thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is Cauchy q in X ; V ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a is_>=_than X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` = b ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `1 <= b `1 ; assume b in X ; assume k <> 1 ; f = product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `1 = x `1 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , v be Vertex of G ; let G be _Graph , v be Vertex of G ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b be Element of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; let y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom h ; let x be element ; let k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = Set 1 ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Point of X ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is not discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , I be Program of SCM+FSA ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 ; cluster uparrow x -> directed ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; 2 >= \mathclose { \rm \hbox { - } s } ; G . y <> 0 ; let X be RealNormSpace , x be Point of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , M be Subset of V ; assume x in mid M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; still_not-bound_in p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `1 = a * y `1 ; rng D c= A ; assume x in K1 ; 1 <= i-32 ; 1 <= i-32 ; pif c= PI , then pV c= PI ; 1 <= i-15 ; 1 <= i-15 ; UMP C in L ; 1 in dom f ; let seq , seq1 , seq2 ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 ; assume w = 0. V ; assume x in A . i ; g in the \rm being carrier of X ; y in dom t ; i in dom g ; assume P [ k ] ; if C c= f , g holds 0 <= f x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , A be non-empty MSAlgebra over S ; assume P [ n ] ; assume union S is finite independent ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , A be ManySortedSet of I ; b ` c= b ` ; assume not x in NAT + ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 & i1 < i2 ; a * h in a * H ; p , q in Y ; redefine func sqrt I ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n & n <= k ; assume A c= dom f ; Re f is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_continuous_in x0 ; assume that O is symmetric and O is symmetric ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 halts_on s , P2 = P +* I ; d , c // a , b ; let t , u be set ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , A be Subset of X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , C be Subset of A ; let S be non empty ManySortedSign ; let x be variable of f , g be element ; let b be Element of X , c be Element of X ; R [ x , y ] ; x ` = x ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( mn1 + 1 ) ; h2 . a = y ; P [ n + 1 ] ; redefine func G * F -> |^ ; let R be non empty multMagma , a be Element of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co /\ rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `1 ; let M be as mamamaid ; let N be non empty for \mathop { N } is non empty Subset of M ; let R be RelStr with finite finite ; let n , k be Nat ; let P , Q be be be be be Let ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I does not lim s ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < v8 ; x <= c2 . x ; x in F ` ; redefine func S --> T -> * ; assume that t1 <= t2 and t2 <= t2 ; let i , j be even Integer ; assume that F1 <> F2 and F2 <> G2 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> A2 & A2 <> A1 ; set i1 = i + 1 ; assume a1 = b1 & b1 = b2 ; dom g1 = A & dom g2 = A ; i < len M + 1 ; assume not -infty in rng G ; N c= dom f1 /\ dom f2 ; x in dom sec /\ dom sec ; assume [ x , y ] in R ; set d = ( x - y ) / ( x - y ) ; 1 <= len g1 & g1 /. 1 = g1 . 1 ; len s2 > 1 & len s2 > 1 ; z in dom f1 /\ dom f2 ; 1 in dom D2 & 1 in dom D2 ; ( p `2 ) ^2 = 0 ; j2 <= width G & 1 <= j1 ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; if i = i holds i = 1 ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be \setminus id of on ; cluster m * n -> square ; let kk be Nat , k be Nat ; i - 1 > m - 1 ; R is transitive implies field R c= field R set F = <* u , w *> ; p-2 c= P3 & p-2 c= P3 ; I is_halting_on t , Q ; assume [ S , x ] is .| ; i <= len f2 implies ( f2 /. i ) `1 <= ( f2 /. i ) `1 p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom f1 /\ dom f2 ; assume [ X , p ] in C ; BF c= ( X0 \/ X2 ) ; n2 <= ( 2 |^ ( n + 1 ) ) ; A /\ cP c= A ` ; cluster x -valued -> constant for Function ; let Q be Subset-Family of S , P be Subset of T ; assume n in dom g2 ; let a be Element of R ; t `1 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , T be non empty TopSpace ; i . y in rng i ; REAL c= dom f /\ dom g ; f . x in rng f ; mt <= ( r / 2 ) * 2 ; s2 in r-5 & s2 in r-5 ; let z , z be complex number ; n <= NN . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = [' S , T '] ; let x be non positive ExtReal ; let m be Element of M ; f in union rng F1 ; let K be add-associative right_zeroed right_complementable associative commutative associative associative distributive non empty doubleLoopStr , A be Subset of K ; let i be Element of NAT , k be Nat ; rng ( F * g ) c= Y dom f c= dom x & dom g c= dom x ; n1 < n1 + 1 & n2 + 1 < n2 + 1 ; n1 < n1 + 1 & n2 + 1 < n2 + 1 ; cluster { T } -> \overline W ; [ y2 , 2 ] = z ; let m be Element of NAT , n be Nat ; let S be Subset of R ; y in rng S29 ; b = sup dom f & b = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom h2 /\ dom h2 ; w + 1 = ( a + 1 ) ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 + 1 ; let i be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete complete holds X is complete ; assume that f = g and p = q ; n1 <= n1 + 1 & n2 + 1 <= n2 + 1 ; let x be Element of REAL , y be Real ; assume x in rng s2 ; x0 < x0 + 1 / 2 ; len L5 = W & len L5 = W ; P c= Seg ( len A ) ; dom q = Seg n & dom q = Seg n ; j <= width M *' ; let seq1 be real-valued sequence of X ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT , x be Element of NAT ; assume z in \cup being \cup being as as as as as of as such that z in A ; let i be set ; n -' 1 = n-1 - 1 ; len ( n-27 ) = n & len ( nu ) = n ; \mathop { Z } c= F ; assume x in X or x = X ; x is LIN of b , c ; let A , B be non empty set , f be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q .= Seg i ; let s be Element of E ^ ; let B1 be Basis of x , B2 be Basis of x ; L3 /\ L2 = {} ; L1 /\ LSeg ( L2 , p2 ) = {} ; assume downarrow x = downarrow y ; assume b , c _|_ b `1 , c `2 ; LIN q , c , c ; x in rng ( f | f-129 ) ; set n8 = n + j ; let D7 be non empty set , f be Function of D7 , D ; let K be right_zeroed non empty addLoopStr , M be Matrix of K ; assume that f opp = f and h opp = h ; R1 - R2 is total & R1 - R2 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & K1 ` is open ; assume that a , b ] is maximal distance ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster non ns[ for \geq nlen s\lbrack not u in { ag } ; the carrier of f c= B ; reconsider z = x as VECTOR of V ; cluster the RelStr of L -> empty ; r (#) H is as as PartFunc of X , REAL ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict universal algebra , A be non-empty MSAlgebra over S , B be non-empty MSAlgebra over S ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in : ( ex y being Element of L st y in : x <= y ) ; let x , y be Element of X ; let A , I be |^ of X ; [ y , z ] in [: O , O :] ; ( not ( card Macro i ) = 1 ) implies card i = card i rng Sgm A = A ; q |- p \! \mathop { y } q ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b ; p . 2 = Z / Y ; ( D = {} ) & ( D = {} ) ; n + 1 + 1 <= len g ; a in [: NAT , NAT :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f2 + f3 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 ] in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i - k + 1 <= S ; cluster associative associative for non empty multMagma ; x in support ( ( support t ) + ( support b ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `1 <= ( y `1 ) / ( y `1 ) ; assume p divides b1 + b2 & b1 divides b2 ; M <= sup M1 & M <= sup M2 ; assume x in W-min ( X ) & y in W-min ( X ) ; j in dom ( z | k ) ; let x be Element of D ( ) ; IC s4 = l1 & IC s4 = l1 ; a = {} or a = { x } ; set uG = Vertices G , uG = Vertices G ; seq " is non-zero & ( seq " ) (#) ( seq " ) is non-zero ; for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; h-4 c= hF & hF c= hF ; ]. a , b .[ c= Z ; X1 , X2 are_separated implies X1 , X2 are_separated a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] , x2 = [ 0 , 1 ] , x3 = [ 0 , 0 ] , x4 = [ 0 , 1 ] , x4 = [ 0 , 1 k + 1 - 1 = k - 1 ; cluster empty for Relation of NAT , NAT ; ex v st C = v + W ; let IT be non empty addLoopStr , p be Point of IT ; assume V is Abelian add-associative right_zeroed right_complementable associative associative associative associative associative distributive ; XY \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper & sup B is upper ; let L be non empty reflexive RelStr , X be Subset of L ; R is reflexive & R is transitive implies R + R is transitive E , g |= the_right_argument_of H implies E , g |= f dom G `2 = a ; ( 1 / 4 ) >= - r ; G . p0 in rng G & G . p0 in rng G ; let x be Element of FF , y be Element of F ; D [ P-6 , 0 ] ; z in dom id ( B ) & z in dom id ( B ) ; y in the carrier of N & y in the carrier of N ; g in the carrier of H & h in the carrier of G ; rng ( f | X ) c= NAT & rng ( f | X ) c= NAT ; j `1 + 1 in dom s1 ; let A , B be strict Subgroup of G ; let C be non empty Subset of R^1 ; f . z1 in dom h & h . z2 in dom h ; P . k1 in rng P & P . k1 in rng P ; M = ( A +* {} ) +* {} .= A +* {} ; let p be FinSequence of REAL , r be Real ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; ( - a ) / 2 = b-a ; assume the distance of V , Q is v ; let a be Element of ^ ( V ) ; let s be Element of PH ( s ) ; let Pc be non empty \rm RelStr , f be Function of P , Q ; let n be Nat ; the carrier of g c= B & the carrier of g c= B ; I = halt SCM+FSA .= ( the InstructionsF of SCM+FSA ) . 0 ; consider b being element such that b in B ; set BM = BCS ( K , n ) ; l <= ( -> monotone ) ; assume x in downarrow [ s , t ] ; ( x `2 ) in uparrow t ; x in ( <* T *> ) . 1 ; let h be Morphism of c , a ; Y c= ( the carrier of the_rank_of Y ) \ { A } ; A2 \/ A3 c= L1 \/ L2 \/ L2 \/ L1 ; assume LIN o , a , b ; b , c // d1 , e2 ; x1 , x2 , x3 , x4 , x5 , x5 , x5 , x6 , x6 , x5 , x6 , x6 , x6 , x6 , x5 , Real ; dom <* y *> = Seg 1 .= Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in X ~ ; for n being Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> \hbox closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 in P & q1 <> q2 ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] & y = [ y1 , y2 ] ; let R , Q be ManySortedSet of A ; set d = ( 1 / ( n + 1 ) ) ; rng g2 c= dom W & ( W + L ) . n = W . n ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , v be Element of V ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( the InternalRel of R ) ; let b be Element of the carrier of T ; dist ( e , z ) - re > re ; u1 + v1 in W2 & v1 + v2 in W1 + W2 ; assume that Carrier L misses rng G and not x in rng G ; let L be lower-bounded antisymmetric transitive antisymmetric RelStr ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool M , y be Element of Bool M ; 0 <= 2 * PI ; o9 , a9 // o9 , y & o9 , c9 // o9 , y ; { v } c= the carrier of l & { v } c= the carrier of l ; let x be bound of A ; assume x in dom ( uncurry f ) & y in dom ( uncurry f ) ; rng F c= ( product f ) |^ X assume that D2 . k in rng D and D . k = 0 ; f " . p1 = 0 & f . p2 = 0 ; set x = the Element of X , y = the Element of X ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; let n be Element of NAT ; assume LIN c , a , e1 ; cluster finite for FinSequence of NAT ; reconsider d = c , e = d as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of g ; conv @ S c= conv ( A ) & conv @ S c= conv @ S ; reconsider B = b as Element of the topology of T ; J , v |= P \lbrack l , r .] ; redefine func J . i -> non empty TopSpace ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 is_2 implies R |_2 field W1 c= field ( W1 + W2 ) assume x in the carrier of R & y in the carrier of S ; dom nn = Seg n & dom nn = Seg n ; s4 misses s2 & s4 misses s2 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in an ; assume that not Reloc I c= J and not D c= J and not D in dom Reloc ( J , k ) ; Im ( lim seq ) = 0 & Im ( seq ) = 0 ; ( sin . x ) <> 0 & ( sin . x ) <> 0 ; sin is_differentiable_on Z & cos is_differentiable_on Z ; 6 . n = t3 . n .= s . n ; dom ( ( - 1 ) (#) F ) c= dom F ; W1 . x = W2 . x .= W2 . x ; y in W .vertices() \/ W .vertices() ; ( for k being Nat st k <= len vM holds vM . k = v ) implies k <= len vM x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P & proj2 .: S c= proj2 .: P ; h . p4 = g2 . I .= ( h . p2 ) . I ; IT = ( U /. 1 ) `1 .= ( U /. 1 ) `1 ; f . rx1 in rng f & f . rx2 in rng f ; i + 1 + 1 <= len - 1 ; rng F = rng ( F . 0 ) .= rng F ; mode multiplicative non empty multMagma of G is well unital associative associative associative non empty multMagma ; [ x , y ] in A ~ ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of ( m + 1 ) c= B ; not [ y , x ] in id ( X ) ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower & seq ^\ k1 is lower ; len ( F . ( len F ) ) = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be Complex , c be Complex ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be *> non empty Chain of T ; cluster directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K . j1 ; redefine func J => y -> total Function of J , J ; K c= 2 -tuples_on the carrier of T ; F . b1 = F . b2 & F . b2 = F . b2 ; x1 = x or x1 = y or x1 = z ; redefine pred a <> {} means : Def4 : ( a / a ) = 1 ; assume that not a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o , b , b9 & LIN o , b , c ; reconsider m = x , n = y as Element of Funcs ( V , C ) ; let f be non constant FinSequence of D , p be Point of D ; let FW2 be non empty element , F be Function of FW2 , TOP-REAL n ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pp2 = x , pp2 = y as Subset of m ; let A , B , C be Element of R ; redefine func strict non empty for sqrt 5 -> strict non empty b9 -\overline ; rng c `2 misses rng ( e | n ) ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( cot * cot ) /\ dom cot ; the component of Q c= UBD ( A ) & ( L~ f ) ` c= ( L~ f ) ` ; reconsider E = { i } as finite Subset of I ; g2 in dom ( 1 / ( f ^ ) ) ; redefine pred f = u means : Def4 : a * f = a * u ; for n holds P1 [ n ] implies P1 [ n + 1 ] { x . O : x in L } <> {} ; let x be Element of V . s ; a , b be Nat ; assume that S = S2 and p = S2 and q = S1 . ( i + 1 ) ; gcd ( n1 , n2 ) = 1 & gcd ( n1 , n2 ) = 1 ; set os = 2 * PI , os = 2 * PI , os = 2 * PI , os = 2 * PI , os = 2 * PI , os = 2 * PI , os seq . n < |. r1 .| & |. seq . n .| < r ; assume that seq is increasing and r < 0 and seq is increasing ; f . ( y1 , x1 ) <= a & f . ( y1 , x1 ) <= b ; ex c being Nat st P [ c ] ; set g = { n / 1 } , h = g / 2 ; k = a or k = b or k = c ; ( a , b ) , ( b , c ) [: a , b :] ; assume that Y = { 1 } and s = <* 1 *> ; Ix1 . x = f . x .= 0 .= 0 ; W3 .last() = W3 . 1 & W2 .last() = W3 . 1 ; cluster trivial for Walk of G , finite _Graph ; reconsider u = u as Element of Bags X ; A in B ^ \bullet implies A , B \lbrack x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 / |. q .| - cn ) ; f1 is__ _ X & f2 is__ _ X implies f1 - f2 is non empty ( f /. i ) `2 <= ( q `2 ) ^2 + ( q `2 ) ^2 ; h is_the carrier of Cage ( C , n ) ; ( b `2 ) ^2 <= ( p `2 ) ^2 + ( p `2 ) ^2 ; let f , g be |. is Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( ( - 1 ) (#) f ) ; p2 in NO . p1 & p2 in NO . p1 ; len ( the_left_argument_of H ) < len ( H ) & len ( the_right_argument_of H ) < len ( H ) ; F [ A , FF . A ] ; consider Z such that y in Z and Z in X ; hence 1 in C implies A c= C |^ A ; assume that r1 <> 0 or r2 <> 0 and r1 < r2 ; rng q1 c= rng ( C1 ^ C2 ) & rng q1 c= dom C2 ; A1 , L , A3 , A2 , A3 be non empty set ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in u ( p , Ss ) & c in u ( p , Ss ) ; then S is atomic not atomic & P-2 [ S ] ; Cl ( [#] T ) = [#] T .= [#] T ; f12 | A2 = f2 | ( A1 \/ A2 ) ; 0. M in the carrier of W & 0. M in the carrier of W ; let v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V & V c= Y \ Z ; let X be Subset of S ~ ; consider H1 such that H = 'not' H1 and H1 in M ; 1_ 1 c= ( t * ( p - 1 ) ) * ( p - 1 ) ; 0 * a = 0 * 0 .= a * 0 .= 0 ; A |^ ( 2 , 2 ) = A ^^ A ; set vY = ( v /. n ) , vY = ( v /. n ) ; r = 0. ( REAL-NS n ) .= ||. 0. ( REAL-NS n ) .|| ; ( f . p4 ) `1 >= 0 & ( f . p2 ) `1 >= 0 ; len W = len ( W | ( len W ) ) ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t16 . ( a , b ) does not destroy b1 . ( b , a ) ; reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i - 1 as non zero Element of NAT ; c . x >= id ( L . x ) ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> non pair for set ; downarrow a /\ downarrow t is Ideal of T ; let X be \hbox { \mathbb N } , F be non empty set ; rng f = \rm \rm *> ( S , X ) ; let p be Element of B , x be SortSymbol of S ; max ( N1 , 2 ) >= N1 & max ( N2 , 2 ) >= N2 ; 0. X <= b |^ ( m * mm1 ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 & p2 = q2 implies i + 1 = j + 1 assume that gR in the right of g and gR in the carrier of g ; let A1 , A2 be Point of S , A be Subset of S ; x in h " P /\ [#] T1 & x in h " P ; 1 in Seg 2 & 1 in Seg 3 implies 1 in Seg 3 reconsider X-5 = X , T] = Y as non empty Subset of Tsuch that X = Y ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Source of G ) -valued ; n1 <= i2 + len g2 & n2 <= len g2 + len g1 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume that v in the carrier' of G2 and v <> 0. G2 ; y = Re y + ( Im y ) * i ; ( - ( - 1 ) ) ^2 = 1 ; x2 is_differentiable_on ]. a , b .[ & x2 is_differentiable_on ]. a , b .[ ; rng M5 c= rng ( D2 | Seg ( k + 1 ) ) ; for p being Real st p in Z holds p >= a ( for x being Point of X holds f . x = proj1 . x ) implies f is continuous ( seq ^\ m ) . k <> 0 & ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) .| h \equiv gg . ( mod P ) & g in g . ( mod P ) ; reconsider i1 = i-1 - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider i-7 = i , i29 = j as Element of NAT ; dom f c= [: C ( ) , D ( ) :] ; x in ( the Sorts of B ) . n ; len that len that that len that that 2 in Seg len f2 and len f1 = len f2 + 1 ; pm1 c= the topology of T & pm1 c= the topology of T ; ]. r , s .[ c= [. r , s .] ; let B2 be Basis of T2 , A be Subset of T2 ; G * ( B * A ) = ( id o1 ) * ( B * A ) ; assume that p , u ] and u , v , q is_collinear and p , u , q is_collinear ; [ z , z ] in union rng ( F | ( X /\ Y ) ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , G = S . $1 ; LIN a1 , a3 , b1 & LIN a1 , b1 , b2 ; f " ( f .: x ) = { x } ; dom w2 = dom r12 & dom r12 = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 / 2 ; p in LSeg ( E . i , F . i ) ; IC * ( i , j ) = 0. K .= 0. K ; |. f . ( s . m ) - g .| < g1 ; q7 . x in rng ( q7 | X ) ; Carrier ( L7 ) misses ( Carrier ( L7 ) ) ` ; consider c being element such that [ a , c ] in G ; assume that N|^ o, oconsider o8 = o8 and o8 = o8 ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ ( C + 1 ) ) " { F . C } P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [: [. f . j , f . j .] , Q :] ; redefine pred 0 <= x & x <= 1 implies x ^2 <= x ^2 ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 - q `2 <> 0. TOP-REAL 2 ; redefine func \neq aacontinuous ( S , T ) ; let x be Element of S ~ ; ( the Arrows of F ) . ( a , b ) is one-to-one ; |. i .| <= - ( - 2 |^ n ) / ( n + 1 ) ; the carrier of I[01] = dom P & P . 0 = P . 1 ; } * ( n + 1 ) ! > 0 * n ; S c= ( A1 /\ A2 ) /\ ( A2 /\ A3 ) ; a3 , a4 // b3 , b2 & a1 , b1 // b2 , b3 ; then dom A <> {} & dom A <> {} & A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y Joins X , Y ; set v2 = ( v /. ( i + 1 ) ) ; x = r . n .= ( r . n ) * ( r . n ) ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g = the carrier of I[01] ; p in Upper_Arc ( P ) /\ Upper_Arc ( P ) ; dom d2 = [: A , A :] & dom d1 = [: A , A :] ; 0 < ( p / ( ||. z .|| + 1 ) ) / ( ||. z .|| + 1 ) ; e . ( m + 1 ) <= e . ( m + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y -infty < Integral ( M , Im ( g | B ) ) ; cluster O \cup F -> Line for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , f be Function of U1 , U2 ; Proj ( i , n ) * g is_differentiable_on X ; x , y , z be Point of X , p be Point of X ; reconsider p0 = p . x , p0 = p . x as Subset of V ; x in the carrier of Lin ( A ) & x in the carrier of Lin ( B ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and - a is lower and - a is bounded ; Int Cl ( A ) c= Cl ( Int Cl A ) ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; ( p2 `2 ) ^2 <= ( p `2 ) ^2 + ( p `2 ) ^2 ; Cl Q ` = [#] ( T | A ) .= [#] ( T | A ) ; set S = the carrier of T , T = the carrier of S ; set I8 = -> f |^ n , I8 = f |^ n ; len p - n = len ( p - n ) - n ; A is Permutation of Swap ( A , x , y ) ; reconsider nn = nwhere nn - 1 <= nn - 1 ; 1 <= j + 1 & j + 1 <= len ( s | X ) ; let qbeing Let of M , qbeing Let of M , q be State of M ; ( a in the carrier of S1 & b in the carrier of S2 ) ; c1 /. n1 = c1 . n1 & c2 /. n1 = c2 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 , r be Real ; y = ( f * SS ) . x .= ( f * SS ) . x ; consider x being element such that x in be Assume _ is IC ; assume r in ( dist ( o ) ) .: P ; set i2 = ( for h being \hbox { - } corner L~ h ) .. h = 2 ; h2 . ( j + 1 ) in rng h2 /\ rng h2 ; Line ( M29 , k ) = M . i .= Line ( M29 , k ) ; reconsider m = ( x - 1 ) / 2 as Element of ( len x - 1 ) -tuples_on REAL ; let U1 , U2 be Subspace of U0 , a be Element of U0 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p2 + 1 < len p2 ; let T1 , T2 be complete Scott Subset of L , f be Function of T1 , T2 ; then x <= y & ( x + y ) c= ( x + y ) ; set M = n -\hbox { m } , N = n -\hbox { m } ; reconsider i = x1 , j = x2 as Nat ; rng ( the_arity_of a9 ) c= dom H & ( the_arity_of a9 ) . o = ( the_arity_of a9 ) . o ; z1 " = ( z " ) * ( z " ) .= ( z " ) * ( z " ) ; x0 - r / 2 in L /\ dom f & x0 - r / 2 in dom f ; then w is that rng w /\ L <> {} & rng w /\ L <> {} ; set x-10 = ( x ^ <* Z *> ) ^ <* Z *> ; len w1 in Seg len w1 & len w2 in Seg len w1 & w1 = w1 + w2 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) * ( |. b . n .| ) ; ( p `1 ) ^2 / ( 1 + ( p `1 ) ) ^2 <= ( G * ( 1 , j ) ) `1 ; rng ( g ) c= L~ ( g | ( len g + 1 ) ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n being Nat holds F . n is \HM { -infty } ; reconsider x9 = x9 , y9 = y9 as VECTOR of M ; dom ( f | X ) = X /\ dom f /\ X ; p , a // p , c & b , a // c , c ; reconsider x1 = x , y1 = y as Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ( ag . k ) = p . ( ag . k ) ; a / ( s . m - n ) / Q <= 1 / 2 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume that B1 \/ C1 = B2 \/ C2 and B2 \/ C2 = C2 \/ C1 ; X . i = { x1 , x2 } . i .