thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is onto ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ) ; assume x in I ; q is as as as of 0 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is Seg one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be Category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is \setminus ; Q halts_on s ; x in \in \in of of of of -1 ; M < m + 1 ; T2 is open ; z in b < a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Element of REAL ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o \mathord 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , v be VECTOR of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aZ <= non [ Z ] ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , A be Subset of V ; s is non trivial & s is non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\mathopen is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , S ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj ; set A = -> / 2 ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_\cdot \cdot F ; assume n0 <= m ; T is increasing implies T is increasing e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be be be be be Line of L , x be Element of L ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v + dom meets ; - y in I ; let A be non empty set , B be non empty Subset of A ; P0 = 1 ; assume r in F . k ; assume f is simple function ; let A be non countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let II , II ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d2 in dom f1 ; assume t . 1 in A ; let Y be non empty TopSpace , X be Subset of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected hhthesis ; assume f is additive brr\ast ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is s1 ; f . x / 2 <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Ci in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c1 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 & s4 = s3 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be non empty Subset of L ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y , w is_collinear ; R8 in X ; let a , b be Real , x be Element of REAL ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , m be Morphism of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , t be State of A ; s4 . n = N ; set y = ( x `1 ) / 2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; V1 is non empty Subset of L ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A is dense & A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x9 c= Z1 & x in Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim ( seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , k be Nat ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 & n < len g1 ; k + 1 in dom f ; not the still of { s } is finite ; assume x1 <> x2 & x1 <> x3 ; v2 in V1 & v2 in V1 ; not [ b `1 , b ] in T ; ii + 1 = i ; T c= \llangle ] ; ( l - 1 ) * ( l - 1 ) = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AA is_integrable_on M & A is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; cC misses cC ; Product ( seq ) is non empty ; e <= f or f <= e ; cluster -> non empty normal for sequence ; assume c2 = b2 & c1 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume vseq is convergent & vseq is convergent ; IC s3 = 0 & IC s3 = 1 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one non empty full ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be as as as as the non empty instruction of S , T ; f-24 . x = 1 ; assume z \ x = 0. X ; C2 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 `1 = K1 & p2 `2 = 0 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMSorts A is closed assume z0 <> 0. L ; n < N7 . k ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , R :] is stable ; set cR = Vertices R ; p0 c= P4 & P0 c= P2 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ \rrangle , b ~ ; assume a in A ( ) ; k in dom ( q4 ) ; p is non empty \HM { 0 } ; i - 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= j2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict strict for such that ex x being strict such that x in D ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + - j ; dom S = dom F & dom S = dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non empty non void holds the TopStruct of S is non empty ; let f be ManySortedSet of I ; let z be Element of COMPLEX , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= V1 & B-15 c= V1 ; assume I is_closed_on s , P ; U2 = U2 & ( U1 /\ U2 ) = {} ; M /. 1 = z /. 1 ; x9 = x9 & y9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | X ) . x <= ( f | X ) . x ; let l be Element of L ; x in dom ( F . d ) ; let i be Element of NAT ; r8 is ( len r8 ) -element ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = { Seg k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for non empty Poset ; a1 in B . s1 & a2 in B . s2 ; let V be finite < len F , v be Vector of V ; A * B on B & A on A ; f-3 = NAT --> 0 .= fI ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F (#) C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in II ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 gcd m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! \mathop { phi } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B \/ C ) ; s1 , s2 s2 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 j1 - 1 = 0 & j1 - 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ^2 + ( p1 `2 ) ^2 ; a < ( p3 `1 ) / |. p3 .| ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 < i1 - 1 ; 1 <= i1 -' 1 & i1 -' 1 < i1 - 1 ; i + i2 <= len h & i + 1 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in X ~ Z ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . g , I = g . I ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , k = g (*) h2 ; assume x in ( X0 /\ 4 ) ; ||. h .|| < d1 & ||. h .|| < s ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl2 - l ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; let P , Q be succ s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , D be Subset of L ; S-20 is x -let of x , y ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z , X ) ; P [ len ( F ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0. M ; cluster z (#) seq -> summable for sequence of X ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> |^ I for Element of is |^ I ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T2 is SubSpace of T2 & T1 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of non zero set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root & y is Element of ( the carrier of S ) * ; not r in ]. p , q .[ ; let R be FinSequence of REAL , x be Element of REAL ; S7 does not destroy b1 & S7 does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - - [ x , y ] .| >= r ; 1 * ( seq ^\ k ) = seq ^\ k ; let x be FinSequence of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s .= IC s ; H + G = F- G ; Cx1 . x = x2 & Cx1 . x = y2 ; f1 = f .= f2 .= f2 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a & b1 , c1 _|_ b , a ; d2 , o _|_ o , a3 ; IO is reflexive & IO is reflexive implies IO is transitive IO is antisymmetric implies [: O , O :] is antisymmetric sup rng H1 = e & sup rng H1 = e ; x = a9 * a9 & y = b9 * a9 & z = c9 * a9 ; |. p1 .| ^2 >= 1 ^2 ; assume j2 - 1 < 1 - 1 ; rng s c= dom f1 & rng s c= dom f2 ; assume that support a misses support b and not a in support b ; let L be associative commutative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 ) = I1 +* J ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster -> non empty for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] *> . N -> complete for non trivial set ; ( 1 - a ) " = a " ; ( q . {} ) `1 = o ; $ 1- ( i -' 1 ) > 0 ; assume ( 1 - 2 ) <= t `1 ; card B = k + - 1 ; x in union rng ( f | A ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= the vertices of G ; let G be : for x being set holds x in G ; e , v6 be set ; c . ( i + 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 . ( lim q ) = f2 . ( lim q ) ; set z1 = - ( - z2 ) , z2 = - ( - z2 ) ; assume w is_llas of S , G ; set f = p |-count t , g = p |-count t , h = p |-count t , t = p |-count t , k = p |-count t , l = p |-count t , l = p |-count t let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , A be Subset of X ; reconsider p = p , q = q as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM , s be State of SCM ; stop I c= P-12 & I c= P ; set ci = fSet /. i , fi = fSet /. j ; w ^ t ^ t ^ s ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ t ^ s ^ t ^ t ^ t ^ s ^ t ^ t ^ s ^ t ^ W1 /\ W = W1 /\ W ` .= W1 /\ W2 ; f . j is Element of J . j ; let x , y be Element of T2 , s be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 ; ord x = 1 & x is positive implies x is positive set g2 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F-21 ) = 0 ; / ( X \/ R1 ) = / ( X \/ R1 ) ; ( sin . x ) <> 0 & ( sin . x ) <> 0 ; ( ( - 1 ) (#) ( ( #Z 2 ) * ( f1 - #Z 2 ) ) ) . x > 0 ; o1 in [: X /\ O2 , X /\ O2 :] ; e , v6 be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed Subset of R , I be non empty Subset of R ; h . p1 = f2 . O & h . I = - 1 ; Index ( p , f ) + 1 <= j ; len ( q . i ) = width M & len ( q . i ) = width M ; the carrier of LK c= A & the carrier of LK c= A ; dom f c= union rng ( F . -10 ) ; k + 1 in support ( \mathop { n } ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in \mathclose { \rm \hbox { - } Seg } ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = f . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 / m * m + r ) < p ; dom f = dom I-4 & dom IK = dom IK ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - x -> R_eal -> R_eal for ExtReal ; then { d1 } c= A ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u + v in W2 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of ( T |^ the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be -> summable sequence of X , n be Nat ; dist ( x `1 , y ) < ( r / 2 ) * ( 1 / 2 ) ; reconsider mm1 = m , mm2 = m as Element of NAT ; x0 - r < r1 - x0 & x0 < x0 + r ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * ( idseq q `1 ) , g2 = p * ( idseq q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I1 ) in { x } ; cluster subcondensed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( PI , 1 ) /\ LSeg ( co , 1 ) ; let n be Element of NAT , x be Element of NAT ; reconsider SS = S , SS = T as Subset of T ; dom ( i .--> X `1 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x , e = y as Element of C ( ) ; let s be 0 -started State of SCMPDS , P , Q be Subset of SCMPDS ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y & x , y , z is_collinear ; assume i = n \/ { n } & j = k \/ { k } ; let f be PartFunc of X , Y ; N1 >= ( sqrt c ) / sqrt 2 & N2 >= ( sqrt c ) / sqrt 2 ; reconsider t7 = T7 as TopSpace , T8 = the TopStruct of T ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 . ( y1 ) ; A |^ 0 = { <%> E } .= A |^ 0 ; len W2 = len W + 2 & len W2 = len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg len s2 & i + 1 in Seg len s2 ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume that p2 = E-max ( K ) and p2 in K ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster s-10 + s-10 -> summable for Real_Sequence ; assume j in dom ( M1 * M2 ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* y *> \geq x ; not a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize s , P1 = P +* I , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of x & y ` is Element of X ; k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topological Euclid n ; N , M be strict strict >= L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f , g .] = f & M [. g , f .] = g ; ( ( Fib 1 ) /. 1 ) `1 = TRUE ; dom g = dom f -tuples_on X & dom h = dom f -tuples_on X ; mode : is \cal holds the : of G is \cal I ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) , g be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a2 ) = G1 . ( a1 , - a2 ) ; redefine func \mathopen { a , b , r } -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / f ) & rng s c= dom f ; curry ( F-19 , k ) is additive ; set k2 = card dom B , k1 = card dom A , k2 = card dom B ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of MM , x be Element of MM ; reconsider s1 = s , s2 = t as Element of SS ; rng p c= the carrier of L & p . ( len p ) = p . ( len p ) ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | D ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( the carrier of J ) ; cluster All ( x , H ) -> non empty for strict <* x *> ; d * N1 / 2 > N1 * 1 / 2 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " ( D1 /\ D2 ) ; dom ( p | mm1 ) = mm1 .= dom ( p | mm1 ) ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( ( - 1 ) (#) ( arccot ) ) . x ; x in rng ( f /^ ( len f -' 1 ) ) ; let f , g be FinSequence of D ; cp1 in the carrier of S1 & cp1 in the carrier of S2 ; rng f " = dom f & rng f = dom f ; ( the Source of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 ; assume v in rng ( S | E1 ) ; assume x is root or x is root & y is root or x is root ; assume 0 in rng ( ( g2 | A ) | A ) ; let q be Point of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 ; i <= len G -' 1 & 1 <= len G -' 1 ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q /\ R ) .= Q ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z , t = y as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ( A , I ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be subcategory , a , b be object of C ; reconsider V1 = V , V1 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " * ( a |^ b ) is Subgroup of H ; let A1 be [ such that A1 : A1 : x in A1 & x in A2 ; p2 , r3 , q2 is_collinear & p1 , r2 , q1 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 < M . E8 & M . E8 < M . E8 ; ^ ( c / d ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Line for non empty as | implies L is | set i1 = the Nat , i2 = the Element of NAT , i1 = the Element of NAT ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . len f = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def1 : cos X c= cos Y & for x st x in X holds x in Y ; let y be upper Subset of Y , x be Element of X ; cluster -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> Nat ; set S = <* Bags n , i9 *> , T = <* i *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / 2 < ( 2 * PI ) / 2 ; x2 in dom f1 /\ dom f & x1 in dom f1 /\ dom f2 ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & len <* P *> = len P ; set N-26 = the max of N , the carrier of N ; len g] + ( x + 1 ) - 1 <= x ; not a on B & b on B & not b on B ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len f - n ; set q2 = ( N-min C ) `2 , q2 = ( E-max C ) `2 ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . r2 ; f " D meets h " V & f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( \mathfrak F ) . X & t is Element of ( the carrier of S ) . s ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G `2 = E \/ { E } .= { E } ; reconsider m = len ( thesis - k ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { i } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pp1 . i .= pp2 . i ; let PA , PA be a_partition of Y , z be set ; attr 0 < r & r < 1 implies 1 < ( 1 - r ) / 2 ; rng ( \mathop { \rm AffineMap ( a , X ) ) = [#] X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of Y ) ; dom ( f | u ) c= dom ( u | v ) ; redefine pred n divides m means : Def1 : m divides n & n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in *> implies a in the carrier of \mathop { \rm *> ; not y0 in the still of f & not y in the carrier of f ; Hom ( ( a \times b ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g ~ & [ y , x ] in dom k ; set S1 = \times and S2 = \times InnerVertices ] ; l2 = m2 & l2 = i2 & l2 = j2 implies ( i1 + i2 ) = i2 x0 in dom ( ( u + v ) (#) ( A + B ) ) ; reconsider p = x , q = y as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 .= R^1 | B01 .= R^1 | B01 ; f . p4 `1 <= f . p1 `1 & f . p2 `2 <= f . p1 `2 ; ( F . x ) `1 <= ( x `1 ) / ( x `2 ) ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K & 0 |-> a = <*> the carrier of K ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider s\frac = s\hbox { a } , s\frac { b } { a } } as \rangle ; ( k - 1 ) <= len thesis - j ; [#] S c= [#] the TopStruct of T & [#] T c= [#] the TopStruct of T ; for V being strict RealUnitarySpace holds V in W implies V in W assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , n2 , n3 be Matrix of n1 , n2 , K ; - a * - b = a * b - b * a ; for A being Subset of A9 , B being Subset of A9 holds A // B implies A = B ( for o2 being Element of A holds [ o2 , o1 ] in [: o2 , o1 :] ) implies [ o2 , o1 ] in [: o2 , o2 :] then ||. x - y .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len upper_volume ( g , D1 ) & len upper_volume ( g , D1 ) = len g ; b = Q . ( len Q - 1 ) + 1 ; f2 * f1 /* s is divergent_to-infty & f2 * f1 is convergent & lim ( f2 * f1 ) = x0 ; reconsider h = f * g as Function of [: I[01] , I[01] :] , G ; assume that a <> 0 and Let a , b , c ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of T7 ; {} = the carrier of L1 + L2 .= the carrier of L1 + L2 .= the carrier of L1 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p = p +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of [: Ids L , Ids L :] ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( P + Q ) + len ( P + Q ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x1 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 } ; let x , y be Element of [: FTTTT1 , n :] ; p = |[ p `1 , p `2 ]| .= |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h * h .= g * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( x1 ) /\ dom ( x2 ) & x0 in dom ( x1 ) /\ dom ( x2 ) ; ( R qua Function ) " = R " * ( R " ) .= R " * ( R " ) ; n in Seg len ( f /^ ( len f -' 1 ) ) ; for s being Real st s in R holds s <= s2 ; rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for the carrier of X ; 1. K * 1. K = 1. K * 1. K .= 1. K * 1. K .= 1. K ; set S = Segm ( A , P1 , Q1 ) , Q = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) & w in F ; curry ( P\times k , k ) # x is convergent ; cluster open open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of [: U0 , U0 :] ; b1 , c1 // b1 , c1 & c1 , c1 // c1 , c2 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a ; ( goto ( card I + 1 ) ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p2 , s2 ) ; IC SCMPDS in dom ( p +* ( a , I ) ) ; dom t = the carrier of SCM & dom t = the carrier of SCM & dom t = the carrier of SCM ; ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl Int ( union F ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( A1 \/ A2 ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in A ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , x ) / ( y , x ) ) ; consider m being element such that m in Intersect ( FF ) and m in Y ; reconsider A1 = support ( u1 ) , A2 = support ( v1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -\mathop { V } -> non empty for string of S ; LG2 /. n2 = LG2 . n2 .= LG2 . n2 .= LG2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and r-7 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , B be Subset of TOP-REAL n ; assume [ k , m ] in Indices ( ( D * ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / 2 ; ( F . N ) | E8 = +infty & ( F . N ) | E8 = +infty ; attr X c= Y means : Def1 : Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card X-18 <= card u + card X-18 ; set g = z \circlearrowleft ( ( L~ z ) .. z ) ; then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathop { \rm G } ; reconsider B = A , C = B as non empty Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , f be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . I ) `2 = 1 ; j + p .. f - len f <= len f - 1 - 1 ; set W = W-bound C , S = S-bound C , E = E-bound C , N = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , S = E-bound C , N = E-bound S1 . ( a , e ) = a + e .