thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X in X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is \Omega ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ) ; assume x in I ; q is :] by 0 ; assume c in x ; - p > 0 ; assume x in Z ; assume x in Z ; 1 <= kthat 1 <= kthat ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; / 2 > 0 ; assume q in A ; W is not bounded ; f is st f is one-to-one holds f is one-to-one assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be DecoratedTree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= be be Nat ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , f be Function ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is \setminus { n1 } is , n1 , n2 , n3 , n3 , n3 , n1 , n2 , n3 , n3 , Q halts_on s ; x in \in \in \in of -1 ; M < m + 1 ; T2 is open ; z in b id a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Element of REAL ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , x1 ; let E be Ordinal ; o : o ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y to_power 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , M be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component & C2 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aLet <= non < or aSet <= r ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Subset of V ; s is trivial & s is non trivial implies s is non trivial dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , the carrier of T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; Sbeing Subset of T ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , S , U ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= j9 & j9 <= len f ; set A = st \cap \it = { 1 , 2 } ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_\cdot \cdot \cdot F ; assume n0 <= m ; T is increasing implies T is increasing e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; X0 be set ; c = sup N ; R is connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; x be Element of Y ; let f be ) Chain , g be Chain of f , n ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v + X ; - y in I ; let A be non empty set , f be Function ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be non empty countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let II , A , B ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in d2 ; assume t . 1 in A ; let Y be non empty TopSpace , X be Subset of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y // the carrier of V ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected & hhz is connected ; assume f is \llangle bbnrrbeing set ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom ( Sum p ) ; v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len f ; f | A is non empty ; f . x Let x ^2 <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cf in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c2 implies a2 = b2 s2 is 0 -started & s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 , s4 = s4 ; let V ; let x , y be element ; x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be non empty as non empty as Subset of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w is_collinear ; R8 in X ; let a , b be Real , x be Element of REAL ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , m be Morphism of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , x be set ; s4 . n = N ; set y = ( x `1 ) / ( x `2 ) ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CCCV ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent & lim ( f2 /* q ) = 0 ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & B is dense ; |. f . x .| <= r ; x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= Z1 & xY c= Z1 ; dom f = C1 & rng f c= C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim ( seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = Int ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , i be Nat ; assume r2 > x0 & x0 < r2 ; Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n in dom g2 ; n in dom g1 & n in dom g2 ; k + 1 in dom f ; not the still of { s } is finite ; assume x1 <> x2 & y1 <> y2 ; v1 in V1 & v2 in V1 ; not [ b `1 , b ] in T ; ( i + 1 ) + 1 = i ; T c= and T c= and T c= T ; ( l - 1 ) * ( l - 1 ) = 0 ; n be Nat ; ( t `2 ) ^2 = r ^2 ; A=> is_integrable_on M & AA c= M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; cC misses cV ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for normal sequence ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume vseq is Cauchy sequence of X & vseq is convergent ; IC s3 = 0 & IC s2 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ F2 ; Int ( G1 ) <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one non empty full full ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be be non empty Instruction of S , S ; f-24 . x = 1 / x ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = K1 & p2 = K1 & p3 = D2 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMInt A is closed ; assume z0 <> 0. L & 0. L in I ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , S :] is stable Subset of R ; set cR = Vertices R , R = Vertices R ; p0 c= P3 & p0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b & a in A ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ , a ~ " ; assume a in A ( ) ; k in dom ( q ^ <* 4 *> ) ; p is Let of S , S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= width G ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for } : X is strict } -valued ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gik } ; W-min ( C ) in C & W-min ( C ) in C ; assume x in { Gik } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & rng I c= Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & rng F = dom G ; let s be Element of NAT , x be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT , x be Element of NAT ; let S be non empty non void non void non empty non void non empty ManySortedSign ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x be Element of COMPLEX ; u in { bb } ; 2 * n < ( 2 * n ) ; x , y be set ; B-11 c= V1 & B-15 c= V1 ; assume I is_closed_on s , P ; U1 = U1 & U2 = U2 implies U1 = U2 M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; f7 <= f6 & f7 <= f6 ; l be Element of L ; x in dom ( F . -17 ) ; let i be Element of NAT , k be Element of NAT ; r8 is COMPLEX -valued & r8 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card ( K1 | K1 ) in M & card ( K1 | K1 ) in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = Seg ( k + 1 ) ; y = W . ( 2 * PI ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for non empty Poset ; a1 in B . s1 & a2 in B . s1 ; let V be finite < n , W be Subspace of V ; A * B on B & A on B ; f-3 = NAT --> 0 .= fs1 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT * , T = s2 * f ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be non-empty ManySortedSet of I ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 as Nat ; LIN a , d , c ; [ y , x ] in IE ; ( Q Q ) * ( 1 , 3 ) = 0 ; set j = x0 gcd m , m = x0 gcd m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! \mathop { phi } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( A * B ) ; s1 , s2 being Element of L st s1 , s2 ] & s1 , s2 are_card ( s1 \/ s2 ) holds s1 , s2 are_card ( s1 \/ s2 ) j1 -' 1 = 0 & j2 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 , h = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 & ( p1 `2 ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 <= len f ; 1 <= i1 -' 1 & i1 -' 1 <= len f ; i + i2 <= len h & i + 1 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in X ~ Z ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 1 ; set H = h . ( g . x ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 , h1 = h2 ** h2 ; assume x in ( X2 /\ X3 ) ; ||. h .|| < dx0 & ||. h .|| < dx0 ; not x in the carrier of f & not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = k\leq k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; let P , Q be succ s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X <= f . sup X let L be non empty transitive reflexive transitive RelStr , x be Element of L ; S-20 is x -f1 of i -f1 .: S let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. Z .= v + w ; P [ len ( F | n ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for sequence of X ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> non empty for Element of / S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T2 is SubSpace of T2 & T1 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set & not F . t is non empty ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , e = EmptyBag n ; let b be Element of Bags n , c be Element of Bags n ; assume for i holds b . i is commutative ; x is root & y is Element of ( the carrier of S ) * ; not r in ]. p , q .[ ; let R be FinSequence of REAL , x be Element of REAL ; S7 does not destroy b1 , b2 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT , y be Element of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s .= IC s ; H + G = F- ( G-Gas ) ; CA1 . x = x2 & CA2 . x = y2 ; f1 = f , f2 = f , f3 = g ; Partial_Sums <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a & b1 , c1 _|_ b , a ; d2 , o _|_ o , a3 & a3 , o _|_ a3 , a1 ; If is reflexive & If is reflexive implies f * I is reflexive IO is antisymmetric implies [: O , O :] is antisymmetric sup rng ( H1 | n ) = e & sup rng ( H1 | n ) = e ; x = ( a * ( - 1 ) ) * ( - 1 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < width G ; rng s c= dom f1 & rng s c= dom f2 ; assume not ( for a being Element of L holds a in support b ) ; let L be associative non empty doubleLoopStr , I be non empty Subset of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 .= f . c ; R . n <= R . ( n + 1 ) ; Directed I1 = I1 , I2 = I2 , I2 = I2 , I2 = I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty -> non empty for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] *> , <* N *> -> complete for non trivial set ; ( 1 - a ) " = a " & ( 1 - a ) " = a " ; ( q . {} ) `1 = o ; ( n - 1 ) > 0 ; assume ( 1 - 2 ) <= t `1 / 2 ; card B = k + 1-1 & card A = k + 1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= the vertices of G ; let G be finite connected wgraph ; e , e be set , x be set ; c . ( i - 1 ) in rng c & c . ( i - 1 ) in rng c ; f2 /* q is divergent_to+infty & ( f2 /* q ) . n in dom ( f2 * f1 ) ; set z1 = - z2 , z2 = - z1 , z2 = - z2 , z1 = - z2 , z2 = - - z2 ; assume w is_llas S , G ; set f = p |-count ( t - p ) , g = p |-count ( t - p ) , h = p |-count ( t - p ) , f = p |-count ( t - p ) , g let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , f be Function of X , X ; reconsider p = p as Element of NAT ; v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM , k be Nat ; stop I ( ) c= P-12 & I ( ) c= P-12 ; set ci = fSet /. i , fi = fSet /. i , fj = fj ; w ^ t ^ t ^ <* s *> ^ w ^ w ^ t ^ w ^ v ^ w ^ w ^ w ^ v ^ w ^ w ^ w ^ w ^ w ^ v ^ w ^ W1 /\ W = W1 /\ W2 ` .