thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is Cauchy q in X ; V in X ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a >= X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `1 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` = b ` ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `1 <= b `1 ; assume b in X ; assume k <> 1 ; f = product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `1 = x `1 ; let X be BCI-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , W be Walk of G ; let G be _Graph , W be Walk of G ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b be Element of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom f ; let x be element ; k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ` ; set s = from c , c = the Element of NAT ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R . x <> 0 ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Element of REAL ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , I be Program of SCM+FSA ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 in X ; cluster uparrow x -> and x is directed ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; Let Let Let Let Let Let Let Let Let > s ; G . y <> 0 ; let X be RealNormSpace , x be Element of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , M be Subset of V ; assume x in - M ; k < s . a ; not t in { p } ; let Y be set , f be Function ; M , L are_equipotent ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded ; rng f = Y ; IT c= L & IT c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; still_not-bound_in p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `2 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= ( i - 1 ) ; 1 <= ( i - 1 ) ; pwhere pX1 is Subset of X : pX1 c= cos } 1 <= ( i - 1 ) ; 1 <= ( i - 1 ) ; LMP C in L ; 1 in dom f ; let seq , B ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; seq is bounded & seq is bounded implies seq - seq is bounded assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 : x in A2 ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 & b2 >= b1 ; assume w = 0. V ; assume x in A . i ; g in the carrier of X ; y in dom t ; i in dom g ; assume P [ k ] ; c= Let C ; x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; IT is non-decreasing implies seq is non-decreasing IT is non-decreasing implies seq is non-decreasing assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , X be non-empty ManySortedSet of S ; assume P [ n ] ; assume union S is independent & finite S is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , f be Function ; b ` ` c= b9 ` ` ; assume not x in INT + ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec . x <> 0 ; assume y in rng S ; let x , y be element ; i2 < i1 & i2 < i2 implies i1 < i2 a * h in a * H ; p , q in Y ; redefine func sqrt I ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n & n < len f ; assume A c= dom f ; Re ( f ) is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_not x0 & g is_not x0 ; g is continuous & x0 in dom f implies g is continuous assume O is symmetric transitive ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 halts_on s , P2 = P +* stop I ; d , c // a , b ; let t , u be set ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , f be Function of X , X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , C be Subset of A ; let S be non empty ManySortedSign ; let x be variable , f be Function ; let b be Element of X , c be Element of X ; R [ x , y ] ; x ` ` = x ` ` .= x ; b \ x = 0. X ; <* d *> in D * ; P [ k + 1 ] ; m in dom mn ; h2 . a = y ; P [ n + 1 ] ; redefine func G * F -> preJ ; let R be non empty multMagma , I be non empty multMagma , J be non empty FinSequence of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng ( co ^ <* x *> ) ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `1 ; let M be mamaid ; let N be non empty for \mathop { N } is non empty Subset of M ; let R be RelStr with finite finite and R is finite ; let n , k be Nat ; let P , Q be be be be be be be be be Let ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I is not lim lim = a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < ( v - u ) ; x <= c2 . x ; x in F ` & y in F ` ; redefine func S --> T -> ManySortedSet of X ; assume that t1 <= t2 and t2 <= t1 ; let i , j be even Integer ; assume F1 <> F2 & F2 <> G2 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 : x <> A6 ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & dom g2 = A ; i < len M + 1 ; assume not -infty in rng G ; N c= dom ( f1 - f2 ) ; x in dom sec & y in dom sec ; assume [ x , y ] in R ; set d = ( x - y ) / ( x - y ) ; 1 <= len g1 & 1 <= len g2 ; len s2 > 1 & len s2 > 1 ; z in dom ( f1 ^ ) ; 1 in dom ( D2 | 1 ) ; ( p `2 ) ^2 = 0 ; j2 <= width G & 1 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; gcd ( i , i ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be _\mathbin of \mathbin { - } 1 } ; cluster m * n -> invertible ; let k9 be Nat , x be Element of NAT ; i - 1 > m - 1 ; R is transitive implies field R = field R set F = <* u , w *> ; p-2 c= P3 & p-2 c= P3 ; I is_closed_on t , Q & I is_halting_on t , Q ; assume [ S , x ] is \frac ; i <= len ( f2 ^ <* p *> ) ; p is FinSequence of X ; 1 + 1 in dom g ; Partial_Sums R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 - f2 ) ; assume [ X , p ] in C ; BX c= ( X0 \/ X2 ) ; n2 <= ( 2 |^ ( n + 1 ) ) ; A /\ cP c= A ` ; cluster x -valued -> constant for Function ; let Q be Subset-Family of S , P be Subset of S ; assume n in dom g2 & m in dom g2 ; let a be Element of R ; t `2 in dom ( e2 | ( dom e2 ) ) ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , T be non empty set ; i . y in rng i ; REAL c= dom f & dom f c= dom f ; f . x in rng f ; mt <= ( r - 1 ) / 2 ; s2 in r-5 & s2 in r-5 ; let z , z be complex number ; n <= ( N . m ) ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = [: S , T :] ; let x be non real number , r be positive Real ; m be Element of M ; f in union rng ( F1 ^ F2 ) ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , M be Matrix of K ; let i be Element of NAT , k be Element of NAT ; rng ( F * g ) c= Y dom f c= dom x & rng f c= dom x ; n1 < n1 + 1 & n2 + 1 < n1 + 1 ; n1 < n1 + 1 & n2 + 1 < n1 + 1 ; cluster ( T | X ) -> thesis ; [ y2 , 2 ] `2 = z ; let m be Element of NAT , n be Element of NAT ; let S be Subset of R ; y in rng ( S29 ) ; b = sup dom f & b = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom h2 & m in dom h2 ; w + 1 = ma + 1 ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k1 + 1 <= k2 ; i be Element of NAT , k be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete complete Subempty ; assume that f = g and p = q ; n1 <= n1 + 1 & n2 <= n1 + 1 ; let x be Element of REAL , y be Element of REAL ; assume x in rng ( s2 | X ) ; x0 < x0 + 1 & x0 < x0 + 1 ; len ( L5 * L ) = W ; P c= Seg len A & P c= Seg len A ; dom q = Seg n & dom q = Seg n ; j <= width M *' ; let r8 be real-valued sequence of REAL , x be element ; let k be Element of NAT , n be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT , x be Element of NAT ; assume z in z -> \cup of -> } ; let i be set ; n - 1 = n-1 - 1 ; len ( n-27 ) = n & len ( nu ) = n ; \mathop { Z , c } c= F assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , f be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L , x be Element of L ; Seg i = dom q & Seg i = dom q ; let s be Element of E ^ omega ; let B1 be Basis of x , B2 be Basis of x ; Carrier ( L2 ) /\ Carrier ( L2 ) = {} ; L1 /\ LSeg ( L2 , L2 ) = {} ; assume downarrow x = downarrow y ; assume b , c // b `1 , c `2 ; LIN q , c , c ; x in rng ( f . -129 ) ; set n8 = n + j ; let D7 be non empty set , f be FinSequence of D ; let K be add-associative right_zeroed right_complementable non empty addLoopStr , M be Matrix of K ; assume that f opp = f and h opp = h ; R1 - R2 is total & R2 - R1 is total ; k in NAT & 1 <= k & k <= n ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & K1 ` is open ; assume a , b ] is maximal & a in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster -> nn] for ; not u in { bb } ; the carrier of f c= B ; reconsider z = x as VECTOR of V ; cluster \rm Str over L -> non-empty ; r (#) H is ^ " X ; s . intloc 0 = 1 & s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict non-empty non-empty non-empty MSAlgebra over S , A be non-empty MSAlgebra over S ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in : not ( ex y st y in { x } & y in { x } ) ; let x , y be Element of X ; A , I be \times of X ; [ y , z ] in [: O , O :] ; ( that that that that card Macro i ) = 1 and card Macro i = 1 ; rng ( Sgm A ) = A ; q |- f from All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b & LIN o , a , b ; p . 2 = Z / Y ; ( D . 0 ) `2 = {} & ( D . 0 ) `2 = 0 ; n + 1 + 1 <= len g ; a in [: CQC-WFF ( Al ) , NAT :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f1 + f2 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `2 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i -' k + 1 <= S ; cluster associative for non empty multMagma ; x in support ( support ( t ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `2 <= len ( y `2 ) ; assume p divides b1 + b2 & p divides b2 ; M1 <= sup M1 & M1 <= sup M2 implies M1 + M2 <= M1 + M2 assume x in W-min ( X ) & y in L~ f ; j in dom ( z ^ <* x *> ) ; let x be Element of D ( ) ; IC s4 = l1 & IC s4 = l1 ; a = {} or a = { x } ; set uG = Vertices G , uG = Vertices G ; seq " is non-zero & seq " is non-zero implies seq " is non-zero for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; hcn c= h-14 & hcn c= dom h ; ]. a , b .[ c= Z ; X1 , X2 , X3 be non empty SubSpace of X ; a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 - 1 = k - 1 ; cluster -> real-valued for Relation ; ex v st C = v + W ; let IT be non empty zero Nat , M be Matrix of n , REAL ; assume V is Abelian add-associative right_zeroed right_complementable ; X-21 \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper & sup B in A ; let L be non empty reflexive transitive RelStr , X be Subset of L ; R is reflexive & X is transitive implies R is transitive E , g |= ( the_left_argument_of H ) ; dom G `2 = a & dom G = b ; ( 1 - 4 ) * ( - 1 ) >= - r ; G . p0 in rng G & G . p0 in rng G ; let x be Element of FF , y be Element of FF ; D [ P-6 , 0 ] ; z in dom id B & z in dom id B ; y in the carrier of N & x in the carrier of N ; g in the carrier of H & h in the carrier of G ; rng f\mathbb R c= [: NAT , NAT :] & rng f\mathbb R c= [: NAT , NAT :] ; j `2 + 1 in dom s1 & j `2 + 1 in dom s2 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL , a , b be Real ; f . z1 in dom h & f . z2 in dom h ; P . k1 in rng P & P . k1 in rng P ; M = AM +* {} .= ( A +* {} ) +* {} ; let p be FinSequence of REAL , n be Nat ; f . n1 in rng f & f . n1 in rng f ; M . ( F . 0 ) in REAL ; ind [. a , b .