= x2 ; r2 in dom ( h1 + h2 ) & r1 + h2 in dom h1 /\ dom h2 ; - - 0 = a & b-0 = b ; F8 is_halting_on t , Q & F8 is_halting_on t , Q ; set T = for X being InInInof X , x0 , x1 be Point of X holds x0 in X ; Int Cl ( Int R ) c= Int ( Cl R ) ; consider y being Element of L such that c . y = x ; rng F' = { F' . x } .= { F' . x } ; G-23 ( { c } ) c= B \/ S & not c in S ; f[#] X is_X , X & f | X is Function of X , X ; set RF = the Point of ( P | P ) , RF = the Point of ( ( TOP-REAL 2 ) | P ) ; assume that n + 1 >= 1 and n + 1 <= len M ; let k2 be Element of NAT , k be Element of NAT ; reconsider p/. u = u , p/. v = v as Element of ( ( TOP-REAL n ) | K1 ) ; g . x in dom f & x in dom g implies x in dom g assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of G / ( N , G ) ; len P\bf 1 <= len P-35 & P\bf 1 <= len P-35 ; x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( A * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple f . x = a . i .= a1 . k .= a1 . k ; let f be PartFunc of REAL i , REAL , x be Element of REAL i ; rng f = the carrier of ( A . i ) .= the carrier of ( A . i ) ; assume that s1 = sqrt ( 2 / ( p `1 - r ) ^2 ) and s2 = sqrt ( 2 / ( p `1 - r ) ^2 ) ; attr a > 1 & b > 0 , 1 , 1 , 2 ; let A , B , C be lines of IW , a be k1 k1 k1 k1 k1 of NAT ; reconsider X0 = X , Y0 = Y as RealNormSpace , x = X /\ Y ; let f be PartFunc of REAL , REAL , g be PartFunc of REAL , REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V and V is Subspace of X ; let t-3 , t-3 be Relation of n -tuples_on BOOLEAN , f be Function of n -tuples_on BOOLEAN , BOOLEAN ; Q [ eF \/ { vF } , f ] implies Q [ eF , f ] g \circlearrowleft ( W-min L~ z ) = z implies ( W-min L~ z ) .. z < ( W-min L~ z ) .. z |. |[ x , v ]| - |[ x , y ]| .| = v\rrangle ; - f . w = - ( L * w ) .= - ( L * w ) ; z - y <= x iff z <= x + y & y <= z + x ; ( 7 / p1 ) ^2 > 0 / ( 1 / e ) ; assume X is BCK-algebra of 0 , 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v1 ; ( f | X ) . x2 = f . x2 .= ( f | X ) . x2 ; ( ( tan | Z ) . x ) in dom sec /\ dom tan ; i2 = ( f /. len f ) `2 .= ( f /. len f ) `2 .= ( f /. len f ) `2 ; X1 = X2 \/ ( X1 \ X2 ) .= X2 \/ ( X1 \ X2 ) ; [. a , b , 1_ G .] = 1_ G & a = 1_ G ; let V , W be non empty VectSpStr over F_Complex , V be Subspace of V ; dom g2 = the carrier of I[01] & dom g2 = the carrier of I[01] & g2 is continuous ; dom f2 = the carrier of I[01] & dom f2 = the carrier of I[01] & f2 . 0 = 1 ; ( proj2 | X ) .: X = proj2 .: X .= proj2 .: X ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & x0 < x0 + r / 2 ; |. ( f /* s ) . k - G3 .| < r ; len Line ( A , i ) = width A .= width A ; SFinSequence / ( g , h ) = ( S . g ) / ( g , h ) ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized p & IC Comput ( p , s , k ) in dom p ; i1 , i2 , i3 , i3 , i2 not contradiction & I does not destroy b , a , b , c ; arccos r + arccos r = ( PI / 2 ) + 0 ; for x st x in Z holds f2 is_differentiable_in x & for x st x in Z holds f2 is_differentiable_in x ; reconsider q2 = ( q / x ) / ( x - y ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 + 1 ; assume that f in the carrier of [: X , Omega Y :] and g in the carrier of [: X , Omega Y :] ; F . a = H / ( ( x , y ) / ( x , y ) ) ; ( not ( ex u being Element of T st C = TRUE & u in C ) ) implies C = {} dist ( ( a * seq ) . n , h ) < r / 2 ; 1 in the carrier of [. 0 , 1 .] & 1 in dom f ; ( p2 `1 ) ^2 - x1 > - g / 2 - g / 2 ; |. r1 - `2 .| = |. a1 .| * |. thesis - a .| ; reconsider S-14 = 8 as Element of Seg 8 ( ) ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W = D0W .9 + 1 ; i1 = ma + n & i2 = K + n & z = a + n ; f . a [= f . ( f .: O1 "\/" f . a ) ; attr f = v & g = u , h = v + u ; I . n = Integral ( M , F . n ) ; chi ( T1 , S ) . s = 1 / ( s . s ) ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k1 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R4 * ( i , j ) ) or L~ M1 /\ L~ M2 = { i } ; set h = the continuous Function of X , R , x be Point of X ; set A = { L . ( ( k + 1 ) + 1 ) where k is Nat : k in dom L } ; for H st H is atomic holds P7 [ H ] ; set b = S5 ^\ ( i + 1 ) , c = S5 ^\ ( i + 1 ) ; Hom ( a , b ) c= Hom ( a opp , b opp ) ; ( 1 / ( n + 1 ) ) < ( 1 / s ) " ; ( l `1 = [ dom l , cod l ] ) `1 .= [ l , cod l ] `1 ; y +* ( i , y /. i ) in dom g & y . i in dom g ; let p be Element of QC-WFF ( Al ( ) ) , x be Element of D ( ) ; X /\ X1 c= dom ( f1 - f2 ) /\ dom ( f2 - f1 ) ; p2 in rng ( f /^ ( k + 1 ) ) & p2 in rng ( f /^ k ) ; 1 <= indx ( D2 , D1 , j1 ) + 1 - 1 ; assume x in ( L2 /\ K0 ) \/ ( ( L2 /\ K0 ) /\ K0 ) ; - 1 <= ( ( f2 ) . O ) `2 & - 1 <= ( ( f2 ) . O ) `2 ; let f , g be Function of I[01] , TOP-REAL 2 , a , b be Real ; k1 -' k2 = k1 - k2 + k2 - k2 .= k1 - k2 + k2 - k2 ; rng ( seq ^\ k ) c= ]. x0 , x0 + r .[ & rng ( seq ^\ k ) c= dom ( f2 * f1 ) ; g2 in ]. x0 , x0 + r .[ & g2 in ]. x0 , x0 + r .[ ; sgn ( p `1 , K ) = - ( 1_ K ) .= - ( 1_ K ) ; consider u being Nat such that b = p |^ ( y * u ) ; ex A being Line of B st a = Sum A & A is limit_ordinal ; Cl ( union H ) = union ( ( Cl H ) /\ ( Cl H ) ) ; len t = len t1 + len t2 & len t1 = len t1 + len t2 ; v = v + w |-- v + ( w |-- A ) . v ; v <> DataLoc ( t . GBP , 3 ) & v . DataLoc ( t . GBP , 3 ) = 0 ; g . s = sup ( d " { s } ) .= s . s ; ( \dot y ) . s = s . ( y . s ) ; { s : s < t } in NAT implies t = {} ( NAT , REAL ) s ` \ s = s ` \ ( 0. X \ s ) .= ( 0. X \ s ) \ ( 0. X \ s ) ; defpred P [ Nat ] means B + $1 in A & B + $1 in A ; ( 339 + 1 ) ! = 3339 ! * ( 339 + 1 ) ; ( U . succ A ) = ( ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( U . ( reconsider y = y as Element of ( len y ) -tuples_on COMPLEX ; consider i2 being Integer such that y0 = p * i2 and 1 <= i2 and i2 <= n ; reconsider p = Y | ( Seg k ) as FinSequence of ( Seg k ) ; set f = ( S , U ) \mathop { F . z } ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , TOP-REAL n , x be Point of TOP-REAL n , y be Point of TOP-REAL n ; ( ( M + i ) . [ n + i , 'not' A ] ) . [ n + i , 1 ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; R1 , R2 be Element of REAL n , x be Element of REAL n , y be Element of REAL n ; reconsider l = 0. ( V ) , r = 0. ( A ) as Linear_Combination of A ; set r = |. e .| + |. n .| + |. w .| + |. s .| + a ; consider y being Element of S such that z <= y and y in X ; a 'or' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ; ||. ( x9 - y9 ) * ( y9 - g2 ) .|| < r2 / 2 * ||. x9 - g2 .|| ; ( b , a9 // b9 , c9 ) & ( b , c // c9 , a9 ) ; 1 <= k2 -' k1 & k2 + k1 = k2 - k1 & k2 + k1 = k2 - k1 + k1 ; ( p `2 / |. p .| - sn ) >= 0 ; ( q `2 / |. q .| - sn ) < 0 & ( q `2 / |. q .| - sn ) < 0 ; E-max C in cell ( RR , 1 , 1 ) & ( E-max C ) `2 = ( R /. 1 ) `2 ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) | D ) ; LIN b , a , c or LIN b , c , a ; p `1 , a // a `1 , b `1 or p `1 , a // b `1 , b ; g . n = a * Sum ( f | n ) .= f . n * a ; consider f being Subset of X such that e = f and f is empty ; F | ( N2 , S ) = CircleMap * ( F | [: N2 , S :] ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( m , r0 ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } .= { 0. V } .= { 0. V } ; rng ( cos | [. - 1 , 1 .] ) = [. - 1 , 1 .] ; assume that Re seq is summable and Im ( seq ) is summable and Im ( seq ) is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 as 0 -element string of S2 , Q = { t } as Element of S ; reconsider x9 = seq . n , y9 = seq . n as sequence of ( TOP-REAL n ) | X ; assume that not E-max L~ Cage ( C , n ) meets L~ go and not E-max L~ Cage ( C , n ) meets L~ pion1 ; - ( ( Cl 1 ) . n ) < F . n - ( - ( 1 / 2 ) . n ) ; set d1 = \overline ( dist ( x1 , z1 ) ) , d2 = dist ( x2 , z2 ) , d2 = dist ( x1 , z2 ) ; 2 |^ ( 100 -' 1 ) = 2 |^ ( 100 - 1 ) ; dom ( v | ( Seg len ( v | ( Seg len v ) ) ) ) = Seg len ( v | ( Seg len v ) ) ; set x1 = - k2 + |. k2 + 1 .| + 4 * ( k2 + 1 ) ; assume for n being Element of X holds 0. <= F . n & 0. <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . A = c . A the carrier of ( L\lbrace x } + L2 ) c= I2 & the carrier of ( L2 + L1 ) c= I ; 'not' Ex ( x , p ) => All ( x , p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal normal \Rightarrow of {} ; Z c= dom ( ( sin * f1 ) `| Z ) ; |. 0. TOP-REAL 2 - q .| < r / 2 - q `1 / 2 ; ConsecutiveSet2 ( A , B ) c= ConsecutiveSet2 ( A , *> , L ) implies A c= L E = dom ( L (#) F ) & L (#) F is_measurable_on E & ( L (#) F ) is_measurable_on E ; C / ( A + B ) = C / B * C ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of V implies W1 + W2 c= V I . IC s2 = P . IC s2 .= ( 0 + 1 ) .= ( 0 + 1 ) ; attr x > 0 means : Def4 : ( 1 / x ) = x / ( 1 - x ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) .= LSeg ( f , i ) ; consider p being Point of T such that C = [. p , g .] and p in C ; b , c are_connected & - C , - C + - C + - C + - C + - C + - C + - C + C + - C + - C + C + - C + - C + C + - C + C + - C + C + - C + C + assume that f = id the carrier of O and g is Function of O , O and f is Function of O , O ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( {} ( the carrier of V ) ) ; reconsider g = f " as Function of U2 , U1 , U2 , U2 , U2 be Function of U2 , U2 ; A1 in the Points of G_ ( k , X ) & A2 in the Points of k ; |. - x .| = - x .= - x .= - x .= - x ; set S = ) ( x , y , c ) ; Fib ( n ) * ( 5 * Fib ( n ) - 1 ) >= 4 * 8 ; v /. ( k + 1 ) = v . ( k + 1 ) .= v . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - ( i * 0 qua Nat ) ; Indices M1 = [: Seg n , Seg n :] & Indices M1 = [: Seg n , Seg n :] ; Line ( S\mathopen , j ) = S\mathopen ( j , i ) .= Sj ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , y1 ] ; |. f .| - Re ( |. f .| ) * ( ( card b ) * h ) is nonnegative ; assume that x = ( a1 ^ <* x1 *> ) ^ b1 and y = ( a1 ^ <* x1 *> ) ^ b1 ; MI is_halting_on IExec ( I , P , s ) , P & M is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= 0 ; x + y < - x + y & |. x .| = - x + y & |. x .| = - x + y ; LIN c , q , b & LIN c , q , c & LIN c , q , b ; f| ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x1 + ( y1 + z1 ) ; flet f . a = f\in . a & v in InputVertices S & v in InputVertices S ; ( p `1 ) ^2 <= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; set R8 = Cage ( C , n ) :- E8 , R8 = Cage ( C , n ) ; ( p `1 ) ^2 >= ( E-max C ) `1 & ( E-max C ) `1 >= ( E-max C ) `1 ; consider p such that p = p-20 and s1 < p and p < s2 and s2 < p ; |. ( f /* ( s * F ) ) . l - GM .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 + 1 ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & ( f2 /* s1 ) . n = f2 . ( lim s1 ) ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m .= dom ( ( Proj ( i , n ) * s ) ) ; n = k * ( 2 * t ) + ( n mod ( 2 * t ) ) ; dom B = 2 -tuples_on the carrier of V \ { {} } .= the carrier of V ; consider r such that r _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 <= 1 ; for L being complete LATTICE for A being Subset of lattice ( rng F ) , L st A , L are_isomorphic holds A is isomorphic [ gi , gj ] in II \ II & [ gi , gj ] in II \ II ; set S2 = 1GateCircStr ( x , y , c ) , S2 = 1GateCircStr ( y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r st r in dom ( f2 * f1 ) holds f2 * f1 is_differentiable_in x0 ; reconsider y = ( a ` ) / ( F . ( k + 1 ) ) , z = ( a ` ) / ( F . k ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , 1 ) ) . c <= h . c & ( min ( g , 1 ) ) . c <= h . c ; set G3 = the \HM { of G , v = the Vertex of G , v = the Vertex of G , v = the Vertex of G ; reconsider g = f as PartFunc of REAL n , REAL-NS n , REAL-NS n ; |. s1 . m / p .| < d / p / p / p / p / p ; for x being element st x in ( ( for u being element st u in ( t ) holds u in x ) holds x in B P = the carrier of ( TOP-REAL n ) | Px0 .