thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ; assume x in I ; q is as as Nat ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; \bf 2 > 0 ; assume q in A ; W is not bounded ; f is non ] ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - 1 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , f be Function of E , F ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is r2 ; Q halts_on s ; x in \in \in \in that ; M < m + 1 ; T2 is open ; z in b 0 ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , A be Subset of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o : o ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , M be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a-0 <= non < or aLet <= b ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Subset of V ; s is trivial & s is non empty ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , S ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; Sp2 is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U1 , U2 , U2 , U1 , U2 ; pp = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj ; set A = \it Boolean ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is non empty and H is non empty ; assume n0 <= m ; T is increasing ; e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M c= union M assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be let is let g be let L , x be Element of L ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v + dom ( \HM { the carrier of G } ) ; - y in I ; let A be non empty set , F be Function of A , B ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be Incountable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let II , J ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , Z ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega f ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is \mathclose hhhz ; assume f is Let bbrr-rst ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len f ; f | A is non empty ; f . x - b <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cc in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < b2 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 - 1 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be Sub\overline of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w is_collinear ; R8 in X ; let a , b be Real , c be Real ; let a be object of C ; let x be Vertex of G ; let o be object of C , m be Morphism of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , x be Element of S ; s4 . n = N ; set y = ( x `1 ) ^2 ; NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; not V is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in NF ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that X0 is dense and X0 is dense ; |. f . x .| <= r ; x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xY c= Z1 & xY c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ^\ k ) is convergent ; assume a1 = b1 & b1 = b2 ; A = ( sInt A ) ` ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , i be Nat ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n <= m ; n in dom g1 /\ dom g2 ; k + 1 in dom f ; the still of S is finite ; assume that x1 <> x2 and x2 <> x3 ; v1 in V1 & v2 in V1 ; not [ b `1 , b ] in T ; i-35 + 1 = i ; T c= and T c= ] ; ( l `1 ) ^2 = 0 ; let n be Nat ; ( t `2 ) = r ; AA is integrable & f | A is bounded ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; Product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for sequence ; assume c2 = b2 & c1 = c2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and vseq is convergent ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) = 0 ; p11 <> p1 or p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one , full , full ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be non empty the InstructionsF of S , S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = ( K + 1 ) * ( K + 1 ) ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMis closed ; assume z0 <> 0. L & z0 <> 0. L ; n < N7 . k ; 0 <= ( seq . 