thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is commutative ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = b ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in dom f ; assume f is max ; not x in Y ; z = +infty ; k be Nat ; K `2 is being_line ; assume n >= N ; assume n >= N ; assume X is 1 -element ; assume x in I ; q is as let of 0 ; assume c in x ; as Real ; assume x in Z ; assume x in Z ; 1 <= k12 ; assume m <= i ; assume G is commutative ; assume a divides b ; assume P is closed ; I > 0 ; assume q in A ; W is not bounded ; f is elements ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= L~ L~ f ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , f be FinSequence of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is from of n , m ; Q halts_on s ; x in \in \in \in \in \in \in \in $ ; M < m + 1 ; T2 is open ; z in b < a < b ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , f be FinSequence of REAL ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , x1 ; let E be Ordinal ; o : o : a , b are_collinear ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y / 0 ; rng f <= w ; b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealLinearSpace , M be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 meets L~ Cage ( C , n ) ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a\not <= non < \pi ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Subset of V ; s is trivial & s is non empty ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S.: S is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U1 , U2 ; pp `2 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in `2 ; 1 <= jj & jj <= len f ; set A = Cl -> set ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_\cdot \cdot the \rangle ; assume n0 <= m ; T is increasing implies T is increasing e2 <> e2 & e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper implies G is implies H = G i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected & union M = union M ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be \pi ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v + dom ( X .--> v ) ; - y in I ; let A be non empty set , f be FinSequence of A ; P0 = 1 ; assume r in F . k ; assume f is simple & g in S ; let A be Incountable set ; rng f c= NAT ( ) ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let II , A ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in D ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , BOOLEAN ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} & mm <> {} ; M + N c= M + M ; assume M is connected hhhz ; assume f is bbbb-r-closed ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is as as as continuous Function ; f . x - b <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cj in Seg n ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c2 implies a2 = c2 s2 is 0 -started & s2 is 0 -started ; IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be MSAlgebra over L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w be Element of V ; R8 in X ; let a , b be Real , f be FinSequence of REAL ; let a be Object of C ; let x be Vertex of G ; let o be object of C , m be Morphism of o , m ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , n be Nat ; s4 . n = N ; set y = ( x `1 ) / ( x `2 ) ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CV ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xx c= Z1 & Z1 c= Z1 & x in Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & Im ( seq ) is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , k be Nat ; assume r2 > x0 & x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & m + 1 in dom g2 ; n in dom g1 & m in dom g2 ; k + 1 in dom f ; not the still of { s } is finite ; assume x1 <> x2 & x2 <> x3 ; v1 in V1 & v2 in V1 & v1 <> v2 ; not [ b `1 , b ] in T ; ii + 1 = i ; T c= Assume T ; ( l - 1 ) * ( l - 1 ) = 0 ; n be Nat ; ( t `2 ) ^2 = r ; AA is integrable & f | A is bounded ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; Product seq is non empty ; e <= f or f <= e ; cluster empty -> non empty normal for NAT -defined Function ; assume c2 = b2 & c1 = c2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that v-4 is Cauchy and v- is Cauchy ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 & p01 <> p2 implies p1 <> p2 assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete up-complete non empty reflexive RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one implies G is one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y & 0. V = 0. V ; I be being being being being being the InstructionsF of S , T be Element of S ; f-24 . x = 1 ; assume z \ x = 0. X ; p4 = 2 to_power n & p4 = 2 to_power n ; let B be sequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL & x3 in REAL ; p1 `1 = ( K `1 ) * ( 1 , 1 ) `1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMMSorts A is closed assume z0 <> 0. L & z0 <> 0. L ; n < N7 . k ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , S :] is stable Subset of R ; set cR = Vertices R , S = Vertices R ; ( p ) c= P3 & ( p ) c= P3 ; x in [. 0 , 1 .] ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; sup downarrow a = sup downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_equipotent ; assume a in A ( i ) ; k in dom ( q ^ <* k *> ) ; p is non empty \HM { x } ; i - 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume k in dom C & k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom F = dom G ; let s be Element of NAT , k be Nat ; let R be ManySortedSet of A ; let n be Element of NAT , x be Element of REAL ; let S be non empty non void non void non empty non void non void for E ; let f be ManySortedSet of I ; let z be Element of F_Complex , f be FinSequence of COMPLEX ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= V1 & V1 c= V1 & B-15 c= V1 ; assume I is_halting_on s , P ; U1 = U2 & U2 = U2 implies U1 = U2 M /. 1 = z /. 1 ; xx = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f . x ) `2 <= ( f . x ) `2 ; l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT , k be Nat ; r8 is ( len C ) -element ; assume <* o2 , o *> <> {} ; s . x / 0 = 1 ; card ( K1 ) in M & card ( K1 ) in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = { q . k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for Sublattice of L ; a1 in B . s1 & a2 in B . s1 ; let V be finite VectSp of F , v be Element of V ; A * B on B , A ; f-3 = NAT --> 0 .= ( NAT --> 0 ) ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = ( Z |^ X ) ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , f be Function of I , B ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 - 1 as Nat ; LIN a , d , c ; [ y , x ] in IE ; ( Q ) * ( 3 , 1 ) = 0 ; set j = x0 div m , i = x0 mod m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I ( ) = 1 & phi ( ) = 2 ; [ y , d ] in [: F , F :] ; let f be Function of X , Y ; set A2 = ( B - C ) / ( A * B ) ; s1 , s2 are_` , T & s1 , s2 are_/ 2 ; j1 - 1 = 0 & j1 - 1 = j1 - 1 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_congruent_mod m ; set g = f | D-21 , h = f | Dy1 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 & ( p1 `2 ) ^2 = ( p1 `2 ) ^2 ; a < ( p3 `1 ) / ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 <= i2 -' 1 ; 1 <= i1 -' 1 & i1 -' 1 <= i2 -' 1 ; i + i2 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . ( g . g1 ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 ; assume x in ( X /\ X1 ) \/ ( X /\ X2 ) ; ||. h .|| < d1 & ||. h .|| < d1 ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl2 ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \HM { s } ; Q /\ M c= union ( F | M ) f = b * CFS ( S ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty reflexive RelStr , N be net of L ; S-20 is x -let i , K ; let r be non positive Real ; M , v |= x , y |= x , z ; v + w = 0. Z & w + w = 0. Z ; P [ len F ] implies P [ F ( len F ) ] assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster non empty for Element of S S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T1 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q29 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of m , M ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , em = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root implies ( p `2 <= p `1 ) & ( p `2 <= p `2 ) ; not r in ]. p , q .] ; let R be FinSequence of REAL , x be Element of REAL ; S7 does not destroy b1 & not ( b1 in dom b1 & b2 in dom b2 & b1 <> b2 ) ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq * ( seq ^\ k ) ; let x be FinSequence of NAT , k be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= succ IC s .= succ IC s ; H + G = F- ( GG ) ; CS1 . x = x2 & CS2 . x = y2 ; f1 = f .= f .= f2 .= f1 * f ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a & a1 , b1 _|_ b , a ; \ d1 , o _|_ o , a3 & d1 , o _|_ o , a3 ; IC is reflexive & CC is reflexive implies C is reflexive IO is antisymmetric implies C ( ) is antisymmetric & C ( ) = C ( ) sup rng ( H1 | n ) = e & sup rng ( H1 | n ) = e ; x = ( a * a9 ) * ( a * b9 ) ; |. p1 .| ^2 >= 1 ^2 / ( |. p1 .| ) ^2 ; assume j2 -' 1 < j2 - 1 ; rng s c= dom f1 & rng s c= dom f2 ; assume support a misses support b & not b in support b ; let L be associative non empty doubleLoopStr , F be FinSequence of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 ) = I1 +* ( 1 , k ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster -> non empty for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* \rangle . ( N , \subseteq ) -> complete for non trivial set ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; ( n - i ) > 0 ; assume ( 1 - 2 ) * t `2 <= 1 ; card B = k + 1-1 ; x in Union ( f | ( rng f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in D ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & not v in { v } ; let G be : is_differentiable_on wwgraph ; e , v6 be set , x be set ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* ( f1 /* q ) is divergent_to+infty ; set z1 = - z2 , z2 = - z2 , z2 = - z2 , z1 = - z2 , z2 = - z2 , z2 = - z2 , z2 = - z1 , z2 = - z2 , z2 assume w is_llof S , G ; set f = p |-count ( t ) , g = p |-count ( t ) , h = p |-count ( t ) , i = p |-count ( t ) , i = p |-count ( t ) , j let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , f be Function of X , REAL ; reconsider p = p , q = q as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM+FSA , f be FinSequence of the carrier of SCM+FSA ; stop I ( ) c= P3 ( ) ; set ci = ( f /. i ) `1 , fj = ( f /. j ) `1 ; w ^ t ^ w ^ s ^ t ^ w ^ s ^ t ^ s ^ w ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ t ^ s ^ W1 /\ W = W1 /\ W2 ` & W1 /\ W2 = W1 /\ W2 ; f . j is Element of J . j ; let x , y be Element of T2 , f be Function of T2 , T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & ord x is not of G ; set g2 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( FY ) = 0 & L1 . ( FY ) = 0 ; / ( X \/ R1 ) = / ( X \/ R1 ) ; ( ( ( - 1 ) (#) ( sin * cos ) ) `| Z ) . x <> 0 ; ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) = f ; o1 in ( X /\ ( O /\ O2 ) ) /\ O2 ; e , v6 be set , x be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ( F ) ) ; let J be closed Ideal of R , I be Ideal of R ; h . p1 = f2 . O & h . O = g2 ; Index ( p , f ) + 1 <= j ; len ( q ^ <* M *> ) = width M & len ( q ^ <* M *> ) = len M ; the carrier of L c= A & the carrier of L c= A ; dom f c= union rng ( F . -10 ) ; k + 1 in support ( ( support n ) | ( support k ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in InnerVertices ( R ~ ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X ( ) ; reconsider w = |. s1 .