= ( TOP-REAL n ) | Px0 ; assume that p10 in LSeg ( p1 , p2 ) /\ LSeg ( p11 , p2 ) /\ LSeg ( p11 , p2 ) <> {} ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c * d ) <= 2 * C1 * C2 + ( 2 * c ) * ( a * b ) ; let f , g , h be Point of the carrier of X , f be PartFunc of X , Y ; set h = Hom ( a , g (*) f ) ; then idseq ( n ) | Seg m = idseq ( m ) | Seg n .= m ; H * ( g " * a ) in the right of H & H * ( g " * a ) in the carrier of H ; x in dom ( ( cos * sin ) `| Z ) & x in dom ( cos * sin ) ; cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j1 -' 1 ) misses C ; LE q2 , p4 , P , p1 , p2 & LE q2 , p2 , P , p1 , p2 ; attr B is component means : Def4 : B c= BDD A & B c= BDD B ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len ( p + - n ) + ( - n ) ; attr a <> 0. K means : Def4 : the_rank_of M = the_rank_of ( a * M ) & the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom \mathbb of of of dom s.[ and I = len of PI + j and I = len PI + j ; consider x1 such that z in x1 and x1 in P8 and x2 in P8 and x = [ x1 , x2 ] ; for n ex r being Element of REAL st X [ n , r ] set CC1 = Comput ( P2 , s2 , i + 1 ) , CC2 = P2 +* I ; set cv = 3 / ( 2 * ( a , b , c ) ) , cv = 2 * ( a , b , c ) ; conv @ W c= union ( F .: ( E " W ) ) & conv @ W c= union ( F .: ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( arccot * ( arccot * ( arccot * arccot ) ) ) ; r3 <= s0 + ( r0 - ( v2 - v1 ) ) / ( 2 * ( v2 - v1 ) ) ; dom ( f * f4 ) = dom f /\ dom ( f3 (#) f4 ) .= dom f /\ dom f3 ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider g9 = gp , gp = gp as Point of ( TOP-REAL n1 ) | K1 ; ( T * h . s ) . x = T . ( h . s . x ) ; I . ( J . x ) = ( I * L ) . ( J . x ) ; y in dom ( *> *> , ( ( Frege A ) . o ) & y in dom ( ( Frege A ) . o ) ; for I being non degenerated integral of I holds the carrier of I is commutative commutative associative commutative non empty doubleLoopStr set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* I +* J +* J ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & ( for x st x in the carrier of [. a , b .] holds x <= x ) ; v . ( l-13 . i ) = ( v *' lw ) . i .= ( v *' lw ) . i ; consider n being element such that n in NAT and x = ( sn | P ) . n ; consider x being Element of c such that F1 . x <> F2 . x and x in F1 . x ; as Function of Funcs ( X , 0 , x1 , x2 , x3 ) , E ; j + ( 2 * ( k + m1 ) ) + m1 > j + ( 2 * ( k + m1 ) ) ; { s , t } on A3 & { s , t } on B2 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n4 , n2 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n2 , n3 , n4 , n4 , n4 , n4 ( mg1 ) . HT ( mg2 , T ) = 0. L & ( mg1 ) . HT ( mg2 , T ) = 0. L ; then H1 , H2 are_that card H1 , H2 are_that card H2 , H1 |^ n are_that card H2 = card H2 ; ( ( N-min L~ f ) .. ( f | 1 ) ) .. ( f | 1 ) > 1 & ( ( N-min L~ f ) .. ( f | 1 ) ) .. ( f | 1 ) > 1 ; ]. s , 1 .[ = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) & x2 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , x0 be Point of S ; DigA ( tmax ( k , z ) , i ) is Element of k -tuples_on ( k -tuples_on ( k + 1 ) ) ; I is Element of NAT & I is Element of NAT & I is Element of k2 implies I is k2 & I is Element of NAT ( u ~ ) = { [ a , u9 ] } .= { [ a , u9 ] } .= { [ a , u9 ] } ; ( w | p ) | ( w | w ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u1 in W2 and u2 in W1 and v = v + u2 ; for y st y in rng F ex n st y = a |^ n & F . n = F . ( n + 1 ) dom ( ( g * ( ( f . x ) \dot \to C ) ) | K ) = K ; ex x being element st x in ( ( the Sorts of U0 ) \/ A ) . s & x in ( the Sorts of U0 ) . s ; ex x being element st x in ( ( that ) \/ A ) . s & x in ( ( the Sorts of O1 ) \/ A ) . s ; f . x in the carrier of [. - r , r .] & f . x in [. - r , r .] ; ( the carrier of X1 union X2 ) /\ ( the carrier of X1 ) <> {} & ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} ; L1 /\ LSeg ( p01 , p2 ) c= { p10 } /\ LSeg ( p11 , p2 ) ; ( b + ( be - a ) ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of G8 such that z = y and P [ z ] and z in A and z in B ; ( the sequence of ( ( the carrier of X ) | D ) ) . ( x , y ) <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 ; assume that q in the carrier of ( TOP-REAL 2 ) | K1 and q in the carrier of ( TOP-REAL 2 ) | K1 ; f | E-4 ` = g | EK ` .= g | EK ` .= g | EK ; reconsider i1 = x1 , i2 = x2 , z = x3 as Element of NAT ; ( a * A * B ) ` = ( a * ( A * B ) ) ` ; assume ex n0 being Element of NAT st f |^ n0 is is is is is Seg len ( ( ( f1 ^ f2 ) | ( i + 1 ) ) ) = dom ( ( ( f1 ^ f2 ) | ( i + 1 ) ) ) ; ( Complement ( A ) ) . m c= ( Complement ( A ) ) . n ; f1 . p = p9 & g1 . ( p , q ) = d & f1 . ( q , p ) = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) .= FinS ( F , Y ) ; ( x | y ) | z = z | ( y | x ) ; ( |. x .| to_power n ) / ( n + 1 ) <= ( r2 to_power n ) / ( n + 1 ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & for x st x in dom F holds F . x = f . x ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W3 and W1 is Subspace of W2 and W2 is Subspace of W3 ; ||. t-15 . x .|| = lim ||. ( x - y ) .|| .= ||. ( x - y ) .|| .= ||. x - y .|| ; assume that i in dom D and f | A is lower and g | A is lower and g | A is lower ; ( p `2 ) ^2 - ( q `2 ) ^2 <= ( - 1 ) ^2 ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) & g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) ; set N8 = ( N-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ; for T being non empty TopSpace holds T is countable implies the TopStruct of T is countable width B |-> 0. K = len Line ( B , i ) .= len B .= len B .= len B .= len B ; attr a <> 0 means : Def4 : ( A \+\ B ) Let a = ( A Y. ) Let ( B be element ; then f is_\cal 3 implies pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and b <> 1 and c > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w2 , w1 } implies w1 = w2 p2 /. IC s = p2 . IC s .= ( ( IC s ) + 1 ) * ( ( IC s ) + 1 ) ; ind ( T-10 | b ) = ind b .= ind b - 1 .= ind b - 1 .= ind b - 1 ; [ a , A ] in the \cdot of G_ ( k , X ) & [ a , A ] in the \cdot of G ; m in ( the Arrows of C ) . ( o1 , o2 ) & m in ( the Arrows of C ) . ( o2 , o2 ) ; ( for z being Element of Y holds ( a , CompF ( PA , G ) ) . z = FALSE ) implies a = TRUE reconsider phi = phi /. 11 , phi = phi /. 11 , phi = phi /. ( 11 + 1 ) as Element of ( the carrier of z1 ) * ; len s1 - ( len s2 - 1 ) + 1 > 0 + 1 - 1 ; delta ( D ) * ( f . ( upper_bound A ) - 0 ) < r ; [ f21 , f22 ] in [: the carrier' of A , the carrier' of B :] ; the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z and z in rng g2 ; [#] V1 = { 0. V1 } .= the carrier of ( ( the carrier of V1 ) | V1 ) .= the carrier of ( ( the carrier of V1 ) | V1 ) ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P2 is one-to-one ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and s in dom ( f | X ) ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p3 *> .= h ^ <* p *> ; c / ( |[ b , c ]| ) = c .= |[ a , c ]| / ( |[ b , c ]| ) .= c ; reconsider t1 = p1 , t2 = p2 , t1 = p3 as Term of C , V ; ( 1 / 2 ) in the carrier of [. 1 / 2 , 1 .] & ( 1 / 2 ) * ( 1 / 2 ) in the carrier of [. 1 / 2 , 1 .] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 + D * ( p1 `2 ) + D * ( p1 `2 ) + D * ( p1 `2 ) + D * ( p1 `2 ) + D * ( p2 `2 ) + D * ( p2 `2 ) ; R . b - a = 2 * - b .= 2 * b - a .= b ; consider - 1 such that B = ( - 1 ) * C + ( - 1 ) * A and 0 <= 1 ; dom g = dom ( ( the Sorts of A ) * ( the_arity_of o ) ) .= dom ( ( the Sorts of A ) * ( the_arity_of o ) ) ; [ P . ( l . ( k + 1 ) ) , P . ( l . ( k + 1 ) ) ] in => ( P . ( l . k ) ) ; set s2 = Initialize s , P2 = P +* I ; reconsider M = mid ( z , i2 , i1 ) , N = L~ z as non empty Subset of TOP-REAL 2 ; y in product ( ( the Sorts of J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 ; assume that x in the left of g or x in the left of g and y = ( the right of g ) . x ; consider M being strict Subgroup of Aj such that a = M and T is Subgroup of M and M is Subgroup of A ; for x st x in Z holds ( ( ( ( #Z 2 ) * f ) + f ) `| Z ) . x <> 0 len W1 + len W2 + m = 1 + len W2 + m + 1 .= len W1 + len W2 + m + 1 ; reconsider h1 = ( vseq . n ) - ( vseq . n ) as Lipschitzian LinearOperator of X , Y ; ( i mod len ( p + q ) ) + 1 in dom ( p + q ) ; assume that s2 is negative and F in the { of s2 : not contradiction } and F in the { of s2 : not contradiction } ; ( ( ( ( ( x , y ) ) * ( 1 , 3 ) ) * ( 1 , 2 ) ) ) * ( 1 , 2 ) = ( ( x , y ) * ( 1 , 2 ) ) * ( 1 , 2 ) ; for u being element st u in Bags n holds ( p *' m ) . u = p . u for B be Subset of u-5 st B in E holds A = B or A misses B or A misses B ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ W1 and W1 = ( the Sorts of A ) . ( len p + 1 ) ; x in { X where X is Ideal of L : X is directed & x in X } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W1 /\ W2 ; ( for a , b being Real holds ( a + b ) * id a = ( 1 - a ) * ( b + a ) ( ( X --> f ) . x ) = ( X --> dom f ) . x .= ( X --> f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => q ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( 2 |^ ( n -' m ) ) + 1 ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) /\ dom ( f2 (#) f3 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and b2 . r = c2 . r ; ex P st a1 on P & a2 on P & b2 on P & a1 , a2 on P & b1 on P & b2 on P & b2 on P ; reconsider gf = g `1 * f `2 , hf = h `1 * g `2 as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in F and v1 in G ; n in { i where i is Nat : i < n0 + 1 & i < n + 1 } ; ( F * ( i , j ) ) `2 >= ( F * ( m , k ) ) `2 ; assume that K1 = { p : p `1 >= sn & p `1 >= 0 & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) ^ ( ConsecutiveSet ( A , O1 ) ) ; set Ik1 = in dom [ SubFrom ( a , intloc 0 ) , SubFrom ( a , intloc 0 ) , ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 & z /. i <> z /. 1 X c= ( the carrier of L1 ) /\ ( the carrier of L2 ) & X c= ( the carrier of L1 ) /\ the carrier of L2 ; consider x9 be Element of GF ( p ) such that x9 |^ 2 = a & x9 |^ 2 = b ; reconsider en = en , fn = fn , fn = fn as Element of D ( ) ; ex O being set st O in S & C1 c= O & M . O = 0. ( X , L ) & M . O = 0. ( X , L ) ; consider n being Nat such that for m being Nat st n <= m holds S . m in U1 and n <= m ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) * g ) . x ; defpred P [ Nat ] means A + succ $1 = succ A & A + succ $1 = succ A + ( succ $1 ) ; the left left of - g = the left & the left of - g = the left of - g & the left of - g = ( - 1 ) * ( - g ) ; reconsider pp = x , p\mathopen = y , p\mathopen = z , p\mathopen = x , p\mathopen = y as Point of Euclid 2 ; consider g2 such that g2 = y and x <= g2 and g2 <= x0 and x0 <= g2 and g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] & X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 .= len x2 + len y2 + len y2 .= len x2 + len y2 + len y2 ; for x being element st x in X holds x in the set of ( the set of TOP-REAL ( n + 1 ) ) | X & x in X ; LSeg ( p11 , p2 ) /\ LSeg ( p1 , p11 ) = {} or LSeg ( p11 , p2 ) /\ LSeg ( p11 , p2 ) = {} ; func that ) ( X ) -> set equals [: [: X , X :] and [: X , X :] c= [: X , X :] ; len ( Cage ( C , n ) ) <= len ( Cage ( C , n ) ) & len ( Cage ( C , n ) ) <= len ( Cage ( C , n ) ) ; attr K is has a , v & a <> 0. K implies v . ( a |^ i ) = i * v . ( a |^ i ) ; consider o being OperSymbol of S such that t . {} = [ o , the carrier of S ] and t . {} = [ o , the carrier of S ] ; for x st x in X ex y st x c= y & y in X & y is Z & f . x = f . y IC Comput ( P-6 , k ) in dom ( san +* I ) & IC Comput ( Pd , k ) in dom ( san +* I ) ; attr q < s means : Def4 : r < s & s < q implies ]. r , s .[ c= ]. p , q .[ ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) `1 and c in Class ( f , c ) ; func the ResultSort of S2 -> Function of the carrier' of S2 , the carrier' of S2 means : Def4 : for x being set st x in the carrier' of S2 holds it . x = id ( the carrier' of S2 ) ; set y9 = [ <* y , z *> , f2 ] , z9 = [ <* z , x *> , f3 ] ; assume x in dom ( ( ( - arccot ) * ( arccot ) ) `| Z ) & x in dom ( ( - arccot ) * ( arccot ) ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f \/ L~ f /\ L~ f & rrf in ( L~ f ) ` ; ( q `2 ) >= ( ( Cage ( C , n ) ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a ` : a in X } ; i - len f <= len f + len f1 - len f + len f - len f + len f - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 <= len f - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f for n ex x st x in N & x in N1 & h . n = x- x0 & h . n = x0 + R . n set s0 = ( \mathop { a , I , p , s ) . i , s0 = ( s , p , s ) . i , s0 = ( s , p , s ) . i , s0 = ( s , p , s ) . i , s0 = ( s , p , s ) . i , s0 = ( s , p , s ) . i ; p . k . 0 = 1 or p . k . 0 = - 1 or p . 0 = 1 or p . 0 = 1 ; u + Sum L-18 in ( U \ { u } ) \/ { u + Sum L-18 } ; consider x9 being set such that x in x9 and x9 in V1 and x9 in V1 and x = [ x9 , x9 ] ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( ( len p ) - 1 ) ; g + h = gg + hg & f + g = g + h + g ; L1 is distributive & L2 is distributive implies L1 ~ is distributive & L2 ~ is distributive & L1 ~ is distributive & L2 ~ is distributive pred x in rng f & y in rng ( f | x ) implies f . x = f . y & f . y = f . x ; assume that 1 < p and p `1 + ( 1 - p ) * q = 1 and 0 <= a and a <= b ; F* ( f , <* A1 *> ) = rpoly ( 1 , 1 ) *' t + 1. L .= 1. L + 0. L .= 0. L ; for X being set , A being Subset of X holds A ` = {} implies A = {} & A = {} implies A = {} ( ( N-min X ) `1 ) ^2 <= ( ( E-max X ) `1 ) ^2 & ( ( E-max X ) `1 ) `1 <= ( ( E-max X ) `1 ) ^2 ; for c being Element of the Sorts of A , a being Element of the Sorts of A holds c <> a implies c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= Exec ( i2 , s2 ) . GBP .= Exec ( i2 , s2 ) . GBP .= 0 ; for a , b being Real holds |[ a , b ]| in ( y ) ` implies b >= 0 & a >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y \ x = 0. X implies x = y mode BCK-algebra of i , j , m , n , m , n , m , m be BCK-algebra of i , j , m , n , m , m ; set x2 = |( Re ( y ) , Im ( x ) )| ; [ y , x ] in dom u5 & u5 . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .[ c= A & A c= A /\ divset ( D , k ) ; 0 <= delta ( S2 . n ) & |. delta ( S2 . n ) .| < ( e / 2 ) * ( 2 |^ n ) ; ( - ( q `1 ) ) ^2 <= ( - ( q `1 ) ) ^2 + ( - ( q `1 ) ) ^2 ; set A = 2 / ( b-a ) ; for x , y being set st x in R" holds x , y are_holds x , y are_\hbox { $ \subseteq $ } deffunc FF2 ( Nat ) = b . $1 * ( M * G ) . $1 * ( M * G ) . $1 ; for s being element holds s in -> ( f 'or' g ) iff s in ( f \/ g ) . s for S being non empty non void non empty non void holds S is connected iff S is connected max ( ( degree ( z ) ) , ( degree ( z ) ) ) >= 0 & ( degree ( z ) ) ) . ( ( degree ( z ) ) ) >= 0 ; consider n1 being Nat such that for k holds seq . ( n1 + k ) < r + s and seq . k < x0 + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( A ) & Lin ( A ) = Lin ( B ) ; set n-15 = n-15 '&' ( M . x qua Element of BOOLEAN ) , n-15 = M . ( n + 1 ) , n-15 = M . ( n + 1 ) ; f " V in the topology of X & f " V in D & f " V in D & f .: V c= D implies f .: V c= D rng ( ( a ^\ c ) ^\ ( 1 , b ) ) c= { a , c } \/ { b } ; consider y being as as , and y is WW: 1 <= y & y in WWE and x `1 = WWE ; dom ( 1 / f ) /\ ]. x0 , x0 + r .[ c= ]. x0 , x0 + r .[ /\ ]. x0 , x0 + r .[ ; as Morphism of as ( i , j , n , r ) & ( i , j , n ) = ( i + j ) * r ; v ^ ( n-3 |-> 0 ) in Lin ( rng ( ( B | c1 ) | ( dom ( B | c2 ) ) ) ) & v ^ ( B | c1 ) = v ; ex a , k1 , k2 st i = a := ( k1 , k2 ) & i = ( a , k1 ) := k2 ; t . NAT = ( NAT .--> succ i1 ) . NAT .= succ ( NAT .--> succ i1 ) .= succ ( 5 .--> succ i1 ) .= ( NAT .--> succ i1 ) . NAT .= NAT ; assume that F is bbfamily and rng p = F and rng p = Seg ( n + 1 ) and for k be Nat st k in Seg ( n + 1 ) holds P [ k , F . k ] ; not LIN b , b9 , a & not LIN a , c , b & not LIN a , c , b & a , c // b , c ( L1 Let L2 ) \& O c= ( L1 \& O ) \& O & ( L2 Let O ) Let O = ( L1 \& O ) \& O ; consider F be ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) and for d be Element of E holds F . d = G ( d ) ; consider a , b such that a * ( v + u ) = b * ( -w ) and 0 < a and 0 < b ; defpred P [ FinSequence of D ] means |. Partial_Sums ( $1 ) .| <= Sum |. $1 .| & Partial_Sums ( $1 ) . $1 <= Sum |. $1 .| ; u = cos . ( x , y ) * x + cos . ( y , v ) * y .= cos . ( x , y ) * y .= v ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , |. p .| (#) |. p .| , {} ] implies P [ p , ( p - id the Sorts of A ) . p ] consider X being Subset of CQC-WFF ( Al ( ) ) such that X c= Y and X is finite and X is finite and X is inininininin; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) + 1 ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & h . l1 <= g . l1 & l . l1 <= h . l1 } ; ( Partial_Sums ( G ) . n ) * vol <= ( Partial_Sums ( ( G ) . n ) ) * vol ( ( G . n ) ) ; f . y = x .= x * 1_ L .= x * ( ( power L ) . ( y , 0 ) ) .= x * ( ( power L ) . ( y , 0 ) ) ; NIC ( <% i1 , i2 %> , k ) = { i1 , succ ( i1 , k ) } .= { i1 , succ ( i1 , k ) } ; LSeg ( p10 , p2 ) /\ LSeg ( p1 , p11 ) = { p1 } /\ LSeg ( p11 , p2 ) /\ LSeg ( p1 , p11 ) ; Product ( ( the carrier of I-15 ) +* ( i , { 1 } ) ) in Z & Product ( ( the carrier of I-15 ) +* ( i , { 1 } ) ) in Z ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) .= Following ( s1 , n ) .= Following ( s2 , n ) ; W-bound Qb <= ( q1 `1 ) ^2 & ( q1 `1 ) ^2 <= ( q1 `1 ) ^2 + ( q2 `1 ) ^2 ; f /. i2 <> f /. ( ( i1 + len g -' 1 ) + len f -' 1 ) & f /. ( i1 + 1 ) <> f /. ( i1 + 1 ) ; M , f / ( x. 3 , a ) / ( x. 4 , f / ( x. 0 , a ) ) / ( x. 4 , a ) / ( x. 0 , a ) |= H ; len ( P7 ^ P6 ) in dom ( ( P ^ Q ) ^ <* ( P ^ Q ) . ( len P + 1 ) *> ) ; A |^ ( n , n ) c= A |^ ( m , n ) & A |^ ( k , n ) c= A |^ ( k , l ) ; R |^ n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 and p2 . n1 = p2 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( id the carrier of X ) . v .| & ||. v .|| <= |. v .| ; for phi st phi in X holds phi in X implies ( not phi in X & phi in X & phi in X ) rng ( Sgm ( dom ( f | ( dom f ) ) ) c= dom ( f | ( dom ( f | ( dom f ) ) ) ) ; ex c being FinSequence of D ( ) st len c = k & P [ c ] & a = c & c = a ; ( the_arity_of ( a , b , c ) ) = <* ( h . b , c ) , ( h . c ) *> .= <* h . c , h . c *> ; consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and f1 . 0 = r ; a1 = b1 & a2 = b2 or a1 = b1 & a2 = b2 & b1 = b2 & b2 = b3 or a1 = b3 & b1 = b2 & b2 = b3 ; D2 . ( indx ( D2 , D1 , n1 ) + 1 ) = D2 . ( n1 + 1 ) .= D2 . ( n1 + 1 ) .= D2 . ( n1 + 1 ) ; f . ( ||. r .|| ) = ||. ( r ) . 1 .|| .= ||. r .|| . 1 .= r . 1 .= r . 1 .= r . 1 ; consider n being Nat such that for m being Nat st n <= m holds C-25 . n = C-25 . m and C-25 . m = C-25 . m ; consider d being Real such that for a , b being Real st a in X & b in Y holds a <= d and d <= b ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative means : Def4 : for b being Element of X holds F \hbox { b } = f . b & F is commutative ; p = - 1 * p0 + 0 * p0 .= 1 * p0 + 0 * p0 .= 1 * p0 + 0 * p0 .= 1 * p0 + 0 * p2 .= 1 * p0 + 0 * p2 .= 1 * p2 + 0 * p3 ; consider z1 such that b , x3 , x1 is_collinear and o , x1 , x2 is_collinear and o , x1 , x2 is_collinear and o <> x2 ; consider i such that Arg ( Rotate ( f ) ) = s + Arg ( q ) and 2 * PI * i = PI + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card f ( x ) and rng g = f . x and g is one-to-one and g is one-to-one ; assume that A = P2 \/ Q2 and P2 <> {} and ( for x st x in P2 holds x in P2 ) and ( x in P2 implies x in P2 ) ; attr F is associative means : Def4 : F .: ( F , f ) = F .: ( f , F ) ; ex x being Element of NAT st m = x `1 & x in z `1 & x < i or m in { i } & m in { i } ; consider k2 being Nat such that k2 in dom P-2 and l in P-2 . k2 and k = P-2 . k2 + k2 ; seq = r (#) seq implies for n holds seq . n = r * seq . n & seq is convergent & lim seq = r * seq . n F1 . [ [ ( id a ) * [ a , a ] , ( id a ) * [ b , b ] ] = [ f * ( id a ) , f * ( id b ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & p in D1 } "\/" { p "\/" q where q is Element of L : q in D2 } ; consider z being element such that z in dom ( ( dom F ) . 0 ) and ( ( F . 0 ) . 0 ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y cell ( G , i , j ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 & G * ( 0 , 1 ) `2 <= s } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and e in ( T | E1 ) . e ; ( F `1 * b1 ) . x = ( Mx2Tran ( ( J , of n , B\rrangle ) ) . ( ( ( J , Bthesis ) . j ) ) ; - 1 = ( m (#) D ) | n .= ( m (#) D ) | n .= ( m (#) D ) | n .= ( ( m (#) D ) | n ) .= ( ( m (#) D ) | n ) * ( ( m (#) D ) | n ) ; attr x being set means : Def4 : x in dom f /\ dom g holds g . x <= f . x & g . x <= g . x ; len ( f1 . j ) = len f2 /. j .= len ( f2 /. j ) .= len ( f2 /. j ) .= len ( f2 /. j ) ; All ( 'not' All ( a , A , G ) , B , G ) '<' Ex ( 'not' All ( a , B , G ) , A , G ) ; LSeg ( E . k , F . ( k + 1 ) ) c= Cl RightComp Cage ( C , k + 1 ) & LSeg ( E , k + 1 ) c= RightComp Cage ( C , k + 1 ) ; x \ a |^ m = x \ ( a |^ k * a ) .= ( x \ a ) \ a |^ k .= ( x \ a ) \ a |^ k ; k -th inininininin-inin-in-in-in-in-in= ( commute Isuch that k -inin-in-in-in-in-in) . k .= ( commute I|^ k ) . k .= ( commute I|^ k ) . k ; for s being State of A holds Following ( s , n ) . 0 + ( n + 2 ) * n is stable & Following ( s , n ) . 0 is stable for x st x in Z holds f1 . x = a ^2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 support ( ( support ( m ) ) \/ support ( m ) ) c= support ( ( m ) ) \/ support ( m ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier of B ) * the carrier of C , ( the carrier of B ) * the carrier of C ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + a ^2 ) ) ; phi /. ( succ b1 ) = g . a & phi /. ( succ b1 ) = f . ( g . ( succ b1 ) ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) | ( i + 1 ) ) and i <> j ; { x1 , x2 , x3 , x4 } = { x1 } \/ { x2 } .= { x1 } \/ { x2 } .= { x1 } \/ { x2 } .= { x1 } \/ { x2 } ; the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 & the Sorts of U1 /\ U2 c= the Sorts of U1 /\ ( U2 "\/" W3 ) ; ( - ( 2 * a ) * ( b / ( 2 * a ) ) + b / ( 2 * a ) ) ^2 > 0 ; consider W00 such that for z being element holds z in W00 iff z in N ~ N & P [ z ] and W [ z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r and ( the Arity of S ) . o = r ; Z = dom ( ( exp_R * ( arccot + arccot ) ) `| Z ) /\ dom ( ( arccot * ( arccot + arccot ) ) `| Z ) ; sum ( f , SS1 ) is convergent & lim ( ( lim f ) (#) ( S . m ) ) = integral ( f , SS1 ) * ( lim S ) ; ( X . ( ( a . f ) => ( g . ( x9 => y9 ) ) ) ) in cluster ( X . ( a => f ) ) ; len ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n ; attr X1 \/ X2 is open means : Def4 : X1 , X2 are_separated & X2 , Y2 are_separated & X1 , X2 are_separated & X1 , X2 are_separated & X2 , Y2 are_separated ; for L being upper-bounded antisymmetric RelStr , X being non empty Subset of L for X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-129 = F1 . ( b . ( b . ( X , b ) ) ) as Function of [: M , M :] , M ; consider w being FinSequence of I such that the InitS of M , the InitS of M ^ <* s *> ^ w ^ w ^ w ^ w ^ w ^ v ^ v ^ w ^ v ^ w ^ v ^ w ^ w ^ v ^ w ^ w ^ v ^ w ^ w ^ v ^ w ^ w ^ w ^ v ^ w ^ w ^ w ^ v ^ w ^ w ^ w ^ v ^ w ^ w ^ w ^ w ^ v ^ w ^ w g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= 1_ H .= 1_ H .= 1_ H .= 1_ H .