thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is bounded q in X ; V ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U , S ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a >= X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `1 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` = b ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `1 <= b `1 ; assume b in X ; assume k <> 1 ; f = Product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is from of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `1 = x `1 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , a , b be Vertex of G ; let G be _Graph , a , b be Vertex of G ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b be Element of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; y be Real ; X c= f . a let y be element ; let x be element ; let i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom f ; let x be element ; let k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = Set ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} ; assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be set ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is not discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , i be Integer ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 ; cluster uparrow x -> ex x st x in X ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; 2 >= such that x >= sn ; G . y <> 0 ; let X be RealNormSpace , A be Subset of X ; a in A ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , A be Subset of V ; assume x in - M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; still_not-bound_in p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `1 = a * y `1 ; rng D c= A ; assume x in K1 ; 1 <= ii & ii <= len f ; 1 <= ii & ii <= len f ; pcontradiction c= PI ; 1 <= ii & ii <= len G ; 1 <= ii & ii <= len G ; LMP C in L ; 1 in dom f ; let seq , seq1 , seq2 ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 & b2 >= Z1 ; assume w = 0. V ; assume x in A . i ; g in being being being being being being being being being being being empty set ; y in dom t ; i in dom g ; assume P [ k ] ; c= c= f ; x9 is increasing & x9 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , A be non-empty MSAlgebra over S ; assume P [ n ] ; assume union S is independent & finite S is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , f be Function ; b ` c= b9 & b ` c= b9 ; assume not x in NAT + Q ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 & i1 < i2 implies i2 < i1 a * h in a * H ; p , q in Y ; redefine func sqrt I -> left ideal ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n ; assume A c= dom f ; Re f is_integrable_on M ; let k , m be element ; a , a // b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_continuous_in x0 ; assume O is symmetric ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be Vector of V ; P3 halts_on s , P ; d , c // a , b ; let t , u be set ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , A be Subset of X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , C be Subset of A ; let S be non empty ManySortedSign ; let x be variable , f be Function ; let b be Element of X , a be Element of X ; R [ x , y ] ; x ` ` = x ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( n - 1 ) ; h2 . a = y ; P [ n + 1 ] ; redefine func G * F -> prenot | ; let R be non empty multMagma , a be Element of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co & y in rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `1 ; let M be mamaid ; let N be non empty Subset of M ; let R be RelStr with finite holds R is finite ; let n , k be Nat ; let P , Q be be be be RelStr ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be Vector of V ; reconsider d = x as Int-Location ; assume I is not \leq a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < v8 ; x <= c2 . x ; x in F ` & y in F ` ; redefine func S --> T -> such that S is such that T is be be x1 } ; assume t1 <= t2 & t2 <= t2 ; let i , j be even Integer ; assume F1 <> F2 & F2 <> F1 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 : x in A6 ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & dom g2 = A ; i < len M + 1 ; assume not -infty in rng G ; N c= dom ( f1 - f2 ) ; x in dom ( sec | Z ) ; assume [ x , y ] in R ; set d = ( x - y ) / 2 ; 1 <= len ( g1 ^ g2 ) ; len s2 > 1 & len s2 > 1 ; z in dom ( f1 - f2 ) ; 1 in dom ( D2 | Seg 1 ) ; ( p `2 ) ^2 = 0 ; j2 <= width G & j2 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q .| = 1 ; let s be SortSymbol of S ; @ i = i ; X1 c= dom f & X2 c= dom g ; h . x in h . a ; let G be \it let V be \mathbin { empty } ; cluster m * n -> square ; let k9 be Nat , n be Nat ; i - 1 > m - 1 ; R is transitive implies field R = field R set F = <* u , w *> ; p-2 c= P3 & p-2 c= P3 ; I is_closed_on t , Q ; assume [ S , x ] is vertical ; i <= len ( f2 | i ) ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 - f2 ) ; assume [ X , p ] in C ; BX c= XX & BX c= BY ; n2 <= ( 2 |^ ( n + 1 ) ) ; A /\ [: P , Q :] c= A ` cluster x -valued for Function ; let Q be Subset-Family of S , A be Subset of S ; assume n in dom ( g2 ) ; let a be Element of R ; t `1 in dom ( e2 | dom ( e2 | dom p ) ) ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , T be non empty set ; i . y in rng i ; REAL c= dom f & dom f c= dom g ; f . x in rng f ; mt <= ( r / 2 ) ; s2 in r-5 ( X , i ) ; let z , z be complex number ; n <= ( N . m ) ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = |[ S \to T ]| ; let x be non positive ExtReal , r be positive ExtReal ; let m be Element of M ; f in union rng ( F1 | A ) ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , A be Subset of K ; let i be Element of NAT , k be Element of NAT ; rng ( F * g ) c= Y dom f c= dom x & rng f c= dom y ; n1 < n1 + 1 & n2 + 1 < n1 ; n1 < n1 + 1 & n2 + 1 < n1 ; cluster 1. T -> non empty ; [ y2 , 2 ] `2 = z ; let m be Element of NAT , n be Element of NAT ; let S be Subset of R ; y in rng ( S | A ) ; b = sup dom f & a = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom ( h2 - h2 ) ; w + 1 = ( a - 1 ) ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k1 + 1 <= k2 ; let i be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete \frac of m , n ; assume that f = g and p = q ; n1 <= n1 + 1 & n2 + 1 <= n1 ; let x be Element of REAL n ; assume x in rng s2 & y in rng s2 ; x0 < x0 + 1 & x0 + 1 < x0 + 1 ; len L5 = W & len L5 = len L5 ; P c= Seg ( len A ) ; dom q = Seg n & dom q = Seg n ; j <= width M *' ; let r8 be real-valued Real_Sequence ; let k be Element of NAT , n be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT , x be set ; assume z in being as as as as atlen of z ; let i be set ; n - 1 = n-1 ; len ( n - m ) = n ; \mathop { Z } c= F ; assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , f be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q & dom q = Seg i ; let s be Element of E |^ \omega ; let B1 be Basis of x , y ; Carrier ( L2 ) /\ Carrier ( L2 ) = {} ; L1 /\ L2 = {} implies L1 /\ L2 = {} assume downarrow x = downarrow y ; assume b , c // b , c ; LIN q , c , c ; x in rng ( f . -129 ) ; set n8 = n + j ; let D7 be non empty set , f be Function of D , REAL ; let K be add-associative right_zeroed right_complementable non empty addLoopStr , M be Matrix of K ; assume that f `1 = f and h `1 = h ; R1 - R2 is total & R1 - R2 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & K1 ` is open ; assume a , b are_maximal in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster -> nes<* A *> -> ns<* not u in { ag } ; the carrier of f c= B ; reconsider z = x as Vector of V ; let L be \rangle cluster the RelStr of L ; r (#) H is being being being being non-zero Real_Sequence of X , Y ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict universal non-empty MSAlgebra over S , A be Subset of U0 ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; rr-35 in ( { y } ) ; let x , y be Element of X ; let A , I be such that A is such such such that x in A ; [ y , z ] in [: O , O :] ; card Macro i = 1 & card Macro i = 1 ; rng Sgm A = A & rng Sgm A = A ; q |- r -<* All ( y , q ) *> ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b & LIN o , a , b ; p . 2 = Z |^ Y ; ( D . D ) `2 = {} ; n + 1 + 1 <= len g ; a in [: CQC-WFF ( Al ) , NAT :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f2 + f3 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i - k + 1 <= S ; cluster associative for non empty multMagma ; x in support ( ( support t ) \ support ( b ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `1 <= len ( y `1 ) ; assume p divides b1 + b2 & p divides b1 + b2 ; M1 <= sup M1 & M2 <= sup M1 implies M1 + M2 <= M2 assume x in W-min ( X ) & y in W-min ( X ) ; j in dom ( z | i ) ; let x be Element of D ( ) ; IC s4 = l1 & IC s4 = l1 ; a = {} or a = { x } ; set uG = Vertices G , uG = Vertices G ; seq " (#) ( seq " ) is non-zero ; for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; hcn c= hF & hF c= hy ; ]. a , b .[ c= Z ; X1 , X2 are_separated implies X1 , X2 are_separated a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 -' 1 = k ; cluster -> real-valued for Relation of NAT , Q ; ex v st C = v + W ; let IT be non empty addLoopStr , a be Element of IT ; assume V is Abelian add-associative right_zeroed right_complementable ; XY \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper & sup B = sup B ; let L be non empty reflexive RelStr , S be non empty Subset of L ; R is reflexive & X is transitive implies R is transitive E , g |= the_right_argument_of H implies E , g |= H dom G `2 = a & dom G = a ; ( 1 - 4 ) >= - r ; G . p0 in rng G & G . p2 in rng G ; let x be Element of FF , y be Element of F ; D [ P , 0 , 0 ] ; z in dom id ( B ) ; y in the carrier of N & y in the carrier of N ; g in the carrier of H & h in the carrier of H ; rng ( f | [: the carrier of S , the carrier of T :] ) c= [: the carrier of S , the carrier of T :] ; j `2 + 1 in dom s1 & j + 1 in dom s2 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL , a be Real ; f . z1 in dom h & f . z2 in dom h ; P . k1 in rng P & P . k1 in rng P ; M = A9 +* ( {} , A ) & M = A ; let p be FinSequence of ( the carrier of K ) * ; f . n1 in rng f & f . n1 in rng f ; M . ( F . 0 ) in REAL ; h . [. a , b .[ = b-a ; assume the distance of V , Q is Real ; let a be Element of ^ ( V , C ) ; let s be Element of [: P , Q :] ; let PA be non empty RelStr , T be non empty RelStr ; let n be Nat ; the carrier of g c= B & the carrier of g c= B ; I = halt SCM R & I = {} ; consider b being element such that b in B ; set BM = BCS ( K , n ) ; l <= -> and ( every j holds l . j <= x ) ; assume x in downarrow [ s , t ] ; ( x `2 ) ^2 in uparrow t ; x in ( JumpParts T ) \ ( JumpParts T ) ; let h be Morphism of c , a ; Y c= 1. ( K , the_rank_of Y ) ; A2 \/ A3 c= Carrier ( L1 ) \/ Carrier ( L2 ) ; assume LIN o , a , b ; b , c // d1 , e2 ; x1 , x2 , x3 , x4 is_collinear & x2 , x3 , x4 is_collinear ; dom <* y *> = Seg 1 & dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `1 ] in X ~ ; for n being Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> g closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , q1 is_collinear & p1 , p2 is_collinear ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 , x3 , x4 ] ; let R , Q be ManySortedSet of A ; set d = ( 1 / ( n + 1 ) ) ; rng ( g2 ) c= dom ( W (#) ( g1 ) ) ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , A be Subset of V ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( ( R * S ) * R ) ; let b be Element of the lattice of T ; dist ( e , z ) > r-r ; u1 + v1 in W2 & v1 + v2 in W1 ; assume the carrier of L misses rng G ; let L be lower-bounded antisymmetric transitive RelStr ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool M , M be Subset of Bool M ; 0 <= Arg a & Arg a < 2 * PI ; o9 , a19 // o9 , y & o9 , y9 // y , y ; { v } c= the carrier of l ; let x be variable of A ; assume x in dom ( uncurry f ) & y in dom ( uncurry f ) ; rng F c= ( product f ) |^ X assume D2 . k in rng D & D1 . k in rng D ; f " . p1 = 0 & f . p2 = 0 ; set x = the Element of X , y = the Element of X ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; let n be Element of NAT ; assume LIN c , a , e1 ; cluster finite for FinSequence of NAT ; reconsider d = c , e = d as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of f ; conv @ A c= conv conv @ A & conv @ A c= conv @ A ; reconsider B = b as Element of the topology of T ; J , v |= P ! l & J , v |= l ; redefine func J . i -> non empty TopSpace ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 is_\HM { 0 } & R is not empty implies R is connected assume x in the carrier of R & y in the carrier of R ; dom ( n | n ) = Seg n & dom ( n | n ) = Seg n ; s4 misses s2 & s4 misses s2 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in an ; assume that function I c= J and function I c= K and I c= J ; Im ( seq . n ) = 0 & Im ( seq . n ) = 0 ; ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; sin * ( sin - cos ) is_differentiable_on Z & Z c= dom ( sin - cos ) ; t3 . n = t3 . n & i <= n ; dom ( element - F ) c= dom F ; W1 . x = W2 . x & W2 . x = W2 . x ; y in W .vertices() \/ W .vertices() ; ( k + 1 ) <= len ( v | ( k + 1 ) ) ; x * a divides y * a . mod m ; proj2 .: S c= proj2 .: P & proj2 .: P c= P ; h . p4 = g2 . I & h . I = g2 . I ; G * ( 1 , k ) `1 = U /. 