[ = b-a ; assume the distance of V , Q is Real ; let a be Element of ( ^ V ) . a ; let s be Element of [: P , Q :] ; let PA be non empty reflexive transitive RelStr , a be Element of Y ; n be Nat ; the carrier of g c= B & the carrier of g c= A ; I = halt SCM R & I = ( the carrier of SCM R ) ; consider b being element such that b in B ; set BM = BCS K , BM = BCS K ; l <= -> and sup ( F . j ) <= sup ( F . j ) ; assume x in downarrow [ s , t ] ; ( x `2 ) ^2 in uparrow t & ( x `2 ) ^2 in uparrow t ; x in ( <* 1 *> , 1 ) -tuples_on ( { 1 } , NAT ) ; let h be Morphism of c , a ; Y c= 1. ( the_rank_of Y ) & Y c= the_rank_of Y ; A2 \/ A3 c= Carrier ( f ) \/ Carrier ( f ) ; assume LIN o , a , b & LIN o , a , b ; b , c // d1 , e2 & a , b // d2 , e2 ; x1 , x2 , x3 , x4 , x5 be set ; dom <* y *> = Seg 1 & rng <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in X ~ ; for n be Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> finite closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , q1 is_collinear & q2 , q2 , q2 is_collinear ; dom M1 = Seg n & rng M1 c= Seg n ; x = [ x1 , x2 , x3 ] ; let R , Q be ManySortedSet of A ; set d = ( 1 / ( n + 1 ) ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b implies a = b let M be non empty Subset of V , V be Subset of V ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( that S * R ) ; let b be Element of the lattice of T ; dist ( e , z ) > r-r ; u1 + v1 in W2 & v1 + v2 in W1 ; assume the carrier of L misses rng G ; let L be lower-bounded antisymmetric transitive non empty RelStr ; assume [ x , y ] in a9 & [ y , x ] in a9 ; dom ( A * e ) = NAT & rng ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool M , y be Element of Bool M ; 0 <= Arg a & Arg a < 2 * PI ; o9 , a9 // o9 , y & o9 , a9 // o9 , y ; { v } c= the carrier of l & { v } c= the carrier of l ; let x be variable of A ; assume x in dom ( uncurry f ) & y in dom f ; rng F c= ( product f ) |^ X assume D2 . k in rng D & D . k in rng D ; f " . p1 = 0 & f " . p2 = 0 ; set x = the Element of X , y = the Element of Y ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; n be Element of NAT , x be Element of NAT ; assume LIN c , a , e1 ; cluster -> natural for FinSequence of NAT ; reconsider d = c as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of f ; conv @ A c= conv conv A & conv @ A c= conv @ A ; reconsider B = b as Element of the open domains of T ; J , v |= P ! l & J , v |= P ! l ; redefine func J . i -> non empty TopSpace equals J . i ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 , W2 is_well field W1 & R is transitive implies R \/ ( R \/ ( R \/ ( R \/ S ) ) ) is transitive assume x in the carrier of R & y in the carrier of R ; dom ( n | n ) = Seg n & rng ( n | n ) = Seg n ; s4 misses s2 & s4 misses s2 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in an & [ a , y ] in C2 ; assume that not that that that that that that that that that that stop I c= J and not x in K ; Im ( ( lim seq ) - ( lim seq ) ) = 0 ; ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; sin + cos is_differentiable_on Z & for x st x in Z holds cos . x <> 0 & cos . x <> 0 t3 . n = t3 . n .= t3 . n .= s . n ; dom ( ( - F ) | A ) c= dom F ; W1 . x = W2 . x & W2 . x = W2 . x ; y in W .vertices() \/ W .vertices() \/ W .vertices() ; ( k + 1 ) <= len ( v | ( k + 1 ) ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P & proj2 .: P c= proj2 .: P ; h . p4 = g2 . I .= g2 . I ; IT = ( U /. 1 ) `1 .= ( U /. 1 ) `1 ; f . rr1 in rng f & f . rr1 in rng f ; i + 1 + 1 <= len - 1 ; rng F = rng ( F | ( Seg n ) ) ; mode non empty multMagma over L is well unital non empty multMagma ; [ x , y ] in A ~ { a } ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of \HM { the carrier of m c= B ; not [ y , x ] in id X & not y in X ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower & seq ^\ k1 is lower implies seq ^\ k1 is lower len ( F ^ <* I *> ) = len I + 1 ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number , a be complex number ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be non empty \rbrace Chain of T , T ; cluster empty -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j1 in K . j1 ; redefine func J => y -> total Function equals J * ( J * J ) ; K c= 2 -tuples_on the carrier of T ; F . b1 = F . b2 & F . b2 = F . b2 ; x1 = x or x1 = y or x1 = z ; pred a <> {} means : Def2 : ( a - a ) / a = 1 ; assume that a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & not o , b1 on C2 ; LIN o , b , b9 & LIN o , b , b9 ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non constant FinSequence of D , i be Nat ; let FG2 be non empty element , f be FinSequence of the carrier of X ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pn2 = x , pn2 = y as Subset of m -tuples_on REAL ; A , B , C be Element of R ; redefine func strict non empty for as strict non empty as strict as strict vector of V ; rng c `2 misses rng ( e | ( rng e ) ) ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) & not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( ( - cot ) (#) ( cot * cot ) ) ; the component of Q c= UBD ( A ) & ( the component of Q ) /\ ( the component of A ) = {} ; reconsider E = { i } as finite Subset of I ; g2 in dom ( ( 1 / 2 ) (#) ( f ^ ) ) ; pred f = u means : Def2 : a * f = a * u ; for n holds P1 [ \mathop { n } ] ; { x . O : x in L } <> {} ; x be Element of V . s ; a , b be Nat ; assume that S = S2 and p = S2 and S is non empty ; gcd ( n1 , n2 , n3 ) = 1 & gcd ( n1 , n2 , n3 ) = 1 ; set oo = ( * _ { Z , 2 } ) * ( o , 2 ) ; seq . n < |. r1 .| & seq . n < |. r1 .| ; assume that seq is increasing and r < 0 and seq is increasing ; f . ( y1 , x1 ) <= a & f . ( y1 , x1 ) <= b ; ex c being Nat st P [ c ] & a = c ; set g = { n to_power 1 : n in NAT } ; k = a or k = b or k = c ; aa , ag , k , G & k in dom f & k in dom f & k in dom f ; assume that Y = { 1 } and s = <* 1 *> ; IA1 . x = f . x .= f . x .= 0 ; W3 .last() = W3 . 1 & y in W3 . 2 ; cluster trivial -> trivial for Walk of G , finite set ; reconsider u = u as Element of Bags X ; A in B ^ implies A , B ^ , A ^ ; x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 ) ^2 + ( q `2 ) ^2 ; f1 is_LSeg ( f1 , i ) & f2 is_the carrier' of f1 ; ( f /. i ) ^2 <= ( q `1 ) ^2 + ( q `2 ) ^2 ; h is_the / 2 in the carrier of Cage ( C , n ) ; ( b - a ) ^2 <= ( p `1 - a ) ^2 + ( p `2 - a ) ^2 ; let f , g be \ast Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( - f ) & x in dom ( - f ) ; p2 in ( N . p1 ) & p2 in ( N . p1 ) ; len ( the_left_argument_of H ) < len ( H ) & len ( the_left_argument_of H ) < len ( H ) ; F [ A , FF . A ] ; consider Z such that y in Z and Z in X ; pred 1 in C means : Def2 : A c= C |^ A ; assume that r1 <> 0 or r2 <> 0 and r1 < r2 and r2 < 0 ; rng q1 c= rng C1 & rng q1 c= rng C2 ; A1 , L , A3 , A3 , A3 be non empty set ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in let ( p , Ss ) . b ; then S is negative & P-2 [ S ] ; Cl Int [#] T = [#] T & Cl Int [#] T = [#] T ; f12 | A2 = ( f2 | A1 ) | A2 .= ( f2 | A2 ) | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V & Y \ V c= Y \ Z ; let X be Subset of S ~ ; consider H1 such that H = 'not' H1 and H1 in A ; 1_ 1 c= ( 1 * ( p - 1 ) ) * ( p - 1 ) ; 0 * a = 0. R .= a * 0. R .= a * 0. R ; A |^ ( 2 , 2 ) = A ^^ A .= A ; set vY = ( v /. n ) , vY = ( v /. n ) ; r = 0. ( REAL-NS n ) & ||. x - x0 .|| < r ; ( f . p4 ) ^2 >= 0 & ( f . p4 ) ^2 >= 0 ; len W = len ( W | ( len W ) ) ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t16 . ( W7 ) does not destroy b1 , b2 ; reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i as non zero Element of NAT ; c . x >= id L . x & c . x >= id L . x ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 , x3 , x4 ] -> non pair ; downarrow a /\ downarrow t is Ideal of T implies a in downarrow t let X be non empty set , N be non empty set ; rng f = S1 -element ( S , X ) ; let p be Element of B , x be Element of the carrier' of S ; max ( N1 , 2 ) >= N1 & max ( N1 , 2 ) >= N2 ; 0. X <= b |^ m * mm1 ; assume that i in I and R0 . i = R ; i = j1 & p1 = q1 & p2 = q2 implies p1 = p2 assume gR in the right of g & gR in the carrier of g ; let A1 , A2 be Point of S , A2 be Point of T ; x in h " P /\ [#] T1 & x in h " P /\ [#] T2 ; 1 in Seg 2 & 1 in Seg 3 & 2 in Seg 3 ; reconsider X-5 = X , Xlet T = Y as non empty Subset of Tlet T be non empty TopSpace ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Source of G ) -valued ; n1 <= i2 + len g2 & n2 + len g2 <= len g2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & u in the carrier' of G2 ; y = Re ( y ) + ( Im ( y ) * i ) ; ( ( - 1 ) |^ ( - 1 ) ) gcd p = 1 ; x2 is_differentiable ]. a , b .[ & x2 - a < b - a ; rng M5 c= rng ( D2 | ( D1 . i ) ) ; for p being Real st p in Z holds p >= a ( ( cn ) | K1 ) . p = proj1 * f . p .= ( cn ) . p ; ( seq ^\ m ) . k <> 0 & ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) \ominus C h \equiv gg . ( mod P ) & g divides gg . ( mod P ) ; reconsider i1 = i-1 , i2 = i-1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider i = i , j = j as Element of NAT ; dom f c= [: C , D ( ) :] ; x in ( the sequence of B ) . n & x in ( the carrier of B ) ; len that len that len that 2 in Seg len ( f2 ^ <* p *> ) ; pp1 c= the topology of T & pp2 c= the topology of T ; ]. r , s .[ c= [. r , s .] ; let B2 be Basis of T2 , B be Basis of T2 ; G * ( B * A ) = ( id o1 ) * ( B * A ) ; assume that p , u , v is_collinear and u , v , w is_collinear ; [ z , z ] in union rng ( F | ( union rng F ) ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , C = $1 .. S , D = $1 .. S , E = $1 .. S , F = $1 .. S , N = $1 .. S , N = $1 .. S , N LIN a1 , a3 , b1 & LIN a1 , a2 , c1 & LIN a2 , a3 , c1 ; f " ( f .: x ) = { x } ; dom w2 = dom r12 & dom r12 = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; Ii * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; q9 . x in rng ( q | ( Seg n ) ) ; Carrier ( LLet ) misses Carrier ( Ld ) ` & Carrier ( Ld ) misses Carrier ( Ld ) ; consider c being element such that [ a , c ] in G ; assume that Nreal = oand onon empty and oO is non empty ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ ( C * ) ) " { x } P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . j .] ; pred 0 <= x & x <= 1 implies x ^2 <= x ^2 ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 - q `2 <> 0. TOP-REAL 2 ; redefine func being aa] ( S , T ) -> non empty ; x be Element of S ~ ; ( \HM { the } \HM { object } \HM { of F ) is one-to-one ; |. i .| <= - ( - 2 to_power n ) / ( 2 to_power n ) ; the carrier of I[01] = dom P & the carrier of I[01] = dom P ; th * ( n + 1 ) ! > 0 * th ; S c= ( A1 /\ A2 ) /\ ( A2 /\ A3 ) ; a3 , a4 // b3 , b2 & a3 , a4 // b3 , b2 ; then dom A <> {} & dom A <> {} & rng A c= dom B ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y in X implies x = y set v2 = ( v /. ( i + 1 ) ) ; x = r . n .= ( r . n ) * ( r . n ) ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g c= the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) & p in Lower_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: A , A :] & dom d2 = [: A , A :] ; 0 < ( p - ||. z .|| ) + 1 ; e . ( mm + 1 ) <= e . ( m3 + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y -infty < Integral ( M , Im ( g | B ) ) ; cluster O \cup F -> Line for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , S be non-empty MSAlgebra over S ; Proj ( i , n ) * g is_differentiable_on X & Proj ( i , n ) * g is_differentiable_on X ; x , y , z be Point of X , p be Point of X ; reconsider p0 = p . x , p0 = p . x as Subset of V ; x in the carrier of Lin ( A ) & y in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and b is lower and a in - b ; Int Cl A c= Cl Int Cl Int Cl A & Cl Int Cl A c= Cl Int Cl A ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 ) ^2 <= ( p `2 ) ^2 + ( p `2 ) ^2 ; Cl Q ` = [#] ( T | ( [#] T ) ) .= [#] ( T | ( [#] T ) ) ; set S = the carrier of T , T = the carrier of T ; set I8 = -> f |^ n , I8 = f |^ n , I8 = f |^ n ; len p - n = len thesis - n & len p - n = len p - n ; A is Permutation of Swap ( A , x , y ) ; reconsider nni = ni - 1 as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s | j ) ; let q\mathopen be Let of M , q\mathopen ( 2 , n ) , q be Element of M ; aa in the carrier of S1 & not xy in the carrier of S1 ; c1 /. n1 = c1 . n1 & c2 /. n1 = c2 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 ; y = ( f * ( S * ( x , y ) ) ) . x ; consider x being element such that x in an " A and x in B ; assume r in ( dist ( o , r ) ) .: P ; set i2 = \mathopen { - } h /. 2 , i1 = h /. 3 , i2 = h /. 1 , i2 = h /. 2 ; h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) = M . i .= Line ( M29 , k ) ; reconsider m = ( x - 2 ) / ( x - 2 ) as Element of REAL ; let U1 , U2 be non-empty non-empty non-empty non-empty non-empty non-empty non-empty MSAlgebra over S ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p2 < len p1 + 1 ; let T1 , T2 be Scott Scott Scott Scott Subset of L , x be Element of T1 ; then x <= y & ( x + y ) c= ( x + y ) ; set M = n -\hbox { m } , N = n -\hbox { m } ; reconsider i = x1 , j = x2 as Nat ; rng ( ( the_arity_of o ) * ( the_arity_of o ) ) c= dom H ; z1 " = ( z " ) * ( z " ) .= ( z " ) * ( z " ) .= z " * ( z " ) ; x0 - r / 2 in L /\ dom f & x0 - r / 2 in L /\ dom f ; then w is that rng w /\ L <> {} & rng w /\ L <> {} ; set x-10 = ( x ^ <* Z *> ) ^ <* Z *> ^ ( x ^ <* Z *> ) ; len w1 in Seg len w1 & len w1 in Seg len w1 & len w1 in Seg len w1 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of \mathopen { V , { k } } ; x . n = ( |. a . n .