0 ) ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; R ( ) is stable of R ; set cR = Vertices R , cR = Vertices R ; p0 c= P3 & p0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ ] , c ~ ; assume a in A ( ) ; k in dom ( q | k ) ; p is \HM { finite } -defined FinSequence of S ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i1 - i2 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for for . of A ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 - s1 ; assume x in { Gij } ; W-min ( C ) in C & W-min ( C ) in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & rng I c= Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F /\ dom G ; let s be Element of NAT , x be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT , x be Element of NAT ; let S be non empty non void non empty non void holds S is holds S is non empty ; let f be ManySortedSet of I ; let z be Element of F_Complex , v be Element of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= ( V ) . n ; assume I is_halting_on s , P ; U2 = U2 & U2 = U2 implies U2 = U2 M /. 1 = z /. 1 ; x9 = x9 & y9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f . i ) <= ( f . i ) ; let l be Element of L ; x in dom ( F . k ) ; let i be Element of NAT , k be Nat ; r8 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = q | { k + 1 } ; y = W . ( 2 * PI ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite finite < be VectSp of F , v be Vector of V ; A * B on B , A ; f-3 = NAT --> 0 .= fg ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X , T = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f /\ dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; PI / 2 < Arg z / 2 ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in IF ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 div m , i = x0 mod m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! \mathop { phi } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( A - B ) ; s1 , s2 are_/ 2 implies s1 , s2 are_/ 2 j1 -' 1 = 0 & j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ^2 .= 1 ^2 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 -' 1 <= len f ; 1 <= i1 -' 1 & i1 -' 1 <= len f ; i + i2 <= len h - 1 ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . g , I = h . I ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , k = k (*) h2 ; assume x in cluster cluster cluster cluster cluster X2 /\ 4 -> non empty ; ||. h .|| < d1 & ||. h .|| < d ; not x in the carrier of f .: the carrier of L ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = k\leq <= k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; let P , Q be succ s ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive RelStr , X be Subset of L ; S-20 is x -let \leq x -f1 ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z ) ; P [ ( len F ) + 1 ] ; assume InsCode ( i ) = 8 or InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> non empty for Element of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 implies ( for x being Point of T2 holds x in the carrier of T2 ) Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of non zero & F . t is non empty ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) ^2 & y is root ; not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Real ; S7 does not destroy b1 , S8 = b1 " ; IC SCM R <> a & IC S = IC S ; |. - |[ x , y ]| .| >= r ; 1 * ( s . n ) = seq . n * ( s . n ) ; let x be FinSequence of NAT , y be Element of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s . NAT ; H + G = F\hbox { - } G } ; Cx1 . x = x2 & Cx1 . x = y2 ; f1 = f .= f2 .= ( f | X ) . x ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } .= { a2 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 ; IF is reflexive & IF is reflexive implies F + F is reflexive IO is antisymmetric implies ( for x st x in CO holds x in O ) sup rng H1 = e & sup rng H2 = e ; x = ( a * ( 1 / a ) ) * ( 1 / a ) ; |. p1 .| ^2 >= 1 ^2 ; assume that j2 -' 1 < 1 and j2 -' 1 < len f ; rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and not a in support b ; let L be associative commutative associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed I1 = I1 +* ( card I + card J + 3 ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , N . N *> -> complete for non trivial TopSpace ; ( 1 / a ) " = a ; ( q . {} ) `1 = o ; ( - i ) - 1 > 0 ; assume that 1 / 2 <= t `1 and t `1 <= 1 ; card B = k + 1-1 - 1 ; x in union rng ( f | X ) ; assume x in the carrier of R & y in the carrier of S ; d in D ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= G ; let G be : holds G is : 2 ; e , v6 be set ; c . ( i + 1 ) in rng c ; f2 /* ( q ^\ k ) is divergent_to-infty ; set z1 = - z2 , z2 = - z2 , z2 = - z1 , z2 = - z2 , z1 = z2 , z2 = z2 , z2 = - z2 ; assume w is llas of S , G ; set f = p |-count t , g = p |-count t , h = p |-count t , t = p |-count t , n = p |-count t , m = p |-count t , n = p |-count t let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IF be Subset-Family of X , A be Subset of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA , a be Int-Location ; p is FinSequence of ( the InstructionsF of SCM+FSA ) * ; stop I ( ) c= P-12 ( ) ; set ci = f^ ( f /. i ) ; w ^ t Q Q implies w ^ t ^ t ^ w ^ t ^ w ^ t ^ w ^ w ^ t ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ W1 /\ W = W1 /\ W ` .