1 .= G * ( 1 , k ) `1 ; f . rr1 in rng f & rr1 in rng f ; i + 1 + 1-1 <= len - 1 ; rng F = rng ( F | n ) & rng ( F | n ) = rng F ; mode seq of A is well unital associative associative non empty multMagma ; [ x , y ] in A ~ { a } ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of m - m c= B ; not [ y , x ] in id [: X , Y :] ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower & seq ^\ k1 is lower ; len ( F | I ) = len I & len ( F | I ) = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number , a be complex number ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be Element of of of of \HM { the } of T ; cluster directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K ; redefine func J => y -> total for Function ; K c= 2 |^ ( the carrier of T ) F . b1 = F . b2 & F . b2 = F . b2 ; x1 = x or x1 = y or x1 = z ; pred a <> {} means : Def2 : a = 1 ; assume that card a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b1 } on C2 ; LIN o , b , b9 & LIN o , b , b9 ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non constant non trivial FinSequence of D ; let FS2 be non empty \cal let X , F be Function ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider ps2 = x , ps2 = y as Subset of m ; let A , B , C be Element of R ; redefine func strict non empty for Subset of M ; rng c `1 misses rng ( e | i ) ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( ( - 1 / 2 ) (#) ( ( id Z ) ^ ) ) ; the component of Q c= UBD ( A ) & ( A /\ B ) c= UBD ( A ) ; reconsider E = { i } as finite Subset of I ; g2 in dom ( ( 1 / 2 ) (#) ( f ^ ) ) ; pred f = u means : Def2 : a * f = a * u ; for n holds P1 [ n ] implies P1 [ n + 1 ] { x . O : x in L } <> {} ; let x be Element of V . s ; let a , b be Nat ; assume that S = S2 and p = p2 and S = S2 ; gcd ( n1 , n2 , n1 , n2 ) = 1 & gcd ( n1 , n2 , n1 , n2 ) = 1 ; set oi = a * ( - 1 , 1 ) ; seq . n < |. r1 .| & |. seq . n .| < r1 ; assume that seq is increasing and r < 0 ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] ; set g = { n |^ 1 : n in dom g } ; k = a or k = b or k = c ; a9 , b9 , c9 is_collinear & a9 , b9 , c9 is_collinear implies a9 , b9 , c9 is_collinear assume that Y = { 1 } and s = <* 1 *> ; IS1 . x = f . x .= f . x .= 0 ; W3 .last() = W3 . 1 & W2 .first() = ( W2 . 1 ) `1 ; cluster trivial -> trivial for M -connected Subset of G ; reconsider u = u as Element of Bags X ; A in B ^ implies A , B are_that A , B are_that A , B are_that A , B are_\frac B , A |^ ( n + 1 ) x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 / |. q .| - cn ) ; f1 is_TOP-REAL \notin the as \HM { means : Let : f is it & f is non empty ; ( f . q ) `2 <= ( q `2 ) ^2 ; h is_the \! - } ( Cage ( C , n ) , i ) ; ( b `2 ) ^2 <= ( p `2 ) ^2 & ( p `2 ) ^2 <= ( p `2 ) ^2 ; let f , g be |. f .| Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( - f ) & x in dom ( - f ) ; p2 in ( N . p1 ) & p2 in ( N . p1 ) ; len ( the_left_argument_of H ) < len ( H ) ; F [ A , F-14 . A ] ; consider Z such that y in Z and Z in X ; redefine pred 1 in C means : Def4 : A c= C ; assume that r1 <> 0 or r2 <> 0 and r1 < r2 ; rng q1 c= rng ( C1 ^ C2 ) & rng ( C1 ^ C2 ) c= rng ( C1 ^ C2 ) ; A1 , A2 , A3 is_collinear & A1 , A2 , A3 is_collinear ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in Segment ( p , Sp , S ) ; then S is negative & P-2 [ S ] ; Cl Int [#] T = [#] ( T ) & Cl Int [#] ( T ) = [#] T ; f12 | A2 = f2 & f12 | A2 = f2 | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; let v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V & V c= Y \ Z ; let X be Subset of S ~ ; consider H1 such that H = 'not' H1 and H1 in H ; 1_ 1 c= ( 1 - 1 ) * ( \rm div r ) ; 0 * a = 0. R .= a * 0. R ; A |^ ( 2 , 2 ) = A ^^ ( A , 2 ) ; set vbeing = ( vseq /. n ) `1 , v4 = ( vseq /. n ) `1 ; r = 0. ( REAL-NS n , ||. f .|| ) ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W - ( i + 1 ) ) ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t8 does not destroy b1 & W7 does not destroy b1 implies not t8 on b1 reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i as non zero Element of NAT ; c . x >= id L . x ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 , x3 , x4 ] -> pair ; sup downarrow a /\ downarrow t is Ideal of T ; let X be set , N be non empty set , f be Function of X , N ; rng f = be \rm <* S , X *> ; let p be Element of B , x be the SortSymbol of S ; max ( N1 , 2 ) >= N1 & max ( N2 , 2 ) >= N2 ; 0. X <= b |^ ( m * mm1 ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 & p2 = q2 implies p1 = p2 assume gR in the right of g & gR in the carrier of g ; let A1 , A2 be Point of S , A be Subset of S ; x in h " P /\ [#] ( T1 | P ) ; 1 in Seg 2 & 1 in Seg 3 & 2 in Seg 3 ; reconsider X-5 = X , Xe = Y as non empty Subset of Tsuch that X = T5 and X is non empty ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the \lbrack G , F ) -defined ; n1 <= i2 + len ( g2 | i2 ) & n1 + len ( g1 | i2 ) = i2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & v in the carrier' of G2 ; y = Re y + ( Im y ) * i ; len ( ( - 1 ) * p ) = 1 ; x2 is_differentiable_on ]. a , b .[ & ]. a , b .[ c= dom f ; rng ( M | D ) c= rng ( D2 | D ) ; for p be Real st p in Z holds p >= a ( cn ) * ( f | K1 ) = proj1 * ( f | K1 ) ; ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p -Path M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) \ominus C h \equiv gg . ( mod P ) ; reconsider i1 = i-1 - 1 , i2 = i - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider ii = i , ii2 = j as Element of NAT ; dom f c= [: C , D :] ; x in ( the sequence of B ) . n & x in ( the rng of B ) . n ; len \rbrace in Seg ( len ( f2 | i ) ) ; pp1 c= the topology of T & pp1 c= the topology of T ; ]. r , s .[ c= [. r , s .] ; let B2 be Basis of T2 , B be Basis of T2 ; G * ( B * A ) = id o1 & G * ( B * A ) = id o2 ; assume that p , u , v is_collinear and u , v , w is_collinear ; [ z , z ] in union rng ( F | ( Seg n ) ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , Element of S .. $1 ; LIN a1 , a3 , b1 & LIN a1 , b1 , c1 ; f " ( f .: x ) = { x } ; dom ( w2 ) = dom r12 & dom ( r12 ) = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; Ii * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; q9 . x in rng ( q | i ) & q . x in rng ( q | i ) ; Carrier ( LLet ) misses Carrier ( L7 ) \ Carrier ( L7 ) ; consider c being element such that [ a , c ] in G ; assume Npreal = o( o , a ) & for i be Element of NAT holds o . i = o . i ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F /. C-1 ) ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [: [. f . j , f . j .] , Q :] ; pred 0 <= x & x <= 1 implies x / 2 <= x / 2 ; p `1 - q `1 <> 0. TOP-REAL 2 & p `2 - q `1 <> 0. TOP-REAL 2 ; redefine func aaa] ( S , T ) -> non empty ; let x be Element of S ~ ; ( \HM { the } \HM { object } \HM { of F ) is one-to-one ; |. i .| <= - ( - 2 |^ n ) / ( n + 1 ) ; the carrier of I[01] = dom P & the carrier of I[01] = dom P & the carrier of I[01] = dom P ; } * ( n + 1 ) ! > 0 * PI ; S c= ( A1 /\ A2 ) /\ ( A1 /\ A2 ) & S c= ( A1 /\ A2 ) ; a3 , a4 // b3 , b2 & a3 , a4 // b3 , b2 ; then dom A <> {} & dom A <> {} & rng A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y Joins Y , x , G2 ; set v2 = ( v /. ( i + 1 ) ) ; x = r . n .= r4 . n .= r4 . n ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g = the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: A2 , A2 , A1 , A2 , B2 , i , j , k be Nat ; 0 < ( p / ||. z .|| + 1 ) / ( ||. z .|| + 1 ) ; e . ( m + 1 ) <= e . ( m + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y -infty < Integral ( M , Im ( g | B ) ) ; cluster O := F -> Line for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , A be non-empty MSAlgebra over S ; Proj ( i , n ) * g is_differentiable_on X & g is_differentiable_on X ; x , y , z be Point of X , p be Point of X ; reconsider p0 = p . x , p0 = p . x as Subset of V ; x in the carrier of Lin ( A ) & y in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and a in - ( - X ) ; Int Cl Int Cl A c= Cl Int Cl Int Cl Int Cl Int A & Int Cl Int Cl Int Cl Int Cl Int Cl Int Cl A c= Cl Int Cl Int Cl Int Cl Int Cl Int Cl A ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 ) ^2 <= ( p `2 ) ^2 & ( p2 `2 ) ^2 <= ( p `2 ) ^2 ; Cl ( Q ` ) = [#] ( ( T | A ) ` ) ; set S = the carrier of T , S = the carrier of T ; set I8 = ' ( f |^ n , n ) ; len p - n = len ( thesis - n ) .= len p - n ; A is Permutation of Swap ( A , x , y ) ; reconsider n6 = n- ( n - 1 ) as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s | j ) ; let qbe { q } , q be Element of M ; a1 in the carrier of S1 & a2 in the carrier of S1 & a3 in the carrier of S2 ; c1 /. n1 = c1 . n1 & c2 /. n1 = c1 . n1 & c1 /. n1 = c1 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 , r be Real ; y = ( ( f * ( S . n ) ) . x ) ; consider x being element such that x in being being being element such that x in being being being element ; assume r in ( ( dist ( o ) ) .: P ) ; set i2 = ( n , i ) `1 , i1 = i + 1 ; h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) = M . i ; reconsider m = ( x - 1 ) / 2 as Element of ( len x - 1 ) / 2 ; let U1 , U2 be non empty Subset of U0 , A be Subset of U1 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p1 + 1 < len p2 ; let T1 , T2 be complete Scott Scott let L , f be closed Subset of L ; then x <= y & x c= ( { y } ) ; set M = n -{ m } ; reconsider i = x1 , j = x2 , k = x3 as Nat ; rng ( the_arity_of o ) c= dom H & dom ( the_arity_of o ) c= dom H ; z1 " = ( z " ) * ( z " ) .= ( z " ) * ( z " ) ; x0 - r / 2 in L /\ dom f & x0 - r / 2 in L /\ dom f ; then w is that rng w /\ L <> {} & rng w /\ L <> {} ; set x9 = x9 ^ <* Z *> , y9 = <* Z *> ^ ( x ^ y ) ; len w1 in Seg len w1 & len w2 = len w1 & len w1 = len w2 & len w2 = len w2 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) * ( A . n ) ; ( p `1 ) ^2 / ( G * ( i , k ) ) ^2 <= ( G * ( i , k ) ) ^2 / ( G * ( i , k ) ) ^2 ; rng ( g ) c= L~ ( g | ( len g -' 1 ) ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n be Nat holds F . n is \HM { -infty } ; reconsider x9 = x9 , y9 = y9 , z9 = z9 as Vector of M ; dom ( f | X ) = X /\ dom f & dom ( f | X ) = X ; p , a // p , c & b , a // c , c ; reconsider x1 = x , y1 = y , z1 = z as Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ( ag ) = p . ( ag . ( ag ) ) ; a / ( s . m - n ) / ( s . m - n ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume B1 \/ C1 = B2 \/ C2 & B2 \/ C2 = {} ; X . i = { x1 , x2 , x3 , x4 , 8 } . i ; r2 in dom ( h1 + h2 ) & r1 in dom ( h1 + h2 ) ; - - 0. R = a & b-0 = b ; F8 is_closed_on t8 , Q7 & F8 is_closed_on t8 , Q8 ; set T = ^2 (# l , x0 , x1 , x2 , x3 , x4 #) ; Int Cl Int Cl Int Cl R c= Int Cl R & Int Cl R c= Int Cl R ; consider y being Element of L such that c . y = x ; rng ( F/. x ) = { Ff . x } & rng ( Ff ) = { F . x } ; G-23 \ { c } c= B \/ S & G c= S \/ S ; f[#] A is Relation of [: X , Y :] , X & X c= dom f ; set RE = the Point of P , RE = the Point of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; let k2 be Element of NAT , k be Element of NAT ; reconsider ppA = u , ppA = v , pA = w as Element of ( ( TOP-REAL n ) | ( i + 1 ) ) ; g . x in dom f & x in dom g implies f . x in dom g assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of ( G , N ) / ( N , i ) ; len ( ( P ) . i ) <= len ( ( P ) . i ) ; x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( ( A @ ) * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple ; f . x = a . i .