= a + e .= a + e ; 1 in Seg width ( M * ColVec2Mx p ) & 1 in Seg width M ; dom ( i (#) Im f ) = dom ( Im f ) /\ dom ( Im f ) ; ( D^2 ) . x = W . ( a , *' ( a , p ) ) ; set Q = non empty for g , h being Element of |= ( g , f , h ) ; cluster -> topological for ManySortedSet of U1 , B be ManySortedFunction of U2 , U2 ; attr F is discrete means : Def1 : ex A st F = { A } ; reconsider z9 = \hbox { y where y is Element of product \overline G : y in G } as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f = <*> the carrier of F_Complex ; E , j |= All ( x1 , x2 ) & E , j |= H ; reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 .= 1 ; g + R in { s : g-r < s & s < g + r } ; set q-1x0 = ( q , <* s *> ) \mathop { 1 } , qlim s = ( q , <* s *> ) \mathop { 1 } ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) .= h0 . ( i + 1 ) ; set mw = max ( B , } ( NAT ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% - ( a , k ) %> + k .= a ; ( ( for q being Point of TOP-REAL 2 st q `1 <= 0 holds q `2 >= 0 ) implies ( q `2 <= 0 ) attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; attr 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( d /\ b ) ) /\ f ) /\ j ; u in ( ( c /\ ( d /\ b ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 + 2 ; x , z , y is_collinear & x , z , y is_collinear & x , y , z is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a |^ n1 .= a |^ n1 * a |^ n1 ; <* \underbrace { 0 , \dots , 0 } , x *> in Line ( x , a * x ) ; set y9 = <* y , c *> , z9 = <* c , x *> ; FG2 /. 1 in rng Line ( D , 1 ) & FG2 /. len FG2 = D . 1 ; p . m joins r /. m , r /. ( m + 1 ) ; ( p `2 ) ^2 = ( f /. i1 ) ^2 + ( f /. i2 ) ^2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) .= W-bound ( X \/ Y ) ; 0 + ( p `2 ) <= 2 * r + ( p `2 ) ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is convergent ; reconsider u2 = u , v2 = v as VECTOR of P`1 ( X ) ; p |-count ( Product Sgm X11 ) = 0 & p |-count ( Product Sgm X11 ) = 1 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = card I + 4 .--> goto 0 , goto 0 = goto 0 ; x in { x , y } & h . x = {} T & y = {} T ; consider y being Element of F such that y in B and y <= x `2 ; len S = len ( the charact of ( A ) ) .= len the charact of ( A ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : < G-15 ( G-15 , G-15 ) ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; ( for K holds Q . ( K , n , r ) is a ) -valued FinSequence of D f . k , f . ( Let n ) ] in rng f ; h " P /\ [#] T1 = f " P /\ [#] T1 .= [#] T1 /\ [#] T2 .= [#] T1 ; g in dom f2 \ f2 " { 0 } & ( f2 " { 0 } ) . g in dom f2 \ f2 " { 0 } ; g1X /\ dom f1 = g1 " { 0 } .= g1 " { 0 } ; consider n being element such that n in NAT and Z = G . n ; set d1 = being Subset of dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) ; b `2 + ( 1 - r ) < ( 1 - r ) + ( 1 - r ) ; reconsider f1 = f as VECTOR of the carrier of X , Y be bounded Function of X , Y ; attr i <> 0 means : Def1 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( ( g2 . i2 ) `2 ) & 1 <= j2 & j2 + 1 <= len ( ( g2 . i2 ) `2 ) ; dom ( i ) = dom ( i ) .= dom ( i ) .= dom ( i ) .= dom ( i ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x1 as Function of S , IF ( ) ; reconsider R1 = x , R2 = y , R2 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Ri ; S1 +* S2 = S2 +* ( S1 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* ( ( - 1 / 2 ) (#) ( cos * ( f1 + f2 ) ) ) is_differentiable_on Z ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* y , z *> , f4 ) ; E8 . e2 = E8 . e2 & E8 . e2 = E8 . e2 ; ( ( - 1 / 2 ) (#) ( ( ln * f ) `| Z ) ) = f ; upper_bound A = ( PI * 3 / 2 ) * ( PI / 2 ) & lower_bound A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F ) ; reconsider p8 = q8 , p7 = q8 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & [#] X0 c= [#] X0 ; let C be compact connected non vertical non horizontal Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m2 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g . y <= g . y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: the carrier of X1 , B" = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume that R ~ c= R ~ and R ~ c= R ~ and R ~ c= R ~ and R ~ c= R ~ ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ y2 , x2 ] ; pred x1 <> x2 means : Def1 : |. x1 - x2 .| > 0 & x1 - x2 > 0 ; assume that p2 - p1 , p3 - p1 , p2 - p1 is_collinear and p2 - p1 , p3 - p1 , p2 - p1 is_collinear ; set q = ( f ^ <* 'not' A *> ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS 1 , x0 be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * \mathop { \rm \lbrace t } ) = dom ( \mathop { \rm succ t } ) ; consider x being element such that x in wc iff x in c & x in dom f ; assume ( F * G ) . v = v . x3 & ( F * G ) . x3 = v . x4 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .[ as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) ; n1 - len f + 1 <= len - 1 + 1 - len f + 1 ; Seg of ( q , O1 ) = [ u , v , a , b , b , c , d ] ; set C-2 = ( of `1 ) . ( k + 1 ) , C-2 = ( n + 1 ) + 1 ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 < len Q & Q [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P2 , s2 , k ) , P4 = P2 , P3 = P3 ; let l be variable of k , A , v be Element of V ; reconsider [#] T = union G-24 , G = union G-24 as Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p2 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p9 = <* - c9 , 1 , - c9 *> .= - ( - c ) .= - ( - c ) ; synonym f is real-valued for rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x9 < card X0 + card Y0 & card Y0 + 1 < card X0 + 1 + 1 ; attr X c= B1 means : Def1 : for X st X c= B1 holds X is non empty & X is non empty ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; attr 1 <= len s means : Def1 : for s being Element of NAT holds s . ( 0 , 0 ) = s . ( 0 , 1 ) ; fY. c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } .= { 1_ G } ; pred p '&' q in TAUT ( A ) means : Def1 : q '&' p in TAUT ( A ) ; - ( t `1 / t `2 ) < - ( t `2 / t `1 ) ; ( 9 . 1 ) `1 = U /. 1 .= W . 1 .= W /. 1 .= W /. 1 .= W /. 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M .: \square ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is \cup ( A * ) & f is \cup ( A * ) ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) . IC SCM+FSA = s3 . IC SCM+FSA .= s . IC SCM+FSA ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 - |[ w1 , v1 ]| ; reconsider t = t , s = ( - 1 ) |^ X as Element of ( - 1 ) |^ X ; C \/ P c= [#] ( ( G \ A ) \/ ( G \ A ) ) ; f " V in ( such that V ) /\ D & D in ( the topology of X ) /\ D ; x in [#] ( the carrier of A ) /\ A implies x in [#] ( ( the carrier of F ) | A ) g . x <= h1 . x & h . x <= h1 . x & h1 . x <= h1 . x ; InputVertices S = { xy , y , z , w , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( ( Len F1 ) ^ ( Len F2 ) ) .= len ( ( Len F1 ) ^ ( Len F2 ) ) ; len ( ( the [ the { 0 } , n ) * ( i , j ) ) = n & len ( ( the { 0 } , n ) * ( i , j ) ) = n ; dom ( f + g ) = dom ( f + g ) .= dom ( f + g ) ; ( for n holds seq . n = upper_bound Y1 holds seq . n = upper_bound Y1 ) implies seq is convergent dom ( p1 ^ p2 ) = dom ( f12 ) .= dom ( f12 ) .= dom ( f12 ) ; M . [ 1 / y , y ] = 1 / ( 1 / y ) * v1 .= y ; assume that W is non trivial and W .last() c= the carrier' of G2 and W is not empty ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f^ - b <= b - b - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ NAT ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in LSeg ( x , p ) and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( Int Z ) , ( ( \mathopen { - } 1 } ) ) `1 ) ; set R8 = R / ]. b , +infty .[ , R8 = R / ( b , +infty ) ; IncAddr ( I , k ) = AddTo ( da , db ) .= goto ( ( card I + 1 ) + k ) ; seq . m <= ( ( the Sorts of A1 ) * ( the Sorts of A2 ) ) . k ; a + b = ( a *' ) *' ( b *' ) .= ( a *' ) *' ( b *' ) .= a *' *' ( b *' ) ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U2 \/ U1 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ b ) /\ f ) ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set such that card A = len R and card A = card A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min P ) `2 ) = ( ( N-min P ) `2 ) .= ( ( E-max P ) `2 ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= a1 ` .= ( f . a1 ) ` .= a1 ` ; ( seq ^\ k ) . n in ]. x0 - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 ; the InternalRel of S is \lbrace the carrier of S , the carrier of S , the carrier of S } ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 , $2 ) & phi . ( $1 , $2 ) = phi . ( $1 , $2 ) ; F . a1 = F . ( s2 . a1 ) .= F . a1 .= ( F . a1 ) . a1 ; x `2 = A . ( o . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & f " P1 c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) . i ) c= the topology of T & the topology of T c= the topology of T ; synonym o is \bf means : Def1 : o <> \ast & o <> * ; assume that X = Y + 1 and card X <> card Y and Y <> {} and X <> {} ; the *> ( s ) <= 1 + ( the \hbox { - } 1 } ) * ( the \hbox { - } 1 } ) ; LIN a , a1 , d or b , c // b1 , c1 or a , c // b1 , c1 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 4 = 0 ; EE in SE & not EE in { NE } & EE in { NE } ; set J = ( l , u ) If , K = I " ; set A1 = .: ( a9 , b9 , c , d ) , A2 = d +* ( a9 , b9 , c ) ; set c9 = [ <* cin , cin *> , '&' ] , v2 = [ <* cin , cin *> , '&' ] , A1 = [ <* cin , cin *> , '&' ] , A2 = [ <* cin , cin *> , '&' ] , A2 = [ <* cin , cin *> , '&' ] , A2 = [ <* cin , cin *> , '&' ] ; x * z * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x = g3 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ RightComp f ; U2 is_an_arc_of W-min C , E-max C & L~ ( Cage ( C , n ) ) c= L~ Cage ( C , n ) ; set f-17 = f @ "/\" g @ ; attr S1 is convergent means : Def1 : for n holds S1 . n is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \in \in \mathclose { reflexive transitive , transitive , symmetric , symmetric , symmetric , symmetric , symmetric } for non empty reflexive -symmetric ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( A |^ 0 ) .