= W1 /\ W2 ; f . j is Element of J . j ; let x , y be \rm \rm \cdot of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is positive implies x is positive set g2 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F-21 ) = 0 & L1 . ( FH ) = 0 ; ( the carrier of X ) \/ R1 = the carrier of X ; ( sin . x ) <> 0 & ( sin . x ) <> 0 ; ( ( exp_R . x ) ^2 ) > 0 ; o1 in [: X /\ O2 , X /\ O2 :] ; e , v6 be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ( L ) ) ; let J be closed Subset of R , I be left ideal non empty Subset of R ; h . p1 = f2 . O & h . O = g2 ; Index ( p , f ) + 1 <= j ; len ( q | k ) = width M .= width M ; the carrier of CK c= A & the carrier of CK c= A ; dom f c= union rng ( F | n ) ; k + 1 in support ( ( support n ) + ( support b ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y ] in ( an \/ R2 ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = h . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence of X ; ( 1 / m * m + r ) < p ; dom f = dom Iq .= dom Iq ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - x -> ExtReal for ExtReal ; then { d1 } c= A & A is closed ; cluster ( TOP-REAL n ) | ( [#] TOP-REAL n ) -> finite-ind ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u + v in W3 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of ( T |^ the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be -> -> -> -> -> -> -> -> summable sequence of X ; dist ( x `1 , y ) < r / 2 ; reconsider mm = m , mn = n as Element of NAT ; - x0 < r1 - x0 & r1 < x0 + r2 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * ( idseq q `1 ) , g2 = p * ( idseq q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 . I ) in { x } ; cluster subcondensed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; let n be Element of NAT , x be Element of NAT ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X `1 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , x is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt c ) / ( sqrt c ) ; reconsider t7 = T7 " as Point of Euclid n ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q . ( z2 + y2 ) ; A |^ 0 = { <%> E } .= { <%> E } ; len W2 = len W + 2 & len W2 = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 + 1 ) ; z in dom g1 /\ dom f /\ dom g ; assume p2 = E-max ( K ) & p3 = E-max ( K ) ; len G + 1 <= i1 + 1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster ( seq + s ) -> summable for Real_Sequence ; assume that j in dom M1 and i in dom M1 ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> \geq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize ( Initialized s ) , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` ` is to of x ` ; k = 0 & n <> k or k > n ; then X is discrete for A is closed ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the TopStruct of TOP-REAL n ; let N , M be being being being being being being being being being being being { sts of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M | [. f , g .] = f & M | [. g , g .] = g ; ( ( TOP-REAL 1 ) /. 1 ) = TRUE .= TRUE ; dom g = dom f -tuples_on X & dom g = dom f -tuples_on X ; mode : of G is \cal : for W being Walk of G holds W is : NAT [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H . s ; let f be Element of dom ( Subformulae p ) , g be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a2 ) = G1 . ( a1 , - a2 ) ; redefine func E ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 + f2 ) ) ; curry ( F-19 , k ) is additive ; set k2 = card dom B , k1 = card dom B , k2 = card dom C ; set G = or the Sorts of A ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of MO , c be Element of M ; reconsider s1 = s , s2 = t as Element of ( the carrier of S1 ) ; rng p c= the carrier of L & p . ( len p ) = 0. L ; let d be Subset of the Sorts of A ; ( x .|. x = 0 iff x = 0. W ) ; I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & rng f = the carrier of T ; rng h c= union ( the carrier of J ) & h . 