thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is over G ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is onto ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ) ; assume x in I ; q is as as such by 0 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= kor or 1 <= k ; assume m <= i ; assume G is over F ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is non ] ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= be 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A , B be Subset of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is \setminus ; Q halts_on s ; x in \in \in \in \in \in of -1 ; M < m + 1 ; T2 is open ; z in b +^ a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PP is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , v be VECTOR of V ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , x1 , x2 , x3 , x4 , x4 , x5 , x1 , x2 , x3 , x4 , x4 , x1 , let E be Ordinal ; o : o the_arity_of 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , v be VECTOR of V ; not s in Y |^ 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a> 0 ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , v be VECTOR of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , the carrier of T ; the ObjectMap of F is one-to-one ; sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM { x } is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , S , x , y ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj & jj <= len f ; set A = be set ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has \cdot H ; assume n0 <= m ; T is increasing ordinal ; e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R reduces union M , union M ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be Line of C , i ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v in dom ( T | E ) ; - y in I ; let A be non empty set , f be FinSequence of A ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be [ |^ n ] ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let II , s , I ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom g ; assume t . 1 in A ; let Y be non empty TopSpace , X be Subset of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected hh/. ; assume f is additive inbb--r) ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is Sum f ; f . x ^2 <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CH in X ; q2 c= C1 & ( C1 \/ C2 ) c= C2 ; a2 < c2 & a2 < c2 ; s2 is 0 -started ; IC s = 0 & IC s = 1 ; s4 = s4 , s4 = s4 , P4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be SubRelStr of L ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y , w , y ; R8 in dom f ; let a , b be Real , f be PartFunc of REAL , REAL ; let a be Object of C ; let x be Vertex of G ; let o be object of C , m be Morphism of o , m ; r '&' q = P \lbrack l , l .] ; let i , j be Nat ; let s be State of A , x be set ; s4 . n = N ; set y = ( x `1 ) / ( x `2 ) ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; not ( V is non empty & V is open ) ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in Nfb1 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume X0 is dense & A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xY c= Z1 & xY c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ^\ k ) is convergent ; assume a1 = b1 & a2 = b2 ; A = ( sInt A ) ` ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , m be Nat ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 & n + 1 in dom g2 ; k + 1 in dom f ; not the still of s is finite ; assume that x1 <> x2 and x1 <> x2 ; v1 in ( V \ { v2 } ) ; not [ b `1 , b ] in T ; ii + 1 = i ; T c= \llangle ] , T ; ( l `1 ) ^2 = 0 ; n be Nat ; ( t `2 ) ^2 = r ; A/. n is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; cC misses [: the carrier of V , the carrier of V :] ; Product seq is non empty ; e <= f or f <= e ; cluster non empty normal normal for NAT -valued finite set ; assume c2 = b2 & c1 = c2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and vseq is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 or p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be non empty non empty Instruction of S , S ; f-24 . x = 1 & fLet . x = 0 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be sequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact ; assume x1 in [: { 0 } , REAL+ :] ; p1 = ( K1 ) . ( len p1 ) ; M . k = <*> REAL ; phi . 0 in rng phi ; MMwhere A is closed Subset of D ; assume z0 <> 0_ ( n , L ) ; n < N7 . k ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: the carrier of R , the carrier of R :] is stable ; set cR = Vertices R , cR = Vertices R ; p0 c= P3 & IC Comput ( P3 , s3 , 1 ) in dom P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y - x .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ " " ; assume a in A ( ) ; k in dom ( q4 | k ) ; p is non empty \HM { 0 } ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= j2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for } such that cluster strict strict for O ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + 1-1 ; dom S = dom F & dom S = dom F ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void void void void TopStruct ; let f be ManySortedSet of I ; let z be Element of COMPLEX , v be Element of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= ( V \ { y } ) ; assume I is_halting_on s , P ; U2 = ( U2 /\ U1 ) \/ ( U2 /\ U2 ) ; M /. 1 = z /. 1 ; x9 = x9 & x9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | n ) . x <= ( f | n ) . x ; let l be Element of L ; x in dom ( F | P ) ; let i be Element of NAT ; r8 is ( C * ) -valued FinSequence of COMPLEX ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card ( K1 \/ { 0. TOP-REAL 2 } ) in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = q - { k + 1 } ; y = W . ( 2 * PI ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite finite strict vector of F , v be Vector of V ; A * B on B , A ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 as Nat ; LIN a , d , c ; [ y , x ] in IO ; ( Q ) * ( 3 , 3 ) = 0 ; set j = x0 gcd m , n = x0 gcd m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I I \! \mathop not N = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B |^ C ) / ( B |^ C ) ; s1 , s2 are_/ 2 ; j1 -' 1 = 0 & j2 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & n divides ( i |^ s ) ; set g = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 & ( p1 `2 ) ^2 = 1 ; a < ( p3 `1 ) / |. p3 .| ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 <= len f ; 1 <= i1 -' 1 & i1 -' 1 <= len f ; i + i2 <= len h & 1 <= i2 & i2 + 1 <= len h ; x = W-min ( P ) & x in P ; [ x , z ] in X ~ Z ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . ( g . O ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 , k = h2 ** h2 ; assume x in ( X3 /\ 4 ) \/ ( X3 /\ 4 ) ; ||. h - g .|| < dx0 ; not x in the carrier of f & not x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl2 - 1 ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; P , Q be EqRel s of s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , X be Subset of L ; S-20 is x -basis i , y -basis i ; let r be non positive Real ; M , v |= ( x \hbox { = } y ) ; v + w = 0. ( Z , X ) ; P [ len F ] implies P [ len F + 1 ] assume InsCode ( i ) = 8 or InsCode ( i ) = 8 ; the zero of M = 0 & the Element of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> non / -> |^ \cap ^2 for Element of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T2 is SubSpace of T2 & T1 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; k be Nat ; q " is Element of X ; F . t is set of non zero set ; assume n <> 0 & n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `1 ) ^2 , ( p `2 ) ^2 ; not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Element of REAL ; S7 does not destroy b1 & S7 does not destroy b2 ; IC SCM R <> a & IC SCM R <> a ; |. - p - y .| >= r ; 1 * seq = seq & ( - 1 ) * seq is convergent ; let x be FinSequence of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= ( n + 1 ) ; H + G = F\hbox ( - G ) ; CF1 . x = x2 & CF2 . x = y2 ; f1 = f .= f2 .= f2 .= f2 * f1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a & a1 , b1 _|_ b , a ; d2 , o _|_ o , a3 , a1 ; IO is reflexive & IO is transitive implies IO is reflexive IO is antisymmetric implies [: O , O :] is antisymmetric sup rng ( H1 | n ) = e & sup rng ( H1 | n ) = e ; x = ( a * ( a * b ) ) * ( b * ( a * b ) ) ; |. p1 .| ^2 >= 1 - ( p1 `1 / p1 `2 ) ^2 ; assume j2 -' 1 < j2 & j2 -' 1 < j2 ; rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and a in support b ; let L be associative commutative associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed Directed ( I1 , I2 ) = I1 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , [ 0 , 0 ] *> -> complete for non empty TopSpace ; ( 1 - a " ) * a = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume ( 1 - 2 ) <= t `1 / |. t .| ; card B = k + 1-1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in D ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= V ; let G be : : Let ; e , v6 , G be set ; c . ( ii - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 ; assume w is \mathop { las of S , G ; set f = p |-count ( t - p ) ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , Y ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of NAT , k be Nat ; stop I c= ( card I + 2 ) ; set ci = ( f /. i ) `1 ; w ^ t ==> w ^ s ; W1 /\ W = W1 /\ W ` .= W1 /\ ( W1 ` ) ; f . j is Element of J . j ; let x , y be Element of T2 , a be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is positive ; set g2 = lim ( seq ^\ ( n + k ) ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F-21 . k ) = 0 ; / ( X \/ R1 ) = / ( X \/ R1 ) ( ( sin * sin ) `| Z ) . x <> 0 ; ( ( ( exp_R * f ) `| Z ) . x ) ^2 > 0 ; o1 in [: X /\ O2 , { 0 } :] /\ ( X /\ O2 ) ; e , v6 , G be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed Subset of R ; h . p1 = f2 . O & h . p2 = f2 . O ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M & width ( q | i ) = width M ; the carrier of LK c= A & the carrier of K c= A ; dom f c= union rng ( F | -10 ) ; k + 1 in support ( EmptyBag n ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in \mathclose ( field R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = f . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence of REAL ; ( 1 / m * m + r ) < p ; dom f = dom ( I --> ( a , b ) ) ; [#] ( P-17 ) = [#] ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) ; cluster - x -> R_eal -> R_eal ; then { d1 } c= A ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 & u in W3 implies v in W2 reconsider y = y as Element of L2 ; N is full SubRelStr of ( T |^ n ) |^ the carrier of N ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be -> -> -> summable summable sequence of X ; dist ( x `1 , y ) < ( r / 2 ) ; reconsider mm1 = m - 1 as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 - x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) , g2 = p * idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I . ( I . ( J . I ) ) ) in { x } ; cluster -> subcondensed -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( PI , 1 ) /\ LSeg ( co , 1 ) ; let n be Element of NAT , x be Element of X ; reconsider S8 = S as Subset of T | S ; dom ( i .--> X ' ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , P , s be State of SCMPDS ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , z ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N2 >= ( sqrt c / sqrt 2 ) / sqrt 2 ; reconsider t7 = T7 as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y1 , y2 ) /\ Q2 ( y2 , z2 ) ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 & len W1 = len W + 2 ; len h2 in dom h2 & len h2 = len h2 ; i + 1 in Seg len s2 & i + 1 in Seg len s2 ; z in dom g1 /\ dom f & z in dom ( g1 + g2 ) ; assume that p2 = E-max ( K ) and p1 `1 = E-bound ( K ) ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster seq + ( s + 1 ) -> summable for Real_Sequence ; assume that j in dom M1 and i in dom M1 ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* y *> \geq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 ; ex x being element st x in dom R & R . x = y ; len q = len ( K (#) G ) .= len G ; s1 = Initialize ( Initialized Initialized s ) , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of L ` & y is Element of L ; k = 0 & n <> k or k > n ; then X is discrete for X is closed ; for x st x in L holds x is FinSequence of REAL ; ||. f /. c - f /. c .|| <= r1 / 2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the TopStruct of TOP-REAL n ; N , M be strict *> ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f , g .] = f & M \lbrack g , f .] = g ; ( ( ( TOP-REAL 1 ) | 1 ) /. 1 ) = TRUE ; dom g = dom f /\ X .= dom f /\ X ; mode \cal il of G is \cal : 1 <= len W ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of dom ( Subformulae p ) , g be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a2 ) = G1 . ( a1 , a2 ) ; redefine func Sphere ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 - f2 ) ) ; curry ( ( F . -19 ) , k ) is additive ; set k2 = card dom B , s3 = card ( dom B ) ; set G = DTConMSA ( X ) ; reconsider a = root-tree [ x , s ] as Element of G ; let a , b be Element of MO , f be Element of CO ; reconsider s1 = s , s2 = t as Element of ( the carrier of S ) * ; rng p c= the carrier of L & p . ( len p ) in the carrier of L ; let d be Subset of the bound of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & IY in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( the carrier of J ) ; cluster All ( x , H ) -> Function \sqrt LSeg ( x , y ) ; d * N1 ^2 > N1 * 1 / ( d * N2 ) ; ]. a , b .[ c= [. a , b .] ; set g = f " | ( D1 /\ D2 ) ; dom ( p | ( mm1 + 1 ) ) = mm1 ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( ( - 1 / 2 ) (#) ( ( arccot ) * ( f1 - #Z 2 ) ) ) `| Z ) ; x in rng ( f /^ ( n -' p ) ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 ( ) & q ( ) in the carrier of S2 ( ) ; rng f " { 0 } = dom f & rng f = { 0 } ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 ; assume that v in rng ( S | E1 ) and v in rng ( S | E1 ) ; assume x is root or x is root or x is root & y is root ; assume 0 in rng ( ( g2 | A ) | A ) ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of ( TOP-REAL 2 ) | K1 , q be Point of ( TOP-REAL 2 ) | K1 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & <* C7 *> is in the carrier of C-20 ; i <= len G -' 1 & 1 <= len G -' 1 ; let p be Point of ( TOP-REAL 2 ) | K1 , q be Point of ( TOP-REAL 2 ) | K1 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < x0 } ; Q2 = Sp2 " ( P /\ Q ) .= Q ; ( ( 1 / 2 ) |^ ( n + 1 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i & CurInstr ( p1 , s1 ) = halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ( S , T ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " is Subgroup of H |^ a " .= H |^ a ; let A1 be [ be [ O , A1 ] , [ a , A1 ] ] ; p2 , r3 , q3 is_collinear & q2 , q3 , p2 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( ( ( TOP-REAL 2 ) | B11 ) | B11 ) ; 0 . ( 0 ) < M . ( E8 . ( 0 + 1 ) ) ; ^ ( c / c ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> -> Line for *> -| the carrier of L is Line of L ; set i1 = the Nat , i2 = the Nat , i1 = the Nat , i2 = the Nat , i2 = the Nat , j1 = the Nat ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f ) ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def4 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of X ; cluster -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> Nat every Nat ; set S = <* Bags n , <* i *> , {} *> ; set T = [. 0 , 1 / 2 * PI .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI * PI ) < ( 2 * PI * PI ) ; x2 in dom f1 /\ dom f & x1 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 / ( 1 + ( p `1 / p `2 ) ^2 ) = ( p1 `1 ) ^2 / ( 1 + ( p1 `1 / p1 `2 ) ^2 ) ; i + 1 <= len Cage ( C , n ) ; len ( <* P *> @ ) = len P & len ( <* P *> @ ) = len P ; set N-26 = the non empty Subset of N , L be non empty Subset of N ; len g: + ( x + 1 ) - 1 <= x ; a on B & b on B & a on B ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a D D is_less_than c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len f - n ; set q2 = Int L~ Cage ( C , n ) , q2 = W-min L~ Cage ( C , n ) ; set S = { len S1 , len S2 } , T = { len S1 , len S2 } ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " ( V /\ W ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_left_argument_of H ) ; assume that t is Element of ( S , X ) * ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( k - 1 ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , [ n , UMP C ] ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { \vert a .| } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pp1 . i & pp2 . i = pp2 . i ; let PA , G be a_partition of Y , z be set ; pred 0 < r & r < 1 & r < 1 ; rng ( ( a , X ) --> ( x , y ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) | P ) ; dom ( f | ( 0 -tuples_on the carrier of S ) ) c= dom ( u | ( 0 -tuples_on the carrier of S ) ) ; pred n divides m & m divides n & n divides m ; reconsider x = x as Point of [: I[01] , I[01] :] , I[01] :] ; a in ; not y0 in the still of f & not ( ex g st g in the carrier of f & g in the carrier of f ) ; Hom ( ( a \times b ) \times c , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f and f . k1 in rng f ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g ~ ( k + 1 ) ; set S1 = l2 = m2 & l2 = i2 & l2 = j2 & l2 = i2 & l2 = j2 ; x0 in dom ( ( u /\ A9 ) /\ A9 ) & x0 in dom ( ( u | A9 ) | A9 ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 ; I[01] = ( I[01] ) | B01 .= ( TOP-REAL 2 ) | B01 .= ( TOP-REAL 2 ) | B01 ; f . p4 <= f . p1 & f . p1 = f . p2 ; ( F . ( x , y ) ) `1 <= ( F . ( x , y ) ) `1 ; ( x `2 ) ^2 = ( W7 ) ^2 + ( W8 ) ^2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume that 1 <= i and i <= len <* a " *> and j <= len <* a " *> ; 0 |-> a = <*> the carrier of K .= a * a ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider sbeing Element of D , s/. i as finite Subset of D ; k - ( i -' 1 ) <= len thesis - j ; [#] S c= [#] the TopStruct of T & the TopStruct of T c= the TopStruct of T ; for V being strict real unitary space holds V in the carrier of V implies V is Subspace of W assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , n2 , K ; - a * - b = a * b & - a * b = - a ; for A being Subset of AS holds A // A & A // A implies A // A ( for o2 being Element of A holds ( o2 in A ) & ( o2 in A ) implies o2 in A ) ; then ||. x - x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , N be normal Subgroup of G ; j >= len upper_volume ( g , D1 ) & upper_volume ( g , D2 ) . j in rng upper_volume ( g , D1 ) ; b = Q . ( len Q - 1 + 1 ) .= Q . ( len Q - 1 ) ; f2 * f1 /* s is divergent_to-infty & lim ( f2 * f1 ) = x0 ; reconsider h = f * g as Function of ( the carrier of G ) , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- ( E , X ) ) | n is Element of T7 ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 + L2 ; Directed I is_closed_on Initialized Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p = p +* q , q = p +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 , R1 , R2 ; reconsider Y = Y as Element of [: Ids L , Ids L :] ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( ( P + Q ) | ( len P + 1 ) ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x1 `2 ) ^2 .= ( x2 `1 ) ^2 + ( x1 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 } & InputVertices S = { x1 , x2 , x3 , x4 } ; let x , y be Element of FTTTTT1 ( n ) ; p = |[ p `1 / |. p .| - cn , p `2 / |. p .| - cn ]| ; g * 1_ G = h " * g * h .= g * h .= g * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( x1 - x2 ) /\ dom ( x2 - x3 ) ; ( R qua Function ) " = R " & ( R " ) " = R " ; n in Seg len ( f /^ ( len p -' 1 ) ) ; for s being Real st s in R holds s <= s2 & s2 <= 1 ; rng s c= dom ( ( f2 * f1 ) | X ) ; synonym for for for for for for for X being Subset of \rm ] holds X is finite ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , Q1 = Segm ( A , P , Q1 ) ; ex w st e = ( w - f ) & w in F ; curry ( ( P+* ( i , k ) ) # x ) is convergent ; cluster open open -> open for Subset of [: T , T :] ; len f1 = 1 .= len ( f3 | ( len f1 ) ) .