--> x ) = len l & len ( l |^ 0 ) = len l ; t4 ^ {} is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng t4 ) * * \ { {} } ; t = <* F . t *> ^ ( C . p ^ q-1 ) .= ( C . ( p ^ q-1 ) ) ^ q-1 ; set p-2 = W-min L~ Cage ( C , n ) , p`2 = Cage ( C , n ) , p`2 = Cage ( C , n ) ; ( k - 1 ) + ( i - 1 ) = ( k - 1 ) + ( i - 1 ) ; consider u being Element of L such that u = u `2 and u in D and u in D ; len ( ( width aG ) |-> a ) = width ( ( len G ) |-> a ) .= len ( a * ( len a ) ) .= len a ; F3 . x in dom ( ( G * the_arity_of o ) . x ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) + 1 ; dom ( ( - 1 / 2 ) (#) ( sin * cos ) ) = REAL & dom ( ( - 1 / 2 ) (#) ( sin * cos ) ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b9 = [ <* cin , that p , A1 *> , '&' ] , c = [ <* cin , A1 *> , '&' ] ; Line ( Segm M , P , Q ) . x = L * ( Sgm Q ) . x .= L . x ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & dom ( ( the Sorts of A ) * ( the_arity_of o ) ) = dom ( the Sorts of A ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y being Point of X such that a = y and ||. x-y - y .|| <= r ; set x3 = t3 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( s2 , s2 , 2 ) . SBP , P4 = Comput ( s2 , s2 , 2 ) . SBP ; set p-3 = stop I , pE = stop I ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B , C } \/ { D , E , F , J } let A , B , C , D , E , F , J , M , N , N , F , J , M , N , N , F , J , M , N , N , F , J , M ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 & ( p2 `2 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( ( m + 1 ) + 1 ) + 1 ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = reconsider the TopStruct of L , the TopStruct of L = the TopStruct of L , the TopStruct of L = the TopStruct of L ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H1 and H1 . y = H1 . y ; f9 \ { n } = Free ( All ( v1 , H ) , E ) & f . ( n + 1 ) = f . ( n + 1 ) ; for Y being Subset of X st Y is summable holds Y is iff Y is \overline implies Y is \overline { A } 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } \rm \rm <* s *> ) = len s & len ( the { - 1 } ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & for x st x in Z holds ( exp_R * f ) . x = 1 / ( cos . x ) ^2 rng ( h2 (#) f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) .= the carrier of ( ( TOP-REAL 2 ) | K1 ) ; j + ( len f ) - len f <= len f + ( len - f ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . x0 .= C7 . x .= C8 . x .= C8 . x .= ( C * ( f . x ) ) . x0 ; power ( F_Complex ) . ( z , n ) = 1 .= ( x |^ n ) |^ ( z , n ) .= ( x |^ n ) |^ ( z , n ) ; t at ( C , s ) = f . ( the connectives of S ) . t ) .= s . ( the connectives of S ) . t ; support ( f + g ) c= support f \/ support ( g ) \/ support ( h ) ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 , x2 is Element of [: X1 , X2 :] : x1 in X } is Subset of X1 ; h = ( i , j ) |-- ( id B , id B ) . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 * N c= A ; set X = ( ( Seg ( q , O1 ) ) . ( [ q , O1 ] ) ) , Y = ( q , O1 ) . ( [ q , O1 ] ) ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = lim ( f /* s1 ) the lattice of the lattice of Y = the lattice of the topology of Y & the topology of Y = the topology of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; q2 = len ( ( q1 ^ r1 ) + ( len q1 ) ) + len q1 .= len ( ( q1 ^ r1 ) + len r1 ) + len r1 ; ( 1 / a ) (#) ( sec * f1 ) - ( 1 / a ) (#) ( sec * f1 ) is_differentiable_on Z ; set K1 = upper ( ( lim H ) || A ) , D2 = ( lim H ) || A , D1 = ( lim H ) || A ; assume e in { ( w1 - w2 ) / 2 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d7 = dom F `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = G `2 as finite set ; LSeg ( f /^ j , q ) = LSeg ( f , j ) /\ q .. f .= LSeg ( f , j + q .. f ) ; assume that X in { T . ( N2 , K ) : h . ( N2 , K ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S[. S , n .] = dom S /\ Seg n .= dom ( L . n ) .= dom ( L . n ) ; x in H implies ex g st x = g |^ a & g in H & g in H * ( ( a , 1 ) * n ) = a `2 - ( 0 * n ) .= a `2 - ( 0 * n ) ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 >= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ c ^ @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ dom ( f1 (#) f2 ) ; 1 = ( p * p ) * ( p * q ) .= p * ( 1 / p ) .= p * 1 / p .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 + 1 .= len f + 1 ; dom ( F-11 ) = dom ( F | [: N1 , N2 :] ) .= [: N1 , N2 :] ; dom ( f . t ) * I . t = dom ( f . t ) * g . t ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f = id b and f * f = id a and f * f = id b ; ( ( cos * cos ) | [. 2 * PI , 2 * PI * 0 + ( cos * cos ) | [. 2 , PI * 0 + PI * ( 0 , 1 ) ) .] is increasing ; Index ( p , co ) <= len LS - Gij .. LS + 1 - LS .. LS + 1 - LS .. LS + 1 - LS .. LS + 1 ; let t1 , t2 , t2 , t2 be Element of ( S , S ) . s , S , T ; ( the Frege of ( curry ( curry H ) ) . h ) . h <= "/\" ( ( Frege ( curry G ) ) . h , L ) ; then P [ f . i0 , f . ( i0 + 1 ) ] & F ( f . i0 , f . ( i0 + 1 ) ) < j ; Q [ [ D . ( x , 1 ) , F . ( x , 1 ) ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is for i holds r . i is Element of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= ( the Sorts of A2 ) +* ( the Arity of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F . 0 and rng s = { x } ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Lower_Seq ( C , n ) ) /. len ( Cage ( C , n ) ) = W . len ( Cage ( C , n ) ) ; q `2 <= ( UMP Upper_Arc Upper_Arc C ) `2 & ( UMP Lower_Arc C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= II and A = ]. a , II .[ and a < I ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n >= 1 } , Y = { b |^ n where n is Element of NAT : n >= 1 } ; ( ( x * y * z ) \ z ) \ ( x * y \ z ) = 0. X ; set xy = [ <* xy , y , z *> , f1 ] , yz = [ <* y , z *> , f2 ] , xy = [ <* z , x *> , f3 ] , yz = [ <* y , z *> , f3 ] , yz = [ <* z , x *> , f3 ] , \mathopen [ <* z , x *> , f3 ] , \mathopen [ <* z , x *> li /. len li = li . len ( li ) .= li . len ( li ) .= li . 1 ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( - ( p `2 / |. p .| - sn ) ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( S \/ Y ) ` ) ` ) = ( ( S \/ Y ) ` ) ` .= ( ( S \/ Y ) ` ) ` .= ( S \/ Y ) ` ; ( ( - 1 ) (#) ( - ( 1 - s ) ) ) . k = ( - 1 ) * ( ( - s ) . k ) .= ( - 1 ) * ( - s ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X0 & the carrier of X0 = the carrier of X0 & the carrier of X0 = the carrier of X0 ; ex p4 st p4 = p4 & |. p4 - |[ a , b ]| .| = r & p4 `2 = b ; set ch = chi ( X , A ) , A5 = chi ( X , A ) ; R |^ ( 0 * n ) = Imax ( X , X ) .= R |^ n |^ 0 .= R |^ n ; ( Partial_Sums ( curry ( F1 , n ) ) . n ) . ( n + 1 ) is nonnegative & ( Partial_Sums ( curry ( F1 , n ) ) . n ) . ( n + 1 ) = ( Partial_Sums ( curry ( F1 , n ) ) . ( n + 1 ) ) . ( n + 1 ) ; f2 = C7 . ( ( E7 , len H ) + len H ) .= C7 . ( len H ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p00 , p2 ) \/ LSeg ( p2 , p2 ) /\ LSeg ( p00 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & the connectives of S = ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) support phi , phi = ( l1 , l2 ) . ( l + 1 ) ; synonym p is is invertible for ( being Polynomial of n , L ) , p being Polynomial of n , L ; ( Y1 `2 ) ^2 = - 1 & ( Y1 `2 ) ^2 + ( Y1 `2 ) ^2 <> 0 & ( Y1 `2 ) ^2 + ( Y1 `2 ) ^2 = 1 ; defpred X [ Nat , set , set ] means P [ $1 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) * ( m - n ) = 1. K .= ( I |^ ( m -' n ) ) * ( m - n ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / 2 < 0 ; Ci . d = C7 . d mod C8 . d .= C8 . d mod C8 . d .= C8 . d mod C8 . d .= C8 . d mod C8 . d ; attr X1 is dense means : Def1 : X1 is dense dense & X2 is dense dense implies X1 /\ X2 is dense dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = ( $1 * $2 ) * ( $1 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y \ 0. X .= 0. X ; for X being non empty set for Y being Subset-Family of X holds the topology of Y is Basis of <* X , \subseteq \rangle synonym A , B are_separated for Cl ( A \/ B ) , Cl ( A \/ B ) ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & x < 1 } ; ( Sgm [: [: Seg m , Seg m :] , ( Sgm [: Seg m , Seg m :] ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . y = ( h . y ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ s = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = succ IC s .= ( 0 + 9 ) .= 5 + 9 .= ( 0 + 9 ) ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) .= t . intpos ( e + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) & LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x ; integral ( integral ( f , C ) , x ) = f . ( upper_bound C ) - ( lower_bound C ) ; for F , G being one-to-one st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) - R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r & q <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y in Y & x in X & x in Y holds y `1 <= x `1 + y `1 ; func |. p .| -> variable means : Def1 : for i being Nat holds it . i = min ( NBI . i , p . i ) ; consider t being Element of S such that x , y '||' z , t and x , z '||' y , t ; dom x1 = Seg len x1 & len x1 = len y1 & len x1 = len x1 & len y1 = len y1 & len y1 = len y2 & len y1 = len y2 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X .|| /* s1 = ||. f .|| /* s1 .= ||. f .|| /* s1 .= ( ||. f .|| /* s1 ) /* s1 ; ( the InternalRel of A ) ~ /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume i in dom p & for j being Nat st j in dom q holds P [ i , j ] & for i being Nat st i in dom q & i + 1 in dom q holds P [ i , j ] ; reconsider h = f | [: X , Y :] , g = ( f | [: X , Y :] ) as Function of [: X , Y :] , Z ; u1 in the carrier of W1 & u2 in the carrier of W2 implies u1 + u2 in the carrier of W1 & v1 + u1 in the carrier of W2 & v1 + u1 in the carrier of W1 & v2 + u2 in the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( - x ) = - x + - y .