| ) * ( |. b . n .| ) ; ( p `1 ) ^2 <= ( G * ( i1 , j1 ) ) `1 ; rng ( g ) c= L~ ( g ^ ) & rng ( g ^ ) c= L~ ( g ^ ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n be Nat holds F . n is \HM { -infty } ; reconsider x-10 = xM , x29 = xM as VECTOR of M ; dom ( f | X ) = X /\ dom f .= X /\ dom f ; p , a // p , c & b , a // c , c ; reconsider x1 = x , y1 = y as Element of ( len x ) -tuples_on REAL ; assume i in dom ( a * p ^ q ) ; m . ( ag ) = p . ( ag ) .= p . ( bg ) ; a / ( s . m - s . n ) / ( s . m - s . n ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume B1 \/ C1 = B2 \/ C2 & C1 \/ C2 = C1 \/ C2 ; X . i = { x1 , x2 } . i .= ( x1 | i ) . i ; r2 in dom ( h1 + h2 ) & r1 in dom ( h1 + h2 ) ; \mathclose { - 0. R } = a & b-0 = b ; F8 is_closed_on t8 , Q8 & F8 is_halting_on t8 , Q8 ; set T = for _ X , x0 , x1 be Element of X ; Int Cl Int Cl R c= Int Cl R & Int Cl R c= Cl Int Cl R ; consider y being Element of L such that c . y = x ; rng ( F{} . x ) = { F{} . x } .= { F . x } ; G-23 " { c } c= B \/ S \/ S \/ { c } ; f[#] X is Relation of [: X , X :] , X & f is Function of X , X ; set Rz = the Element of P , Rz = the Element of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; k2 be Element of NAT , k be Element of NAT ; reconsider pnR = u , pR = v as Element of ( TOP-REAL n ) | ( ( TOP-REAL n ) | R ) ; g . x in dom f & x in dom g implies x in dom g assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of G / ( N , X ) ; len ( P\bf P ) <= len ( P-35 ) & len ( P\bf P ) <= len ( P-35 ) ; x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( A @ ) & ( A @ ) * ( i , j ) = A * ( i , j ) ; for m be Nat holds Re ( F . m ) is simple ; f . x = a . i .= a1 . k .= a1 . k ; let f be PartFunc of REAL i , REAL , x be Element of REAL i ; rng f = the carrier of \bf A & rng f c= the carrier of \bf A ; assume s1 = sqrt ( 2 * ( p `1 ) ^2 ) & s2 = sqrt ( 2 * ( p `2 ) ^2 ) ; pred a > 1 & b > 0 & a to_power b > 1 implies a to_power b > 1 ; let A , B , C be Subset of II , B be Subset of II ; reconsider X0 = X , Y0 = Y as RealNormSpace , f = X as Point of X ; let f be PartFunc of REAL , REAL , x be Element of REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , t-3 be Relation of 2 -tuples_on BOOLEAN , BOOLEAN ; Q [ e-14 \/ { v-5 } , f ] & f . ( v-5 ) = f . ( e , f . ( e , f . ( e , f . ( e , f . ( e , f . ( e , f . ( g \circlearrowleft ( W-min L~ z ) = z implies ( g /. 1 ) .. z < ( g /. len g ) .. z |. |[ x , v ]| - |[ x , y ]| .| = vSet ; - f . w = - ( L * w ) .= - ( L * w ) ; z - y <= x iff z <= x + y & y <= z + x ( 7 - p1 ) / ( 1 - e ) > 0 ; assume X is BCK-algebra & X is BCK-algebra & 0 < 0 & 0 < 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 .= f . x2 ; ( ( tan - tan ) `| Z ) . x in dom ( sec * tan ) ; i2 = ( f /. len f ) `1 .= ( f /. len f ) `1 .= ( f /. len f ) `1 ; X1 = X2 \/ ( X1 \ X2 ) & X2 = X2 \ ( X1 \ X2 ) ; [. a , b , 1_ G .] = 1_ G & a * b = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be FinSequence of COMPLEX ; dom g2 = the carrier of I[01] & rng g2 = the carrier of I[01] ; dom f2 = the carrier of I[01] & rng f2 = the carrier of I[01] & rng f2 = the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: X .= proj2 .: X .= X ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & x0 - r < x0 - r . n ; |. ( f /* s ) . k - ( G /* s ) . k .| < r ; len ( Line ( A , i ) ) = width A & len ( Line ( A , i ) ) = width A ; SFinSequence / ( g , f ) = ( S . g ) / ( g , f ) ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized p & IC Comput ( p , s , 0 ) in dom Initialized p ; i1 , i2 , i3 , goto ( \overline { \kern1pt I \kern1pt } + 3 ) not contradiction & I is not " ; arccos r + arccos r = ( PI / 2 ) + 0 .= PI / 2 + 0 ; for x st x in Z holds f2 - ( f1 - #Z 2 ) . x = - 1 / ( x + x ^2 ) reconsider q2 = ( q `1 ) / ( |. q .| ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 & i + 1 <= j1 + 1 ; assume f in the carrier of [: X , Omega :] ; F . a = H / ( ( x , y ) / ( x , y ) ) ; ( ( TRUE T ) at ( C , u ) ) . x = TRUE ; dist ( ( a * seq ) . n , h ) < r / 2 ; 1 in the carrier of [. 0 , 1 .] & 3 in the carrier of I[01] ; ( p2 `1 - p1 `1 ) ^2 - ( p2 `2 - p1 `2 ) ^2 > - ( p2 `2 - p1 `1 ) ^2 ; |. r1 - be Real .| = |. a1 .| * |. thesis .| ; reconsider S-14 = 8 as Element of Seg 8 , S be non empty set ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W .( X ) = D0W .( X ) + 1 ; i1 = ma + n & i2 = C2 + n & j2 = C2 + n ; f . a [= f . ( f . O1 ) "\/" ( f . a ) ; pred f = v & g = u + v & f + g = v + u ; I . n = Integral ( M , F . n ) ; chi ( [: T1 , T2 :] , S . s ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k1 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R ^ <* A *> ) & L~ ( R ^ <* A *> ) meets L~ ( R ^ <* A *> ) ; set h = the continuous Function of X , R , f be Function of X , R ; set A = { L . ( k9 . n ) where k is Element of NAT : k <= n } ; for H st H is atomic holds P7 [ H ] ; set b9 = S5 ^\ ( i + 1 ) , S = S5 ^\ ( i + 1 ) ; Hom ( a , b ) c= Hom ( a opp , b opp ) ; ( 1 - s ) / ( n + 1 ) < ( 1 - s ) / ( n + 1 ) ; ( l `1 ) = [ dom l , cod l ] `1 .= dom l ; y +* ( i , y /. i ) in dom g & y in dom g ; let p be Element of CQC-WFF ( Al ( ) ) , A be Subset of CQC-WFF ( Al ( ) ) ; X /\ X1 c= dom ( f1 - f2 ) /\ dom ( f1 - f2 ) ; p2 in rng ( f /^ ( 1 + 1 ) ) & p2 in rng ( f /^ ( 1 + 1 ) ) ; 1 <= indx ( D2 , D1 , j1 ) + 1 - 1 ; assume x in ( ( L2 /\ K0 ) \/ ( ( L2 /\ K0 ) /\ ( K \/ L ) ) ) ; - 1 <= ( ( f2 ) . O ) `2 & - 1 <= ( ( ( f2 ) . O ) `2 ) ; f , g be Function of I[01] , TOP-REAL 2 , a , b , c be Real ; k1 -' k2 = k1 - k2 + 1 .= k1 - k2 + 1 ; rng seq c= ]. x0 - r , x0 .[ & rng seq c= ]. x0 - r , x0 + r .[ ; g2 in ]. x0 - r , x0 + r .[ & g2 in ]. x0 - r , x0 + r .[ ; sgn ( p `1 , K ) = - ( - 1_ K ) .= - ( - 1_ K ) ; consider u being Nat such that b = p |^ y * u ; ex A being Line of A st a = Sum A & A is limit_ordinal ; Cl ( union ( H ) ) = union ( ( Cl H ) \ ( Cl H ) ) ; len t = len t1 + len t2 & len t1 = len t2 + len t1 ; v-29 = v + w |-- ( v , A ) .= v + ( w |-- ( A , B ) ) ; cv <> DataLoc ( ( t . GBP ) , 3 ) & cv <> DataLoc ( ( t . GBP ) , 3 ) ; g . s = sup ( d " { s } ) & g . s = s ; ( \dot { y } ) . s = s . ( \dot { y } . s ) ; { s : s < t } in REAL implies t = {} s ` \ s = s ` \ 0. X .= ( s ` \ 0. X ) \ ( s ` \ 0. X ) .= ( s ` \ 0. X ) \ ( s ` \ 0. X ) ; defpred P [ Nat ] means B + $1 in A & $1 in A & $1 in B + $1 ; ( 329 + 1 ) ! = 329 ! * ( 329 + 1 ) ; ( ( A * ) * ( B * ) ) = ( ( A * ) * ( B * ) ) ; reconsider y = y as Element of ( len y ) -tuples_on COMPLEX ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f and i2 in dom f ; reconsider p = Y | ( Seg k ) as FinSequence of NAT , k be Nat ; set f = ( S , U ) \mathop { F } , F = S \! \mathop { F } , G = S \! \mathop { F } , F = S \! \mathop { F } , F = S \! \mathop { F } , f = S \! \mathop { F } consider Z being set such that lim s in Z and Z in F and x in Z ; let f be Function of I[01] , TOP-REAL n , x be Point of TOP-REAL n ; ( SAT M ) . [ n + i , 'not' A ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; R1 , R2 be Element of ( n + 1 ) -tuples_on REAL , a be Element of REAL n ; reconsider l = (0). ( V ) , r = 0. ( V ) as Linear_Combination of A ; set r = |. e .| + |. n .| + |. w .| + a ; consider y being Element of S such that z <= y and y in X ; a 'or' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ||. ( x\mathopen { x } - g ) * ( x - y ) .|| < r2 ; b9 , a9 // b9 , c9 & a9 , c9 // b9 , c9 & a9 , c9 // a9 , c9 & a9 , c9 // a9 , c9 ; 1 <= k2 -' k1 & k2 + 1 = k2 & k1 + 1 = k2 + 1 ; ( ( p `2 ) ^2 - ( p `1 ) ^2 ) >= 0 ; ( ( q `2 ) ^2 - ( q `1 ) ^2 ) < 0 ; E-max C in cell ( R , 1 , 1 ) & E-max L~ Cage ( C , 1 ) in L~ Cage ( C , 1 ) ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) | D ) ; LIN b , a , c or LIN b , c , a ; p `1 , a `2 // a `1 , b or p `1 , a `2 // b `1 , a `2 ; g . n = a * Partial_Sums ( f ) . n .= f . n * f . n ; consider f being Subset of X such that e = f and f is LIN ; F | ( N2 ~ ) = CircleMap * ( F | ( N2 ~ ) ) .= CircleMap * ( F | ( N2 ~ ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( m , r ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } & the carrier of V = { 0. V } ; rng ( ( cos * cos ) `| REAL ) = [. - 1 , 1 .] .= dom cos /\ REAL .= REAL ; assume that Re ( seq ) is summable and Im ( seq ) is summable and Im ( seq ) is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 as 0 -element string of S2 , U = { {} } as ( S , U ) -valued string of S ; reconsider x-29 = seq , xn = seq as sequence of REAL n ; assume that that UBD C meets L~ pion1 and L~ pion1 meets L~ pion1 and L~ pion1 meets L~ pion1 and L~ pion1 meets L~ pion1 ; - ( ( - 1 ) / 2 ) < F . n - ( - 1 ) / 2 ; set d1 = being thesis , d2 = dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d2 = dist ( x2 , z2 ) ; 2 |^ ( q -' 00 ) = ( 2 |^ ( q -' 00 ) ) - ( 2 |^ ( q -' 00 ) ) ; dom ( v | ( len d6 ) ) = Seg len ( d6 ) .= Seg len ( d6 ) ; set x1 = - k2 + |. k2 .| + |. k2 .| + |. k2 .| + |. 1 .| ; assume for n being Element of X holds 0. <= F . n & 0. <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( Carrier ( LS ) + Carrier ( LS ) ) c= I2 & the carrier of ( Carrier ( LS ) ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal w.r.t. over {} , {} ; Z c= dom ( ( sin * ( sin + cos ) ) ) /\ dom ( cos * ( sin + cos ) ) ; |. 0. TOP-REAL 2 - ( q `1 / |. q .| - cn ) .| < r / 2 ; ConsecutiveSet2 ( A , succ B ) c= ConsecutiveSet2 ( A , succ succ ( d , L ) ) ; E = dom ( L | E ) & L | E is_measurable_on E & E = dom ( L | E ) ; C / ( A + ) = C / ( B * ) ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of V ; I . IC s = P . IC s .= P . IC s .= ( 0 , s ) .--> 1 ; pred x > 0 means : Def2 : ( 1 / x ) ^2 = x ^2 / x ^2 ; LSeg ( f ^ g , i ) = LSeg ( f , k ) \/ LSeg ( g , i ) ; consider p being Point of T such that C = [. p , g .] and p in A ; b , c are_connected & - C , - C - D + - D + - E + - F + G + - F + G + - F + G + - F + G - F - G + G - F - G + F - G - G - F - G - F - G assume f = id the carrier of O1 , g = id the carrier of O2 , f = id the carrier of O1 , g = id the carrier of T ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( the carrier of V ) , A be Element of V ; reconsider g = f " as Function of U1 , U2 , f be Function of U1 , U2 ; A1 in the Points of G_ ( k , X ) & A2 in the Points of k , X ; |. - x .| = - ( - x ) .= - x .= - x .= - x ; set S = ) +* ( x , y , c ) ; Fib ( n ) * ( 5 * Fib ( n ) - 1 ) >= 4 * ; ( v /. ( k + 1 ) ) = ( v . ( k + 1 ) ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - ( i * ( 0 qua Nat ) ) ; Indices M1 = [: Seg n , Seg n :] & Indices M1 = [: Seg n , Seg n :] ; Line ( S\mathopen ( i , j ) , j ) = S\mathopen ( i , j ) ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , y1 ] ; |. f .| - Re ( |. f .| * ( card b * h ) ) is nonnegative ; assume x = ( a1 ^ <* x1 *> ) ^ b1 & y = ( a2 ^ <* x1 *> ) ^ b1 ; ME is_closed_on IExec ( I , P , s ) , P & ME is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= intpos ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x + y implies x = y LIN c , q , b & LIN c , q , q & LIN c , q , c ; f'not' and . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x1 + ( y1 + z1 ) ; flet . a = f_ . a & v in InputVertices S & v in InputVertices S & v in InputVertices S ; ( p `1 ) ^2 <= ( E-max C ) ^2 + ( E-max C ) ^2 ; set R8 = Cage ( C , n ) , E8 = Cage ( C , n ) , E8 = Cage ( C , n ) , E8 = Cage ( C , n ) , R8 = Cage ( C , n ) , R8 = Cage ( C , n ) , R8 = Cage ( ( p `1 ) ^2 >= ( E-max C ) ^2 & ( E-max C ) ^2 >= ( E-max C ) ^2 ; consider p such that p = p-20 and s1 < p and p < s2 and s2 <= p ; |. ( f /* ( s * F ) ) . l - ( G /* ( s * F ) ) . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len ( Line ( N , k + 1 ) ) = width N & len ( Line ( N , k ) ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = lim ( f1 /* s1 ) ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 implies f ^ <* p *> ^ f = f ^ <* p *> dom ( Proj ( i , n ) * s ) = REAL m & rng ( Proj ( i , n ) * s ) = REAL m ; n = k * ( 2 * t ) + ( n mod 2 ) ; dom B = 2 -tuples_on the carrier of V \ { {} } & rng B = the carrier of V ; consider r such that r _|_ a and r _|_ x and r _|_ y and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 in dom ( f ^ ) ; for L being complete LATTICE for a , b being Element of ConceptLattice ( L ) holds a , b ] is isomorphic implies a = b [ gi , gj ] in Ii \ Ii " { i } & [ gi , gj ] in Ii ; set S2 = 1GateCircStr ( x , y , c ) , S2 = 1GateCircStr ( y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r st r in dom f1 & r in dom f2 holds f1 . r = 0 ; reconsider y = ( a " ) * ( F . ( a * F . ( a * x ) ) ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - g ) ) . c ) <= h . c ; set G2 = the as a as a as a as Vertex of G , ( the carrier' of G ) \ { v } ; reconsider g = f as PartFunc of REAL , REAL-NS n , REAL-NS n , r be Real ; |. s1 . m - p .| / |. p .| < d / ( p |^ m ) ; for x being element st x in ( for u being element st u in ( t * u ) holds u in ( t * u ) ; P = the carrier of ( TOP-REAL n ) | P & Q = ( TOP-REAL n ) | P ; assume that p10 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) and LSeg ( p1 , p2 ) /\ LSeg ( p2 , p2 ) = {} ; ( 0. X \ x ) to_power ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c * d ) <= 2 * C1 * C2 + ( 2 * c * d ) ; f , g , h be Point of the carrier of X , g be Point of Y , f be PartFunc of X , Y ; set h = Hom ( a , g (*) f ) ; then idseq ( n ) | ( Seg m ) = idseq ( m ) & m <= n ; H * ( g " * a ) in the right of H & H * ( g " * a ) in the carrier of H ; x in dom ( ( cos * sin ) `| Z ) & x in dom ( ( cos * cos ) `| Z ) ; cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 ) misses C ; LE q2 , p4 , P & LE p1 , p2 , P & LE p2 , p3 , P & LE p1 , p2 , P & p2 in P implies p1 , p2 , P attr B is bounded means : Def2 : B c= BDD A & B c= BDD B ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len ( ( p + - n ) * ( p + - n ) ) ; pred a <> 0. K means : Def2 : the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom \mathbb B and I = len PI + j and len I = len PI + j ; consider x1 such that z in x1 and x1 in P8 and x2 in P8 and x = [ x1 , x2 ] ; for n ex r being Element of REAL st X [ n , r ] & X [ n , r ] set CA1 = Comput ( P2 , s2 , i + 1 ) , CA2 = Comput ( P2 , s2 , i + 1 ) , CA2 = P2 ; set cv = 3 / ( 3 / ( 2 * ( a - b ) ) ) , cv = 3 / ( 2 * ( a - b ) ) ; conv @ W c= union ( F .: ( E " ( W " ( W " ( W ) ) ) ) ) ; 1 in [. - 1 , 1 .] /\ dom ( ( arccot * ( arccot ) ) `| Z ) ; r3 <= s0 + ( r0 - ( 1 - ( v2 - ( v2 - ( v2 - ( v1 - ( v2 - ( v2 - ( v2 - ( v2 - ( v2 - ( v2 - ( v2 - ( v2 - v1 - v1 - v2 - v1 ) ) ) ) ) ) / 2 ) ) ) ) dom ( f * f4 ) = dom f /\ dom ( f * f4 ) .= dom f /\ dom ( f * f4 ) ; dom ( f * G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f1 \ { x0 } ; reconsider g9 = gpp , gp = gp as Point of ( TOP-REAL n1 ) | K1 ; ( T * h . s ) . x = T . ( h . s . x ) ; I . ( L . ( J . x ) ) = ( I * L ) . x ; y in dom ( *> , ( commute ( Frege ( A . o ) ) ) . ( ( commute ( A . o ) ) . x ) ) ; for I being non degenerated commutative Ring for I being commutative non empty doubleLoopStr holds the carrier of I is commutative set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* Initialize ( ( intloc 0 ) .--> 1 ) ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S1 in the carrier of [. a , b .] ; v . ( l-13 . i ) = ( v *' ) . i .= v . i ; consider n being element such that n in NAT and x = seq . n and x in dom seq and y = seq . n ; consider x being Element of c such that F1 . x <> F2 . x and F1 . x <> 0 ; holds Funcs ( X , 0 , x1 , x2 , x3 , x4 ) = { E } & card X = 1 ; j + ( 2 * ( k9 + 1 ) ) > j + ( 2 * ( k9 + 1 ) ) ; { s , t } on A3 & { s , t } on B2 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 , n3 , n3 , n3 ) & n2 > len crossover ( p2 , p1 , n1 , n2 , n3 ) ; mm1 . HT ( mm2 , T ) = 0. L & mm2 . HT ( mm2 , T ) = 0. L ; then H1 , H2 |^ ( a * b ) -> that ( Cl H1 ) , ( Cl H2 ) |^ ( a * b ) -> that a * b = a * b ; ( ( N-min L~ f ) .. ( f | ( 1 + 1 ) ) ) .. ( f | ( 1 + 1 ) ) > 1 ; ]. s , 1 .[ = ]. s , 2 .[ /\ [. 0 , 1 .] .= [. 0 , 1 .] /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) & x2 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , X be non empty set ; DigA ( t-23 , z9 ) is Element of k -tuples_on ( k -tuples_on ( k -tuples_on ( k -tuples_on ( k -tuples_on ( k -tuples_on ( k -tuples_on ( k -tuples_on ( k -tuples_on ( k + 1 ) ) ) ) ) ) ) ) ; I gcd 22= di2 & I is Element of k2 implies I is Element of k2 u9 ~ { u9 } = { [ a , u9 ] , [ a , u9 ] } & u9 in { [ a , u9 ] } ; ( w | p ) | ( p | ( w | ( w | ( w | ( w | p ) ) ) ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u1 in W2 and u2 in W2 ; for y st y in rng F ex n st y = a |^ n & a in F . n ; dom ( ( g * ( \mathord V , C ) ) | K ) = K & dom ( ( g * ( id V , C ) ) | K ) = K ; ex x being element st x in ( ( ( ( U0 ) \/ A ) . s ) . s ) ; ex x being element st x in ( ( that ( for s being element st s in O holds s in O ) ) . s ) ; f . x in the carrier of [. - r , r .] & f . x in [. - r , r .] ; ( the carrier of X1 union X2 ) /\ ( the carrier of X1 union X2 ) <> {} & ( the carrier of X1 union X2 ) /\ ( the carrier of X1 union X2 ) <> {} ; L1 /\ LSeg ( p10 , p2 ) c= { p10 } /\ LSeg ( p10 , p2 ) \/ { p2 } ; ( b + ( bLet ) ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] ; consider z being Point of IT such that z = y and P [ z ] and z in A and z in B ; ( the sequence of ( ( the sequence of X ) | ( the carrier of X ) ) ) . ( thesis ) <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 ; assume q in the carrier of ( TOP-REAL 2 ) | K1 & q in the carrier of ( TOP-REAL 2 ) | K1 ; f | E-4 ` = g | E-4 ` .= g | EK " .= g | EK .= g | EK ; reconsider i1 = x1 , i2 = x2 as Element of NAT , i = ( len x1 ) -tuples_on REAL ; ( a * A ) @ = ( a * ( A @ ) ) @ .= a * ( A @ ) ; assume ex n0 being Element of NAT st f |^ n0 is min & f . n0 is min ; Seg len ( ( ( f1 ^ f2 ) | ( i + 1 ) ) ^ ( ( f1 ^ f2 ) | ( i + 1 ) ) ) = dom ( ( f1 ^ f2 ) | ( i + 1 ) ) ; ( Complement ( A1 ) ) . m c= ( ( Complement ( A1 ) ) . n ) . m ; f1 . p = p9 & g1 . p = d & g1 . p = d & g2 . p = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) .= F | Y ; ( x | y ) | z = z | ( y | x ) ; ( ( |. x .| ) |^ n ) / ( ( |. x .| ) |^ ( n + 1 ) ) <= ( ( |. r2 .| ) |^ n ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & rng ( F ) = dom g ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W3 and W1 is Subspace of W2 ; ||. ( ( t . x ) - ( t . x ) ) .|| = lim ||. ( ( t . x ) - ( t . x ) ) .|| ; assume that i in dom D and f | A is lower and g | A is lower ; ( ( p `2 ) ^2 - ( p `2 ) ^2 ) <= ( - ( - ( - ( - ( - 1 ) ) ) ) ) ^2 ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) & g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) ; set N8 = ( N-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ; for T being non empty TopSpace holds T is countable implies the TopStruct of T is countable width ( B |-> 0. K ) = len ( B @ ) .= len ( B @ ) .= len ( B @ ) ; pred a <> 0 means : Def2 : ( A \ B ) Y. = ( A \ a ) Let ( B \ a ) ; then f is_\cal 2 , u & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 & pdiff1 ( f , 2 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and b <> 0 and c > 0 and d > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } implies w1 = w2 p2 /. IC s = p2 . IC s .= p2 . IC s .= ( p2 . IC s ) .= ( p2 . IC s ) ; ind ( T-10 | b ) = ind b .= ind b - ind b .= ind b - ind b + ind b - ind b .| ; [ a , A ] in the Points of G_ ( k , X ) & [ a , A ] in the \cdot of ( the Points of X ) ; m in ( the Arrows of C ) . ( o1 , o2 ) & m in ( the Arrows of C ) . ( o1 , o2 ) ; ( ( a 'imp' CompF ( PA , G ) ) ) . z = FALSE ; reconsider phi = phi , phi = phi , phi = phi as Element of ( len phi ) -tuples_on BOOLEAN ; len s1 - ( len s2 - 1 ) + 1 > 0 + 1 - 1 ; delta ( D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the carrier' of A ~ & f22 in the carrier' of A ~ ; the carrier of ( TOP-REAL 2 ) | K1 = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 ; consider z being element such that z in dom g2 and p = g2 . z and x = g2 . z ; [#] V1 = { 0. V1 } .= the carrier of (0). V1 .= the carrier of ( the carrier of V1 ) ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P2 is one-to-one ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and |. x1 - x0 .| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ^ <* p *> ; c / ( |[ b , c ]| ) = c / ( |[ a , c ]| ) .= c / ( |[ a , c ]| ) .= c ; reconsider t1 = p1 , t2 = p2 as Term of C , V , s be SortSymbol of C ; ( 1 - ( 2 * PI ) ) in the carrier of [. 1 / 2 , 1 / 2 .] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D * ( p1 `2 ) .= C * ( p1 `2 ) + D * ( p1 `2 ) ; R . ( b - a ) = 2 * PI * a-b .= 2 * PI * a-b .= b - a ; consider 1 such that B = ( - 1 ) * C + ( - 1 ) * A and 0 <= 1 ; dom g = dom ( ( ( the Sorts of A ) * ( the Arity of S ) ) * ( the Arity of S ) ) ; [ P . ( l . ( k + 1 ) ) , P . ( k + 1 ) ] in => ( ( T . ( k + 1 ) ) , ( T . ( k + 1 ) ) ) ; set s2 = Initialize s , P2 = P +* stop I ; reconsider M = mid ( z , i2 , i1 ) , N = L~ z as non empty Subset of TOP-REAL 2 ; y in product ( ( the support of J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 ; assume x in the left of g or x in the right of g or x in the right of g & x in the carrier of g ; consider M being strict non-empty Subgroup of A\mathopen ( A , T ) such that a = M and T is non-empty & M is non-empty ; for x st x in Z holds ( ( ( #Z 2 ) * f ) `| Z ) . x <> 0 & ( ( #Z 2 ) * f ) `| Z ) . x = f . x len W1 + len W2 + m = 1 + len W2 + len W3 + m .= len W2 + len W3 + m + 1 ; reconsider h1 = ( vseq . n ) - ( t-16 . n ) as Lipschitzian Lipschitzian from X , Y ; ( i mod len ( p + q ) ) + 1 in dom ( p + q ) ; assume that s2 is negative and F in the v of s2 and F in the v of s2 and F in the v of s2 ; ( ( ( ( ( ( ( ( x , y ) ) / 2 ) ) * ( x , y ) ) * ( x , y ) ) ) * ( x , y ) ) ) * ( x , y ) = gcd ( x , y , z ) ; for u being element st u in Bags n holds ( p *' + m ) . u = p . u + m . u for B being Subset of u-5 st B in E holds A = B or A misses B or A misses B ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ W1 , W1 = tree ( p ) , W2 = tree ( q ) ; x in { X where X is Ideal of L : X is non empty & x in X } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W2 /\ ( the carrier of W1 ) ; ( 1 - a ) * id a = ( 1 - a ) * id a .= ( 1 - a ) * id a .= ( 1 - a ) * id a ; ( ( X --> f ) . x ) = ( X --> dom f ) . x .= f . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) , y = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => q ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( being / 2 ) |^ ( n -' m ) ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( ( f1 (#) f2 ) * ( f1 (#) f2 ) ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and c2 . r = c2 . r ; ex P st a1 on P & a2 on P & a3 on P & a1 on P & a2 on P & a3 on P & a1 <> a2 & a2 <> a3 & a3 <> a3 & a3 <> a1 & a3 <> a1 & a2 <> a3 & a3 <> a1 & a3 <> a1 & a3 <> a1 & a3 <> a1 & a3 <> a1 & a3 <> a1 reconsider gf = g " * f , hf = h " * g as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in the topology of T ; n in { i where i is Nat : i < n0 + 1 & i < n + 1 } ; ( F * ( i , j ) ) `2 >= ( F * ( m , k ) ) `2 ; assume K1 = { p : p `1 >= sn & p `2 >= sn & p `1 <= 0 & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) * ( a , O1 ) ; set Is1 = in | [ [ a , intloc 0 ] , [ a , intloc 0 ] , [ a , intloc 0 ] ] , Is1 = [ a , intloc 0 ] , Is1 = [ a , intloc 0 ] , Is1 = [ a , intloc 0 ] , Is1 = [ a , intloc 0 ] , Is1 = [ a , intloc 0 ] , Is1 = [ a , intloc 0 ] ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 & z /. i <> z /. 