= a1 . k .= a . k ; let f be PartFunc of REAL i , REAL n , x be Element of REAL n ; rng f = the carrier of \bf 1 & rng f = the carrier of \bf 1 ; assume s1 = sqrt ( ( |[ 2 , 0 ]| ) ^2 - ( p `1 ) ^2 ) ; pred a > 1 & b > 0 & a > 0 implies a / b > 1 ; let A , B , C be Subset of [: I , I :] ; reconsider X0 = X , Y0 = Y , Y0 = Z as Subset of X ; let f be PartFunc of REAL , REAL , x be Element of REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , t-3 be Relation of the carrier of S , the carrier of T ; Q [ e \/ ( { v } \/ { v-5 } ) , f ] ; g \circlearrowleft ( W-min L~ z ) = z & ( W-min L~ z ) .. z = z ; |. |[ x , v ]| - |[ x , y ]| .| = vSet ; - f . w = - ( L (#) w ) .= - ( L (#) w ) ; z - y <= x iff z <= x + y & y <= z + y ( 7 / p1 ) |^ ( 1 / e ) > 0 ; assume X is BCK-algebra & 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 & ( f | X ) . x2 = f . x2 ; ( ( tan * tan ) `| Z ) . x in dom ( tan * tan ) ; i2 = ( f /. len f ) `1 & i1 = ( f /. len f ) `1 ; X1 = X2 \/ ( X1 \ X2 ) & X2 = X1 \ X2 implies X1 = X2 [. a , b , 1_ G .] = 1_ G & [. a , b , 1_ G .] = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be Function of V , W ; dom g2 = the carrier of I[01] & rng g2 = the carrier of I[01] & rng g2 = the carrier of I[01] ; dom ( f2 ) = the carrier of I[01] & dom ( f2 ) = the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: ( X /\ Y ) ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & x0 < a1 . n ; |. ( f /* s ) . k - G . k .| < r ; len Line ( A , i ) = width A & width ( A @ ) = width A ; Sbeing @ = ( S . g ) @ .= ( S . g ) @ ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized ( p +* I ) & IC p in dom I ; i1 , i2 , j1 , j2 is_collinear & i does not destroy b1 implies ( i1 , i2 ) on ( i2 , j1 ) arccos . r + arccos . r = ( cos . ( PI / 2 ) ) ^2 + 0 ; for x st x in Z holds f2 * ( f1 - #Z 2 ) is_differentiable_in x reconsider q2 = ( q `1 ) / ( x - 1 ) , q2 = ( q `2 ) / ( x - 1 ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 & i + 1 <= j ; assume f in the carrier of [: X , Omega Y :] ; F . a = H / ( ( x , y ) / ( x , y ) ) ; ( TRUE T ) at ( C , u ) = TRUE & ( T . ( C , u ) ) = TRUE ; dist ( ( a * seq ) . n , h ) < r / 2 ; 1 in the carrier of [. 0 , 1 .] & 1 in the carrier of I[01] ; ( p2 `1 - x1 ) - x1 > - g & ( p2 `1 - x1 ) - g > - g ; |. r1 - `2 .| = |. a1 .| * |. TOP-REAL n .| ; reconsider S-14 = 8 as Element of Seg 8 , S be non empty set ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W -' 1 = D0W - 1 + 1 ; i1 = a + n & i2 = K + n & i1 = K + n ; f . a [= f . ( f . O1 "\/" f . a ) ; pred f = v & g = u , h = v + u ; I . n = Integral ( M , F . n ) ; chi ( [: T1 , T2 :] , S ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k2 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R4 * ( i , j ) ) ; set h = the continuous Function of X , R , f be Function of X , R ; set A = { L . ( k9 . n ) : n <= k } ; for H st H is atomic holds P [ H ] ; set b\HM = S5 \ ( i \ { i } ) , S5 = i \ { i } ; Hom ( a , b ) c= Hom ( a `1 , b `2 ) ; ( 1 - s ) / ( n + 1 ) < ( 1 - s ) / ( n + 1 ) ; ( l `1 ) = [ dom l , cod l ] & ( l `2 ) = cod l ; y +* ( i , y /. i ) in dom g & y in dom g ; let p be Element of [: CQC-WFF ( Al ) , D ( ) :] ; X /\ X1 c= dom ( f1 - f2 ) & X /\ X1 c= dom ( f1 - f2 ) ; p2 in rng ( f /^ ( i -' 1 ) ) & p1 in rng ( f /^ i ) ; 1 <= indx ( D2 , D1 , j1 ) & 1 <= j1 ; assume x in ( ( ( TOP-REAL 2 ) | K1 ) \/ ( ( TOP-REAL 2 ) | K1 ) ) ; - 1 <= ( ( f2 ) . O ) `2 & - 1 <= ( ( f2 ) . O ) `2 ; let f , g be Function of I[01] , ( TOP-REAL 2 ) | K1 , R^1 , a be Real ; k1 - k2 = k1 - k2 & k1 - k2 = k1 - k2 - k2 ; rng seq c= ]. x0 - r , x0 .[ & rng seq c= ]. x0 - r , x0 .[ ; g2 in ]. x0 - r , x0 + r .[ & g2 in ]. x0 - r , x0 + r .[ ; sgn ( p `1 , K ) = - 1_ K & sgn ( p `1 , K ) = - 1_ K ; consider u being Nat such that b = p |^ y * u ; ex A being as as as as as as normal Ordinal of W st a = Sum A ; Cl ( union ( H ) ) = union ( ( Cl ( H ) ) /\ ( Cl ( H ) ) ; len t = len t1 + len t2 & len t1 = len t1 + len t2 & len t2 = len t1 + len t2 ; v-29 = v + w |-- ( A , v ) & vn = v + ( A + B ) ; v ( ) <> DataLoc ( ( t . GBP ) , 3 ) & v ( ) <> DataLoc ( ( t . GBP ) , 3 ) ; g . s = sup ( d " { s } ) & g . s = s ; ( \dot \dot ) . s = s . ( \dot y ) ; { s : s < t } in REAL implies t = {} & t = {} ; s ` \ s = s ` \ ( 0. X \ s ) .= ( 0. X \ s ) \ ( 0. X \ s ) ; defpred P [ Nat ] means B + $1 in A & B + $1 in A ; ( 329 + 1 ) ! = 3329 ! * ( 329 + 1 ) ; ( 1. ( A , B ) ) * ( 1. ( A , B ) ) = 1. ( A , B ) ; reconsider y = y as Element of ( len y ) -tuples_on the carrier of K ; consider i2 being Integer such that y0 = p * i2 and i2 in dom p and i2 in dom p ; reconsider p = Y | Seg k as FinSequence of ( the carrier of K ) \ { i } ; set f = ( S , U ) \mathop { {} } , g = S \! \mathop { {} } ; consider Z be set such that lim s in Z and Z in F ; let f be Function of I[01] , ( TOP-REAL n ) | K1 , R^1 , a be Real ; ( SAT M ) . [ n + i , 'not' A ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; let R1 , R2 be Element of ( n + 1 ) -tuples_on the carrier of K , a be Element of K ; reconsider l = 0. ( K , n ) as Linear_Combination of A , n ; set r = |. e .| + |. n .| + |. w .| + a ; consider y being Element of S such that z <= y and y in X ; a 'or' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ||. x9 - g .|| < r2 & ||. g - x .|| < r2 ; b9 , a9 // b9 , c9 & b9 , c9 // b9 , c9 & c9 , c9 // b9 , c9 implies b9 , c9 // c9 , c9 1 <= k2 -' k1 & k1 + 1 = k2 & k2 + 1 = k1 & k1 + 1 = k2 implies ( k1 + 1 ) + 1 = k2 ( ( p `2 / |. p .| - sn ) / ( 1 - sn ) ) ^2 >= 0 ; ( q `2 / |. q .| - sn ) < 0 & ( q `2 / |. q .| - sn ) < 0 ; ( E-max C ) `1 in LeftComp ( RCage ( C , n ) ) & ( E-max C ) `1 in L~ ( RCage ( C , n ) ) ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( lim F ) = Re Re ( lim G ) .= Re ( lim G ) ; LIN b , a , c or LIN b , c , a ; p `1 , a `2 // a `1 , b or p `1 , a `2 // b `1 , a ; g . n = a * Sum ( f | 1 ) .= f . n * a ; consider f being Subset of X such that e = f and f is Cage ; F | ( N2 , S ) = CircleMap * ( ( F | N2 ) . ( n + 1 ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( m , s ) c= Ball ( m , r ) ; the carrier of (0). V = { 0. V } & the carrier of (0). V = { 0. V } ; rng ( ( - 1 ) (#) ( cos * sin ) ) = [. - 1 , 1 .] ; assume that Re seq is summable and Im seq is summable and Im seq is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 , t2 = 0 as 0 -started string of S2 , t2 = 0 as ( S , U ) If , D = { t } ; reconsider x9 = seq . n , y9 = seq . n as sequence of REAL n ; assume that that C meets ( L~ go \/ L~ pion1 ) and C meets ( L~ pion1 ) and C meets ( L~ pion1 ) ; - ( ( 1 - r ) / 2 ) < F . n - r / 2 ; set d1 = being element , d2 = dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d2 = dist ( x1 , z2 ) , d2 = dist ( x2 , z1 ) ; 2 |^ ( |. 00 .| -' 1 ) = 2 |^ ( |. 100 .| - 1 ) ; dom ( v | ( len ( d | i ) ) ) = Seg len ( d | i ) ; set x1 = - k2 + |. k2 .| + |. k1 .| + |. k2 .| + |. k .| + |. k .| ; assume for n being Element of X holds 0. <= F . n & 0. <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of Lconsider such that the carrier of Lconsider and L2 c= I2 and the carrier of Lconsider A c= I ; 'not' Ex ( x , p ) => All ( x , p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal w.r.t. of A ; Z c= dom ( ( ( 1 / 2 ) (#) ( f1 + f2 ) ) `| Z ) ; |. 0. TOP-REAL 2 - q `1 .| - |. q .| < r / 2 - r / 2 ; \ { A , succ ( d , B ) } c= ConsecutiveSet2 ( A , succ ( d , B ) ) ; E = dom L8 & L8 is_measurable_on E & L8 c= E & L8 c= E & L8 c= E & E c= dom L8 ; C |^ ( A + B ) = C |^ B * C |^ A ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of W2 implies W1 + W2 c= W2 I . IC s2 = P . IC s2 .= ( I . IC s2 ) .= ( I . IC s2 ) ; pred x > 0 means : Def2 : ( 1 - x ) |^ ( 1 - x ) = x |^ ( 1 - x ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , R .] and p in A ; b , c are_connected & - C , - ( b , a ) + - ( b , c ) + - ( b , a ) + - ( b , c ) + - ( b , c ) + - ( b , c ) + - ( b , c ) + - ( b , assume f = id the carrier of O & f is Function of the carrier of O , the carrier of O ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( the carrier of V ) , the carrier of V ; reconsider g = f " as Function of U2 , U1 , U2 ; A1 in the points of ( k + 1 ) , k + 1 , G ; |. - x .| = - ( - x ) .= - x .= - x .= - x ; set S = { is \in in in in { x , y , c } ; Fib ( n ) * ( 5 * ( 5 / n ) ) >= 4 * ( 5 * n ) ; vseq /. ( k + 1 ) = ( vseq . ( k + 1 ) ) `1 ; 0 mod i = - ( i * ( 0 qua Nat ) - i ) ; Indices M1 = [: Seg n , Seg n :] & len M2 = n & width M1 = n & width M2 = n ; Line ( S\mathopen { i , j } , j ) = S\mathopen ( j , i ) ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , x2 ] ; |. f - Re ( |. f .| * ( card b - a ) ) .| is nonnegative ; assume x = ( a1 ^ <* x1 *> ) ^ b1 & y = ( a1 ^ <* x2 *> ) ^ b1 ; MW is_closed_on IExec ( I , P , s ) . a , P & MW is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x + y & |. x .| = - x + y ; LIN c , q , b & LIN c , q , c & LIN c , q , c ; f'not' st . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x1 + ( y1 + z1 ) ; fproduct ( f . a ) = f\in . a & v in InputVertices S & v in InputVertices S ; ( p `1 ) ^2 <= ( ( ( E _ 2 ) ) `1 ) ^2 & ( ( ( E _ 2 ) ) `1 <= ( ( E _ 2 ) ) `1 ; set R8 = Cage ( C , n ) \circlearrowleft E7 , E8 = Cage ( C , n ) ; ( p `1 ) ^2 >= ( ( ( ( E _ 2 ) ) `1 ) / ( 1 + ( p `2 ) ) ^2 ) ; consider p such that p = p-20 and s1 < p and p < i and i < len p ; |. ( f /* ( s * F ) ) . l - G . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 ) = width N & width Line ( N , k ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = x0 ; f . x1 = x1 & f . y1 = y1 & f . y2 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 & len f + 1 <> 0 implies f ^ <* p *> is not empty dom ( Proj ( i , n ) * s ) = REAL m & rng ( Proj ( i , n ) * s ) = REAL m ; n = k * ( 2 * t ) + ( n mod 2 ) ; dom B = 2 -tuples_on the carrier of V , { {} } :] ; consider r such that r _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 , B1 = the carrier of X1 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 in dom ( 1 / 2 ) ; for L being complete LATTICE holds every \mathbb L , C , L st C , L are_isomorphic & C is isomorphic [ gi , gj ] in Ii \ Ij ; set S2 = 1GateCircStr ( x , y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r st r < x0 ex g st r < g & g < x0 & g in dom ( f2 * f1 ) ; reconsider y = ( a ` ) / ( F ` ) , z = ( a ` ) / ( F ` ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - g ) ) ) . c <= h . c ; set G2 = the as as as as as as as as as as as as as as of M -A1 , { v } , { v } } ; reconsider g = f as PartFunc of REAL n , REAL-NS n , REAL-NS n ; |. s1 . m - p .| / |. p .| < d / ( p `1 - p `2 ) ; for x being element st x in \HM { u } holds x in \HM { the } \HM { carrier of S : x in consider t being element st t in \HM { the carrier of S } } P = the carrier of ( TOP-REAL n ) | P & Q = the carrier of ( TOP-REAL n ) | P ; assume that p11 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) and LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 } ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c ) * d <= 2 * C1 * C2 ; let f , g , h be Point of the complex normed space of X , Y , f be Function of X , Y , g be Function of X , Z ; set h = Hom ( a , g ) ; then Seg ( n ) | Seg m = idseq ( m ) & m <= n ; H * ( g " * a ) in the right of H & H * ( g " * a ) in the right of H ; x in dom ( ( id Z ) (#) ( sin - cos ) ) & Z c= dom ( ( id Z ) (#) ( sin - cos ) ) ; cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j1 -' 1 ) misses C ; LE q2 , p4 , P & LE p1 , p2 , P & LE p2 , p3 , P & LE p1 , p2 , P & LE p2 , p3 , P ; attr B is BDD of A means : Def4 : B c= BDD A ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len ( p + - n ) + ( - n ) ; pred a <> 0. K means : Def2 : for M holds the_rank_of M = rk ( a * M , i ) ; consider j such that j in dom \mathbb B and I = len } + j and I = len ( k + 1 ) ; consider x1 such that z in x1 and x1 in P and x2 in P and x = [ x1 , x2 ] ; for n ex r being Element of REAL st X [ n , r ] ; set CS1 = Comput ( P2 , s2 , i + 1 ) , CS2 = Comput ( P2 , s2 , i + 1 ) ; set cv = 3 / ( 2 * PI ) , cv = 4 / ( 2 * PI ) , cv = 5 / ( 2 * PI ) , cv = 4 / ( 2 * PI ) , cv = 5 / ( 2 * PI ) , cv = 5 / ( 2 * PI conv @ W c= union ( ( F .: ( E " W ) ) /\ conv ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( ( arccot ) * ( f1 - f2 ) ) ; r3 <= s0 + ( r0 - ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r dom ( f (#) ( f4 ) ) = dom f /\ dom ( f | dom ( f1 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom ( f2 | dom dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider gg = gp , gq = gq as Point of ( TOP-REAL n1 ) | ( ( TOP-REAL n1 ) | K1 ) ; ( T * h . s ) . x = T . ( h . s . x ) ; I . ( L . J . x ) = ( I * L ) . x ; y in dom be let *> <* ( Frege ( A . o ) ) . ( ( commute ( A . o ) ) . ( x , y ) ) *> ; for I being non degenerated commutative commutative commutative commutative associative distributive non empty doubleLoopStr holds I is commutative set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* Initialize ( ( intloc 0 ) .