= - x + y .= - x + y .= - y ; given a being Point of GX such that for x being Point of GX holds a , x + a / 2 / 2 / 2 / 2 , a / 2 / 2 / 2 / 2 / 2 / 2 / 2 ; f\lbrace f , g } = [ [ dom @ f2 , cod @ g2 ] , [ cod @ g2 , cod @ g2 ] , [ cod f2 , cod f2 ] ] ; for k , n being Nat st k <> 0 & k < n & n < k holds k , n are_relative_prime & k , n are_relative_prime implies k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( A ` ) |^ d ; consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; LS . k = LS . ( F . k ) & F . k in dom LS & F . ( k + 1 ) in dom LS ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( - n ) ; attr B is thesis means : Def1 : for S being non empty set holds holds ( for B being set holds B in @ ( B , S9 ) ) `1 = ( B `1 ) ^2 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D } ; |( \square , q29 - q29 )| * |( \square , q29 - q )| >= |( \square , - q )| * |( 1 , q )| ; ( - f ) . ( sup A ) = ( ( - f ) | A ) . ( sup A ) .= - ( f | A ) . ( sup A ) ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . ( ( proj ( i , n ) ) . ( LM ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( - 1 ) (#) reproj ( i , x ) ) . i & f2 * reproj ( i , x ) . x = ( - 1 ) (#) reproj ( i , x ) . i ; ( for x st x in Z holds tan . x <> 0 ) & for x st x in Z holds tan . x = 1 / ( cos . x ) ^2 ) implies tan * tan is_differentiable_on Z & for x st x in Z holds ( tan * tan ) . x = 1 / ( cos . x ) ^2 * ( cos . x ) ^2 ex t being SortSymbol of S st t = s & h1 . t = h2 . ( t . x ) & t . x = h2 . ( t . x ) ; defpred C [ Nat ] means P8 . $1 is non empty & A8 : A is non empty & A is non empty & A is non empty ; consider y being element such that y in dom ( p9 . i ) and q9 . i = p9 . y and y in dom ( p9 . i ) and x = ( p9 . i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Basis of A . ( index A ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for d being Element of D holds d . ( id d ) = id d be mid ( f , n , p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * G * ( i + 1 , j + 1 ) + G * ( i + 1 , j + 1 ) } ; f `2 - p = ( f | ( n , L ) ) *' - ( f | ( n , L ) ) .= ( f - ( - ( - ( - ( - ( f . m ) ) ) ) ) ) ) ) *' - ( f - ( - ( f . n ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 , r2 ]| , |[ r2 , r2 ]| ) in f1 .: W1 & f2 .: W2 c= W1 .: W2 /\ W3 ; eval ( a | ( n , L ) , x ) = ( a | ( n , L ) ) . ( b . ( n , L ) ) .= a . ( b . ( n , L ) ) .= a . ( b . ( n , L ) ) ; z = DigA ( tz , x9 ) .= DigA ( tz , x9 ) .= DigA ( tz , x9 ) .= DigA ( tz , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= F } , G = { Intersect S where S is Subset-Family of X : S c= G } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S19 = S ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x2 = f . x1 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ; 0. ( V ) is Linear_Combination of A & Sum ( L ) = 0. V implies Sum ( L ) = 0. V & Sum ( L ) = 0. V let k1 , k2 , k2 , k1 , k2 , k2 , : 1 in dom ( the InstructionsF of SCM+FSA ) & k2 in dom ( the InstructionsF of SCM+FSA ) ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and j = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . ( x1 ) & H1 . ( x2 ) c= H1 . ( x2 ) ; consider a being Real such that p = *> * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c & c <= d and [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; Aid in { ( S . i ) `1 where i is Element of NAT : i in dom S & i < len S } ; ( T * b1 ) . y = L * b2 /. y .= ( F /. b1 ) * ( G /. b2 ) .= ( F /. b1 ) * ( G /. b2 ) ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then p => q in S & not x in the carrier of p & not p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is extended real means : Def1 : for x being set st x in rng f holds x is R_eal & f . x is R_eal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; l . ( l , 3 ) = ( g . ( k , 3 ) + k ) + ( k , 3 ) - ( k , 3 ) .= ( g . ( k , 3 ) + k ) - ( k , 3 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA ; assume for n be Nat holds ||. seq .|| . n <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin ( e ) = sin ( r ) * cos ( - ( cos ( r ) ) * sin ( - ( cos ( r ) ) ) ) .= 0 ; set q = |[ g1 . t0 `1 , g2 . t0 `2 ]| , g2 = |[ g1 . t0 `1 , g2 . t0 `2 ]| , g2 = |[ g1 . I `1 , g2 . I `2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G . n in <= <= <= <= implies G . n ; consider G such that F = G and ex G1 , G2 st G1 in SM & G2 in SM & G1 = [: G1 , G2 :] & G2 = [: G1 , G2 :] ; the root of [ x , s ] in ( the Sorts of ( C . s ) ) . ( ( the Sorts of ( C . s ) ) . ( ( the Sorts of ( C . s ) ) . ( ( the Arity of S ) . ( ( the Arity of S ) . o ) ) ) ; Z c= dom ( ( exp_R * f ) + ( ( exp_R * f ) + ( exp_R * f ) ) ) ; for k being Element of NAT holds ( ( for n being Nat holds r0 . n = ( upper_volume ( f , S-3 ) ) . k ) . k ) implies r = ( lim ( Im f ) ) ) . k assume that - 1 < n and n > 0 and ( q `2 / |. q .| - cn ) < 0 and q `2 / |. q .| < 0 ; assume that f is continuous and a < b and c < d and f . a = g and f . b = d and f . c = g . d ; consider r being Element of NAT such that s-> Element of NAT , q being Element of NAT st r = Comput ( P1 , s1 , r ) & r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( 1 + 1 ) , f /. ( len f ) , f /. ( 1 + 1 ) , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } = x and inf { x , y } = y ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A . ( i2 + 1 ) ) & f . ( i1 + 1 ) in ( proj ( F , i2 ) ) " ( A . ( i1 + 1 ) ) ; rng ( ( Flow M ) ~ ) c= the carrier' of M & rng ( ( Flow M ) ~ ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 ; consider t being VECTOR of product G such that mt = ||. Dt .|| and ||. t .|| <= 1 and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p ^ <* 1 *> in dom p and p ^ <* 1 *> in dom p and p ^ <* 1 *> in dom p ; consider a being Element of the Points of X\bf , A being Element of the lines of X\bf such that a on A and a on A and a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 * ( ( - x ) |^ ( k + 1 ) ) " .= 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i in D & p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p11 ) , LSeg ( p00 , p2 ) } .= LSeg ( p00 , p2 ) /\ LSeg ( p00 , p2 ) ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( F . n ) . ( n - 1 ) .| ; for r , s1 , s2 , r st r in [. s1 , s2 .] & s1 <= r & r <= s2 holds r <= s & s <= r & s <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z & G c= z1 & z in z2 & G c= z } ; let g be ) :] \rm :] of INT , X , Z , b be Element of INT , X be set , b be Element of INT , f be Function of [: X , X :] , Z ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n ] and for n holds P [ n , q1 . n ] ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B9 = B /\ O , Z = O /\ Z , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } , Z = { Z } consider j being Element of NAT such that x = the the S of n and j + 1 = n and 1 <= j and j + 1 <= n and n + 1 <= len f ; consider x such that z = x and card x in card ( x . O2 ) and x in L1 . O2 and x in L2 . O2 ; ( C * _ 4 ( k , n2 ) ) . 0 = C . ( ( of of of T4 ( k , n2 ) ) . 0 ) .= ( C * _ 4 ( k , n2 ) ) . 0 ; dom ( X --> rng f ) = X & dom ( ( X --> f ) . x ) = dom ( X --> f ) ; ( ( ex N being Nat st N <= b & N <= ( L~ SpStSeq C ) ) `2 & ( for i st i <= b holds N <= ( ( L~ SpStSeq C ) * ( i , j ) ) `2 ) `2 ) implies N >= ( ( L~ SpStSeq C ) * ( i , j ) ) `2 ) synonym x , y means : Def1 : x = y or ex l being for k being Nat st { x , y } c= l holds x in { x , y } ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L st a = x & b = y holds x << y & x << y holds a << b ; ( 1 / 2 * ( ( ( #Z 2 ) * ( ( AffineMap ( n , 0 ) ) ) ) ) ) * ( ( AffineMap ( n , 0 ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A2 ) . $1 = A2 . $1 & ( the partial of A1 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( 0 + 1 ) .= ( 0 + 1 ) .= ( 0 + 1 ) .= ( 0 + 1 ) ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * f . g2 ; ( M * F-4 ) . n = M . ( ( canFS ( Omega ( Omega ) ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) ; the carrier of ( L1 + L2 ) c= ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , c , d , x , y , c , y , z be set means : from a , b , c , d , x , y ; ( the partial of s ) . n <= ( the partial of s ) . n * s . n & ( the partial of s ) . ( n + 1 ) * s . n = ( the partial of s ) . n * s . n ; attr - 1 <= r & r <= 1 & - 1 < r & r < 1 implies ( - 1 ) * ( - 1 ) * ( - 1 ) = - r * ( - 1 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - y2 & |[ y1 , y2 , x3 ]| . 2 = y2 - y1 ; attr F is nonnegative means : Def1 : for m being Nat holds ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ) & ( for n being Nat holds F . n is nonnegative ) ; len ( ( G . z ) + ( G . y ) ) = len ( ( G . ( xx ) ) + ( G . ( y ) ) ) .= len ( G . ( y ) ) + G . ( y ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W3 /\ W3 ; given F be FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum ( F ) = k and Sum ( F ) = k ; 0 = b1 * D1 & 1 = ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> being being being being being being being being non empty \frac for non empty 6 for \hbox { $ ( \mathop { \rm o } ) , ( \mathop { \rm o } ) ) is Boolean "/\" ( BB , L ) = Top ( B ) .= Top ( S ) .= "/\" ( ( the carrier of S ) \ { {} } , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( ( f `| X ) `| A ) holds ( ( f `| X ) `| A ) . x >= r2 & ( ( f `| X ) `| A ) . x >= r2 2 * ( r1 - c ) * |[ a , c ]| - ( 2 * ( r1 - c ) ) * |[ b , c ]| = 0. TOP-REAL 2 ; reconsider p = P * ( 1 , 1 ) , q = a " * ( ( - 1 ) |^ ( n + 1 ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in downarrow s and x2 in downarrow t and x = [ x1 , x2 ] and [ x2 , y2 ] in t and [ x2 , y2 ] in t ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M1 ) ) . ( n + 1 ) & ( upper_volume ( g , M2 ) ) . n = ( upper_volume ( g , M1 ) ) . n ; consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H1 and H2 is Subgroup of H2 and H1 is Subgroup of H2 ; for S , T being non empty that T is complete & T is complete holds d is directed-sups-preserving implies d is monotone & d is monotone [ a + i , b + i ] in ( the carrier of F_Complex ) \/ ( the carrier of V ) & [ a + i , b + i ] in the carrier of ( COMPLEX ) ; reconsider mm = max ( len F1 , len ( p . n ) * ( <* x *> ^ <* x *> ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , 1 ) , ( GoB h ) * ( len GoB h , 1 ) ) & ( GoB h ) * ( len GoB h , 1 ) `2 <= ( GoB h ) * ( len GoB h , 1 ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* ( f1 /* s ) .