= len f3 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of [: the carrier of U0 , the carrier of U0 :] ; b1 , c1 // b9 , c9 & c1 , c2 // c , c9 ; consider p being element such that c1 . j = { p } and p in { p } ; assume that f " { 0 } = {} and f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) = k ; Reloc ( J , card I ) does not destroy a , I ; Macro ( card I + 1 ) does not destroy c , a ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p2 , s2 ) ; IC SCMPDS in dom ( Initialize p ) & IC SCMPDS in dom ( p +* Start-At ( a , I ) ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( E-max L~ f ) .. f ) .. f = 1 & ( E-max L~ f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union F ) c= Cl ( Int union F ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) \/ ( X2 \/ X3 ) ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , v ) / ( x , y ) ) ; consider m be element such that m in Intersect ( FF . 0 ) and m in dom f ; reconsider A1 = support ( u1 ) , A2 = support ( v1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a1 <> a4 and a2 <> a4 ; cluster s \! \mathop { \rm \hbox { - } \rm ] } -> string for string of S ; Lh2 /. n2 = Lh2 . n2 .= Lh2 . n2 .= Lh2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rb in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a , b be Real ; assume that [ k , m ] in Indices ( ( D * ( i , j ) ) * ( i , j ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / ( 2 |^ n ) ; ( F . N | E8 ) . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card ( X-18 ) <= card ( u \/ { v } ) ; set g = z \circlearrowleft ( L~ z ) , M = L~ z , N = L~ z , S = L~ z , N = L~ z , S = L~ z , M = L~ z , N = L~ z , S = z ; then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -O ( X ) ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | B ; let a , b , c be Function of Y , BOOLEAN , f be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x4 , x4 , x5 , x5 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . I ) `1 = 1 ; j + p .. f -' len f <= len f - len f ; set W = W-bound C , E = E-bound C , N = E-bound C , S = S-bound C , N = E-bound C , S = S-bound C , N = S-bound C , S = S-bound C , N = S-bound C , S = S-bound C , N = W-bound S1 . ( a , e ) = a + e .= a + e .= a + e ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f | A ) ) = dom ( Im f ) /\ A ; ( D.: x ) `2 = W . ( a , *' ( a , p ) ) ; set Q = non |= ( max ( g , f , h ) ) ; cluster -> many sorted for ManySortedSet of U1 * ; attr F is discrete means : Def1 : F = { A } ; reconsider z9 = <* ] as Element of product ( G . i ) ; rng f c= rng f1 \/ rng f2 & rng ( f1 ^ f2 ) c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f is FinSequence of the carrier of F_Complex ; E , j |= All ( x1 , x2 , H ) ; reconsider n1 = n , n2 = m , n3 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 & card ( ( x \ B1 ) /\ B2 ) = 0 ; g + R in { s : g-r - g < s + r } ; set qII' = ( q , <* s *> ) \rangle , q' = ( q , <* s *> ) ; for x being element st x in X holds x in rng f1 implies x in X ; h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , max ( NAT , { NAT } ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin ( NAT ) ; IncAddr ( i , k ) = <% - ( l . 0 ) , k %> .= halt SCM+FSA ; ( ( W-bound L~ f ) / 2 ) ^2 <= ( q `2 ) / 2 ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 - 2 ; x , z , y is_collinear & x , z , y is_collinear & x , z , y is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a |^ n1 ; <* \underbrace ( 0 , \dots , 0 } , x ) in Line ( x , a * x ) ; set yx1 = <* y , c *> , yx2 = <* c , x *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. len FF2 = Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; ( p `2 ) `2 = ( f /. i1 ) `2 .= ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u as VECTOR of P\overline ( X ) , 0 <= 1 / 2 ; p |-count ( Product ( Sgm ( X ) ) ) = 0 & p |-count ( Product ( Sgm ( X ) ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = card I + 4 .--> goto 0 , goto ( 0 + 4 ) ; x in { x , y } & h . x = {} ( TT ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of ( A * ) ) .= len the charact of ( A * ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : ( ( G . ( len G ) ) `1 = ( ( G . ( len G ) ) `1 ) ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; ( C * ( K , n , r ) ) is FinSequence of D * ; f . k , f . ( Let n ) in rng f ; h " P /\ [#] T1 = f " P & h " P = f " P ; g in dom ( f2 ) \ ( f2 " { 0 } ) " { 0 } ; gX /\ dom f1 = g1 " { 0 } & gX /\ dom f2 = g2 " { 0 } ; consider n be element such that n in NAT and Z = G . n ; set d1 = being \bf dist ( x1 , y1 ) , d2 = dist ( y1 , y2 ) , d2 = dist ( y2 , y1 ) ; b `1 + ( 1 - ( b `1 / 2 ) ) ^2 < ( 1 - ( b `1 / 2 ) ) ^2 + ( 1 - ( b `1 / 2 ) ) ^2 ; reconsider f1 = f as VECTOR of the carrier of X , the carrier of Y ; pred i <> 0 implies i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( ( g2 . i2 ) | ( i + 1 ) ) ; dom ( i - 4 ) = dom ( ( i - 4 ) * ( i - 4 ) ) .= a ; cluster sec | ]. PI / 2 , PI .[ -> one-to-one | ]. PI / 2 , PI .[ ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x1 as Function of S , IF ( ) ; reconsider R1 = x , R2 = y , R2 = z , R1 = w as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rv ; S1 +* S2 = S2 +* S2 +* S2 , S2 = S2 +* S2 , S2 = S2 +* S2 , S2 = S2 +* S2 ; ( ( ( - 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) `| Z ) = f ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f ) ; E8 . ( e2 , T . ( e2 , T . ( e2 , T . ( e2 , T . ( e2 , T . ( e2 , T . ( e2 , T . ( k , T . n ) ) ) ) ) ) ) ) ) = E8 . ( E8 . ( E8 , T . ( ( ( ( arctan * ( f1 + f2 ) ) `| Z ) * ( f1 + f2 ) ) `| Z ) = f ; upper_bound A = ( cos * 3 ) / 2 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f ) ) ) ) ) ) ; reconsider pbeing Point of TOP-REAL 2 = ( q `2 ) / 2 , q = ( q `2 ) / 2 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & [#] Y0 c= [#] Y0 & g .: W c= [#] Y0 ; let C be compact non vertical non horizontal non empty Subset of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) /\ LSeg ( g , i ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & ( f | ]. x0 , x0 + r .[ ) is convergent ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m1 = n , m2 = m , m2 = n , m2 = m ; for y being ExtReal st y in rng seq holds g <= y implies g . y <= g . y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 ) , Bf = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R ~ ( a \ b ) c= R ~ ( b \ a ) ; t in ]. r , s .[ or t = r or t = s & s < t ; z + v2 in W & x = u + ( z + v2 ) & y in W ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; pred x1 <> x2 means : Def4 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 , p2 - p1 is_collinear and p1 - p2 , p3 - p1 - p2 is_collinear ; set q = f ^ <* 'not' A *> ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS m , r be Real ; ( n mod ( 2 * k ) ) ^2 = n mod k ; dom ( T * ( len iff t ) ) = dom ( \mathop { \rm @ } t ) ; consider x being element such that x in wX and x in c and x in c ; assume ( F * G ) . ( v . x3 ) = v . x3 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 c= the carrier of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .[ as Subset of REAL ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) ; n1 -' len f + 1 <= len - 1 + 1 - len f + 1 ; EqClass ( q , O1 ) = [ u , v , a , b , b , a , b , c , d ] ; set C-2 = ( ( ( n + 1 ) , n ) `1 ) `1 , C-2 = ( n + 1 ) + 1 ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V .= 0. V ; consider i be element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & P [ $1 ] implies Q [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P2 , s2 , k ) , P4 = P3 ; let l be variable of k , A , A1 , A2 be Subset of A ; reconsider that U = union ( G-24 | A ) as Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; por = <* - ( c - 1 ) , 1 *> & p = <* - ( c - 1 ) , 1 *> ; synonym f is real-valued for rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x9 < card ( X0 ) + card ( Y0 ) - 1 & card ( Y0 ) + 1 < card ( Y0 ) - 1 ; pred X c= B1 means : Def4 : for B st B c= B1 holds it in succ B1 holds B is non empty ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; pred 1 <= len s means : an : for i being Nat holds ( the _ of s ) . i = s . i ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in TAUT ( A ) means : Def1 : q in TAUT ( A ) & q in TAUT ( A ) ; - ( t `1 / t `2 ) < ( - t `1 ) / t `2 / t `2 / t `2 ; ( ( U . 1 ) `1 = ( U /. 1 ) `1 .= ( W /. 1 ) `1 .= W . ( 1 + 1 ) .= W . ( 1 + 1 ) ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( ( n + 1 ) * ( i , j ) ) = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is \cup ( the multF of ( A , B ) ) & f is \setminus & f is \setminus implies f is \setminus [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = 0. TOP-REAL 2 ; reconsider t = t as Element of ( INT |^ X ) * ; C \/ P c= [#] ( ( GX | A ) \ ( [#] ( GX | A ) \ A ) ) ; f " V in ( for X being Subset of \bf T ( ) ) | D ( ) , [ X , the carrier of V ( ) ] in the topology of X ( ) x in [#] ( the carrier of X ) /\ A * delta ( F , x ) ; g . x <= h1 . x & h . x <= h1 . x & h1 . x <= h1 . x ; InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M2 is being_line and M2 is being_line and M2 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len ( F1 ^ F2 ) ) & len ( Len ( F1 ^ F2 ) ) = len F1 + len F2 ; len ( ( the - ( i , n ) ) * ( p | ( i -' 1 ) ) ) = n & len ( ( p | i ) * ( p | ( i -' 1 ) ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( for n be Nat holds seq . n = upper_bound Y1 ) & ( for n be Nat holds seq . n = upper_bound Y1 ) implies seq is bounded dom ( p1 ^ p2 ) = dom ( ( f ^ p2 ) ^ ) .= dom ( ( f ^ ) ^ ) ; M . [ 1 / ( y * v1 ) , y ] = 1 / ( y * v1 ) .= y ; assume that W is non trivial and W { x } c= the carrier of G2 and W is trivial ; C6 * ( i1 , i2 ) `1 = G1 * ( i1 , i2 ) `1 .= G1 * ( i1 , i2 ) `1 .= G1 * ( i1 , i2 ) `1 ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f-g <= b - a - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) ^2 = 1 ; ( LSeg ( c , m ) \/ { c } ) \/ ( LSeg ( l , k ) \/ { c } ) c= R ; consider p being element such that p in such that p in x and p in L~ f and x in L~ f ; Indices ( X @ ) = [: Seg n , Seg n :] & len ( X @ ) = n ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is measurable & ( Partial_Sums F ) . m is measurable ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( NW-corner ( Z ) , \hbox { - } corner ( Z ) ) , \hbox { - } corner ( Z ) ) ; set R8 = R |^ 1 , R8 = R |^ ( b + 1 ) ; IncAddr ( I , k ) = AddTo ( da , d ) .