= W1 /\ W2 ` ; f . j is Element of J . j ; let x , y be Element of T2 , T be Subset of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is prime implies x is not prime set g2 = lim ( seq , n ) , g1 = lim ( seq , n ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F-21 ) = 0 & L1 . ( F-21 ) = 0 ; / ( X \/ R1 ) = / ( X \/ R2 ) ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; ( ( ( #Z 2 ) * ( exp_R + exp_R ) ) `| Z ) . x > 0 ; o1 in [: X , Y :] /\ [: X , O :] ; e , e be set , x be set ; r3 > ( 1 - r2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed Subset of R , I be left Subset of R ; h . p1 = f2 . O & h . O = g2 ; Index ( p , f ) + 1 <= j ; len ( q | M ) = width M & len ( q | M ) = len M ; the carrier of `1 c= A & the carrier of Cmin K c= A ; dom f c= union rng ( F | ( union rng F ) ) k + 1 in support ( support ( f ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in an an an an an an \mathclose of an ~ ( R ~ ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X reconsider w = |. s1 .| as Real_Sequence ; ( 1 - m ) * m + r < p ; dom f = dom I-4 & dom f = dom IK ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - x -> ExtReal -> ExtReal for ExtReal ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M , w2 be Element of S ; x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W2 reconsider y = y as Element of L2 ( ) ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be -> summable sequence of X , x be Element of X ; dist ( x `1 , y ) < ( r / 2 ) ; reconsider mm1 = m , mm2 = n as Element of NAT ; x- x0 < r1 - x0 & r1 - x0 < r1 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * ( idseq q " ) , g2 = p " ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . x ) ) ) ) ) ) ) ) ) ) ) cluster subcondensed open -> subopen ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; n be Element of NAT , x be Element of NAT ; reconsider S8 = S as Subset of T | S ; dom ( i .--> X `1 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , P be Subset of SCMPDS ; let t be 0 -started State of SCMPDS , Q be t of SCMPDS ; b , b , x , y , z is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N1 >= ( sqrt c ) * ( sqrt c ) * ( ( 2 / ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( reconsider t7 = T7 as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . ( y2 , z2 ) /\ Q2 & z2 in Q ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 & len W2 = len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg len s2 & i + 1 in Seg len s2 ; z in dom g1 /\ dom f & z in dom g1 /\ dom f ; assume p2 = E-max ( K ) & p1 in L~ f ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster seq + seq -> summable for sequence of X , seq , n be Nat ; assume j in dom M1 & i in dom M2 ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xx , y *> ^ <* y *> \mathclose { x } << x ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & y = R . x ; len q = len ( K * G ) & len q = len G ; s1 = Initialize ( Initialized s ) , P1 = P +* I , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` ` is Element of x ` & x ` ` is Element of x ` ; k = 0 & n <> k or k > n & k > n ; then X is discrete implies X is closed for x st x in L holds x is FinSequence of REAL ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } implies not c in { p } reconsider V = V as Subset of the TopStruct of TOP-REAL n ; N , M be Subset of L ; then z is_>=_than compactbelow x & z >= compactbelow y ; M [. f , g .] = f & M [. g , f .] = g ; ( ( ( Fib 1 ) * ( L /. 1 ) ) ) /. 1 = TRUE ; dom g = dom f -tuples_on X & rng g c= dom f ; mode : of G is : Let ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of ( dom ( Subformulae p ) ) -tuples_on the carrier of F ; F1 . ( a1 , - a2 ) = G1 . ( a1 , - a2 ) ; redefine func \mathopen { a , b , r } -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / f ) & rng s c= dom f ; curry ( F-19 , k ) is additive ; set k2 = card ( dom B \ A ) , k1 = card ( A \ B ) ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as w of G ; let a , b be Element of MM , x be Element of M ; reconsider s1 = s , s2 = t as Element of S0 ; rng p c= the carrier of L & p . x in the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x = 0 iff x = 0. W ) ; I-21 in dom stop I & IY in dom stop I ; g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 , j1 = len p2 as Integer ; dom f = the carrier of S & rng f c= the carrier of S ; rng h c= union ( the carrier of J ) & rng h c= union ( the carrier of J ) cluster All ( x , H ) -> Carrier c ; d * N1 / ( 1 - d ) > N1 * 1 / ( 1 - d ) ; ]. a , b .[ c= [. a , b .] ; set g = f " | D1 , f = f " | D2 ; dom ( p | mm1 ) = mm1 & dom ( p | mm1 ) = mm1 ; 3 + - 2 <= k + - 2 & k + - 2 <= len f ; tan + arccot is_differentiable_on Z & for x st x in Z holds ( ( arccot - arccot ) `| Z ) . x = 1 / ( x ^2 ) x in rng ( f /^ ( p -' 1 ) ) ; f , g be FinSequence of D ; cp1 in the carrier of S1 & cp2 in the carrier of S1 ; rng f " = dom f & rng f = dom f ; ( the Source of G ) . e = v & ( the Source of G ) . e = v ; width G - 1 < width G - 1 & width G - 1 < width G - 1 ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 in rng ( g2 | A ) ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the / of C-20 & <* S7 *> in the carrier of C-20 ; i <= len ( G /^ 1 ) - 1 & i + 1 <= len G ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " . ( Q " . ( P . ( P . ( Q . ( Q . ( Q . ( Q . ( Q . ( Q . ( Q . a ) ) ) ) ) ) ) ) ) ) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) is summable ; - p + I c= - p + A & - p + I c= - p + I ; n < LifeSpan ( P1 , s1 ) + 1 & n <= LifeSpan ( P2 , s2 ) ; CurInstr ( p1 , s1 ) = i .= ( 0 + 1 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z as Element of CompactSublatt L , L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ ( A , I ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be subcategory , F be subFunctor of C1 , C2 ; reconsider V1 = V as Subset of X | B , V1 = V as Subset of X | B ; attr p is valid means : Def2 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " * ( a |^ b ) is Subgroup of H ; let A1 be : A1 : A1 , A2 |^ A1 |^ 2 ] ; p2 , r3 , q3 is_collinear & q2 , q3 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 . 0 < M . ( E . 0 ) ; ( c / ( c / a ) ) / ( c / a ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> non empty for \mathbin of the carrier of L is from of L , L ; set i1 = the Nat , i2 = the Element of NAT , n = 1 ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def2 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> real for non empty ; set S = <* Bags n , ( Bags n ) *> ; set T = [. 0 , 1 / 2 .] , S = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) & 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / 2 < ( 2 * PI ) / 2 ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } implies O = {} ( the Source of G ) . x = v & ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f & Support ( f , T ) c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x `1 , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 .= ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & len <* P *> = 1 ; set N-26 = the non empty Subset of the or of N = the or of N = the or of N = the or N = the or of N = the or N = the or N = the or N is strict non empty len gSet + ( x + 1 ) - 1 <= x ; not a on B & b on B & not a on B implies a on B reconsider rv = r * I . v as FinSequence of REAL ; consider d such that x = d and a -> d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len \bf n .= len f ; set q2 = N-min C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = E-max C , q2 = set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " ( f .: V ) & f " ( f .: V ) meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_left_argument_of H ) ; assume t is Element of ( S , X ) * ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } \/ { E } ; reconsider m = len thesis , k = len ( k - 1 ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & ( M1 - M2 ) * ( i , j ) = M1 ; assume that P c= Seg m and M is \HM { i , j } is not empty ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L . 1 ; p-7 . i = pp1 . i .= pp2 . i ; let PA , PA , G be a_partition of Y , z be Element of Y ; pred 0 < r & r < 1 implies 1 < ( 1 - r ) * ( 1 - r ) ; rng ( \mathop { a , X } ) = [#] X & rng ( \mathop { a , X } ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of Y ) ; dom ( f . 0 ) c= dom ( u . 0 ) & rng ( f . 0 ) c= dom f ; pred n divides m means : Def2 : m divides n & n = m ; reconsider x = x as Point of [: I[01] , I[01] :] , R^1 ; a in ) implies the carrier of let T , T be non empty set , f be Function of T , T2 ; not y0 in the still of f & not y in the still of f implies y in the carrier of f Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f and f . k1 = f . k1 ; consider c , d such that dom f = c \ d and rng f = d ; [ x , y ] in dom g & [ y , x ] in dom g ; set S1 = Let L , S2 = L +* ( x , y , z ) ; l2 = m2 & l2 = i2 & E = C & E = F . i2 implies E = F x0 in dom ( u01 /\ dom ( f | A ) ) & x0 in dom ( f | A ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 , ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 & dom ( ( TOP-REAL 2 ) | B01 ) = B01 ; f . p4 `1 <= f . p1 `1 & f . p2 `2 <= f . p1 `2 ; ( ( F . x ) `1 ) ^2 <= ( ( F . x ) `1 ) ^2 ; ( x `2 ) ^2 = ( W7 ) ^2 + ( W8 ) ^2 .= ( W8 ) ^2 + ( x `2 ) ^2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K & 0 |-> a = {} implies a = {} X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider sp2 = seq as \rangle of D , the carrier of D ; ( k - 1 ) <= len thesis - j ; [#] S c= [#] the TopStruct of T & [#] T is open & [#] T is open ; for V being strict RealUnitarySpace holds V in the carrier of V implies V in the carrier of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , n2 , n3 be Matrix of n1 , n2 , n3 be Nat ; - a * - b * a = a * b - b * a for A being Subset of AS holds A // A & A // A implies A = B ( for o2 being Element of o2 holds ( o1 , o2 ) in <^ o2 , o1 ^> ) implies o1 = o2 then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , N2 be strict normal Subgroup of G ; j >= len ( upper_volume ( g , D1 ) | j ) ; b = Q . ( len Q - 1 + 1 ) ; f2 * f1 /* s is convergent & lim ( f2 * f1 ) = x0 ; reconsider h = f * g as Function of N1 , G ; assume that a <> 0 and Let a , b , c be Real ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T | ( n + 1 ) ) -tuples_on REAL ; {} = the carrier of L1 + L2 & the carrier of L1 + L2 = the carrier of L2 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p1 = p +* I , p2 = p +* I ; reconsider N2 = N1 , N2 = N2 as strict net of R1 , R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( ( P + Q ) ^ <* a *> ) + len ( P ^ <* b *> ) ; ( x1 - x2 ) ^2 = ( x2 - y2 ) ^2 + ( y2 - z2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 } ; let x , y be Element of FTTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h * h .= g " * h ; let p , q be Element of being Element of being Element of being Element of being Element of being Element of being set ; x0 in dom ( x1 - x2 ) /\ dom ( x2 - y2 ) ; ( R qua Function ) " = R " * ( R " ) .