| as Real_Sequence of REAL ; ( 1 / ( m * m + r ) ) < p ; dom f = dom ( ( I - 1 ) --> ( I - 1 ) ) ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal -> ExtReal for ExtReal ; then { d1 } c= A ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M , w2 be Element of N ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 & u in W2 implies u in W1 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of T |^ ( the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n / 1 .= n ; h . J = EqClass ( u , J ) ; let seq be \mathclose { \Vert } , n be Nat ; dist ( x `1 , y ) < ( r / 2 ) / 2 ; reconsider mm = m , mn = n as Element of NAT ; ( x- x0 ) < r1 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * ( idseq q `1 ) , g2 = p `2 ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I1 ) in { x } & D2 . ( I ) in { x } ; cluster subcondensed closed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gij in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; n be Element of NAT , x be Element of REAL n ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ' ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , I be Program of SCMPDS ; let t be 0 -started State of SCMPDS , Q be t -started State of SCMPDS ; b , b , x , y , z ; assume that i = n \/ { n } and j = k \/ { n } ; let f be PartFunc of X , Y ; x0 >= ( sqrt ( c / 2 ) ) * ( sqrt ( c / 2 ) ) ; reconsider t7 = T" as TopSpace , t be Point of I[01] ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 . ( z2 + 1 ) ; A |^ 0 = { <* \rangle *> } & A |^ 1 = { {} } ; len W2 = len W + 2 & len W2 = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg len s2 & i + 1 in Seg len s2 ; z in dom g1 /\ dom g2 & z in dom g1 /\ dom g2 ; assume p2 `1 = ( E-max ( K ) ) `1 & p2 `2 = ( E-max ( K ) ) `1 ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & f2 (#) ( f1 - f2 ) = lim ( f1 , x0 ) ; cluster seq + seq + seq + ( - seq ) -> summable ; assume j in dom M1 & i in dom M2 ; let A , B , C be Subset of X ; let x , y , z be Point of X , f be Function of X , Y ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> \subseteq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len q2 ; ex x being element st x in dom R & R . x = y ; len q = len ( K (#) G ) .= len G ; s1 = Initialize ( ( Initialized s ) +* ( 1 , k ) ) ; consider w being Nat such that q = z + w ; x ` ` is X implies x ` is X & x ` is Element of X k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the TopStruct of TOP-REAL n ; let N , M be being being being being being being being being being being being \hbox of L ; then z >= waybelow x & z >= compactbelow y ; M \lbrack f , f .] = f & M \lbrack g , f .] = g ; ( ( L~ z ) /. 1 ) = TRUE ; dom g = dom f -tuples_on X & dom g = dom f -tuples_on X ; mode \cal o is \cal \cal \cal o of G means : Def4 : for n being Nat holds it . n = G . n ; [ i , j ] in Indices ( M @ ) ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) , g be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a2 ) = G1 & F1 . ( - a2 ) = G1 ; cluster Sphere ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 + f2 ) ) ; curry ( FF , k ) is additive & curry ( FF , k ) is additive ; set k2 = card dom B , s3 = card C , s4 = card D , s4 = card D , s4 = card D , s4 = card D , s4 = card D , s4 = card D , s4 = card D , set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as terminal of G ; let a , b be Element of MM , f be FinSequence of the carrier of M ; reconsider s1 = s , s2 = t as Element of S0 ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x = 0 iff x = 0. W ) ; IY in dom stop I & IY in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= Union ( ( Carrier J ) * ( i , 1 ) ) cluster All ( x , H ) -> reconsider reconsider H1 -LSeg ; d * N1 ^2 > N1 * 1 / ( 2 * N ) ; ]. a , b .[ c= [. a , b .] ; set g = f " | D1 , f = f " | D2 ; dom ( p | ( REAL m ) ) = REAL m & dom ( p | m ) = REAL m ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( ( ( #Z 2 ) * ( f1 + f2 ) ) `| Z ) . x ; x in rng ( f /^ ( len p -' 1 ) ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 & p ( ) in the carrier of S2 ; rng f " = dom f & rng f = dom f ; ( the Source of G ) . e = v & ( the Source of G ) . e = v ; width G - 1 < width G - 1 ; assume v in rng ( S | E1 ) & v in rng ( S | E1 ) ; assume x is root or x is root or x is root & x is root ; assume 0 in rng ( g2 | A ) & 0 < len ( g2 | A ) ; let q be Point of ( TOP-REAL 2 ) | P , r be Real ; let p be Point of ( TOP-REAL 2 ) | P , p1 , p2 be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & <* 7 *> in the carrier of C-20 ; i <= len ( G * ( i1 , j1 ) ) - 1 ; let p be Point of ( TOP-REAL 2 ) | P , p1 , p2 be Point of TOP-REAL 2 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q /\ R /\ S ) ; ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 & I < len Comput ( P1 , s1 , m ) ; CurInstr ( p1 , s1 ) = i & CurInstr ( p1 , s1 ) = halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ /\ dom f ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of ( CompactSublatt L ) ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ( A , I ) ; len ( ( the connectives of C ) . ( n + 1 ) ) = 4 ; let C1 , C2 be subcategory of C ; reconsider V1 = V as Subset of X | B , V1 = V | B ; attr p is valid means : Def4 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " * ( H |^ a ) is Subgroup of H ; let A1 be Let B1 of O , E be Element of E ; p2 , r3 , q3 is_collinear & q2 , q3 , q3 is_collinear & q2 <> q3 & q2 <> q3 & q2 <> q3 & q2 <> q3 ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } \/ { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 . ( 0 ) < M . ( E8 ) ; ^ ( op ( c ) , op ( c ) ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Line for *> -\cal .| for non empty Poset ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f ) ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def4 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of X ; cluster ( x `1 ) / ( x `2 ) -> non reconsider x / ( x `2 ) -> non reconsider y / ( x `2 ) -> non zero ; set S = <* Bags n , i9 *> , T = <* i *> , S = <* i *> , T = <* j *> , R = <* i *> , T = <* i *> , S = <* i *> , T = <* i set T = [. 0 , 1 / 2 .] , S = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / ( 2 * PI ) < ( 2 * PI ) / ( 2 * PI ) ; x2 in dom ( f1 + f2 ) /\ dom ( f2 + f3 ) ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp , f be FinSequence of G ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & len <* P *> = len P ; set N-26 = the be let of N , x be Element of N ; len gSet + ( x + 1 ) - 1 <= x ; a on B & b on B & c on B ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len f - n ; set q2 = E-max C , q2 = E-max C , q2 = E-max C , q3 = E-max C , q3 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = set S = S1 +* ( S1 , S2 ) ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & G . q2 c= G . q2 ; f " D meets h " V & f " V meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_left_argument_of H ) ; assume t is Element of ( F . X ) . s ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( a2 , b2 ) = b2 ; the carrier' of G `1 = E \/ { E } & E in { E } ; reconsider m = len ( k - 1 ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M2 ; assume that P c= Seg m and M is \HM { 0 , 1 } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; ( ( p . i ) `1 = ( p . i ) `1 ; let PA , G be a_partition of Y , a be Element of Y ; pred 0 < r & r < 1 implies 1 < ( 1 - r ) / ( 1 - r ) ; rng ( AffineMap ( a , X ) ) = [#] X & rng ( ( AffineMap ( a , X ) ) | A ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS s ) = card s .= card ( rng s ) ; reconsider x2 = x1 , y2 = x2 , z2 = y2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ ( the topology of Y ) ) ; dom ( f . 0 ) c= dom ( ( f . 0 ) .--> ( f . 1 ) ) ; pred n divides m & m divides n implies n = m ; reconsider x = x , y = y , z = z as Point of I[01] ; a in *> implies the carrier of T2 = the carrier of T2 & the carrier of T2 = the carrier of T2 not y0 in the still of f & not ( ex g st g in dom f & not g in f ) ; Hom ( ( a ~ ) , c opp ) <> {} ; consider k1 such that p " < k1 and k1 < len p and p . k1 = f . ( k1 + 1 ) ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g & [ y , k ] in dom g ; set S1 = \times \times l2 = m2 & l2 = i2 & l2 = j2 & E = i2 & E = i2 & E = j2 ; x0 in dom ( ( u + v ) | A ) & x0 in dom ( ( u + v ) | A ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 , q = ( TOP-REAL 2 ) | K1 ; I[01] = ( R^1 | B01 ) | B01 .= ( ( TOP-REAL 2 ) | B01 ) | B01 ; f . p4 <= f . p1 & f . p2 <= f . p1 & f . p4 <= f . p1 ; ( ( F . x ) `1 ) ^2 / ( ( F . x ) `2 ) ^2 <= ( ( F . x ) `1 ) ^2 / ( ( F . x ) `2 ) ^2 ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider s\overline = seq . ( s , t ) as terminal of D ; ( k - 1 ) <= len thesis - j ; [#] S c= [#] T & [#] T c= [#] T & [#] T c= [#] T ; for V being strict real linear holds V in W1 implies V in W1 assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , n2 , K be Matrix of n1 , n2 , K ; - a * - b = a * b - b * c ; for A being Subset of A9 , B being Subset of A9 holds A // B implies A c= B ( the charact of o2 ) in <^ o2 , o2 ^> & ( the _ of o1 ) in <^ o2 , o1 ^> ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , N be normal Subgroup of G ; j >= len upper_volume ( g , D1 ) - len upper_volume ( g , D2 ) ; b = Q . ( len Q - 1 ) + 1 .= len Q ; f2 * f1 /* s is divergent_to+infty & f2 * ( f1 /* s ) is divergent_to+infty ; reconsider h = f * g as Function of N4 , G ; assume that a <> 0 and Let ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of T7 ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 + L2 ; Directed I is_halting_on Initialized s , P +* I & Directed I is_halting_on Initialized s , P +* I ; Initialized p = Initialize ( p +* q +* ( i , k ) ) ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( ( uparrow p ) \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B /\ C ) /\ D /\ D /\ { {} } ; n <= len ( P + Q ) - len ( P + Q ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x1 `2 ) ^2 .= ( x2 `1 ) ^2 + ( x2 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 let x , y be Element of FTT1 ( n , k ) ; p = |[ p `1 , p `2 ]| & p <> |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h * h * g ; let p , q be Element of V , a be Element of V ; x0 in dom ( x1 - x2 ) /\ dom ( x2 - y2 ) ; ( R qua Function ) " = R " & ( R " ) * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * I ) ) ) ) ) ) = R ; n in Seg ( len ( f /^ 1 ) ) & ( f /^ 1 ) . n = f . ( len f -' 1 ) ; for s be Real st s in R holds s <= s2 implies s <= s2 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for for for X be Subset of \rm such X = 2 holds X is finite ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) * 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) * w & w in F ; curry ( P' , k ) # x is convergent & ( curry ( P' , k ) # x ) is convergent ; cluster open -> open for Subset-Family of T7 ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & c1 , c2 // b , c ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total and f is total ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a , I ; ( goto ( card I + 1 ) ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , s4 = LifeSpan ( p3 , s3 ) , P4 = Comput ( p3 , s3 , 1 ) , P4 = P3 ; IC SCMPDS in dom ( Initialize p +* ( l , S ) +* ( l , S ) ) ; dom t = the carrier of SCM+FSA & dom t = the carrier of SCM+FSA ; ( ( E-max L~ f ) .. f ) .. f = 1 & ( E-max L~ f ) .. f = 1 ; let a , b be Element of V , f be Function of V , C ; Cl ( union Int F ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( A1 \/ A2 ) ; assume not LIN a , f . a , g . b ; consider i being Element of M such that i = d6 and i in N ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( ( y , v ) / ( x , y ) ) |= H ; consider m being element such that m in Intersect ( FF , S ) and x = ( Intersect FF ) . m ; reconsider A1 = support ( u1 ) , A2 = support ( v1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 and a4 <> a5 and a5 <> a5 ; cluster s -\mathop { V } -> non empty for string of S ; Carrier ( L2 /. n2 ) = Carrier ( L2 . n2 ) & Carrier ( L2 ) . n2 = Carrier ( L ) ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and r-7 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , x be Point of TOP-REAL n ; assume [ k , m ] in Indices ( D * ( i , m ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / p ; ( F . N | E8 ) . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card ( X-18 ) <= card ( u \/ { w } ) ; set g = z \circlearrowleft ( E-max L~ z ) , M = z .. z , N = z .. z , S = z .. z , N = z .. z , S = z .. z , N = z .. z , S = z .. z , N = ( then k = 1 or p . k = <* x , y *> . k ; cluster -> total for Element of C -succ ( X , D ) ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | B , C be Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , f be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 ) c= P & Line ( x1 , x2 , x3 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( g2 . O ) `1 ) ^2 = - 1 & ( g2 . O ) `2 = 1 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , E = E-bound C , N = E-bound C , S = Gauge ( C , n ) ; S1 . ( a `1 , e `2 ) = a + e .= a `1 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f ) ) = dom ( Im ( f ) ) ; ( Dx ) `1 = W . ( a , *' ( a , p ) ) ; set Q = non empty contradiction , being being |= being Element of |= ( g , f ) ; cluster -> many sorted for ManySortedSet of U1 , B be ManySortedFunction of U2 ; attr F = { A } means : Def4 : F is discrete ; reconsider z9 = *> , \mathopen = <* x *> as Element of product G ; rng f c= rng f1 \/ rng f2 & rng ( f1 + f2 ) c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & g = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 ) & E , j |= All ( x2 , x3 ) ; reconsider n1 = n , n2 = m , n3 = n , n2 = m , n3 = n , n3 = m , n1 = n , n2 = m ; assume that P is idempotent and R is idempotent and P (*) R = R (*) P ; card B2 \/ { x } = k-1 + 1 - 1 .= k + 1 - 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies ( x \ B1 ) /\ B2 = {} ; g + R in { s : g-r < s & s < g + r } ; set q-111 = ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ; for x being element st x in X holds x in rng f1 implies x in rng f1 h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , thesis ( Bags NAT ) \ { {} } ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% - l . ( k + 1 ) %> .= - ( l . k ) ; ( ( GoB f ) * ( 1 , 1 ) ) `2 <= ( ( GoB f ) * ( 1 , 1 ) ) `2 ; attr R is condensed means : Def4 : Int R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( ( c /\ ( ( ( d /\ e ) /\ f ) /\ f ) ) /\ j ) /\ e ) ; u in ( ( ( c /\ ( ( ( d /\ e ) /\ b ) /\ f ) ) /\ j ) /\ e ) ; len C + - 2 >= 9 + - 3 + ( - 3 ) ; x , z , y is_collinear & x , z , y is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a |^ n1 ; <* \underbrace ( 0 , \dots , 0 , 0 , 0 , 0 ) *> in Line ( x , a ) ; set y9 = <* y , c *> , z9 = <* c , x *> ; FF /. 1 in rng Line ( D , 1 ) & len ( D * ( 1 , 1 ) ) = width D ; p . m Joins r /. m , r /. ( m + 1 ) , G ; ( p `2 ) = ( f /. i1 ) `2 .= ( f /. ( i1 + 1 ) ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of P\overline ( X ) , f be Function of X , REAL ; p |-count ( Product ( Sgm ( X ) ) ) = 0 & p |-count ( Product ( Sgm ( X ) ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = ( card I + 4 ) .--> ( ( card I + 3 ) + 4 ) ; x in { x , y } & h . x = {} T & h . y = {} ; consider y being Element of F such that y in B and y <= x `2 ; len S = len ( the charact of ( A + B ) ) .= len the charact of ( A + B ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : \HM { G : G * ( i , j ) `1 = G * ( i , j ) `1 } ; rng F c= the carrier of gr { a } & F . ( { a } ) = F . ( { a } ) ; implies implies for n , K , n , r being FinSequence st len Q = n & len r = n holds P [ n , r , r ] f . k , f . ( ( p mod n ) + 1 ) are_congruent_mod n ; h " P /\ [#] T1 = f " P & h " P = f " P ; g in dom f2 \ f2 " { 0 } & f2 . ( g . 0 ) = f2 . ( g . 0 ) ; gX /\ dom f1 = g1 " ( X /\ dom f1 ) .= g1 " ( X /\ dom f1 ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = being being dist of dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) ; b `2 / ( 1 + ( 1 - r ) / ( 1 + r ) ) < ( 1 - r ) / ( 1 + r ) ; reconsider f1 = f as VECTOR of the carrier of X , g be Function of X , Y ; pred i <> 0 means : Def4 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j2 in Seg ( len g2 ) ; dom ( i ) = dom ( i - 1 ) .= Seg ( ( len i ) - 1 ) .= Seg ( ( len i ) - 1 ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , x2 = y0 as Function of S , IF = ( X --> 0 ) ; reconsider R1 = x , R2 = y , R1 = z , R2 = t , R2 = u , R2 = v , R1 = v , R2 = w , R2 = w , R2 = w , R2 = v , R2 = w , R2 = w , R2 = v , R2 = w , R2 = w , consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) = f ; cluster -> C -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f3 ) ; Esuch that ( e2 . e2 ) = E8 . e2 & ( E8 . e2 ) = E8 . e2 ; ( ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 / 2 ) / 2 & lower_bound A = 0 ; F . ( dom f , - f ) is_transformable_to F . ( cod f , - f ) ; reconsider pbeing Point of TOP-REAL 2 , q = ( q `1 ) / |. q .| as Point of TOP-REAL 2 ; g . W in [#] Y & [#] Y c= [#] Y & [#] Y c= [#] X & [#] X c= [#] Y ; let C be compact connected non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 - r , x0 .[ ; assume x in { ( idseq 2 ) . ( idseq 2 ) , ( Rev ( idseq 2 ) ) . ( i + 1 ) } ; reconsider n2 = n , m2 = m , m2 = n , m2 = m , n1 = n , n2 = m ; for y being ExtReal st y in rng seq holds g . y <= g . y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 ) , Bg = f .: ( the carrier of X2 ) , Bh = f .: ( the carrier of X2 ) , Bh = f .: ( the carrier of X1 ) , Bh = f .: ( the carrier of X2 ) , B ex d being Element of L st d in D & x << d ; assume R ~ c= R ~ & R ~ c= R ~ & R ~ c= R ~ & R ~ c= R ~ & R c= R ~ & R c= R ~ c= R ~ ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] & P [ y2 , x2 ] ; pred x1 <> x2 means : Def4 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume p2 - p1 , p3 - p1 - p1 - p1 , p4 - p1 - p1 , p3 - p1 is_collinear ; set q = Ant ( f ) ^ <* 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS m , r be Real ; ( n mod ( 2 * k ) ) + ( n mod k ) = n mod k ; dom ( T * ( succ t ) ) = dom ( succ t ) & dom ( succ t ) = dom ( succ t ) ; consider x being element such that x in wc and x in c ; assume ( F * G ) . ( v . x3 ) = v . x3 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D2 c= the carrier of D2 ; reconsider A1 = [. a , b .[ , B1 = [. a , b .] as Subset of REAL ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = E-max L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) ; n1 - len f + 1 - len f + 1 <= len - ( len g - 1 ) + 1 - len f ; .| |. |. .| ( q , O1 ) .| = [ u , v , a , b , c , d ] ; set C-2 = ( \mathclose { \overline { \overline { \overline { \kern1pt G \kern1pt } } } ) . ( k + 1 ) ; Sum ( L * p ) = 0. R * Sum p .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 in dom Q ( ) & ( $1 in dom Q ( ) implies Q . $1 = Q ( $1 ) ) ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P2 , s2 , k ) , s4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 let l be variable of k , A , B be Subset of k , x be element ; reconsider U1 = union G-24 , U2 = union G-24 , E = union GT2 , T = union ( T \/ S ) ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; por = <* - ( c - 1 ) , 1 , - ( c - 1 ) , - ( c - 1 ) , - ( c - 1 ) , - ( c - 1 ) , - ( c - 1 ) , - ( c - 1 ) , - ( c - 1 ) *> ; synonym f is real-valued for rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x0 < card ( X0 ) + card ( Y0 ) - 1 / ( card Y0 ) + 1 / ( card Y0 ) ; attr X c= B1 means : Def4 : for B st X c= B holds \mathop { \rm _ lpp) ( B ) c= succ B ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; pred 1 <= len s means : Def4 : len it = len s & for i being Nat st i in dom s holds it . i = s . ( i - 1 ) ; f.: c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in the carrier of \rm WFF means : Def4 : q '&' p in the carrier of - p ; - ( t `1 / t `2 ) ^2 < ( t `1 / t `2 ) ^2 / t `2 ; U1 . 1 = U1 /. 1 .= U1 /. 1 .= U1 /. ( 1 + 1 ) .= U1 . ( 1 + 1 ) ; f .: ( the carrier of x ) = the carrier of x & f . ( the carrier of x ) = f . ( the carrier of x ) ; Indices O = [: Seg n , Seg n :] & dom O = Seg n & rng O = Seg n ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is \cup of Aand x = f . ( len f ) ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - v1 `2 <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - ( v1 - v2 ) * |[ w1 , v1 ]| <> 0. TOP-REAL 2 ; reconsider t = t as Element of ( Z |^ X ) * , s be Element of Z ; C \/ P c= [#] ( ( G | [#] ( ( ( G | A ) \ A ) ) \ A ) ; f " V in ( for X being Subset of [ X , f ] ) /\ D ( X , ( the carrier of S ) --> ( X , f ) ) ; x in [#] ( ( the carrier of Y ) /\ A ) /\ ( ( the carrier of Y ) /\ A ) ; g . x <= h1 . x & h . x <= h1 . x & h1 . x <= h1 . x ; InputVertices S = { xy , yz , yz , yz , \emptyset , {} , {} , {} , {} , {} , {} , {} , {} , {} , {} } ; for n being Nat st P [ n ] holds P [ n + 1 ] & P [ n + 1 ] ; set R = Line ( M , i , a * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M2 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( ( F1 ^ F2 ) | ( len F1 + len F2 ) ) .= len ( ( F1 ^ F2 ) | ( len F1 + len F2 ) ) ; len ( ( ( the ` of n ) * ( i , j ) ) * ( i , j ) ) = n ; dom ( f + g ) = dom ( f + g ) & dom ( f + g ) = dom ( f + g ) ; ( ( the Sorts of seq ) . n ) . x = upper_bound Y1 & ( ( the Sorts of seq ) . n ) . x = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom ( f ^ <* p1 *> ) .= dom ( f ^ <* p2 *> ) .= dom ( f ^ <* p2 *> ) ; M . [ 1 / ( 1 - y ) , y ] = 1 / ( 1 - y ) * v1 .= y ; assume that W is non trivial and W the Source of G c= the carrier of G and W is trivial ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) & C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f-g <= b - a ; - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ ( NAT \ { l } ) ) c= R ; consider p being element such that p in such that p in { x } and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid ( s => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) . ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> ( f . ( x1 , x2 ) ) * ( f . ( x2 , y2 ) ) ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( N-min L~ Cage ( C , n ) ) * ( i , 1 ) , ( E-max L~ Cage ( C , n ) ) * ( i , 1 ) ) ; set R8 = R / 1 , R8 = ]. b , +infty .[ , R8 = ]. a , b .[ ; IncAddr ( I , k ) = AddTo ( da , db ) .= IncAddr ( da , db ) .= ( - ( - ( - ( - ( k + 1 ) ) ) ) ) ; seq . m <= ( ( ( seq ^\ k ) ^\ n ) ^\ k ) . m ; a + b = ( a ` *' ) ` + ( b ` *' ) .= ( a ` ` ) + ( b ` ) ; id ( X /\ Y ) = id ( X /\ Y ) .= id X /\ id Y ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U1 = U2 \/ U1 , U2 = U2 \/ U1 as non empty Subset of U0 ; u in ( ( ( c /\ ( ( ( ( ( d /\ e ) /\ f ) ) /\ f ) ) /\ j ) ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] and P [ y , inf B ] ; consider A being finite stable Subset of R such that card A = ( R * S ) . ( len A ) ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & rng <* p1 *> c= rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 > 0 & len s2 - 1 > 0 ; ( ( N-min P ) `2 ) ^2 = ( ( E-max P ) `2 ) ^2 + ( ( E-max P ) `2 ) ^2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) /\ L~ Cage ( C , k + 1 ) ; f . a1 ` ` = f . a1 ` & f . ( a1 ` ) = f . ( a1 ` ) ; ( seq ^\ k ) . n in ]. x0 - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 - r , x0 .