= IncAddr ( ex a st i = a & d = goto ( d ) ; seq . m <= ( ( the \upharpoonright } seq ) . k ) . ( n + k ) ; a + b = ( a ` *' b ) ` .= ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = ( U1 \/ U2 ) \/ ( U2 \/ 21 ) as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set such that card A = 2 and card A = 2 ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & rng <* p1 *> c= rng ( f |-- p1 ) ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min ( P ) ) `2 = ( ( E-max ( P ) ) ) `2 & ( ( E-max ( P ) ) ) `2 = ( ( E-max ( P ) ) ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` ` = f . a1 ` .= ( a1 ` ` ) ` .= ( a1 ` ) ` .= ( a1 ` ) ` ; ( seq ^\ k ) . n in ]. x0 - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= ( g | G ) . s0 .= ( g | G ) . s0 ; the InternalRel of S is \lbrace field ( the InternalRel of S ) , the InternalRel of S } ; deffunc F ( Ordinal , Ordinal ) = phi ( $1 , $2 ) & phi ( $1 , $2 ) = phi ( $1 , $2 ) ; F . ( s1 . a1 ) = F . ( s2 . a1 ) .= F . ( s2 . a1 ) ; x `2 = A . o . a .= Den ( o , A . a ) . a ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) | ( the topology of S ) ) c= the topology of T ; synonym o is \bf } means : Def4 : o <> *' & o <> {} & o <> {} ; assume that X c= Y + 1 and card X <> card Y and card Y <> card X and card Y <> card X ; the { F ( ) `1 <= 1 + ( the } \HM { F ( ) `1 is } ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // b1 , c1 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 4 = 0 ; EE in SE & not EE in { N } & not EE in { N } ; set J = ( l , u ) If , K = I " ; set A1 = .: ( ( a , b , c ) --> ( p , q ) ) ; set vs = [ <* xy , cin , cin *> , '&' ] , xy = [ <* A1 , cin *> , '&' ] , [ <* cin , cin *> , '&' ] ; x * z `1 * x " in x * ( z * N ) " * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x = g3 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ RightComp f ; U is closed & L~ Cage ( C , n ) c= L~ Cage ( C , n ) & L~ Cage ( C , n ) c= L~ Cage ( C , n ) ; set f-17 = f @ g "/\" g @ ; attr S1 is convergent means : Def1 : S2 is convergent & lim ( S1 - S2 ) = 0 & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a .= a ; cluster -> \in -> \in \in -> \in \in -> \in , reflexive transitive transitive transitive transitive for non empty reflexive -symmetric ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) \/ dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( a |^ 0 ) .--> x ) = len l & len ( l |^ 0 ) = 0 ; t4 ^ {} is ( {} \/ rng t4 ) -valued FinSequence of ( rng t ) * * ; t = <* F . t *> ^ ( C . p ^ q ) .= q ^ ( C . ( p ^ q ) ) ; set p-2 = W-min L~ Cage ( C , n ) , p-2 = W-min L~ Cage ( C , n ) , p-2 = W-min L~ Cage ( C , n ) ; ( k -' ( i + 1 ) ) -' ( i + 1 ) = ( k - ( i + 1 ) ) - ( i + 1 ) ; consider u being Element of L such that u = u ` ` and u in D ` ; len ( ( width ( ( ( b ) |-> a ) ^ ( b * a ) ) ^ ( b * a ) ) ) = width ( ( b * ( b * a ) ) * ( b * a ) ) ; FF . x in dom ( ( G * the_arity_of o ) * ( the_arity_of o ) ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 1 ) = s . intpos ( m + 1 ) ; IC Comput ( Q2 , t , k ) = ( l + 1 ) - ( k + 1 ) .= ( l + 1 ) - ( k + 1 ) ; dom ( ( ( id Z ) (#) ( sin * cos ) ) `| Z ) = REAL & dom ( ( id Z ) (#) ( sin * cos ) ) `| Z ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* ( ap , bp , cp *> , and2 ] , [ <* A1 , cin *> , and2 ] , [ <* cin , cin *> , and2 ] *> , [ <* A1 , cin *> , and2 ] ] ; Line ( Segm ( M @ , P @ , Q ) , x ) = L * Sgm Q .= Line ( M @ , Q ) ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & ( the Sorts of A ) . n = ( the Sorts of A ) . n ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y be Point of X such that a = y and ||. x-y - x .|| <= r ; set x3 = t2 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( s2 , s2 , 2 ) , P4 = Comput ( P2 , s2 , 2 ) , P4 = P3 ; set p-3 = stop I , pE = stop I , pE = stop I , pE = stop I , pE = stop I , pE = stop I , pE = stop I , pE = stop I , pE = stop I , pE = stop I , T = stop I , T = stop consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D } = { A , B } \/ { C , D , E } let A , B , C , D , E , F , J , M , N , M , N , F , N , M , N , M , N , N , F , M , N , N , A , N , M , N , A , N , F , M ; |. p2 .| ^2 - ( ( p2 `2 / |. p2 .| - cn ) / ( 1 + cn ) ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( 1 + ( 1 + 1 ) ) + 1 ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = \bf L ( the Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott Scott ] , the TopStruct of L ) ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H1 and P [ y , x ] ; fv \ { n } = Funcs ( Free ( All ( v1 , H ) ) , E ) & f in Free ( H ) ; for Y being Subset of X st Y is summable holds Y is non empty iff X is non empty iff Y is non empty ; 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of } holds the { F } * s = ( the { of F ) * s ) for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 ; rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 ; j + 1- len f <= len f + ( len - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( a - 1 ) .= C7 . ( a - 1 ) .= C7 . x - 1 .= C8 . x ; power F_Complex . ( z , n ) = 1 .= ( x |^ n ) * ( z |^ n ) .= ( x |^ n ) * ( z |^ n ) ; t at ( C , s ) = f . ( the connectives of S , s ) . t ) .= s . ( s . t ) ; support ( f + g ) c= support f \/ C /\ ( support g ) & support ( f + g ) c= C /\ ( support f ) ; ex N st N = j1 & 2 * Sum ( ( r4 | N ) | N ) > N & Sum ( ( r4 | N ) | N ) > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 , x2 is Element of [: X , Y :] , x1 is Element of X , Y : x1 in X } is Subset of [: X , Y :] ; h = ( i , j = h , id ( B . i ) ) .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 * N c= A ; set X = ( ( EqClass ( q , O1 ) ) . ( ( O1 , O2 ) . ( m , 3 ) ) , 4 ) ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies lim ( f /* s1 ) = lim ( f /* s1 ) the lattice of the lattice of Y = the lattice of the lattice of Y & the carrier of Y = the carrier of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( b . x ) = FALSE ; 2 = len ( ( ( ( ( 0 ^ r1 ) ^ ( r1 ^ r2 ) ) | ( len r1 ) ) ^ ( ( r1 ^ r2 ) | ( len r1 ) ) ) ) ; ( 1 - a ) * ( sec * f1 ) - id Z is_differentiable_on Z ; set K1 = upper_volume ( chi ( A , A ) , H ) || A , D = upper_volume ( H , D ) || A ; assume e in { ( w1 - w2 ) `1 : w1 in F & w2 in G & w1 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom F `1 , d8 = dom G `1 , d8 = dom F `1 , d8 = F `2 , d8 = F `2 , d8 = F `2 , d8 = F `2 , d8 = F `1 , d8 = F `1 , d8 = F `1 LSeg ( f /^ q , j ) = LSeg ( f , j + q .. f -' 1 ) \/ LSeg ( f , j + q .. f -' 1 ) ; assume that X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S-34 = dom S /\ Seg n .= dom ( L6 * ( S . n ) ) .= dom ( L6 * ( S . n ) ) ; x in H |^ a implies ex g st x = g |^ a & g in H & a in H ; a * ( 0. ( K , n , 1 ) ) = a `1 - ( 0 * n ) .= a `1 ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & ( p `1 / |. p .| - cn ) < 0 ) ; for c holds f . c <= g . c implies f @ c ==> g @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) * p .= p * ( p * p ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f + 1 ; dom ( F | [: N1 , S :] ) = dom ( F | [: N1 , S :] ) .= [: N1 , S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f " = id b and f * f = id a and f * f = id b ; ( ( ( ( 2 * cos ) | [. 0 , PI / 2 * PI .] ) * ( cos | [. 0 , PI / 2 * PI .] ) ) | [. 0 , PI / 2 * PI .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS + 1 - 1 .= len LS - 1 + 1 - 1 ; let t1 , t2 , t2 , t2 be Element of ( S , s ) . ( s , t ) ; ex_inf_of ( ( Frege ( curry ( F ) ) ) . h , L ) <= "/\" ( ( Frege ( G ) ) . h , L ) , L ) ; then P [ f . i0 , f . i0 ] & F ( f . i0 , f . i0 ) < j ; Q [ ( D . [ x , 1 ] ) `1 , F ( D . [ x , 1 ] ) `1 ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is Element of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= the carrier' of S2 ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F . 0 and rng s c= { 0 } ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b ) & dist ( a , b ) <= dist ( a , b ) + dist ( a , b ) ; ( <* W-min ( C , n ) *> /. len <* Cage ( C , n ) /. len ( C , n ) *> ) = WC ; q `2 <= ( UMP ( Lower_Arc ( C ) ) ) `2 & ( UMP ( C ) ) `2 <= ( UMP ( C ) ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) = {} ; given a being R_eal such that a <= II and A = ]. a , I .[ and a in A and a < I ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= k } , Y = { b |^ n : n <= k } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ z ) = 0. X ; set xy = [ <* xy , y , z *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , xy = [ <* y , z *> , f3 ] ; lv /. len lv = lv . ( len lv + 1 ) .= lv . ( len lv + 1 ) ; ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 = 1 ; ( ( - ( p `2 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 < 1 ; ( ( ( S \/ Y ) | ( X \/ Y ) ) | ( X \/ Y ) ) `2 = ( ( S \/ Y ) | ( X \/ Y ) ) `2 ; ( seq - seq ) . k = seq . k - seq . ( k + 1 ) .= seq . k - seq . ( k + 1 ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X is the carrier of X & the carrier of X is the carrier of X implies X is closed & the carrier of X is closed & the carrier of X is closed ex p4 st p3 = p4 & |. p3 - a .| = r & |. p3 - a .| = r ; set ch = chi ( X , A5 ) , A5 = chi ( X , A5 ) , A5 = chi ( X , A5 ) ; R |^ ( 0 * n ) = I--> Element of I-set ( X , X ) * ( R |^ 0 ) .= R |^ n |^ 0 ; ( Partial_Sums ( curry ( F , n ) ) . n ) is nonnegative & ( Partial_Sums ( curry ( F , n ) ) . n ) is nonnegative ; f2 = C7 . ( ( E7 , len ( K , len ( K , len ( H ) ) ) ) | ( K K ) ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p11 ) \/ LSeg ( p1 , p11 ) /\ LSeg ( p1 , p11 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & the connectives of S = ( the connectives of S ) . 11 ; set phi = ( l1 , l2 ) support phi , phi = ( l1 , l2 ) . 0 , C = l1 , D = ( l1 , l2 ) . 1 , D = ( l1 , l2 ) . 2 , E = ( l1 , l2 ) . 2 , F = ( l1 , l2 ) . 3 , D = ( l1 , l2 ) . 2 , E = ( l1 , l2 ) . 