0 = 1 ; cluster All ( x , H ) -> P\mathopen ; d * N1 / ( 1 - d ) > N1 * 1 / ( 1 - d ) ; ]. a , b .[ c= [. a , b .] ; set g = f " ( D1 /\ D2 ) ; dom ( p | ( NAT \ NAT ) ) = NAT ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot * arccot ) . x ; x in rng ( f /^ ( n + 1 ) ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 & p ( ) in the carrier of S1 ; rng f " = dom f & rng f = dom f ; ( the Source of G ) . e = v ; width G - 1 < width G - 1 & width G - 1 < width G - 1 ; assume that v in rng ( S | E1 ) and u in E ; assume x is root or x is root or x is root ; assume that 0 in rng ( g2 | A ) and 0 < g2 . 0 ; let q be Point of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 ( C ) ; i <= len ( G | ( i2 -' 1 ) ) ; let p be Point of TOP-REAL 2 , x be Point of TOP-REAL 2 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q /\ R /\ S /\ S /\ Q /\ S /\ R /\ S /\ Q /\ S /\ Q /\ S /\ Q /\ S /\ Q /\ S /\ Q /\ S /\ Q /\ S /\ S /\ ( 1 / 2 ) (#) ( 1 / 2 ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 & n + 1 <= card I ; CurInstr ( p1 , s1 ) = i .= ( 0 + 1 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z , t = y as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ & [ s , I ] in S ~ ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 4 ; let C1 , C2 be subcategory of C , C2 ; reconsider V1 = V as Subset of X | B , V1 = V as Subset of X ; attr p is valid means : Def4 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ ( a " ) is Subgroup of H |^ a ; let A1 be [ be [ of O , E ] , A1 ] ; p2 , r3 , q3 is_collinear & q2 , q3 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } or x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 . 0 < M . ( E . n ) ; ^ ( c / a ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Line for Sublattice of L ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def4 : cos .: X c= cos .: Y ; let y be upper Subset of Y , x be Element of X ; cluster -> -> -> -> of ( - 1 ) -element for Relation ; set S = <* Bags n , <* i1 *> , <* i2 *> *> ; set T = [. 0 , 1 / 2 .] , S = [. 1 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp , a , b be Element of G ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p2 `1 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> ^2 = len P & len <* P *> = len P ; set N-26 = the or the or of N = the or of N = the or of N ; len g\rrangle + ( x + 1 ) - 1 <= x ; a on B & b on B & c on B ; reconsider rv = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ( f /^ n ) ; set q2 = N-min L~ Cage ( C , n ) , q2 = q2 /. 1 ; set S = { S1 , S2 , 3 } , T = { S1 , S2 , 3 } ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . r2 ; f " D meets h " ( V /\ W ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume that t is Element of ( the Sorts of Free ( S , X ) ) . s ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( a1 , b1 ) ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( thesis - k ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { i } is of Seg m ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= L /. 1 ; p-7 . i = p1 . i .= p1 . i ; let PA , PA , G be a_partition of Y , a be Element of Y ; If 0 < r & r < 1 , then 1 < ( 1 - r ) * 1 ; rng ( ( a , X ) --> ( x , y ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( ( canFS ( s ) ) | ( ( len s ) ) ) = card ( ( s ) | ( len s ) ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of Y ) ; dom ( f . 0 ) c= dom ( u . 0 ) & dom ( f . 0 ) c= dom f ; redefine pred n divides m & m divides n implies n = m ; reconsider x = x as Point of [: I[01] , I[01] :] ; a in ) implies ( for b being let c being Element of T2 holds c in X ) not y0 in the still of f & not ( ex y st y in the carrier of f & not ( y in the carrier of f ) ; Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < k and k1 < k ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = \kern1pt \kern1pt ( x , y , z ) ; l1 = m2 & l1 = i2 & l2 = j2 implies l1 + l2 = i2 + ( l + 1 ) x0 in dom ( u /\ A ) /\ dom ( v + u ) ; reconsider p = x , q = y as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 .= ( TOP-REAL 2 ) | B01 .= ( TOP-REAL 2 ) | B01 ; f . p4 <= _ P P f . p1 , f . p2 , f . p3 , f . p4 , f . p4 , f . p1 , f . p2 ; ( F . ( x `1 ) ) ^2 <= ( x `1 ) ^2 + ( x `2 ) ^2 ; ( x `2 = ( W . ( len W ) ) ) `2 .