= 1_ H ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier L = C & for K being Subset of X st K in C holds L /\ K <> {} & K is open ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 ; reconsider oY = o `1 , oY = o `2 , oY = o `2 , oY = o `2 as Element of TS ( ( the Sorts of A ) * ( the_arity_of o ) ) ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + ( 0 * x2 + ( 0 * x3 ) ) .= x1 + ( 0 * x3 ) .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x3 ) .= x1 + ( 0 * x3 ) ; E " = ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , u2 = the carrier of U2 /\ ( U1 "\/" U2 ) as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" y ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . ( l1 + 1 ) ) .| < ( 1 / |. M .| + 1 / ( M ) ) ; LSeg ( ( Lower_Seq ( C , n ) ) * ( i , j ) , ( Cage ( C , n ) ) * ( i + 1 , j ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- x ) + R /. ( x- x ) .= L /. ( x- x ) + R /. ( x- x ) ; g . c * ( - g . c ) + f . c <= h . c * ( - f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) .= f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the set of \HM { the } \HM { set } and len f = width A and len f = width A and len f = width A and len f = width A and width f = width A ; len ( - M1 ) = len M1 & width ( - M2 ) = width M1 & width ( - M2 ) = width M1 & width ( - M2 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( ( the InternalRel of ( TOP-REAL n ) | n ) ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 2 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in u0 , 2 & pdiff1 ( f1 , 2 ) is_partial_differentiable_in u0 , 2 ; attr a <> 0 & b <> 0 & Arg a = Arg b & Arg b = Arg a implies Arg ( - a ) = Arg ( - b ) & Arg ( - a ) = Arg ( - b ) ; for c being set st not c in [. a , b .] holds not c in Intersection ( the topology of a , b ) & not c in Intersection ( the topology of a , b ) assume that V1 is linearly-independent and V2 is closed and V = { v + u : v in V1 & u in V1 & v in V2 } ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N implies z * y1 + ( 1 - z ) * y2 in N rng ( ( Pk1 qua Function ) " * Sk1 = Seg card ( ( ( k2 + 1 ) " ) * Sk1 ) ) .= Seg card ( ( k2 + 1 ) " ) .= Seg card ( ( k2 + 1 ) " ) ; consider s2 being Integer such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b . n and ( lim s2 ) = ( lim s2 ) * ( lim s2 ) ; h2 " . n = h2 . n " & 0 < h2 . n & 0 < - ( ( 1 / 2 ) |^ n ) / ( 2 |^ ( n + 1 ) ) ; ( Partial_Sums ( ||. seq .|| ) ) . m = ||. ( seq .|| ) . m .= ( ||. seq .|| ) . m .= 0 .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= Comput ( P2 , s2 , 1 ) . b .= Comput ( P2 , s2 , 1 ) . b ; - v = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & - w = - ( - w ) * v ; sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: D ) .= k . ( sup D ) .= k . ( sup D ) .= k . ( sup D ) ; A |^ ( k , l ) = ( A |^ ( n , l ) ) ^^ ( A |^ ( k , l ) ) .= A |^ ( k , l ) ; for R being add-associative right_zeroed right_complementable associative commutative associative associative well-unital distributive non empty doubleLoopStr , I , J being Subset of R , K being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( p `1 ) ^2 + ( p `2 ) ^2 .= ( p `1 ) ^2 + ( p `2 ) ^2 ; for a , b being non zero Nat st a , b are_relative_prime holds ( for x being Nat st x , b are_relative_prime holds ( x = a ) + ( b - a ) * ( x + b ) ) implies a = ( n + 1 ) * ( x + b ) consider A5 being countable set such that r is Element of CQC-WFF ( Al ( ) ) & A5 is ( ( len A ( ) ) , ( len A ( ) ) ) + 1 ) = ( ( len A ( ) ) + 1 ) & ( A ( ) ) is ( len A ( ) ) -NAT ; for X being non empty addLoopStr , M being Subset of X , x , y being Point of X st y in M holds x + y in x + M { [ x1 , x2 ] , [ y1 , y2 ] } c= { [ x1 , y1 ] } \/ { [ x2 , y2 ] } ; h . ( f . O ) = |[ A * ( f . O ) + B , C * ( f . O ) + D * ( f . O ) + D * ( f . O ) + D * ( f . O ) + D * ( f . O ) + D * ( f . O ) + D * ( f . O ) + D * ( f . O ) ; ( Gauge ( C , n ) ) * ( k , i ) in L~ Lower_Seq ( C , n ) /\ L~ Lower_Seq ( C , n ) ; cluster m , n are_relative_prime for Nat , p be prime Nat , n be Nat , m be Nat , p be prime Nat ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ c <= c holds a \+\ b <= c consider b being element such that b in dom ( H / ( x. 0 ) ) and z = ( H / ( x. 0 ) ) . b and ( H / ( x. 0 ) ) . b = ( H / ( x. 0 ) ) . b ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G & e Joins W . 3 , G ; ( h (#) o ) . ( 2 * n ) = ( ( h (#) f ) . n ) . ( 2 * n ) .= ( ( h (#) f ) . n ) . ( 2 * n ) ; j + 1 = ( - len h11 + 2 ) + 1 .= i + 1 - 2 + 2 - 1 .= i + 1 - 2 - 1 .= i + 2 - 1 ; *' ( S *' ) = S *' ( S *' ) .= S *' ( S *' ) .= S *' ( S *' ) .= S *' ( S *' ) .= S *' ( S *' ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L2 * H ) and Sum ( L2 * H ) = Sum ( L2 * H ) ; attr R is *> means : Def4 : for p , q st p in R & q <> p holds ex P st P is_.| p & P c= R & p in R ; dom ( product ^ ( X --> f ) ) = meet ( ( dom X --> f ) . 0 ) .= meet ( ( X --> f ) . 0 ) .= meet ( ( X --> f ) . 0 ) .= ( ( X --> f ) . 0 ) /\ ( X --> f ) . 0 .= ( ( X --> f ) . 0 ) /\ ( X --> f ) . 0 ; upper_bound ( proj2 .: ( Upper_Arc ( C ) /\ Vertical_Line w ) ) <= upper_bound ( proj2 .: ( Upper_Arc ( C ) /\ Vertical_Line w ) ) & upper_bound ( proj2 .: ( Upper_Arc ( C ) /\ Vertical_Line w ) ) <= upper_bound ( proj2 .: ( Upper_Arc ( C ) /\ Vertical_Line w ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - x0 .| < r i * f-28 - f<> i * f-28 - ( i * fnc ) .= i * ( fN - ( i * fc ) ) .= i * ( fN - ( i * fc ) ) ; consider f being Function such that dom f = 2 -tuples_on X ( ) & for Y being set st Y in 2 -tuples_on X ( ) holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g1 in union C and g2 in C and g = [ g1 , g2 ] ; func d |-count n -> Nat means : Def4 : ( d |^ n ) divides ( d |^ n ) & ( d |^ n ) divides ( d |^ n ) & ( d |^ n ) divides ( d |^ n ) ; f\in f . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . ( 2 * x ) .= ( - P ) . ( 2 * x ) .= a ; t = h . D or t = h . B or t = h . C or t = h . D or t = h . E or t = F . J ; consider m1 being Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( n + 1 ) ; ( q `1 ) ^2 / ( |. q .| ) ^2 <= ( ( q `1 ) ) ^2 / ( |. q .| ) ^2 ; h0 . ( i + 1 + 1 ) = h21 . ( i + 1 + 1 + 1 ) .= h21 . ( i + 1 + 1 ) .= h21 . ( i + 1 + 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { [ o , x2 ] } such that a = [ o , x2 ] and o <= g ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & b <= a & a <= b implies b <= a ||. h1 .|| . n = ||. ( h1 . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| ; ( ( - ( exp_R * f ) ) `| Z ) . x = f . x - exp_R . x .= - ( exp_R . x ) / ( exp_R . x ) .= - ( exp_R . x ) / ( exp_R . x ) ; attr r = F .: ( p , q ) means : Def4 : len r = min ( len p , len q ) & for i st i in dom r holds r . i = min ( p . i , q . i ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for i being Nat , M being Matrix of n , K st i in Seg n holds Det M = Sum ( ( Line ( M , i ) ) * ( Det M ) ) then a <> 0. R & a " * ( a * v ) = 1 * v & a " * v = 1 * v & a " * v = 1 * v ; p . ( j -' 1 ) * ( q *' r ) . ( i + 1 -' j ) = Sum ( p . ( j -' 1 ) * ( q *' r ) ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) " ) . $1 ; assume that the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H2 = f .: ( the carrier of H2 ) and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o .= ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o ; H1 = n + 1 and |. 2 to_power ( n + 1 + h ) .| = n + 1 to_power ( n + 1 + h ) .= n + 1 to_power ( n + 1 + h ) ; ( O = 0 & 3 = 0 & 1 = O & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 implies O = O & O = O & O = O & O = O F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 2 ) } .= { f /. n } ; attr b <> 0 & d <> 0 & b <> d & b <> d & ( a = b ) implies ( a = ( b - b) / ( b - b) ) / ( b - bc ) dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) /\ D .= dom ( f +* g ) ; for i be set st i in dom g ex u , v be Element of L st g /. i = u * a & u in B & v in B & u in C & v in C g `2 * P `2 = g `2 * ( g `2 * P `1 ) * g `2 .= g `2 * ( g `1 * P `1 ) .= g `2 * ( g `1 * P `1 ) ; consider i , s1 such that f . i = s1 and not ( ex i st i in dom f & f . ( i + 1 ) <> s1 ) & not ( ex s st s <> s1 & f . ( i + 1 ) <> s1 ) ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] are_connected & [ s2 , t2 ] , [ t2 , t2 ] are_connected & [ s2 , t2 ] , [ t2 , t2 ] are_connected ; then H is negative & H is not negative & H is not conjunctive & H is not conjunctive -gfor F being Function of H , D holds F is not non empty ; attr f1 is total means : Def4 : f1 is total & f2 is total & ( for c be Element of dom f1 holds f1 . c = ( f2 . c ) * ( f2 . c ) " ; z1 in W2 ` & z1 = z2 ` or z1 = z2 & not z1 in W2 & not z2 in W2 & not z2 in W1 & not z2 in W2 & not z2 in W1 & not z2 in W2 & not z2 in W2 p = 1 * p .= a " * a * p .= a " * ( b * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) ; for r be Real_Sequence , K be Real st for n be Nat holds seq1 . n <= K holds upper_bound rng ( seq ^\ k ) <= upper_bound rng ( seq ^\ k ) ( for x being Point of TOP-REAL 2 st x in L~ go holds ( go /. x ) meets L~ pion1 or ( ex x being Point of TOP-REAL 2 st x in L~ pion1 & x in L~ pion1 ) holds not ( ex y being Point of TOP-REAL 2 st y in L~ pion1 & not y in L~ pion1 ) ||. f . ( g . ( k + 1 ) ) - g . ( g . k ) .|| <= ||. g . 1 - g . 0 .|| * ( K to_power k ) ; assume h = ( ( B .--> B ' ) +* ( D .--> C ' ) +* ( E .--> D ' ) +* ( F .--> J ' ) +* ( J .--> N ' ) +* ( M .--> N ' ) +* ( N .--> N ' ) +* ( M .--> N ' ) +* ( N .--> N ' ) +* ( M .--> N ' ) +* ( N .--> N ' ) +* ( N .--> N ' ) ) +* ( M .--> N ) ; |. ( ( ( ( ( H . n ) || A ) || A ) . k ) - ( ( ( ( H . n ) || A ) . k ) || A ) . k .| <= e * ( ( ( H . n ) || A ) . k ) ; ( ( { x1 , x1 , x1 , x1 , x1 , x1 , x2 , x3 , x4 } = { x1 , x1 , x2 , x3 } .= { x1 , x2 , x3 } .= { x1 } ; Suppose A = [. 0 , 2 * PI .] and integral ( ( exp_R * sin ) , A ) = 0 and ( ( exp_R * cos ) | A ) . x = 0 ; Then ( ( exp_R * cos ) | A ) . x = 0 ; p `1 is Permutation of dom f1 & p `1 " = ( Sgm Y ) " * p " .= ( Sgm Y ) " * p " .= ( Sgm Y ) " * p " .= ( Sgm X ) " * p ; for x , y st x in A holds |. 1 / ( f . x ) - 1 / ( f . y ) .| <= 1 * |. f . x - 1 / ( f . y ) .| ( p2 `2 = |. q2 .| * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) ) / ( 1 + sn ) - cn * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) ; for f be PartFunc of the carrier of CNS , REAL st dom f is compact & f is continuous & f is continuous holds rng f c= dom f & f | X is continuous assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A , G ) ) . x = TRUE ; consider FM such that dom FM = n1 and for k be Nat st k in n1 holds Q [ k , FM . k ] and for k be Nat st k in n1 holds FM [ k , FM . k ] ; ex u , u1 st u <> u1 & u , u1 / ( 2 |^ ( n + 1 ) ) / ( 2 |^ ( n + 1 ) ) / ( 2 |^ ( n + 1 ) ) > 0 & u , u1 / ( 2 |^ ( n + 1 ) ) / ( 2 |^ ( n + 1 ) ) / ( 2 |^ ( n + 1 ) ) > 0 ; for G being Group , A , B being non empty Subgroup of G , N being normal Subgroup of G holds ( N ` A ) * ( N ` B ) = N ` A * N ` B for s be Real st s in dom F holds F . s = integral ( R ^ > 0 ) (#) ( ( f + g ) (#) e - ( f + g ) (#) e ) . x width AutMt ( f1 , b1 , b2 ) = len b2 .= len ( b1 * b2 ) .= len ( b1 * b2 ) .= len b1 .= len b1 .= len b1 .= len b1 .= len b1 .= len b1 .= len b1 .= len b1 .= len b2 .= len b2 .= len b2 .= len b2 .= len b2 .= len b2 ; f | ]. - PI / 2 , PI / 2 .[ = f & f | ]. - PI / 2 , PI / 2 .[ = f & f | ]. - PI / 2 , PI / 2 .[ is continuous ; assume that X is closed and a in X and a c= X and y in X and x in X and y in X and x in X and y in X ; Z = dom ( ( ( ( - 1 / 2 ) (#) ( arctan ) ) `| Z ) /\ dom ( ( ( - 1 / 2 ) (#) ( arctan ) ) `| Z ) .