= ( f2 * f1 ) /* s ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 is linearly-independent & A2 is linearly-independent & ( for x being Element of V holds x in A1 & x in A2 implies x in A1 & x in A2 & x in A1 & x in A2 ; func A -carrier of C -> set means : Def1 : union it = union { A . s where s is Element of R : s in C & s in A } ; dom ( Line ( v , i + 1 ) ) ^ ( ( Line ( p , m ) ) * ( Line ( p , 1 ) ) ) = dom ( F ^ G ) ; cluster [ x , 4 ] -> [ x , 4 ] , [ x , 4 ] , [ x , 5 ] ] , [ x , 6 ] , [ x , 5 ] ] -> [ x , 6 ] , [ x , 5 ] ] ; E , All ( x2 , All ( x2 , x2 ) ) |= All ( x2 , All ( x2 , x2 ) ) => ( ( x1 '&' x2 ) '&' ( x2 '&' x3 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . ( m ) - ( h . m ) + ( h . ( m + 1 ) ) - ( h . m ) ; cell ( G , XG -' 1 , ( t + 1 ) + ( t + 1 ) ) \ ( ( t + 1 ) + ( t + 1 ) ) meets ( UBD L~ f ) ; IC Comput ( P2 , s2 , 2 ) = IC Comput ( P2 , s2 , 1 ) .= ( card I + 1 ) .= ( card I + 1 ) .= ( card I + 1 ) .= ( card I + 1 ) .= card I + 1 ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y = a . ( k + 1 ) and x0 = a . ( k + 1 ) and x0 = a . ( k + 1 ) ; dom ( ( r1 (#) chi ( A , C ) ) | A ) = dom ( chi ( A , C ) ) /\ A .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( r1 (#) ( A | A ) ) ; di2 . [ y , z ] = ( ( - 1 ) * ( y - z ) ) * ( ( - 1 ) * ( y - z ) ) .= ( - 1 ) * ( y - z ) ; attr for i being Nat holds C . i = A . i /\ B . i & C . i c= C . i /\ C . i ; assume that x0 in dom f and f is continuous and for x st x in dom f holds ||. f /. x - f /. x0 .|| < r and f /. x0 = r * ( f /. x0 ) + r * ( f /. x0 ) ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q & A meets Q & A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| + |. y2 - y1 .| func Sum <*> a -> Ordinal of a means : Def1 : a in it & for b being Ordinal st a in it holds it . b = b & for a being Ordinal of a st a in it holds it . a = b ; [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of B ) & [ a1 , a2 , a3 ] in the carrier of A ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the InternalRel of S2 & [ b , a ] in the InternalRel of S2 ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - y .|| < ( e / ||. x - y .|| ) * ||. x - y .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F . Y c= Z & Z in x } holds z in Z ; sup compactbelow [ s , t ] = [ sup ( [: X , compactbelow t :] ) , sup ( compactbelow s ) ] .= sup ( compactbelow s ) .= sup ( compactbelow t ) ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ii and [ f . i , f . j ] in Ii and [ f . i , f . j ] in Ii ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p = q & p ^ p = q ^ p & p ^ q = q ^ p consider e19 being Element of the affine of X such that c9 , a9 // a9 , e and a9 , c9 // a9 , e and a9 , b9 // c9 , e and a9 , c9 // a9 , e and a , b // c , d and a , c // c , d and a , b // c , d ; set U2 = I \! \mathop { \vert E .| , E = { E } , F = { E } , G = { E } , C = { F } , D = { E } , E = { F } , N = { F } , N = { F } , N = { F } , C = { G } , N = { G } , C = { G } , D = { F } , E = { F } , C = { G } , D = { F } , E = { G } , C = { G } , E = { G } , E = { F } , C |. q2 .| ^2 = ( ( q2 `1 ) / |. q2 .| ) ^2 + ( ( q2 `2 ) / |. q2 .| ) ^2 .= |. q2 .| ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of MSAlg U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of MSAlg U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of MSAlg U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ( ||. h .|| ) | X ) .= dom ( ( ||. h .|| ) | X ) .= dom ( ( ||. h .|| ) | X ) .= dom ( ( ||. h .|| ) | X ) .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) ; for N1 , N2 being Element of G1 holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) = N2 & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N2 ( mod ( u , m ) ) + mod ( v , m ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i .= ( mod ( v , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - cn ) < - ( q `1 / |. q .| - cn ) or - ( q `1 / |. q .| - cn ) >= - ( q `1 / |. q .| - cn ) ; attr r1 = f9 & r2 = f9 & ( for x st x in dom f holds f . x = ( f . x ) * ( f . x ) ) & ( for x st x in dom f holds f . x = ( f . x ) * ( f . x ) ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( vseq . m ) . x & x9 . m = ( vseq . m ) . x + ( vseq . m ) . y ; attr a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( c , a , b ) = PI ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , r ] and r < s and s < p2 and p2 < r ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 ^ q1 = p1 ^ q1 and p1 ^ q1 = q1 ^ q1 and q1 ^ q2 = q1 ^ q2 and p1 ^ q1 = q1 ^ q2 ; ( of A , r1 , r2 , s1 , s2 , s1 , s2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , ( ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ s1 ) ) & ( proj2 .: ( A /\ s1 ) ) is non empty or proj2 .: ( A /\ s1 ) is non empty ) & ( proj2 .: ( A /\ s1 ) is non empty ) & ( proj2 .: ( A /\ s1 ) ) is non empty ) ; s , k1 |= H1 '&' H2 iff s |= ( H1 , k2 ) iff s |= ( H1 , k2 ) |= ( H1 , k1 ) & s |= ( H1 , k2 ) |= ( H1 , k2 ) ) ; len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= len ( b1 ) + 1 .= len ( b1 ) + 1 .= len ( b1 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= y & z >= y holds z >= x holds z >= y ; LSeg ( UMP D , |[ ( W-bound D ) + ( E-bound D ) / 2 ) ) /\ D = { ( UMP D ) / 2 + ( ( E-bound D ) / 2 ) / 2 } .= { ( UMP D ) / 2 + ( ( UMP D ) / 2 ) / 2 } ; lim ( ( f `| N ) / g `| N ) = lim ( ( f `| N ) / g `| N ) .= ( ( f `| N ) / g `| N ) / g `| N .= ( ( f `| N ) / g `| N ) / g `| N ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /* seq ) . k .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & x in P & a in P & b in P holds a = b Z c= dom ( ( - 1 ) (#) f ) /\ ( dom ( ( - 1 ) (#) f ) \ ( ( - 1 ) (#) f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j & i = 1 + j & j = len ( l ^ <* x *> ) + 1 ; for u , v being VECTOR of V for r being Real st 0 < r & u < 1 & r in N holds r * u + ( 1-r * v ) in N A , Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A ` \ A ` , Cl Int Cl A ` \ A ` , Cl Int Cl A ` \ A ` \ A ` , A ` \ A ` \ A ` \ A ` \ A ` \ A ` , A ` \ A ` \ A ` \ A ` , A ` \ A ` \ A ` \ A ` , A ` \ A ` \ A ` , A ` \ A ` \ A ` \ A ` \ A ` \ A ` \ A - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the support of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty Subset of S1 , D being non empty Subset of S2 , x being Element of S1 , y being Element of S2 holds x in D implies ( x "/\" y ) . ( x , y ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or x = y & x = z or x = y & y = z or x = z or x = y & y = z or x = z or y = z or y = z or y = z & z = x ; E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng Cage ( C , n ) ; for T , T being tree , p , q being Element of dom T st p H & q = q holds ( T tree ( p , T ) ) . q = T . q & ( T tree ( p , T ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) implies f /. k = G * ( i2 + 1 , j2 ) cluster that k divides ( k gcd n ) and k divides ( k gcd n ) and ( k divides ( k gcd n ) ) and ( k divides ( k gcd n ) and ( k divides ( k gcd n ) ) and ( k divides ( k gcd n ) ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X1 & F " * F = the carrier of X2 ; consider C being finite Subset of V such that C c= A and card C = n and the / ( n + 1 ) = 0. V and C = Lin ( B9 \/ C ) and C = Lin ( B9 \/ C ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V or X c= Y ; set X = { F ( v1 ) where v1 is Element of B ( ) ) : P [ v1 ] & P [ v2 ] } , Y = { F ( v2 ) where v2 is Element of B ( ) : P [ v2 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 , p4 ) .= angle ( p2 , p3 , p4 ) ; - sqrt ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) .= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 ; attr f is partial differentiable of REAL , u0 means : Def1 : for u holds SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . u = ( proj ( 2 , 3 ) ) . ( u + 1 ) + SVF1 ( 2 , 3 ) . ( u + 1 ) ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( len G , 1 ) `1 & G * ( len G , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= ( GoB f ) * ( t , width G ) `2 and G * ( t , width G ) `2 >= ( GoB f ) * ( t , width G ) `2 ; attr i in dom G means : Def1 : r (#) ( f (#) reproj ( G , i ) ) = r (#) reproj ( G , i ) & r (#) reproj ( G , i ) = r (#) reproj ( G , i ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = <* c1 , c2 *> and c1 = <* c1 , c2 *> and c2 = <* c1 , c2 *> and c1 = <* c1 , c2 *> and c2 = <* c2 , c1 *> ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) = the carrier of X . k2 .= C4 . k2 .= C4 . k2 .= C4 . k2 .= C4 . k2 .= C4 . k2 .= C4 . k2 .= C4 . k2 .= C4 . k2 ; attr M1 = len M2 means : Def1 : width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & M1 = M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & g2 < r } c= N2 & g2 in N2 ; assume x < ( - b + sqrt ( integral ( a , b , c ) ) ) / 2 or x > - b - sqrt ( integral ( a , b , c ) ) / 2 ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i ; for i , j st [ i , j ] in Indices M3 holds ( M3 + M1 ) * ( i , j ) < ( M3 + M2 ) * ( i , j ) + ( M3 + M2 ) * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i <> j holds i divides f /. i & i <> j implies i divides len f & j divides len f assume F = { [ a , b ] where a , b is Element of X : for c being set st c in B\bf holds a c= c & a c= c } ; b2 * q2 + ( b3 * q3 ) + - ( b3 * q2 ) + ( - ( a * q2 ) + ( a * q2 ) + ( a * q2 ) ) = 0. TOP-REAL n + ( a * q2 ) .= 0. TOP-REAL n + ( a * q2 ) .