbb1f = G1 . ( t , b ) * F1 . ( f . ( a * b ) ) as Morphism of ( G1 * F1 ) . ( b * a ) , ( G1 * F2 ) . ( b * a ) ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 ) ) ; Integral ( P `1 , m ) | dom ( P . n ) <= Integral ( M . n , P . m ) & Integral ( M . n ) <= Integral ( M . n , P . m ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ x , y ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( G * ( i , 1 ) ) `1 , ( G * ( i + 1 , 1 ) `1 ) / 2 ) ; for G being Group , H being Subgroup of G , a being Element of G st a = b holds for i being Integer holds a |^ i = b |^ ( i + 1 ) & a |^ ( i + 1 ) = b |^ ( i + 1 ) consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { ( p ) _ { \bf 7 } } , ( p ) _ { \bf 2 } } = { p where p is Point of TOP-REAL 2 : P [ p ] & p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K0 = { p : p <> 0. TOP-REAL 2 } , K0 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K0 = { p : p <> 0. TOP-REAL 2 } , K0 = { p : p <> 0. TOP-REAL 2 } , K0 = { p : p <> 0. TOP-REAL 2 } , K0 = 0. TOP-REAL 2 } , K0 = { p : p <> ( ( ( ( ( N - S ) / 2 ) - ( S - S ) / 2 ) - ( S - S ) / 2 ) / 2 ) <= ( ( ( N - S ) / 2 ) - ( ( N - S ) / 2 ) / 2 ) / 2 ; for x be Element of X , n be Nat st x in E holds |. ( Re F ) . n .| <= P . x & |. ( Im F ) . n .| <= P . x & |. ( Im F ) . n .| <= P . x len ( @ @ ) = len ( ( @ @ p ) ^ <* 0 *> ) + len <* [ 2 , 0 ] *> .= len ( ( @ p ) ^ <* 1 *> ) + len <* 1 *> .= len ( ( @ p ) ^ <* 1 *> ) + len <* 1 *> .= len ( ( @ p ) ^ <* 1 *> ) + len <* 1 *> ) ; v / ( x. 3 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m2 ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m2 ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( consider r being Element of M such that M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 3 , m ) / ( x. 4 , m ) ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m func w1 \ w2 -> Element of Union ( G , R8 ) means : Def4 : for w1 , w2 being Element of Union ( G , R8 ) holds it . ( ( H8 ) . w1 , ( ( H8 ) * ( G , R8 ) ) . w2 ) = ( ( H8 ) * ( G , R8 ) ) . w1 ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= ( Exec ( n2 , s1 ) ) . b2 .= ( ( Exec ( n2 , s2 ) ) +* ( i , - 1 ) ) . b2 .= ( ( Exec ( n2 , s2 ) ) +* ( i , - 1 ) ) . b2 .= ( Exec ( n2 , s2 ) ) . b2 .= ( Exec ( n2 , s2 ) ) . b2 .= ( Exec ( n2 , s2 ) ) . b2 .= ( Exec ( n2 , s2 ) ) . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums ( |. seq .| ) ) . ( n + k ) - ( Partial_Sums ( |. seq .| ) ) . ( n + k ) + ( Partial_Sums ( |. seq .| ) ) . ( n + k ) - ( Partial_Sums ( |. seq .| ) ) . ( n + k ) ; set F = S -\mathop { N } , G = S -\mathop { N } ; ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) >= ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x- ( x0 - R ) / ( x - x0 ) ) + R . ( x- x0 ) ; func \HM { closed \HM { a } , b , c , d : a in the \HM { the } \HM { carrier of \HM { of ( ( ( a , b ) `1 , c ) , d } ) & b in the carrier of ( ( ( ( a , b ) `1 , c ) ) / 2 } ) & c in the carrier of ( ( ( a , b ) `2 ) ) ; a * b ^2 + ( a * c ) ^2 + ( b * c ) ^2 + ( c * a ) ^2 + ( c * b ) ^2 + ( c * a ) ^2 >= 6 * a * b * c + ( c * b ) ^2 + ( c * a ) ^2 ; v / ( x1 , m1 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) ) = v / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / .: ( Q ^ <* x *> , M ^ <* x *> ) = ( .: ( Q , M ) +* ( 1 , FALSE ) ) +* ( ( M , M ) +* ( 1 , FALSE ) ) +* ( ( M , M ) +* ( 1 , TRUE ) ) +* ( ( M , M ) +* ( 1 , TRUE ) ) +* ( ( M , M ) +* ( 1 , TRUE ) ) ; Sum ( FF ) = r |^ ( n1 + 1 ) * Sum ( Cz ) .= C . ( n1 + 1 ) * ( Cz ) .= C . ( n1 + 1 ) * ( Cz ) .= C . ( n1 + 1 ) * ( Cz ) .= C . ( n1 + 1 ) * ( ( n + 1 ) + 1 ) .= C . ( n1 + 1 ) ; ( ( GoB f ) * ( len GoB f , 2 ) ) `1 = ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( 1 , 1 ) ) `1 .= ( ( GoB f ) * ( 1 , 1 ) ) `1 .= ( ( GoB f ) * ( 1 , 1 ) ) `1 .= ( ( GoB f ) * ( 1 , 1 ) ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums s ) . $1 = ( a * ( $1 + 1 ) ) / ( ( $1 + 1 ) + 1 ) * ( ( $1 + 1 ) + 1 ) / ( $1 + 1 ) * ( ( $1 + 1 ) + 1 ) / ( $1 + 1 ) * ( $1 + 1 ) ; ( the_arity_of g ) . o = ( the Arity of S ) . ( g . o ) .= ( ( the Arity of S ) . ( g . o ) ) . ( g . o ) .= ( ( the Arity of S ) . o ) . ( g . o ) .= ( ( the Arity of S ) . o ) . ( g . o ) .= ( ( the Arity of S ) * g ) . ( g . o ) ; ( X ~ ) \ Z tolerates X \ Y & card ( ( X ~ ) \ Z ) = card ( X ~ ) & card ( ( X ~ ) \ Z ) = card ( X ~ ) ; for a , b being Element of S , s being Element of NAT st s = n . n & a = F . n & b = F . ( n + 1 ) holds b = N . ( s . a ) \ G . s ; E , f |= All ( x. 2 , ( x. 2 ) ) '&' ( ( x. 2 ) '&' ( x. 1 ) ) '&' ( x. 2 ) '&' ( x. 1 ) '&' ( x. 1 ) '&' ( x. 1 ) '&' ( x. 2 ) '&' ( x. 1 ) '&' ( x. 1 ) ) ; ex R2 be 1-sorted st R2 = ( p | ( n + 1 ) ) . i & ( the carrier of p ) . i = the carrier of R2 & ( the carrier of p ) . i = the carrier of R2 & ( the carrier of p ) . i = the carrier of R2 ; [. a , b + 1 / ( k + 1 ) .[ is Element of the , ( the partial of \HM { f } ) . ( k + 1 ) & ( the partial of \HM { f } ) . ( k + 1 ) is Element of the \overline of ( the partial of a ) . ( k + 1 ) & ( the partial of a ) . k is Element of REAL ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 , Comput ( P , s , 2 ) ) .= Exec ( a3 , s ) +* ( ( a , a ) .--> 1 ) .= Exec ( a3 , s ) +* ( ( a , a ) .--> 1 ) ; card ( h1 ) . k = power ( F_Complex ) . ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) . k .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) . k .= ( ( - ( - 1_ F_Complex ) ) * ( - 1_ F_Complex ) ) . k ; ( f - g ) /. c = f /. c * ( g /. c ) " .= f /. c * ( ( 1 - g ) * ( 1 - g ) ) .= ( f * ( 1 - g ) ) /. c .= ( f * ( 1 - g ) ) /. c ; len Cv - len ( ( the carrier of ( C ) ) * ( len ( the R ) ) ) = len ( ( the carrier of ( C ) ) * ( len ( the R ) ) ) .= len ( ( the R ) * ( len ( the R ) ) ) .= len ( ( the R ) * ( len ( the R ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom ( f | X ) /\ X .= dom ( f | X ) /\ X .= dom ( f | X ) .= dom ( f | X ) /\ X .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) /\ dom ( f | X ) .= dom ( f | X ) /\ dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) /\ dom ( f | X ) .