= dom ( ( ( - 1 / 2 ) (#) ( arctan ) ) `| Z ) ; func TAUT ( V ) -> Subset of V means : Def4 : for k st 1 <= k & k <= len l holds it . k in V & l . k in V ; for L being non empty TopSpace , N being net of L , M being net of L , N being net of L st c is convergent holds N is net of N & for c being Point of L st c in N holds N . c is convergent for s being Element of NAT holds ( for v being Element of NAT holds ( for x being Element of NAT holds x in dom ( ||. v .|| ) ) implies ||. ( v .|| ) . x = ( ( ||. v .|| ) . x ) * ( ||. v .|| ) then z /. 1 = ( N-min L~ z ) .. z & ( N-min L~ z ) .. z < ( ( N-min L~ z ) .. z ) .. z ; len ( p ^ <* ( 0 qua Real ) + 1 ) = len p + len <* ( 0 qua Real ) + 1 *> .= len p + 1 .= len p + 1 ; assume that Z c= dom ( - ( ln * f ) ) and for x st x in Z holds f . x = x and f . x > 0 and for x st x in Z holds f . x = x - 1 / ( sin . x ) and f . x > 0 ; for R being add-associative right_zeroed right_complementable associative well-unital distributive non empty doubleLoopStr , I being Subset of R , J being Subset of R , I being Subset of R , J being Subset of R holds ( I + J ) *' c= I /\ J consider f being Function of [: B1 , B2 :] , B2 such that for x being Element of [: B1 , B2 :] holds f . x = F ( x ) and f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= Seg len x .= len ( x2 + y2 ) .= len ( x2 + y2 ) .= len ( x + y2 ) .= len ( x + y ) .= len ( x + y ) ; for S being card Functor of C , B for c being Object of C holds card ( id c ) = id ( ( ( the Arrows of C ) . c ) ) & ( id c ) . c = id ( ( ( the Arrows of C ) . c ) ) ex a st a = a2 & a in f6 /\ f5 & \mathop { f . a , f . b } = \mathop { f . a , f . b } & \mathop { f . a , f . b } = { f . a , f . b } ; a in Free ( H2 / ( x. 4 , x. k ) ) '&' ( H2 / ( x. k , x. k ) ) / ( x. k , x. k ) / ( x. k , x. k ) ; for C1 , C2 being \llangle C1 , C2 :] , f being stable Function of C1 , C2 st f = g & f = g holds f = g & f = g implies f = g ( W-min L~ go \/ L~ pion1 ) `1 = W-bound L~ go \/ W-bound L~ pion1 .= W-bound L~ pion1 \/ W-bound L~ pion1 .= W-bound L~ pion1 \/ W-bound L~ pion1 .= W-bound L~ pion1 \/ W-bound L~ pion1 .= W-bound L~ pion1 ; assume that u = <* x0 , y0 , z0 *> and f is_differentiable on u and SVF1 ( 3 , f , u ) is_differentiable_in x0 and SVF1 ( 3 , f , u ) is_differentiable_in y0 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & t . {} = x & t . {} = [ x , s ] ) or ex x being Element of Vars st x = [ x , s ] & t . {} = [ x , s ] ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( q , J ) . v .= Valid ( p , J ) . v '&' Valid ( q , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b ; func Class ( R , x ) -> Subset-Family of R means : Def4 : for A being Subset of R holds A in it iff ex a being Element of R st a in it & A c= a ; defpred P [ Nat ] means ( ( ( ( \HM { the carrier' of G ) \ { $1 } ) \/ { x } ) \/ { y } ) c= G ) & ( ( ( G ) \ { x } ) \/ { y } c= G ) ; assume that dim W1 = 0 implies dim U2 = 0 & ( dim U2 = 0 implies ( S = 0 implies S = 0 ) & ( S = { 0 } implies S = { 0 } ) & ( S = { 0 } implies S = { 0 } ) & ( S = { 0 } implies S = { 0 } ) ; mama_/. ( m . t ) = ( m . t ) `1 .= ( [ m . t , the carrier of C ] ) `1 .= [ m . t , the carrier of C ] `1 .= m . t ; d11 = x9 ^ d22 .= f . ( ( y9 , d ) --> ( x9 , d ) ) .= f . ( y9 , d ) .= ( f | ( y9 , d ) ) . ( x9 , d ) .= ( f | ( y9 , d ) ) . ( y9 , d ) .= ( f | ( y9 , d ) ) . ( x9 , d ) .= ( f | ( y9 , d ) ) . ( y9 , d ) ; consider g such that x = g and dom g = dom f and for x being element st x in dom f holds g . x in f . x and g . x in f . x ; x + 0. F_Complex |^ ( len x ) = x + len x |-> 0. F_Complex .= ( x + ( len x |-> 0. F_Complex ) ) .: ( ( len x |-> 0. F_Complex ) ) .= x ` ; ( k -' ( k + 1 ) ) in dom ( f | ( k -' 1 ) ) /\ ( ( k -' ( k + 1 ) ) /\ ( k -' 1 ) ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 = P \/ { p2 } and P2 = P \/ { p1 , p2 } and P1 = P \/ { p2 } and P2 = P \/ { p1 , p2 } and P1 /\ P2 = { p2 } and P2 = P \/ { p1 , p2 } and P1 /\ P2 = { p2 } and P2 /\ P2 = { p1 , p2 } ; reconsider a1 = a , b1 = b , c1 = c , c2 = d , c1 = c , c2 = d , c2 = c , c1 = d , c2 = c , c2 = d , c1 = c , c2 = d , c2 = c , c1 = d , c2 = d , c2 = c , c1 = d , c2 = c , c2 = d , c2 = d , c1 = c , c2 = d , c2 = d , c1 = c , c2 = d , c2 = d , c2 = d , c2 = d , c2 = c , c2 = d , c2 = d , c1 = d , c2 = d , c2 = d , c2 = d , c2 = d , c2 = c , c2 = c , c2 = d , c2 = reconsider set set set FbFFF1f = G1 . ( t , b ) * F1 . ( t , b ) as Morphism of ( G1 * F1 ) . ( t , b ) * F2 . ( t , b ) ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( f , i + 1 ) ; Integral ( P . m , P . n ) | dom ( P . n ) <= Integral ( M . n , P . m ) | dom ( P . n ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) and f2 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( - G * ( i , 1 ) ) , ( - G * ( i , 1 ) ) ) ; for G being Group , H being Subgroup of G , a being Integer , b being Integer st a = b holds for i being Integer st i in dom H holds a |^ i = b |^ i consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { 7 where 7 is Point of TOP-REAL 2 : P [ 7 ] } , K1 = { 7 where 7 is Point of TOP-REAL 2 : P [ 7 ] } as Subset of TOP-REAL 2 ; ( ( ( ( N - S ) / 2 ) - ( ( N - S ) / 2 ) ) / 2 ) * ( ( ( N - S ) / 2 ) ) <= ( ( ( N - S ) / 2 ) - ( ( N - S ) / 2 ) / 2 ) * ( ( N - S ) / 2 ) ; for x be Element of X , n be Nat st x in E holds |. Re F . n .| <= P . x & |. Im F . n .| <= P . x len @ ( @ ( @ p ^ <* 0 *> ) ) = len ( @ ( @ p ^ <* 0 *> ) ) + len <* 0 *> .= len ( @ ( @ p ^ <* 0 *> ) ) + len ( @ p ^ <* 1 *> ) .= len ( @ p ^ <* 0 *> ) + len ( @ p ^ <* 1 *> ) ; v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m1 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) = m3 ; consider r being Element of M such that M , v / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 0 ) / ( x. 0 ) / ( x. 0 func w1 \ w2 -> Element of Union ( G , R8 ) equals ( ( ( the Sorts of G ) * ( the Sorts of R8 ) ) . ( w1 , w2 ) ) . ( w1 , w2 ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= s1 . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= Exec ( n2 , s2 ) . b2 .= ( Exec ( n2 , s2 ) ) . b2 .= ( Exec ( n2 , s2 ) ) . b2 .= ( s ) . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . n + Partial_Sums ( |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . n ; set F = S -_ _ _ F , G = S -_ _ _ F ; Partial_Sums ( seq ) . ( n + 1 ) + Partial_Sums ( seq ) . ( n + 1 ) + Partial_Sums ( seq ) . n >= Partial_Sums ( seq ) . ( n + 1 ) + Partial_Sums ( seq ) . n + Partial_Sums ( seq ) . ( n + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x = L . ( x- x ) + R . ( x- x ) and R . ( x- x ) = L . ( x- x ) + R . ( x- x ) ; func the closed of \HM { a , b , c , d , e , f , g , h , i , f , i , g , h , i , f , i , g , h h h h h h h i i i i , g , i , h , i ) ; a * b ^2 + ( a * c ^2 + b * c ^2 + c * a ^2 + b * c ^2 + c * a ^2 + d * b ^2 + c * a ^2 + d * b ^2 + c * a ^2 + d * b ^2 + c * b ^2 + d * c ^2 + c * a ^2 + d * b ^2 + c * c + d * b ^2 + c * a ^2 + d * b ^2 + c ^2 + d * b ^2 + d * b ^2 + d * c ^2 + d * c ^2 + d * c ^2 + c * c ^2 + d * c ^2 + c ^2 + d * c ^2 + c * c ^2 + d * c v / ( x1 , m1 ) / ( x2 , m2 ) / ( x3 , m1 ) / ( x3 , m2 ) / ( x3 , m2 ) / ( x3 , m1 ) = v / ( x2 , m1 ) / ( x3 , m2 ) / ( x3 , m1 ) ; Rotate ( Q ^ <* x *> , M ) = ( Rotate ( Q , M ) +* ( M , { FALSE } ) ) +* ( ( M ^ <* x *> --> FALSE ) ) +* ( ( M ^ <* x *> --> FALSE ) ) .= ( M ^ <* x *> --> TRUE ) +* ( M ^ <* x *> --> FALSE ) .= ( M ^ <* x *> --> TRUE ) ; Sum ( F ) = r |^ n1 * Sum ( C ) .= C . n1 * ( C . n1 ) .= C . n1 * ( C . n1 ) .= C . n1 * ( C . n1 ) .= C . n1 * ( C . n1 ) .= C . n1 * ( C . n1 ) .= C . n1 * ( C . n1 ) .= C . n1 ; ( ( GoB f ) * ( len GoB f , 2 ) ) `1 = ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 .= ( ( GoB f ) * ( len GoB f , 1 ) ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums ( s ) ) . $1 = ( ( a * ( $1 + 1 ) ) * ( $1 + 1 ) ) * ( $1 + 1 ) + b * ( $1 + 1 ) ; ( the_arity_of g ) = ( the Arity of S ) . g .= ( ( the Arity of S ) . g ) . g .= ( ( the Arity of S ) . g ) . g .= ( ( the Arity of S ) * g ) . g .= ( ( the Arity of S ) * g ) . g .= ( ( the Arity of S ) * g ) . g ; ( X ~ ) c= X ^2 & Z c= X ^2 implies card ( ( X ~ ) \/ ( Y ~ ) ) = card ( X ~ ) for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . n & b = F . n holds b = G . n \ G . n E , f |= All ( All ( x , ( ( x. 2 ) . ( x. 0 ) ) ) , ( ( x. 2 ) . ( x. 0 ) ) ) => ( ( x. 2 ) . ( x. 0 ) ) '&' ( ( x. 2 ) . ( x. 0 ) ) '&' ( ( x. 2 ) . ( x. 0 ) ) ; ex R2 being 1-sorted st R2 = ( p | ( n + 1 ) ) . i & ( the carrier of R1 ) = the carrier of R2 & ( the carrier of R2 ) = the carrier of R2 & ( the carrier of R2 ) c= the carrier of R2 ; [. a , b + 1 / ( k + 1 ) .[ is Element of the _ of the _ of the carrier of X & ( the partial of X ) . k is Element of the carrier of X & ( the partial of X ) . k is Element of the \overline of X & ( the \overline of X ) . k is Element of the \overline of X ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 , Comput ( P , s , 2 ) ) .= Exec ( a3 , s ) . IC SCM+FSA .= ( ( a , b ) := ( card I + 2 ) ) . IC SCM+FSA ; card ( h1 ) . k = power F_Complex . ( ( - 1_ F_Complex ) . k , k ) * Sum u .= ( ( - 1_ F_Complex ) *' ) . k * u .= ( ( - 1_ F_Complex ) *' ) . k * u .= ( ( - ( - 1_ F_Complex ) ) *' ) . k * u .= ( ( ( - ( - 1_ F_Complex ) *' ) *' ) . k ; ( f / g ) /. c = f /. c * ( g /. c ) " .= f /. c * ( g /. c ) .= ( f (#) g ) /. c .= ( f (#) g ) /. c .= ( f (#) g ) /. c ; len CH - len ( the _ { ( C ) * ( len CH ) , ( C ) * ( len CH ) ) = len CH - len ( the _ { ( C ) * ( len CH ) , ( C ) * ( len CH ) ) .= len ( C - ( C - ( C - ( C - ( C - ( C - ( C - ( C - D ) ) ) ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom f /\ X .= dom ( f | X ) /\ X .= dom ( f | X ) .= dom ( f | X ) .= dom ( f | X ) /\ X .= dom ( f | X ) .= X /\ X .= dom ( f | X ) ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n ) + ( 5 * Fib ( n ) ) + ( 5 * Fib ( n ) ) ; consider f being Function of INT , INT such that f = f ` and f is onto and for n st n < k holds f . n = n + 1 & f . n = n + 1 and f . n = n + 1 ; consider c9 be Function of S , BOOLEAN such that c9 = chi ( A \/ B , S ) and ( for A being Element of S holds E . A = Prob . A ) & ( for A being Element of S holds E . A = Prob . A ) & ( for A being Element of S holds E . A = Prob . A ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) ) : P [ x ] } and for y being Element of X ( ) st P [ y ] holds y in { F ( x ) where x is Element of X ( ) : P [ x ] } ; assume that A c= Z and Z = dom f and f = ( ( - 1 / 2 ) (#) ( sin + cos ) ) / ( cos + sin ) and Z = dom f and f = ( - 1 / 2 ) (#) ( cos + cos ) ; ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 ; dom Shift ( Seq q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & q1 . j = ( Seq q1 ) . ( len q1 + 1 ) & q1 . ( len q1 + 1 ) = ( Seq q1 ) . ( len q1 + 1 ) ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 & G2 <= G1 & f = G1 & g = G2 & f = G2 & g = G1 & f = G2 and g = G2 and f = G1 & g = G2 & f = G2 & g = G2 ; func - f -> PartFunc of C , V means : Def4 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c & for c st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a for v st v in a holds union ( L , v ) |= ( L , v ) iff for v st v in a holds L , v |= v ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. i = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - n ) / ( n + 1 ) and for n1 being Nat st n1 <> 0 & n1 <= n holds sqrt p = ( i - n ) / ( n + 1 ) and n <= k and k <= n ; assume that not 0 in Z and Z c= dom ( ( arccot * f1 ) `| Z ) and for x st x in Z holds ( ( arccot * f1 ) `| Z ) . x > - 1 & f1 . x < 1 & f1 . x < 1 & f1 . x < 1 ; cell ( G1 , i1 -' 1 , ( 2 |^ ( m -' 1 ) ) * ( Y1 -' 1 ) ) \ ( Y1 ) c= ( ( L~ f ) ` ) \ ( ( L~ f ) ` ) ` & ( ( L~ f ) ` ) \ ( ( L~ f ) ` ) c= ( ( L~ f ) ` ) ; ex Q1 being open Subset of X st s = Q1 & ex F8 being Subset-Family of Y st F8 c= F & F8 is finite & ( for n being Nat holds F8 [ n , F8 . n ] ) & ( for n being Nat st n in dom F8 holds F8 [ n , F8 . n ] ) & ( for n being Nat st n in dom F8 holds P8 [ n , n ] ) gcd ( ( the carrier of A ) , ( the carrier of A ) , ( the carrier of A ) , ( the carrier of A ) , ( the carrier of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) , ( the InternalRel of A ) = 1 R8 = ( ( the _ of ( s2 ) ) . ( m1 + 1 ) ) . ( m2 + 1 ) .