2 , E = synonym p is is is is is is invertible for p , q , T being Element of L ; ( Y1 `2 ) ^2 = - 1 & ( Y1 `2 ) ^2 <> 0. TOP-REAL 2 & ( Y1 `2 ) ^2 <> 0. TOP-REAL 2 ; defpred X [ Nat , set , set ] means P [ $1 , $2 , , , , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) * ( m -' n ) = 1. K & Det ( I |^ ( m -' n ) ) = 1. K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / 2 < 0 ; Ci . d = C7 . ( ( d - e ) mod ( C |^ ( d -' 1 ) ) ) .= C7 . ( ( d - e ) mod ( C |^ ( d -' 1 ) ) ) ; attr X1 is dense means : Def1 : X2 is dense & X1 is dense dense implies X1 /\ X2 is dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = ( 2 * $1 ) * ( ( 2 * $1 ) * ( 2 * $1 ) ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t `1 ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ 0. X .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of [: X , Y :] iff X is Basis of [: X , Y :] synonym A , B are_separated for ( Cl A ) misses B & ( Cl B ) misses B & ( Cl B ) misses B ; len ( ( M @ ) @ ) = len p & width ( ( M @ ) @ ) = width ( ( M @ ) @ ) ; J = { x where x is Element of K : 0 < v . x & v . x < 0 } ; ( ( Sgm -> Element of REAL m ) . d - ( Sgm , m ) . e ) <> 0 ; lower_bound divset ( D2 , k + ( k2 - 1 ) ) = D2 . ( k + ( k2 - 1 ) ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ w = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = DataLoc ( s . 9 , 9 ) .= ( IC s ) .= 5 .= ( 0 + 9 ) ; ( IExec ( W6 , Q , t ) ) . intpos ( ( intpos ( e + 1 ) ) + 1 ) = t . intpos ( ( e + 1 ) + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( C , f ) , x ) = f . ( upper_bound C ) - lower_bound C .= f . ( lower_bound C ) - lower_bound C ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) - R /. ( L . h ) .|| < e1 * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 .--> [ 2 , 1 , 1 ] , p4 = [ 3 , 1 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y in d ; for y , x being Element of REAL st y `1 in Y & x `2 in X holds y `1 <= x `1 & y `2 <= x `2 ; func |. p \vert -> variable of A , NAT means : Def1 : for i being Nat st i in dom it holds it . i = min ( NBI ( p ) , i ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len y1 = len l1 & len x1 = len l1 & ( x1 - x2 ) * ( y1 - y2 ) = ( x1 - x2 ) * ( y1 - y2 ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 and y2 <= 1 ; ||. f | X /* s1 .|| = ||. f | X /. s1 - f /. s1 .|| .= ||. f /. s1 - f /. s1 .|| .= ||. f /. s1 - f /. s1 .|| ; ( the InternalRel of A ) ~ ~ ( x ` /\ Y ) = {} \/ {} .= {} \/ {} .= {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and i + 1 in dom q and j + 1 in dom q ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , rng ( f | [: X , Y :] ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & v in the carrier of W1 & u in the carrier of W2 implies v + u1 in the carrier of W1 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 ; IExec ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x - y ) = - x + - y .= - x + - y .= - x + - y .= - x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_ed ; fSet = [ [ dom @ ( f2 , g2 ) , cod ( f2 , g2 ) ] , [ cod ( f2 , g2 ) , cod ( f2 , g2 ) ] , [ cod ( f2 , g2 ) , cod ( f2 , g2 ) ] ] ; for k , n being Nat st k <> 0 & k < n & k < n holds k , n are_relative_prime holds k divides n for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & ( ( A ` ) |^ d ) ` = ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a and a in I ; - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = Ln . ( F . k ) & F . k in dom ( Ln * F ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( - ( n + 1 ) + 1 ) ; attr B is max means : Def4 : for S being SubSubuniversal of B holds S is ( len @ ( B , S-13 ) ) `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & a in D } ; |( \square , q29 - ( q `2 / |. q .| - cn ) * ( b `1 / |. q .| - cn ) * ( b `2 / |. q .| - cn ) * ( b `2 / |. q .| - cn ) * ( b `2 / |. q .| - cn ) * ( b `2 / |. q .| - cn ) * ( b `2 / |. q .| - cn ) * b ) ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= - ( f | A ) . ( upper_bound A ) ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . ( LM . LM ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( - 1 ) (#) ( reproj ( i , x ) ) * reproj ( i , x ) ) . x0 ; pred ( for x st x in Z holds tan . x <> 0 ) & ( for x st x in Z holds tan . x = tan . x ) ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & h2 . x = ( h2 . t ) . x ; defpred C [ Nat ] means P8 . $1 is non empty & ( A is as $1 -connected implies A is $1 -connected ) ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of product ( A * ( index B ) ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st c in D holds ( id c ) . ( id c ) = id d ( ( f | n ) ^ <* p *> ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f | n ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p = ( f | ( n , L ) ) *' - ( f | ( n , L ) ) .= ( f - ( c * ( - ( f | ( n , L ) ) ) ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ ( 8 - r ) / 2 , ( 8 - r ) / 2 ]| ) in f1 .: W1 & f2 .: W2 c= W2 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a * ( a | ( n , L ) ) .= a ; z = DigA ( tw , x9 ) .= DigA ( tw , x9 ) .= DigA ( tw , x9 ) .= DigA ( tw , x9 ) .= DigA ( tw , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , F = { Intersect S where S is Subset of X : S c= G } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( q `2 / |. q .| - cn ) / ( 1 + cn ) ; 0. V is Linear_Combination of A & Sum ( l ) = 0. V & Sum ( l ) = 0. V & Sum ( l ) = 0. V ; let k1 , k2 , k2 , x4 , k2 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 be Element of NAT ; consider j being element such that j in dom a and j in g " { k } and x = a . j and a . j in { k } ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = \rbrace * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c and c <= d and [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : i <= n & n <= k } ; ( T * b1 ) . y = L * b2 /. y .= ( F * b1 ) . y .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 / ( 2 |^ k ) ; then p => q in S & not x in the still of p & not p in S & p => q in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is extended real means : Def4 : for x being set st x in rng f holds x is R_eal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 ; ( l . ( 1 , 3 ) ) `1 = ( g . ( 1 , 3 ) ) `1 + ( k - 1 ) * ( k - 1 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA ; assume for n be Nat holds ||. seq . n .|| <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin . st cos . st = sin r * cos ( ( cos r ) * sin ( ( cos r ) * sin ( ( cos r ) * sin ( ( cos r ) * sin ( r ) ) ) ) ) .= 0 ; set q = |[ g1 `1 / ( ( t `2 / t `1 ) * ( t `2 / t `1 ) ) , g2 `2 / ( t `2 / t `1 ) * ( t `2 / t `1 ) ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies F . n in let consider G such that F = G and ex G1 st G1 in SM & G in SM & F in SM & G in SM ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( ( exp_R * f1 ) + ( exp_R * f1 ) ) ^2 ) ; for k be Element of NAT holds r0 . k = ( upper_volume ( f , S ) . k ) * ( ( Im f ) . k ) assume that - 1 < n and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and q `1 < 0 and q `2 < 0 ; assume that f is continuous and a < b and a < d and f = g and f is continuous and a = c and f . a = d ; consider r being Element of NAT such that s-> Element of NAT such that s-> Element of NAT and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of x , y , K and inf { x , y } = x ; assume that f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( ( proj ( F , i2 ) ) " ( ( Carrier ( F , i2 ) ) . ( i + 1 ) ) ) and f is one-to-one ; rng ( ( ( Flow M ) | ( the carrier' of M ) ) | ( the carrier' of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - f /. x0 .|| < g ; consider t be VECTOR of product G such that m5 = ||. D5 . t .|| and ||. t - t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . 1 = 0 ; consider a being Element of the Points of Xbe such that a on the carrier of [ k , A ] and a on A and a on B ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ ( f2 ) = union { LSeg ( p0 , p1 ) , p1 , p2 , p1 , p2 } & LSeg ( p11 , p1 , p2 ) c= { p1 , p2 } ; i -' len h11 + 2 - 1 < i -' len h11 + 2 - 1 + 1 - 1 + 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( F . n -' 1 ) .| / ( n -' 1 ) ; for r , s1 , s2 , r , s2 , r , s , t being Real holds s1 in [. r , s .] iff r <= s2 & s2 <= r & r <= s assume that v in { G where G is Subset of T2 : G in B2 & G c= B1 & G c= B1 & x in G & y in B2 } ; let g be \vert succ A , INT , b be Element of INT , X be set , f be Function of X , INT , b be Function of b , INT ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CH such that for n holds P [ n , q1 . n ] and P [ n + 1 ] ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for x being Element of X holds f . x = F ( n ) ; reconsider B-6 = B /\ B , E8 = O , E8 = O , E8 = O as Subset of B ; consider j being Element of NAT such that x = the the assume that 1 <= j and j <= n and 1 <= j and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x in L2 . O2 ; ( C * _ 4 ( k , n2 ) ) . 0 = C . ( ( _ T4 ( k , n2 ) ) . 0 ) .= C . ( ( _ T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) | X ) = dom ( X --> f ) & rng ( ( X --> f ) | X ) = dom f ; ( ( S-bound L~ SpStSeq C ) `1 <= ( ( N ) `1 ) / 2 & ( ( SpStSeq C ) `1 ) / 2 <= ( ( N ) `1 ) / 2 ; synonym x , y are_collinear means : Def2 : x = y or ex l being Nat st { x , y } c= l & x in l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L st a = x & b = y holds a << y iff a << b ; ( 1 / 2 * ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( 1 / 2 ) ) ) ) ) ) `| REAL ) = f ; defpred P [ Element of omega ] means ( ( for n holds ( ( A1 . n ) . $1 ) | ( ( A1 . $1 ) . n ) ) | ( ( A1 . $1 ) . n ) ) & ( ( A1 . $1 ) | ( ( A1 . $1 ) . n ) is bounded ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( ( IC Comput ( P , s , 1 ) ) + 1 ) .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . ( g1 * g2 ) .= f . ( g1 * g2 ) .= f . ( g1 * g2 ) .= f . ( g1 * g2 ) .