1 ; X c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 c= the carrier of L2 implies X is Subset of L1 consider x9 being Element of GF ( p ) such that x9 |^ 2 = a & x9 |^ 3 = b ; reconsider ef = ef , ff = ff , ff = ff as Element of D * ; ex O being set st O in S & C1 c= O & M . O = 0. ; consider n be Nat such that for m be Nat st n <= m holds S . m in U1 and S . m in U1 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) * reproj ( i , x ) ) . x ; defpred P [ Nat ] means A + succ $1 = succ $1 & A = succ $1 & A = succ $1 implies A = succ $1 ; the left of - g = the left of - g & the left of - g = the left of - g implies g = f reconsider p\mathopen = x , p\mathopen = y , p\mathopen = z as Point of ( TOP-REAL 2 ) | K1 , ( TOP-REAL 2 ) | K1 ; consider g2 such that g2 = y and x <= g2 and g2 <= x0 and x0 <= g2 and g2 <= x0 and g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] & X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 & len ( x2 ^ y2 ) = len x2 + len y2 ; for x being element st x in X holds x in the set of the set of \HM { 0 } & x in the set of n implies x in X LSeg ( p11 , p2 ) /\ LSeg ( p1 , p11 ) = {} or LSeg ( p1 , p11 ) /\ LSeg ( p11 , p2 ) = {} ; func non empty set equals [: X , X :] \/ [: Y , X :] .= [: X , X :] \/ [: Y , X :] ; len ( ( the carrier of ( ( C | ( 1 , len the { the carrier of C , 1 ) ) ) ) ) ) <= len ( ( the charact of ( C | ( 1 , len the { the carrier of C } ) ) ) ) ; pred K is \cap be Field means : Def2 : a <> 0. K & v . ( a |^ i ) = i * v . ( a |^ i ) ; consider o being OperSymbol of S such that t . {} = [ o , the carrier of S ] and o in ( the Sorts of A ) . o ; for x st x in X ex y st x c= y & y in X & not y is Z & f . x = f . y IC Comput ( P-6 , s , k ) in dom ( ( n + 1 ) --> ( k + 1 ) ) ; pred q < s means : Def2 : r < s & s < q & q in ]. p , q .[ implies r < s ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) `1 and c in X ; func the ResultSort of S2 -> Function of the carrier' of S2 , the carrier' of S2 means : Def2 : the ResultSort of it = id the carrier' of S2 & the ResultSort of it = id the carrier' of S2 ; set yp1 = [ <* y , z *> , f2 ] , yp2 = [ <* z , x *> , f3 ] ; assume x in dom ( ( ( #Z 2 ) * ( ( arccot ) ^ ) ) `| Z ) & x in dom ( ( #Z 2 ) * ( ( arccot ) ^ ) ) ; r-7 in Int cell ( GoB f , i , ( GoB f ) * ( i , 1 ) + ( GoB f ) * ( i , 1 ) ) ; ( q `2 ) ^2 >= ( ( Cage ( C , n ) ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a ` : a ` in X } ; i - len f <= len f + len f - len f & i - len f <= len f + len f - len f ; for n ex x st x in N & x in N1 & h . n = - x0 & h . n = x0 set s0 = ( \mathop { a , I , p , s ) . i , s0 = ( s , p , s ) . i , s0 = ( s , p , s ) . i ; p ( ) . k = 1 or p ( ) . 0 = - 1 or p ( ) . 0 = 1 or p . 1 = 0 ; u + Sum ( L-18 ) in ( U \ { u } ) \/ { u + Sum ( L-18 ) } ; consider x9 being set such that x in x9 and x9 in V1 and x9 in V1 and x = f . x9 ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( ( len p ) - ( len p ) ) ; g + h = gg + hg & h + g = g + h + h ; L1 is distributive & L2 is distributive implies L1 ~ is distributive & for x being Element of L1 holds x in the carrier of L2 iff x in the carrier of L1 pred x in rng f & y in rng ( f | x ) implies f . x = f . y & f . y = f . x ; assume that 1 < p and p + 1 / q = 1 and 0 <= a and 0 <= b and a <= b and b <= q ; F* ( f , \langle fA1 *> ) = rpoly ( 1 , the carrier of F_Complex ) *' + t .= 1. F_Complex ; for X being set , A being Subset of X holds A ` = {} implies A = X & A = X ( ( ( ( ( ( Y ) ) / 2 ) ) * ( ( ( Y ) / 2 ) ) * ( ( i + 1 ) ) / 2 ) ) ) <= ( ( ( ( Y ) / 2 ) * ( ( i + 1 ) ) / 2 ) ) * ( ( ( Y ) / 2 ) * ( ( i + 1 ) / 2 ) ) ; for c being Element of the Sorts of A , a being Element of the Sorts of A holds c <> a & a in A s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= Exec ( i2 , s2 ) . GBP .= Exec ( i2 , s2 ) . GBP .= s . intpos i .= s . intpos i ; for a , b being Real holds |[ a , b ]| in ( y >= 0 ) implies b >= 0 & a >= 0 & b >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y \ x = x ` \ y ` mode BCK-algebra of i , j , m , n , m , n , m , n , m , m , n , m , n , m , m , n , m , n , m , m , n , m , n , m , n , m , m , n ; set x2 = |( Re ( y - x ) , Im ( y - x ) )| ; [ y , x ] in dom u5 & u5 . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A & ( lower_bound divset ( D , k ) ) . ( upper_bound divset ( D , k ) ) <= ( lower_bound A ) . ( lower_bound A ) ; 0 <= delta ( S2 ) . n & |. delta ( S2 ) . n .| < ( e / 2 ) * ( 2 |^ n ) ; ( - ( q `1 ) ) ^2 <= ( - ( q `2 ) ) ^2 + ( - ( q `2 ) ) ^2 ; set A = ( 2 / b-a ) , B = ( - 1 ) / ( 2 * b-a ) ; for x , y being set st x in R" holds x , y are_\hbox { x , y } , R deffunc FF2 ( Nat ) = b . $1 * ( M * G ) . $1 * ( M * G ) . $1 ; for s being element holds s in -> Element of \mathclose { f } iff s in -> Element of \mathclose { f } \/ ( f " { f } ) for S being non empty non void non void non empty ManySortedSign for S being non empty non void ManySortedSign st S is connected holds S is connected max ( degree ( ( z | ( |. z .| ) ) ) , degree ( ( z | ( |. z .| ) ) ) ) >= 0 ; consider n1 be Nat such that for k holds seq . ( n1 + k ) < r + s and n1 < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( A ) ; set n-15 = n-13 '&' ( M . ( x qua Element of BOOLEAN ) ) , n-15 = M . ( x qua Element of BOOLEAN ) ; f " V in the topology of X & f " V in D & f " V in D & f " V in D implies f " V in D rng ( ( a ^\ c ) \mathbin ( 1 , b ) ) c= { a , c , b } consider y being as ] a as WWof G1 , G2 such that y ` = y and dom y ` = WWWWWWWW dom ( ( 1 / f ) (#) ( f ^ ) ) /\ ]. x0 - r , x0 .[ c= ]. x0 - r , x0 .[ & ( f ^ ) . x0 in ]. x0 - r , x0 .[ ; as Matrix of i , j , n , r , - r , p , - r , q be Element of REAL n ; v ^ ( n-3 |-> 0 ) in Lin ( ( rng ( B-9 | ( Seg n ) ) ) ) & v ^ ( nt1 | ( Seg n ) ) ) in Lin ( ( rng ( B-9 | ( Seg n ) ) ) ) ; ex a , k1 , k2 st i = a := k1 & i = b := k2 & k2 = c := k2 ; t . NAT = ( NAT .--> succ i1 ) . NAT .= ( NAT .--> succ i1 ) . NAT .= succ 5 .= succ 5 .= succ 5 ; assume that F is bbfamily and rng p = F and rng p = Seg ( n + 1 ) and for i be Nat st i in Seg ( n + 1 ) holds p . i in F . i ; not LIN b , b9 , a & not LIN a , a9 , c & not LIN a , a9 , c & not a , a9 // a9 , b9 & a , a9 // a9 , c9 ( L1 over L2 ) \& O c= ( L1 \& O ) \& ( L2 \& O ) consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) and for d being Element of E holds F . d = G ( d ) ; consider a , b such that a * ( Seg w ) = b * ( -w ) and 0 < a & a < b & b < 0 ; defpred P [ FinSequence of D ] means |. Partial_Sums ( $1 ) . $1 .| <= Partial_Sums ( $1 ) . $1 & Partial_Sums ( $1 ) . $1 <= Partial_Sums ( $1 ) . $1 ; u = cos . ( x , y ) * x + cos . ( x , y ) * y .= cos . ( x , y ) * y .= v ; dist ( seq . n , x + g ) <= dist ( seq . n , g + x ) + 0 ; P [ p , |. p .| ^ <* {} *> , {} ] & P [ p , {} ] implies p in the Sorts of A consider X being Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and inP [ X ] ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & h <= g & l1 <= h } ; ( Partial_Sums ( ( G . n ) * vol ) ) . n <= ( Partial_Sums ( ( G . n ) * vol ) ) . n ; f . y = x .= x * 1_ L .= x * ( power L ) .= x * ( power L ) .= x * ( ( x * y ) * ( y * y ) ) ; NIC ( ( <% i1 %> , ( succ i1 ) ) \ { succ i1 } , k ) = { i1 , succ i1 } .= { succ i1 } ; LSeg ( p10 , p2 ) /\ LSeg ( p1 , p11 ) = { p1 } /\ LSeg ( p1 , p11 ) .= { p1 } /\ LSeg ( p1 , p11 ) ; product ( ( the support of I-15 ) +* ( i , { 1 } ) ) in ( Z * * ( i , { 1 } ) ) ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) .= Following ( s1 , n ) .= Following ( s2 , n ) ; W-bound ( Qq ) <= ( q1 `1 ) ^2 & ( q1 `1 ) ^2 <= ( q1 `1 ) ^2 & ( q1 `2 ) ^2 <= ( q1 `2 ) ^2 ; f /. i2 <> f /. ( ( i1 + len g -' 1 ) -' 1 ) & f /. ( ( i1 + 1 ) -' 1 ) = f /. ( i1 + 1 ) ; M , f / ( x. 3 , x. 4 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) |= H ; len ( ( P ^ ) | ( len P + 1 ) ) in dom ( ( P ^ ) | ( len P + 1 ) ) ; A |^ ( me , n ) c= A |^ ( m , n ) & A |^ ( k , l ) c= A |^ ( k , l ) ; REAL n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X \not c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA .= ( CurInstr ( P3 , Comput ( P3 , s3 , l ) ) ) ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( id the carrier of X ) .| & ||. v .|| = ||. v .|| for phi holds phi in X implies phi in X & not phi in X & phi in X & phi in X & phi in X rng ( ( Sgm dom ( f | ( dom f ) ) ) | ( dom f /\ dom ( f | ( dom f ) ) ) ) c= dom ( f | ( dom f /\ dom ( f | ( dom f ) ) ) ) ) ; ex c being FinSequence of D ( ) st len c = k & P [ c ] & a = c ^ <* d *> ; ( the_arity_of ( a , b , c ) ) = <* \mathop { \rm hom ( b , c ) , \mathop { \rm hom ( a , b , c ) *> , \mathop { \rm Arity ( a , b , c ) } ) ; consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous ; a1 = b1 & a2 = b2 or a1 = b1 & a2 = b2 & a3 = b1 & a4 = b2 & a5 = b1 & a5 = b2 & a5 = b1 & a5 = b2 ; D2 . ( indx ( D2 , D1 , n1 ) + 1 ) = D1 . ( n1 + 1 ) .= D2 . ( n1 + 1 ) ; f . ( ||. r .|| ) = ||. r .|| /. 1 .= ||. r .|| . 1 .= ||. r .|| . 1 .= r . 1 .= r . 1 .= r . 1 ; consider n be Nat such that for m be Nat st n <= m holds C-25 . m = C-25 . m and n <= m ; consider d be Real such that for a , b be Real st a in X & b in Y holds a <= d & b <= b ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative means : Def2 : for b being Element of X holds F \hbox { b } = f . b & f is one-to-one ; p = - ( - ( - ( p `1 / |. p .| - cn ) ) ) * ( 1 - cn ) .= 1 * ( ( p `1 / |. p .| - cn ) / ( 1 - cn ) ) .= 1 * ( ( p `1 / |. p .| - cn ) / ( 1 - cn ) ) .= 1 * ( ( p `1 / |. p .| - cn ) / ( 1 - cn ) ) ; consider z1 such that b `1 , x3 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , a9 , a9 , a9 , b9 be element ; consider i such that Arg ( ( Rotate ( s ) ) . q ) = s + Arg ( q ) + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card f . x and rng g = f . x and rng g = dom f and g is one-to-one ; assume that A = P2 \/ Q2 and P2 <> {} and Q2 <> {} and P2 <> {} and ( P2 = {} or P2 = {} or P2 = {} ) ; attr F is associative means : Def2 : F .: ( F .: ( f , g ) , h ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x in z `1 & x < i or m < i & i < m ; consider k2 being Nat such that k2 in dom P-2 and l in P-2 . k2 and P [ k2 ] ; seq = r * seq implies for n holds seq . n = r * seq . n & seq is convergent & lim seq = r * seq . n F1 . [ ( id a ) * [ a , a ] , ( id a ) * [ b , b ] ] = f * ( id a ) ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 } & "\/" ( { p "\/" q where p is Element of L : p in D1 } , L ) = { p "\/" q where q is Element of L : q in D2 } ; consider z being element such that z in dom ( ( dom F ) * ( the Arity of S ) ) and ( ( dom F ) * ( the Arity of S ) ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y cell ( G , i , 1 ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and e in ( T | E1 ) . e ; ( F @ * b1 ) . x = ( Mx2Tran ( J , Bdiv , Bdiv ) ) . ( \mathbb j , j ) ; - 1 / ( - 1 ) = mmD | n .= mmD | n .= mmD | n .= ( - 1 ) (#) ( - 1 ) .= ( - 1 ) (#) ( - 1 ) .= ( - 1 ) (#) ( - 1 ) .= ( - 1 ) (#) ( - 1 ) ; pred for x being set st x in dom f /\ dom g holds g . x <= f . x & g . x <= f . x ; len ( f1 . j ) = len ( f2 /. j ) .= len ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( ( f2 . j ) * ( All ( 'not' All ( 'not' a , A , G ) , B , G ) '<' Ex ( 'not' All ( 'not' a , B , G ) , A , G ) LSeg ( E . ( k + 1 ) , F . ( k + 1 ) ) c= Cl RightComp Cage ( C , ( k + 1 ) + 1 ) ; x \ a |^ m = x \ ( a |^ k * a ) .= ( x \ a ) \ a .= ( x \ a ) \ a .= x ; k -th ininin( I-5 ) . k = ( commute ( Il . k ) ) . k .= ( commute ( ( f . k ) ) * ( f . k ) ) ) . i .= ( ( f . k ) * ( f . k ) ) * ( f . k ) ; for s being State of Ai2 holds Following ( s , n ) . 0 + ( n + 2 ) * ( n + 1 ) is stable ; for x st x in Z holds f1 . x = a ^2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 ; support ( support ( support ( support ( m ) ) \/ support ( m ) ) ) c= support ( m ) \/ support ( m ) \/ support ( m ) ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier of B ) * , the carrier of C ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + a ^2 ) ) ; phi /. succ ( b1 . a ) = g . a & phi . ( a . a ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) . i ) and i in dom ( ( F ^ <* p *> ) . j ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 } = { x1 } \/ { x2 , x3 , x4 , x5 } .