= ( ( the _ of ( s2 ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= [ 3 , 1 ] ; CurInstr ( P-6 , Comput ( P-6 , s , m1 + 1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m1 ) ) .= halt SCMPDS .= ( CurInstr ( P3 , s3 ) ) . IC SCMPDS .= ( halt SCMPDS ) . IC SCMPDS .= ( halt SCMPDS ) . IC SCMPDS .= ( halt SCMPDS ) . IC SCMPDS .= ( halt SCMPDS ) . IC SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) /\ LSeg ( p11 , p2 ) \/ ( LSeg ( p11 , p2 ) \/ LSeg ( p11 , p2 ) ) /\ LSeg ( p11 , p2 ) \/ { p2 } /\ LSeg ( p11 , p2 ) \/ { p2 } ; func the Sorts of A -> Subset of the Sorts of A means : Def4 : a in it iff ex p st p in dom f & a = f . p & p in the Sorts of A & a = f . p ; for a , b being Element of F_Complex st |. a .| > b for f being Polynomial of F_Complex st f >= 1 & f is ) for a being Element of F_Complex st a >= 1 & f is >= 0 holds f * ( - b ) is ] & f is ] implies ( - a ) * ( - b ) is ] defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g . ( i , j ) holds G * ( i , j ) = G * ( i , j ) ; Suppose C1 , C2 are_\vert & f is \vert and g is \vert and for s1 , s2 being State of C1 , f being State of C2 st f = g * f holds f is stable iff for x being State of C1 , y being State of C2 st x = f * g holds x is stable & y is stable & f . x = y * f . y ; ( ||. f .|| | X ) . c = ||. f .|| /. c .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| ; |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 & 0 + ( q `1 ) ^2 < ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of T7 st F is open & {} in F & not {} in F & A <> B for A , B being Subset of T7 st A in F & B <> {} & A <> B & A misses B holds card F c= card A & card ( A \/ B ) c= card B assume that len F >= 1 and len F = k + 1 and len F = k + 1 and for k st k in dom F holds F . k = g . ( F . k , G . k ) and for k st k in dom F holds F . k = g . ( F . k , G . k ) ; i |^ ( ( ( Let n ) |^ ( ( p |^ k ) - i ) ) = i |^ ( ( s |^ k ) - i ) .= i |^ ( ( s |^ k ) - i ) .= i |^ ( ( s |^ k ) - i ) .= i |^ ( ( s |^ k ) - i ) .= i |^ ( ( s |^ k ) - i ) ; consider q being oriented oriented Chain of G such that r = q and q <> {} and F7 . ( q . 1 ) = v1 and ( for q being Element of G st q in rng holds q . ( q . 1 ) = v1 & ( for q being Element of G st q in rng q holds q . ( q . 1 ) = v1 ) and rng q c= rng ( p ^ <* q *> ) ; defpred P [ Element of NAT ] means $1 <= len ( g , Z ) implies ( ( ( g , Z ) ^ I ) . $1 = ( ( g , Z ) ^ I ) . ( len g + $1 ) ) & ( ( g , Z ) ^ I ) . $1 = ( ( g , Z ) ^ I ) . ( len g + $1 ) ; for A , B being square Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width A & width ( A * B ) = width B & width ( A * B ) = width A & width ( B * B ) = width B consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a in I & b in J & s . i = b * a ; func |( x , y )| -> Element of COMPLEX equals |( Re x , Re y )| - ( Re y ) * |( x , y )| + ( - ( Re x ) * |( x , y )| ) + ( - ( Im y ) * |( x , y )| ) + ( - ( Im y ) * |( x , y )| ) ; consider g9 being FinSequence of F such that g9 is continuous and rng g9 c= A and for k st k in A holds g1 . k = x1 & g1 . k = x2 and g1 . k = y1 and g1 . k = x0 and g1 . k = x0 and g1 . k = x0 and g1 . k = x0 and g1 . k = x0 ; then n1 >= len p1 & n2 >= len p1 implies crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , p1 , p2 , n1 , n2 , n3 , n2 , n3 , n3 , n4 , n4 , n4 , n4 , p1 , p2 , n2 , n3 , n2 , n3 , n2 , n3 , n2 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , p1 , n2 , n3 , n4 , n4 , n2 , n3 , n2 , n3 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n4 , n3 , n4 , n4 , n4 , n4 , n2 , n3 , n2 , ( q `1 ) * a <= ( q `1 ) * a & - ( q `1 ) * a <= ( q `1 ) * a or q `1 >= - ( q `1 ) * a & - ( q `1 ) * a <= - ( q `1 ) * a ; Fv . ( ( len pv ) + 1 ) = Fv . ( p . ( len p ) ) .= ( ( v . ( len p ) ) + 1 ) * ( v . ( len p ) ) .= ( v . ( len p ) ) * v . ( len p ) .= ( v . ( len p ) ) * v . ( len p ) .= v . ( len p ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( <* a := intloc 0 *> ^ ( ( k + 1 ) --> 1 ) ) ^ ( ( k + 1 ) --> 1 ) ^ ( ( k + 1 ) --> 1 ) .= ( ( k + 1 ) --> 0 ) ^ ( ( k + 1 ) --> 1 ) ; consider B8 being Subset of B1 , y8 being Function of B1 , B2 such that B8 is finite and D8 = the carrier of A1 and for x being set st x in B1 holds ( x in B1 or x in B2 or x in B1 or x in B2 ) and ( x in B2 or x in B1 or x in B2 or x in B2 or x in B2 or x in B2 ) ; v2 . b2 = ( curry F2 , g ) * ( ( curry F2 ) . b2 ) .= ( ( curry F2 , g ) . b2 ) * ( ( ( curry F2 ) . b2 ) ) .= ( ( curry F2 ) . b1 ) * ( ( ( curry F2 ) . b2 ) .= ( ( curry F2 ) . b1 ) * ( ( ( curry F2 ) . b2 ) ) .= ( ( ( curry F2 ) . b1 ) * ( ( id F2 ) . b2 ) ; dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) ) .= dom ( IExec ( I , P , Initialize s ) ) .= dom ( IExec ( I , P , Initialize s ) ) .= dom ( IExec ( I , P , Initialize s ) ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < e holds |. h .| " * ||. ( R + R1 ) /. h .|| < e / ( 1 + R ) * ||. ( R2 + R1 ) /. h .|| < e / ( 1 + R ) * ||. ( R2 + R1 ) /. h .|| ; LSeg ( G * ( len G , 1 ) + |[ 1 , - 1 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , 0 , 0 ) \/ { G * ( len G , 1 ) + |[ 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + 1 ) , h /. ( i + 1 + 1 ) ) .= LSeg ( h /. ( i + 1 + 1 ) , h /. ( i + 1 + 1 ) ) .= LSeg ( h /. i , h /. ( i + 1 + 1 ) ) .= LSeg ( h /. i , h /. ( i + 1 + 1 ) ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , p2 , P , p1 , p2 & LE p2 , p3 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p3 , P , p1 , p2 & LE p2 , p3 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p3 , P , p1 , p2 & LE p2 , p3 , P , p1 , p2 , p2 & LE p1 , p3 , P , p2 , p3 , p3 , p2 , p3 , p3 , p3 , P , p1 , p3 , p3 , P , p1 , p2 , p3 , p3 , p4 , p4 , p4 , p4 , p4 , p4 , P , p1 , p2 , p4 , p4 , p4 , p4 , P , p4 , p4 , p4 , p4 , p4 , P , p1 , p3 , p4 , p4 , P , p1 , p3 , p4 , ( ( - x ) .|. y ) = - ( 1 / ( 1 - x ) * ( x .|. y ) ) .= ( - 1 / ( 1 - x ) ) * ( x .|. y ) .= ( - 1 / ( 1 - x ) ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * x .|. y .= ( - 1 ) * x .|. y ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( p `1 ) ^2 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) .= ( p `1 ) ^2 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) .= ( p `1 ) ^2 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ; ( ( U * ( W * ( W ) ) ) ) * ( W * ( W * ( W ) ) ) = ( ( ( U * ( W * ( W * ( W * ( W * ( W ) ) ) ) ) ) ) * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * L ) ) ) ) ) ) ) ) .= ( ( ( U * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W * ( W ) ) ) ) ) ) ) ) ) ) ) ) ) ) * ( W * ( W * ( func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def4 : dom it = dom h & for x be Element of REAL st x in dom it holds it . x = ( h . x ) * f . x & for x be Element of REAL st x in dom it holds it . x = ( h . x ) * f . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) ; assume that not y in Free H and not x in Free H and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) and not x in Free ( H ) ; defpred P11 [ Element of NAT , Element of NAT , Element of NAT ] means ( $1 = p |^ $1 implies $2 = ( $1 |^ $1 ) * ( p |^ $1 ) ) & ( $1 |^ $1 ) * ( p |^ $1 ) < ( $1 |^ $1 ) * ( p |^ $1 ) & ( $1 |^ $1 ) * ( p |^ $1 ) < ( $1 |^ $1 ) * ( p |^ $1 ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def4 : for A , B being Subset of X holds A in it iff for W being Subset of X st W c= A & W c= B holds C c= W \ A & C c= B \ A ; [#] ( ( dist ( ( dist ( P ) ) ) .: Q ) = ( ( dist ( P ) ) ) .: Q ) .: Q & inf [#] ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) & inf ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) ; rng ( F | ( [: S , T :] ) ) = {} or rng ( F | ( [: S , T :] ) ) = { 1 } or rng ( F | ( [: S , T :] ) ) = { 1 } or rng ( F | ( [: S , T :] ) ) = { 2 } or rng ( F | ( [: S , T :] ) ) = { 1 } ; ( f " ( rng f ) ) . i = f . i " .= ( ( f . i ) " ) . i .= ( ( f . i ) " ) . i .= ( ( f . i ) " ) . i .= ( ( f . i ) " ) . i .= ( ( f . i ) " ) . i .= ( ( f . i ) " ) . i .= ( ( f . i ) " ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P1 = { p1 , p2 } and P2 = { p1 , p2 } and P1 = { p2 } and P2 = { p1 , p2 } and P1 = { p2 , p1 } and P2 = { p2 , p1 } and P2 = { p1 , p2 } ; f . p2 = |[ ( p2 `1 ) ^2 + ( p2 `2 ) ^2 + ( p2 `2 ) ^2 + ( p2 `2 ) ^2 * ( p2 `1 ) ^2 + ( p2 `2 ) ^2 + ( p2 `2 ) ^2 * ( p2 `1 ) ^2 + ( p2 `2 ) ^2 + ( p2 `2 ) ^2 ; ( ( for a being Real , X being non empty TopSpace , x being Point of X holds x = ( ( the carrier of X ) --> a ) " ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( a + 1 ) * x ) . x ; for T being non empty normal TopSpace , A , B being closed Subset of T , r being Real st A <> {} & A misses B & B misses B for p being Point of T st p in A & p in B holds p in ( ( in the topology of T ) | A ) & for r being Real st r in A holds p in ( ( ( in the topology of T ) | B ) . r ) for i , j st i in dom F for G1 , G2 being strict normal Subgroup of G st G1 = F . i & G2 = F . i & G2 = F . j holds G1 * G2 is strict Subgroup of G1 & G2 = F . i & G1 * G2 = G2 * G1 for x st x in Z holds ( ( arctan - arccot ) `| Z ) . x = ( ( arctan - arccot ) `| Z ) . x / ( 1 + x ^2 ) - ( arccot - arccot ) . x / ( 1 + x ^2 ) synonym f is right continuous means : Def4 : x0 = lim ( f /* a ) & for x st x in dom f holds f . x = lim ( f /* a ) & for x st x in dom f holds f . x = ( f /* a ) . x ; then X1 , X2 are_separated & ( X1 misses X2 or Y1 misses Y2 or X1 misses X2 & ( X1 misses X1 or X2 misses X2 or X1 misses X2 or X1 misses X2 & X1 misses X2 or X1 misses X2 or X1 misses X2 or X2 misses X1 or X1 misses X2 or X1 misses X2 or X1 union X2 = X2 or X1 union X2 = X2 union X2 ; ex N being Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds ( SVF1 ( 1 , f , u ) ) . x = L . ( x- ( 1 , f , u ) ) + R . ( x - x0 ) + R . ( x - x0 ) ( p2 `1 ) ^2 * sqrt ( 1 + ( p3 `1 ) ^2 ) >= ( ( p2 `1 ) ) ^2 * sqrt ( 1 + ( p3 `1 ) ^2 ) * sqrt ( 1 + ( p3 `1 ) ^2 ) ; ( ( 1 / t ) (#) ( ||. f1 .|| ) ) to_power ( n + 1 ) = ( 1 / t ) * ( ||. g1 .|| ) to_power ( n + 1 ) & ( ( 1 / t ) (#) ( ||. g1 .|| ) to_power n ) . x = ( 1 / t ) * ( ||. g1 .|| ) to_power ( n + 1 ) ; assume that for x holds f . x = ( ( - 1 / 2 ) (#) ( sin * cos ) ) . x and x in dom ( ( - 1 / 2 ) (#) ( sin * cos ) ) and x in dom ( ( - 1 / 2 ) (#) ( cos * cos ) ) and x in dom ( ( - 1 / 2 ) (#) ( sin * cos ) ) ; consider Xf1 being Subset of Y , Y1 being Subset of X such that t = [: Y1 , Y1 :] and Y1 is open and ex Y1 being Subset of X st Y1 = [: Y1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open ; card ( S . n ) = card { [: d , Y :] + ( a * d ) + b * d where d , b is Element of GF ( p ) : [ d , b ] in R & [ d , b ] in \mathop { d } } .= { d } + { b } .= { d } + { b } .= { d } ; ( W-bound D - W-bound D ) * ( ( i1 - 1 ) / 2 ) = ( W-bound D - ( W-bound D ) / 2 ) * ( ( i - 1 ) / 2 ) .= ( W-bound D - ( W-bound D ) / 2 ) * ( ( i - 1 ) / 2 ) .= ( W-bound D - ( W-bound D ) / 2 ) * ( i - 1 ) ;