= f . ( g1 * g2 ) ; ( M * ( F . n ) ) . n = M . ( ( canFS ( Omega ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) ; the carrier of ( L1 + L2 ) c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of ( L1 + L2 ) c= the carrier of L2 ; pred a , b , c , x , y , z , a , b , c , d , b , c , d , e , x , y , z , y , z , x , y ; ( the PartFunc of s , X ) . n <= ( the PartFunc of s , X ) . n * s . n & ( the partial of s ) . n <= ( the partial of s ) . n ; pred - 1 <= r & r <= 1 & ( - 1 ) * ( ( - 1 ) * ( 1 - r ) ) = - ( 1 / r ) * ( 1 - r ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - |[ y1 , y2 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = y2 - y1 ; attr m is nonnegative means : Assume for n be Nat holds F . n is nonnegative & ( Partial_Sums F ) . n is nonnegative ; len ( ( \overline G ) * ( z ) ) = len ( ( ( G ) * ( x , y ) ) + ( ( G ) * ( y , z ) ) ) .= len ( ( G ) * ( x , y ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W2 /\ W3 ; given F be FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k ; 0 = 1 * 0 * 0 ^2 + 1 * ( 1 - ( 1 - ( 1 - 0 ) ) * ( 1 - ( 1 - 0 ) ) * ( 1 - 0 ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> as being being being being being being non empty \rbrace means : such that the carrier of ( \mathop { \rm o } _ 2 ) , ( \mathop { \rm o } _ 3 ) ) is Boolean and ( \mathop { \rm o } _ 3 ) is Boolean ; "/\" ( BB , L ) = Top ( B , L ) .= Top ( S , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( ( f `| X ) `| A ) holds ( ( f `| X ) `| X ) . x >= r2 2 * r1 - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - c ) ) ) / 2 = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - 1 ) * ( - 1 ) ) * ( ( - 1 ) * ( 1 / ( n + 1 ) ) * ( 1 / ( n + 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in downarrow t and x = [ x1 , x2 ] and x2 in { [ x1 , x2 ] } ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , ( M1 . n ) ) | 1 ) . n consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is strict Subgroup of H1 and H2 is strict Subgroup of H2 ; for S , T , S being non empty RelStr , d being Function of T , S st T is complete & d is directed-sups-preserving holds d is monotone & d is monotone [ a + 0 , 0. F_Complex , b + ( - a ) ] in ( the carrier of V ) \ ( the carrier of V ) & [ a + ( - a ) , b + ( - a ) ] in ( the carrier of V ) \ ( the carrier of V ) ; reconsider mm = max ( len F1 , len ( p . n ) * ( p . n ) |^ ( n + 1 ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , 1 ) , ( GoB h ) * ( len GoB h , 1 ) ) , ( GoB h ) * ( len GoB h , 1 ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( f2 * f1 ) /* s .= ( f2 * f1 ) /* s .= ( f2 * f1 ) /* s ; attr A1 \/ A2 is linearly-independent means : Assume : A1 is linearly-independent & A2 misses A1 & ( for x being Element of V st x in A1 holds x in A2 ) & ( x in A1 & x in A2 holds x in A1 ) ; func A -carrier C -> set means : Def4 : for s being Element of R , x being Element of C st x in A holds it . s in { A . s where s is Element of R : s in C } ; dom ( Line ( v , i + 1 ) (#) ( ( Cage ( p , m ) * ( p , 1 ) ) * ( ( Cage ( p , m ) * ( p , 1 ) ) * ( p , 1 ) ) ) ) = dom ( F ^ ) ; cluster [ ( x `1 ) `1 , ( x `2 ) `2 , ( x `2 ) `2 ] -> to [ x `1 , ( x `2 ) `1 , ( x `2 ) `2 ] ; E , All ( x1 , All ( x2 , ( x2 '&' ( x1 '&' ( x1 '&' x2 ) ) ) '&' ( x1 '&' x2 ) ) ) ) |= All ( x1 , x2 '&' ( x1 '&' ( x1 '&' x2 ) ) '&' ( x1 '&' x2 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - h . ( m + 1 ) - h . ( m + 1 ) ; cell ( G , ( X -' 1 , Y -' 1 ) , ( t + 1 ) + ( t + 1 ) ) \ ( ( L~ f ) ` ) meets ( ( L~ f ) ` ) ; IC Result ( P2 , s2 ) = IC Comput ( P2 , s2 , Initialize Comput ( P2 , s2 , Initialize ( ( intloc 0 ) ) + 1 ) , Comput ( P2 , s2 , Initialize ( ( intloc 0 ) .--> 1 ) ) , 1 ) ) .= ( card I + 2 ) ; sqrt ( 1 - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g and y = ( g " { k } ) . x0 and x0 in dom g and g . x0 = a . x0 ; dom ( r1 (#) ( chi ( A , A ) ) | ( m , C ) ) = dom ( chi ( A , A ) ) /\ ( dom ( chi ( A , A ) ) ) .= C /\ ( dom ( chi ( A , A ) ) ) .= C /\ ( dom ( chi ( A , A ) ) ) .= C ; d-7 . [ y , z ] = ( ( y `1 ) . z ) `2 - ( ( y `2 ) . z ) `2 .= ( ( y `2 ) . z ) `2 - ( y `2 ) . z ; attr i being Nat means : Def4 : C . i = A . i /\ B . i & C . i c= C . i /\ B . i ; Suppose x0 in dom f and f is_continuous_in x0 and f is_continuous_in x0 and for r st r in dom f & x0 in dom f holds ||. f /. x0 - f /. x0 .|| < r ; Then f | X is continuous & lim ( f | X ) = lim ( f | X ) ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K & K is open holds A meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func Sum <*> a -> w *> means : Def1 : a in it & for b being Ordinal st a in it holds it . b c= b & a is Ordinal ; [ a1 , a2 , a3 ] in ( the carrier of A ) ~ & [ a1 , a2 , a3 ] in ( the carrier of A ) ~ & [ a1 , a2 , a3 ] in ( the carrier of A ) ~ ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the InternalRel of S2 ; ||. ( ( vseq . n ) - ( vseq . m ) ) * ( x - ( vseq . m ) ) * ( x - ( vseq . m ) ) ) .|| < \frac { e / 2 * ||. x - ( vseq . m ) .|| * ||. x - ( vseq . m ) .|| + ||. x - ( vseq . m ) .|| * ||. x - ( vseq . m ) .|| ; then for Z be set st Z in { Y where Y is Element of I7 : F ( Z ) c= Z & Z in { Y } } holds z in Z ; sup compactbelow [ s , t ] = [ sup ( ( compactbelow s ) . ( sup compactbelow s ) ) , sup ( ( compactbelow s ) . ( sup compactbelow s ) ) ] .= sup ( ( compactbelow s ) . ( sup compactbelow s ) ) ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ij and [ f . i , f . j ] in Ij and [ y , f . j ] in Ij ; for D being non empty set , p , q being FinSequence of D st p c= q & p ^ q = q holds p ^ q = q ^ ( p ^ q ) consider e19 being Element of the affine of X such that c9 , a9 // a9 , e and a9 , e // e , b and a9 <> e ; set U2 = I \! \mathop { \rm \hbox { - } F } , E = S \! \mathop { - } F , F = S \! \mathop { - } E ; |. q3 .| ^2 = ( ( q3 `1 ) ^2 + ( q3 `2 ) ^2 ) * ( ( q3 `1 ) ^2 + ( q3 `2 ) ^2 ) .= |. q .| ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , ( MSAlg U1 ) . ( x , y ) ) = dom ( the charact of U1 ) & Args ( o , ( MSAlg U1 ) . ( x , y ) ) = dom ( O ; dom ( h | X ) = dom h /\ X .= dom ( ( |. h .| ) | X ) /\ X .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) .= dom ( ( |. h .| ) | X ) ; for N1 , N1 , N2 being Element of ( the carrier of G ) * , N1 , N2 being Element of ( the carrier of G ) * st N1 = N & N2 = N1 & N2 = N2 holds N1 is open & N2 is open ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) . i ) ; - ( q `1 ) ^2 < - 1 or q `1 / |. q .| * ( 1 + cn ) & - ( q `1 / |. q .| * ( 1 + cn ) ) ^2 <= 1 ; pred r1 = ( f | X ) & r2 = ( f | X ) . r1 & r1 = ( f | X ) . r2 & r2 = ( f | X ) . r2 ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( seq_id ( vseq . m , X , Y ) ) . x & x9 . m = ( seq_id ( vseq . m , X , Y ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , r ] and r < j and j < i ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 ; consider p1 , q1 being Element of X ( ) * such that y = p1 ^ q1 and q1 ^ q1 = p1 ^ q1 and p1 ^ q1 = q1 ^ q1 and q1 ^ q1 = q1 ^ q1 and q1 ^ q1 = q1 ^ q1 ; gcd ( ( A , r1 , r2 , s1 , s2 , s1 , s2 , t2 ) , A , B , C , D ) = ( s2 * ( s1 , s2 ) ) / ( s2 * ( s1 , s2 ) ) ; ( ex w being Real st w = lower_bound ( proj2 .: ( A /\ holds w in S ) ) & ( proj2 .: ( A /\ \mathop { \rm VerticalLine } ( w ) ) ) is non empty ) & ( proj2 .: ( A /\ \mathop { \rm VerticalLine } ( w ) ) is non empty ) ; s , ( ( k + 1 ) |= H1 ) iff s |= Ex ( H2 , ( k + 1 ) |= H2 ) & ( for n holds s |= ( H2 ) . n ) ; len ( s + 1 ) + 1 = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D + E-bound D ) / 2 ]| , ( E-max D ) / 2 ) /\ D = { UMP D } ; lim ( ( ( f `| N ) / g ) /* b ) = lim ( ( f `| N ) / g /* b ) .= lim ( ( f `| N ) / g /* b ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . i ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k - ( lim seq ) ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & a in P & b in P holds a = b Z c= dom ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * f ) ) `| Z ) \ ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * f ) `| Z ) " { 0 } ) " { 0 } ) ; ex j be Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & z = 1 + j & y = ( l ^ <* x *> ) . j & z = 1 + j & z = ( l ^ <* x *> ) . j ; for u , v being VECTOR of V for r being Real st 0 < r & u in N & v in N holds r * u + ( 1-r * v ) in N A , Int A , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , B ) , Cl ( A , C ) , Cl ( A , B ) , Cl ( A , C ) , Cl ( A , B ) ) / 2 ; - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x ; for S1 , S2 , S2 , D being non empty reflexive RelStr , D being non empty Subset of S1 , f being Function of S1 , S2 , g being Function of S2 , S2 , D holds ( f * g ) * f is directed & ( f * g ) * f is directed implies ( f * g ) * f is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or x = y & y = z or x = z & y = z or z = x or z = y ; E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & W-min L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , T1 , p being tree , q being Element of dom T holds p element q = q implies ( T -tree ( p , T ) ) . q = T . q & ( T -tree ( p , T ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster -> natural for Nat , k be Nat , n be Nat , m be Nat st k divides m & n divides k & m divides k holds ( m divides n ) & ( m divides k implies n divides k ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " = ( the carrier of X2 ) | ( the carrier of X2 ) & F " is one-to-one ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( B9 \/ C ) and C is linearly-independent and A is linearly-independent and B is linearly-independent and C is linearly-independent ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p2 , p4 ) .= angle ( p3 , p2 , p4 ) .= angle ( p3 , p2 , p4 ) .= angle ( p3 , p2 , p4 ) ; - sqrt ( 1 - ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 .= - ( q `1 / |. q .| - cn ) / ( 1 - cn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p2 & f . 1 = p4 ; attr f is partial differentiable on on on on on 2 , u0 means : Def4 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) /. u = ( proj ( 2 , 3 ) * pdiff1 ( f , 1 ) ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( len G , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is FinSequence of TOP-REAL 2 and 1 <= t and t <= len G and G * ( t , width G ) `1 >= ( GoB f ) * ( 1 , width G ) `1 and G * ( t , width G ) `1 >= ( GoB f ) * ( 1 , width G ) `1 ; pred i in dom G means : Def4 : r * ( f * reproj ( G , i ) ) = r * f * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 and c1 in dom ( p + q ) and c2 in dom ( p + q ) ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `1 < r1 & r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) = the carrier of X .