= ( W . ( len W ) ) `2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume that 1 <= i and i <= len <* a " *> ; 0 |-> a = <*> the carrier of K & 0 |-> a = <*> the carrier of K ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] implies P [ succ a ] & P [ succ a ] reconsider sbeing being finite \rangle , s/. k being ' of D ; ( k - 1 ) <= len ( an - 1 ) ; [#] S c= [#] the TopStruct of T & [#] T c= [#] the TopStruct of T ; for V being strict RealUnitarySpace holds V in the carrier of V implies V is Subspace of W assume that k in dom mid ( f , i , j ) and k <= j ; let P be non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , n2 , K be Matrix of n1 , n2 , K ; - a * - b = a * b - b * a ; for A being being_line of AS holds A // A or A // A ; ( for o2 being object of o2 st o2 in <^ o2 , o2 ^> holds [ o2 , o2 ] in <^ o2 , o2 ^> ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , N be normal Subgroup of G ; j >= len ( upper_volume ( g , D1 ) | j1 ) ; b = Q . ( len Q - 1 + 1 ) ; f2 * f1 /* ( s ^\ k ) is divergent_to+infty ; reconsider h = f * g as Function of [: N2 , N :] , G ; assume that a <> 0 and Polynom ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T | n ) | n ; {} = the carrier of L1 + L2 .= the carrier of L1 + L2 .= the carrier of L1 + L2 ; Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p +* I = p +* I ; reconsider N2 = N1 , N2 = N2 as strict net of R1 , R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 or not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( P + Q ) & n <= len ( P + Q ) ; ( x1 `1 ) = x2 `1 & ( x2 `1 ) = x3 `1 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTT1 ( n ) ; p = |[ p `1 , p `2 ]| .= |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h .= h * g .= h * g ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( x1 /\ dom x2 ) /\ dom ( x2 /\ dom x3 ) ; ( R qua Function ) " = R " .= ( R " ) " .= R ; n in Seg len ( f /^ ( len f -' 1 ) ) ; for s being Real st s in R holds s <= s2 implies s <= 1 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for 2 -tuples_on X for 2 -tuples_on X ; 1_ K * 1_ K = 1_ K * ( 1_ K ) .= 1_ K * 1_ K ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P2 , Q1 ) ; ex w st e = ( w / f ) & w in F ; curry ( P+* ( k , x ) ) # x is convergent ; cluster open open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c & b1 , c1 // b2 , c2 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total and f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a , P ; goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p3 , s3 ) ; IC SCMPDS in dom ( p +* ( a , I ) ) ; dom t = the carrier of SCM & dom t = the carrier of SCM & t . 0 = t . 1 ; ( ( E-max L~ f ) .. f ) .. f = 1 & ( E-max L~ f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( Int F ) c= Cl ( Int F ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) \/ ( X2 union X3 ) ) ; assume not LIN a , f . a , g . a , g . b ; consider i being Element of M such that i = d6 and i in A ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H ; consider m be element such that m in Intersect ( FF . m ) and x = f . m ; reconsider A1 = support u1 , A2 = support ( u1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 and a5 <> a5 ; cluster s -k2 -> $ for string of S ; LG2 /. n2 = LG2 . n2 .= LG2 . n2 .= LG2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp29 in LSeg ( p2 , p3 ) ; let A be non empty compact Subset of TOP-REAL n , x be Point of TOP-REAL n ; assume that [ k , m ] in Indices ( D * ( i , j ) ) ; 0 <= ( 1 / 2 ) |^ p / ( 1 / p ) ; ( F . N | E8 ) . x = +infty ; attr X c= Y means : Def4 : Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card ( X-18 ) <= card ( u + card ( X ) ) ; set g = z :- ( ( L~ z ) /. 1 ) , M = z /. len z , N = L~ z , S = z /. len z , T = z /. 1 , N = z /. len z , S = z /. len z , T = z then k = 1 implies p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathop { 0 } , D ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | B as Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 ) c= P & Plane ( x1 , x2 , x3 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( g2 ) . O ) `1 = - 1 & ( g2 ) . O = 1 ; j + p .. f - len f <= len f - len f + p .. f - 1 ; set W = W-bound C , E = W-bound C , N = S-bound C ; S1 . ( a `1 , e `1 ) = a + e `1 .