= R " * ( R " ) ; n in Seg len ( f /^ ( len f -' 1 ) ) ; for s being Real st s in R holds s <= s2 & s2 <= 1 ; rng s c= dom ( ( f2 * f1 ) ^ ) & rng s c= dom ( ( f2 * f1 ) ^ ) ; synonym for for for for for for the carrier of consider X , the carrier of X ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , S = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) / ( w - f ) & w in F ; curry ( P+* ( i , k ) ) # x is convergent & curry ( P+* ( i , k ) ) # x is convergent ; cluster open open -> open for Subset of [: T , T :] ; len f1 = 1 .= len ( f3 ^ <* 1 *> ) .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & c1 , c2 // b9 , c ; consider p being element such that c1 . j = { p } and p in { p } ; assume that f " { 0 } = {} and f is total and f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a implies Reloc ( J , card I ) not " ; goto ( card I + 1 ) not contradiction & i in dom ( i .--> a ) ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p2 , s2 ) ; IC SCMPDS in dom ( Initialize p ) & IC SCMPDS in dom ( Initialize p ) ; dom t = the carrier of SCM & dom t = the carrier of SCM & rng t c= the carrier of SCM ; ( ( E-max L~ f ) .. f ) .. f = 1 & ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of being Element of being Element of being Element of being Element of being Element of V ; Cl ( union F ) c= Cl ( Int union F ) ; the carrier of X1 union X2 misses ( A1 \/ A2 ) & the carrier of X1 union X2 misses ( A1 \/ A2 ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in A ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , x ) / ( y , x ) ) ; consider m being element such that m in Intersect ( FF . m ) and x = ( Intersect ( FF . m ) ) . m ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -\mathop { V } -> non empty for string of S ; LG2 /. n2 = LG2 . n2 & LG2 /. n2 = LG2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and r29 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , B be Subset of TOP-REAL n ; assume [ k , m ] in Indices ( ( - 1 ) * ( i , j ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) * ( ( 1 / 2 ) |^ p ) ; ( F . N | E8 ) . x = +infty ; pred X c= Y means : Def2 : Z c= V & X \ V c= Y \ Z ; ( y - z ) * ( z - w ) <> 0. I & ( - z ) * ( w - y ) <> 0. I ; 1 + card ( X-18 ) <= card ( u \/ { u } ) ; set g = z \circlearrowleft ( L~ z ) , 2 = ( L~ z ) .. z , M = ( L~ z ) .. z , N = ( L~ z ) .. z , S = ( L~ z ) .. z , N = ( L~ z ) .. z , S then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathop { X } , the carrier of S ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | ( A ` ) ; let a , b , c be Function of Y , BOOLEAN , f be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x5 , x5 , x5 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . O ) `2 = 1 ; j + p .. f - len f <= len f - len f + 1 - len f ; set W = W-bound C , S = S-bound C , E = E-bound C , N = E-bound C , N = E-bound C , S = S-bound C , N = E-bound C , S = S-bound C , N = W-bound C , S = W-bound C , S = W-bound S1 . ( a `1 , e `2 ) = a + e .= a `1 + e ; 1 in Seg width ( M * ( ColVec2Mx p ) ) & 1 in Seg len ( M * ( ColVec2Mx p ) ) ; dom ( i * Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f , Im ( f that that .: ( means x `1 = W . ( a , *' ( a , p ) ) ) ; set Q = means : every Element of ) \ \mathopen { f . g , h . g } ; cluster -> non-empty for ManySortedSet of U1 , ( the Sorts of U1 ) * ; attr ex A st F = { A } & F is discrete ; reconsider z9 = \hbox { y where y is Element of product \overline G : y in G } as non empty set ; rng f c= rng f1 \/ rng f2 & rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f = <*> the carrier of F_Complex implies f = id the carrier of F_Complex E , j |= All ( x1 , x2 , x3 , x4 ) ; reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 .= card B2 + 1 ; card ( x \ B1 ) /\ ( x \ B1 ) = 0 implies x in B1 g + R in { s : g-r < s & s < g + r } ; set q-1r = ( q , <* s *> ) \mathop { 1 } , qr = ( q , <* s *> ) \mathop { 1 } ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , being = \overline ( B , NAT ) ) ; t in Seg width ( ( I ^ ( n , n ) ) @ ) ; reconsider X = dom f , Y = [: the carrier of NAT , the carrier of NAT :] as Element of Fin NAT ; IncAddr ( i , k ) = <% i %> + k .= ( - i ) + k ; ( S-bound L~ f ) ^2 <= ( q `2 ) ^2 & ( q `2 ) ^2 <= ( q `2 ) ^2 ; attr R is condensed means : Def2 : Int R is condensed & Cl R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( d /\ b ) ) /\ f ) /\ j ; u in ( ( c /\ ( d /\ e ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 & len C - 3 >= 9 + - 3 ; x , z , y is_collinear & x , z , y is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a |^ n1 ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set yx1 = <* y , c *> , yx2 = <* c , x *> ; FG2 /. 1 in rng Line ( D , 1 ) & FG2 /. len FG2 = D ; p . m Joins r /. m , r /. ( m + 1 ) , G ; ( p `2 ) ^2 = ( f /. i1 ) ^2 + ( f /. i2 ) ^2 .= ( f /. i1 ) ^2 + ( f /. i2 ) ^2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to+infty & ( f1 /* ( seq ^\ k ) ) . n in dom ( f1 /* ( seq ^\ k ) ) ; reconsider u2 = u as VECTOR of \overline { X , Y } , f = u + v as VECTOR of X ; p |-count ( Product Sgm ( X11 ) ) = 0 & p |-count ( Product Sgm ( X11 ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii = card I + 4 .--> goto 0 , goto 0 = goto 0 , goto 0 = goto 0 , goto 0 , goto 0 = goto 0 ; x in { x , y } & h . x = {} T & h . y = {} T ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( A ) ) & len ( the charact of ( A ) ) = len the charact of ( A ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . ( j + 1 ) ; set N8 = : ( G-15 ) . e = ( G-15 ) . e ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; ( for K being ( ) , n , r being Nat holds K is a .| -valued implies ( K is a -sequence of K ) f . k , f . ( Let ( p |^ n ) ) ] in rng f ; h " P /\ [#] ( T1 | P ) = f " P /\ [#] ( T1 | P ) ; g in dom f2 \ ( f2 " { 0 } ) & ( f2 " { 0 } ) " { 0 } = dom f2 ; gfinite X /\ dom f1 = g1 " X & gX /\ dom f1 = dom g1 /\ dom f1 ; consider n being element such that n in NAT and Z = G . n ; set d1 = being thesis , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `2 + ( 1 - r ) < ( 1 - r ) * ( 1 - r ) ; reconsider f1 = f as VECTOR of the carrier of X , the carrier of Y ; pred i <> 0 means : Def2 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & 1 <= j2 & j2 <= len ( g2 . i2 ) ; dom ( i * ( i - 1 ) ) = dom ( i * ( i - 1 ) ) .= a ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) & Ball ( u , r ) c= Ball ( u , r ) ; reconsider x1 = x0 , y1 = x1 as Function of S , IF ; reconsider R1 = x , R2 = y , R1 = z as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in ( R ^ p ) ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; Ea1 . e2 = E8 . e2 -T & E8 . e2 = ( ( e | e2 ) | T ) . e2 ; ( ( ( arctan + arccot ) (#) ( ( arccot + arccot ) * ( f ^ ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 ) / 2 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f reconsider p8 = ( q `1 ) / |. q .| as Point of Euclid 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & [#] Y0 c= [#] Y0 & [#] Y0 c= [#] Y0 ; let C be compact connected non vertical non horizontal Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) \/ LSeg ( g , i ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq ( 2 ) , Rev ( idseq ( 2 ) ) } ; reconsider n2 = n , m1 = m , m2 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y & g <= x for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 ) , Bf = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R ~ ( a ) c= R ~ ( b ) & R ~ ( a ) c= R ~ ( b ) ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z - v2 ) ; x2 -tree y2 in X iff P [ x2 , y2 ] & P [ y2 , x2 ] ; pred x1 <> x2 means : Def2 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 - p2 , p3 - p1 - p2 - p1 is_collinear and p2 - p1 , p3 - p2 - p3 - p1 , p3 - p1 - p2 - p3 - p1 - p2 .| ; set q = ( Ant ( f ) ^ <* 'not' A *> ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , g be PartFunc of REAL 1 , REAL-NS n , x0 be Point of REAL-NS n ; ( n mod ( 2 * k ) ) + 1 = n mod ( 2 * k ) ; dom ( T * ( succ t ) ) = dom ( succ t ) & dom ( T * ( succ t ) ) = dom ( succ t ) ; consider x being element such that x in wc iff x in c & x in c ; assume ( F * G ) . ( v . x3 ) = v . x3 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) ; n1 - len f + 1 <= len - len f + 1 - len f + 1 ; Seg ( q , O1 ) = [ u , v , a , b , b , a , b , c ] ; set C-2 = ( dom ( { v : not G . ( k + 1 ) } ) ) ; Partial_Sums ( L * p ) . 0 = 0. R * Sum p .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i and p . i = x ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 <= len Q & Q [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P2 , s2 , k ) , P4 = P2 , P3 = P3 ; let l be variable of k , A , P be Subset of A , x be element ; reconsider U1 = union ( Gf1 , T ) as Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; por = <* - ( c - 1 ) , 1 , - ( c - 1 ) *> ; synonym f is real-valued means : Def2 : rng f c= NAT & rng f c= NAT & f is one-to-one ; consider b being element such that b in dom F and a = F . b and b in dom F ; x10 < card X0 + card Y0 & ( card Y0 + 1 ) < card Y0 + card Y0 ; pred X c= B1 means : Def2 : for X st X c= succ B1 holds X in succ B & X is non empty ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , PI ) ; pred 1 <= len s means : Def2 : for s being 2 -w holds s . s = s . ( 2 * s ) ; f/. i c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in - ( p '&' q ) means : Def2 : q '&' p in - ( p '&' q ) ; - ( t `1 ) < ( t `1 ) ^2 + ( t `2 ) ^2 ; ( U . 1 ) = ( U /. 1 ) `1 .= ( W /. 1 ) `1 .= W . 1 .= W . 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is \cup ( f * F ) & f is \setminus & f is \setminus implies f is FinSequence of the carrier of [: A , A :] [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = 0. TOP-REAL 2 ; reconsider t = t as Element of INT * , X be non empty set ; C \/ P c= [#] ( ( G \ A ) \ ( [#] ( G \ A ) ) ) ; f " V in ( the carrier of X ) /\ D & ( the carrier of X ) /\ D = { the carrier of X } ; x in [#] ( the carrier of ( the carrier of ( F . m ) ) ) /\ the carrier of ( ( F . m ) /\ the carrier of ( F . m ) ) ; g . x <= h1 . x & h . x <= h1 . x implies g . x <= h1 . x InputVertices S = { xy , yz , yz , yz } & InputVertices S = { xy , yz , yz } ; for n being Nat st P [ n ] holds P [ n + 1 ] implies P [ n + 1 ] set R = Line ( M , i ) , a = Line ( M , i ) , N = Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M2 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len F1 ^ F2 ) .= len ( Len F1 ^ ( Len F2 ) ) ; len ( ( the _ of n ) * ( i , j ) ) = n & len ( ( f ^ ) ) = n ; dom ( ( f + g ) (#) f ) = dom ( f + g ) /\ dom f ; ( for n holds seq . n = upper_bound Y1 ) implies ( seq is convergent & lim seq = ( seq ^\ n ) * ( seq ^\ n ) ) dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 / y , y ] = 1 / ( 1 * v1 ) * v1 .= 1 / ( 1 * v1 ) .= 1 / ( 1 * v1 ) ; assume that W is non trivial and W { v } c= the carrier' of G2 and W is trivial ; C6 /. i1 = G1 * ( i1 , i2 ) & C6 /. i1 = G2 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng fwhere fwhere fmeans is Element of REAL n : 0 <= fLet & fover n , b } <= b - ( ( q1 `1 ) ^2 - ( q1 `2 ) ^2 ) = 1 - ( ( q1 `2 ) ^2 ) .