= { x1 , x2 , x3 , x4 } ; the Sorts of U1 /\ ( U1 "\/" U2 ) ) c= the Sorts of U1 & the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 /\ ( U1 "\/" U2 ) ; ( - ( 2 * a * ( b - a ) ) / b ) ^2 + ( - ( 2 * a * ( b - a ) ) / b ) ^2 > 0 ; consider W00 such that for z being element holds z in W00 iff z in N ~ N & P [ z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r and ( the Arity of S ) . o = r ; Z = dom ( ( ( #Z ( ( n + 1 ) ) * ( ( #Z n ) * ( f1 + #Z n ) ) ) ) ) ; sum ( f , SS1 ) is convergent & lim ( ( f | SS1 ) * ( lim S ) ) = integral ( f , SS1 ) * ( lim S ) ; ( X . ( a9 , f ) => ( g . ( a9 , b9 ) ) ) => ( x9 , f . ( a9 , b9 ) ) in -> sequence of l . ( a9 , b9 ) ; len ( M2 * M3 ) = n & width ( M2 * M3 ) = n & len ( M2 * M3 ) = n & width ( M1 * M2 ) = n ; attr X1 union X2 means : Def2 : X1 , X2 are_separated & X2 , X1 , X2 , X3 be SubSpace of X , X2 be Subset of X ; for L being upper-bounded antisymmetric non empty RelStr for X being non empty RelStr for s being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-129 = F1 . ( ( b - a ) / ( b - a ) ) as Function of ( the carrier of M ) , M ; consider w being FinSequence of I such that the InitS of M = the InitS of M and the InitS of M is_{ s ^ w where s is Element of M : s in the carrier of M } and w in q ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= 1_ H .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) ; assume for i be Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & z in z & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier ( L ) = C & for K being Subset of X st K in C holds K /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 ; reconsider oY = o `1 as Element of TS ( ( the Sorts of A ) * ( the Arity of S ) ) . o ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x2 ) ; EP " . 1 = ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) as non empty Subset of U0 ( U1 "\/" U2 ) , ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" U2 ) . ( ( U1 "\/" ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" y ) ; |. f . ( s1 . ( l1 + 1 ) ) - ( s1 . ( l1 + 1 ) ) .| < ( 1 - M ) * ( 1 - M ) ; LSeg ( ( Lower_Seq ( C , n ) ) * ( i , j ) , ( Lower_Seq ( C , n ) ) * ( i + 1 , j ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- ( x - x0 ) ) + R /. ( x- ( x - x0 ) ) ; g . c * ( - g . c ) + f . c <= h . c * ( - f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) .= f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the set of the carrier of A and ColVec2Mx f = ( ColVec2Mx b ) * ( ColVec2Mx f ) and len f = len A and width f = width A and f is LSeg of f , 1 , 1 , 2 , 3 , 4 , 5 , 6 , 7 *> = Indices A ; len ( - M1 ) = len M1 & width ( - M2 ) = width M1 & width ( - M1 ) = width M2 & width ( - M2 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( \mathop { n } ) \/ the InternalRel of ( \mathop { n } ) \/ the InternalRel of ( \mathop { n } ) \/ the InternalRel of ( \mathop { n } ) \/ the InternalRel of ( \mathop { n } ) \/ the InternalRel of ( n + 1 ) ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in 2 , 2 & pdiff1 ( f1 , 2 ) , 2 ; pred a <> 0 & b <> 0 & Arg a = Arg b & Arg ( - a ) = Arg ( - b ) & Arg ( - a ) = Arg ( - a ) ; for c being set st not c in [. a , b .] holds not c in Intersection ( the REAL of a , b ) & ( the in of a , b ) is open implies c in union ( the REAL of a , b ) assume that V1 is linearly-independent and V2 is closed and V = { v + u : v in V1 & u in V1 & u in V1 } and V1 is closed and V1 is closed and V2 is closed and V1 is closed ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N implies z * y1 + ( 1 - z ) * y2 in N rng ( ( ( Pk1 qua Function ) " ) * Sk1 ) = Seg card ( ( ( card ( ( k2 + 1 ) -tuples_on REAL ) ) * ) ) .= Seg card ( ( ( card ( ( k2 + 1 ) -tuples_on REAL ) ) * ) ) ; consider s2 being Integer such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b . n and s2 . n <= b . n ; h2 " . n = h2 . n " & 0 < - ( ( 1 / 2 ) |^ n ) & 0 < ( - ( ( 1 / 2 ) |^ n ) ) |^ ( n + 1 ) ) ; ( Partial_Sums ( ||. seq .|| ) ) . m = ||. seq .|| . m .= ||. seq .|| . m .= ( ||. seq .|| ) . m .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b ; - v = - ( - 1 ) * v & - w = - ( - 1 ) * v & - ( - w ) * v = - ( - ( - 1 ) * v ) ; sup ( ( k .: D ) .: ( f .: D ) ) = sup ( ( k .: D ) .: ( f .: D ) ) .= k . ( f . ( f . ( k + 1 ) ) ) .= k . ( f . ( k + 1 ) ) .= k . ( f . ( k + 1 ) ) ; A |^ ( k , l ) ^^ ( A |^ ( n , l ) ) = ( A |^ ( n , l ) ) ^^ ( A |^ ( k , l ) ) .= A |^ ( k , l ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J , K being Subset of R , I , J being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) ^2 = ( p `1 ) ^2 + ( p `2 ) ^2 .= ( p `1 ) ^2 + ( p `2 ) ^2 .= ( p `1 ) ^2 + ( p `2 ) ^2 ; for a , b being non zero Nat for a , b being Element of NAT st a , b are_relative_prime holds support ( a * b ) = support ( a ) + support ( b ) & support ( a ) = support ( a ) + support ( b ) consider A5 being countable set such that r is countable and A5 is Element of CQC-WFF ( Al ) and A5 is ( len A5 ) -element ; for X be non empty addLoopStr for M , N being Subset of X , x , y being Point of X st y in M & x + y in N holds x + y in N + M { [ x1 , x2 ] , [ y1 , y2 ] } c= { x1 , y1 } & { x1 , x2 } in { x1 , y1 } & { x2 , y2 } in { x1 , x2 } ; h . ( f . O ) = |[ A * ( f . O ) + B , C * ( f . O ) + D ]| ; ( Gauge ( C , n ) * ( k , i ) ) * ( k , i ) in L~ Lower_Seq ( C , n ) /\ L~ Lower_Seq ( C , n ) ; cluster m , n are_relative_prime -> prime for Nat , p be prime Nat , n be Element of NAT , m be non zero Nat ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ a <= c holds a e e <= c & a e e <= c consider b being element such that b in dom ( H / ( x. 0 , y ) ) and z = ( H / ( x. 0 , y ) ) . b ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G or e Joins W . 3 , W . 5 , G ; ( ] support ( o ) ) . ( 2 * n ) . x = ( : ( h ) . ( 2 * n ) ) . ( 2 * n ) . x + ( h . n ) . x ; j + 1 = ( i - len h11 ) + 2 .= i + 1 - len h11 + 2 - 1 .= i + 1 - len h11 + 2 - 1 .= i + 1 - len h11 + 2 - 1 ; ( *' S ) . f = *' S . ( ( S *' ) . f ) .= S . ( ( S *' ) . f ) .= S . f ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 ) = Sum ( L2 ) and Sum ( L2 ) = Sum ( L2 ) ; attr R is min means : Def2 : for p , q st p in R & q in R holds ex P st P is_max ( p , q ) & P c= R ; dom product ( product ( X --> f ) ) = meet ( dom ( X --> f ) ) .= meet ( X --> f ) .= meet ( X --> f ) .= meet ( X --> f ) .= ( meet ( X --> f ) ) . x ; upper_bound ( proj2 .: ( Upper_Arc ( C ) /\ Lower_Arc ( C ) /\ \hbox { w } ) ) <= upper_bound ( proj2 .: ( C /\ L~ Cage ( C , n ) /\ L~ Cage ( C , n ) ) ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - x0 .| < r i * f-28 - ( i * f<> i * fmax ) = i * f-28 - ( i * fmax ) .= i * ( fmax ) - ( i * fmax ) ; consider f being Function such that dom f = 2 -tuples_on X & for Y being set st Y in 2 -tuples_on X holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g1 in union C and g2 in C and g2 in C ; func d |-count n -> Nat means : Def2 : ( d |^ n ) divides n & ( d |^ n ) |^ ( n + 1 ) divides n & ( d |^ n ) divides n ; f\rm . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . ( 2 * ( x * ( x * ( x * ( x * y ) ) ) ) ) .= a ; t = h . D or t = h . B or t = h . C or t = h . E or t = h . F or t = h . J or t = h . M ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( ( seq . n ) * ( seq . n ) ) ; ( ( q `1 ) ^2 + ( q `2 ) ^2 ) <= ( ( q `1 ) ^2 + ( q `2 ) ^2 ) * ( ( q `2 ) ^2 + ( q `2 ) ^2 ) ; h0 . ( i + 1 + 1 ) = h21 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) .= h21 . ( i + 1 + 1 -' len h11 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier' of S } such that a = [ o , x2 ] and o in { the carrier' of S } ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & b <= a & a <= b & b <= a & a <= b ||. h1 .|| . n = ||. ( h1 . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| ; ( ( - ( 1 / 2 ) ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) ) . x = f . x - ( ( 1 / 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) . x .= ( ( - 1 / 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( #Z 2 ) ) ) ) . x ; pred r = F .: ( p , q ) means : Def2 : len r = len q & for i st i in dom r holds r . i = F ( i ) ; ( rbeing ^2 - ( r / 2 ) ^2 ) + ( rbeing Element of REAL ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for i be Nat , M be Matrix of n , K st i in Seg n holds Det ( M @ ) = Sum ( ( Line ( M @ ) ) @ ) then a <> 0. R & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v ; ( p . ( j -' 1 ) ) * ( q *' ) . ( i + 1 -' j ) = Sum ( p . ( j -' 1 ) ) * ( q . ( j -' 1 ) ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) " ) . $1 * ( ( R /* ( h ^\ n ) ) " ) . $1 ; assume that the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H2 = f .: ( the carrier of H2 ) and the carrier of H2 = f .: the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o .= ( the Sorts of Free ( S , X ) ) . o ; H1 = n + 1 - ( 2 to_power ( n + 1 ) ) .= n + 1 - ( 2 to_power ( n + 1 ) ) .= n + 1 - ( 2 to_power ( n + 1 ) ) .= n + 1 - 1 ; ( O = 0 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 implies O = O & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 /\ dom F2 ) .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } ; pred b <> 0 & d <> 0 & b <> 0 & d <> 0 & ( a - b ) / d = ( - ( e / d ) ) / ( d - b ) ) ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= D ; for i be set st i in dom g ex u , v being Element of L st g /. i = u * a & u in B & v in A & u in B & v in B & u in C ; g `2 * P `2 * g " = g `2 * ( g " * P ) " .= g `2 * ( g " * P ) .= g `2 * ( g " * P ) .= g ; consider i , s1 such that f . i = s1 and not ( ex s1 st s1 = f . i & not s1 in s1 & not s1 in { f . i } ) and not s1 in { f . i , f . i } ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] connected & [ s2 , t2 ] , [ s2 , t2 ] connected & [ s2 , t2 ] in R implies ( s1 , s2 ) `1 = s1 & ( s1 , s2 ) `2 = t2 then H is negative & H is non negative & H is non empty implies H is not negative -gfor F being Function of H , F holds F is not non -gfor H being non empty set st H is non -gfor F being Function of H , F holds F is not negative -gfor F is \mathbin of F , F attr f1 is total means : Def2 : ( f1 is total & f2 is total implies f1 - f2 is total & ( f1 - f2 ) (#) ( f1 - f2 ) ) " = f1 . ( ( f1 - f2 ) (#) ( f1 - f2 ) ) " ; z1 in W2 " ( W2 " ( z2 " ( z2 + 1 ) ) ) or z1 = z2 " ( z2 " ( z2 + 1 ) ) & not z1 in W2 " ( z2 + 1 ) & z2 in W2 " ( z2 + 1 ) ; p = 1 * p .= a " * a * p .= a " * ( b " * p ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) ; for seq1 be sequence of X , seq be sequence of X st for n be Nat holds seq1 . n <= seq . n holds ( seq ^\ n ) . n <= seq . n x0 meets ( L~ go \/ L~ pion1 ) or x0 in ( L~ pion1 \/ L~ pion1 ) or x0 in ( L~ pion1 \/ L~ pion1 ) or x0 in ( L~ pion1 \/ L~ pion1 ) or x0 in ( L~ pion1 \/ L~ pion1 ) & x0 in L~ pion1 \/ ( L~ pion1 \/ L~ pion1 ) ; ||. f . ( g . ( k + 1 ) ) - g . ( g . ( k + 1 ) ) .|| <= ||. g . 1 - g . 0 .|| * ( K * K to_power ( k + 1 ) ) ; assume h = ( ( B .--> B ' ) +* ( D .--> C ) +* ( E .--> D ) ) +* ( F .--> N ) +* ( J .--> A ) +* ( M .--> N ) +* ( F .--> N ) +* ( M .--> A ) +* ( N .--> N ) +* ( F .--> N ) +* ( M .--> A ) +* ( N .--> N ) ) +* ( M .--> N ) +* ( F .--> A ) ) +* ( N .--> N ) ; |. ( ( ( ( lower . n ) || A ) . k ) - ( ( ( ( lower . n ) || A ) . k ) ) * ( ( ( ( ( ( D . n ) * ( ( D . n ) * ( D . n ) ) ) ) / ( 2 |^ n ) ) ) ) ) .| <= e * ( 2 * ( b-a ) ) ; ( ( { x1 , x1 , x1 , x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 } .= { x1 , x2 , x3 } .= { x1 , x2 , x3 } ; assume that A = [. 0 , 2 * PI .] and integral ( ( ( #Z n ) * ( cos ) ) , A ) = 0 and ( ( #Z n ) * ( cos ) ) | A = 0 ; p `2 is Permutation of dom f1 & p `2 " = ( ( Sgm Y ) " ) * p " & p `2 = ( ( Sgm Y ) " ) * p ; for x , y st x in A & y in A holds |. ( 1 / ( f . x ) - ( f . y ) ) .| <= 1 * |. f . x - f . y .| ( p2 `2 ) ^2 = |. q2 .| * ( ( ( q2 `2 ) - ( q2 `2 ) ) / ( 1 + ( ( q2 `2 ) - ( q2 `1 ) ) / ( 1 + ( q2 `2 ) ) ^2 ) ) ) .= ( ( ( q2 `2 ) - ( q2 `2 ) ) / ( 1 + ( q2 `2 ) ) / ( 1 + ( q2 `2 ) ^2 ) ) ; for f be PartFunc of the carrier of CNS , REAL , x be Element of REAL , f be PartFunc of C , REAL , r be Real st f is continuous & f = r holds rng f c= dom f & f is compact assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , CompF ( B , G ) ) ) . x = TRUE ; consider FM such that dom FM = n1 and for k be Nat st k in n1 holds Q [ k , FM . k ] and for k be Nat st k in n1 holds F . k = F ( k ) ; ex u , u1 st u <> u1 & u , u1 , u1 / ( a , v ) / ( a , v1 ) / ( a , u1 ) // u , v1 & u , u1 / ( a , v ) / ( a , v1 ) // u1 , v1 & u1 , v1 / ( a , v ) // v1 , v2 & u1 <> v1 & v1 <> v2 implies u1 = v1 & u2 = v2 for G being Group , A , B being non empty Subgroup of G , N being normal Subgroup of G holds ( N , A ) \cdot ( N , B ) " = N ~ A * N for s be Real st s in dom F holds F . s = integral ( R / ( f . s ) , ( ( R + g ) (#) ( f - h ) ) . s ) ; width AutMt ( f1 , b1 , b2 , b3 ) = len b2 .