= 0. TOP-REAL n + ( a * q2 ) + ( a * q2 ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & ex C being Subset of T st C in F & C in F & A /\ C = Cl ( Cl ( Cl ( Cl F ) ) ) & C is open & A /\ C = Cl ( Cl ( Cl ( Cl ( Cl F ) ) ) ) ; attr IT is summable means : Def1 : for s being Element of IT holds seq is summable & ( for n being Nat holds seq . n = ( seq . n ) + ( seq . n ) ) & ( for n holds seq . n = ( seq . n ) + ( seq . n ) ) implies seq is summable & lim seq = ( seq . n ) + ( seq . n ) dom ( ( cn -FanMorphN ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; [ X \to Z ] is full non empty full SubRelStr of ( [#] Z ) |^ the carrier of Z & [ X \to Y ] is full SubRelStr of ( [#] Z ) |^ the carrier of Y ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : Def1 : for p , m2 being set st p in P & ( for p being set st p in P holds ( p in P implies p , ( p , m1 ) in P ) & ( for q being set st q in P holds q , m1 |= p ) holds p , m2 is_p\mathopen ( p , m2 ) , p , m1 ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym the multMagma of Let R -> reflexive non empty multMagma means : Let : for a being Element of the carrier of R , x being Element of the carrier of R holds x is Element of the carrier of R & x is ( the multF of R ) . a , ( the multF of R ) . b ; continuous ( a , b , c ) + sequence ( c , d ) = b + the carrier of \HM { c , d } .= b + d .= the carrier of the carrier of thesis ; cluster + _ -> $ Z for Element of INT , i1 , i2 , j1 , j2 being Element of INT holds ( i1 + i2 ) + ( i2 + j2 ) = ( i1 + i2 ) + ( i1 + j2 ) + ( i2 + j2 ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 ) ) = ( ( - r2 ) * p1 + ( s2 * p2 ) ) * p2 + ( ( - r2 ) * p2 ) * p1 + ( ( - r2 ) * p1 ) * p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty Subset of S holds D in V iff for V being open Subset of S st V in V holds V is open & for V being open Subset of S st V in V holds V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open ; assume that 1 <= k and k <= len w + 1 and T-7 . ( ( len q11 ) - len ( ( q , w ) + 1 ) ) = ( T. ( len ( q , w ) - len ( ( q , w ) - len ( q , w ) ) + 1 ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ ( n + 1 ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ) + ( b |^ ( n + 1 ) ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , H ) ) ) & M , v2 |= All ( x. 0 , All ( x. 0 , H ) ) implies M , v2 |= All ( x. 0 , H ) assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 and for x0 st x0 in l holds f . x0 - f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G2 st e in W holds not e in W implies e is Walk of G2 & e is Vertex of G1 & e is Vertex of G2 not c9 is not empty iff ( ex y1 , y2 st y1 is not empty & not ( ex y st y is not empty & y is not empty & not ( y is not empty & not y is not empty ) & not ( y is not empty & not y is not empty ) & not y is not empty ) & not y is not empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & 1 <= i1 & i1 + 1 <= len GoB f & i1 + 1 <= len GoB f & 1 <= i2 & i2 + 1 <= width GoB f & f /. ( k + 1 ) = ( GoB f ) * ( i1 + 1 , j2 ) ; for G1 , G2 , G2 , G3 being strict Subgroup of O st G1 is_stable & G2 is_stable & G1 is_stable & G2 is_stable holds G1 * G2 is stable Subgroup of G1 * the carrier of G2 * the carrier of G2 * the carrier of G2 * the carrier of G2 * the carrier of G2 = the carrier of G1 * the carrier of G2 * the carrier of G1 UsedIntLoc ( int ) = { intloc 0 , intloc 1 , intloc 2 , intloc 2 , intloc 3 , intloc 4 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , 1 , 1 , - 1 , 1 , - 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , - 1 , 1 , - 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , 1 , - 1 , 1 , 1 , - 1 , 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ p ^ f1 ] holds Q [ ( p ^ f2 ) ^ ( p ^ f1 ) ] & Q [ p ^ f2 ] & Q [ p ^ f1 ] implies Q [ p ^ f2 ] ( p `1 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ) ^2 = ( q `1 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 .= ( q `1 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 ; for x1 , x2 , x3 being Element of REAL n holds |( x1 - x2 , x1 - x3 )| = |( x1 , x1 - x3 )| + |( x2 , x1 - x3 )| + |( x1 , x2 - x3 )| + |( x2 , x1 - x3 )| + |( x2 , x1 - x3 )| + |( x1 , x2 - x3 )| , x1 - x3 )| + |( x2 , x1 - x3 )| for x st x in dom ( ( - ( x | A ) ) | A ) holds ( ( - ( x | A ) ) ) | A . ( - x ) = - ( ( - ( x | A ) ) | A ) . x ) for T being non empty TopSpace , P being Subset-Family of T st P c= the topology of T for x being Point of T st x c= P holds ex B being Basis of T st B c= P & x in B & B c= P ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= ( 'not' ( a . x ) 'or' c . x ) 'or' c . x .= TRUE 'or' ( 'not' ( a . x ) 'or' c . x ) .= TRUE ; for e being set st e in A ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open implies Y1 is open ; for i be set st i in the carrier of S for f being Function of Sconsider S . i , S1 . i st f = H . i holds F . i = f | ( [: S , S . i :] ) . i & for f being Function of [: S , S . i :] , S . i holds f . i = f | ( [: S , S :] . i ) ; for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . w card D = card D1 + card D2 - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( 0 ) ) ) . 0 .= ( ( 0 .--> ( s . 0 ) ) +* ( 1 .--> ( s . 0 ) ) ) . 0 .= ( ( 0 .--> ( s . 0 ) ) +* ( 1 .--> ( s . 0 ) ) ) . 0 .= ( ( 0 .--> ( s . 0 ) ) +* ( 1 .--> ( s . 0 ) ) ) . 0 .= ( ( 0 .--> 1 .--> 1 ) . 0 ) . 0 ) .= ( 0 .--> 1 ) . 0 ) . 0 .= ( 0 .--> 1 ) . 0 .= ( 0 .--> 1 ) . 0 ) . 0 .= ( 0 .--> 1 ) . 0 .= ( 0 .--> 1 ) len f /. ( ( i1 -' 1 ) + 1 ) - 1 = len f - ( i1 -' 1 ) + 1 - 1 .= len f - ( i1 -' 1 ) + 1 .= len f - ( i1 -' 1 ) + 1 - 1 .= len f - 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & a <= b & b < c holds a + b < a + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st i in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= len f + 1 & Index ( p , f ) + 1 <= len f + 1 lim ( curry ( P-19 , k + 1 ) # x ) = lim ( ( curry ' ( F-19 , k + 1 ) ) # x ) + lim ( ( curry ' ( F-19 , k + 1 ) ) # x ) ; z2 = g /. ( ( i -' n2 + 1 ) + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= ( g | ( i -' n2 + 1 ) ) . ( i -' n2 + 1 ) .= ( g | ( i -' n2 + 1 ) ) . ( i + n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A , R is Subset of A ( ) , Y is Subset of A ( ) st R = { R where R is Subset of A ( ) : R in F } holds R is open & Y is open } holds ( ( Intersect F ) " Y ) " Y = Intersect G CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s2 , m1 + m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s2 , m1 ) ) .= halt SCMPDS .= halt SCMPDS ; assume that not a on M and b on N and c on N and not c on M and not b on N and not c on M and not b on N and not b on M and not b on N and not b on M and not b on N and not b on M and not b on N and not b on M and not b on N and not b on N and not b on M and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on N and not b on M and not b on N and not b on M and not b on N and not b on N and not b on N and not b on N and not b on N assume that T is \hbox { - } 4 and ex F being Subset-Family of T st F is closed & for n being Nat holds F is closed & for F being Subset-Family of T st F is closed & F is closed holds F is finite-ind & for n being Nat holds F . n is finite-ind & F . n is finite-ind & F . n is finite-ind ; for g1 , g2 st g1 in ]. r - r , r .[ & g2 in ]. r - r , r + r .[ holds |. ( f . g1 ) - ( f . g2 ) .| <= ( g1 - ( f . g2 ) ) / ( r - ( f . g2 ) ) ^2 ) ( - ( - ( - ( - ( - ( z ) ) ) ) ) ) * ( - ( - ( z ) ) ) = - ( - ( - ( z ) ) ) * ( - ( - ( z ) ) ) * ( - ( - ( z ) ) ) ) .= - ( - ( z ) ) * ( - ( z ) ) * ( - ( z ) ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( b |^ ( n + 1 ) ) |^ ( n + 1 ) .= ( b |^ ( n + 1 ) ) |^ ( n + 1 ) ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F . i * ( f . i ) & for i be Nat st i in dom it holds it . i = F . i * ( f . i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 } \/ { x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 } .= { x1 , x2 , x3 , x4 , x5 , x5 } \/ { x5 , x5 , x5 } ; for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & o . ( n + 1 ) in InnerVertices S & o . ( n + 1 ) = InnerVertices S ( x , n ) & o . ( n + 1 ) = x . ( n + 1 ) & o . ( n + 1 ) = x . ( n + 1 ) ; ex S1 being Element of CQC-WFF ( Al ( ) ) st SubP ( P , l ) = S1 & ( for k being Nat holds ( S . k = k ) & ( S . k = l ) & ( S . k = l ) & ( S . k = l implies S . k = k ) ) & ( S . k = l ) & ( S . k = l implies S . k = {} ) ; consider P being FinSequence of GL2 such that p7 : P = product P and for i being Element of dom t st i in dom t ex k being Element of NAT st P . i = t . i & t . i = k & t . i = k & t . i = k & t . i = k & t . i = k ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T2 being Basis of T2 st the topology of T1 = the topology of T2 & the topology of T1 = the topology of T2 & the topology of T1 = the topology of T2 holds T1 is Basis of T2 & T2 is the topology of T1 & T2 is the topology of T2 assume that f is_partial differentiable on u0 , 2 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) . 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) . 1 ; defpred P [ Nat ] means for F , G being FinSequence of bool ( Seg $1 ) st len F = $1 & G = F * s holds for s being Permutation of Seg $1 st len s = $1 holds Sum ( F ) = ( F * s ) . ( len G ) & Sum ( G ) = ( F * s ) . ( len G ) ; ex j st 1 <= j & j < width GoB f & ( ( GoB f ) * ( 1 , j ) ) `2 < s & s < ( GoB f ) * ( 1 , j + 1 ) `2 & s < ( GoB f ) * ( 1 , j + 1 ) `2 & s < ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex F-23 being Subset-Family of T st $1 = F-23 & $2 is open & union F-23 is open & union FY. is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open & union Fa9 is open for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P & LE p4 , p , P holds LE p4 , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & p , p1 , P & p , p1 , P & p , p1 , P & p , p1 , P & p , p1 , P implies p , p1 , P implies p1 , p1 , P or p1 , p1 , P or p1 , p1 , P or p1 , p1 , P or p1 , p1 , P & p1 , p2 , p2 , P & p1 , p2 , P & p1 , p2 , P & p1 , p2 , P or p1 f in for E st f in for g st g <> f . y holds x = g . y holds for x st x in E holds g . x = All ( x , H ) . ( x , y ) ) & for y holds f . y = All ( y , H ) . ( x , y ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( - 1 ) * ( ( sn - sn ) / ( 1 + sn ) ) ) >= 0 & ( - ( sn - sn ) ) / ( 1 + sn ) <= 0 & ( - ( sn - sn ) ) / ( 1 + sn ) ) / ( 1 + sn ) <= 1 ; assume for d7 being Element of NAT st d7 <= 8 holds s1 . ( d7 ) = s2 . ( ( d7 ) . ( d7 ) ) & s2 . ( ( d7 ) . ( d7 ) ) = s2 . ( ( d7 ) . ( len ( ( t . 