= ( ( q1 `2 ) ^2 - ( q1 `2 ) ^2 ) ; ( LSeg ( c , m ) \/ { l } ) \/ ( LSeg ( l , k ) ) c= R ; consider p being element such that p in Ball ( x , r ) and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid & ( q => ( s => p ) ) => ( s => q ) is valid ; Im ( ( Partial_Sums ( F ) ) . m ) is_measurable_on E & ( Im ( ( Partial_Sums ( F ) ) . m ) ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * , f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g . t ] ; p in LSeg ( ( N-min Z ) /. 1 , ( E-max Z ) /. 2 ) & p in LSeg ( ( func \hbox { - } ) , ( E-max Z ) /. 2 ) ; set R8 = R / ( ]. b , +infty .[ ) , R8 = R / ( ]. a , +infty .[ ) ; IncAddr ( I , k ) = SubFrom ( d8 , ( d + n ) + k ) .= goto ( ( d + n ) + k ) ; seq . m <= ( ( the seq of seq ) ^\ k ) . m & ( seq ^\ k ) . m <= ( ( seq ^\ k ) * ( seq ^\ k ) ) . m ; a + b = ( a *' *' ) *' *' .= ( a *' *' ) *' *' .= a *' *' *' *' .= a *' *' *' ; id X /\ Y = id X /\ id Y .= id Y /\ id Y .= id Y ; for x being element st x in dom h holds h . x = f . x & h . x = f . x ; reconsider H = U1 \/ U2 , U1 = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] and y in B ; consider A being finite stable Subset of R such that card A = ( the carrier of R ) and card A = 1 ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ { p2 } ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min ( P ) ) `2 ) ^2 = ( ( E-max ( P ) ) ) ^2 .= ( ( E-max ( P ) ) ) ^2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & L~ Cage ( C , k + 1 ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= f . a1 ` .= f . a1 ` .= f . a1 ; ( seq ^\ k ) . n in ]. x0 - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 - r , x0 .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 .= g . s0 ; the InternalRel of S is \lbrace the carrier of S , the carrier of S , the carrier of S , the carrier of S } ; deffunc F ( Ordinal , Ordinal ) = phi . $1 & phi . $1 = phi . $1 ; F . ( s1 . a1 ) = F . ( s2 . a1 ) .= F . ( s2 . a1 ) ; x `2 = A . ( o . a ) .= Den ( o , A . a ) ; Cl f " P1 c= f " ( Cl P1 ) & Cl f " ( Cl P2 ) c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) \/ the topology of T ) c= the topology of T & the topology of T c= the topology of T ; synonym o is \bf means : Def2 : o <> o & o <> * ; assume that X c= Y and card X <> card Y and Y <> {} and Y <> {} ; the finite the { F of s <= 1 + ( the } \HM { the } \HM { \upharpoonright } s ) . ( len s + 1 ) ; LIN a , a1 , d or b , c // b1 , c1 or a , c // b1 , c1 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 4 = 0 ; EE in SE & not EE in { NE } & not EE in { NE } ; set J = ( l , u ) If , K = I " ; set A1 = EqClass ( z , ap , cin ) , A2 = \mathop { A1 , cin } ; set xy = [ <* xy , cin *> , '&' ] , yz = [ <* cin , cin *> , '&' ] , yz = [ <* cin , cin *> , '&' ] ; x * z `1 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g2 . x & f . x = g1 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f & ( L~ f ) misses ( L~ f \/ L~ f ) ; that U1 is_an_arc_of W-min C , E-max C and L~ ( f ) c= L~ ( f ) and L~ ( f ) = L~ f and L~ ( f ) = L~ f and L~ ( f ) = L~ f and L~ ( f ) = L~ f and L~ ( f ) = L~ f and L~ ( f ) = L~ f and L~ ( f ) = L~ f and set f-17 = f @ "/\" g @ ; attr S1 is convergent means : Def2 : S2 is convergent & ( for n holds S2 . n = S2 . n ) implies S2 is convergent & lim S2 = lim S2 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + ( 0 qua Ordinal ) .= a + ( 0 qua Nat ) .= a ; cluster -> \llangle -> \mathclose be in , reflexive transitive non empty transitive strict non empty for non empty reflexive transitive RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a \rbrack ) = len l & len ( l ) = len l ; t4 ^ {} is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng t4 ) * * , ( {} \/ rng t4 ) * * , ( {} \/ rng t4 ) * , ( {} , rng t4 ) * ) * ) -valued Function ; t = <* F . t *> ^ ( C . ( p ^ q ) ) .= ( C ^ ( p ^ q ) ) ^ ( C ^ q ) ; set p-2 = W-min L~ Cage ( C , n ) , p`2 = W-bound L~ Cage ( C , n ) ; ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i - ( i + 1 ) ) ; consider u being Element of L such that u = u ` and u in D ` and u in D ` ; len ( ( width ( ( ( B - A ) |-> a ) * ( A @ ) ) ) @ ) = width ( ( B - A ) |-> a ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) ; dom ( ( ( cos * sin ) `| Z ) ) = REAL & dom ( ( cos * cos ) `| Z ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b9 = [ <* ap , bm *> , [ <* A1 , cin *> , [ <* cin , cin *> , [ <* cin , cin *> , [ <* cin , cin *> , [ <* cin , cin *> , [ <* cin , cin *> ] ] ] , [ <* cin , y2 *> , [ <* cin , y2 *> , [ <* cin , y2 *> ] ] Line ( Segm ( M @ , P @ , x ) , x ) = L * ( Sgm Q ) ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( the Sorts of A ) . n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of S ; consider y be Point of X such that a = y and ||. x-y .|| <= r and ||. y - x .|| <= r ; set x3 = t8 . DataLoc ( s . SBP , 2 ) , x4 = s . SBP , x5 = s . SBP , P4 = s . SBP , P4 = s . SBP , P4 = s . SBP , P4 = s . SBP , \mathbin { IC } } ; set p-3 = stop I , pI = stop I , pI = stop I , pI = stop I , pI = stop I , pI = stop I , pI = stop I , pI = stop I , II = stop I , pI = stop I , II = stop I ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B , C } \/ { D , E , F , J } let A , B , C , D , E , F , J , M , N , N , F , J , M , N , N , F , J , M , N , N , F , J , M , N , N , F , N , N , F , J , M , N , N , F , |. p2 .| ^2 - ( p2 `1 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( ( m + 1 ) + 1 ) + 1 ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) ; the TopStruct of L = reconsider the TopStruct of L , the TopStruct of L = the TopStruct of L , the TopStruct of L = the TopStruct of L ; consider y being element such that y in dom H1 and x = H1 . y and y in H1 . x ; fv \ { n } = Free ( All ( x , H ) ) \ { n } & fv \ { n } = Free ( H ) ; for Y being Subset of X st Y is summable & Y is iff Y is \overline of Y 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of s } * the { - } ) = len s & len s = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x = 1 rng ( h2 * ( f ^ ) ) c= the carrier of ( ( TOP-REAL 2 ) | ( the carrier of TOP-REAL 2 ) ) ; j + ( len f ) - len f <= len f + ( len f - len f ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( a - 0 ) .= C8 . x - ( s1 - s2 ) . x .= ( s1 - s2 ) . x ; power F_Complex = 1 / ( z , n ) .= 1 / ( x |^ n ) .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the that ( the connectives of S ) . t ) ; support ( f + g ) c= support f \/ ( support g ) & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( ( r4 | N ) | N ) > N ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 is Element of [: X1 , X2 :] : x1 in X } is Subset of [: X1 , X2 :] ; h = ( i , j ) -tree h , id B = H . i , id B = H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in A & x1 in B ; set X = ( ( Seg ( q , O1 ) ) , ( a , b ) ) `1 , Y = ( a , b ) `1 , Z = ( a , b ) `2 , Y = ( a , b ) `1 , Z = ( a , b ) `1 , Z = ( a , b ) `1 , Z = ( a , b ) `1 , Z = ( a , b ) `1 , Z = b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = lim ( f /* s1 ) the lattice of Y = the lattice of the lattice of Y & the lattice of Y = the lattice of the open of Y implies Y is open 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; s2 = ( len ( q1 ^ r1 ) ) + len ( q1 ^ r2 ) .= len ( q1 ^ r2 ) + len ( q2 ^ r2 ) ; ( 1 / a ) (#) ( sec * f1 ) - ( ( sec * f1 ) - ( sec * f2 ) ) is_differentiable_on Z ; set K1 = upper_volume ( f , ( lim H ) || A ) , K1 = ( lim H ) || A , K1 = ( lim H ) || A ; assume e in { ( w1 - w2 ) / 2 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F as finite non empty set ; LSeg ( f /^ ( j -' 1 ) , j ) = LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , N2 ) : h . ( N2 , N2 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f1 ; dom S29 = dom S /\ Seg n .= dom ( L * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * ( S * x in H |^ a implies ex g st x = g |^ a & g in H & a in H a * ( - n ) . ( a , 1 ) = a `1 - ( 0 * n ) .= a `1 - ( 0 * n ) .= a `1 - ( 0 * n ) ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & ( for p being Point of TOP-REAL 2 st p in P holds p `1 <= 0 ) ; for c holds f . c <= g . c implies f ^ @ c < g ^ @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ dom ( f1 (#) f3 ) ; 1 = ( p * p ) * ( 1 - p ) .= p * 1 - p * ( 1 - p ) .= p * 1 - p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f + 1 ; dom F-11 = dom ( F | ( N1 ~ ) ) & rng ( F | ( N1 ~ ) ) = ( N1 ~ ) ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and rng g c= dom f ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f " = id b and f * f = id a and f is one-to-one ; ( ( cos | [. 2 * PI , 0 .] ) | [. 2 * PI , 0 + PI .] ) | [. 2 , PI .] is increasing ; Index ( p , co ) <= len LS - Index ( Gij , LS ) + 1 - Index ( Gik , LS ) ; t1 , t2 , Z be Element of ( S , s ) * , s be Element of ( S , s ) * ; "/\" ( ( Frege ( curry H ) ) . h , L ) <= "/\" ( rng ( Frege ( curry H ) ) , L ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j & j < len f ; Q [ [ D . ( x , 1 ) , F . ( D . ( x , 1 ) ) ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is for i holds r . i is a < G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= ( the carrier of S2 ) --> ( the carrier of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F . s and rng s c= dom F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Lower_Seq ( C , n ) ) /. len ( Lower_Seq ( C , n ) ) = WU . 1 .= W ; q <= ( UMP Upper_Arc C ) `2 & ( UMP C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} implies LSeg ( f | i2 , i ) = {} given a being ExtReal such that a <= II and A = ]. a , I .[ and a in A and b in B ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= len b } , Y = { b |^ n where n is Element of NAT : n <= len b } ; ( ( x * y * z ) \ x ) \ z = 0. X ; set xy = [ <* xy , yz , yz *> , f1 ] , yz = [ <* xy , yz *> , f2 ] , yz = [ <* xy , yz *> , f3 ] , xy = [ <* xy , yz *> , f3 ] ; ll /. len ll = ( l . len ( l | i ) ) * ( l | i ) ; ( ( q `2 ) ^2 - ( |. q .| ) ^2 ) * ( ( q `2 ) ^2 ) = 1 ; ( ( ( p `1 ) / |. p .| - cn ) / ( 1 + cn ) ) * ( 1 + cn ) < 1 ; ( ( ( S \/ Y ) --> ( x , y ) ) ) `2 = ( ( S \/ Y ) --> ( x , y ) ) `2 ; ( seq - seq ) . k = seq . k - seq . ( k + 1 ) .= seq . k - seq . ( k + 1 ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of Y = the carrier of X & the carrier of Y = the carrier of Y implies X = Y ex p4 st p3 = p4 & |. p3 - |[ a , b ]| .| = r & |. p3 - |[ a , b ]| .| = r ; set ch = chi ( X , A5 ) , A5 = chi ( X , A5 ) ; R / ( 0 * n ) = Ilet ( X , X ) to_power 0 .= R / ( 0 * n ) .= R / ( 0 * n ) ; ( Partial_Sums ( curry ( F1 , n ) ) . n ) . x is nonnegative & ( Partial_Sums ( F1 , n ) ) . x <= ( Partial_Sums ( F1 , n ) ) . x ; f2 = C7 . ( ( the EEof V , len ( V , K ) ) . ( len ( V , K ) ) ) ; S1 . b = s1 . b .