= len b1 .= len b1 .= len b1 .= len b1 .= len b1 .= len b1 + len b2 .= len b1 + len b2 .= len b1 + len b2 .= len b1 + len b2 .= len b1 + len b2 ; f | ]. - PI / 2 , PI / 2 .[ = f & dom f = ]. - PI / 2 , PI / 2 .[ & rng f c= ]. - PI / 2 , PI / 2 .[ & f | ]. - PI / 2 , PI / 2 .[ is continuous ; assume that X is closed and a in X and a in X and y in X and not y in { { [ n , x ] } \/ { x } } and x in X ; Z = dom ( ( ( ( #Z 2 ) * ( arctan ) ) (#) ( ( #Z 2 ) * ( arctan ) ) ) ) /\ dom ( ( ( #Z 2 ) * ( arctan ) ) ^ ) .= dom ( ( ( #Z 2 ) * ( ( arctan ) ) ^ ) ) /\ dom ( ( #Z 2 ) * ( ( #Z 2 ) * ( arctan ) ) ) ; func [: the Sorts of V , { l . k } :] -> Subset of V equals { l . k : 1 <= k & k <= len l & l . k in V } ; for L be non empty TopSpace , N , M be net of L , N be net of L st c is convergent & N is convergent holds N is convergent & ( for c being Element of N st c in N holds N . c in N . c ) for s being Element of NAT holds ( ( ex v being Element of NAT st v in dom ( ||. f .|| ) ) & ( v in dom ( ||. f .|| ) ) implies f . s = ( ( ||. f .|| ) . s ) . s then z /. 1 = ( ( N-min L~ z ) .. z ) .. z & ( ( ( N-min L~ z ) .. z ) .. z ) .. z < ( ( E-max L~ z ) .. z ) .. z ; len ( p ^ <* ( 0 qua Real ) * ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) * ( 0 qua Nat ) *> .= len p + 1 .= 1 + 1 ; assume that Z c= dom ( ( - ( ln * f ) ) `| Z ) and for x st x in Z holds f . x = x and f . x = x and f . x = 1 and f . x = 1 ; for R being add-associative right_zeroed right_complementable commutative associative commutative distributive non empty doubleLoopStr , I being non empty Subset of R , J being Subset of R , I being Subset of R , J being Subset of R holds ( I + J ) *' c= I /\ J consider f being Function of [: B1 , B2 :] , B2 such that for x being Element of [: B1 , B2 :] holds f . x = F ( x ) and f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) .= Seg len ( x2 + y2 ) ; for S being card Functor of C , B for c being Object of C holds card S . ( id c ) = id ( ( the carrier' of C ) . c ) ex a st a = a2 & a in f6 /\ f5 & ( f . a ) /\ ( f . a ) = {} & ( f . a ) /\ ( f . b ) = {} ; a in Free ( ( H2 / ( x. 4 , x. 0 ) ) '&' H2 ) & ( ( H2 / ( x. 0 , x. 4 ) ) '&' H2 ) . a = ( H2 / ( x. 0 , x. 0 ) ) '&' ( H2 / ( x. 0 , x. 4 ) ) ) ; for C1 , C2 being f1 , C2 being stable Function of C1 , C2 st `1 = C2 & C2 = C2 holds f = g & f = g implies f = g ( W-min L~ go \/ L~ pion1 ) `1 = W-bound L~ pion1 & ( W-min L~ pion1 \/ L~ pion1 ) `1 = W-bound L~ pion1 & ( W-min L~ pion1 \/ L~ pion1 ) `1 = W-bound L~ pion1 & ( W-min L~ pion1 \/ L~ pion1 ) `1 = W-bound L~ pion1 ; consider u such that u = <* x0 , y0 , z0 *> and f is partial & f is partial & u in dom ( SVF1 ( 3 , f , 1 ) * pdiff1 ( f , 1 ) ) & SVF1 ( 3 , f , 2 ) . u = z0 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & t . {} = x & t . {} = x & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars & x in Vars ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( q , J ) . v .= Valid ( p , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b & b >= a & a >= b & b >= c ; func Class ( R , a ) -> Subset-Family of R means : Def2 : for A being Subset of R holds A in it iff ex a being Element of R st a in it & a in A & it c= A ; defpred P [ Nat ] means ( ( ( ( ( ( ( ( ( \HM { \rm set ) ) . $1 ) ) `1 ) + ( ( ( ( ( ( ( ( ( ( ( ( ( ( G -' ) . n ) ) ) ) + ( ( ( ( ( ( c , n ) ) ) + ( ( c + 1 ) ) + ( ( ( c + 1 ) ) + 1 ) ) + 1 ) ) ) ) ) ) ) ) ) ) ) `1 <= G ; assume that dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W2 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W2 ) = 0 ; mama_empty ( m . t ) = ( m . t ) . {} .= ( [ m . t , the carrier of C ] ) . {} .= m . {} .= m . {} .= m . {} .= the carrier of C ; d11 = ( x9 ^ d22 ) . ( y9 , d22 ) .= f . ( y9 , d22 ) .= f . ( y9 , d22 ) .= ( f ^ <* d22 *> ) . ( y9 , d22 ) .= ( f ^ <* d22 *> ) . ( x9 , d22 ) .= ( f ^ <* d22 *> ) . ( x9 , d22 ) .= d22 ; consider g such that x = g and dom g = dom f0 and for x being element st x in dom f0 holds g . x in f0 . x and g . x in f0 . x ; x + 0. F_Complex / ( len x |-> 0. F_Complex ) = x + ( x |-> 0. F_Complex ) .= ( x , x ) |-> 0. F_Complex .= x *' * ( x , x ) .= x *' * x .= x *' * x .= x *' * x .= x ; ( k -' ( k9 -' 1 ) ) + 1 in dom ( f | ( ( k -' 1 ) + 1 ) ) & ( f | ( ( k -' 1 ) + 1 ) ) + ( ( f | ( k -' 1 ) ) + 1 ) ) in dom ( f | ( ( k -' 1 ) + 1 ) ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P2 = { p1 , p2 } and P1 = P1 \/ P2 and P2 = { p1 , p2 } and P1 = P1 \/ P2 and P2 = { p1 , p2 } and P1 = P2 \/ { p2 , p1 } and P2 = { p1 , p2 } and P1 = P2 \/ { p1 , p2 } and P2 = P1 \/ P2 and P1 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P1 \/ P2 and P2 = P1 \/ P2 and P2 = P2 \/ P2 and P2 = P1 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 \/ P2 = P1 \/ P2 and P2 \/ P2 = P2 \/ P2 and P2 \/ P2 = P1 reconsider a1 = a , b1 = b , c1 = c , c2 = d , c2 = p `1 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `2 , c2 = p `2 as Element of A ; reconsider thesis thesis thesis thesis in Fb1f . ( t , F . f ) , F1 = ( G1 * F1 ) . ( a , b ) as Morphism of ( G1 * F1 ) . ( a , b ) , ( G1 * F2 ) . ( b , a ) ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( f , i + i1 -' 1 ) ; Integral ( M , P . m ) | dom ( P . n -P . m ) <= Integral ( M , P . m -P . m ) + Integral ( M , P . m -P . m ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ x , y ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( ( G * ( i , 1 ) ) `1 , ( G * ( i + 1 , 1 ) ) `2 ) - ( ( G * ( i + 1 , 1 ) ) `2 ) ; for G being Group , H being Subgroup of G , a being Element of H , b being Integer st a = b holds for i being Integer holds a |^ i = b |^ i & b |^ i = b |^ i consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p9 where p9 is Point of TOP-REAL 2 : P [ p9 ] & p9 `1 >= p9 & p9 `2 <= p9 `1 & p9 `1 <= p9 `1 & p9 `2 <= p9 `1 & p9 `1 <= p9 `1 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 & p9 `2 <= p9 `2 ; ( ( ( ( N - S ) / ( 2 |^ m ) ) - ( ( N - S ) / ( 2 |^ n ) ) ) / ( 2 |^ m ) ) <= ( ( ( N - S ) / ( 2 |^ m ) ) - ( ( N - S ) / ( 2 |^ m ) ) / ( 2 |^ m ) ) ) / ( 2 |^ m ) ; for x be Element of X , n be Nat st x in E holds |. ( Re F ) . n .| <= P . x & |. ( Im F ) . n .| <= P . x len ( @ ( @ ( @ p ^ <* 0 *> ) ) ) = len ( @ ( @ p ^ <* 1 *> ) ) + len ( @ ( @ p ^ <* 1 *> ) ) .= len ( @ ( @ p ^ <* 1 *> ) ) + len ( @ ( @ p ^ <* 1 *> ) ) .= len ( @ p ^ <* 1 *> ) ; v / ( x. 3 , m1 ) / ( x. 0 , m1 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) ) = m3 ; consider r being Element of M such that M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) ) |= r ; func w1 \ w2 -> Element of Union ( G , R8 ) equals ( ( ( the Sorts of G ) * the Arity of S ) * the Arity of S ) . ( w1 , w2 ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= s1 . b2 .= s2 . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s . b2 .= s . b2 .= s . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums ( |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . n ) implies seq is convergent & lim seq = seq . n set F = S -\mathop { 0 } , G = S -\mathop { 0 } ; ( Partial_Sums ( seq ) ) . ( n + 1 ) + Partial_Sums ( seq ) . ( n + 1 ) >= ( Partial_Sums ( seq ) ) . ( n + 1 ) + Partial_Sums ( seq ) . ( n + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x- x ) + R . ( x- x ) ; func the closed of \HM { a , b , c , d , e , f , g , h , i , g , i , h , i , g , i , f , i , g , h , i , g , i , h , i ) ; a * b ^2 + ( a * c ) ^2 + ( b * a ) ^2 + ( b * c ) ^2 + ( c * a ) ^2 >= 6 * a * a * b * c + ( b * a ) * c ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) ) = v / ( x2 , m1 ) ; Rotate ( Q ^ <* x *> , M1 ) = ( ( \mathop { Q , M1 } +* ( i , { FALSE } ) ) +* ( ( i , 0 ) --> FALSE ) ) +* ( ( ( i , 0 ) --> FALSE ) +* ( ( i , 0 ) --> FALSE ) ) .= ( ( i , 0 ) --> FALSE ) +* ( ( i , 0 ) --> FALSE ) ; Partial_Sums ( F ) . n = ( r |^ n1 ) * Partial_Sums ( C ) . n1 .= C . n1 * ( r |^ n1 ) .= C . n1 * ( r |^ n1 ) .= C . n1 * ( r |^ n1 ) .= C . n1 * ( r |^ n1 ) .= C . n1 * ( r |^ n1 ) .= C . n1 * ( r |^ n1 ) ; ( ( GoB f ) * ( len GoB f , 2 ) ) `1 = ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums ( s ) ) . $1 = ( a * ( $1 + 1 ) ) * ( $1 + 1 ) + b * ( $1 + 1 ) * ( $1 + 1 ) ; ( the_arity_of g ) . g = ( the Arity of S ) . g .= ( ( the Arity of S ) * g ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g ; ( X ~ ) c= X ~ & card ( X ~ ) = card Y ~ implies X = Y & Y = X for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . ( n + 1 ) holds b = N . ( n + 1 ) \ G . ( n + 1 ) E , f |= All ( x. 2 , ( x. 2 ) |= ( x. 2 ) |= ( x. 2 ) ) '&' ( x. 2 , ( x. 2 ) |= ( x. 2 , ( x. 2 ) ) '&' ( x. 2 , ( x. 2 ) ) '&' ( x. 2 , ( x. 2 ) ) ) ) ) ; ex R2 be 1-sorted st R2 = ( p | ( n + 1 ) ) . i & ( the carrier of p ) . i = the carrier of R2 & ( the carrier of p ) = the carrier of R2 & ( the carrier of p ) = the carrier of R2 ; [. a , b + 1 / ( k + 1 ) .[ is Element of the _ of the _ of the \in of the \in of the _ of the \in of the _ of the \in of the \overline the carrier of the \overline the carrier of the carrier of the carrier of X , the carrier of X , the carrier of Y , the carrier of Y , the carrier of Y is Element of the carrier of X ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 , s ) .= Exec ( a3 , s ) .= Exec ( a3 , s ) ; card ( h1 *' ) . k = power ( F_Complex ) . ( - 1_ F_Complex ) * Sum ( - ( - ( 1. F_Complex ) ) * u ) .= ( ( - ( 1. F_Complex ) ) * u ) * u .= ( ( - ( 1. F_Complex ) ) *' ) . k * u .= ( ( - ( 1. F_Complex ) ) * u ) ) . k ; ( f - g ) /. c = f /. c * ( g /. c ) " .= f /. c * ( g /. c ) .= ( f * ( g * ( g * ( g * f ) ) ) ) /. c .= ( f * ( g * ( g * f ) ) ) /. c ; len C( ( ( the carrier of ( ( len ( ( the carrier of ( 2 * ) ) ) ) ) ) ) ) = len ( ( ( the carrier of ( 2 * ) ) ) ) .= len ( ( ( the carrier of ( 2 * ) ) ) * ( ( the carrier of ( 2 * ) ) ) ) .= len ( ( the carrier of ( 2 * ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= dom f /\ X .= X ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n + $1 ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) ; consider f being Function of INT , INT such that f = f and f is onto and n < len f and f is onto and for f being Function of INT , INT st f is onto & n < len f holds f " { f . n } = { n } ; consider c9 be Function of S , BOOLEAN such that c9 = chi ( A \/ B , S ) and ( E . ( A \/ B ) ) = Prob . ( A \/ B ) and ( E . ( A \/ B ) ) = Prob . ( A \/ B ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , y ) and Q [ y , x ] ; assume that A c= Z and f = ( ( - 1 ) (#) ( ( #Z 2 ) * ( sin + cos ) ) ) / ( sin + cos ) and Z c= dom ( ( - 1 ) (#) ( sin + cos ) ) and Z c= dom ( ( - 1 ) (#) ( cos + cos ) ) ) and Z c= dom ( ( - 1 ) (#) ( sin + cos ) ) ; ( f /. i ) `2 = ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 ; dom Shift ( Seq q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & j in dom Seq q2 } & len Seq q2 = len q1 + len Seq q2 & len Seq q2 = len q1 + len Seq q2 ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 and G2 <= G2 and f is Morphism of G1 , G2 and f is Morphism of G2 , G2 and g is Morphism of G2 , G2 & g is Morphism of G2 , G2 & g is Morphism of G2 , G2 & g is Morphism of G2 , G2 ; func - f -> PartFunc of C , V means : Def2 : dom it = dom f & for c be element st c in dom it holds it /. c = - f /. c & for c be Element of C st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a and for v st v <> a holds union ( L , v ) |= ( L , v ) iff for a holds L . a , v |= ( L , v ) . a ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) and j1 in dom GoB f and j2 in dom GoB f and j1 in dom GoB f and j2 in dom f and j2 in dom f and f /. ( i1 + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - n ) * ( i - 1 ) and for n1 being Nat st n1 <> 0 & n1 <= n & n2 <= n holds ( n - 1 ) * ( i - 1 ) <= ( n - 1 ) * ( i - 1 ) ; assume that not 0 in Z and Z c= dom ( ( ( - 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) ) and for x st x in Z holds ( ( ( - 1 / 2 ) * ( f1 + #Z 2 ) ) `| Z ) . x = 1 / ( x - 0 ) and ( ( - 1 / 2 ) (#) ( f1 + #Z 2 ) ) `| Z ) . x = 1 / ( x - 0 ) ; cell ( G1 , i1 -' 1 , ( 2 |^ ( m -' 1 ) ) * ( Y1 -' 1 ) ) \ L~ ( ( Y1 -' 1 ) * ( Y1 -' 1 ) ) \ L~ ( ( Y1 -' 1 ) * ( Y1 -' 1 ) ) c= BDD L~ ( ( Y1 -' 1 ) * ( Y1 -' 1 ) ) \ L~ ( ( Y1 -' 1 ) * ( Y1 -' 1 ) ) ; ex Q1 being open Subset of X st s = Q1 & ex Q1 being Subset-Family of Y st Q1 c= F & ( for a being Subset of Y st a in F holds a in Q1 ) & ( for b being Subset of Y st b in F holds b c= a ) & ( for b being Element of Y holds b in F . b ) implies a in b ) gcd ( A , ( 1. ( A , ( 1 , 1 ) , s1 ) ) , s2 ) = 1 / 2 * ( ( 1. ( A , ( 1 , 1 ) , s2 ) ) * ( ( 1. ( A , ( 1 , 1 ) ) , s2 ) ) ) .