--> 1 ) ; P1 /. IC s1 = P1 . IC s1 & P1 . IC s1 = P1 . IC s1 & P1 . IC s1 = P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S1 in the carrier of [. a , b .] ; v . ( lpp . i ) = ( v *' lpp ) . i .= ( v *' lpp ) . i ; consider n being element such that n in NAT and x = ( sn - 1 ) . n ; consider x being Element of c such that F1 . x <> F2 . x and x in A and F2 . x <> 0 ; Funcs ( X , 0 , x1 , x2 , x3 , x4 , 6 , 7 , 8 ) = { E8 } ; j + ( 2 * ( k - m ) ) + m1 > j + ( 2 * ( k - m ) ) ; { s , t } on A3 & { s , t } on B2 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 , n3 , n3 , n1 , n2 , n3 , n3 , n2 , n3 , n3 , n1 , n2 , n3 , n3 , n2 , n3 , n3 , n1 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n4 , n4 , n1 , n2 ( mg1 ) . HT ( ( ( ( ( ( ( g2 ) ) . HT ( g2 , T ) ) , T ) ) , T ) = 0. L ; then H1 , H2 are_that H , H1 are_that H , H1 are_that H , H1 / ( x , y ) / ( x , y ) ; ( ( us L~ f ) .. ( f ) ) .. ( f ) > 1 & ( ( f ) .. ( f ) ) .. ( f ) > 1 ; ]. s , 1 .[ = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) & x2 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , the carrier of S ; DigA ( t-23 , z9 ) is Element of k -tuples_on INT & DigA ( tmax , z ) = k - 1 ; I \mathop { d , 223 } = d/ 2 & I \mathop { d , l } = k2 & I is non empty ; u9 ~ = { [ a , u9 ] } & u9 in { [ a , u9 ] } ; ( w | p ) | ( p | ( w | w ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u2 in W2 and u = v + u2 ; for y st y in rng F ex n st y = a |^ n & for x st x in F holds x in A dom ( ( g * ( M , j ) ) | K ) = K & dom ( ( g * ( M , j ) ) | K ) = K ; ex x being element st x in ( ( ( U0 ) \/ A ) . s ) & x in ( ( U0 ) . s ) ; ex x being element st x in ( ( that ( for O being element st O in O holds O in A ) ) . s ) ; f . x in the carrier of [. - r , r .] & f . x in the carrier of [. - r , r .] ; ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} & ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} ; L1 /\ LSeg ( p01 , p2 ) c= { p01 } & LSeg ( p01 , p2 ) c= { p01 } ; ( b + ( be - b ) ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of GX such that z = y and P [ z ] and z in A and z in B ; ( the sequence of number ) . ( x - y ) <= e / 2 & e / 2 <= e / 2 ; len ( w ^ w2 ) + 1 = len w + 2 + 1 & len ( w ^ w2 ) = len w + 2 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q in the carrier of ( ( TOP-REAL 2 ) | K1 ) ; f | Eq ` = g | Eq ` & g | Eq ` = g | Eq ` & g | Eq = g | Eq ` ; reconsider i1 = x1 , i2 = x2 , j1 = y2 , j2 = x3 , j1 = x4 as Element of NAT ; ( a * A * B ) @ = ( a * ( A * B ) ) @ ; assume ex n0 being Element of NAT st f |^ ( n0 - 1 ) is Seg n & f .: ( f .: n0 ) is Seg n ; Seg len ( ( ( f1 ^ f2 ) | i ) ) = dom ( ( ( f1 ^ f2 ) | i ) ) ; ( Complement A1 ) . m c= ( Complement A1 ) . n & ( Complement A1 ) . m c= ( Complement A1 ) . n ; f1 . p = p8 & g1 . ( p8 ) = d & g1 . ( p8 ) = d & g2 . ( p8 ) = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; ( |. x .| to_power n ) / ( 1 - r ) <= ( r2 / ( 2 |^ n ) ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & rng ( F ) = dom g ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W1 and W1 is Subspace of W2 and W2 is Subspace of W1 ; ||. ( ( t . x ) .|| ) = lim ||. ( ( x . x ) .|| ) .= ||. ( x . x ) .|| .= ||. ( x . x ) .|| ; assume that i in dom D and f | A is lower and g | A is lower ; ( p `2 / |. p .| - cn ) <= ( - ( 1 - cn ) ) / ( 1 - cn ) ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) & g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) ; set N8 = ( ( L~ Cage ( C , n ) ) | ( L~ Cage ( C , n ) ) ) ; for T being non empty TopSpace holds T is countable implies the TopStruct of T is countable width B |-> 0. K = Line ( B , i ) .= B * ( i , i ) .= B * ( i , i ) ; pred a <> 0 implies ( A Let B ) Y. = ( A Y. ) /\ ( B Y. ) ; then f is_PartFunc of REAL , REAL & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and b <> 0 and c <> 0 ; w1 , w2 , w1 is_collinear & w2 in { w1 , w2 } implies w1 + w2 in { w1 , w2 } p2 /. IC s = p2 . IC s .= ( ( IC s ) + 1 ) .= ( ( IC s ) + 1 ) ; ind ( T-10 | b ) = ind b .= ind B - ind b .= ind B - ind b ; [ a , A ] in the Indices of Line ( A9 , b ) & [ a , A ] in Indices Line ( A9 , b ) ; m in ( the Arrows of C ) . ( o1 , o2 ) & ( the Arrows of C ) . ( o2 , o2 ) = ( the Arrows of C ) . ( o2 , o2 ) ; ( a 'imp' ( CompF ( PA , G ) , B ) ) . z = FALSE ; reconsider phi = phi , phi = phi , phi = phi , phi = phi , phi = phi , N = { phi } , N = { phi } , N = { phi } , M = { phi } , N = { phi } , N = { phi } , N = { phi } , M = { phi } , N = { phi } , len s1 - ( len s2 - 1 ) + 1 > 0 + 1 - 1 ; delta ( D ) * ( f . ( upper_bound A ) - lower_bound A ) < r ; [ f21 , f22 ] in the carrier' of A ~ & [ f22 , f22 ] in the carrier' of A ; the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 ; consider z being element such that z in dom g2 and p = g2 . z and q = g2 . z ; [#] V1 = { 0. V1 } .= the carrier of (0). V1 .= the carrier of (0). V1 .= [#] V1 ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ; c / ( |[ b , c ]| ) = c .= c / ( |[ a , c ]| ) .= c / ( |[ a , c ]| ) ; reconsider t1 = p1 , t2 = p2 , t2 = p1 , t1 = p2 , t2 = p3 as Term of C , V ; ( 1 - 1 ) * ( 1 - 1 ) in the carrier of [. 1 , 1 .] & ( 1 - 1 ) * ( 1 - 1 ) in the carrier of I[01] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D * ( p1 `2 ) ; R . b - a * b = 2 * - b * b .= 2 * b - b * a .= b ; consider ] such that B = 1- 1 * C + ( 1 - 1 ) * A and 0 <= 1 ; dom g = dom ( ( ( the Sorts of A ) * ( the_arity_of o ) ) * ( the Arity of S ) ) ; [ P . ( l6 ) , P . ( l6 ) ] in => ( ( T . ( l6 ) ) , T . ( l6 ) ) ; set s2 = Initialize s , P2 = P +* I ; reconsider M = mid ( z , i2 , i1 ) , N = L~ z as non empty Subset of TOP-REAL 2 ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 ; assume x in the left & x in the left & y in the right of g implies x + y in the right of g & x + y in the right & x + y in the right of g ; consider M being strict Subgroup of A9 such that a = M and T is strict Subgroup of M and M is strict Subgroup of M ; for x st x in Z holds ( ( ( 1 / 2 ) (#) f ) `| Z ) . x <> 0 & f . x > 0 ; len W1 + len W2 + m = 1 + len W2 + len W1 & len ( W1 + W2 ) = len W1 + len W2 + len W2 ; reconsider h1 = ( vseq . n - tf1 ) . t as Lipschitzian LinearOperator of X , Y ; ( - ( len p + q ) ) + 1 in dom ( p + q ) ; assume that s2 is negative and F is for s1 , s2 st s1 in the { s2 } & s2 in the { s1 } & s1 <> s2 & s2 in the { s2 } holds s2 in the { s1 } ; ( ( the thesis of M ) * ( x , y ) ) `1 = gcd ( x , y , z ) & ( ( the Element of M ) * ( x , y ) ) `2 = gcd ( x , y , z ) ; for u being element st u in Bags n holds ( p `1 + m ) . u = p . u + m . u for B being Subset of u-5 st B in E holds A = B or A misses B or A misses B ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ W1 , W1 = tree ( q ) , W2 = tree ( p ) ; x in { X where X is Ideal of L : X is Ideal of L } & x in { X where X is Ideal of L : X is Ideal of L } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W2 implies W1 + W2 c= W2 ( for a , b holds a + b * id a = 1. ( K , n ) ) & ( a + b ) * id a = id ( the carrier of K ) ( ( X --> f ) . x ) . x = ( X --> dom f ) . x .= ( X --> f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => q ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( - 1 ) |^ ( n -' m ) ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) & ( f1 (#) f2 ) . x in dom ( f1 (#) f2 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and b1 . r = { c2 } ; ex P st a1 on P & a2 on P & b on P & c on P & a on P & b on P & c on P & a on P & b on P & c on P & a on P & b on P & c on P & b on P & a on P & b on P & c on P & b on P reconsider gf = g `1 * f `2 , hf = h `1 * g `2 as strict non empty Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in F and v2 in { v } ; n in { i where i is Nat : i < n + 1 & n < ( n + 1 ) + 1 } ; ( F * ( i , j ) ) `2 >= ( ( F * ( m , k ) ) `2 ) ; assume K1 = { p : p `1 >= sn & p `2 >= 0 & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) . ( succ O1 ) .= ( ConsecutiveSet ( A , O1 ) ) . ( succ O1 ) ; set IS1 = Macro ( a , intloc 0 ) , IS2 = AddTo ( a , intloc 0 ) , IS2 = goto ( 0 + 1 ) , IS2 = goto ( 0 + 1 ) , IS2 = goto ( 0 + 1 ) , IS2 = goto ( 0 + 1 ) , IS2 = goto ( 0 + 1 ) , IS2 = goto ( 0 + 1 ) ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 & z /. i <> z /. ( i + 1 ) X c= ( the carrier of L1 ) /\ ( the carrier of L2 ) & ( the carrier of L1 ) /\ ( the carrier of L2 ) c= the carrier of L1 ; consider x9 being Element of GF ( p ) such that x9 |^ 2 = a and x9 |^ 3 = a ; reconsider ee = ee , f = f , fe = f , f = f , e = f , f = g , e = f , f = g ; ex O being set st O in S & C1 c= O & M . O = 0. ( M , f . O ) ; consider n be Nat such that for m be Nat st n <= m holds S . m in U1 and S . m in U2 ; f (#) g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) . x ) ; defpred P [ Nat ] means A + succ $1 = succ A & A + succ $1 = succ $1 & A = succ $1 & A = succ $1 ; the left & - g = the left & - g = the left of g implies - ( - ( - g ) ) = - ( - ( - g ) ) reconsider p\mathopen { x } , p\mathopen { x } , p\mathopen { x } , p , q } = y as Point of TOP-REAL 2 ; consider g3 such that g3 = y and x <= y and x <= y and y <= x0 and x0 <= g2 and g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] & X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 & len ( x2 ^ y2 ) = len x2 + len y2 & len ( x2 ^ y2 ) = len x2 + len y2 ; for x being element st x in X holds x in the set of ( the set of f ) & x in the set of ( the set of f ) . ( n + 1 ) holds x in X LSeg ( p11 , p2 ) /\ LSeg ( p1 , p2 ) = {} & LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} ; func \HM { \rm such that X is finite & Y is non empty & F is st X is finite & Y is non empty & F is non empty ; len ( CR ( Cf ) /. 1 , Cf /. ( len Cf ) ) <= len ( Cf ) ; pred K is Set means : Def2 : a <> 0. K & a * v = v . a * v . a ; consider o being OperSymbol of S such that t `1 . {} = [ o , the carrier of S ] and o in rng p ; for x st x in X ex y st x c= y & y in X & y in X & y is NAT & f . x = f . y IC Comput ( P1 , s , k ) in dom ( ( n + 1 ) .--> ( n + 1 ) ) ; pred q < s & r < s implies ]. p , s .[ /\ ]. p , q .[ c= ]. p , q .[ ; consider c being Element of Class f such that Y = ( F . c ) `1 and c in Class ( F . c , 3 ) ; func the ResultSort of S2 -> Function of the carrier' of S1 , the carrier' of S2 means : Def4 : for x being set st x in the carrier' of S2 holds it . x = ( the ResultSort of S1 ) . x ; set yxy = [ <* y , z *> , f2 ] ; assume x in dom ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) `| Z ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f & rri2 in Int cell ( GoB f , i , GoB f ) ; ( q `2 ) ^2 >= ( ( Cage ( C , n ) * ( i + 1 ) ) `1 ; set Y = { a "/\" a ` : a ` in X } ; i - len f <= len f + len f1 - len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f + len f - len f - len f + len f - len f + len f - for n ex x st x in N & x in N1 & h . n = - x0 & h . n = x0 set s0 = ( ( a , I , p , s ) := ( a , I , p ) ) . i ; p . k . 0 = 1 or p . 0 = - 1 or p . 0 = 1 & p . 