= dom ( f | X ) /\ dom defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n ) + ( 5 * Fib ( n ) ) * Fib ( n ) + ( 5 * Fib ( n ) ) * Fib ( n ) + ( 5 * Fib ( n ) ) * Fib ( n ) ; consider f being Function of REAL n , Z such that f = f ' and f is onto and n < m and Z = f " { f . n } and for n st n in Seg m holds f . ( n + 1 ) = { f . n } and f . ( n + 1 ) = { f . n } ; consider c9 being Function of S , BOOLEAN such that c9 = chi ( S , B ) . ( A \/ B ) and E . ( A \/ B ) = Prob . ( ( A \/ B ) . ( A \/ B ) ) and E . ( A \/ B ) = Prob . ( ( A \/ B ) . ( A \/ B ) ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , y ) and Q [ y ] and P [ y ] ; assume that A c= Z and f = ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ) ) ) ) ) ) ) ) ) and Z = dom ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 ; dom Shift ( Seq ( Seq q1 , len Seq q2 ) , j ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & j in dom Seq q1 } \/ dom Seq q2 \/ dom Seq q2 \/ dom Seq q2 \/ dom Seq q2 & j in dom Seq q1 \/ dom Seq q2 & len Seq q1 = len Seq q2 + len Seq q2 ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 and G2 <= G2 and f = G1 * ( G1 , G2 ) and g = G2 * ( G2 , G2 ) and f = G1 * ( G2 , G2 ) and g = G2 * ( G1 , G2 ) ; func - f -> PartFunc of C , V means : Def4 : dom it = dom f & for c be Element of C st c in dom it holds it /. c = - f /. c & for c be Element of C st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a & for v st v <> {} holds ( v in rng L iff not v in { v } ) & not v in { v } implies L . ( v , a ) |= L ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - n ) * ( i - 1 ) and for n1 being Nat st n1 <> 0 & |. p .| < n holds |. p .| <= ( |. p .| ) * ( i - 1 ) ; assume that not 0 in Z and Z c= dom ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) ) ) ) ) ) and for x st x in Z ) holds ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) cell ( G1 , i1 -' 1 , ( 2 |^ ( m -' 1 ) ) * ( Y1 -' 1 ) ) \ L~ ( ( Y1 + Y2 ) * ( 1 , ( Y1 + 1 ) ) * ( 1 , ( Y1 + 1 ) ) * ( Y1 + 1 ) ) c= BDD L~ ( Y1 + Y2 ) ; ex Q1 being open Subset of X st s = Q1 & ex FF being Subset-Family of Y st Q1 c= F & ( for x being Element of Y st x in Q1 holds ( x in Q1 implies x in Q1 ) & ( x in Q1 implies x in Q1 ) & ( for x being Element of Y st x in Q1 holds x in Q1 implies x in Q1 ) ; gcd ( ( 1. ( A , B ) ) * ( 1. ( A , B ) ) , ( 1. ( A , B ) ) * ( 1. ( A , B ) ) ) = 1. ( A , B ) * ( 1. ( A , B ) ) .= 1. ( A , B ) * ( 1. ( A , B ) ) ; R8 = ( ( ( Following ( s2 , 1 ) ) . ( m1 + 1 ) ) . ( m2 + 1 ) .= ( ( Following ( s2 , m1 ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= ( ( Following ( s2 , m1 ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= [ 3 , 4 ] ; CurInstr ( P3 , Comput ( P3 , Comput ( P3 , s3 , m1 + 1 ) ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= halt SCMPDS .= halt SCMPDS .= halt SCMPDS .= ( CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) ) .= halt SCMPDS .= halt SCMPDS .= ( halt SCMPDS ) .= halt SCMPDS .