= 1 / 2 * ( ( 1. ( A , ( 1 , 1 ) ) * ( s2 , s2 ) ) ) ) ; R8 = ( ( ( j , s2 ) . ( m1 + 1 ) ) * ( ( j , s2 ) . ( m1 + 1 ) ) ) . ( m2 + 1 ) .= [ 3 , 1 ] . ( m2 + 1 ) .= [ 3 , 1 ] . ( m2 + 1 ) .= [ 3 , 1 ] . ( m2 + 1 ) .= [ 3 , 1 ] . ( m2 + 1 ) ; CurInstr ( P3 , Comput ( P3 , s3 , m1 + 1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= halt SCMPDS .= halt SCMPDS .= ( CurInstr ( P3 , s3 ) ) ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) /\ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) .= ( LSeg ( p1 , p2 ) \/ LSeg ( p2 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ { p2 } ) .= { p1 , p2 } \/ { p2 , p1 } ; func the still of f -> Subset of the Sorts of the Sorts of A means : Def2 : a in it iff ex p st p in dom f & a in it & f . p = a & for x st x in dom f holds x in dom f ; for a , b being Element of F_Complex for f being Polynomial of F_Complex st |. a .| > 1 for f being Polynomial of n , F_Complex st f >= 1 & f is \cap ( len f ) holds f * ( - b ) is \cup ( f * ( - b ) ) defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g * ( $1 , i ) & 1 <= j & j <= len G & 1 <= i & i <= len G & j <= len G holds G * ( i , j ) = G * ( $1 , j ) ; assume that C1 , C2 , f , g being Let s1 , s2 being State of C1 , s1 , s2 being State of C2 , f being Function of C1 , C2 st s1 = s2 holds s1 is stable iff f * f is stable & f * g is stable & f * g is stable ; ( ||. f .|| | X ) . c = ||. f .|| . c .= ||. f .|| /. c .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| ; |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 & 0 + ( q `2 ) ^2 < ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of T7 st F is open & {} in F & not {} in F & A <> {} & A is closed & A is closed & A is closed & A is closed holds card F = card ( A \/ B ) assume that len F >= 1 and len F = k + 1 and len F = k and for k st k in dom F holds F . k = g . ( F . k , G . k ) and for k st k in dom F holds F . k = g . ( F . k , G . k ) ; i |^ ( ( gcd ( n , i ) - i ) ) |^ s = i |^ ( s + k ) - i |^ ( s + k ) * ( ( i |^ ( s + k ) - i ) ) .= i |^ ( s + ( s + k ) - i ) * ( ( i |^ ( s + k ) - i ) ) * ( ( i |^ ( s + k ) - i ) ) .= i |^ ( s + ( s + k ) ) * ( ( i |^ ( s + 1 ) ) * ( ( s + 1 ) - ( ( s + 1 ) * ( ( s + 1 ) - ( s + 1 ) ) * ( ( s + 1 ) - ( s + 1 ) ) * ( ( s + 1 ) - ( s + 1 ) * ( consider q being oriented oriented Chain of G such that r = q and q <> {} and ( F . ( q . 1 ) ) `1 = v1 and ( F . ( q . len q ) ) `1 = v2 and rng q c= rng ( p ^ <* q . 1 *> ) and rng q c= rng p and p is oriented and p ^ q is oriented ; defpred P [ Element of NAT ] means $1 <= len ( g ) implies ( g ) . $1 = ( ( g , Z ) ^ <* f . $1 *> ) . ( len g + $1 ) & ( g ) . $1 = ( ( g , Z ) ^ <* f . $1 *> ) . ( len f + $1 ) ; for A , B being Matrix of n , REAL for B being Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = n & width ( A * B ) = n & width ( A * B ) = n & len ( A * B ) = n & width ( A * B ) = n & len ( A * B ) = n & len ( A * B ) = n ; consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a in I & b in J & s . i = b * a ; func |( x , y )| -> Element of COMPLEX equals |( ( Re x ) , ( Re y ) , ( Im y ) )| + ( ( Im y ) * ( ( Re x ) * ( ( Im y ) * ( ( Im x ) * ( ( Im y ) * ( ( Im y ) * ( ( Im y ) * ( ( Im y ) * ( ( Im y ) * ( ( Im y ) * ( ( Im y ) * ( ( Im y ) ) ) ) ) ) ) ) ) ) , ( ( x ) ) ) ) )| ; consider g9 being FinSequence of FF such that g9 is continuous and rng ex g being FinSequence of FF st 0 <= g & rng g c= A & for i be Nat st i in dom g & i <= len g holds g . i = x1 . i & g . i = y1 . i ; then n1 >= len p1 & crossover ( p1 , p2 , n1 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , a9 ) = crossover ( p1 , p2 , n1 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , a9 ) ; ( q `1 ) * a <= ( q `1 ) * a & - ( q `2 ) * a <= ( q `1 ) * a or q `1 >= ( q `1 ) * a & - ( q `2 ) * a <= ( q `1 ) * a & - ( q `1 ) * a <= ( q `1 ) * a ; Fv . ( p9 . ( len p9 ) ) = Fv . ( p9 . ( len p9 ) ) .= ( ( v . ( len p9 ) ) * ( p9 . ( len p9 ) ) ) .= ( ( v . ( p9 . ( len p9 ) ) ) * ( v . ( p9 . ( len p9 ) ) ) ) .= ( ( v . ( p9 . ( len p9 ) ) ) * ( v . ( p9 . ( len p9 ) ) ) .= ( ( v . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 + 1 ) ) ) ) * ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 . ( p9 + 1 ) ) ) ) * ( p9 . ( p9 + 1 ) ) ) .= consider k1 being Nat such that k1 + 1 = 1 and a := k = ( <* a *> ^ ( ( intloc 0 ) --> ( intloc 0 ) ) ) ^ ( ( intloc 0 ) --> ( intloc 0 ) ) ) ^ ( ( intloc 0 ) --> ( ( intloc 0 ) .--> ( intloc 0 ) ) ) ) ; consider B8 being Subset of B1 , y8 being Function of B1 , A1 such that B8 is finite and D1 = the carrier of A1 and B1 = the carrier of A1 and B1 = the carrier of B1 and B1 is finite and B2 is finite and B1 is finite and B2 is finite and B1 is finite and B2 is finite ; v2 . b2 = ( curry ( F2 , g ) * ( ( curry F ) . b2 ) ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( ( curry F ) . b2 ) * ( ( curry F ) . b2 ) ) . b2 .= ( ( ( curry F ) . b2 ) * ( ( ( curry F ) . b2 ) * ( id F ) . b2 ) ) .= ( ( ( id B ) . b2 ) * ( id B ) . b2 ) . b2 ; dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < e holds |. h .| " * ||. ( R /* h ) . h .|| < e / ( |. h .| ) * ||. ( R /* h ) . h .|| ) & ( R * ( L + h ) ) . h = e / ( |. h .| ) * ||. h .|| LSeg ( G * ( len G , 1 ) + |[ 1 , - 1 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 1 ) \/ { G * ( len G , 1 ) + |[ 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 ) ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , p2 , P & LE p2 , p1 , P & LE p1 , p2 , P & LE p2 , p1 , P & LE p1 , p2 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p1 , p2 , P & LE p2 , p1 , P & LE p2 , p1 , P & LE p2 , p1 , P & p1 , p2 , P & p2 , p1 , P & p1 , p2 , P & p2 , p1 , P & p2 , p1 , P & p2 , p1 , P & p2 , p1 , P & p2 , p1 , P & p2 , p1 , P & p2 , p1 , P & p1 , p1 , P & p1 , p1 , P & p2 , p1 , P & p1 , p1 , p1 , p2 , p1 , p1 , p2 , P & p2 , p1 , p1 , p1 , p2 , P & p2 , ( ( - x ) .|. y ) = - ( ( - 1 ) * ( x .|. y ) ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( ( p `1 ) ^2 + ( p `2 ) ^2 ) * sqrt ( 1 + ( p `2 ) ^2 ) .= ( ( p `1 ) ^2 + ( p `2 ) ^2 ) * sqrt ( 1 + ( p `2 ) ^2 ) .= ( p `1 ) ^2 + ( p `2 ) ^2 ; ( ( U * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( L * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( L * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( L * ( W * ( L * ( W * ( L * ( L * ( W * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( L * ( func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def2 : dom it = dom it & for x be Element of REAL n holds it . x = ( - h ) . x & for x be Element of REAL n st x in dom it holds it . x = ( - h ) . x + ( - h ) . x ; assume that 1 <= k and k + 1 <= len f and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that not y in Free H and not x in Free H and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and x in Free ( H ) ; defpred P11 [ Element of NAT , Element of NAT ] means ( P [ $1 ] implies ( $1 = p |^ $1 ) & ( $1 = p |^ $1 implies $2 = p |^ $1 ) & ( $1 = p |^ $1 implies $2 = p |^ $1 ) & ( $1 = p |^ $1 implies $2 = p |^ $1 ) & ( $1 = p |^ $1 implies $2 = p |^ $1 ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def2 : for A being Subset of X holds A in it iff for W being Subset of X st W in it holds W in it & W is closed & for W being Subset of X st W in it holds W in C \ A & W c= W \ A & W c= W \ B ; [#] ( ( dist ( ( dist ( ( dist ( P ) ) ) ) .: Q ) ) ) = ( ( dist ( ( dist ( P ) ) ) .: Q ) ) .: Q & lower_bound ( ( dist ( ( dist ( P ) ) .: Q ) .: Q ) ) = lower_bound ( ( dist ( P ) ) .: Q ) ; rng ( F | ( [: S , T :] ) ) = {} or rng ( F | ( [: S , T :] ) ) = { 1 } or rng ( F | ( [: S , T :] ) ) = { 2 } or rng ( F | ( [: S , T :] ) ) = { 1 } or rng ( F | ( [: S , T :] ) ) = { 2 } ; ( f " * ( ( f | ( rng f ) ) ) ) . i = f . i " .= ( f * ( f | ( rng f ) ) ) . i .= ( f * ( f | ( rng f ) ) ) . i .= ( f * ( f | ( rng f ) ) ) ) . i .= ( f * ( f | ( rng f ) ) ) . i .= ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f * ( f consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 is_an_arc_of p2 , p2 ; f . p2 = |[ ( p2 `1 ) ^2 + ( p2 `2 ) ^2 , ( p2 `2 ) ^2 + ( p2 `2 ) ^2 + ( p2 `2 ) ^2 + ( p2 `2 ) ^2 * ( p2 `2 ) ^2 + ( p2 `2 ) ^2 ; ( ( the TopStruct of a , X ) " ) . x = ( ( the on of a , X ) qua Function ) . x .= ( ( the TopStruct of a , X ) qua Function ) . x .= ( ( the TopStruct of a , X ) . x ) . x .= ( ( the TopStruct of a , X ) * x ) . x .= ( ( the p1 of X ) + x ) . x .= ( ( the p2 of X ) * x ) . x ; for T being non empty normal TopSpace , A , B being closed Subset of T , A being Subset of T st A <> {} & A misses B for p being Point of T , B being Subset of T st p in B & B misses A holds p in ( in Cl ( A ) ) holds p in ( ( Cl ( A ) ) /\ ( ( Cl ( B ) ) /\ ( Cl ( B ) ) ) ) for i st i in dom F for G1 , G2 being strict normal Subgroup of G , G1 being strict Subgroup of G st G1 = F . i & G2 = F . ( i + 1 ) & G2 = F . ( i + 1 ) holds G1 = G2 for x st x in Z holds ( ( ( ( #Z 2 ) * ( ( arccot ) ) * ( ( arccot ) ) * ( ( arccot ) * ( ( arccot ) ) * ( ( arccot ) * ( ( arccot ) ) * ( ( arccot ) * ( ( arccot ) ) * ( ( arccot ) * ( ( arccot ) * ( ( arccot ) * ( ( arccot ) ) * ( ( arccot ) * ( ( arccot ) ) * ( ( arccot ) ) ) ) ) ) ) ) ) ) ) . x = ( ( ( ( arccot ) * ( ( arccot ) ) * ( ( arccot ) ) ^2 ) ) / ( 1 + ( arccot ) ) ^2 ) ) . x ) ^2 synonym f is right means : Def2 : x0 in dom ( f /* a ) & for x st x in dom f & x in ]. x0 , x0 + r .[ holds f . x - f . x0 = f . x - f . x0 & for x st x in dom f holds f . x - f . x = f . x - f . x0 ; then X1 , X2 , X3 , X2 being non empty SubSpace of X , Y2 being SubSpace of X1 , X2 being SubSpace of X2 , Y1 being Subset of X1 , Y2 being Subset of X2 holds Y1 is SubSpace of X1 & Y2 is SubSpace of X2 & Y2 is SubSpace of X2 implies X1 is SubSpace of X2 & Y1 is SubSpace of X1 & Y2 is SubSpace of X2 & Y2 is SubSpace of X2 implies Y1 is SubSpace of X1 union X2 is SubSpace of X2 ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds ( SVF1 ( 1 , f , u ) ) . x - SVF1 ( 1 , f , u ) . x0 = L . ( x- ( 1 , f , u ) ) . ( x - x0 ) + R . ( x - x0 ) ( ( p2 `1 ) ^2 * sqrt ( 1 + ( p3 `2 ) ^2 ) ) * ( ( p2 `1 ) ^2 + ( p3 `2 ) ^2 ) >= ( ( p2 `1 ) ^2 * sqrt ( 1 + ( p3 `2 ) ^2 ) ) * sqrt ( 1 + ( p3 `1 ) ^2 ) ; ( ( 1 - t1 ) (#) ( ||. f1 .|| ) ) to_power ( n + 1 ) = ( ( 1 - t1 ) * ( ||. g1 .|| ) ) to_power ( n + 1 ) ) .= ( ( 1 - t1 ) * ( ||. g1 .|| ) to_power ( n + 1 ) ) .= ( ( 1 - t1 ) * ( ||. g1 .|| ) to_power ( n + 1 ) ; assume that for x holds f . x = ( ( sin + cos ) (#) ( sin - cos ) ) . x and for x st x in Z holds ( ( sin + cos ) (#) ( sin - cos ) ) . x = ( sin . x - cos . x ) / ( sin . x ) ^2 and ( ( sin + cos ) (#) ( sin - cos ) ) . x = ( sin . x - cos . x ) / ( sin . x ) ^2 ; consider Xi1 being Subset of Y , Y1 being Subset of X such that Y1 is open and Y1 is open and ex Y1 being Subset of X st Y1 = Y1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open ; card ( S . n ) = card { [: d , d :] + ( a * d ) + b where d is Element of GF ( p ) : d in the carrier of GF ( p ) } .= 1 .= d + d .= d + d .= ( a + d ) * d .= d + d ; ( ( W-bound D - W-bound D ) / ( 2 |^ ( m + 1 ) ) * ( i - 2 ) ) * ( i - 2 ) = ( ( W-bound D - W-bound D ) / ( 2 |^ ( m + 1 ) ) ) * ( i - 2 ) .= ( ( W-bound D - W-bound D ) / ( 2 |^ ( m + 1 ) ) ) * ( i - 2 ) .= ( ( W-bound D - 2 ) / ( 2 |^ m ) ) * ( i - 2 ) ;