= s2 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) & p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & the carrier' of S = ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) \mathop { l1 } , phi = ( l2 , l2 ) \mathop { l2 } , C = ( l2 , l2 ) \mathop { l2 } , D = ( l2 , l2 ) \mathop { l2 } , E = ( X , l2 ) . { l2 } , F = ( X , l2 ) . { l2 } , F = ( X , l2 ) . { l2 } , D = synonym p is invertible for ( p , T ) " , ( p , T ) " , ( p , T ) " ; ( Y1 `2 = - 1 & ( Y1 `2 = 1 & Y2 `2 = 1 or Y1 `1 = 1 & Y1 `2 = 1 ) & ( Y1 `2 = 1 implies Y1 `2 = 1 ) ; defpred X [ Nat , set , set ] means P [ $1 , $2 , , , , , ] & P [ $1 , $2 , $2 , $2 , $2 ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g and x0 < g ; Det ( I @ ) * ( m - n ) = 1. ( K , n ) & ( I @ ) * ( m - n ) = 1. ( K , n ) ; ( - b - sqrt ( b - a ^2 - ( 4 * a * c ) ) / ( 2 * a * c ) ) < 0 ; Ci . d = C7 . d mod ( d7 . d ) .= C7 . d mod ( C7 . d ) .= C8 . d mod ( C7 . d ) ; attr X1 is dense means : Def2 : X2 is dense & X2 is dense implies X1 /\ X2 is dense SubSpace of X & X2 /\ X1 is dense SubSpace of X ; deffunc F6 ( Element of E , Element of I , Element of I ) = $1 * $2 & $2 = ( $1 * $2 ) * ( $2 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . ( t `1 ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ 0. X .= 0. X .= 0. X ; for X being non empty set for T being Subset-Family of X holds the topology of [: X , Y :] is Basis of [: X , Y :] synonym A , B are_separated for Cl ( A \/ B ) , Cl ( A \/ B ) , Cl ( A \/ B ) ` , Cl ( A \/ B ) ` ; len ( ( - 1 ) * ( - 1 ) ) = len p & len ( - 1 ) * ( - 1 ) = len p & len ( - 1 ) * ( - 1 ) = len p ; J = { x where x is Element of K : 0 < v . x & x < v . x } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len b1 + len b2 ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC ( s , 9 ) .= 5 + 9 .= 5 + 9 .= ( card I + 1 ) .= ( card I + 1 ) ; ( IExec ( W6 , Q , t ) ) . intpos i = t . intpos i .= t . intpos i .= t . intpos i ; LSeg ( f /^ ( i -' 1 ) , i ) misses LSeg ( f /^ ( i -' 1 ) , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) .= f . ( lower_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) - R /. ( K + 1 ) .|| < e1 * ( K + 1 ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y ` in Y ` & x in X ` holds y ` <= x ` ; func |. p \bullet |. p .| -> variable equals : Def2 : ( p . 1 ) . ( ( - NBI ) . ( p . 1 ) ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , y `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len x2 & len y1 = len x2 & len y1 = len x2 & len y1 = len y2 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 and y2 <= 1 and y2 <= 1 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X = ( f | X ) /* s1 ; ( the InternalRel of A ) ~ /\ ( the InternalRel of A ) ` = {} \/ {} .= {} \/ {} .= {} .= {} \/ {} .= {} .= {} ; assume that i in dom p and for j be Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and i + 1 in dom q and j + 1 in dom q ; reconsider h = f | X ( ) , g = f | X ( ) as Function of X ( ) , Y ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & u2 in the carrier of W1 implies u1 + u2 in the carrier of W1 + W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b - ( s * x ) + y .= b - ( s * x ) ; - ( x-y ) = - x + - y .= - x + - y .= - x + y .= - x + y .= - x + y .= x + y ; given a being Point of GX such that for x being Point of GX holds a , x , a , x is_collinear and a , x , x , y is_collinear ; f\lbrace x , y , cod ( f * f2 ) , y , cod ( f * g2 ) , y , cod ( f * g2 ) , y , cod ( f * g2 ) ) = [ x , y , f . x ] ; for k , n being Nat st k <> 0 & k < n & n is prime & k , n are_relative_prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & ( ( A ` ) |^ d ) ` = ( A ` ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 ) > 0 ; L-13 . k = Lw . ( F . k ) & F . k in dom ( L * F ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto - ( n + 1 ) ; attr B is \frac means : Def2 : ( for B holds B in Subrng ( B , Sv ) ) & ( B is non empty or B is non empty ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" d in D ; |( \square , q29 )| * |( q1 , q2 )| * |( q2 , q1 )| >= |( \square , 1 )| * |( q2 , q2 )| ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= f . ( upper_bound A ) ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . ( LM . LM ) *> .= ( Proj ( i , n ) ) . ( LM . LM ) ; f1 + f2 * reproj ( i , x ) - ( reproj ( i , x ) ) . i = ( ( ( ( - 1 ) (#) reproj ( i , x ) ) ^ ) ) . i ; pred ( ( tan (#) tan ) `| Z ) . x <> 0 & ( tan (#) tan ) . x = 1 & ( tan (#) tan ) . x = 1 ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & ( h1 . t ) . x = h2 . x ; defpred C [ Nat ] means P8 . $1 is non empty & A8 is non empty & A8 is non empty & A8 is non empty ; consider y being element such that y in dom ( p9 | i ) and q9 . i = p9 . y and y in dom ( p9 | i ) and x = ( p9 | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Basis of A . ( index A ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for d being Element of D holds T . ( id d ) = id d be Element of ( f | n ) ^ , p be Element of ( f | n ) ^ , q be Element of ( f | n ) * ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p `2 = ( f | ( n , L ) ) *' - ( f *' ) . ( - p ) .= ( f - ( - ( - ( f . p ) ) ) ) ) . p ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 , s2 ]| ) in f1 .: W1 & f2 . ( |[ r2 , s2 ]| ) in f1 .: W2 & ( f1 .: W2 ) c= f1 .: W2 ; eval ( a | ( n , L ) , x ) = ( a | ( n , L ) ) . x .= a * ( x * x ) .= a * x ; z = DigA ( tz , x ) .= DigA ( tz , x ) .= DigA ( tz , x ) .= DigA ( tz , x ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , F = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset of X : S c= G } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S29 in D * ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `1 ) / |. q .| - cn ) / ( 1 + cn ) ; ( ( for v be VECTOR of V holds v in A ) & ( for v be VECTOR of V holds v in A iff v in A ) implies Sum ( L (#) F ) = Sum ( L (#) F ) let k1 , k2 , k2 , x4 , x5 , 7 , 8 , 7 , 8 , 8 , 7 , 8 be Element of NAT ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and a . j = b . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = \hbox { a * p1 + ( a * p2 ) * p2 and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c & c <= d and [' a , b '] c= dom f and [' a , b '] c= dom g and f | [' a , b '] is bounded ; cell ( Gauge ( C , m ) , 1 , ( X -' 1 ) -' 1 ) is non empty & cell ( Gauge ( C , m ) , 1 , 0 ) is non empty ; A\HM { A where i is Element of NAT : i in { S . i where i is Element of NAT : not contradiction } c= { S . i where i is Element of NAT : not contradiction } ( T * b1 ) . y = L * b2 /. y .= ( F * b1 ) . y .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) to_power ( k + 1 ) >= ( log ( 2 , k + 1 ) ) to_power ( k + 1 ) ; then p => q in S & not x in the still of p & not x in S & not x in S & x in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is ExtReal means : Def2 : for for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; ( l - 1 ) * ( k - 3 ) = ( g - k ) * ( k - 3 ) + ( k - 3 ) * ( k - 3 ) .= ( g - k ) * ( k - 3 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= halt SCM+FSA .= ( halt SCM+FSA ) . l .= ( CurInstr ( P2 , s2 ) ) ; assume for n be Nat holds ||. seq .|| . n <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin . ( 0. X ) = sin . ( cos . ( - PI ) * cos . ( - PI ) ) .= sin . ( - PI ) * cos . ( - PI ) .= 0 ; set q = |[ g1 `1 / ( t `2 ) ^2 , g2 `2 / ( t `1 ) ^2 ]| , r = |[ g1 `1 / ( t `2 ) ^2 , g2 `2 / ( t `2 ) ^2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in WAsubsets ( F . n ) and G . n = B . n ; consider G such that F = G and ex G1 st G1 in SM & G = [: G1 , G2 :] & G1 in SM & G2 in SM ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( #Z 3 ) * ( f + #Z 3 ) ) ) ; for k be Element of NAT holds r0 . k = ( ( Im ( Im ( f , S ) ) ) . k ) * ( ( Im ( f , S ) ) . k ) assume that - 1 < n and n > 0 and ( q `2 <= 1 or q `1 < 1 & q `2 <= 1 or q `1 < 1 & q `1 <= 1 ) ; assume that f is continuous and a < b and f is continuous and c < d and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that s\mathopen { + } ( P1 , s1 ) , r ) = Comput ( P1 , s1 , r ) and r <= q ; LE f /. ( i + 1 ) , f /. ( j + 1 ) , L~ f , f /. ( i + 1 ) , L~ f ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and x in the carrier of K and y in the carrier of K ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( ( proj ( F , i2 ) ) " ( A7 ) ) . ( ( f . ( A . ( A . ( B . ( A . ( B . ( A . ( B . ( A . ( A . ( A . ( A . ( A . ( A . ( A . ( A . ( A . ( A . ( A . ( A . ( rng ( ( ( Flow M ) | ( the carrier of M ) ) | ( the carrier' of M ) ) c= the carrier' of M & ( ( Flow M ) | ( the carrier' of M ) ) | ( the carrier' of M ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : t in the carrier of T } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 ; consider t be VECTOR of product G such that mt = ||. Dt . t .|| and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . 1 = 0 ; consider a being Element of the Points of Xbe that not a on ( the Points of X29 ) and not a on ( the Points of X29 ) ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set for i st i in dom p holds p . i in D & p . i in D implies p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p1 , p10 ) } .= { LSeg ( p10 , p2 ) , LSeg ( p1 , p10 ) } ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 < i - len h11 + 1 - 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( F . ( n -' 1 ) ) . n .| ; for r , s1 , s2 , s2 , s3 being Real holds s1 in [. s1 , s2 .] iff s1 <= s2 & s2 <= s2 & s1 <= s2 & s2 <= s2 & s2 <= s1 & s1 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= B1 & G c= B2 & A c= G & B c= G } ; let g be ) :] non-empty Element of A , X , Y be Element of INT , b be Element of INT , f be Function of X , Y ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CP such that for n holds P [ n , q1 . n ] and for n holds q1 . n = F ( n ) ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ ( O /\ O ) , Z = O /\ ( O /\ O ) as Subset of B ; consider j being Element of NAT such that x = ( the ` of n ) * ( j , i ) and 1 <= j and j <= n and i <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in ( x . O2 ) . x and x in ( x . O2 ) . x ; ( C * dom _ 4 ( k , n2 ) ) . 0 = C . ( ( dom ( T . k ) ) . 0 ) .= C . ( ( T . 0 ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & rng ( X --> f ) = X ; ( N-bound L~ SpStSeq C ) <= ( ( SpStSeq L~ SpStSeq C ) * ( ( SpStSeq L~ SpStSeq C ) * ( ( SpStSeq L~ SpStSeq C ) * ( ( SpStSeq L~ SpStSeq C ) * ( ( SpStSeq L~ SpStSeq C ) * ( ( SpStSeq L~ Cage C ) * ( i , 1 ) ) + ( S-bound L~ Cage ( C , n ) ) * ( i , 1 ) ) ) ) ; synonym x , y , z means : Def2 : x = y or ex l being Subset of S st { x , y } c= l & x in l & y in l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y holds x << y iff a << b & b << a ; ( 1 - ( 2 * ( ( ( - ( m - n ) ) * ( ( m - n ) ) * ( ( m - n ) ) * ( ( m - n ) ) * ( ( m - n ) * ( ( m - n ) * ( ( m - n ) * ( ( m - n ) * ( ( m - n ) * ( ( m - n ) * ( m - n ) ) * ( ( m - n ) ) * ( ( m - n ) ) ) ) ) ) ) ) ) ) ) ) / ( m - defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A2 ) . $1 = A2 . $1 & ( the partial of A1 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= ( card I + 1 ) .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * ( f . g2 ) .= f . g1 * ( f . g2 ) ; ( M * ( F . n ) ) . n = M . ( ( ( canFS ( Omega ) ) . n ) ) .= M . ( ( ( canFS ( Omega ) ) . n ) ) .