[ ; gg . s0 = g . s0 .= G . s0 .= G . s0 .= G . s0 .= G . s0 ; the InternalRel of S is \lbrace the InternalRel of S , the InternalRel of S , the InternalRel of S } ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 , $2 ) & phi . ( $2 , $2 ) = phi . ( $2 , $2 ) ; F . ( s1 . a1 ) = F . ( s2 . a1 ) .= F . ( s2 . a1 ) .= F . ( s2 . a1 ) ; x `1 = A . o . a .= Den ( o , A ) . a ; Cl ( f " P1 ) c= f " P1 & f " P1 c= f " P1 & f " P1 c= f " P1 ; FinMeetCl ( ( the topology of S ) . n ) c= the topology of T & FinMeetCl ( ( the topology of S ) . n ) c= the topology of T ; synonym o is \hbox means : Def4 : o <> \ast & o <> * ; assume that X |^ + = Y |^ + 1 and card X <> card Y and card Y <> card X ; the *> ( s ) <= 1 + ( ( the *> of s ) +* ( 1 , ( the +* ( 1 , s ) ) ) ) ; LIN a , a1 , d or b , c // b1 , c1 or a , b // b1 , c1 or a , c // c1 , c2 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 4 = 0 ; EE in SE & EE in { NE } & EE in { NE } ; set J = ( l , u ) If , K = I " ; set A1 = Subset ( Y ) , A2 = Y +* ( A1 +* ( A2 +* ( A1 +* ( A1 +* ( m +* ( x , y , c ) ) ) ) ) ; set c9 = [ <* cin , cin *> , and2 ] , A1 = [ <* cin , cin *> , and2 ] , A2 = [ <* cin , cin *> , and2 ] , C = [ <* cin , cin *> , and2 ] , D = [ <* cin , cin *> , and2 ] , N = [ <* cin , cin *> , and2 ] , A = x * z `2 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = f3 . x & f . x = f3 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min C , E-max C & W-min C <> W-min C implies W-min L~ Cage ( C , n ) in L~ Cage ( C , n ) set f-17 = f @ "/\" ( g @ ) ; attr S1 is convergent & S2 is convergent & S1 is convergent implies S1 - S2 is convergent & lim ( S1 - S2 ) = lim ( S1 - S2 ) ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + ( 0 qua Ordinal ) .= a + ( 0 qua Ordinal ) ; cluster -> Carrier -> Carrier for reflexive non empty reflexive transitive RelStr , M , N be reflexive non empty reflexive RelStr ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( a |^ 0 ) * x ) ) = len l & len ( l |^ 0 ) = len l ; t4 is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng t4 ) * , D = { {} } ; t = <* F . t *> ^ ( C . p ) ^ ( C . q ) .= ( C . q ) ^ ( C . q ) ; set pp = W-min L~ Cage ( C , n ) , p1 = W-min L~ Cage ( C , n ) , p2 = W-min L~ Cage ( C , n ) , p3 = Cage ( C , n ) , p4 = Cage ( C , n ) , p4 = Cage ( C , n ) , p4 = Cage ( C , n ) , p4 = ( k - ( i + 1 ) ) - ( i + 1 ) = ( k - ( i + 1 ) ) - ( i + 1 ) ; consider u being Element of L such that u = u ` *' & u in D ; len ( ( width ( ( a - G ) * ( i , j ) ) - ( a - G * ( i , j ) ) ) ) = width ( ( a - G ) * ( i , j ) ) ; FF . x in dom ( ( G * the_arity_of o ) . x ) ; set cH2 = the carrier of H2 , c = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m & ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) - ( k + 1 ) .= ( l + 1 ) - ( k + 1 ) ; dom ( ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) ) `| REAL ) = REAL ; cluster <* l *> ^ phi ^ phi -> ( 1 + ( not l ) ) -element for string of S ; set b5 = [ <* ap , bp *> , and2 ] , c5 = [ <* A1 , cin *> , and2 ] , c5 = [ <* cin , cin *> , and2 ] , c5 = [ <* A1 , cin *> , and2 ] , b5 = [ <* cin , cin *> , and2 ] , b5 = [ <* cin , A1 *> , and2 Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q ; n in dom ( ( ( the Sorts of A ) * the_arity_of o ) * ( the Arity of S ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of S ; consider y be Point of X such that a = y and ||. x - y .|| <= r ; set x3 = t3 . DataLoc ( s2 . SBP , 2 ) , x4 = [ s2 . SBP , 2 ] , x4 = [ s2 . SBP , 2 ] , x4 = [ s2 . SBP , 2 ] , P4 = [ s2 . SBP , 2 ] , P4 = [ s2 . SBP , 2 ] , P4 = [ s2 . set pp = stop I , p1 = P +* I , p2 = P +* I , p3 = P +* I , p4 = P +* I , p4 = P +* I , p4 = P +* I , P4 = P +* I , P4 = Comput ( P3 , s3 , 1 ) , P4 = P3 ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D } = { A , B , C } \/ { D , E , F , J , M , N , N , M , N , N , N , F , M , N , N , N , F , M , N , N , M , N , N , F , M , let A , B , C , D , E , F , J , M , N , N , F , M , N , N , F , J , M , N , N , F , N , M , N , N , F , N , M , N , N , F , N , M , N , N , |. p2 .| ^2 - ( ( p2 `2 ) / |. p2 .| ) ^2 >= 0 & ( p2 `2 ) / |. p2 .| ) ^2 >= 0 ; l - 1 + 1 = ( n * ( l6 + 1 ) ) + ( ( n + 1 ) + 1 ) ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) + ( c * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = TopSpaceMetr ( ( the Scott of L ) | the carrier of L ) .= TopSpaceMetr ( ( the Scott of L ) | the TopStruct of L ) ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H1 and x = H1 . y ; f9 \ { n } = Free ( All ( v1 , H ) ) & not f in Free ( All ( v1 , H ) ) ; for Y being Subset of X st Y is summable holds Y is iff X is iff Y is iff X is iff Y is iff X is iff Y is iff X = Y 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of } the { - } \rm <* s *> ) = len s & len ( the { - } -\rm Shift s ) = len s for x st x in Z holds ( exp_R * f ) is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | P ) | the carrier of ( ( TOP-REAL 2 ) | P ) ; j + ( len f - len f ) <= len f + ( len f - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL n , REAL-NS n , x be Point of REAL-NS m ; C8 . x = s1 . ( a - 1 ) .= C8 . ( a - 1 ) .= C8 . ( a - 1 ) ; ( power F_Complex ) . ( z , n ) = 1 .= ( x |^ n ) * ( z |^ n ) .= ( x |^ n ) * ( z |^ n ) ; t at ( C , s ) = f . ( ( the connectives of S ) . t ) & t = s . ( ( the connectives of S ) . t ) ; support ( f + g ) c= support f \/ C /\ support g \/ support f /\ support g ; ex N st that N = j1 & 2 * Sum ( ( r | N ) | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] , [ x2 , x3 ] } is Subset of [: X1 , X2 :] ; h = ( i = j = i |-- h , id B . i ) .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in N ; set X = ( |. ( |. |. ( q .| ) ) .| ) * ( ( |. q .| ) .| ) , Y = ( |. q .| ) * ( ( |. q .| ) ) * ( ( |. q .| ) ) ; b . n in { g1 : x0 < g1 & g1 < x0 } & ( for n holds g1 . n < x0 ) implies f . ( n + 1 ) < f . ( n + 1 ) f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = lim ( f /* s1 ) the lattice of the lattice of Y = the lattice of the lattice of the lattice of Y & the carrier of X = the carrier of Y implies X = Y 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( b . x ) = FALSE ; ( 2 = len ( ( q1 ^ <* r1 *> ) + len ( q1 ^ <* r1 *> ) ) + len ( q1 ^ <* r1 *> ) ) ; ( ( 1 / a ) (#) ( sec * f1 ) - id Z ) is_differentiable_on Z ; set K1 = upper ( lim ( H , A ) || ( A , B ) ) , D2 = ( lim ( H , A ) || ( A , B ) ) ; assume e in { ( w1 - w2 ) : w1 in F & w2 in G & w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom F `1 , d8 = dom G `1 , d8 = dom F `1 , d8 = dom G `1 , d8 = dom F `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom F `1 , d8 = dom G `1 LSeg ( f /^ ( j + 1 ) , q ) = LSeg ( f , j ) + q .. f ; assume X in { T . ( N2 , L2 ) : h . ( N2 , L2 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S-34 = dom S /\ Seg n .= dom L /\ Seg n .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= Seg n /\ Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a & g in H a * ( ( a , n ) * ( a , 1 ) ) = a `2 - ( 0 * n ) .= a `2 - ( 0 * n ) ; D2 . ( j - j ) in { r : lower_bound A <= r & r <= upper_bound A } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ g ^ @ @ f ; dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ dom ( f2 (#) f3 ) ; 1 = ( p * p ) * p .= p * ( p * q ) .= p * ( q * p ) ; len g = len f + len <* x + y *> .= len f + 1 + 1 .= len f + 1 + 1 .= len f + 1 ; dom ( ( F | ( N1 /\ S-23 ) ) | ( N1 /\ S-23 ) ) = dom ( F | ( N1 /\ S-23 ) ) ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ ( the carrier of S ) ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g . ( len g ) = g . ( len g ) ; ( ( x \ y ) \ z ) \ ( ( ( x \ z ) \ ( y \ z ) ) \ ( z \ x ) ) = 0. X ; consider f such that f * f " = id b and f * f = id a and f * f = id b ; ( ( ( ( ( 2 ) * cos ) * cos ) `| [. 0 , PI / 2 .] ) ) . ( ( ( 2 * cos ) * cos ) `| [. 0 , PI / 2 .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS + 1 - Index ( Gij , LS ) - 1 ; let t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 ( the mapping of ( ( Frege ( H ) ) . h ) ) . h <= ( the mapping of ( ( Frege ( G ) ) . h ) ) . ( h . ( h . ( h . ( k + 1 ) ) ) ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j & F ( f . i0 ) < j ; Q [ ( D . ( [ D . x , 1 ] ) , F . [ D . x , 1 ] ) ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is \HM { l . i } ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= ( the carrier of S2 ) --> ( the carrier of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Upper_Seq ( C , n ) /. len Upper_Seq ( C , n ) ) `1 = W-bound L~ Cage ( C , n ) ; q `2 <= ( ( UMP C ) * ( ( UMP C ) * ( 1 , 1 ) ) `2 ) ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= Ia and A = ]. a , Ia .] and a < I and I = ]. a , I .] ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n in dom b } , Y = { b |^ n where n is Element of NAT : n in dom b } ; ( ( x * y * z ) \ x ) \ ( ( x * y * z ) \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* x , y *> , f3 ] , \mathopen = [ <* y , z *> , f3 ] , f4 = [ <* z , x *> , f3 ] , f4 = [ <* x , y *> ll /. len ll = ll . ( len ll ) .= ll . ( len ll ) ; ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - cn ) / ( 1 + cn ) ) ^2 < 1 ; ( ( ( ( ( S \/ S ) \/ S ) ) \/ S ) `2 = ( ( ( S \/ S ) \/ S ) \/ S ) `2 ; ( s1 - s2 ) . k = s1 . k - s2 . k .= s1 . k - s2 . k .= s1 . k - s2 . k .= s1 . k - s2 . k .= s1 . k - s2 . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of ( the carrier of X ) = the carrier of X & the carrier of ( X ) = the carrier of X ; ex p4 st p4 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A ) , AA = chi ( X , A ) , AB = chi ( X , A ) ; R / ( 0 * n ) = I---> ( X , X ) * ( R / n ) .= R / ( n * n ) ; ( Partial_Sums ( ( curry ( F , I ) ) . n ) . ( ( curry ( F , I ) . n ) ) . ( ( Partial_Sums ( ( curry ( F , I ) ) . n ) ) . ( ( Partial_Sums ( ( curry ( F , I ) ) . n ) ) . ( ( Partial_Sums ( ( curry ( F , I ) ) . n ) ) ) . ( ( Partial_Sums f2 = C7 . ( E7 , len ( V . ( K . ( K . ( K . ( L . ( K . ( L . ( K . ( L . ( K . m ) ) ) ) ) ) ) ) ) ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p01 ) \/ LSeg ( p1 , p01 ) /\ LSeg ( p1 , p01 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 12 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) If , phi = ( l1 , l2 ) If , phi = ( l1 , l2 ) If , phi = ( l1 , l2 ) If , phi = ( l1 , l2 ) <> {} ; synonym p is invertible for p , T means : Def4 : HT ( p , T ) = 1 & HT ( p , T ) = 0. L ; ( Y1 `2 = - 1 & ( Y1 `2 ) - cn ) <> 0 & ( Y1 `2 / Y1 `1 <> - cn ) & ( Y1 `2 / Y1 `1 <> cn ) & ( Y1 `2 / Y1 `1 <> - cn ) & ( Y1 `2 / Y1 `1 <> - cn ) & ( Y1 `2 / Y1 `1 <> - cn ) & ( Y1 `2 / Y1 `1 <> - cn ) & ( Y1 `2 / Y1 defpred X [ Nat , set , set , set ] means P [ $2 , $2 , $1 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) * ( m -' n ) = 1. K * ( ( m - n ) * ( m - n ) ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cf . d = C7 . ( d7 . d ) mod C7 . ( d8 . d ) .= C7 . ( ( d - 1 ) mod C7 . d ) mod C7 . ( ( d - 1 ) mod C7 . d ) ; attr X1 is dense means : Def4 : X2 is dense dense & X1 /\ X2 is dense implies X1 union X2 is dense SubSpace of X ; deffunc FF ( Element of E , Element of I , Element of I ) = ( $1 * $2 ) * ( $2 * $1 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ ( x \ y ) .