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) ; pred len M1 = len M2 & width M1 = width M2 & width M2 = width M2 & width M1 = width M2 & width M2 = width M2 & width M2 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in N } c= N2 & N c= N2 & ( ex N be Neighbourhood of x0 st ||. y - x0 .|| < g2 & N c= dom f ) ; assume that x < ( - b + sqrt ( a , b , c ) ) / 2 and x > ( - b - sqrt ( a , b , c ) ) / 2 ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 ^ G1 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( ( M3 + M1 ) * ( i , j ) ) holds ( ( M3 + M2 ) * ( i , j ) ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f holds i divides f /. i & i divides len f holds i divides f /. ( i -' 1 ) assume F = { [ a , b ] where a , b is Element of X : for c st c in B\bf holds a c= c & b c= c } ; b2 * q2 + ( b3 * q3 ) + ( ( a * q2 ) + ( a * q3 ) + ( a * q2 ) ) = 0. TOP-REAL n + ( a * q2 ) .= ( a * q2 ) + ( a * q2 ) .= ( a * q2 ) + ( a * q2 ) .= ( a * q2 ) + ( a * q2 ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st B = Cl ( D ) & B in F & A c= B } & F is closed & B is closed & A c= Cl ( B \/ C ) ; attr seq is summable means : Assume for n be Nat holds seq . n is summable & seq is summable & ( for m be Nat st m <= n holds seq . m - seq . n = Sum ( seq ^\ m ) ) & ( for n be Nat holds seq . n = Sum ( seq ^\ n ) ) ; dom ( ( cn " ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) | D .= the carrier of ( ( TOP-REAL 2 ) | D ) | D .= D ; X [ X \to Z ] is full full non empty full SubRelStr of ( Omega Z ) |^ the carrier of Z & X [ Y \to Z ] ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 ; synonym m1 c= m2 for for for p , q being set st p in P & q in P & ( for m being set st m in P holds ( m1 , m ) is_as Element of NAT ) holds p in ( m2 , m ) `1 ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) ; synonym the multMagma of K is $1 -element for the multF of K is non empty multMagma means : Let : for a being Element of the carrier of K holds a is Element of the carrier of K & a is Element of the carrier of K ; sequence ( a , b , 1 ) + sequence ( c , d ) = b + sequence ( c , d ) .= b + ( c + d ) .= >= ( a + c + d ) .= sequence ( a + c + d ) .= the carrier of ( a + c ) ; cluster + ( i1 , i2 ) -> strict for Element of INT , i , i2 , j be Element of INT , i1 , i2 , j1 being Element of NAT st i1 = i2 & i2 = j1 holds ( i1 + i2 ) + ( i2 + 1 ) = ( i1 + i2 ) + ( i2 + 1 ) ; - ( s2 * p1 + ( s2 * p2 - ( s2 * p2 ) ) ) = ( ( - s2 * p1 ) + ( s2 * p2 ) ) - ( s2 * p2 ) .= ( ( - s2 ) * p1 ) + ( s2 * p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of Omega S , V being Subset of Omega S st D in V holds V meets V ; assume that 1 <= k and k <= len w + 1 and TU . ( ( q11 , w ) -\mathop { \rm \hbox { - } and w in w . k ) and TU . ( ( q11 , w ) -\mathop { - } ) = ( TU . ( ( q11 , w ) -\mathop { \rm \hbox { - } U } ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n + ( 2 * a |^ n ) + ( 2 * a |^ n ) ) + ( 2 * a |^ n ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , All ( x. 0 , All ( x. 0 , All ( x. 0 , All ( x. 0 , H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ) ) ) ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 or for x0 st x0 in l holds f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set st e in W & e in W holds W is Walk of G1 & e in W implies W is Walk of G2 not vs is empty iff ( ( m1 is not empty & not ( m1 is not empty & not ( m1 is not empty & not ( m1 is not empty & not ( m1 is not empty & not ( m1 is not empty & not ( m1 is not empty & not ( m1 is not empty & not not ( m1 is not empty ) & not ( m1 is not empty ) ) ) ) ) ) & not ( not ( m1 is not empty & not ( m1 is not empty ) ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 , 1 ) in dom GoB f & ( GoB f ) * ( i1 , 1 ) in dom GoB f & ( GoB f ) * ( i1 , 1 ) in dom GoB f ) ; for G1 , G2 , G2 , G3 being non empty RelStr , O being strict Subgroup of G , f being Function of O , G2 , g being Function of O , G2 , h being Function of O , G2 , g being Function of O , G2 , f being Function of O , G2 , g being Function of O , G2 st f is stable & g is stable holds f * g is stable UsedIntLoc ( int t ) = { intloc 0 , intloc 1 , intloc 2 , intloc 2 , intloc 3 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] holds Q [ f1 ^ f2 ^ f2 ] & Q [ f1 ^ f2 ^ f2 ] ( ( p `1 ) ^2 + ( p `2 ) ^2 ) = ( q `1 ) ^2 + ( q `2 ) ^2 .= ( q `1 ) ^2 + ( q `2 ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x4 )| = |( x1 , x2 , x3 - x4 )| & |( x1 , x2 , x3 - x4 )| = |( x1 , x2 , x3 - x4 )| for x st x in dom ( ( F | A ) | A ) holds ( ( F | A ) | A ) . ( - x ) = - ( ( F | A ) . x ) for T being non empty TopSpace , P being Subset of T , B being Subset of T st P c= the topology of T & B is open holds P is Basis of T ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x 'or' c . x ) 'or' c . x .= TRUE 'or' ( a 'or' b ) . x .= TRUE 'or' TRUE .= TRUE ; for e be set st e in A8 ex X1 being Subset of X , Y1 being Subset of Y st e = X1 & X1 is open & Y1 is open & Y1 is open & p in X1 & p in Y1 & Y1 is open & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in Y1 & p in for i be set st i in the carrier of S for f being Function of [: S , S :] , S1 . i st f = H . i & F . i = f | ( F . i ) holds F . i = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . w card D = card ( D1 - 1 ) - card ( { i , j } - 1 ) .= ( c1 + 1 ) - ( c2 - 1 ) .= ( c1 + 1 ) - ( c1 - 1 ) .= 2 * ( c1 + 1 ) - ( c1 - 1 ) .= 2 * ( c1 + ( c2 - 1 ) ) .= 2 * ( c1 + ( c1 - 1 ) - ( c1 - 1 ) ) .= 2 * ( c1 + c2 - 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 ) .= ( ( 0 .--> s . 0 ) +* ( 0 .--> 1 ) ) . 0 .= ( ( 0 .--> 1 ) +* ( 0 .--> 1 ) ) . 0 .= succ IC s .= ( 0 .--> 1 ) . 0 .= ( 0 .--> 1 ) . 0 ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 - 1 .= len f -' ( i1 -' 1 ) + 1 - 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b holds a <= a + b or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , f being FinSequence of TOP-REAL 2 st p in LSeg ( f , i ) & f is FinSequence of TOP-REAL 2 holds Index ( p , f ) <= len f lim ( curry ( ( curry . ( 0 + 1 ) ) # x ) ) = lim ( ( curry ' ( 0 , k ) ) # x ) + lim ( ( curry ' ( 0 , k ) ) # x ) ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= ( g | n1 ) . ( i -' n1 + 1 ) .= ( g | n1 ) . i ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C & [ f . 0 , f . 3 ] in the InternalRel of C ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A , Y is Subset of B ( ) : R in F & Y in F } holds ( for X being Subset of A ( ) , Y being Subset of B ( ) st X in F holds P [ X , Y ] ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and d on N and a on M and c on M and d on N and a on M and b on M and a on M and c on N and d on M and d on N and a <> b and a on M and a on M and a on M and a on M ; Suppose T is \hbox { T _ 4 4 } and for F being Subset-Family of T , F being Subset-Family of T st F is closed & F is closed & F is closed holds ind F <= 0 and ind F <= 0 ; for g1 , g2 st g1 in ]. ( r - g ) / 2 , r + g .[ & |. ( f - g ) / 2 - ( r - g ) / 2 .| <= ( g1 - g ) / 2 - ( r - g ) / 2 exp ( ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( 1 / 2 ) ) ) ) ) ) ) ) ) ) ) ) = ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) ) ) / ( 1 / 2 ) ) ) * ( ( - 1 / 2 ) * ( ( - 1 / 2 ) * ( ( - 1 ) ) ) ) ) ) = ( ( - 1 / 2 ) ) * ( ( ( - 1 / 2 ) ) * ( ( F . i = F /. i .= 0. R + r2 .= ( b |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) ; ex y be set , f be Function st y = f . n & dom f = NAT & for n holds f . ( n + 1 ) = Rn & for x holds f . ( n + 1 ) = Rn . ( x , y ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) * ( F /. i ) ; { x1 , x2 , x3 , x4 , x4 , x5 , x5 } = { x1 , x2 , x3 , x4 } \/ { x1 , x2 , x3 , x4 } .= { x1 , x2 , x3 , x4 } \/ { x4 , x4 , x5 } .= { x1 , x2 , x3 , x4 } \/ { x4 , x4 , x5 } ; for n being Nat , x being set st x = h . n & h . ( n + 1 ) = o ( x , n ) & x in InputVertices S & h . n in InnerVertices S & x in InputVertices S & x in InputVertices S & y in InputVertices S & x in InputVertices S & y in InputVertices S & z in InputVertices S & x in InputVertices S ; ex S1 being Element of CQC-WFF ( Al ( ) ) st SubP ( P , l , e ) = S1 & ( for k being Nat st k < l holds ( ( P , l ) . k = P . k ) & ( P [ k ] implies ( P [ k ] implies P [ k ] ) & ( P [ k + 1 ] implies P [ k + 1 ] ) ; consider P being FinSequence of G|^ 2 such that p9 = Product P and for i being Element of NAT st i in dom P ex t being Element of Seg k st P . i = t & t in Seg k & P . i = ( t . i ) * ( t . i ) ; for T1 , T2 being strict non empty TopSpace , P being Subset of T1 , T1 , T2 being Subset of T2 st the topology of T1 = the topology of T2 & P = the topology of T1 & P is open holds P is open & P is open & P is open implies P is open Suppose f is_is_partial u0 coordinate coordinate coordinate u , 3 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 3 and partdiff ( r (#) pdiff1 ( f , 3 ) , 3 ) = r * pdiff1 ( f , 3 ) , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , 3 ) = r * pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F , G being FinSequence of bool ( the carrier of V ) , G be Permutation of V st len F = $1 & G = F * s holds F = G * s & G = F * s ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `1 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `1 & ( GoB f ) * ( 1 , j + 1 ) `1 <= ( GoB f ) * ( 1 , j + 1 ) `1 ; defpred U [ set , set ] means ex F-23 being Subset-Family of T st $1 = F-23 & $2 is open & ( union F ) is open & ( union F is open & ( union F ) is open & ( union F is open implies $2 is open ) ) & ( union F is open implies $2 is open ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p1 , P & LE p4 , p1 , P & LE p4 , p1 , P & LE p4 , p1 , P & LE p4 , p1 , P holds LE p4 , p1 , P f in D ( ) & for g st g in D ( ) & x <> y holds g in D ( ) implies f in D ( ) & g in D ( ) & for y st y in D ( ) holds g . y in D ( ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( ( ( ( ( ( ( ( x `1 ) | D ) | D ) | D ) ) | K1 ) ) | K1 ) ) & ( ( ( ( ( ( ( TOP-REAL 2 ) | D ) | D ) | K1 ) ) | K1 ) | K1 ) . 