= ( halt SCMPDS ) ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) ; func the still of f -> Subset of the Sorts of A means : Def4 : a in it iff ex p , q st p in dom f & q in it & p = f . ( i + 1 ) & q in it & p <> q ; for a , b being Element of F_Complex st |. a .| > |. b .| & |. b .| > 1 holds f . ( ( f . a ) * ( f . b ) ) = ( f . b ) * ( ( f . a ) * ( f . b ) ) defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g * ( i , j ) & G * ( i , j ) = g * ( $1 , j ) ; assume that C1 , C2 , f being <* of C1 , g , h being State of C1 , f being Function of C1 , C2 such that C1 = C2 and C2 = f and h = g and f = g and g = h and f = g ; ( ||. f .|| | X ) . c = ||. f .|| . c .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| * ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| * ||. f /. c .|| * ||. c .|| * ||. c .|| * ||. c .|| .= ||. f /. c .|| * ||. c .|| * ||. c .|| .= ||. c .|| * ||. c .|| .= ||. c .|| * ||. c .|| * ||. c .|| .= ||. c .|| * |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 * ( 1 + ( q `2 / q `1 ) ^2 ) & 0 + ( q `2 / q `1 ) ^2 < ( q `1 ) ^2 + ( q `2 / q `1 ) ^2 + ( q `2 / q `1 ) ^2 ; for F being Subset-Family of T7 st F is open & {} in F & for A , B being Subset of T7 st A in F & B <> {} & A <> {} & B <> {} holds card F = card G & card G = card A & card G = card B c= card G & card G = card A & card G = card A & card G = card B & card G = card A & card G = card B c= card G & card G c= card G & card G c= card G & card G = card G & card G c= card G & card G c= card G & card G c= card G & card G c= card G & card G c= card G & card G c= card G & card G c= card G & card G c= card G & card F c= card G & assume that len F >= 1 and len F = k + 1 and len G = k and for k st k in dom F holds F . k = G . ( k , 1 ) and for i st i in dom F & i <> k holds F . ( i , k ) = g . ( k , i ) ; i |^ ( ( ( ( p |^ n ) |^ ( ( p |^ k ) - i ) ) * ( ( p |^ k ) - i ) ) * ( ( p |^ k - i ) * ( ( p |^ k - i ) * ( ( p |^ k - i ) * ( ( p |^ k - i ) * ( ( p |^ k - i ) * ( ( p |^ k - i ) * ( p |^ k ) ) ) ) ) ) .= i |^ ( ( p |^ k - i ) * ( ( p |^ k - i ) ) * ( ( p |^ k - i ) ) * ( ( p |^ k - i ) * ( ( p |^ k ) - ( p |^ k ) * ( p |^ k ) ) ) ; consider q being oriented oriented Chain of G such that r = q and q <> {} and ( F . ( q . 1 ) = v1 & ( F . ( q . 1 ) ) `1 = v2 & ( F . ( q . 1 ) ) `1 = v2 & ( F . ( q . 1 ) ) `1 = v2 ; defpred P [ Element of NAT ] means $1 <= len ( ( f , Z ) +* ( i , I ) ) . ( $1 + 1 ) = ( ( ( f , Z ) +* ( i , I ) ) +* ( $1 , I ) ) . ( $1 + 1 ) ; for A , B being Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s holds s . i = a * b & s . ( len s ) = a * b ; func |( x , y )| -> Element of COMPLEX means : Def4 : |( ( x , y ) , ( Re ( x ) ) , ( Im ( x ) ) )| = ( Re ( x ) ) * ( ( Im ( x ) ) * ( Im ( y ) ) ) + ( ( Im ( x ) ) * ( Im ( y ) ) ) ; consider g2 being FinSequence of FF such that g2 is continuous and rng g2 c= A and g2 . 