= M . ( ( ( canFS ( Omega ) ) . n ) ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L2 implies L1 + L2 = L2 + L1 pred a , b , c , x , y , z , x , y , z , x , y , z be set ; ( the partial of s ) . n <= ( the partial of s ) . n * s . n & ( the partial of s ) . n <= ( the partial of s ) . n * s . n ; pred - 1 <= r & r <= 1 & ( ( - 1 ) (#) ( arccot ) ) `| Z = - ( 1 / r ) / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where p is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - y2 & |[ x1 , x2 , x3 , x4 ]| . 2 = x2 - y2 ; attr for m be Nat holds F . m is nonnegative means : Def2 : ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( ( G . z ) + ( G . ( x , y ) ) ) ) = len ( ( G . ( x , y ) ) + ( G . ( y , z ) ) ) .= len ( ( G . ( x , y ) ) + ( G . ( y , z ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W1 /\ W2 ; given F be FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum ( F ) = k ; 0 = ( 1 * or 0 = ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - 0 ) ) ) ) ) ) * ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - 0 ) ) ) ) ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( f # x ) . n .| < e ; cluster -> Boolean non empty for \hbox { $ ( ( implies ( ( u ) ) , ( u ) ) *> , ( ( u ) ) --> ( ( u ) ) , ( ( u ) ) --> ( ( u ) ) , ( ( u ) ) --> ( ( u ) ) , ( ( u ) ) --> ( ( u ) ) ) ; "/\" ( BB , {} ) = Top ( B ) .= Top S .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( [#] S , {} ) .= "/\" ( {} , {} , {} ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - ( 2 * r1 - ( 2 * r1 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - r2 ) ) ) ) ) ) ) ) ) ) ) ) reconsider p = P * ( 1 , 1 ) , q = a " * ( ( - ( - ( - ( K , n , 1 ) ) ) ) * ( ( - ( K , n , 1 ) ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and x2 in uparrow t and t . x1 = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M7 ) ) . n ) * ( ( upper_volume ( g , M7 ) ) . n ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 , H2 |^ g |^ f |^ g |^ f = H2 |^ f and H1 , H2 |^ g |^ f = H2 |^ f ; for S , T being non empty RelStr , d being Function of T , S st d is complete holds d is monotone iff d is monotone & d is monotone [ a + 0 , b + i ] in ( the carrier of COMPLEX ) /\ ( the carrier of V ) & [ a , b ] in ( the carrier of F_Complex ) /\ the carrier of V ; reconsider mm = max ( len F1 , len ( p . n ) * ( <* x *> |^ n ) ) as Element of NAT ; I <= width ( ( GoB ( ( GoB ( ( h ) ) * ( 1 , 1 ) ) ) ) ) & ( ( GoB ( ( GoB ( ( h ) ) * ( 1 , 1 ) ) ) ) ) * ( ( GoB ( ( h ) ) * ( 1 , 1 ) ) ) ) <= ( ( GoB ( ( h ) ) * ( 1 , 1 ) ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( ( f2 * f1 ) /* s ) ^\ k ) ^\ k .= ( ( ( f2 * f1 ) /* s ) ^\ k ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def2 : A1 is linearly-independent & A2 misses A1 & ( for x being Element of V holds x in A1 & x in A2 implies x in A1 & x in A2 ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C & s in C } ; dom ( ( Line ( v , i + 1 ) ) ^ ( ( Line ( p , m ) ) * ( Line ( p , 1 ) ) ) ) = dom ( F ^ ) .= dom ( F ^ ) ; cluster [ x , 4 ] -> non empty & [ x , 4 ] in [: { x } , { x } :] & [ x , 4 ] in [: { x } , { x } :] & [ x , 4 ] in [: { x } , { x } :] ; E , All ( x2 , All ( x2 , All ( x2 , x2 ) ) ) |= All ( x2 , All ( x2 , x2 ) ) => ( x2 , All ( x2 , x2 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) + ( h . m ) - ( h . m ) .= ( ( - 1 ) * ( h . m ) ) * ( h . m ) ; cell ( G , ( X -' 1 ) , ( Y + 1 ) + ( t + 1 ) ) \ ( ( X + 1 ) \ ( X + 1 ) ) meets ( ( X + 1 ) \ ( X + 1 ) ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= ( card I + card J + 3 ) .= ( card I + card J + 3 ) .= ( card I + card J + 3 ) .= ( card I + card J + 3 ) ; sqrt ( ( - ( - ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k `2 } and y0 = a . x0 and x0 in g " { k } and x0 in { k } ; dom ( ( r1 (#) chi ( A , A ) ) | ( A . m ) ) = dom ( chi ( A , A ) ) /\ ( A . m ) .= C /\ ( A . m ) .= C /\ ( A . m ) .= C /\ ( A . m ) .= C /\ ( ( A . m ) /\ ( A . m ) /\ ( A . m ) ) .= C ; d-7 . [ y , z ] = ( ( [ y , z ] ) `1 - ( ( [ y , z ] ) `2 ) * ( ( [ y , z ] `2 - ( z , y ) `2 ) ) * ( ( [ y , z ] `2 - ( z , y ) `2 ) ) * ( ( z , y ) `2 - ( z , y ) `2 ) * ( ( z , y ) `2 - ( z , y ) `2 ) * ( ( z , y ) `2 - ( z , y ) `2 ) ) * ( z , y ) `2 ) pred for i being Nat holds C . i = A . i /\ B . i & C . i c= d /\ ( A /\ B ) ; consider x0 such that x0 in dom f and f is continuous and for x be Element of REAL m holds ||. f /. x - f /. x0 .|| <= ( f /. x - f /. x0 ) * ( f /. x0 ) ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y2 - x2 .| <= |. y1 - y2 .| func the \times <*> of a -> Ordinal means : Def2 : a in it & for b being Ordinal st a in it holds it . a c= b & it . b = a ; [ a1 , a2 , a3 ] in ( the carrier of A ) /\ ( the carrier of A ) & ( the carrier of A ) /\ ( the carrier of A ) = ( the carrier of A ) /\ ( the carrier of A ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( ( vseq . n ) - ( vseq . m ) ) * ( ( vseq . m ) - ( vseq . n ) ) .|| < ( e / ( ||. x .|| ) * ||. x .|| ) * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F . Y in Z & z in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( { [ s , t ] } ) , sup ( compactbelow s ) ] , sup ( compactbelow t ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ii and [ f . i , f . j ] in Ii and [ f . i , f . j ] in Ii ; for D be non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q ^ p & p ^ q = q ^ p consider e19 being Element of the affine of X such that c9 , a9 // a9 , e and a9 , c9 // a9 , e and a9 , c9 // a9 , e and a9 , c9 // a9 , e and a9 , c9 // a9 , e and a9 , c9 // a9 , e ; set U1 = I \! \mathop { \vert I .| , U2 = I \! \mathop { \vert I .| } , E = { I .| , F = { I } , N = { I } , F = { I } , N = { I } , E = { I } , N = { I } , F = { I } , N = { I } , F = { I } , E = { I } , F = { I } , E = { I } , F = { I } , F = { I } , F = { I } , F = { I } , F = { I } , F = |. q3 .| ^2 = ( ( q3 `1 ) ^2 + ( ( q3 `2 ) ^2 ) * ( ( q3 `1 ) ^2 ) ) ^2 .= ( ( q `1 ) ^2 + ( q `2 ) ^2 ) * ( ( q `2 ) ^2 ) .= ( q `1 ) ^2 + ( q `2 ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( ( the charact of U1 ) * the Arity of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( h | X ) .= X ; for N1 , N2 being Element of N1 , N1 , N2 being Element of N1 holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) = N2 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( - ( q `1 ) ) < - 1 or - ( q `2 ) >= - ( q `1 ) & - ( q `2 ) <= - ( q `1 ) & - ( q `1 ) <= - ( q `2 ) ; pred r1 = f9 & r2 = f9 & s1 = g9 & s2 = f9 & s1 = g9 & s2 = f9 & s1 = g9 & s2 = f9 & s1 = g9 & s1 = s2 & s1 = s2 & s1 = s2 & s2 = s1 & s1 = s2 & s1 = s2 & s1 = s2 & s1 = s2 & s1 = s2 & s1 = s2 & s1 = s2 & s1 = s2 ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( ( vseq . m ) * ( vseq . m ) ) . x & ( ( vseq . m ) * ( vseq . m ) ) . x = ( ( vseq . m ) * ( vseq . m ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( b , c , a ) = PI ; consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and j < len s and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |. p .| ) ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 ^ q2 = p1 ^ q1 and p1 ^ q1 = p2 ^ q2 and p1 ^ q1 = p2 ^ q2 ; ( of of A , r1 , r2 , s2 , s1 , s2 , s1 , s2 , s2 , s2 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 ( ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ holds ( w - 1 ) ) / 2 ) ) & ( proj2 .: ( A /\ ( w - 1 ) ) ) is non empty ; s , ( k , 1 ) |= H1 iff s |= ( H1 , H2 ) iff s |= ( H1 , H2 ) & s |= ( H2 , k ) ) & s |= ( H2 , k ) len ( s + t ) = card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y `1 & z `2 >= x `1 ; LSeg ( UMP D , |[ ( W-bound D - E-bound D ) / 2 , ( E-bound D - S-bound D ) / 2 ]| ) /\ D = { UMP D , ( UMP D - E-bound D ) / 2 } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = ( ( f `| N ) / ( g `| N ) ) . b .= ( ( f `| N ) / ( g `| N ) ) . b ; P [ i , pr1 ( f ) . ( i + 1 ) , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f , i ) . ( i + 1 ) = pr1 ( f , i ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( seq . k ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & a in P & b in P holds a = b Z c= dom ( ( ( #Z 2 ) * f ) ^ ) /\ ( ( #Z 2 ) * f ) " { 0 } ) & Z c= dom ( ( #Z 2 ) * f ) /\ ( ( #Z 2 ) * f ) " { 0 } ) ; ex j be Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + j & j = len ( l ^ <* x *> ) & z = 1 + j & j = 1 + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & u in N & v in c= dom _ \kappa N holds r * u + ( 1-r * v ) in c= c= c= c= c= , N A , Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Cl Cl A ` ` ` ` ` ` ` ` ` ` ` ` ` ` , Cl Cl ( Cl Cl ( Cl Int Cl ( Cl ( Cl ( Cl ( Cl ( Cl ( Cl ( A ` ) ) ` ) , Cl Cl ( Cl ( Cl ( A , A ` ) ) , Cl ( Cl ( A , A ` ) , Cl ( A , A ` ) , Cl ( A , A - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + - ( u + w ) .= - ( v + u ) + - ( u + w ) .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the support of J ) . x ; for S1 , S2 being non empty reflexive RelStr for D being non empty directed Subset of S1 , D being non empty directed Subset of S2 for x being Element of S1 , y being Element of S2 holds x in D iff x is directed & y in D & x in D card X = 2 implies ex x , y st x in X & y in X & x <> y & x in X or x = y & x = y or x = y & y = x or x = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng Cage ( C , n ) ; for T , T being DecoratedTree , p , q being Element of dom T , p being Element of dom T st p divides q & p in dom T holds ( T -with p , q ) . q = T . q [ i2 + 1 , j2 ] in Indices G & f /. k , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd ( k , n ) ) divides ( ( k gcd ( k , n ) ) ) & ( k divides ( k gcd ( k , n ) ) ) & ( k divides ( k gcd ( k , n ) ) ) implies ( k divides ( k gcd ( k gcd ( k , n ) ) ) ) & ( k divides ( k gcd ( k gcd ( k gcd ( k , n ) ) ) ) ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " = ( the carrier of X2 ) \/ the carrier of X2 & F " = ( the carrier of X1 ) \/ the carrier of X2 & F " = ( the carrier of X2 ) \/ the carrier of X2 ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( BM \/ C ) and C is linearly-independent of A , B and C is linearly-independent ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V & X c= V holds X \/ Y is finite set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 , p4 ) ; - sqrt ( ( - ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) .= - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) .= - ( q `2 / |. q .| - cn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p2 & f . 1 = p4 & f . 1 = p2 & f . 2 = p4 ; attr f is partial differentiable of REAL , u0 means : Def2 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . u = ( proj ( 2 , 3 ) * ( pdiff1 ( f , 1 ) , u0 ) ) . u ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is FinSequence and 1 <= t and t <= len G and G * ( t , width G ) `2 >= S-bound L~ f and G * ( t , width G ) `2 >= S-bound L~ f and G * ( t , width G ) `2 <= N-bound L~ f ; pred i in dom G means : Def2 : r * ( f * reproj ( i , x ) ) = r * f * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c1 in dom ( <* c1 , c2 *> ) and c2 in dom ( <* c1 , c2 *> ) and c2 in dom ( <* c1 , c2 *> ) ; u0 in { |[ r1 , s1 ]| : r1 < s1 & s1 < s1 & s1 < s2 & s2 < s1 } & ( s1 + s2 ) * ( s1 + s2 ) = ( s1 + s2 ) * ( s1 + s2 ) Cl ( X ^ Y ) . k = the carrier of X . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) ; pred len M1 = len M2 & width M1 = width M2 & width M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & M1 = M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom f & ||. y - x0 .|| < g2 & g2 /. y - x0 .|| < g2 } c= N2 ; assume x < ( - b + sqrt ( Let ( a , b , c ) ) ) / ( 2 * a ) or x > ( - b - sqrt ( a , b , c ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 ^ G1 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 ^ G1 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M2 ) * ( i , j ) < ( M3 + M2 ) * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f holds i divides f /. i & i divides len f & i divides len f & i divides len f & i divides len f implies f divides f assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\mathopen the carrier of X & a c= c holds b c= c } ; b2 * q2 + ( b3 * q3 ) + ( - ( ( a * q2 ) + ( - ( a * q2 ) ) ) ) * ( ( a * q2 ) + ( - ( a * q2 ) ) ) * ( ( a * q2 ) + ( - ( a * q2 ) ) ) * ( ( a * q2 ) + ( - ( a * q2 ) ) * ( ( a * q2 ) + ( a * q2 ) ) * ( ( b * q2 ) ) ) = 0. TOP-REAL n ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & Cl D c= Cl B } & F is closed & Cl D = Cl B & Cl D = Cl B & Cl D = Cl B & Cl D = Cl B ; attr seq is summable means : Def2 : seq is summable & seq is summable & ( for n holds seq . n = Partial_Sums ( seq ) . n ) implies seq is convergent & lim seq = Partial_Sums ( seq ) . n ; dom ( ( ( cn ) | D ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; X [ X \to Z ] is full full non empty SubRelStr of ( Omega Z ) |^ the carrier of Z & [ X \to Y ] is full non empty full SubRelStr of ( Omega Z ) |^ the carrier of Z ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 ; synonym m1 c= m2 means : Def2 : for for p being set st p in P holds the non empty set of p <= ( m2 + p ) is_pLet ( m2 + p ) , ( m2 + p ) is_pLet ( m2 + p ) , ( m1 + p ) -that p in the carrier of p ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) ; synonym empty empty multMagma (# carrier -> set means : Def2 : the multMagma of it = [ the carrier of it , the multF of it , the multF of it , the multF of it , the multF of it #) is Relation of the carrier , the carrier of it ; ( the carrier of not ( a , b , 1 ) + ( the InternalRel of c ) = b + ( the InternalRel of a , d ) .= b + ( a + c ) .= b + ( a + c ) .= b + ( a + c ) .= b + ( a + c ) ; cluster ( 1 + 2 ) * -> Element of INT means : Def2 : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = ( 1 + 2 ) * ( i1 , i2 ) + ( 1 + 2 ) * ( i1 , i2 ) ; ( - s2 * p1 + ( s2 * p2 ) - ( s2 * p2 ) ) * p1 = ( ( - s2 ) * p1 + ( ( s2 * p2 ) - ( s2 * p2 ) ) * p2 .= ( ( - s2 ) * p1 + ( ( s2 * p2 ) - ( s2 * p2 ) ) * p2 ) ; eval ( ( a | ( n , L ) ) *' , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( x , x ) .= a * eval ( p , x ) * eval ( x , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty set , D being non empty directed Subset of S , V being Subset of Omega S , S being Subset of Omega T st D in V holds V meets V ; assume that 1 <= k and k <= len w + 1 and TU . k = ( TU . ( q11 , w ) ) . k and TU . ( q11 , w ) = ( TU . ( q11 , w ) ) . k and TU . ( q11 , w ) = ( ( U . ( q11 , w ) ) | k ) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ ( n + 1 ) ) + ( ( b |^ ( n + 1 ) ) * a ) + ( ( b |^ ( n + 1 ) ) * a ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , All ( x. 0 , All ( x. 0 , All ( x. 0 , All ( x. 0 , x. 0 ) ) ) ) ) ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 and for x0 st x0 in l holds f . x0 - f . x0 < 0 and for x1 st x1 in l holds f . x1 - f . x0 < f . x1 ; for G1 , G2 being _Graph , W being Walk of G1 , e being set st e in W and not e in W holds e in W & not e in W implies e in W & e in W not c9 is empty iff ( ex m1 , m2 st m1 is not empty & not ( m1 is not empty & not m2 is not empty & not ( m1 is not empty & not m2 is not empty ) & not ( m1 is not empty & not m2 is not empty ) & not R is not empty ) & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not R is not empty & not Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 , j1 ) in Indices GoB f & ( GoB f ) * ( i1 , j1 ) in Indices GoB f & ( GoB f ) * ( i1 , j1 ) in Indices GoB f implies ( GoB f ) * ( i1 , j1 ) in Indices GoB f for G1 , G2 , G2 , G3 being strict Subgroup of O , O being stable Subgroup of O st G1 is_stable & G2 is_stable & G1 is_stable holds G1 , G2 is_stable & G2 is_stable & G1 , G2 is_stable implies G1 , G2 is_stable UsedIntLoc ( int -> Element of UsedIntLoc ( 1 ) ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , intloc 5 , intloc 6 , intloc 5 , 7 , 8 , 8 , 9 } \/ UsedIntLoc ( where 5 is Element of { 0 } , { 0 } , { 1 , 1 } , { 2 , 3 , 4 , 5 , 6 , 7 , 8 } ) ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ^ <* f1 ^ f2 *> ] holds Q [ f1 ^ f2 ^ <* f1 ^ f1 *> ] ( ( p `1 ) ^2 + ( p `2 ) ^2 ) = ( q `1 ) ^2 + ( p `2 ) ^2 .= ( q `1 ) ^2 + ( q `2 ) ^2 .= ( q `1 ) ^2 + ( q `2 ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x4 )| = |( x1 , x2 - x3 )| + |( x2 , x3 - x4 )| + |( x1 , x2 - x3 )| , ||. x2 - x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| for x st x in dom ( ( ( ( F - G ) | A ) | A ) ) holds ( ( ( ( F - G ) | A ) | A ) . ( - x ) ) = - ( ( ( F - G ) | A ) . x ) for T being non empty TopSpace , P being Subset-Family of T , B being Basis of T st P c= the topology of T for x being Point of T st x in P holds P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x 'or' c . x ) .= 'not' ( ( a 'or' b ) . x 'or' ( b 'or' c ) . x ) .= TRUE 'or' TRUE .= TRUE .= TRUE ; for e being set st e in A8 ex X1 being Subset of X , Y1 being Subset of Y st e = X1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open for i be set st i in the carrier of S for f being Function of Sconsider i , S1 . i st f = H . i & F . i = f . i holds F = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . ( v . y ) card D = card D1 + card D2 - 1 .= ( { i , j } - 1 ) * ( { i , j } - 1 ) .= ( ( i + 1 ) - 1 ) * ( ( i + 1 ) - 1 ) * ( ( i + 1 ) - 1 ) .= ( ( i + 1 ) - 1 ) * ( ( i + 1 ) - 1 ) * ( ( i + 1 ) - 1 ) * ( i + 1 ) ) .= 2 * ( ( i + 1 ) * ( ( i + 1 ) - 1 ) * ( ( i + 1 ) * ( ( i + 1 ) * ( i + 1 ) * ( i + 1 ) * ( i + 1 ) * ( i + 1 IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= 0 ; len f /. ( ( i1 -' 1 ) + 1 ) = len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & a <= b & b < a holds a <= a + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st i in LSeg ( f , i ) & i <= len f holds Index ( p , f ) <= i & Index ( p , f ) <= len f ( ( curry ' ( [: 0 , k + 1 :] , n ) # x ) # x ) . x = ( ( curry ' ( [: 0 , k :] , n ) ) # x ) . x + ( ( curry ' ( 0 , k ) , n ) # x ) . x ; z2 = g /. ( ( i -' n1 + 1 ) + 1 ) .= g . ( ( i -' n1 + 1 ) + 1 ) .= g . ( ( i -' n1 + 1 ) + 1 ) .= g . ( ( i -' n1 + 1 ) + 1 ) .= g . ( ( i -' n1 + 1 ) + 1 ) .= g . ( ( i -' n1 + 1 ) + 1 ) ; [ f . 0 , f . 3 ] in id the carrier of ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of ( the carrier of G ) \/ the InternalRel of G ; for G being Subset-Family of B for R being Subset of A st G = { [ R , X ] where X is Subset of A , Y is Subset of A ( ) st X in F6 & Y in F6 } holds ( ( Intersect ( F , G ) ) . X = Intersect ( G , G ) . Y ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS .= CurInstr ( P1 , Comput ( P2 , s2 , m1 ) ) .= halt SCMPDS ; assume that not a on M and b on M and c on N and d on N and p on M and a on N and p on M and a on N and p on M and a on M and p on N and p on M and a on M and p on N and a on M and b on N and a on M and b on N and a on M and b on N and a on N and b on N and a on M and b on N and a on N and b on N and b on N and b on N and a on N and b on N and a on N and b on N and b on M and b on N and a on N and b on N and b on N and b on M and b on N and b on M and a on N and a on N and c on N and a on N and a on N and c on N and c on assume that T is \hbox { T _ 4 } and F is closed and ex F being Subset-Family of T st F is closed & for n being Nat st n <= 0 holds F . n is finite-ind and ind F <= n and ind F <= n and ind F <= n and ind F <= n ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - g2 .[ & |. f . g1 - f . g2 .| <= ( g1 - g2 ) / ( |. g1 .| - |. g2 .| ) holds g1 <= g2 ( ( - ( 1 / 2 ) ) * ( z1 + z2 ) ) = ( ( - ( 1 / 2 ) ) * ( z1 + z2 ) ) * ( z2 + z2 ) .= ( ( - ( 1 / 2 ) ) * ( z1 + z2 ) ) * ( z2 + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) .= ( ( n + 1 ) -tuples_on a ) * ( b |^ ( n + 1 ) ) .= ( ( n + 1 ) -tuples_on a ) * ( b |^ ( n + 1 ) ) .= ( ( n + 1 ) -tuples_on a ) * ( b |^ ( n + 1 ) ) ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f * F -> FinSequence of V means : Def2 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * F /. i & for i be Nat st i in dom it holds it . i = F /. i * F /. i ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 } \/ { x5 , x5 , x5 } .= { x1 , x2 , x3 , x4 } \/ { x4 , x5 , x5 } .= { x1 , x2 , x3 , x4 } \/ { x2 , x4 } ; for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & o . ( x , n ) in InnerVertices S & o . ( x , n ) in InnerVertices S ; ex S1 being Element of CQC-WFF ( Al ( ) ) st SubP ( P , l , e ) = S1 & ( for i being Nat holds ( S . i = F ( i ) ) & ( S . i = F ( i ) ) & ( S . i = F ( i ) ) & ( S . i = F ( i ) ) & ( S . i = F ( i ) ) ; consider P being FinSequence of GL2 such that p9 = product P and for i being Element of dom P ex t being Element of the carrier of K st P . i = t & ex i being Element of NAT st P . i = t & ex i being Element of NAT st i in dom P & t . i = t . i & P . i = t . i ; for T1 , T2 being strict non empty TopSpace for P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P = the topology of T2 & P = the topology of T2 holds P is Basis of T1 & P is Basis of T2 assume that f is_partial differentiable on u0 , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) , u0 , 2 & partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , 3 ) . 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , 3 ) . 2 ; defpred P [ Nat ] means for F , G being FinSequence of bool the carrier of X for s being Permutation of Seg $1 , G being Permutation of Seg $1 st len F = $1 & rng s = rng G & for i being Nat st i in Seg $1 holds F . i = G . i & G . i = F . i holds Sum ( F , s ) = Sum ( F , s ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex Fn1 being Subset-Family of T st $1 = Fn1 & $2 is open & ( union FF ) is open & ( union Fn1 is open implies $2 is open ) & ( union Fn1 is discrete implies union Fn1 is discrete ) & ( union Fn1 is discrete implies union Fn1 is discrete ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p1 , P & LE p4 , p1 , P & LE p1 , p2 , P & LE p2 , p3 , P holds LE p4 , p1 , P & LE p1 , p2 , P & LE p2 , p3 , P & LE p1 , p2 , P & LE p2 , p3 , P & LE p2 , p3 , P & LE p2 , p3 , P & p1 , p2 , P & p2 in P & p1 in P & p2 in P & p2 in P & p1 in P & p2 in P & p2 in P & p2 in P & p2 in P & p2 in P & p2 in P & p2 in P & p2 in P & p2 in P & p2 in P & p1 in P & p2 in P & p2 in P & p1 in P & p1 in P & p1 in P & p1 in P & p1 in P & p1 in P & p1 in P & p1 f in \rbrace implies for g st g in \rbrace & for y st y <> f . y holds x in dom f & g in dom ( All ( x , H ) ) implies f in as Function of E , E & f in the carrier of E & g in the carrier of E & f in the carrier of E & g in the carrier of E ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( ( 8 - a ) / ( 8 - a ) ) * ( 8 - a ) ) / ( 8 - a ) ) >= 8 & ( ( 8 - a ) / ( 8 - a ) ) * ( 8 - a ) <= 8 * ( 8 - a ) & ( 8 - a ) / ( 8 - a ) <= 8 * ( 8 - a ) ; assume for d7 being Element of NAT st d7 <= ( n -d7 ) . ( ( n -\hbox { t } ) . ( n -\hbox { t } ) ) holds s1 . ( ( n -\hbox { t } ) . ( n -\hbox { t } ) ) = s2 . ( ( n -\hbox { t } ) . ( n -\hbox { t } ) ) ; consider s such that s <> t and s is Point of Sphere ( x , r ) and not s is Point of Sphere ( x , r ) and ex e being Point of E st e = Ball ( x , r ) /\ Ball ( x , r ) & e in Ball ( x , r ) /\ Ball ( y , r ) ; given r such that 0 < r and for s st 0 < s for x1 , x2 be Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s holds |. f /. x1 - f /. x2 .