= 0. X ; for X being non empty set holds X is Basis of <* X , \subseteq FinMeetCl ( X , FinMeetCl Y ) *> iff X is Basis of <* X , \subseteq \subseteq X , FinMeetCl Y *> synonym A , B are_separated for Cl A , B , C , D , E , F , J , M , N , N , F , M , N , N , F , J , M , N , N , F , N , M , N , N , F , M , N , N , F , N , M , N , N , N , F , N , M , N , N , N len ( M8 ) = len p & width ( M8 ) = width ( p * ( i , j ) ) & width ( p * ( i , j ) ) = width ( p * ( i , j ) ) ; J . v = { x where x is Element of K : 0 < v . ( x + 1 ) } ; ( ( ( Sgm ( support m ) ) . d - ( Sgm ( support m ) ) . e ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & dom g = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len <* 1 *> & len w = len w + 1 ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= ( IC Exec ( i , s2 ) ) + n .= ( IC Exec ( i , s2 ) ) ; IC Comput ( P , s , 1 ) = succ IC s .= ( ( 0 + 1 ) + 1 ) .= 5 .= ( 5 + 1 ) ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) & LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( f , C ) , A ) = f . ( upper_bound C ) - f . ( lower_bound C ) .= f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. L - L /. h .|| < e1 * ( K + 1 ) * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 1 ] , p4 = [ 3 , 1 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y in F and x \not c= F ; for y , x being Element of REAL m st y in Y ` & x in X holds y <= x ` & y <= x ; func |. p \bullet q .| -> variable of A means : Def4 : for p being FinSequence of A holds it . p = min ( NBBI ( p ) , q ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 & x , y '||' z `1 , t `2 ; dom x1 = Seg len x1 & len x2 = len x2 & len y2 = len x2 & len ( x1 ^ x2 ) = len ( x1 ^ x2 ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /. s1 .|| = ||. f /. ( X + s1 ) .|| .= ||. f /. ( X + s1 ) .|| .= ||. f /. ( X + s1 ) .|| ; ( ( the InternalRel of A ) ~ ) /\ ( ( the InternalRel of A ) ` /\ Y ) = {} \/ {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and for i , j being Nat st i in dom q & j in dom q & q . i = q . j holds p . ( i + 1 ) = p . ( j + 1 ) ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , rng ( f | [: X , Y :] ) ; u1 in the carrier of W1 & u2 in the carrier of W2 implies ( u + u1 ) + ( u + u2 ) in the carrier of W1 & ( u + u1 ) + ( u + u2 ) in W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . ( $1 + 1 ) & f . ( $1 + 1 ) <= f . ( $1 + 1 ) ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x - y ) = - x + ( - y ) .= - x + ( - y ) .= - x + y .= - x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_ed ed & a , x are_elements of G ; fconsider fconsider A2 = [ [ dom ( f2 * f2 ) , cod ( f2 * g2 ) ] , h2 = [ cod ( f2 * g2 ) , cod ( f2 * g2 ) ] , h2 = [ cod ( f2 * g2 ) , cod ( f2 * g2 ) ] ; for k , n being Nat st k <> 0 & k < n & k <> n holds k , n are_congruent_mod k , n * ( k * n ) for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & ( ( A ` ) |^ d ) ` = ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; Carrier ( L-13 ) . k = Carrier ( L ) . ( F . k ) & F . k in dom ( L ) ; set i2 = AddTo ( a , i , - n ) , i1 = a - ( - n ) ; attr B is max means : Def4 : for S being Subsqrt of B holds ( Let S , B ) `1 = ( B `1 ) `1 ; a9 " D = { a "/\" d where d is Element of N : d in D } & N = { a "/\" d where a is Element of N : a in D } ; |( \square , ( - q ) * ( - q ) , ( - q ) * ( - q ) )| >= |( - q , - q )| ; ( - f ) . ( sup A ) = ( ( - f ) | A ) . ( sup A ) .= - f . ( sup A ) ; ( G * ( i , k ) ) `1 = G * ( len G , k ) `1 .= G * ( 1 , k ) `1 .= G * ( 1 , k ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) . LM ) . LM = <* ( proj ( i , n ) . LM ) . LM *> .= <* ( proj ( i , n ) . LM ) . LM *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) ) . ( x0 - x ) ) ; pred ( ( ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) ex t being SortSymbol of S st t = s & h1 . t = h2 . x & t = h2 . x & t = h2 . x ; defpred C [ Nat ] means P8 . $1 is non empty & A8 : ( A is $1 is non empty & A is $1 & A is $1 is non empty or A is non empty ) ; consider y being element such that y in dom ( ( p - q ) | i ) and ( ( p - q ) | i ) . y = ( ( p - q ) | i ) . y ; reconsider L = Product ( { x1 } +* ( index B , l ) ) as Subset of product Carrier A ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & ( T . ( id c ) ) . ( id c ) = id d ( ( f , n ) --> p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j + 1 ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p `2 = ( ( c | n ) *' ) . ( - ( f . ( - g ) ) ) .= ( - c ) * ( ( - g ) . ( - ( - g ) ) ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ ( 8 - r1 ) / 2 , ( 8 - r1 ) / 2 ]| ) in f1 .: W1 /\ W2 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a * ( ( a | ( n , L ) ) . x ) .= a * ( ( a | ( n , L ) ) . x ) ; z = DigA ( tl , x9 ) .= DigA ( tl , x9 ) .= DigA ( tl , x9 ) .= DigA ( tl , x9 ) .= DigA ( tl , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , G = { Intersect S where S is Subset-Family of X : S c= G } , F = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S : S c= G } , H = { Intersect S where S is Subset of X : S c= G } ; consider S19 being Element of D such that S `1 = S19 ^ <* d *> and S . ( i + 1 ) = S . ( d + 1 ) ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x1 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 / ( 1 + cn ) ^2 / ( 1 + cn ) ^2 ; ( 0. ( V ) ) is Linear_Combination of A & Sum ( ( 0. V ) (#) ( ( 0. V ) (#) ( ( 0. V ) (#) ( ( 0. V ) (#) ( ( 0. V ) (#) ( ( 0. V ) (#) ( 0. V ) ) ) ) ) = 0. V ) ; let k1 , k2 , k1 , k2 , k2 , x4 , 6 , 7 , 8 , 8 , 8 , 9 , 8 , 7 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 9 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and a . j = b . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = *> * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c and c <= d and |[ a , b ]| c= dom f and |[ a , b ]| c= dom g and g . a = g . b ; cell ( Gauge ( C , m ) , ( X , 1 ) -' 1 , 0 ) is non empty ; Ain { ( S . i ) `1 where i is Element of NAT : i in dom ( S . i ) `1 } ; ( T * b1 ) . y = L * b2 /. y .= L * ( b1 /. y ) .= ( F /. y ) * ( G * ( b1 /. y ) ) .= ( F * ( b1 /. y ) ) * ( G * ( b1 /. y ) ) ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) / ( 2 * ( k + 1 ) ) >= ( log ( 2 , k + 1 ) ) / ( 2 * ( k + 1 ) ) ; then p => q in S & not x in the still of p & not p in S & p => q in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is extended real means : Def4 : for x being set st x in rng f holds x is ExtReal & f . x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 + 1 .= len p3 + 1 + 1 .= len p3 + 1 + 1 ; ( l ) * ( 1 , 3 ) = ( g . ( 1 , 3 ) + ( k + 1 ) * ( 1 , 3 ) - ( k + 1 ) * ( 1 , 3 ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= halt SCM+FSA .= ( halt SCM+FSA ) . l .= ( halt SCM+FSA ) . l .= ( halt SCM+FSA ) . l .= ( halt SCM+FSA ) . l .= ( halt SCM+FSA ) . l .= ( ( halt SCM+FSA ) . l ) ; assume for n be Nat holds ||. seq .|| . n <= ( R . n ) * ( R . n ) & ( R . n ) * ( R . n ) <= ( R . n ) * ( R . n ) ; sin ( st Let \mathclose { -1 } ) = sin r * cos ( ( - 1 ) * ( sin ( r ) ) ) .= 0 ; set q = |[ g1 . ( 0 ) , g2 . ( 0 + 1 ) ]| , r = |[ g1 . ( 0 + 1 ) , g2 . ( 0 + 1 ) ]| , s = |[ r , g2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in <* W\sqcup ( F . n ) , G . n *> ; consider G such that F = G and ex G1 st G1 in SM & G = ( X \/ G1 ) . ( n + 1 ) and G . ( n + 1 ) = G . ( n + 1 ) ; ( the root of [ x , s ] ) . [ x , s ] in ( ( the Sorts of Free ( C ) ) . s ) . [ x , s ] ; Z c= dom ( ( exp_R * f ) + ( ( exp_R * f ) ) `| Z ) & f = ( ( exp_R * f ) + ( exp_R * f ) ) . ( x + x0 ) ; for k being Element of NAT holds r0 . k = ( upper_volume ( Im ( f ) , S ) ) . k - ( ( Im ( f ) ) . k ) * ( ( Im ( f ) ) . k ) assume that - 1 < n and q `2 > 0 and ( q `2 / |. q .| - cn ) * ( 1 + cn ) < 0 and q `2 <= 0 ; assume that f is continuous and a < b and a < d and f . a = c and f . b = d and f . a = d and f . b = c ; consider r being Element of NAT such that s-> Element of ( P1 + P2 ) * ( i , r ) & r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } = x and x <> y and y <> z ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( ( proj ( F , i2 ) ) . ( A . ( A . ( i + 1 ) ) ) ) ; rng ( ( ( ( Flow M ) | ( the carrier of M ) ) | ( the carrier' of M ) ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) --> { t } where t is Element of T : t in { t } } ; consider l being Nat such that for m being Nat st l <= m holds ||. s1 . m - ( lim s1 ) .|| < g / 2 ; consider t be VECTOR of product G such that mt = ||. Dt . t .|| and ||. t .|| <= 1 / 2 ; assume that the carrier of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> , v ^ <* 1 *> *> in dom p and v ^ <* 1 *> in dom p ; consider a being Element of the \rm lines of X , A being Element of the \rm lines of X such that a on A and b on A and a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . ( i + 1 ) in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ y , x ] & P [ x , y ] ; L~ f2 = union { LSeg ( p0 , p1 ) , LSeg ( p1 , p01 ) } .= { LSeg ( p1 , p01 ) , LSeg ( p1 , p01 ) } \/ { LSeg ( p1 , p01 ) } ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 2 - 1 + 2 - 1 + 2 - 1 + 2 - 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nbeing ) . ( n -' 1 ) .| & F . ( n -' 1 ) = |. ( nbeing ) . ( n -' 1 ) .| ; for r , s1 , s2 , s3 being Element of REAL holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & s2 <= s2 & s2 <= r & r <= s2 & s2 <= s2 implies s1 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= F & F c= G & G c= F & G c= F & G c= F & G c= F & G c= F & F c= G & G c= F ; let g be then then of A |^ X , Z , f , g , h , i , j , z be Element of Z ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CP such that for n holds P [ n , q1 . n ] and q1 . ( n + 1 ) = F ( n ) ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and f . ( n + 1 ) = F ( n ) ; reconsider B9 = B /\ B , O1 = O /\ O , Z1 = O /\ O , Z1 = O /\ O , I = O /\ O , I = O /\ O , E = I /\ O , I = I /\ O , I = I /\ O , E = I /\ I , I = I /\ I , I = I /\ I , E = I /\ I , I = I /\ I , I = I /\ I , E = I /\ I consider j being Element of NAT such that x = ( the ` of n ) \ ( j - 1 ) and 1 <= j and j <= n and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x in L1 . O2 ; ( C * \vert \vert \vert : T4 ( k , n2 ) .| ) . 0 = C . ( ( \vert \rm : .| ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = dom ( X --> f ) ; ( ( N-bound L~ SpStSeq C ) `2 ) / 2 <= ( ( E-max C ) `2 ) / 2 & ( ( E-max C ) `2 ) / 2 <= ( ( E-max C ) `2 ) / 2 ; synonym x , y are_collinear means : Def4 : x = y or ex l being Subset of S st { x , y } c= l & { x , y } c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that \mathop { \rm Im k is continuous and for x , y being Element of L st a = x & b = y holds x << y iff x << y ; ( 1 / 2 * ( ( ( - ( n + 1 ) ) (#) ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( 1 + 1 ) ) ) ) ) `| REAL ) = f ; defpred P [ Element of omega ] means ( ( ( the partial of A1 ) * ( $1 + 1 ) ) | ( ( ( the Sorts of A1 ) * ( $1 + 1 ) ) /\ ( ( ( the Sorts of A1 ) * ( $1 + 1 ) ) | ( ( ( the Sorts of A1 ) * ( $1 + 1 ) ) /\ ( ( ( the Sorts of A1 ) * ( $1 + 1 ) ) | ( ( $1 + 1 ) * ( $1 + 1 ) ) ) ) ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( 6 + 1 ) .= ( 6 + 1 ) .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g2 * f . g2 ; ( M * ( ( F . n ) . n ) ) . n = M . ( ( ( canFS ( Omega ) ) . n ) ) .= M . ( { ( ( canFS ( Omega ) ) . n } ) . n ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , z , w , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , z , z , x ( ( the partial of s ) . n ) . n <= ( ( the partial of s ) . n ) . ( ( n + 1 ) * s . n ) ; pred - 1 <= r & r <= 1 implies ( ( ( 1 - r ) (#) ( ( 1 - r ) (#) ( ( 1 - r ) (#) ( ( 1 - r ) / ( 1 - r ) ) ) ) `| Z ) = - r / ( 1 - r ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } & p in T1 & p in T1 & q in T2 & p in T1 & q in T2 & p in T1 & q in T2 & p in T1 & q in T2 } ; |[ x1 , x2 , x3 ]| . 