1 = x1 and g2 . ( len g2 ) = x2 and g2 . ( len g2 ) = x2 and g2 . ( len g2 ) = x2 and g2 . ( len g2 ) = x2 and g2 . ( len g2 ) = x2 ; then n1 >= len p1 & n2 >= len p1 & n3 ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , W , W , W , W , N , W , W , S , N , S , N , S , ( N , S , N ) ) = crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n3 , W , W , W , W , W , W , W , W , W , W , W , W , W , ( N , S , W , W , W , W , W , W , W , ( ( S , S , W , W , W , W , W , W , ( N , S , W ) ) ) ; ( q `1 ) * a <= ( q `1 ) * a & ( q `2 ) * a <= ( q `1 ) * a or q `1 >= ( q `1 ) * a & q `1 >= ( q `2 ) * a & q `1 >= ( q `1 ) * a or q `1 >= ( q `1 ) * a & q `1 >= ( q `1 ) * a & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `2 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 >= 0 & q `1 ( F . ( p . ( len p ) ) ) . ( len p ) = ( F . ( p . ( len p ) ) ) . ( len p ) .= ( ( F . ( len p ) ) ) . ( len p ) .= ( ( F . ( len p ) ) ) . ( len p ) .= ( ( F . ( len p ) ) ) . ( len p ) .= ( ( F . ( len p ) ) ) . ( len p ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( <* a *> ^ ( ( a := k ) := ( a := k ) ) ) ^ ( ( a := k ) := ( a := k ) ) ; consider B9 being Subset of B1 , y9 being Function of B1 , B2 such that B9 is finite and D2 = rng ( f | B1 ) and for x being Element of B1 holds ( f | B1 ) . ( x , y ) = \bf T ( 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , v2 . b2 = ( curry ( F2 , g ) * ( ( curry F ) . b2 ) ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( ( F ) . b2 ) . b2 ) . b2 .= ( ( ( ( F ) . b2 ) . dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < e holds |. h .| " * ||. ( h + R1 ) . h .|| < e / ( 1 + 1 ) * ||. ( h + R1 ) . h .|| ) & ||. ( h + R1 ) . h .|| < e / ( 1 + 1 ) ; LSeg ( G * ( len G , 1 ) + |[ 1 , - 1 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 1 ) \/ { G * ( len G , 1 ) + |[ 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) .= LSeg ( h /. ( i + 1 ) , h /. ( i + 1 ) ) ; A = { q where q is Point of TOP-REAL 2 : LE q , p , P , p1 , p2 & LE q , p , P , p1 , p2 & LE q , p , P , p1 , p2 & LE p , q , P , p1 , p2 & LE q , p , P , p1 , p2 & LE p , q , P , p1 , p2 & LE p , q , P , p1 , p2 & LE p , q , P , p1 , p2 & LE p , q , P , p1 , p2 , P , p2 & LE p , q , P , p1 , p2 , P , p1 , p2 & LE p , q , P , p1 , p2 & LE p , q , P , p1 , p2 & LE p , q , P , P , p1 , p2 , p2 & LE p , p1 , P , p1 , p2 , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p ( ( - x ) .|. y ) = - ( ( 1 - x ) .|. y ) * ( ( - x ) .|. y ) .= ( ( - 1 ) .|. y ) * ( ( - x ) .|. y ) .= ( ( - 1 ) .|. y ) * ( ( - x ) .|. y ) .= ( ( - 1 ) .|. y ) * ( ( - x ) .|. y ) .= ( ( - 1 ) .|. y ) * ( - y ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( p `1 / p `2 ) ^2 + ( p `2 / p `2 ) ^2 * ( 1 + ( p `2 / p `1 ) ^2 ) .= ( p `1 / p `2 ) ^2 * ( 1 + ( p `2 / p `1 ) ^2 ) ; ( ( U * ( W - p ) ) * ( W - p ) ) = ( ( U * ( W - p ) ) * ( W - p ) ) * ( W - p ) .= ( ( U * ( W - p ) ) * ( W - p ) ) * ( W - p ) .= ( ( U * ( W - p ) ) * ( W - p ) ) * ( W - p ) .= ( ( U * ( W - p ) ) * ( W - p ) ) * ( W - p ) * ( W - p ) ) * ( W - p ) * ( W - p ) * ( W - p ) * ( W - p ) ) * ( W - p ) * ( W - p ) * ( W - p ) * ( W - p ) .