= a ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im f ) = dom Im f /\ dom Im f ; ( that ^2 ) . x = W . ( a , *' ( a , p ) ) ; set Q = non |= ( max ( g , f , h ) ) ; cluster -> many sorted for ManySortedSet of U1 , U2 ; attr F = { A } means : Def4 : F is discrete ; reconsider z9 = \hbox ( x , y ) as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng ( f1 + f2 ) c= dom f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f = <*> the carrier of F_Complex implies f = <*> ( the carrier of F_Complex ) E , j |= All ( x1 , x2 , H ) implies E , j |= H reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies card ( x \ B1 ) = 0 g + R in { s : g-r < s & s < g + r } ; set q-1x0 = ( q , <* s *> ) \mathop { 1 } ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , } ( 2 ) ) , mw = max ( B , 2 ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin ( NAT * ) ; IncAddr ( i , k ) = <% - l . ( k + k ) %> ; ( ( q `2 ) ) ^2 <= ( q `2 ) ^2 & ( q `2 ) ^2 <= ( q `2 ) ^2 ; attr R is condensed means : Def4 : Int R is condensed & Cl R is condensed ; redefine pred 0 <= a & b <= 1 & a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 + 2 - 2 ; x , z , y is_collinear & x , z , y is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a |^ n1 ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set y9 = <* y , c *> ; FG2 /. 1 in rng Line ( D , 1 ) & FG2 /. len FG2 = F . 1 ; p . m Joins r /. m , r /. ( m + 1 ) ; ( p `2 = ( f /. i1 ) `2 .= ( f /. i1 ) `2 .= ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) .= W-bound ( X \/ Y ) ; 0 + ( p `2 ) <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u , v2 = v as VECTOR of P`1 , u = v as VECTOR of X ; p |-count ( Product Sgm ( X ) ) = 0 & p |-count ( Product Sgm ( X ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is not empty and { x } /\ { y } = { 0. I } ; set ii2 = card I + 4 .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 ; x in { x , y } & h . x = {} T implies x = y consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( A ) ) & len ( the charact of ( A ) ) = len S ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : ( Ge ) `1 = ( Ge ) `1 ; rng F c= the carrier of gr { a } & ( for x being Element of G st x in F holds x is strict Subgroup of G ) implies F is Subgroup of G \langle Q *> is in rng ( Q * ( K , n , r ) ) & Q is in rng Q ; f . k , f . ( Let n ) ] in rng f ; h " P /\ [#] T1 = f " P /\ [#] T2 .= f " P /\ [#] T2 ; g in dom f2 \ f2 " { 0 } & f2 . ( g . 0 ) = f2 . ( g . 0 ) ; gfinite X /\ dom f1 = g1 " X /\ dom ( f1 | X ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = \overline ( dist ( x1 , y1 ) ) , d2 = dist ( x2 , y2 ) ; b `1 + 1 / 2 < ( 1 + 1 ) / 2 + 1 / 2 ; reconsider f1 = f as VECTOR of the carrier of X , Y ; attr i <> 0 means : Def4 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j in Seg len ( g2 . i2 ) ; dom ( i ) = dom ( i ) .= dom ( i ) .= dom ( i ) ; cluster sec | ]. PI , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x0 as Function of S , I ; reconsider R1 = x , R2 = y , R1 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RH & <* n *> ^ p in RH ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( - 1 ) (#) ( cos * sin ) ) is_differentiable_on Z ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; E8 . e2 = E8 . e2 .= ( - T ) . e2 .= ( T . e2 ) . e2 ; ( ( arctan * arccot ) `| Z ) = ( arctan * arccot ) `| Z ; upper_bound A = PI * 2 / 2 & lower_bound A = 0 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f ) ) = F . ( cod f , - F . ( cod f ) ) ; reconsider pbe Point of TOP-REAL 2 , p8 = ( q `2 ) as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & g . W c= [#] Y0 ; let C be compact non vertical non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) .= LSeg ( f , i ) ; rng s c= dom f /\ ]. x0 , x0 + r .[ & rng ( f /* s ) c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq ( 2 ) , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , n1 = n , n2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y ; for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: ( the carrier of X1 ) , B" = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume that R ~ c= R ~ and R ~ c= R ~ and R ~ c= R ~ and R c= R ~ ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] or P [ x2 , y2 ] or P [ y2 , x2 ] ; redefine pred x1 <> x2 means : Def4 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 , p3 - p1 is_collinear and p2 - p3 , p3 - p1 - p3 - p1 is_collinear ; set q = ( -1 f ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , g be PartFunc of REAL-NS 1 , REAL-NS n , REAL n ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( that ) ) = dom ( that dom ( T * ( ) ) ) ; consider x being element such that x in wc iff x in c & x in c ; assume ( F * G ) . v = v . x3 & ( F * G ) . x3 = v . x3 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of A and the Sorts of D1 c= the Sorts of A ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) ; n1 - len f + 1 <= len - ( len f + 1 ) + 1 - len f ; st ( q , O1 ) = [ u , v , a , b , c ] ; set C-2 = ( ( `1 ) `1 ) + ( ( G ) `1 ) ; Sum ( L * p ) = 0. R * Sum p .