2 - |[ x1 , x2 , x3 ]| . 2 - |[ x2 , x3 , x4 ]| . 3 = x2 - x3 - x3 .= x2 - x3 ; attr m is nonnegative means : Def4 : for n be Nat holds ( Partial_Sums ( F ) . n ) . m is nonnegative & ( Partial_Sums ( F ) . n ) . m <= ( ( Partial_Sums ( F ) ) . n ) . m ; len ( ( G . ( z - x ) ) * ( ( G . ( x - y ) ) * ( ( G . ( y - z ) ) ) ) ) = len ( ( G . ( y - z ) ) * ( ( G . ( y - z ) ) * ( ( G . ( y - z ) ) * ( ( G . ( y - z ) ) * ( ( G . ( y - z ) ) ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 and u in W1 /\ W2 and v in W2 /\ W3 ; given F being FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum ( F ) = k ; 0 = 0 * ( 'not' ( - u ) * uH ) iff 1 = ( ( - 1 ) * ( - ( - ( - ( - ( 1 - ( - ( - ( 1 - ( 1 - 2 ) ) ) ) ) ) ) * ( ( - ( 1 - ( 1 - ( 1 - 2 ) ) ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) .| < e ; cluster -> being being being being being being being non empty for \frac for \frac of ( Y ) , ( ( Y ) ` ) ` , ( Y ) ` ) is Boolean & ( ( Y ) ` ) ` = ( Y ` ) ` ; "/\" ( BB , L ) = Top BB .= Top S .= "/\" ( [#] S , L ) .= "/\" ( [#] S , L ) .= "/\" ( ( [#] S ) \ { {} } , L ) .= "/\" ( ( [#] S ) \ { {} } , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 / 2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( ( f `| X ) `| X ) . x >= r2 2 * r1 " * |[ a , c ]| - ( 2 * r1 - 1 ) * |[ b , c ]| = 0. TOP-REAL 2 & ( 2 * r1 - 1 ) * |[ b , c ]| = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) as a " * ( ( - ( - ( - ( K , n , 1 ) ) ) ) * ( ( - ( K , n , 1 ) ) ) * ( ( - ( K , n , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n being Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) & ( len q1 ) = len ( ( g | ( i + 1 ) ) ) ; consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 ; for S , T being non empty RelStr , d being Function of T , S st T is complete for x being Element of T holds d is monotone & x is monotone & d is monotone & x is monotone [ a + 0 , b + i , b2 + ( - 1 ) * ( - 1 ) ] in ( the carrier of ( ( ( n + 1 ) + 1 ) * ( - 1 ) ) * ( - 1 ) ) ; reconsider mm = max ( len F1 , len ( p . n ) * ( p . n ) ) as Element of NAT ; I <= width GoB ( ( GoB ( GoB ( h , n ) ) * ( i , 1 ) ) , ( GoB ( h , n ) ) * ( i , 1 ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def4 : A1 misses A2 & A2 misses A1 & ( A1 \/ A2 ) /\ ( A2 \/ A1 ) = ( ( A1 \/ A2 ) \/ ( A2 \/ A1 ) ) /\ ( A1 \/ A2 ) ; func A -_ C -> set means : Def4 : union it = union { A . s where s is Element of R : s in C } & for x being Element of R st x in A holds it . x = A ( x ) ; dom ( ( Line ( v , i + 1 ) ) ^ ( ( ( Line ( p , m ) ) * ( ( Gauge ( p , m ) * ( i , 1 ) ) * ( i , 1 ) ) ) ) = dom ( F ^ ( ( Line ( F , m ) ) * ( i , 1 ) ) ) ; cluster [ ( x `1 ) / 4 , ( x `2 ) / 4 ] -> [ x `1 , ( x `2 ) / 4 ] -> [ x `1 , ( x `2 ) / 4 ] -> [ x `1 , ( x `2 ) / 4 ] -> [ x `1 , ( x `2 ) / 4 ] ; E , All ( x2 , All ( x2 , x2 ) ) |= All ( x2 , All ( x2 , x2 ) ) => ( x2 '&' ( x2 '&' ( x2 '&' x3 ) ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g ) .= F . ( x , g ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - h . x0 .= ( F . x0 - h . x0 ) - ( F . x0 ) ; cell ( G , ( X -' 1 , Y ) -' ( t + 1 ) , G ) meets UBD L~ f & ( L~ f ) meets L~ f implies ( L~ f ) meets ( L~ f ) \/ ( L~ f ) ; IC Comput ( P2 , s2 , 2 ) = IC Comput ( P2 , s2 , 1 ) .= ( card I + ( card I + 2 ) ) .= ( card I + 2 ) .= ( card I + 2 ) + ( card I + 2 ) .= ( card I + 2 ) + ( card I + 2 ) .= card I + 2 ; sqrt ( ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom g and x0 in g " { k } and y = a . ( k + 1 ) and x0 in dom g and g . ( k + 1 ) = a . ( k + 1 ) ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ dom chi ( A , C ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) ; d-7 . [ y , z ] = ( ( y - z ) * ( x - z ) ) * ( ( y - z ) * ( x - z ) ) ; attr i being Nat means : Def4 : C . i = A . i /\ B . i & C . i c= A . i /\ B . i ; assume that x0 in dom f and f is_continuous_in x0 and for x be Element of REAL st x in dom f holds f is_differentiable_in x0 & f is_differentiable_in x0 holds ( f | X ) . x = - ( f | X ) . x0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q implies A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func Sum ( <*> a ) -> Ordinal means : Def4 : a in it & for b being Ordinal st a in it holds it . b c= a & it . b c= b ; [ a1 , a2 , a3 , a4 ] in ( the carrier of A ) /\ ( the carrier of B ) & [ a1 , a2 , a3 ] in ( the carrier of A ) /\ ( the carrier of B ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ b , a ] = [ a , b ] ; ||. ( ( vseq . n ) - ( vseq . m ) ) - ( vseq . n ) .|| < ( e / ( ||. x .|| + ||. x .|| ) ) * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F . Y c= Z & Z in { Y } holds z in Z ; sup compactbelow [ s , t ] = [ sup ( compactbelow s ) . ( sup compactbelow s ) , sup ( compactbelow s ) . ( sup compactbelow s ) ] .= sup ( compactbelow s ) . ( sup compactbelow s ) ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ij and [ f . i , f . j ] in Ij and [ f . i , f . j ] in Ij ; for D being non empty set , p , q being FinSequence of D st p c= q & p = q holds p ^ q = q ^ p & q ^ p = p ^ q consider e1 being Element of the affine of X such that c9 , a9 // a2 , e1 and a <> e1 and a <> e1 and b <> e1 and a <> e1 and b <> e1 and c <> e1 and a <> e1 and b <> e1 and c <> e1 and a <> e1 and b <> e2 and c , d // b , e2 ; set U2 = I \! \mathop { + } , E = I \! \mathop { + } , F = I \! \mathop { + } , G = I \! \mathop { + } , E = { F } , N = { F } , N = { F } , N = { F } , N = { F } , N = { F } , N = { F . N } , N = { F . N } , N = { F . N } , N = { F . N } , N = { F . N } , N = { F . N , N = { F . N , N = { N . |. q3 .| ^2 = ( ( q3 `1 ) ^2 + ( q3 `2 ) ^2 ) + ( ( q3 `2 ) ^2 + ( q3 `2 ) ^2 ) .= ( q `1 ) ^2 + ( q `2 ) ^2 .= ( q `1 ) ^2 + ( q `2 ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom signature U1 = dom ( ( the charact of U1 ) * the charact of U2 ) & Args ( o , ( the charact of U1 ) * the charact of U2 ) = dom ( ( the charact of U1 ) * the charact of U2 ) ; dom ( h | X ) = dom h /\ X .= dom h /\ X .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( h | X ) ; for N1 , N1 , N2 be Element of G1 holds dom ( h . K1 ) = N & rng ( h . N1 ) = N1 & rng ( h . N1 ) c= N1 & rng ( h . N1 ) c= N1 & rng ( h . N1 ) c= N1 & rng ( h . N1 ) c= N1 & rng ( h . N1 ) c= N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i .= ( mod ( v , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - cn ) / ( 1 + cn ) >= - cn & - ( q `1 / |. q .| - cn ) / ( 1 + cn ) >= cn & - cn < q `2 / ( 1 + cn ) / ( 1 + cn ) ; attr r1 = f9 , r2 = f9 , s1 = f2 , s2 = f9 , s3 = q9 , s3 = f9 , s3 = q9 , s3 = Comput ( f1 , f2 , i ) , s3 = Comput ( f2 , f3 , i ) , s4 = Comput ( f1 , f3 , i ) , P4 = Comput ( f2 , f3 , i ) , P4 = Comput ( f2 , f3 , i ) , P4 = Comput ( f2 , f3 , i ) , P4 = Comput ( f2 , f3 , i ) , P4 = Comput ( f2 , f3 ) , P4 = f1 , s4 = f2 , s4 = f3 ( ( vseq . m ) is bounded & xx . m = ( seq_id ( ( vseq . m ) , X ) ) . x & ( vseq . m ) ) . x = ( ( seq_id ( ( vseq . m ) , X ) ) . x ) . x ; pred a <> b & b <> c & angle ( a , b , c , a ) = PI & angle ( b , c , a ) = 0 & angle ( b , c , a ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and r < j and s < 1 ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + ( 2 * |( p , q )| ) ^2 = |. p .| ^2 + ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 ^ q2 = p1 ^ q1 and p1 ^ q1 = q1 ^ q2 and q1 = q1 ^ q2 and q1 = q2 and q2 = q2 and q1 = q2 and q2 = q2 and q2 = q2 ; 1. ( A , ( 1 , r1 , s1 ) ) * ( 1 , s1 ) = ( s2 * ( s1 , s2 ) ) * ( s1 , s2 ) .= ( s2 * s1 ) * ( s1 , s2 ) ; ( ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ Vertical_Line w ) ) & ( proj2 .: ( A /\ Vertical_Line w ) ) is non empty & ( proj2 .: ( A /\ Vertical_Line w ) ) c= ( proj2 .: ( A /\ Vertical_Line w ) ) ; s , ( k + 1 ) |= H1 '&' H2 iff s |= All ( H1 , H2 ) & s |= All ( H2 , H1 ) & s |= H2 implies s |= All ( H2 , H2 ) & s |= H2 ; len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + ( len b2 ) .= card ( support b2 ) + ( len b2 ) .= len ( s ) + ( len b2 ) .= len ( s ) + len ( b1 ) .= len ( s ) + len ( b1 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z >= x ; LSeg ( ( UMP D ) * ( ( ( ( ( ( ( D ) ) * ( 1 , 1 ) ) + ( ( ( D ) * ( 1 , 1 ) ) + ( D * ( 1 , 1 ) ) ) ) / 2 ) , ( ( D ) * ( 1 , 1 ) ) / 2 ) ) /\ D = { ( ( D ) * ( 1 , 1 ) ) / 2 } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = lim ( ( f `| N ) / ( g `| N ) ) .= lim ( ( f `| N ) / ( g `| N ) ) ; P [ i , pr1 ( f ) . ( i , pr1 ( f ) . ( i + 1 ) , pr1 ( f ) . ( i + 1 ) ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( seq . k ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in P & a in P & b in P & x in P & a in P & b in P & x in P holds a = b Z c= dom ( ( ( 1 / 2 ) (#) f ) `| Z ) \ ( ( ( 1 / 2 ) (#) f ) `| Z ) " { 0 } \/ dom ( ( 1 / 2 ) (#) f ) " { 0 } ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + j & j = len l + 1 & i = len l + 1 + j ; for u , v being VECTOR of V , r being Real st 0 < r & u in N & v in N holds r * u + ( r * v ) + ( r * v ) in N A , Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Cl ( Cl ( A \/ B ) ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u + w ) .= - ( v + u ) + ( - u ) .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM = ( Exec ( a := b , s ) ) . IC SCM .= ( Exec ( a := b , s ) ) . IC SCM .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( Carrier J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty Subset of S1 , f being Function of S1 , S2 , g being Function of S2 , S2 st f = g holds ( f * g ) * ( f * g ) is directed & ( f * g ) * ( f * g ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or x = y or x = y or x = z or y = z or x = z or x = z or y = z or x = z or x = z or y = z or x = z or y = z or x = z or y = z E-max L~ Cage ( C , n ) in rng Cage ( C , n ) implies ( Cage ( C , n ) \circlearrowleft E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) < ( Cage ( C , n ) ) .. Cage ( C , n ) for T , T being decorated tree , p , q being Element of dom T st p ^ q in dom T holds ( T -tree ( p , q ) ) . q = T . q & ( T tree ( p , q ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides k & k divides ( k gcd n ) & ( k divides m ) & ( k divides n implies k divides m ) & ( k divides n ) & ( k divides m ) implies k divides m ) & ( k divides m ) & ( k divides m ) implies k divides m ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " { 0 } = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X2 & rng F = the carrier of X1 & rng F = the carrier of X2 & rng F = the carrier of X2 & F is one-to-one implies F " { 0 } = F " { 0 } consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = n and C = Lin ( B \/ C ) and C = Lin ( B \/ C ) and C = Lin ( B \/ C ) ; V is prime implies for X , Y being Element of \langle the topology of T , \subseteq \rangle st X /\ Y c= V & X c= V or Y c= V or X c= V & Y c= V & V c= V implies X c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Z = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 ) + angle ( p4 , p4 ) .= angle ( p2 , p4 ) + angle ( p3 , p4 ) .= angle ( p4 , p4 ) + angle ( p4 , p4 ) .= angle ( p2 , p4 ) + angle ( p4 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 / ( 1 + cn ) ^2 ) = - sqrt ( ( q `1 / |. q .| - cn ) ^2 / ( 1 + cn ) ^2 ) .= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ^2 / ( 1 + cn ) ^2 ) .= - ( q `1 / |. q .