| < r & |. f /. x2 - f /. x2 .| < r ; ( p | x ) | ( ( p | x ) | ( ( x | x ) | ( x | x ) ) ) = ( ( ( x | x ) | ( x | x ) ) | ( ( x | x ) | ( x | x ) ) ) | ( ( x | x ) | ( x | x ) ) ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( ( sin * sec ) `| Z ) . x = ( 4 * sin . x + cos . x ) * sin . x ) / ( cos . x ) ^2 and ( cos * sec ) . x = ( 4 * sin . x + cos . x ) / ( cos . x ) ^2 ; assume that i in dom A and len B > 1 and i in dom A and B = ( A @ ) . i and ( A @ ) * ( B @ ) = ( A @ ) * ( B @ ) and ( A @ ) * ( B @ ) = ( A @ ) * ( B @ ) and ( A @ ) * ( B @ ) = ( A @ ) * ( B @ ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i = <* 1. F_Complex *> & ( i divides n implies h . i = 1. F_Complex ) & ( i divides n implies h . i = 1. F_Complex ) & ( i divides n implies h . i = 1. F_Complex ) & ( i divides n implies h . i = 1. F_Complex ) ( ( b1 'imp' b2 ) '&' ( c1 'or' c2 ) ) '&' ( ( b1 'or' c2 ) '&' ( a2 'or' c2 ) ) '&' 'not' ( ( b1 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) ) '&' 'not' ( ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( a2 'or' c2 ) '&' 'not' ( assume that for x holds f . x = ( ( - cot * sin ) `| Z ) . x and for x st x in dom ( ( - cot * sin ) `| Z ) holds ( ( - cot * sin ) `| Z ) . x = - cos . ( x - h . x ) / sin . ( x - h . x ) .= cos . ( x - h . x ) / cos . x ; consider R8 , I8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = ( Im ( F . n ) ) * i ; ex k be Element of NAT st k9 = k & 0 < d & for q be Element of product G st q in X & ||. q-x - f /. ( q - x ) .|| < r holds ||. partdiff ( f , q ) . k - partdiff ( f , x ) . ( q - x ) .|| < r x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } iff x in { x1 , x2 , x3 , x4 , x5 , x5 } \/ { x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 } \/ { x5 , x5 , x5 } G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j f1 * p = p .= ( ( the Arity of S1 ) * the Arity of S2 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> DecoratedTree means : : : for q st q in it holds q in P or ex p , q st p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P & q in P & p in P ; F /. ( k + 1 ) = F . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) ) .= Fx0 . ( p . ( k + 1 -' 1 ) .= F /. ( k + 1 ) ; for A , B , C being Matrix of len C , K st len B = len C & len C = len A & len B = len C & len C = len A & len B > 0 & len A > 0 & len B > 0 & len C = len B & len C > 0 & len A > 0 & len C = len B & len C = len C & len C > 0 holds A * C = C * C seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of Cs ) and y in ( the carrier of Cs ) and x in ( the carrier of Cs ) and y in ( the carrier of Cs ) and z in ( the carrier of Cs ) and x in ( the carrier of Cs ) and y in ( the carrier of Cs ) ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( for k st k in $1 holds f . k = ( ( VAL g ) . ( k + 1 ) ) '&' ( ( VAL g ) . ( k + 1 ) ) ) '&' ( ( VAL g ) . ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is FinSequence of TOP-REAL 2 and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and ( q `1 > 0 & q `2 <= 0 or q `1 >= 0 & q `2 >= 0 & q `1 <= 0 & q `2 <= 1 or q `1 = 1 & q `2 = 1 or q `1 = 1 & q `2 = 1 or q `1 = 1 & q `2 = 1 & q `2 = 1 or q `1 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 or q `1 = 1 & q `1 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 <= 1 or q `1 = 1 & q `2 = 1 & q `2 <= 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 & q `2 = 1 or q `1 = 1 & q `2 = 1 & q for M be non empty metric , x be Point of M , f be Point of M , x be Point of M st x = x ` holds ex f being sequence of M st f is sequence of M & f . 0 = Ball ( x , 1 / ( 2 |^ n ) ) & f . 1 = Ball ( x , 1 / ( 2 |^ n ) ) defpred P [ Element of omega ] means f1 is__ _ $1 & ( for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = ( ( f1 - f2 ) `| Z ) . $1 - ( ( f1 - f2 ) `| Z ) . $1 ) & ( ( f1 - f2 ) `| Z ) . $1 = ( ( f1 - f2 ) `| Z ) . $1 - ( ( f1 - f2 ) `| Z ) . $1 ; defpred P1 [ Nat , Point of CNS ] means ( $1 < $2 & $2 in Y & ||. $2 - x0 .|| < r & $2 in Y & ||. $2 - x0 .|| < r & ||. $2 - x0 .|| < r & ||. $2 - x0 .|| < r & ||. $2 - x0 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - 1 ) .= g . ( i - 1 ) .= g . ( i - 1 ) .= g . ( i - 1 ) .= ( g . ( i - 1 ) ) .= ( g . ( i - 1 ) ) .= ( g . ( i - 1 ) ) ; ( 1 - 2 * ( n + 2 ) ) * ( 2 * ( n + 1 ) ) = ( ( 1 - 2 * ( n + 1 ) ) * ( n + 1 ) ) * ( 2 * ( n + 1 ) ) .= 1 * ( ( 1 - 2 * ( n + 1 ) ) * ( n + 1 ) ) * ( 2 * ( n + 1 ) ) .= 1 * ( ( 1 - 2 * ( n + 1 ) ) * ( n + 1 ) ) .= 1 * ( ( n + 1 ) * ( n + 1 ) ) * ( n + 1 ) * ( n + 1 ) ) .= 1 * ( ( n + 1 ) * ( n + 1 ) ) .= 1 * ( ( n + 1 ) * ( n + 1 ) * ( n + ( n + 1 ) .= ( ( n + 1 ) * ( n + ( n + 1 ) * ( n + 1 ) ) * ( n + 1 ) .= 1 * ( n + 1 ) .= defpred P [ Nat ] means for G being non empty finite strict strict finite strict non empty strict strict non empty finite strict strict non empty RelStr for S being non empty strict strict non empty strict non empty strict non empty RelStr for G being non empty strict non empty RelStr , F being Function of the carrier of G , the carrier of S st F is d holds F is strict non empty ; assume that f /. 1 in Ball ( u , r ) and not 1 <= m and m <= len f and not ( f . 1 in Ball ( u , r ) & not ( f . len f ) /\ Ball ( u , r ) <> {} & not ( f . len f in Ball ( u , r ) & not ( f . len f in Ball ( u , r ) & not ex m st m in Ball ( u , r ) & m in Ball ( u , r ) ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) . $1 = ( Partial_Sums ( cos ) ) . $1 - ( cos . $1 ) * ( cos . $1 ) * ( cos . $1 - cos . $1 ) / ( cos . $1 - cos . $1 ) / ( cos . $1 - cos . ( $1 + 1 ) * ( cos . $1 - cos . ( $1 + 1 ) ) ) ; for x being Element of product F holds x is FinSequence & dom x = I & for i being set st i in dom F holds x . i in ( the Sorts of F ) . i & for i being set st i in dom F holds x . i in ( the Sorts of F ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) * x ) " .= ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= x " * x .= x " * x .= x " * x .= x " * x .= x " * x .= x " * x .= x " * x .= x " * x ; DataPart Comput ( P +* ( I , s ) , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , s , LifeSpan ( P +* I , Initialized s ) + 3 ) , LifeSpan ( P +* I , Initialized s ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= ( dom f1 /\ dom f2 ) /\ dom ( f1 - f2 ) and for g st g in ]. x0 - r , x0 .[ /\ dom ( f1 - f2 ) and g in ]. x0 - r , x0 .[ /\ dom ( f1 - f2 ) and g in ]. x0 - r , x0 .[ /\ dom ( f1 - f2 ) ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and ( f1 + f2 ) | X is continuous and ( f1 + f2 ) | X is continuous and ( f1 + f2 ) | X is continuous and ( f1 + f2 ) | X is continuous and ( f1 + f2 ) | X is continuous and ( f1 + f2 ) | X is continuous ; for L being continuous complete LATTICE for l being Element of L for X being Subset of L ex x being Element of L st x = sup X & for x being Element of L st x in X holds x is directed & x is directed & x is directed & x is directed Support ( e *' ) in { m *' where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' ) & ex m being Polynomial of n , L st m in Support ( m *' ) & p in Support ( m *' ) & p in Support ( m *' ) & p in Support ( m *' ) } ; ( f1 - f2 ) /* s1 = lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g . p1 & for g being Function of [: Carrier ( Al ) , the carrier of Al ) , the carrier of Al st P [ g , p1 , g ] holds P [ g , p1 , g , h , h , h , i ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. ( len f -' 1 ) *> ) /. ( j + 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) .= f /. ( j + 1 ) ; ( ( p ^ q ) . ( len p + k ) ) . ( len p + 1 ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) . ( len p + k ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + ( len q + k ) .= ( ( ( len q + k ) . ( len q + k ) .= ( ( p ^ q ) + ( ( p ^ q ) . ( len q + k ) ) . ( len q + k len ( mid ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 ; x * y * z = ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= x * ( y * z ) ; v . ( <* x , y *> ) + ( <* x0 , y0 *> ) . i = partdiff ( v , ( x - y ) ) * ( ( reproj ( 1 , 1 ) ) . ( ( reproj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( i * i = <* 0 * ( - 1 ) - ( 0 * ( - 1 ) ) * ( - 1 ) + ( - 1 * ( - 1 ) ) * ( - 1 ) * ( - 1 ) * ( - 1 * ( - 1 ) ) * ( - 1 * ( - 1 ) ) .= <* - 1 * ( - 1 * ( - 1 ) * ( - 1 * ( - 1 ) ) * ( - 1 * ( - 1 ) ) * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 ) ) ) ) * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 ) ) * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * ( - 1 * Partial_Sums ( L * F ) = Partial_Sums ( L * F1 ) + ( L * F2 ) .= Partial_Sums ( L * F1 ) + ( L * F2 ) .= ( Sum ( L * F1 ) ) + ( Sum ( L * F2 ) ) .= ( Sum ( L * F1 ) ) + ( Sum ( L * F2 ) ) .= ( Sum ( L * F1 ) ) + ( Sum ( L * F2 ) ) .= ( Sum ( L * F1 ) ) + ( Sum ( L * F2 ) .= ( Sum ( L * F1 ) + ( Sum ( L * F2 ) .= ( Sum ( L * F1 ) + ( Sum ( L * F2 ) .= ( Sum ( L * F1 ) + Sum ( L * F2 ) .= ( Sum ( L * F1 ) .= ( Sum ( L * F2 ) + ( Sum ( L * F2 ) + ( Sum ( L * F2 ) + ( Sum ( L * F2 ) + ( Sum ( L * F2 ) + ( Sum ( L * F2 ) ) .= ( Sum ( L * F1 ) + ( Sum ( L * F2 ) + ( Sum ( L * F2 ) .= ( ex r be Real st for e be Real st 0 < e ex Y1 be Subset of X st Y1 is non empty & ( for Y1 be Subset of X st Y1 is non empty & Y1 c= Y holds |. ( lower_bound ( Y1 , Y2 ) ) . Y1 - ( lower_bound ( Y1 , Y2 ) ) . Y1 .| < r ) ; ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j ) = f /. ( k + 1 ) ; ( ( ( - 1 ) / 2 ) * ( cos . x ) ) ^2 = ( ( - 1 ) / 2 ) * ( cos . x ) ^2 .= ( ( 1 / 2 ) * ( cos . x ) ) ^2 .= ( ( 1 / 2 ) * ( cos . x ) ) ^2 .= ( ( 1 / 2 ) * ( cos . x ) ) ^2 .= ( ( 1 / 2 ) * ( cos . x ) ) ^2 .= ( 1 / 2 ) ^2 ; ( - ( - b - sqrt ( a , b ) ) + sqrt ( a , c ) ) / ( 2 * a ) < 0 & ( - b - sqrt ( a , b ) ) / ( 2 * a ) < 0 or ( - b - sqrt ( a , c ) ) / ( 2 * a ) < 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex X st X is maximal & for Y st Y in X holds "\/" ( X , L ) = "/\" ( Y , L ) and for Y st Y in X holds Y < "/\" ( Y , L ) ; ( ( for i being Element of NAT holds i = j implies ( i = j = j ) ) implies ( i = j implies i = j or i = j ) & ( j = j implies i = j ) & ( j = j implies i = j implies j = j ) )