= 0. V * Sum p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 <= n implies P [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I , s4 = P2 +* I , P4 = P3 ; let l be [: of k , A , B :] , P be l of k , A ; reconsider U1 = union G-24 as Subset-Family of ( T | A ) , B be Subset-Family of T ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 /. ( n + 2 ) ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; pthesis = <* - c , 1 , 1 *> .= <* - c , 1 , 1 *> ; synonym f is complex-valued means : Def4 : rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x20 < card X0 + card Y0 - card Y0 + card Y0 - card Y0 + card Y0 - 1 < card X0 + card Y0 - 1 ; attr X c= B1 means : Def4 : for B holds X c= \mathop { B , X } ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; redefine attr 1 <= len s means : Def4 : for x being Element of NAT holds ( the _ of s ) . x = s ; fsqrt c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } .= { 1_ G } .= { 1_ G } ; redefine pred p '&' q in TAUT ( A ) & q in TAUT ( A ) implies p '&' q in TAUT ( A ) ; - ( t `1 ) < ( t `1 ) ^2 / ( 1 - t `1 ) ^2 ; U1 . 1 = U2 /. 1 .= U2 /. ( 1 + 1 ) .= U2 . ( 1 + 1 ) .= U2 /. 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices O = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) then V in M .: \square & ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is \cup ( A * ) & f is \setminus of A * ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 2 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* ( 0 , 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = 0. TOP-REAL 2 ; reconsider t = t as Element of ( INT , INT ) * ; C \/ P c= [#] ( ( G | A ) \ A ) & C /\ P c= [#] ( G | A ) ; f " V in ( the topology of X ) /\ D ( the carrier of X ) ; x in [#] ( the carrier of A ) /\ A /\ delta ( F ) ; g . x <= h1 . x & h . x <= h1 . x & h . x <= h . x ; InputVertices S = { xy , y , z } .= { xy , y , z } \/ { z } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) , a = Line ( M , i ) , b = Line ( M , i ) , c = Line ( M , i ) , d = Line ( M , i ) , e = Line ( M , i ) , e = Line ( M , i ) , e = assume that M1 is being_line and M2 is being_line and M3 is being_line and M2 is being_line and M1 + M2 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) .= len ( F1 ^ F2 ) + len ( F2 ^ F1 ) ; len ( ( the dom ( ( f + g ) | X ) = dom ( f + g ) /\ X ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom ( f ^ p1 ) .= dom ( f ^ p2 ) .= dom ( f ^ p1 ) ; M . [ 1 / y , y ] = 1 / ( 1 * v1 ) * v1 .= 1 / 1 * v1 .= 1 ; assume that W is non trivial and W { v } c= the carrier' of G2 and W is not trivial ; C6 /. i1 = G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds inf rng f-0 <= b * ( upper_bound rng f-0 ) - ( ( q1 `1 ) / |. q1 .| ) = 1 / ( |. q1 .| ) .= ( |. q1 .| ) / |. q1 .| ; ( LSeg ( c , m ) \/ { l } ) \/ LSeg ( l , k ) c= R ; consider p be element such that p in LSeg ( x , p ) and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D ( ) * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( Int Z ) , ( implies ex g being Function of Z , TOP-REAL 2 ) | Z ) . p = ( Z + 1 ) * ( g + f ) set R8 = R / ( ]. b , +infty .[ ) , R8 = R / ( ]. b , +infty .[ ) ; IncAddr ( I , k ) = SubFrom ( da , db ) .= SubFrom ( da , db ) .= ( n + k ) + k ; seq . m <= ( ( the Sorts of A ) * ( seq ^\ k ) ) . n ; a + b = ( a ` *' b ) ` .= ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) /\ id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x reconsider H = U1 \/ U2 , U1 = U2 as non empty Subset of ( the carrier of U0 ) * ; u in ( ( c /\ ( ( d /\ e ) /\ f ) ) /\ j ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( the carrier of R ) and A is finite ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ { p2 } ; len s1 - 1 > 0 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( N-min ( P ) ) `2 = ( N-min ( P ) ) `2 .= ( E-max ( P ) ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) /\ L~ Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= ( f . a1 ) ` .