| - cn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 ; attr f is partial means : Def4 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . ( 2 * ( u - x0 ) ) = ( proj ( 2 , 3 ) ) . ( ( u - x0 ) * ( u - x0 ) ) ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= G * ( t , width G ) `2 and G * ( t , width G ) `2 >= G * ( t , width G ) `2 ; pred i in dom G means : Def4 : r (#) ( f * reproj ( G , i ) ) = r * ( f * reproj ( G , i ) ) . x ; consider c1 , c2 being bag of o1 + o2 such that ( <* c1 , c2 *> ) /. k = <* c1 , c2 *> and ( <* c1 , c2 *> ) /. k = <* c1 , c2 *> and ( <* c1 , c2 *> ) /. k = <* c1 , c2 *> ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < G * ( 1 , 1 ) `2 } & G * ( 1 , 1 ) `2 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) .= ( C . ( k2 + 1 ) ) . k .= ( C . ( k2 + 1 ) ) . k .= ( C . ( k2 + 1 ) ) . k ; attr M1 = len M2 & width M1 = width M2 & width M2 = width M2 & width M2 = width M2 & width M1 = width M2 & width M2 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. ( y - x0 ) - x0 .|| < g2 } c= N2 & N c= dom ( ( ||. y .|| ) | N ) ; assume x < ( - b + sqrt ( delta ( a , b , c , d ) ) / ( 2 * a ) ) or x > ( - b + sqrt ( 2 * a ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ ( H1 ^ H2 ) ) . i & ( H1 ^ H2 ) . i = ( <* 3 *> ^ ( H1 ^ H2 ) ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M2 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i <> j holds i divides f /. ( j + 1 ) & i divides len f & j divides len f holds i divides f /. ( j + 1 ) & i divides len f assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\mathopen the carrier of X & c in B\mathopen the carrier of X holds a c= b & b c= c & c c= a & a c= b ; b2 * q2 + ( b3 * q3 + ( b3 * q3 ) ) + ( ( a * q2 ) + ( - ( a * q3 ) ) + ( - ( a * q3 ) ) ) = 0. TOP-REAL n + ( - ( a * q2 ) ) .= 0. TOP-REAL n + ( - ( a * q2 ) ) .= 0. TOP-REAL n + ( - ( a * q2 ) ) .= 0. TOP-REAL n + ( - ( a * q2 ) ) .= 0. TOP-REAL n ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & A c= B & B c= D & A c= B } ; attr seq is summable means : Def4 : seq is summable & seq is summable & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) + Sum ( seq ) ; dom ( ( ( ( ( ( ( sn ) | D ) ) | D ) ) | D ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) | D .= D ; [ X \to Z ] is full full full SubRelStr of ( [#] Z ) |^ the carrier of X & [ X \to Y ] is full SubRelStr of ( [#] Z ) |^ the carrier of X ; ( G * ( 1 , j ) ) `2 = ( G * ( i , j ) ) `2 & ( G * ( 1 , j ) ) `2 <= ( G * ( i , j ) ) `2 ; synonym m1 c= m2 means : Def4 : for p be set st p in P & ( for m be set st p in P & m <> 1 holds ( m in P & p in P & p <> m ) holds p is__ P & p is__ P ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym IT is multiplicative non empty multMagma means : Def4 : the carrier of it = [: the carrier of IT , the carrier of IT :] & the carrier of it = [: the carrier of IT , the carrier of IT :] ; directed ( a , b , c ) + l ( c , d ) = b + l ( c , d ) .= b + l ( c , d ) .= the l of the carrier of thesis + ( a + c ) .= the l of the carrier of thesis + ( a + c ) + d ( b + c ) ; cluster + ( i1 , i2 ) -> Z for Element of INT , i1 , i2 , j1 , j2 be Element of INT , i1 , i2 be Element of NAT , i2 be Element of NAT st i1 = i2 & i2 = i1 & j1 = i2 holds i1 = i2 & j1 = i2 implies i1 = i2 or j1 = j2 & j2 = i2 or i1 = i2 & i2 = i2 & i2 = j2 implies i1 = i2 + i2 + j2 ( - s2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) = ( - r2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) .= ( - s2 ) * p2 + ( s2 * p2 ) - ( s2 * p2 ) ; eval ( ( a | ( n , L ) ) *' , p ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( q , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being open Subset of S st D in V holds V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V meets V and V assume that 1 <= k and k <= len w + 1 and T-7 . ( ( ( q11 , w ) U ) . k ) = ( T-7 . ( ( q11 , w ) . k ) ) . k and T-7 . ( ( ( q11 , w ) U . k ) . k ) and not ( ( ( T . k ) , w ) . k = ( ( T . ( q11 , w ) ) . k ) . k ) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ ( n + 1 ) + ( b |^ ( n + 1 ) ) + ( ( a |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ) + ( ( a |^ ( n + 1 ) ) + b |^ ( n + 1 ) ) ; M , v / ( x. 3 , x. 0 ) / ( x. 0 , x. 4 ) / ( x. 0 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 0 , x. 4 ) / ( x. 0 , x. 0 ) / ( x. 0 , x. 4 ) / ( x. 0 , x. 4 ) / ( x. 0 , x. 4 ) ) / ( x. 0 , x. 4 ) / ( x. 0 , x. 4 ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 - f . x0 and for x0 st x0 in l holds f . x0 < 0 and f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G1 , x being Vertex of G2 st e in W holds not ( W is Walk of G & e in W implies W is Walk of G ) implies W is Walk of G c01 is not empty iff q1 is not empty & not q1 is not empty & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not q1 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q2 is Indices GoB f = dom GoB f & ( GoB f ) * ( i1 , j1 ) in dom GoB f & ( GoB f ) * ( i1 , j1 ) in dom GoB f or ( GoB f ) * ( i1 , j1 ) = GoB f & ( GoB f ) * ( i2 , j1 ) = GoB f & ( GoB f ) * ( i2 , j1 ) = GoB f ) implies ( GoB f ) * ( i2 , j1 ) = ( GoB f ) * ( i2 , j1 ) for G1 , G2 , G3 , G1 , G2 , G3 being stable Subgroup of O st G1 is_stable in the carrier of G2 & G2 is_stable in the carrier of G2 & G1 is_stable in the carrier of G2 holds G1 is stable & G2 is stable & G2 is stable & G1 is stable & G2 is stable UsedIntLoc ( int ) = { intloc 0 , intloc 1 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 0 , intloc 3 , intloc 4 , intloc 5 , intloc 5 , 6 , 7 , 8 , 8 , 6 , 8 , 7 , 8 , 8 , 9 , 8 , 9 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 8 , 9 , 8 , 8 , 7 , 8 , 8 , 9 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 9 , 8 , 8 , 9 , 9 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 9 , 8 , 8 , 9 , 8 , 9 , 9 , for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ p ] & P [ q ] holds Q [ p ^ f1 , p ^ f2 ] & Q [ q ^ f1 , p ^ f2 ] & Q [ p ^ f1 , q ^ f2 ] ( p `1 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ) ^2 = ( q `1 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 / ( 1 + ( q `2 / q `1 ) ^2 ) ; for x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x2 , x3 , x4 , x1 , x2 , x3 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x2 , x4 , x1 , x4 , x2 , x2 , x4 , x1 , x2 , x3 , x4 , x1 , x2 , x3 , x4 , x4 , x2 , x3 for x st x in dom ( ( ( ( h | A ) - x ) | A ) ) holds ( ( ( ( h | A ) - x ) | A ) . ( - x ) = - ( ( ( h | A ) - x ) | A ) . x ) for T being non empty TopSpace , P being Subset-Family of T , B being Basis of T st P c= the topology of T for x being Point of T st x in P & B c= P holds P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( ( a 'or' b ) . x ) 'or' c . x .= TRUE 'or' 'not' ( a 'or' b ) . x .= TRUE ; for e being set st e in A8 ex X1 being Subset of X , Y1 being Subset of X st e = X1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open implies Y1 meets X1 for i be set st i in the carrier of S for f be Function of [: S , T :] , S1 , S2 be Function of [: S , T :] , S2 be Function of [: S , T :] , S2 st f = H . i & g = H . i holds F . i = f | [: F , F :] for v , w st for x st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ( ) ) , J ) . v = Valid ( VERUM ( Al ( ) ) , J ) . w holds Valid ( VERUM ( Al ( ) ) , J ) . v = Valid ( VERUM ( Al ( ) ) , J ) . w card D = card D1 + card D2 - card { i , j } .= ( 1 + 1 ) - ( 1 + 1 ) .= ( 1 + 1 ) - ( 1 + 1 ) .= 2 * ( i - 1 ) - ( 1 + 1 ) .= 2 * ( i - 1 ) - ( 1 + 1 ) .= 2 * ( i - 1 ) - ( 1 + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( ( s +* ( 0 .--> 1 ) ) +* ( 0 .--> 1 ) ) . 0 .= ( ( s +* ( 0 .--> 1 ) ) +* ( 0 .--> 1 ) ) . 0 .= ( ( s +* ( 0 .--> 1 ) ) +* ( 0 .--> 1 ) ) . 0 .= succ IC s ; len f /. ( i1 -' 1 ) - 1 + 1 = len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f - ( i1 -' 1 ) + 1 - 1 .= len f - ( i1 -' 1 ) + 1 - 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b holds k < a + b-2 or k = a + b-2 or k = a + b-2 or k = b + b-2 or k = a + b-2 or k = b + b-2 or k = a + b-2 or k = b + b-2 or k = a + b-2 or k = b + b-2 or k = a + b ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 st p in LSeg ( f , i ) & p <> f /. ( i + 1 ) holds Index ( p , f ) <= Index ( p , f ) & Index ( p , f ) <= Index ( p , f ) lim ( ( curry ' ( I , k + 1 ) ) # x ) = lim ( ( curry ' ( I , k ) ) # x ) + lim ( ( curry ' ( I , k ) ) # x ) .= lim ( ( curry ' ( I , k ) ) # x ) + lim ( ( curry ' ( I , k ) ) # x ) ; z2 = g /. ( ( i -' n1 + 1 ) + 1 ) .= g /. ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i - n1 + 1 ) .= g . ( i - n1 + 1 ) .= g . ( i - n1 + 1 ) .= g . ( i - n1 + 1 ) .= ( g /. ( i - n1 + 1 ) ) + ( z - n1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C & [ f . 0 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A ( ) , Y ( ) st R in F ( ) & Y in G ( ) holds ( Intersect ( R , G ) ) . ( X , Y ) = Intersect ( G , F ) . ( X , Y ) ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) .= halt SCMPDS .= halt SCMPDS .= halt SCMPDS .= ( halt SCMPDS ) ; assume that a on M and b on M and c on N and d on N and p on M and p on N and a on M and p on M and p on M and a on M and p on M and p on M and a on M and p on M and p on M and p on M and a on M and p on M and p on M and a on M and p on M and a on M and p on M and a on M and p on M and p on M and p on M and a on M and p on M and p on M and p on M and p on M and p on M and p on M and a on M and p on M and a on M and p on M and p on M and p on M and a on M and a on M and a on M and p on M and a on M and p on M and p on M assume that T is \hbox { T _ 4 4 , T , B be closed Subset of T , F be Subset-Family of T , n , m , m , n st F is closed & m <= n & n <= m holds F . ( n + 1 ) <= 0 and F . ( n + 1 ) <= 0 ; for g1 , g2 st g1 in ]. r - r , r .[ & g2 in ]. r - r , r .[ & |. f . g1 - r .| <= ( |. f - g .| ) . ( g1 - g2 ) holds |. f . g1 - f . g2 .| <= ( |. f - g .| ) / ( |. f - g .| ) / ( |. f - g .| ) ( ( - 1 ) / ( z1 + z2 ) ) / ( z2 + z2 ) = ( - ( - 1 ) / ( z1 + z2 ) ) / ( z2 + z2 ) .= ( - ( - 1 ) / ( z1 + z2 ) ) / ( z2 + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) * r2 .= <* ( n + 1 ) -tuples_on the carrier of K ) .= <* ( n + 1 ) -tuples_on the carrier of K , ( n + 1 ) -tuples_on the carrier of K , ( n + 1 ) -tuples_on the carrier of K , n + 1 ) ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f * F -> FinSequence of V means : Def4 : len it = len F & for i be Nat st i in dom F holds it . i = f /. i * F /. ( i - 1 ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , 6 , 7 , 8 , 8 , 7 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 7 for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) ; ex S1 being Element of QC-WFF ( Al ( ) ) , e being Element of D ( ) st [ P , e , S1 . ( k + 1 ) ] = S1 & ( for n being Nat holds P [ n , S1 . n , S1 . ( k + 1 ) ] ) & ( for n being Nat holds P [ n , S1 . n ] ) & ( for n being Nat holds P [ n , S1 . n ] ) ; consider P being FinSequence of GS2 such that pS2 = Product P and for i being Element of dom t st i in dom P ex t being Element of Seg k st t . i = ( t . i ) * ( t . i ) & t . i = ( t . i ) * ( t . i ) ; for T1 , T2 being non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P is Basis of T2 holds P is Basis of T1 & P is Basis of T2 implies P is Basis of T2 assume that f is_is_\cal \bf 2 2 } (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , 3 ) = r * pdiff1 ( f , 3 ) . ( 2 * pdiff1 ( f , 3 ) ) ; defpred P [ Nat ] means for F , G being FinSequence of bool ( Seg $1 ) , s be FinSequence of REAL st len F = $1 & rng s = Seg $1 & rng s = Seg $1 holds Sum ( F , s ) = Sum ( G , s ) * ( s , G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex FF being Subset-Family of T st $1 = FF & $2 = ( union FF ) . $1 & ( union FF ) . $1 = ( union FF ) . $1 & ( union FF ) . $1 = ( union FF ) . $1 & ( union FF ) . $1 = ( union FF ) . $1 & ( union FF ) . $1 = ( union FF ) . $1 ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p , P , p1 , p2 holds LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p , p , P , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p , p1 , P , p2 & LE p , p1 , P , p1 , p2 , p2 , p2 , K & LE p , p1 , P , p1 , p2 , K & LE p , p1 , P , p1 , p2 , K & LE p , p1 , P , p1 , p2 , K & LE p , p1 , P , K & LE p , p1 , P , p1 , K & LE p , p1 , P , p1 , p2 , p1 , K & LE p , p1 , P , f in St ( E , H ) & for g st g . y <> f . y holds x = g . y iff for y st y <> x holds g . y = f . ( g . y ) & f . ( g . y ) = f . ( All ( x , H ) . y ) ; ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( for p being Point of TOP-REAL 2 st p in 8 holds p `2 / |. p .