7 ) ) + 1 ) ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st e = Ball ( x , r ) /\ Sphere ( y , r ) and e <> s and Ball ( y , r ) = \mathop { \rm Ball } ( x , r ) /\ Sphere ( y , r ) ; given r such that 0 < r and for s st 0 < s ex x1 , x2 being Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s & f /. x1 - f /. x2 .|| < r & f /. x2 - f /. x2 < r ; ( p | x ) | ( ( x | x ) | ( x | x ) ) = ( ( ( x | x ) | ( x | x ) ) | ( x | x ) ) | ( x | x ) ; assume that x in dom sec and x + h in dom sec and ( for x st x in dom sec holds ( ( tan (#) sec ) `| Z ) . x = ( 4 * sin ( x + h ) ) * sin ( x - h ) ) / ( sin ( x - h ) ) ^2 and cos ( x - h ) = ( 4 * sin ( x - h ) ) ^2 and cos ( x - h ) = ( 4 * cos ( x - h ) ) ^2 ; assume that i in dom A and len A > 1 and len B > 1 and len A = len B and width A = len A and width A = width B and A * ( i , j ) = A * ( i , j ) and A * ( i , j ) = A * ( i , j ) and A * ( i , j ) = A * ( i , j ) ; for i being non zero Element of NAT st i in Seg n holds i divides n or i = n or i = n or i = n or i = n or i = n & i <> n & j <> n & j <> n implies ( i divides n implies i = 1. ( F_Complex , n ) ) & ( i divides n implies i divides n implies i = 1. ( F_Complex , n ) ) ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( b1 'or' b2 ) '&' ( c1 '&' c2 ) ) ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( b1 'or' b2 ) ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( b1 'or' c2 ) ) '&' 'not' ( b1 'or' b2 ) ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( b1 'or' b2 ) '&' 'not' ( b1 'or' b2 ) ) ) ) ) ) Y Y Y Y Y Y Y Y Y Y Y Y Y ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( ( b1 'or' b2 ) '&' 'not' ( b1 'or' b2 ) '&' 'not' ( b2 ) '&' 'not' ( b2 ) ) '&' 'not' ( b2 'or' b2 ) '&' 'not' ( b2 ) '&' 'not' ( b2 'or' c2 ) '&' 'not' ( b2 'or' c2 ) '&' 'not' ( b2 ) '&' 'not' ( assume that for x holds f . x = ( ( - 1 ) (#) ( sin ) ) . x and for x st x in Z holds ( ( - 1 ) (#) ( sin ) ) . x = cos . ( x- x ) and for x st x in Z holds ( ( - 1 ) (#) ( sin ) ) . x = - cos . x / ( sin . x ) ^2 and f . x = - cos . x / ( sin . x ) ^2 and f . x = - cos . x / ( sin . x ) ^2 and f . x = - cos . x / ( sin . x ) ^2 and f . x = - cos . x / ( sin . x / ( sin . x ) ^2 and f . x = - cos . x / ( sin . x ) ^2 and f . x = - cos . x / ( sin . x ) ^2 and for x ) ^2 and f . x = - cos . consider R8 , I8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) ; ex k being Element of NAT st ( for q being Element of product G st q in X & 0 < d holds ||. ( q-r , q ) - partdiff ( f , x , i ) .|| < r ) & ||. partdiff ( f , x , i ) - partdiff ( f , x , i ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } or x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 } ; G * ( j , ii ) `2 = G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 f1 * p = p .= ( ( the Arity of S1 ) +* the Arity of S2 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> Tree means : Def1 : for q st q in P holds q in T or ex p st p in P & p = q & p in T1 & p = q or p = p or p = q or p = q or p = q or p = q or p = q or p = q or p = q or p = q or p = q ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= Fcontradiction . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= FF>= p . ( k + 1 -' 1 ) .= FF>= p . ( k + 1 -' 1 ) .= FF>= p . ( k + 1 -' 1 ) ; for A , B , C being Matrix of K st len B = len C & len C = len A & len B = len C & len C = len A & len C > 0 & len A > 0 & len C > 0 & len A > 0 & len C > 0 & len A > 0 & len A > 0 & len A > 0 & A * C = C * C + A * C seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of CB ) ~ and y in ( the carrier of CB ) ~ and x in the carrier of CB and y in the carrier of CB and z = [ x , y ] ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( for k st k < $1 holds ( for k st k < $1 holds ( for k st k < $1 holds ( for k st k < $1 holds ( for k st k < $1 holds ( for k st k < $1 holds ( for k st k < $1 holds ( v . k ) . k ) . k ) implies ( v . k ) . k = ( v . k ) . k ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i + 1 , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 and q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 and q `2 / |. q .| - sn and q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 ; for M being non empty metric , x being Point of M , f being Point of M st x = x holds ex x being Point of M st for n being Element of NAT holds f . n = Ball ( x , ( 1 / n ) * ( n + 1 ) ) & f . x = Ball ( x , ( 1 / n ) * ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = ( ( f1 - f2 ) `| Z ) . ( ( f1 - f2 ) `| Z ) . x ) / ( f1 - f2 ) . x * ( ( f1 - f2 ) `| Z ) . x = ( f1 - f2 ) `| Z ) . x / ( f1 - f2 ) . x ; defpred P1 [ Nat , Point of CNS ] means ( for r being Real st r in Y & r < $1 holds ||. f /. ( $1 + 1 ) - f /. ( $1 + 1 ) .|| < r ) & ||. f /. ( $1 + 1 ) - f /. ( $1 + 1 ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - 1 ) .= g . ( i - 1 ) .= g . ( i - 1 ) .= g . ( i - 1 ) .= g . ( i - 1 ) .= ( g . i ) . ( i - 1 ) .= ( g . i ) . ( i - 1 ) ; ( 1 - 2 * n0 + 2 * ( n + 2 ) ) * ( 2 * ( n + 2 ) ) = ( ( 1 - 2 * ( n + 1 ) ) * ( n + 2 ) ) * ( n + 2 ) .= ( 1 - 2 * ( n + 1 ) ) * ( n + 2 ) .= ( 1 - 2 * ( n + 1 ) ) * ( n + 2 ) .= ( 1 - 2 * ( n + 1 ) ) * ( n + 2 ) ) * ( n + 2 ) ; defpred P [ Nat ] means for G being non empty finite strict strict strict finite strict strict strict non empty RelStr st G is \mathop carrier of G & card the carrier of G = $1 holds the carrier of G = ( the carrier of G ) \/ ( the carrier of G ) & the carrier of G = ( the carrier of G ) \/ ( the carrier of G ) ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and for i st 1 <= i & i <= len f holds LSeg ( f , i ) /\ Ball ( u , r ) <> {} and not LSeg ( f , i ) /\ Ball ( u , r ) <> {} and LSeg ( f , i ) <> {} and LSeg ( f , i ) /\ Ball ( u , r ) <> {} ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) . $1 = ( Partial_Sums ( cos ) . ( $1 + 1 ) ) . ( x - x0 ) * ( cos . ( $1 + 1 ) ) ) . ( x - x0 ) * ( cos . ( $1 + 1 ) ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & for i being set st i in I holds x . i = ( the support of F ) . i & x . i = ( the support of F ) . i & x . i = ( the support of F ) . i & x . i = ( the support of F ) . i ; ( x " ) |^ ( n + 1 ) = ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= x " * x .= x " * x .= x " * x .= x * x .= x * x .= x * x .= x * x ; DataPart Comput ( P +* I , s +* I , ( LifeSpan ( P +* I , s ) ) + 3 ) = DataPart Comput ( P +* I , s +* I , ( LifeSpan ( P +* I , s ) ) + 3 ) .= DataPart Comput ( P +* I , s +* I , ( LifeSpan ( P +* I , s ) ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom f1 /\ dom f2 and for g st g in ]. x0 , x0 + r .[ holds f1 . g <= f1 . g - f2 . x0 and f1 . g <= 0 and f2 . g <= 0 ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and ( for x st x in X /\ dom f2 holds f1 . x = f1 . x ) and ( f1 - f2 ) | X is continuous & ( f1 - f2 ) | X is continuous & f2 | X is continuous ) ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Element of L & for x being Element of L st x in X holds x = "\/" ( waybelow l , L ) holds x = "\/" ( { x } , L ) Support ( e *' p ) in { m *' p where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' p ) & ex q being Polynomial of n , L st q = p & q = p . ( m + 1 ) & p . ( m + 1 ) = q . ( m + 1 ) & q . ( m + 1 ) = p . ( m + 1 ) ; ( f1 - f2 ) /* s1 = lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of [: Al ( ) ) , g being Function of [: Al ( ) , D ( ) :] , D ( ) st P [ p1 , g ] & P [ g , h . ( len p1 ) , g . ( len p1 ) ] ; ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) ; ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p . ( len p + k ) . ( len q + k ) .= ( p . ( len p + k ) . ( len p + k ) . ( len p + k ) .= ( p . ( len p + k ) .= ( p len mid ( D2 , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 + 1 .= indx ( D2 , D1 , j1 ) + 1 + 1 ; x * y * z = Mz . ( ( y * z ) * ( z * y ) ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( z * z ) .= ( x * y ) * ( y * z ) ; v . ( <* x , y *> ) - ( <* x0 *> ) . i = partdiff ( v , ( x - y ) ) * ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( x - x0 ) ) ) ) + ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 i * i = <* 0 * ( 1 - 0 ) - ( 0 * ( 1 - 0 ) ) * ( 1 - 0 ) .= <* - 1 , 0 , 0 , 0 *> .= 0 ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + ( L (#) F2 ) ) .= Sum ( L (#) F1 ) ; ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y & for Y1 be Subset of X st Y1 is non empty & Y1 c= Y holds |. ( lower_bound Y1 ) - ( lower_bound Y2 ) .| < r & r < ( for Y1 be Subset of X st Y1 in Y holds Y1 - r ) < r ; ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i + 1 , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i + 1 , j + 1 ) = f /. ( k + 1 ) ; ( ( - 1 ) (#) ( cos ) ) . x = ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) .= ( - 1 ) * ( cos . x ) ; ( - b + sqrt ( delta ( a , b , c ) ) ) / 2 > 0 & ( - b - sqrt ( delta ( a , b , c ) ) ) / 2 > 0 or - b - sqrt ( delta ( a , b , c ) ) / 2 < 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex_sup_of X , L and ex_sup_of X , L and "\/" ( X , L ) , L and "\/" ( X , L ) = "/\" ( uparrow "\/" ( X , L ) , L ) and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) ; ( ( for j holds j in I ) implies ( j = i implies j = i ) & ( i = j implies j = i implies i = j ) & ( i = j implies j = i implies j = i ) & ( j = i implies j = i implies j = i ) ) & ( j = i implies j = i implies j = i ) )