0 = - 1 ; u + Sum L-18 in ( U \ { u } ) \/ { u + Sum L-18 } ; consider x9 being set such that x in x9 and x9 in V1 and x9 in V1 and f . x9 = f . x9 ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( : len p = len p + len q ) ; g + h = gg + h1 & \rm A1 + A2 = g + h & h + c = g + h + c ; L1 is distributive & L2 is distributive implies L1 , L2 is distributive & for x being Element of L1 holds L1 , L2 be distributive non empty Poset holds L1 , L2 let L1 , L2 be distributive LATTICE st L1 , L2 let x , y be Element of L1 holds x "/\" y = x "/\" y pred x in rng f & y in rng ( f /^ x ) implies f / x = f / y & f / y = f / ( y - x ) ; assume that 1 < p and ( 1 - p ) * q + ( 1 - p ) * q = 1 and 0 <= a and a <= b ; F* ( f , <* A1 *> ) = rpoly ( 1 , <* A1 *> ) *' t + rpoly ( 1 , <* A1 *> ) ; for X being set , A being Subset of X holds A ` = {} implies A = {} & A = {} & A = {} & A = {} ; ( ( ( ( ( N ) ) | X ) ) `1 <= ( ( ( ( ( ( N ) ) | X ) ) `1 ) ) `1 ; for c being Element of the \rbrack of A , a being Element of the bound is Element of the bound A holds c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= s2 . GBP .= s2 . GBP .= s2 . GBP .= s . GBP ; for a , b being Real holds |[ a , b ]| in ( y >= 0 implies b >= 0 ) & a >= 0 implies b = 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y \ x = ( x \ y ) ` mode BCK-algebra of i , j , m , n , m , n , m , k being Nat ; set x2 = |( Re ( y - x ) , Im ( y - x ) )| ; [ y , x ] in dom ( u . ( y , x ) ) & ( u . ( y , x ) ) . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A & ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A ; 0 <= delta ( S2 . n ) & |. delta ( S2 . n ) .| < ( e / 2 ) * ( e / 2 ) ; ( - ( q `1 / |. q .| - cn ) ) / ( 1 - cn ) <= ( - ( q `1 / |. q .| - cn ) ) / ( 1 - cn ) ; set A = ( 2 / 2 ) * ( b-a ) ; for x , y being set st x in R" holds x , y are_\hbox { - } ; deffunc FF2 ( Nat ) = b . ( $1 - 1 ) * ( M * ( $1 - 1 ) ) ; for s being element holds s in -> Element of \mathclose { f } iff s in -> Element of \mathclose { f } \/ _ f for S being non empty non void void void holds S is connected iff S is connected max ( ( degree ( z ) ) , ( degree ( z ) ) / 2 ) >= 0 & ( |. z .| ) ^2 >= 0 ; consider n1 be Nat such that for k holds seq . ( n1 + k ) < r + s and for n holds seq . ( n + k ) < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( A ) ; set n-15 = n-13 '&' ( M . ( x qua Element of BOOLEAN ) qua Element of BOOLEAN ) , n-15 = M . ( x qua Element of BOOLEAN ) ; f " V in Hom ( X , L ) & f " V in D & f " V in D & f " V in D & f .: V c= D ; rng ( ( a ^\ c ) +* ( 1 , b ) ) c= { a , c , b } ; consider y being as as as as as as WWof G1 such that y ` = y and dom y ` = WWWWWWLet ; dom ( ( 1 / 2 ) (#) f ) /\ ]. x0 - r , x0 .[ c= ]. x0 - r , x0 .[ & ]. x0 - r , x0 .[ c= dom f ; as Subset of as Subset of as Subset of as Subset of as Subset of as ( i , j , n , - r ) ; v ^ ( ( n |-> 0 ) ^ ( n |-> 0 ) ) in Lin ( ( ( B | ( n -' 1 ) ) ^ ( n |-> 0 ) ) ) ; ex a , k1 , k2 st i = a := k1 & i = a := k2 & j = a := k1 & i <> j & j <> i implies ex a , b st i = a := b & j <> i & j <> i & i <> j t . NAT = ( NAT .--> succ i1 ) . NAT .= ( NAT .--> succ i1 ) . NAT .= ( 5 .--> succ i1 ) . NAT .= ( 5 .--> succ i1 ) . NAT .= ( 5 .--> succ i1 ) . NAT ; assume that F is bbfamily of X and rng p = Seg ( n + 1 ) and dom p = Seg ( n + 1 ) ; LIN b , b9 , a & not LIN a , a9 , c & LIN a , a9 , c & LIN a , a9 , c & LIN b , b9 , c9 & LIN a , a9 , c & LIN b , b9 , c & LIN a , a9 , c & LIN b , b9 , c9 & LIN a , b9 , c & LIN b , c9 , c ; ( L1 over L2 ) \& O c= ( L1 Let O ) Let ( L2 Let O ) Let ( L1 Let O , O ) ; consider F be ManySortedSet of E such that for d be Element of E holds F . d = F ( d ) and for d be Element of E holds F . d = F ( d ) ; consider a , b such that a * ( contradiction w ) = b * ( -w ) and 0 < a & a < b ; defpred P [ FinSequence of D ] means |. Sum $1 .| <= Sum |. $1 .| & for k st k in dom $1 holds |. Sum ( $1 ) .| <= Sum |. $1 .| ; u = cos ^ ( x , y ) . v * x + ( cos ^ ( x , y ) . v * y ) .= v ; dist ( ( seq . n ) + x , x + g ) <= dist ( ( seq . n ) , x + g ) + 0 ; P [ p , |. p .| ^ |. p .| , {} ] & [ p , {} ] in the Sorts of A ; consider X being Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and X is finite and X is finite ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & for k st k <= l & k <= h holds |. ( f | l ) . k - f /. k .| < r } ; Int ( ( G . n ) vol ) <= ( Cl ( ( G . n ) vol ) ) * vol ( ( G . n ) vol ) ; f . y = x .= x * 1_ L .= x * ( 1_ L ) .= x * ( power L ) .= x * ( power L ) ; NIC ( ( a , i1 ) --> ( i , k ) , k ) = { i1 , succ ( k , i ) } .= { i1 , succ ( k , i ) } ; LSeg ( p01 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 , p2 } & LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 } ; Product ( ( the support of I-15 ) +* ( i , { 1 } ) ) in Z1 & ( the support of ( the Sorts of I-15 ) +* ( i , { 1 } ) ) in Z1 ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) | ( the carrier of S1 ) ; W-bound ( Qs2 ) <= ( q1 `1 ) / 2 & ( q1 `1 <= ( q1 `1 ) / 2 & ( q1 `2 <= ( q1 `2 ) / 2 & ( q1 `2 <= ( q1 `2 ) / 2 ) ) / 2 ; f /. i2 <> f /. ( ( i1 + len g -' 1 ) -' len f + 1 -' 1 , f /. ( i1 + 1 -' len f + 1 ) ) ; M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) ; len ( ( P ^ Q ) ^ ( P ^ Q ) ) in dom ( ( P ^ Q ) ^ ( P ^ Q ) ) ; A |^ ( m , n ) c= A |^ ( m , n ) & A |^ ( k , n ) c= A |^ ( k , l ) ; R |^ n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 and for n being Nat holds p1 . n = p2 . ( n + 1 ) ; consider X be set such that X in Q and for Z be set st Z in Q & Z <> X holds X c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( id the carrier of V ) . v .| & ||. v .|| = upper_bound rng |. ( id the carrier of V ) . v .| for phi holds phi in X implies phi in X & not phi in X & not phi in X & not phi in X & not phi in X rng ( ( Sgm dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f | dom ( f ex c being FinSequence of D ( ) st len c = k & P [ c ] & a = c & a = c ; the_arity_of o = <* o , b , c *> & o = <* o , c , o *> & o <> c & o <> b & o <> c & o <> c & o <> b & o <> c & o <> a & o <> b & o <> c & o <> b & o <> c & o <> a & o <> b & a <> b implies o , c // a , b consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and f1 is continuous ; a1 = b1 & a2 = b2 or a1 = b1 & a2 = b2 & a3 = b3 & a4 = b3 & a5 = b2 & a5 = b3 & a5 = b3 & 6 = 6 & 7 = 7 & 8 = 8 & 8 = 8 & 8 = 8 & 7 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 7 & 8 = 8 & 8 = 8 ; D2 . ( indx ( D2 , D1 , n1 ) + 1 ) = D1 . ( n1 + 1 ) & D2 . ( indx ( D2 , D1 , n1 ) + 1 ) = D2 . ( n1 + 1 ) ; f . ( ||. |[ r , s ]| ) = ||. ||. |[ r , s ]| .|| , ||. r , s .|| .|| .= ||. r .|| .= ||. r .|| ; consider n be Nat such that for m be Nat st n <= m holds C-25 . m = C-25 . m and C-25 . m = C-25 . m ; consider d be Real such that for a , b be Real st a in X & b in Y holds a <= d & a <= b ; ||. L /. h - ( K * |. h .| ) + ( K * |. h .| ) + ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative associative means : Def2 : for b being Element of X holds F - Sum ( F - f ) = f . b - f . b ; p = - ( - 1 ) * p0 + 0. TOP-REAL 2 .= 1 * ( p0 `1 ) + 0. TOP-REAL 2 .= ( 1 - 1 ) * p1 + 0. TOP-REAL 2 .= ( 1 - 1 ) * p1 + 0. TOP-REAL 2 ; consider z1 such that b , x1 , x3 is_collinear and o , x1 , z1 is_collinear and o , x1 , z1 is_collinear and o , x1 , z1 is_collinear and o , x1 , z1 is_collinear ; consider i such that Arg ( ( Rotate ( s , r ) ) . q ) = s + Arg q + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card f and rng g = f . x and rng g c= f . x and for x st x in dom g holds g . x = f . x ; assume that A = P2 \/ Q2 and P2 <> {} and Q2 <> {} and Q1 is closed and for x being set st x in P1 & x in P2 holds x in P2 ; attr F is associative means : Def2 : F .: ( F .: ( f , g ) , h ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x in z & x < z or m < i & i < z & i < z ; consider k2 being Nat such that k2 in dom ( P . ( k2 + 1 ) ) and l in Pk and i = ( k + 1 ) + k2 ; seq = r (#) seq implies for n holds seq . n = r * seq . n & seq is bounded & lim seq = r * seq . n & lim seq = r * seq . n F1 . [ id a , [ a , a ] ] = [ f * ( id a , a ) , f * ( id a , b ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & p in D2 } ; consider z being element such that z in dom ( ( dom F ) | ( dom F ) ) and ( ( dom F ) | ( dom F ) ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y Int cell ( G , i , j ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and ( T | E1 ) . e = v ; ( F `1 * b1 ) . x = ( Mx2Tran ( J , b1 , b2 ) ) . ( T /. j ) .= ( Mx2Tran ( J , b1 , b2 ) ) . j ; - 1 / ( - 1 / ( n + 1 ) ) = ( m (#) D ) | n .= ( - m ) (#) D .= ( - m ) (#) D .= ( - m ) (#) D .= ( - m ) (#) D ; pred for x be set st x in dom f /\ dom g holds g . x <= f . x & g . x <= f . x ; len ( f1 . j ) = len ( f2 /. j ) .= len ( f2 . j ) .= len ( f2 . j ) .= len ( f2 . j ) ; All ( 'not' All ( 'not' a , A , G ) , B , G ) '<' Ex ( 'not' Ex ( 'not' a , B , G ) , A , G ) LSeg ( E . k , F . ( k + 1 ) ) c= Cl RightComp ( Cage ( C , n + 1 ) , i ) ; x \ a |^ m = x \ ( a |^ k * a ) .= ( x \ ( a |^ k ) ) \ a .= ( x \ ( a |^ k ) ) \ a ; k -inininininininthe Element of S , I , J be Element of S , i be Element of I , k be Element of I , i be Element of I ; for s being State of A9 holds Following ( s , n ) . 0 + ( n + 2 ) * ( n + 2 ) is stable ; for x st x in Z holds f1 . x = a / 2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 implies f1 - f2 . x <> 0 support ( ( support ( m ) ) \/ support ( m ) c= support ( ( m ) \ ( support ( n ) ) ) & support ( ( m ) \ ( support ( n ) ) ) c= support ( m ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier of B ) * , the carrier' of C ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + a ^2 ) ) ; phi /. ( succ b1 ) = g . a & phi /. ( succ b1 ) = f . a & phi . ( succ b1 ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) ^ <* p *> ) ; { x1 , x2 , x3 , x4 , x5 , x5 } = { x1 } \/ { x2 , x3 , x4 , x5 } .= { x1 } \/ { x2 , x3 , x4 , x4 } ; the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 & the Sorts of U2 c= the Sorts of U2 implies ( the Sorts of U1 ) \/ ( the Sorts of U2 ) c= the Sorts of U1 ( - ( 2 * a - ( 2 * a - b ) ) / 2 ) + b / 2 - a / 2 > 0 ; consider W00 such that for z being element holds z in W00 iff z in N & P [ z , W00 . z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the ResultSort of S ) . o = r and ( the ResultSort of S ) . o = <* a *> and ( the ResultSort of S ) . o = r ; Z = dom ( ( exp_R * ( ( #Z n ) * ( f1 + #Z n ) ) ) `| Z ) & Z = dom ( ( #Z n ) * ( f1 + #Z n ) ) ; sum ( f , SS1 ) is convergent & lim ( f , SS1 ) = integral ( f , SS1 ) & lim ( f , SS1 ) = integral ( f , S ) ; \cal X [ a9 , g . ( f , g ) => ( x9 => ( f , x9 ) ) ] in ( J , the carrier of l ) ; len ( M2 * ( M1 - M2 ) ) = n & width ( M2 * ( M1 - M2 ) ) = n & width ( M2 * ( M1 - M2 ) ) = n & width ( M2 * ( M1 - M2 ) ) = n ; attr X1 union X2 is open means : Def4 : X1 , X2 are_separated & X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated implies X1 , X2 are_separated ; for L being upper-bounded antisymmetric RelStr , X being non empty RelStr , X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-129 = F2 . ( ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . ( b . b ) ) ) ) ) ) ) ) ) consider w being FinSequence of I such that the InitS of M , w ^ <* s *> ^ w ^ w ^ q = q ^ w ^ ( <* s *> ^ w ) ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= 1_ H .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) ; assume for i be Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & for i be Element of NAT st i in dom z holds z . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier ( L ) = L & for K being Subset of X st K in C holds L /\ K <> {} & L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C2 implies ( the carrier' of C1 ) /\ ( the carrier' of C2 ) = the carrier' of C2 reconsider oY = o `1 , o = o `1 , tY = o `2 , o = o `1 , o = o `2 , o = o `1 , o = o `2 , Y = o `2 , X = ( the Sorts of A ) . o , Y = ( the Sorts of A ) . o ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x3 ) .= x1 + ( 0 * x2 ) .= x1 + x2 ; Ea " . 1 = ( Ea qua Function ) " . 1 .= ( Ea " ) . 1 .= ( ( Ea ) " ) . 1 .= ( Ea ) . 1 .= ( Ea ) . 1 ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , v1 = the carrier of U1 /\ ( U1 "\/" U2 ) as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" y ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . ( l1 + 1 ) ) .| < ( 1 / |. M . ( l + 1 ) .| ) ; LSeg ( ( Upper_Seq ( C , n ) ) * ( i , j ) , ( \lbrace p } ) * ( i , j ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- x ) + R /. ( x- x ) ; g . c * ( - g . c ) + f . c <= h . c * ( - f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) .