| >= cn ) & ( p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 ) & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 implies p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 implies p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL assume for d7 being Element of NAT st d7 <= d7 holds ( for t being Element of NAT st d7 <= t & t <= ( |. 7 .| ) * ( t + |. 7 .| ) ) & ( t + |. 7 .| ) * ( t + |. 7 .| ) = ( ( |. 7 .| ) * ( t + |. 7 .| ) ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and not ex e being Point of E st e = Ball ( x , r ) /\ Ball ( s , r ) & e in Sphere ( x , r ) /\ Ball ( x , r ) ; given r such that 0 < r and for s holds 0 < s or ex x1 be Point of CNS st x1 in dom f & |. x1 - x0 .| < s & |. x1 - x0 .| < s & |. x1 - x0 .| < r & |. x1 - x0 .| < s ; ( p | x ) | ( p | ( x | ( x | x ) ) ) = ( ( ( x | x ) | ( x | ( x | x ) ) ) | ( p | ( x | ( x | x ) ) ) ) | ( p | ( x | ( x | x ) ) ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( ( ( 2 * sec ) `| Z ) . x ) = ( 4 * ( ( 2 * ( x + h ) ) / ( 2 * x ) ) ) / ( 2 * x + h / ( 2 * x ) ) ) and ( ( 2 * sec ) `| Z ) . x = ( 4 * ( x + h ) / ( 2 * x ) ) / ( 2 * x ) ) / ( 2 * x ) ; assume that i in dom A and len A > 1 and len B > 0 and len A = len B and width A = len B and width A = width B and width A = width B and width A = width B and len A = width B and width A = width B and len A = width B ; for i being non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i = <* 1. F_Complex *> & ( i divides n or i divides n & i <> n & n <> 0 & n <> 0 & n <> 0 & n <> 0 & n <> 0 ) implies h . ( n * i ) = <* 1. F_Complex * n , n * n *> ( ( ( b1 'imp' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) '&' ( ( a1 'or' a2 ) '&' ( b1 'or' c2 ) ) '&' ( ( a2 'or' b2 ) '&' ( ( a1 'or' a2 ) '&' ( a1 'or' a2 ) ) ) ) ) '&' ( ( a1 'or' a2 ) '&' ( a1 'or' a2 ) ) '&' ( ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) ) '&' ( a2 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a2 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a2 'or' c2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( ( a1 'or' a2 ) '&' ( ( ( a1 'or' a2 ) '&' ( ( a1 'or' a2 ) '&' ( a2 ) ) assume that for x holds f . x = ( ( ( - 1 ) (#) ( ( cot ) * ( ( cot ) * ( sin ) ) ) `| Z ) . x and for x st x in Z holds ( ( ( - 1 ) (#) ( cot ) ) `| Z ) . x = - ( sin . x ) / ( sin . x ) ^2 ) and for x st x in Z holds ( ( ( - 1 ) (#) ( cot ) ) `| Z ) . x = - ( sin . x ) / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 / ( sin . x ) ^2 + ( sin . x ) ^2 + ( sin . x ) ^2 + ( sin . consider R8 , I8 be Real such that R8 = Integral ( M , Re ( n + 1 ) ) and I8 = Integral ( M , ( Im ( n + 1 ) ) ) and I = Integral ( M , ( Im ( n + 1 ) ) ) and I = Integral ( M , ( Im ( n + 1 ) ) ) and I = Integral ( M , ( Im ( n ) ) ) ; ex k being Element of NAT st ( for q be Element of NAT st q in X & q <> 0 holds ||. ( qx0 - f . ( q - 1 ) ) - ( f . ( q - 1 ) ) .|| < r ) & ||. partdiff ( f , q , k ) - partdiff ( f , q , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , 6 , 7 , 8 , 7 , 8 , 8 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 7 , 8 , 8 , 7 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 7 , 7 , 8 , 7 , 6 , 8 , 8 , 6 , 7 , 8 , ( G * ( j , i ) ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 , T2 ) -> Tree means : Def4 : q in it iff q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P implies p in P or p in P & q in P & p in P & q in P & p in P & p in P & q in P & p in P & p in P & p in P & p in P & q in P & p in P & q in P & q in P & q in P & p in P & p in P & p in P & p in P & p in P & p in P & q in P & p in F /. ( k + 1 ) = F . ( k + 1 ) .= Fpp . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= FIm ( p . ( k + 1 -' 1 ) , k ) .= FIm ( p . k , k ) .= FIm ( p . k , k ) ; for A , B , C being Matrix of K st len B = len C & len C = len C & len A = len B & len B > 0 & len C > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 & width B > 0 & len A > 0 & width B > 0 & width B > 0 & width B > 0 holds A * B = B * C seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of C1 ) and y in ( the carrier of C1 ) and z in ( the carrier of C1 ) and x = [ y , z ] ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k in dom f holds f . k = ( ( VAL g ) . ( k + 1 ) ) * ( ( VAL g ) . ( k + 1 ) ) holds ( ( VAL g ) . ( k + 1 ) ) . f = ( ( VAL g ) . ( k + 1 ) ) * ( ( VAL g ) . k ) ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - cn ) * ( 1 + cn ) >= 0 and ( q `2 / |. q .| - cn ) * ( 1 + cn ) >= 0 and ( q `2 / |. q .| - cn ) * ( 1 + cn ) >= 0 and ( q `2 / |. q .| - cn ) * ( 1 + cn ) >= 0 ; for M being non empty metric space , x being Point of M , f being Function of M , M st x = x `1 & f . ( n + 1 ) = Ball ( x `1 , 1 / ( n + 1 ) ) holds f . ( n + 1 ) = Ball ( x `1 , 1 / ( n + 1 ) ) defpred P [ Element of omega ] means $1 is differentiable & f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds f1 . x = - 1 & f2 is_differentiable_on Z holds ( ( f1 - f2 ) `| Z ) . x = - ( f1 . x ) / ( ( f1 . x ) ^2 + ( f2 . x ) ^2 ) ; defpred P1 [ Nat , Point of CNS ] means ( $1 in Y & $2 in Y & $2 in X & $2 in Y & $2 in X & $2 in Y & $2 in Y & $2 in X & $2 in Y & $2 in X & $2 in Y & $2 in X & $2 in Y & $2 in X & $2 in X & $2 in X & $2 in X & $2 in X & $2 in X & $2 in X & $2 in X ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) ; ( 1 - ( 2 * n0 + 2 * ( n0 + 2 * n ) ) ) * ( ( 2 * n0 + 2 * n ) ) = ( ( 1 - 2 * ( n + 2 * n ) ) * ( ( n + 2 * n ) ) * ( ( n + 2 * n ) ) .= ( ( 1 - 2 ) * ( n + 2 * n ) ) * ( ( n + 2 * n ) ) .= ( ( n + 2 ) * ( n + 2 ) ) * ( ( n + 2 ) ) * ( ( n + 2 ) * ( ( n + 2 ) * ( ( n + 2 ) * ( ( n + 2 ) ) * ( ( n + 2 ) ) * ( ( n + 2 ) * ( ( n + 2 ) * ( n + 1 ) ) * ( ( n + 1 ) ) * ( ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) * ( n + 1 ) ) * ( ( n defpred P [ Nat ] means for G being non empty RelStr , N being non empty finite RelStr st G is $1 -A\ for x being Element of G st x in N & not ( the carrier of G = the carrier of N & x in N & not ( the carrier of G = the carrier of N ) & ( the carrier of G = the carrier of N ) holds x in the carrier of N ) ; assume that f /. 1 in Ball ( u , r ) and 1 <= m and m <= len - ( f /. ( 1 + 1 ) ) and LSeg ( f , m ) /\ LSeg ( f , m ) <> {} and LSeg ( f , m ) /\ LSeg ( f , m ) <> {} and LSeg ( f , m ) <> {} and m in Ball ( f , m ) and m in Ball ( f , m ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( ( cos * ( ( cos * ( ( 1 / 2 ) ) * ( ( cos * ( 1 / 2 ) ) ) ) ) ) `| Z ) . ( ( ( cos * ( ( 1 / 2 ) * ( ( cos * ( ( 1 / 2 ) * ( ( cos * ( 1 / 2 ) ) ) ) ) . ( 2 * $1 ) ) ) ; for x being Element of product F holds x is FinSequence of product F & dom x = I & for i being set st i in I holds x . i = ( ( Carrier F ) . i ) . x & for i be set st i in I holds x . i = ( Carrier F ) . i ) . x ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( ( x " ) |^ n ) * ( x " ) .= ( ( x " ) |^ n ) * ( x " ) .= ( ( x " ) |^ n ) * ( x " ) .= ( ( x " ) |^ n ) * ( x " ) .= ( ( x " ) |^ n ) * ( x " ) .= ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * ( x * y ) ) ) ) ) ) * ( x * y ) ) * ( x * y ) ) * ( x * y ) ) * ( x * y ) ) * ( x * y ) ) * ( x * y ) ) * ( x DataPart Comput ( P +* I , ( ( intloc 0 ) .--> ( ( intloc 0 ) .--> 1 ) ) , ( ( intloc 0 ) .--> 1 ) ) = DataPart Comput ( P +* I , ( ( intloc 0 ) .--> 1 ) +* I , ( ( intloc 0 ) .--> 1 ) +* I ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom ( f1 + f2 ) /\ dom ( f2 + g2 ) and for g st g in ]. x0 - r , x0 .[ /\ dom ( f1 + f2 ) holds ( f1 + f2 ) . g <= ( f1 + f2 ) . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X = f1 | X ) ; for L being continuous LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Element of L & x is Element of L & x is prime & l is prime & x is prime & l is prime & x in X holds x = sup ( L /\ L ) Support ( e8 ) in { m *' p where m is Polynomial of n , L : i in dom ( m *' p ) & p . ( i + 1 ) = m . ( p . ( i + 1 ) ) & p . ( i + 1 ) = m . ( p . ( i + 1 ) ) } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of QC-WFF ( Al ( ) ) st F . p1 = g . p1 & for g being Function of [: Al ( ) , D ( ) :] , D ( ) st P [ g , f , g ] holds P [ g , f , g , h ] ; ( mid ( f , i , len f -' 1 ) ) /. j = ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) ; ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) . ( len p + k ) . ( len p + k ) .= ( p ^ q ) len ( mid ( f , D2 , indx ( D2 , D1 , j ) ) + 1 ) = indx ( D2 , D1 , indx ( D2 , D1 , j ) ) - indx ( D2 , D1 , j ) .= indx ( D2 , D1 , j ) - indx ( D2 , D1 , j ) + 1 ; x * y * z = MM . ( ( x * y ) * z ) .= x * ( ( y * z ) * z ) .= ( x * ( y * z ) ) * ( z * x ) .= ( x * ( y * z ) ) * ( z * x ) .= ( x * ( y * z ) ) * ( z * x ) .= ( x * ( y * z ) ) * ( z * x ) ; v . ( <* x , y *> ) * ( <* x0 , y0 *> ) = partdiff ( v , ( x - x0 ) * ( <* x0 , y0 *> ) + ( ( ( proj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) * ( ( reproj ( 1 , 1 ) ) ) ) ) ) ) ) + ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , ( h ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( x- ( 1 , 1 ) ) . ( ( x- ( 1 , 1 ) ) . ( ( x- ( 1 , 1 ) i * i = <* 0 * ( - 1 ) - ( 0 * 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) .= <* - 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 1 , 0 , 0 *> .= 1 ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) + Sum ( ( L (#) F2 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F2 ) ) + Sum ( ( L (#) F2 ) ) .= Sum ( L (#) F2 ) ) .= Sum ( L (#) F2 ) + Sum ( ( L (#) F2 ) + Sum ( ( L (#) F1 ) + Sum ( ( L (#) F2 ) + Sum ( ( L (#) F2 ) ^ ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) + Sum ( ( L (#) F2 ) ) .= ex r be Real st for e be Real st 0 < e ex Y1 be Subset of X st Y1 is non empty & ( for Y1 be Subset of X st Y1 is non empty & Y1 c= Y holds |. ( - r ) * ( Y1 ) - ( r * Y2 ) ) .| < r ; ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) ; ( ( ( - 1 ) (#) ( ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) ) ) ) ) ) `| Z ) = ( - 1 / ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) (#) ( - 1 ) (#) ( - 1 ) ) ) ) / ( 1 - 1 ) ) ) .= - ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) (#) ( - 1 ) (#) ( - 1 ) ) / ( 1 - 1 ) ) / ( 1 - 1 ) ) .= - ( 1 - 1 ) ) / ( 1 - 1 ) ) / ( 1 - ( 1 - 1 ) ) / ( 1 - ( 1 - 1 ) ) / ( 1 - ( 1 - 1 ) (#) ( 1 - 1 ) ) .= - ( 1 - 1 ) ) / ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) > 0 & ( - b - sqrt ( 2 * a ) ) / ( 2 * a ) > 0 implies ( - b - sqrt ( 2 * a ) / ( 2 * a ) ) / ( 2 * a ) > 0 or ( - b - sqrt ( 2 * a ) ) / ( 2 * a ) > 0 Suppose inf ( uparrow L /\ X ) and sup X in X and sup ( ( subrelstr L ) /\ C ) = "/\" ( ( subrelstr L ) /\ ( ( subrelstr L ) /\ X ) ) and "\/" ( ( subrelstr L ) /\ X ) = "/\" ( ( subrelstr L ) /\ ( ( subrelstr L ) /\ X ) , L ) ; Then "\/" ( ( subrelstr L ) /\ X , L ) = "/\" ( ( subrelstr L ) /\ X , L ) ; ( for j being Element of I holds ( ( j = i ) --> ( j , i ) ) & ( j = i implies i = j ) & ( j = i implies j = i ) & ( j = i implies j = i ) & ( j = i implies j = i ) & ( j = i implies j = i ) implies j = i ) & j = i & j = i implies j = i & j = i )