= ( ( ( p ) * ( W - p ) * ( W - p ) * ( W - p ) * ( W - func Shift ( f , h ) -> PartFunc of REAL m , REAL means : Def4 : dom it = dom f & for x be Element of REAL m st x in dom it holds it . x = - h . x + h . x * f . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i , j ) ; assume that not y in Free H and x in Free H and not ( x in Free H ) and not ( x in Free H & y in Free H or x in Free H ) and not ( x in Free H & y in Free H ) and not ( x in Free H & y in Free H ) ; defpred P11 [ Element of NAT , Element of NAT ] means ( p |-count ( $1 + 1 ) ) * ( ( p |-count ( $1 + 1 ) ) * ( ( p |-count ( $1 + 1 ) ) * ( ( p |-count ( $1 + 1 ) ) ) ) & ( p |-count ( $1 + 1 ) ) * ( ( p |-count ( $1 + 1 ) ) * ( ( p |-count ( $1 + 1 ) ) ) ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def4 : for A , B being Subset of X st A c= it & B c= it holds C . ( A \/ B ) <= C . ( A \/ B ) & C . ( A \/ B ) <= C . ( A \/ B ) ; [#] ( ( dist ( ( dist ( > ) ) ) .: Q ) = ( ( dist ( ( dist ( P ) ) ) .: Q ) ) & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( Q ) ) .: Q ) ; rng ( F | ( ( S | ( S ) ) ) ) = {} or rng ( F | ( ( S | ( S ) ) ) ) = { 1 } or rng ( F | ( S /\ ( S /\ ( S /\ ( T ) ) ) ) ) = { 1 , 2 } or rng ( F | ( S /\ ( T /\ T ) ) ) = { 1 , 2 , 3 } ; ( f " ( rng ( f * ( ( f * ( f * g ) ) ) ) ) . i = f . i .= ( ( f * ( f * g ) ) * ( f * ( f * g ) ) ) . i .= ( f * ( f * g ) ) . i .= ( f * ( g * g ) ) . i .= ( f * g ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 /\ P2 = { p1 , p2 } and P = { p1 , p2 } and P1 <> p2 and P2 = { p1 , p2 } and P = { p1 , p2 } and P = { p2 , p1 } and P = { p1 , p2 } and Q = { p2 , p1 } and P = Q and Q = { p1 , p2 } and P = Q and Q = { p1 , p2 } and Q = { p2 , p1 , p2 , p1 , p2 , p3 } and P = { p2 , p1 , p3 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 } and P = { p1 , p4 } and P = { p1 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 f . p2 = |[ ( p2 `1 ) ^2 + ( p2 `2 ) ^2 * ( p2 `2 ) ^2 , ( p2 `2 ) ^2 * ( p2 `2 ) ^2 + ( p2 `2 ) ^2 * ( p2 `2 ) ^2 + ( p2 `2 ) ^2 * ( p2 `2 ) ^2 , ( p2 `2 ) ^2 * ( p2 `2 ) ^2 + ( p2 `2 ) ^2 * ( p2 `2 ) ^2 ; ( ( \lbrace a , X } ) * ( ( \lbrace a , X } ) " ) ) . x = ( ( \lbrace a , X \rbrace qua Function ) . x ) * ( ( ( a , X ) * ( ( 1 , X ) " ) ) . x .= ( ( ( 1 , X ) --> u ) * ( 1 , X ) ) . x .= ( ( ( 1 , X ) --> u ) * ( 1 , X ) ) . x .= ( ( ( 1 , X ) --> u ) . x ) * ( ( 1 , u ) . x ) * ( ( 1 , u ) ) . x ) * ( ( 1 , u ) . x ) * ( ( 1 , u ) * ( 1 , u ) . x ) * ( 1 , u ) . x ) * ( ( ( ( ( 1 , u ) . x ) " * ( ( ( ( 1 , u ) * ( ( 1 , u ) . x ) * ( ( 1 , u ) . x ) * ( ( 1 , u ) . x ) .= ( ( ( 1 , u ) . x ) * ( ( for T being non empty normal TopSpace , A , B being closed Subset of T st A <> {} & A misses B & B misses A & A misses B holds A /\ B c= B & A /\ ( B /\ C ) c= A & A /\ ( ( in \in \mathbb R ) \ B ) implies A /\ B c= B & A /\ ( ( in \mathbb R ) \ B ) for i , j st i in dom F for G1 , G2 being strict normal Subgroup of G st i = F . i & j = G . j & i in dom G1 & j in dom G2 holds G1 . i = G1 . ( i + 1 ) & G2 . ( i + 1 ) = G1 . ( i + 1 ) & G1 . ( i + 1 ) = G2 . ( i + 1 ) for x st x in Z holds ( ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) . x = ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) . x / ( ( 1 + 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) . x attr f is right & x0 in dom ( f /* a ) & ( for x st x in dom f holds f . x - f . x0 = ( f /* a ) . x ) implies f is convergent & lim ( f , x0 ) = ( f /* a ) . x0 - ( f /* a ) . x0 ; then X1 , X2 are_separated or X1 misses X2 or X2 misses X1 or X1 misses X2 & X2 misses X2 or X1 misses X2 & X2 misses X1 or X1 misses X2 & X2 misses X1 or X1 misses X2 & X2 misses X2 or X1 misses X2 & X2 misses X2 or X1 misses X2 & X2 misses X2 or X1 misses X2 & X2 misses X1 or X2 misses X1 & X2 misses X2 & X1 misses X2 & X2 misses X2 & X1 misses X2 & X2 misses X1 & X2 misses X1 & X1 misses X2 or X2 misses X2 & X1 misses X2 or X2 misses X2 or X1 union X2 & X2 misses X2 or X2 misses X2 & X2 misses X2 or X2 misses X2 & X2 misses X2 & X2 misses X2 & X1 union X2 & X2 misses X2 & X1 union X2 & X1 misses X2 & X2 misses X2 & X2 misses X1 & X1 union X2 & X2 misses X2 or X1 union X2 & X2 misses X2 & X1 union X2 & X2 misses X2 or X1 union X2 & X2 misses X2 or X2 misses X2 union X2 & X2 misses X2 or X1 union X2 misses X2 union X2 union X2 & X2 misses X1 union X2 & X2 meets X2 & X1 union X2 misses X2 ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L be ( for x be Element of REAL m st x in N holds ( SVF1 ( 1 , f , u ) ) . x - SVF1 ( 1 , f , u ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) ; ( ( p2 `1 ) * sqrt ( 1 + ( p3 `2 ) ^2 ) ) / ( ( p2 `1 ) * sqrt ( 1 + ( p3 `2 ) ^2 ) ) >= ( ( p2 `1 ) * sqrt ( 1 + ( p3 `2 ) ^2 ) / ( ( p2 `1 ) ^2 ) ; ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) (#) ( ( 1 - t1 ) * ( ( 1 - t1 ) * ( ( 1 - t1 ) * ( ( 1 - t1 ) * ( ( 1 - t1 ) * ( ( 1 - t1 ) * ( 1 - t1 ) ) * ( 1 - t1 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) `| ( ( 1 - t1 ) ) ) `| ( ( 1 - t1 ) ) . x = ( ( 1 - t1 ) (#) ( ( 1 - t1 ) ) ) . x ) ) / ( ( 1 - t1 ) ) ) / ( ( 1 - t1 ) (#) ( ( 1 - t1 ) ) / ( assume that for x holds f . x = ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ) ) ) ) ) ) ) `| Z ) ) and for x ) ) ) . x ) ) and for x st x in Z ) holds ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ) `| Z ) . x ) - ( ( 1 / 2 ) ) . x ) - ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ) ) `| Z ) . x ) ) and for x holds consider X1 being Subset of Y , Y1 being open Subset of X such that t = X1 and Y1 in A and Y1 is open and for Y1 being Subset of X st Y1 in A & Y1 is open holds Y1 /\ Y1 = Y1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 c= Y1 & Y1 is open & Y1 is open ; card ( S . n ) = card { [: d , ( a |^ 3 ) + b , d :] where d is Element of GF ( p ) : [ d , ( a |^ 3 ) + b ] in R } .= 1 + ( R * ( a |^ 3 ) ) .= ( R * ( a |^ 3 ) ) * ( R * ( a |^ 3 ) ) ; ( ( W-bound D - W-bound D ) / ( ( i1 - 1 ) / ( m - 1 ) ) / ( ( m - 1 ) / ( m - 1 ) ) * ( ( m - 1 ) / ( m - 1 ) ) = ( ( W-bound D - ( m - 1 ) ) / ( m - 1 ) ) / ( ( m - 1 ) / ( m - 1 ) ) * ( ( m - 1 ) / ( m - 1 ) ) ;