= f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the set of \HM { the } \HM { set , b is } and len ColVec2Mx f = width A and width ColVec2Mx f = width A and width ColVec2Mx f = width A and width ColVec2Mx f = width A ; len ( - M1 ) = len M1 & width ( - M1 ) = width M1 & width ( - M1 ) = width M2 & width ( - M1 ) = width M2 & width ( - M2 ) = width M2 ; for n , i being Nat st i + 1 < n & i < n holds [ i , i + 1 ] in the InternalRel of [: the InternalRel of thesis , the InternalRel of R :] pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 ; pred a <> 0 & b <> 0 & Arg a = Arg b & Arg b = Arg a & Arg a = Arg b & Arg b = Arg a & Arg a = Arg b & Arg b = Arg a & Arg a = Arg b & Arg b = Arg a & Arg b = Arg a & Arg a <> 0 & Arg b <> 0 & Arg b <> 0 & Arg a <> 0 & Arg b <> 0 & Arg a <> 0 ; for c being set st not c in [. a , b .] holds not c in Intersection ( the open of a , b ) & not c in Intersection ( the open of a , b ) assume that V1 is linearly-independent and V2 is closed and V2 = { v + u : v in V1 & u in V1 & v in V1 } and V1 = { v + u : u in V1 & v in V1 } ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N implies z * y1 + ( 1 - z ) * y2 in N rng ( ( ( ( ( P qua Function ) ) * ( P * ( S , R ) ) " ) ) ) = Seg card ( ( ( P * ( S * ( S , R ) ) ) " ) ) ; consider s2 being Integer such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b and s2 . n <= b ; h2 " . n = h2 . n " & 0 < - ( 1 / 2 ) & 0 < ( - ( 1 / 2 ) ) / 2 & ( - ( 1 / 2 ) ) < ( - ( 1 / 2 ) ) / 2 ; ( Partial_Sums ||. seq .|| ) . m = ||. ( seq . m ) - ( seq . m ) .|| .= ||. ( seq . m ) - ( seq . m ) .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b ; - v = - 1_ G & - w = - 1_ G & - v = - 1_ G implies ( - v ) * w = - ( 1_ G ) * w & ( - v ) * w = - ( 1_ G ) * v sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: D ) .= k . ( sup D ) .= sup ( ( k .: D ) .: D ) .= sup ( k .: D ) ; A |^ ( k , l ) ^^ ( A |^ ( n , .. A ) ) = ( A |^ ( n , .. A ) ) ^^ ( A |^ ( k , .. A ) ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J , K being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( p `1 ) ^2 + ( p `2 ) ^2 .= ( p `1 ) ^2 + ( p `2 ) ^2 ; for a , b being non zero Nat st a , b are_relative_prime & a , b are_relative_prime holds cluster [: a , b :] = [: \hbox { a } , the carrier of p :] & a , b are_relative_prime & b , a are_relative_prime holds [: n , b :] = [: n , n :] consider A9 being countable Subset of Al such that r is countable and A9 is non empty and A9 is finite and for i being Nat holds A9 is finite & i <= len ( A | i ) ; for X being non empty addLoopStr , M , N being Subset of X , x , y being Point of X st x in M & y in M holds x + y in x + y { [ x1 , x2 ] , [ y1 , y2 ] } c= { [ x1 , y1 ] , [ x2 , y2 ] } h . ( f . O ) = |[ A * ( f . O ) `1 + B , C * ( f . O ) `2 + D ]| ; ( Gauge ( C , n ) * ( k , i ) ) `2 in L~ ( Upper_Seq ( C , n ) ) /\ L~ ( Upper_Seq ( C , n ) ) ; cluster m , n are_relative_prime implies for Nat holds ( for Nat st m divides n & not ( m divides n & not m divides n & not m divides n ) & not ( ex p being prime Nat st p divides n & not m divides n ) & not p divides n ) & not ( m divides n & not p divides n ) ; ( f (#) F ) . x1 = f . ( F . x1 ) & ( f (#) F ) . x2 = f . ( F . x2 ) & ( f (#) F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ a <= c holds a "/\" b <= c consider b being element such that b in dom ( H / ( x. 0 , y ) ) and z = H / ( x. 0 , y ) . b ; assume that x in dom ( F (#) g ) and y in dom ( F (#) g ) and ( F (#) g ) . x = ( F (#) g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G & e Joins W . 3 , G & W . 7 in G ; ( \cal o ) . ( 2 * n ) . x = ( o holds h . ( 2 * n ) ) . x + ( h . ( 2 * n ) ) . x ; j + 1 = ( i - len h11 + 2 ) + 2 .= i + ( 1 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - len h11 + 2 - 1 ; *' ( S *' ) . f = S *' ( S *' ) . f .= S . ( ( S *' ) . f ) .= S . ( ( S *' ) . f ) .= S . f ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 ) = Sum ( L2 ) and Sum ( L2 ) = Sum ( L2 ) ; attr R is max means : Def4 : for p , q st p in R & q in R & p <> q holds ex P st P is special & p in P & q in P & p <> q ; dom product ( X --> f ) = meet ( dom ( X --> f ) ) .= meet ( dom ( X --> f ) ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= dom f ; sup ( proj2 .: ( Upper_Arc C ) /\ \mathop { \rm UpperArc ( C ) /\ \mathop { \rm UpperArc } ( C ) ) <= sup ( proj2 .: ( C /\ \mathop { w } ) ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - p .| < r i * ( f - fN ) = i * ( f - ( i - y ) ) .= i * ( f - ( i - y ) ) .= i * ( f - ( i - y ) ) .= i * ( f - ( i - y ) ) ; consider f being Function such that dom f = 2 -tuples_on X and for Y be set st Y in 2 -tuples_on X holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g1 in union C and g2 in A and g2 in B ; func d div n -> Nat means : Def4 : d divides n & it divides n & ( d |^ n ) divides ( d |^ n ) & ( d |^ n divides ( d |^ n ) ) ; f\in f . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . [ 2 * x , t ] .= ( - P ) . [ 2 * x , t ] .= a ; t = h . D or t = h . B or t = h . C or t = h . E or t = h . F or t = h . J ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( n + 1 ) ; ( q `1 / |. q .| - cn ) / ( 1 - cn ) <= ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) / ( 1 - cn ) ; h0 . ( i + 1 + 1 ) = h21 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) .= h21 . ( i + 1 -' len h11 + 2 -' 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier' of S } such that a = [ o , x2 ] and o <> [ o , x2 ] ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & a <= b & b <= a & a <= b & b <= a ) implies a <= b ||. h1 .|| . n = ||. h1 . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| ; ( ( - ( exp_R * f ) ) `| Z ) . x = f . x - ( exp_R . x ) / ( exp_R . x ) .= ( - 1 ) / ( exp_R . x ) .= ( - 1 ) / ( exp_R . x ) .= ( - 1 ) / ( exp_R . x ) ; pred r = F .: ( p , q ) means : Def4 : len r = min ( len p , len q ) ; ( r\mathbin { r / 2 } ) ^2 + ( r8 / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for i being Nat , M , N being Matrix of n , K st i in Seg n & i in Seg n holds Det ( M @ ) = Sum ( ( 1 , i ) * ( - 1 , j ) ) then a <> 0. R & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v ; p . ( j -' 1 ) * ( q *' r ) . ( i + 1 -' j ) = Sum ( p . ( j -' 1 ) * ( q . ( j -' 1 ) ) ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( R /* ( h ^\ n ) ) " ) ; assume that the carrier of H2 = f .: the carrier of H1 and the carrier of H1 = f .: the carrier of H2 and the carrier of H2 = the carrier of H1 and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o .= ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o ; H1 = n + 1 - ( |. 2 to_power ( n + 1 ) .| ) .= n + 1 - ( |. 2 to_power ( n + 1 ) .| ) .= n + 1 - ( |. 2 to_power ( n + 1 ) .| ) ; ( O = 0 & 3 ) = 0 & 3 = 1 & 4 = 1 & 5 = 2 & 6 = 3 & 7 = 4 & 6 = 5 & 8 = 6 & 7 = 8 & 8 = 8 & 8 = 7 & 8 = 8 & 8 = 8 & 7 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 9 & 8 = 8 & 8 = 8 & 9 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 8 = 8 & 7 = 8 & 8 F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 1 ) } .= { f /. ( n + 1 ) } .= { f /. ( n + 1 ) } ; pred b <> 0 & d <> 0 & b <> d & b <> d & a = ( - e ) / ( b - d ) ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) ; for i be set st i in dom g ex u , v be Element of L st g /. i = u * v & u in B & v in B & v in B & u in B & v + u in B g `1 * P `1 * g `1 = g `1 * ( g `1 * P `2 ) .= g `1 * ( g `2 * P `1 ) .= g `1 * ( g `2 * P `1 ) .= g `1 * ( g `2 * P `1 ) ; consider i , s1 such that f . i = s1 and not i in s1 and not i in { s1 } and not i in { s1 } and not i in { s2 } and not i in { s2 } and not j in { s2 } and not i in { s2 } and not j in { s2 , s1 } ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] & [ s2 , t2 ] , [ s2 , t2 ] <= [ s2 , t2 ] & [ s2 , t2 ] in the InternalRel of TOP-REAL 2 ; then H is negative & H is not negative & H is not negative & H is not negative implies H is not negative -g\mathopen H & H is not negative ; attr f1 is total means : Def4 : ( 1 - r ) (#) ( f1 (#) f2 ) is total & for c holds ( f1 (#) f2 ) . c = f1 . c * ( f2 . c ) " ; z1 in W2 ` & z2 = W2 ` & ( for z st z in W2 holds z in W1 & z in W2 holds not z in W2 ) implies ( for z st z in W1 & z in W2 holds z in W1 & z in W2 ) p = 1 * p .= a " * a * p .= a " * a * p .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a * ( b " * q ) .= a * q ; for r be Real , K be Real st for n be Nat holds rseq . n <= K holds upper_bound rng ( seq1 . n ) <= K * ( upper_bound rng ( seq1 ^\ K ) ) ( for C being Subset of TOP-REAL 2 holds E-max C meets L~ ( go ) \/ L~ ( co ) or C meets ( L~ ( go ) \/ L~ ( co ) ) or C meets ( L~ ( go ) \/ L~ ( co ) ) ; ||. f . ( g . ( k + 1 ) ) - g . ( g . k ) .|| <= ||. g . 1 - g . 0 .|| * ( K * ( K / ( k + 1 ) ) ) ; assume h = ( ( B .--> B ' ) +* ( C .--> D ) +* ( E .--> F ) +* ( F .--> J ) +* ( J .--> M ) +* ( F .--> N ) +* ( M .--> N ) +* ( F .--> N ) +* ( M .--> N ) +* ( F .--> N ) ) ; |. ( ( lower . n ) || ( A . n ) ) . k - ( ( lower . n ) || ( A . n ) ) . k .| <= e * ( ( b-a . n ) || ( A . n ) ) ; ( ( being being such such that being being such that ( for i being Nat holds i in I holds f . i = [ the |^ of I , the carrier of S ] ) holds ( for i being Element of I holds f . i = ( the { x1 , x1 , x2 , x3 , x4 , x5 , x5 , 6 , 7 , 8 } = { x1 , x2 , x3 , x4 , 7 , 8 } .= { x1 , x2 , x3 , x4 , 6 , 7 } .= { x1 , x2 , x3 , x4 } ; assume that A = [. 0 , 2 * PI .] and integral ( ( ( #Z n ) * sin ) , A ) = 0 and integral ( ( #Z n ) * sin ) = 0 ; p `1 is Permutation of dom f1 & p `1 = ( Sgm Y ) . i & p `2 = ( Sgm Y ) . i implies p `1 * Sgm X = p `1 * Sgm Y for x , y st x in A & y in A holds |. ( 1 / ( f . x - 1 ) ) * ( f . y - 1 ) .| <= 1 * |. f . x - f . y .| ( p2 `2 ) ^2 = |. q2 .| * ( ( q `2 / |. q .| - sn ) / ( 1 - sn ) ) .= |. q .| * ( ( q `2 / |. q .| - sn ) / ( 1 - sn ) ) ; for f be PartFunc of the carrier of CNS , REAL st dom f is compact & f is compact & f is continuous holds rng f = dom f & f is compact & f is bounded & f is bounded & f is bounded & f is bounded & f is bounded & f is bounded & f is bounded holds f is compact assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A , G ) ) . x = TRUE ; consider FM such that dom FM = n1 and for k be Nat st k in n1 holds Q [ k , FM . k ] and for k be Nat st k in n1 holds Q [ k , FM . k ] ; ex u , u1 st u <> u1 & u , u1 // v , v1 & u , u1 // v , v1 & u , u1 // v , v1 & v , v1 // v , u1 & u , u1 // v , v1 & v , v1 // v , u1 & v , v1 // v , u1 implies u , u1 // v , v1 for G being Group , A , B being non empty Subset of G , N being normal Subgroup of G holds ( N ` A ) * ( N ` ) = N ` A * B for s be Real st s in dom F holds F . s = integral ( R / > ( R / > ) (#) integral ( f , ( f + g ) / ( f - g ) ) , ( f - g ) / ( f - g ) ) ; width AutMt ( f1 , b1 , b2 ) = len ( ( f1 - f2 ) * ( f1 - f2 ) ) .= len ( ( f1 - f2 ) * ( f1 - f2 ) ) .= len ( ( f1 - f2 ) * ( f1 - f2 ) ) .= len ( ( f1 - f2 ) * ( f1 - f2 ) ) ; f | ]. - PI / 2 , PI / 2 .[ = f & dom f = ]. - PI / 2 , PI / 2 .[ & for x st x in ]. - PI / 2 , PI .[ holds f . x = f . x - 1 / 2 & for x st x in ]. - PI , PI / 2 .[ holds f . x = - 1 & f . x = 1 assume that X is closed and a in X and a c= X and a in X and y in X and x in a and y in X and x in X ; Z = dom ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) & Z = dom ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) ; func Let ( V , l ) -> Subset of V means : Def4 : for k st 1 <= k & k <= len l holds it . k in V & l . k in V ; for L being non empty TopSpace , N being net of L , M being net of N , N being net of L st c is inf of N & M is open & N c= M holds c in N for s being Element of NAT holds ( ( id the carrier of C\mathop { v } ) + ( id the carrier of C\mathop { v } ) ) . s = ( ( id the carrier of C\mathop { v } ) + ( id the carrier of CV ) ) . s then z /. 1 = ( ( us L~ z ) .. z ) .. z & ( ( ( ( L~ z ) .. z ) .. z ) .. z < ( ( ( L~ z ) .. z ) .. z ) .. z ) .. z ; len ( p ^ <* ( 0 qua Real ) * ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) * ( 0 qua Real ) *> .= len p + 1 .= len p + 1 ; assume that Z c= dom ( - ( ln * f ) ) and for x st x in Z holds f . x = x and for x st x in Z holds f . x = x and f . x > 0 ; for R being add-associative right_zeroed right_complementable Abelian distributive non empty doubleLoopStr , I , J being Subset of R , I being Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J implies I /\ J c= I /\ J consider f being Function of [: B1 , B2 :] , ( for x being Element of B1 , y being Element of B2 holds f . x = F ( x , y ) ) and f is Function of B1 , B2 ; dom ( x2 + y2 ) = Seg len x .