8 >= 0 ; assume for d7 being Element of NAT st d7 <= ( n -\hbox { t } ) holds s1 . ( ( n -\hbox { t } ) * ( n + 1 ) ) = s2 . ( ( n -\hbox { t } ) * ( n + 1 ) ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st e = Ball ( x , r ) /\ Sphere ( x , s ) and e in Sphere ( x , r ) /\ Sphere ( y , r ) ; given r such that 0 < r and for s st 0 < s ex x1 , x2 be Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s & ||. f /. x1 - f /. x2 .|| < r ; ( p | x ) | ( p | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | | | | | | | | | | | | | | | | | | ( x | | | | | | | | | | | | | | | | ( x | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | assume that x , x + h in dom sec and ( for x st x in dom sec holds ( ( sec * sec ) `| Z ) . x = ( 4 * sin ( x + h ) ) ^2 ) / ( sin ( x ) ) ^2 and sin ( x ) = - ( 4 * sin ( x ) ) ^2 and sin ( x ) = - ( 4 * sin ( x ) ) ^2 ) ; assume that i in dom A and len A > 1 and B c= 1 and i in dom B and A * ( i , j ) = ( A * ( i , j ) ) * ( B * ( i , j ) ) and A * ( i , j ) = A * ( i , j ) and A * ( i , j ) = A * ( i , j ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex holds i divides ( <* 1. F_Complex *> ) ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( ( a1 'or' b1 ) '&' ( c1 '&' c2 ) ) '&' ( ( a1 'or' a2 ) '&' ( c1 '&' c2 ) '&' ( a1 'or' c2 ) ) '&' ( ( a1 'or' a2 ) '&' ( c1 '&' c2 ) ) '&' ( ( a1 'or' a2 ) '&' ( a1 'or' c2 ) '&' ( a1 'or' c2 ) ) ) ) ) ) '&' ( ( a1 'or' a2 ) '&' ( a1 'or' c2 ) ) '&' ( a1 'or' a2 ) '&' ( a1 'or' c2 ) ) '&' ( a1 'or' c2 ) '&' ( a1 'or' c2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' c2 ) '&' ( a1 'or' c2 ) '&' ( a1 'or' a2 ) '&' ( a1 'or' c2 ) ) '&' ( ( a1 'or' c2 ) '&' ( a2 'or' c2 ) '&' ( a2 'or' c2 ) assume that for x holds f . x = ( ( - cot ) (#) ( sin - cot ) ) `| Z and for x st x in Z holds ( ( - cot ) (#) ( cot - cot ) ) `| Z ) . x = - cos . x and for x st x in Z holds ( ( - cot ) (#) ( cot - cot ) ) `| Z ) . x = - cos . x ; consider R8 , I-8 be Real such that R8 : R8 : dom ( Re F ) = Integral ( M , ( Im F ) . n ) and Integral ( M , ( Im F ) . n ) = Integral ( M , ( Im F ) . n ) and Integral ( M , ( Im F ) . n ) = Integral ( M , ( Im F ) . n ) ; ex k be Element of NAT st ( ex q be Element of NAT st q = k & 0 < d & for q be Element of product G st q in X & q in X holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r ) ; x in { x1 , x2 , x3 , x4 , x4 , x5 , x5 , x5 , x5 , 7 } } iff x in { x1 , x2 , x3 , x4 , x5 } \/ { x4 , 8 , 7 } \/ { x1 , x2 , x3 , x4 } \/ { x1 , x2 , x4 } \/ { x1 , x2 , x3 , x4 } G * ( j , ii ) `2 = G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , \mathop { \rm len } G ) `2 .= G * ( 1 , 1 ) `2 .= G * ( 1 , \mathop { \rm width } G ) `2 .= G * ( 1 , 1 ) `2 .= G * ( 1 , 1 ) `2 .= G * ( 1 , \mathop { \rm width G * ( 1 , \mathop { \rm width G * ( 1 , \mathop { \rm width G * ( 1 , \mathop { \rm width G * ( 1 , \mathop { \rm width G * ( 1 , \mathop { 1 , \mathop { \rm width G * ( j , \mathop { \rm width G ) `2 .= G * ( j , \mathop { \rm width G ) `2 ) `2 .= f1 * p = p .= ( ( the Arity of S1 ) * the Arity of S1 ) * ( the Arity of S2 ) .= ( the Arity of S1 ) * the Arity of S1 .= ( the Arity of S1 ) * the Arity of S1 .= ( the Arity of S1 ) * the Arity of S1 .= ( the Arity of S1 ) * the Arity of S1 ; func tree ( T , P , T1 ) -> Tree means : such : q in T & q in T & P [ T ] or ex p , q st p in P & q in T1 & p in T1 & q in T1 & p in T1 & q in T1 & p ^ q in T1 ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= Fcontradiction ( p . ( k + 1 -' 1 ) , k -' 1 ) .= F9 . ( k + 1 -' 1 ) .= F9 . ( k + 1 -' 1 ) .= F9 . ( k + 1 -' 1 ) .= F9 . ( k + 1 -' 1 ) ; for A , B , C being Matrix of len C , len B , K st len B = len C & len C = len B & len C = len A & len B > 0 & len C > 0 holds A * ( B * C ) = A * BC & A * ( B * C ) = B * BC seq . ( k + 1 ) = 0. F_Complex .= ( seq . ( k + 1 ) ) * seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) * seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) * seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) * seq . ( k + 1 ) .= ( Partial_Sums seq ) . k ; assume that x in ( the carrier of CQ ) ~ and y in ( the carrier of CQ ) ~ and z in ( the carrier of CQ ) ~ and y in ( the carrier of CQ ) ~ and z in ( the carrier of CQ ) ~ ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( for k st k in $1 holds ( VAL g ) . k = ( VAL g ) . ( k + 1 ) ) & ( for k st k in $1 holds ( VAL g ) . k = ( VAL g ) . ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is FinSequence of TOP-REAL 2 and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) ; assume that cn < 1 and q `1 > 0 and q `1 / |. q .| >= cn and q `1 / |. q .| >= cn and q `1 / |. q .| = cn and q `2 / |. q .| = cn and q `1 / |. q .| and q `1 / |. q .| = cn and q `2 / |. q .| = cn and q `1 / |. q .| = cn and q `1 / |. q .| = cn ; for M being non empty metric , x being Point of M , f being Function of M , M st x = x `1 holds ex x being Point of M st f . x = Ball ( x , 1 / ( n + 1 ) ) & f . x = Ball ( x `1 , 1 / ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds f1 . x = - ( f1 . x ) / ( f2 . x ) ^2 ) & ( f1 - f2 ) is_differentiable_on Z implies f1 - f2 is_differentiable_on Z & ( f1 - f2 ) `| Z = ( f1 - f2 ) `| Z ) ; defpred P1 [ Nat , Point of CNS ] means ( for r be Real st r in Y & ( for s be Real st s in Y holds ||. f /. s - f /. x0 .|| < r ) & ( for s be Real st s in X holds ||. f /. s - f /. x0 .|| < r ) implies f /. s - f /. x0 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= ( g | ( i -' 1 ) ) . i ; ( 1 - 2 * ( n0 + 2 * ( n + 2 ) ) ) * ( 2 * ( n + 2 ) ) = ( ( 1 - 2 * ( n + 2 ) ) * ( 2 * ( n + 1 ) ) ) * ( 2 * ( n + 1 ) ) .= 1 * ( ( n + 2 ) * ( n + 1 ) ) * ( 2 * ( n + 1 ) ) ) .= 1 * ( n + 1 ) ; defpred P [ Nat ] means for G being non empty finite strict RelStr , H being strict non empty finite RelStr st G is free for x being Element of G st x is as non empty RelStr , n being Element of NAT holds ( the carrier of G ) . n = ( the RelStr of H ) . n ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and for i st 1 <= i & i <= len f holds not ( f /. i in Ball ( u , r ) & not ( f /. i in Ball ( u , r ) & not ( ex m st m <= n & f /. m in Ball ( u , r ) ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos , ( - 1 / ( $1 + 1 ) ) * ( cos . ( - 1 / ( $1 + 1 ) ) * ( cos . ( - 1 / ( $1 + 1 ) ) * ( cos . ( - 1 / ( $1 + 1 ) ) * ( cos . ( - 1 / ( $1 + 1 ) ) * ( cos . ( - 1 / ( $1 + 1 ) ) ) * ( cos . ( - 1 / ( $1 + 1 ) ) ) ) ) ) . x ) ) . x ) ) . $1 ) = ( Partial_Sums ( cos . ( - 1 / ( cos . ( - 1 / ( $1 + 1 ) ) ) . x ) ; for x being Element of product F , i being set st x in I & ( for x being set st x in I holds x in I ) & ( for x being set st x in I holds x in I ) holds x in I ) & ( for i being set st i in I holds x in I ) implies x in I ) ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( x " ) |^ n * x " .= ( x " ) |^ n * x .= ( x " ) |^ n * x .= ( x " ) |^ n * x .= ( x " ) |^ n ; DataPart Comput ( P +* I , ( Initialize s ) +* I , ( Initialize s ) +* I , ( Initialize s ) +* I , ( Initialize s ) +* I ) = DataPart Comput ( P +* I , ( Initialize s ) +* I , ( Initialize s ) +* I ) .= DataPart Comput ( P +* I , ( Initialize s ) +* I , ( Initialize s ) +* I ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom ( f1 (#) f2 ) /\ ]. x0 , x0 + r .[ and for g st g in ]. x0 , x0 + r .[ /\ ]. x0 , x0 + r .[ holds f1 . g <= ( f1 (#) f2 ) . g ; Suppose X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and f2 | X is continuous and f2 | X is continuous ; Then ( f1 + f2 ) | X is continuous & f2 | X is continuous ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is directed & l is \in X & x is \in X Support ( e *' A ) in { m *' p where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' p ) & p in Support ( m *' p ) } ; ( f1 - f2 ) /* s1 = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) ; ex p1 being Element of QC-WFF ( Al ( ) ) , g being Function of [: D ( ) , D ( ) , D ( ) :] , D ( ) st p1 = g . p1 & for g being Function of D ( ) , D ( ) st g in D ( ) holds P [ g , p1 , g . g ] ; ( mid ( f , i , len f -' 1 ) ) /. ( j -' 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( j -' 1 ) .= f /. ( j -' 1 ) .= f /. ( j -' 1 ) .= f /. ( j + 1 -' 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p len mid ( upper_volume ( f , D2 ) , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 ; x * y * z = ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * y ) * ( z * z ) .= ( x * y ) * z ; v . ( <* x , y *> - ( <* x0 , y *> - ( x - x0 ) ) * i ) = partdiff ( v , ( x - x0 ) * ( ( x - x0 ) + ( y - x0 ) * ( ( x - x0 ) + ( y - x0 ) * ( ( x - x0 ) + ( y - x0 ) * ( ( x - x0 ) + ( y - x0 ) ) * ( y - x0 ) ) ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * ( - 1 ) ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) .= <* - 1 , 0 , 0 *> .= <* - 1 , 0 , 0 *> ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) ) .= Sum ( L (#) F1 ) ; ex r be Real st for Y be Real st 0 < e ex Y1 be Subset of X st Y1 is non empty & for Y1 be Subset of X st Y1 is non empty & Y c= Y holds |. ( union Y ) . Y1 - ( lower_bound Y ) . x .| < r ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i + 2 ) = f /. ( k + 2 ) & ( GoB f ) * ( i + 2 ) = f /. k ) ; ( ( - 1 ) (#) ( cos * sin ) ) `| Z ) . x = - ( ( - 1 ) (#) ( sin * sin ) ) . x .= - ( ( - 1 ) (#) ( sin * sin ) ) . x .= - ( ( - 1 ) (#) ( sin * sin ) ) . x .= - ( ( - 1 ) (#) ( sin * sin ) ) . x .= - ( ( - 1 ) (#) ( sin * sin ) ) . x ; ( - b + sqrt ( a , b ) ) / 2 * a < 0 & ( - b - sqrt ( a , b ) ) / 2 < 0 or - b - sqrt ( a , b ) / 2 < 0 ; ex_inf_of uparrow "\/" ( X , L ) /\ C , L & ex_sup_of X , L & "\/" ( X , L ) , L & "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) & "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) ; ( ( for j being Element of NAT st j in the Sorts of B ) . i ) . ( j , i ) = ( j , i ) (*) ( id ( B . i ) , ( id ( B . i ) ) ) ) & ( j = i implies i = j ) implies ( j = i implies j = i )