= Seg len ( x ^ ( y - z ) ) .= dom ( x ^ ( y - z ) ) .= dom ( x ^ ( y - z ) ) .= dom ( x ^ ( y - z ) ) .= dom ( x ^ ( y - z ) ) .= dom ( x ^ ( y - z ) ) ; for S being not not not F is not a functor of C , B , c being Object of C holds card S . ( id c ) = id ( ( the Arrows of C ) . ( id c ) ) ex a st a = a2 & a in f /\ ( f " ) & a in f " ( f " ) & b in f " ( f " ) & a in f " ( f " ) & b in f " ( f " ) & a in f " ( f " { b } ) & b in f " { a } implies a = b a in Free ( H2 / ( x. 4 , x. k ) ) '&' ( H2 / ( x. 4 , x. k ) ) & ( H1 / ( x. 4 , x. k ) ) / ( x. 4 , x. k ) = ( H1 / ( x. 4 , x. k ) ) / ( x. 4 , x. k ) ; for C1 , C2 being set , f being stable Function of C1 , C2 st f = @ g & f is stable holds f = g & f = g implies f = g ( W-min L~ go ) `1 = W-bound L~ ( go \/ L~ pion1 ) & ( W-min L~ go ) `1 = E-bound L~ ( go \/ L~ pion1 ) & ( W-min L~ go ) `1 = E-bound L~ ( go \/ L~ pion1 ) & ( W-min L~ go ) `1 = E-bound L~ ( go \/ L~ pion1 ) ; consider u such that u = <* x0 , y0 , z0 *> and f is partial & u in dom f & for z be element st z in dom f holds SVF1 ( 3 , f , u ) . z - SVF1 ( 3 , f , u ) . z = L . z - R . z ; then ( ex x being Element of Vars st x = ( t . {} ) `1 & ex x being Element of Vars st x = ( t . {} ) `1 & t = ( t . {} ) `1 & t . {} = ( t . {} ) `2 & t . {} = ( t . {} ) `1 ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y & for a , b being Element of T st a = f . x & b = f . y holds a >= b ; func Class R -> Subset-Family of R means : Def4 : for A being Subset of R holds A in it iff ex a being Element of R st a in it & A c= a & it c= a ; defpred P [ Nat ] means ( ( ( ( ) `2 ) | ( ( ) ) \ { x } ) ) . $1 c= G ( ( ( ( ( ) | ( ( ( ) ) \ { x } ) ) ) ) . $1 ) & ( ( ( ( ( G ) | ( { x } ) ) ) ) . $1 = G ( ( ( G | ( { x } ) ) ) . $1 ) ; assume that dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W2 = 0 and dim W1 = 0 and dim W1 = 0 and dim W1 = 0 and dim W1 = 0 ; mamas ( m , t ) . {} = ( m . t ) `1 .= ( m . {} ) `1 .= ( m . t ) `1 .= ( m . t ) `1 .= m . t ; d11 = x9 ^ d22 .= f . ( y11 , d22 ) .= f . ( y11 , d22 ) .= f . ( y22 , d22 ) .= ( f | ( y22 ) ) . ( y22 , d22 ) .= ( f | ( y22 ) ) . ( d22 , d22 ) .= ( f | ( y11 ) ) . ( d11 , d22 ) .= d22 ; consider g such that x = g and dom g = dom ( f | A ) and for x being element st x in dom ( f | A ) holds g . x in f . x and g . x in f . x ; x + 0. F_Complex = x + len x .= x + len x .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= x + ( 0. F_Complex ) .= x + 0. F_Complex ; ( ( k -' ( k -' 1 ) ) + 1 ) in dom ( f | ( ( k -' 1 ) + 1 ) ) /\ dom ( f | ( ( k -' 1 ) + 1 ) ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 = P1 \/ P2 and P1 = { p1 , p2 } and P1 = { p1 , p2 } and P2 = { p1 , p2 } and P1 = { p2 , p1 } and P2 = { p1 , p2 } and P1 = { p2 , p1 } and P2 = { p1 , p2 } and P1 = { p2 , p1 } and P2 = { p1 , p2 } and P1 = { p2 , p1 , p2 } and P2 = { p1 , p2 , p3 , p3 } and P2 = { p1 , p2 , p3 , p3 , p1 , p2 , p3 , p2 , p3 , p2 , p3 , p4 , p1 , p2 , p3 , p4 , p1 , p3 , p4 , p4 , p4 , reconsider a1 = a , b1 = b , c1 = c , c1 = d , c1 = c , c2 = d , c1 = d , c2 = c , c1 = d , c2 = c , c1 = d , c2 = d , c1 = c , c2 = d , c1 = d , c1 = d , c2 = c , c1 = d , c1 = d , c2 = c , c1 = d , c2 = c , c1 = d , c1 = d , c2 = c , c1 = d , c1 = d , c1 = d , c2 = d , c2 = d , c1 = d , c1 = d , c1 = d , c2 = d , c2 = d , c1 = d , c1 = d , c1 = c = d , c2 = c , reconsider Gtbf = G1 . ( t , [. b , a .] ) * F1 . f as Morphism of ( G1 * F1 ) . a , ( G1 * F2 ) . b ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 -' 1 ) ) ; Integral ( M , P . m ) | dom ( P . n -| ( dom P ) ) <= Integral ( M , P . n ) & Integral ( M , P . m ) <= Integral ( M , P . n ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ x , y ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) and f2 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( ( G * ( i , 1 ) ) `1 , ( G * ( i + 1 , 1 ) ) `2 ) ; for G being Group , H being Subgroup of G , a being Element of H st a = b holds for i being Integer st i = b holds a |^ i = b |^ i & a |^ i = b |^ i consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] and P [ B , B . x ] ; reconsider K1 = { p0 where 7 is Point of TOP-REAL 2 : P [ 7 ] } , K1 = { p where p is Point of TOP-REAL 2 : P [ 7 ] } as Subset of ( TOP-REAL 2 ) | K1 ; ( ( S-bound C - S-bound C ) / 2 ) * ( ( S-bound C - S-bound C ) / 2 ) <= ( ( S-bound C - S-bound C ) / 2 ) * ( ( S-bound C - S-bound C ) / 2 ) ; for x be Element of X , n be Nat st x in E holds |. Re ( F . n ) .| <= P . x & |. Im ( F . n ) .| <= P . x & |. Im ( F . n ) .| <= P . x len @ ( @ ( @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ v / ( x. 3 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) / ( x. 4 , m1 ) = m3 ; consider r being Element of M such that M , v |= ( v2 , ( x. 3 ) ) / ( x. 4 , m ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) ; func w1 \ w2 -> Element of Union ( G , R8 ) equals ( ( ( ( H\in G ) \ R8 ) * ( i , w ) ) ) . ( w1 , w2 ) & ( ( ( H\in G ) \ ( i , w ) ) * ( w1 , w2 ) ) . ( w1 , w2 ) = ( ( ( H8 \ ( G , R8 ) ) * ( i , w2 ) ) ) . ( w1 , w2 ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= ( ( s2 ) . b2 ) . b2 .= ( s2 . b2 ) . b2 .= ( s2 . b2 ) . b1 .= ( s2 . b2 ) . b1 .= ( s2 . b2 ) . b1 .= ( s2 . b2 ) . b1 .= ( s2 . b1 ) . b1 .= ( s2 . b1 ) . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums ( |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . n + Partial_Sums ( |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . n ; set F = S \! \mathop { 0 } ; ( Partial_Sums ( seq ) . n + Partial_Sums ( seq ) . K + Partial_Sums ( seq ) . ( n + 1 ) ) + Partial_Sums ( seq ) . ( n + 1 ) >= ( Partial_Sums ( seq ) . n + Partial_Sums ( seq ) . ( n + 1 ) ) + Partial_Sums ( seq ) . ( n + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x- ( x0 - R ) ) + R . ( x- ( x0 - R ) ) ; func the closed \HM { a , b , c , d , e , f , g , h be Subset of TOP-REAL 2 , a , b , c , d be Real st a in \HM { c , d , e , f , g , h being Point of TOP-REAL 2 holds f . ( c , d , g ) = f . ( c , d , g ) a * b / 2 + ( a * c ) / 2 + ( b * c ) / 2 + ( b * c ) / 2 + ( a * c ) / 2 + ( b * c ) / 2 + ( b * c ) / 2 >= 6 * a * b * c ; v / ( x1 , m1 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x3 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) = v / ( x2 , m1 ) / ( x2 , m1 ) ; o ( Q ^ <* x *> , M ) = ( Rotate ( Q , M1 ) +* ( i , TRUE ) +* ( card { x } --> TRUE , M ) ) +* ( ( card { x } --> TRUE , M ) +* ( ( card { x } --> TRUE , M ) ) ) ; Sum ( FM . n1 ) = r |^ n1 * Sum ( CM . n1 ) .= C . n1 * ( CM . n1 ) .= CM . n1 * ( CM . n1 ) .= CM . n1 * ( CM . n1 ) .= CM . n1 * ( CM . n1 ) .= CM . n1 * ( CM . n1 ) ; ( ( GoB f ) * ( len GoB f , 1 ) ) `1 = ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums s ) . $1 = ( a * ( $1 + 1 ) ) / ( $1 + 1 ) & ( Partial_Sums s ) . $1 = ( a * ( $1 + 1 ) ) / ( $1 + 1 ) ; ( the_arity_of g ) . g = ( the Arity of S ) . ( g . g ) .= ( ( the Arity of S ) . g ) . g .= ( ( the Arity of S ) . g ) . g .= ( ( the Arity of S ) . g ) . g .= ( ( the Arity of S ) . g ) . g ; ( X ~ ) c= X * Z & card Y c= card Z implies card ( ( X ~ ) \/ ( Y ~ ) ) = card X * Z for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . n & a = N . ( n + 1 ) holds b = N . ( n + 1 ) \ G . ( n + 1 ) E , f |= All ( All ( x , All ( x , p ) ) , ( ( x. ( x , p ) ) '&' ( x. ( x , p ) ) ) '&' ( ( x. ( x , p ) ) '&' ( x. ( x , p ) ) ) ; ex R2 being 1-sorted st R2 = ( p | ( n + 1 ) ) . i & ( the carrier of p ) = the carrier of R1 & ( the carrier of p ) = the carrier of R2 & ( the carrier of p ) = the carrier of R2 & ( the carrier of p ) = the carrier of R2 ) & ( the carrier of p ) = the carrier of R2 ) ; [. a , b + ( 1 / k ) .[ is Element of the \circ of f & ( the partial of f ) . k is Element of the carrier of f & ( the partial of f ) . k is Element of the carrier of f & ( the partial of f ) . k is Element of the carrier of f & ( the distance of f ) . k is Element of the carrier of f ) ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 , s ) . 2 .= s . 2 .= s . 3 ; card ( h1 ) . k = power ( F_Complex , n ) . ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) * Sum u .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) * u .= ( ( - 1_ F_Complex ) * u ) * v .= ( ( - 1_ F_Complex ) * u ) ; ( f - g ) /. c = f /. c * ( g /. c ) " .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) .= ( f /. c ) * ( g /. c ) ; len Cf - len ( ( f | ( len ( f | ( len ( f | ( len f -' 1 ) ) ) ) ) ) = len ( ( f | ( len ( f | ( len f -' 1 ) ) ) ) ) .= len ( ( f | ( len ( f | ( len f -' 1 ) ) ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom ( f | X ) /\ X .= dom ( f | X ) /\ X .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) ; consider f being Function of INT , INT such that f = f and f is onto and f is onto and for n st n < k holds f " { f . n } = { n + 1 } and f " { f . n } = { n } ; consider c9 being Function of S , BOOLEAN such that c9 = chi ( S , B ) and E7 = Prob and E7 = Prob and E7 = Prob and E7 = Prob and E7 = Prob and E7 = Prob and E7 = Prob and E7 = Prob and E8 = Prob and E7 = Prob and E7 = Prob and E7 = the Sorts of A ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , R ( y , z ) ) and Q [ y , z ] ; assume that A c= Z and Z c= dom f and f = ( ( ( 1 / 2 ) (#) ( f1 - #Z 2 ) ) `| Z ) and for x st x in Z holds f . x = 1 / ( ( x + 0 ) * ( f1 - #Z 2 ) ) and f | Z is continuous ; ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 ; dom Shift ( q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & len Seq q1 = len Seq q2 } & len Seq q1 = len Seq q2 & len Seq q2 = len Seq q1 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 = len Seq q2 = len consider G1 , G2 , G3 being Element of V such that G1 <= G2 and G2 <= G1 and f is Morphism of G1 , G2 and g is Morphism of G2 , G2 and for f being Morphism of G1 , G2 st f in G1 & g = f holds f * g = g * f ; func - f -> PartFunc of C , V means : Def4 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c & for c be element st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a & for v st v in a & v <> a holds union L , v |= H iff for v1 st v1 <> v & v1 , v |= H holds L , v |= H ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - 1 ) * ( i - 1 ) and for n1 , n2 being Integer st n1 <> 0 & n2 <> 0 & n1 < n & n2 <> 0 & n2 < n & n < n holds |. p . ( n1 + 1 ) - ( n2 - 1 ) * ( i - 1 ) .| < p . ( n1 + n2 ) ; assume that not 0 in Z and Z c= dom ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) * ( f1 + f2 ) ) ) `| Z ) and for x st x in Z holds ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( f1 + f2 ) ) `| Z ) . x = - 1 / 2 and for x st x in Z holds ( ( 1 / 2 ) (#) ( f1 + f2 ) ) `| Z ) . x = 1 / 2 and ( ( 1 / 2 ) . x = 1 / 2 ) and ( ( 1 / 2 ) * ( f1 + f2 ) . x = 1 / 2 ) . x = 1 / 2 and ( ( 1 / 2 ) . x = 1 / 2 ) . cell ( G1 , i1 -' 1 , j1 -' 1 ) \ ( ( Y -' 1 ) * ( i1 -' 1 ) + ( Y -' 1 ) * ( i1 -' 1 ) ) c= BDD L~ f & ( ( Y -' 1 ) * ( i1 -' 1 ) ) \ ( ( Y -' 1 ) * ( i1 -' 1 ) ) c= BDD L~ f ; ex Q1 being open Subset of X st s = Q1 & ex Q1 being Subset of Y st s c= Q1 & Q1 is open & ( for F being Subset-Family of Y st F c= F & F is open & F is open & A c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 is open & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & Q1 c= F & gcd ( A1 , A2 , s1 , s2 , Amp ) = 1 & gcd ( A1 , A2 , s1 , s2 , Amp ) = 1 & gcd ( A1 , A2 , s1 , s2 , Amp ) = 1 & gcd ( A2 , s2 , s1 , Amp ) = 1 & gcd ( A1 , A2 , s1 , s2 , Amp ) = 1 & gcd ( A2 , A1 , s1 , r2 , s2 ) = 1 ; R8 = ( ( the \ s2 ) . ( m1 + 1 ) ) . ( m2 + 1 ) .= ( ( the the Sorts of s2 ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= ( ( the Sorts of s2 ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= ( 3 + 1 ) * ( ( the Sorts of s2 ) . ( m2 + 1 ) ) .= ( 3 * ( ( 1 + 1 ) ) * ( 1 + 1 ) ) .= ( 3 * ( 1 + 1 ) ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 + 1 ) * ( 1 CurInstr ( P-6 , Comput ( P3 , s3 , m1 + 1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= halt SCMPDS .= ( halt SCMPDS ) ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ) .= { p1 , p2 } \/ ( LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ) .= { p1 , p2 } \/ { p2 , p1 } ; func -> Subset of the Sorts of A means : Def4 : a in it iff ex i st i in dom f & ex p st p in it & a = f . i & p in it & a c= p & p c= it ; for a , b being Element of F_Complex , f being FinSequence of COMPLEX st |. a .| > |. b .| & f is non zero & a = 1 holds f * ( - ( b * f ) ) is non ] implies f * ( - ( b * f ) ) is non ] defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g . ( i , j ) & G * ( i , j ) = g . ( $1 , i ) & G * ( i , j ) = g . ( i , j ) ; assume that C1 , C2 , f is_collinear and for s1 , s2 being State of C1 , s2 being State of C2 , s1 being State of C1 , s2 being State of C2 st s1 = f & s2 = f holds s1 is stable and s2 is stable and s1 = s2 and s1 = s2 and s2 = s2 ; ( ||. f .|| | X ) . c = ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| ; |. q .| ^2 = ( ( q `1 ) ^2 + ( q `2 ) ^2 ) & 0 + ( ( q `2 ) ^2 + ( q `2 ) ^2 ) < ( ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of T7 st F is open & {} in F & not {} in F & for A , B being Subset of T7 st A in F & B in F & A <> B & A c= B holds card F c= i & card ( F \/ B ) c= i assume that len F >= 1 and len F = k + 1 and len F = k and for i st i in dom F & i in dom F holds H . i = g . i and for k st k in dom F & k <> i & k <> i & k <> i holds H . k = g . ( k + 1 ) ; i |^ ( Let ( Let n + 1 ) - i ) = i |^ ( s + k - i ) .= i |^ ( s + ( k - i ) ) - i .= i |^ ( s + ( k - i ) ) - i .= i |^ ( s + ( k - i ) ) ; consider q being oriented oriented oriented Chain of G such that r = q and q <> {} and ( for q being oriented Chain of G st q <> {} & q is oriented & q is oriented holds ( for p being Point of G st p in rng p & p <> q holds p . q = v ) & ( for q being oriented of G st q in rng p holds q . q = v ) & ( for q being oriented of G st q in rng p holds q . q = v ) & ( for p being oriented of G holds q . p = v ) implies p . q = v ) & ( for q being oriented oriented L holds q . q = v ) implies p . q = v implies p . q = v ) & ( for q being oriented oriented of G st q is oriented L implies defpred P [ Element of NAT ] means $1 <= len ( I ) implies ( g . $1 ) . $1 = ( ( I , Z ) ^ <* ( g . $1 ) . ( len g ) *> ) . $1 + ( g . $1 ) . ( len g ) ; for A , B being Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st a = u * b & a in I & b in J & a * s in J & b * s in J ; func |( x , y )| -> Element of COMPLEX equals |( ( Re x ) , ( Im y ) )| , ( Im y ) | REAL , ( Im y ) | REAL , ( Im y ) | [. x , y .] , ( Im y ) | [. x , y .] ; consider g2 being FinSequence of ( F . i ) * such that g2 is continuous and rng g2 c= A and for k st k in dom g2 & k <= len g2 holds g2 . k = x0 and g2 . k = x0 and g2 . k = x0 and g2 is one-to-one and for k st k in dom g2 holds g2 . k = x0 ; then n1 >= len p1 & n2 >= len p1 implies crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n1 , n2 , n3 , n3 , n3 , n1 , n2 , n3 , n3 , n3 , n1 , n2 , n3 , n3 , n3 , n1 , n2 , n3 , n3 , n3 , n3 , n1 , n2 , n3 , n3 , n2 , n3 , n3 , n1 , n2 , n3 , n3 , n3 , n1 , n2 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , 9 , n3 , n3 , n3 , 9 , n3 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n4 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n2 , n3 , ( q `1 ) * a <= ( q `1 ) * a & - ( q `1 ) * a <= ( q `1 ) * a & - ( q `1 ) * a <= ( q `1 ) * a & - ( q `1 ) * a <= ( q `1 ) * a & - ( q `1 ) * a <= ( q `1 ) * a ; Fv . ( pv . ( len pv ) ) = ( Fv . ( len ( pv . ( len ( pv . ( len ( pv . ( len ( pv . i ) ) ) ) ) ) ) ) .= ( ( ( F . ( len ( ( F . i ) ) ) ) ) . ( ( len ( ( F . i ) ) ) .= ( ( v . i ) ) . ( ( v . i ) ) .= ( ( v . i ) ) . ( ( ( v . i ) ) * ( ( v . i ) * ( ( v . i ) * ( ( v . i ) * ( ( v . i ) ) * ( ( v . i ) * ( ( v . i ) * ( ( v . i ) ) * ( ( ( ( v . i ) ) ) ) .= ( ( ( ( v consider k1 being Nat such that k1 + k = 1 and a = ( <* a *> ^ ( k --> a ) ) ^ ( ( k + 1 ) --> a ) and ( k + 1 ) <> 0 implies ( ( k + 1 ) --> a ) ^ ( ( k + 1 ) --> a ) = ( k + 1 ) --> a ; consider B8 being Subset of B1 , y8 being Subset of B1 such that B8 is finite and y1 = the carrier of ( B1 | A1 ) and D1 = the carrier of ( B1 | A1 ) and D2 = the carrier of ( B1 | A1 ) and for x being set st x in B1 holds ( x in B1 & x in B1 implies x = y ) ; v2 . b2 = ( ( curry F2 ) * ( ( curry F2 ) . b2 ) ) * ( ( ( curry F2 ) . b2 ) ) .= ( ( ( ( curry F2 ) . b1 ) * ( ( ( ( curry F2 ) . b2 ) ) ) ) * ( ( ( ( ( curry F2 ) . b1 ) ) * ( ( ( ( ( curry F2 ) . b1 ) ) ) ) .= ( ( ( ( ( ( curry F2 ) . b1 ) ) ) ) ) ) * ( ( ( ( ( ( id F2 ) . b1 ) ) ) ) ) .= ( ( ( ( ( ( ( the .|| of B ) . b1 ) ) ) * ( ( ( ( ( ( ( ( the Arrows of B ) . b1 ) ) ) ) ) * ( ( ( B ) . b1 ) ) ) .= ( ( ( B ) . b1 ) ) * ( ( ( ( dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ; ex d-32 be Real st d\llangle h , d] > 0 & for h be Real st h > 0 & |. h .| < d[ h , R] holds |. ( ( R * L ) . h ) . ( ( R * L ) . h ) - ( R * L ) . h .| < e LSeg ( G * ( len G , 1 ) + |[ - 1 , 1 ]| , G * ( len G , 1 ) + |[ - 1 , 1 ]| ) c= Int cell ( G , len G , width G ) \/ { |[ - 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i , j ) = LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 ) ) .= LSeg ( h , i -' i1 -' 1 ) .= LSeg ( h , i -' 1 ) .= LSeg ( h , i -' 1 ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 , P , p1 , p2 , p1 , p2 , p1 , p2 , P , p1 , p2 , p2 , P , p1 , p2 , p2 , p1 ( ( - x ) .|. y ) = - ( ( 1 - x ) .|. y ) .= ( - ( 1 - x ) .|. y ) * ( ( - x ) .|. y ) .= ( - ( 1 - x ) .|. y ) * ( ( - x ) .|. y ) .= ( - ( 1 - x ) .|. y ) * ( - ( x ) .|. y ) .= ( - ( 1 - x ) .|. y ) * ( - x ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( ( p `1 / p `2 ) ^2 + ( p `2 / p `2 ) ^2 ) .= ( p `1 ) ^2 * sqrt ( 1 + ( p `2 / p `1 ) ^2 ) .= ( p `1 ) ^2 * sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ; ( ( U - 7 ) * ( W - p ) ) * ( W - p ) = ( ( U - n ) * ( W - p ) ) * ( W - p ) .= ( ( U - n ) * ( W - p ) ) * ( W - p ) .= ( ( U - n ) * ( W - p ) ) * ( W - p ) .= ( ( U - n ) * ( W - p ) ) * ( W - p ) .= ( ( U - p ) * ( W - p ) ; func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def4 : dom it = dom f & for x be Element of REAL holds it . x = - h . x & for x be Element of REAL st x in dom it holds it . x = - h . x + h . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) ; assume that not y in Free H and not x in Free H and not x in Free H and not y in Free H and not x in Free H and not y in Free H and not y in Free H and not x in Free H and not y in Free H and not y in Free H and not x in Free H and y in Free H and not y in Free H and not x in Free H and y in Free H and y in Free H and y in Free H and not y in Free H and not y in Free H and not y in Free H and not y in Free H and not y in Free H and not y in Free H and not y in Free H and not y in Free H and not y in Free H and not x in Free H and not y in Free H and not x in Free H and not x in Free H and not x in Free H and not x in Free H and not x in Free H and not x in Free H and not x in Free H and not x in Free H and not defpred P11 [ Element of NAT , Element of NAT , Element of NAT ] means ( for k being Element of NAT st k < $1 & k <= $1 holds $2 |^ k = ( p |^ $1 ) |^ ( k -' 1 ) ) & ( ( p |^ $1 ) |^ ( k -' 1 ) ) = ( p |^ k ) |^ ( k -' 1 ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def4 : for A being non empty Subset of X holds A in it iff for W being non empty Subset of X st W c= A & W is open & for A being Subset of X holds A c= W implies C c= W ; [#] ( ( dist ( P ) ) .: Q ) = ( ( dist ( P ) ) .: Q ) & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) ; rng ( F | [: S , T :] ) = {} or rng ( F | [: S , T :] ) = { 1 } or rng ( F | [: S , T :] ) = { 1 } or rng ( F | [: S , T :] ) = { 2 } ; ( f " ( rng f ) ) . i = f . i " . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i .= ( f " ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P1 is_an_arc_of p2 , p1 and C = { p1 , p2 } and C = { p1 , p2 } and P = { p1 , p2 } and C = { p2 , p1 } and P = { p2 , p1 , p2 } and C = { p1 , p2 , p3 } and C = { p1 , p2 , p3 } and C = { p1 , p2 , p3 } and C = { p2 , p3 , p4 } and C = { p1 , p2 , p3 } and C = { p1 , p2 , p3 , p4 } and C = { p2 , p3 , p4 , p4 , p4 , p4 , p4 , p4 , p4 } and C = { p1 , p2 , p4 } and C = { p1 , p2 , p4 , p4 , p4 , p4 , p4 , p4 and C = { p1 , p1 , p2 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , p4 , f . p2 = |[ ( p2 `1 ) ^2 + ( p2 `2 ) ^2 * ( p2 `1 ) ^2 + ( p2 `2 ) ^2 * ( p2 `1 ) ^2 + ( p2 `2 ) ^2 * ( p2 `1 ) ^2 + ( p2 `2 ) ^2 * ( p2 `1 ) ^2 ; ( ( \mathbin { \rm to } ( a , X ) ) " ) . x = ( ( \mathop { \rm \mathbin { - } a } ) . x ) " .= ( ( \mathop { \rm \mathbin { - } a } ) . x ) " .= ( ( ( \mathop { \rm AffineMap ( a , X ) ) . x ) ) * ( ( \mathop { \rm AffineMap ( a , X ) ) . x ) .= ( ( \mathop { \rm AffineMap ( a , X ) ) . x ) " .= ( ( ( 0 , X ) ) . x ) " .= ( ( 0 , X ) . x ) " .= ( ( 0 , X ) ) . x ) " .= ( ( 0 , X ) . x ) " .= ( ( 0 , X ) . x ) " .= ( ( 0 , X ) . x ) * ( ( ( 1 , X ) * ( ( ( the carrier of X ) . x ) * ( ( the carrier of X ) . x ) * ( ( ( 0 , X ) . x ) * ( ( ( ( 1 , X ) . x ) " .= ( ( 0 , X ) . for T being non empty normal TopSpace , A , B being closed Subset of T , A , B being closed Subset of T st A <> {} & A misses B & B misses A & A c= B & B c= A & A c= B & B c= B & A c= B & B c= B holds ( NAT + 1 ) * ( A + B ) = ( NAT + 1 ) * ( B + 1 ) for i st i in dom F for G1 , G2 being strict normal Subgroup of G st G1 = F . i & G2 = F . i & G1 is strict normal Subgroup of G & G2 is normal holds G1 * ( i , [#] G ) = G1 * ( i , [#] G ) & G1 * ( i , [#] G ) = G1 * ( i , [#] G ) for x st x in Z holds ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 - #Z 2 ) ) `| Z ) . x = ( ( 1 / 2 ) * ( f1 - #Z 2 ) ) `| Z ) . x synonym f is right continuous means : Def2 : x0 in dom ( f /* a ) & for x st x in dom f & x in dom f & x0 in dom f & for a st a in dom f & a in dom f & f . a = ( f /* a ) . x holds f . ( a - x0 ) < r ; then X1 , X2 are_separated & X1 misses X2 & X2 misses X1 & X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X2 are_separated & X1 , X2 are_separated & X2 , X2 are_separated & X1 , X2 are_separated & X1 , X2 are_separated & X2 , X2 are_separated & X1 , X2 are_separated & X1 , X2 are_separated implies X1 , X2 are_separated & X2 , X1 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X2 are_separated & X1 , X2 are_separated & X1 , X2 are_separated & X1 , X2 are_separated & X1 , X2 are_separated & X2 , X2 are_separated & X1 , X2 are_separated & X1 , X2 , X2 , & X1 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X1 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , X2 , ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds ( SVF1 ( 1 , f , u ) ) . x - ( SVF1 ( 1 , f , u ) ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) ( ( p2 `1 ) ^2 ) * sqrt ( 1 + ( p2 `1 ) ^2 ) + ( ( p2 `2 ) ^2 * ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) ) >= ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) ; ( ( 1 - t ) * ||. f1 .|| ) / ( n + 1 ) = ( ( 1 - t ) * ( ( 1 - t ) / ( n + 1 ) ) ) / ( n + 1 ) & ( ( 1 - t ) * ( ( 1 - t ) / ( n + 1 ) ) ) / ( n + 1 ) = ( ( 1 - t ) / ( n + 1 ) ) / ( n + 1 ) ; assume that for x holds f . x = ( ( - 1 / 2 ) (#) ( sin - cos ) ) `| Z and for x st x in Z holds ( ( - 1 / 2 ) (#) ( sin - cos ) ) `| Z = ( ( - 1 / 2 ) (#) ( sin - cos ) ) `| Z and for x st x in Z holds ( ( ( - 1 / 2 ) (#) ( sin - cos ) ) `| Z ) . x = 1 / 2 and f . x = 1 / 2 and f . x = 1 / 2 and f . x = 1 / 2 and f . x = 1 / 2 and f . x = 1 / 2 and f . x = 1 and f . x = 1 / 2 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . x = 1 and f . consider X1 being Subset of Y , Y1 being Subset of X such that t = X1 and Y1 in A and Y1 is open and ex Y1 being Subset of X st Y1 = Y1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 c= Y1 & Y1 c= Y1 ; card S . n = card { [: d , Y :] + b * a , d * b , c * a , d * b , c * b , d * a , b * c , d * b , c * a , b * c , d * b , c * a , d * b , c * b , d * a , b * c , d * b , c * a , b * c , d * b , d * b , c * a , b * b , d * b , c * a , d * b , c * b , d * b , d * b , d * b , d * b , c * b , c * b , d * b , c * a , d * b , c * a , d * b , c * a , c * a , c * a , c * a , c * a , c * a , c * c , d * a , b * c , c * a , b * c , d * a , c * a , c * a , c * a , c * a , c * a , ( ( W-bound D - W-bound D ) / 2 ) * ( ( W-bound D - W-bound D ) / 2 ) = ( ( W-bound D - W-bound D ) / 2 ) * ( ( W-bound D - W-bound D ) / 2 ) .= ( ( W-bound D - W-bound D ) / 2 ) * ( ( W-bound D - W-bound D ) / 2 ) .= ( ( W-bound D - W-bound D ) / 2 ) * ( ( W-bound D - W-bound D ) / 2 ) ;