= ( f . a1 ) ` ; ( seq ^\ k ) . n in ]. x0 , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . ( s0 . s0 ) .= g . ( s0 . s0 ) ; the InternalRel of S is \lbrace the carrier of S , the carrier of S , the carrier of S , the carrier of S #) ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 , $2 ) ; F . s1 . a1 = F . s2 . a1 .= F . s2 . a1 .= ( F . s2 ) . a1 ; x `2 = A . o . a .= Den ( o , A . a ) . a ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= f " P1 ; FinMeetCl ( ( the topology of S ) . i ) c= the topology of T & FinMeetCl ( ( the topology of T ) . i ) c= the topology of T ; synonym o is \bf means : Def4 : o <> \ast & o <> {} & o <> {} ; assume that X |^ k = Y |^ k + card X and card X <> card Y and X <> Y ; the { F } <= 1 + ( the { F } ) . ( len F + 1 ) & ( the { F } ) . ( len F + 1 ) = F . ( len F + 1 ) ; LIN a , a1 , d or b , c // b1 , c1 or a , c // b1 , c1 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 4 = 0 ; E in SX1 & not E in { NX2 } & not E in { NX2 } ; set J = ( l , u ) If = l , u = u , v = v , w = u , u = v , v = u , w = v , u = v , v = u , w = v , u = v , v = u , w = v , u = v , v = u , w = v , u = v set A1 = .| ( ( a , b , c ) , d ) , A2 = ( a , b , c ) , A2 = ( a , b , c ) ; set c9 = [ <* c , 8 *> , '&' ] , d9 = [ <* d , c *> , '&' ] , A1 = [ <* c , 8 *> , '&' ] , A2 = [ <* d , c *> , '&' ] , p3 = [ <* c , 8 *> , '&' ] , A2 = [ <* c , 8 *> , '&' ] , R = x * z `1 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x = f . x Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min ( C ) , E-max ( C ) , E-max ( C ) , E-max ( C ) ; set f-17 = f .: @ g , f-17 = f .: @ g ; attr S1 is convergent means : Def4 : S2 is convergent & ( for n holds ( n - 1 ) * ( S2 . n ) is convergent & lim ( S2 . n ) = x0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + ( 0 qua Ordinal ) .= a ; cluster -> \in \mathclose \mathclose Let reflexive transitive transitive transitive transitive for reflexive transitive transitive RelStr , F be Function of F , F ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a , b .] ) = len l & len ( l (#) x ) = len l ; t4 \+\ {} is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng t4 ) * * -valued Function ; t = <* F . t *> ^ ( C . p ^ q ) .= ( C . t ^ q ) ^ ( C . t ) ; set p-2 = W-min L~ Cage ( C , n ) , p-2 = W-min L~ Cage ( C , n ) , p`1 = W-bound L~ Cage ( C , n ) ; ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i - ( i + 1 ) ) ; consider u ` being Element of L such that u = u ` ` and u in D ` ; len ( ( width ( ( a |-> b ) ) |-> a ) ) = width ( a |-> b ) .= len ( a |-> b ) ; FF . x in dom ( ( G * the_arity_of o ) . x ) ; set H2 = the carrier of H2 , H1 = the carrier of H2 , H2 = the carrier of H2 ; set H1 = the carrier of H1 , H2 = the carrier of H2 , P = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q8 , t , k ) = ( l + 1 ) - ( k + 1 ) ; dom ( ( cos * sin ) `| Z ) = REAL & dom ( cos * sin ) = dom ( cos * cos ) /\ dom cos ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* thesis , A1 *> , <* y , z *> , '&' ] , b5 = [ <* z , x *> , '&' ] ; Line ( Segm ( M `1 , P , Q ) , x ) = L * ( Sgm Q ) ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & n in dom ( ( the Sorts of A ) * the_arity_of o ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y be Point of X such that a = y and ||. x - y .|| <= r ; set x3 = t . DataLoc ( s2 . SBP , 2 ) , x4 = t . DataLoc ( s2 . SBP , 2 ) , 6 = t . SBP , 7 = t . SBP , 8 = t . SBP , 8 = t . SBP , 8 = t . SBP , 8 = t . SBP , 8 = t . SBP , set p-3 = stop I ( ) , pE = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B } \/ { C , D , E , F , J } let A , B , C , D , E , F , J , M , N , F , J , M , N , N , F , J , M , N , N , A , J , M , N , A , N , A , J , M , N , A , N , A , J , M ; |. p2 .| ^2 - ( p2 `2 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( ( m + 1 ) + ( 1 + 1 ) ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) + ( c * w2 ) + ( c * w2 ) + ( c * w2 ) = v + ( c * w2 ) ; the TopStruct of L = reconsider the TopStruct of L , the TopStruct of L = the TopStruct of L , the TopStruct of L = the TopStruct of L ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H1 and x = H1 . y ; fv \ { n } = ( Free All ( v1 , H ) ) \ { n } .= ( Free ( v1 , H ) ) \ { n } ; for Y being Subset of X st Y is summable holds Y is iff Y is non empty & X is non empty 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of A } ) = len s & for i being Nat st i in dom s holds s . i = ( the { of A } ) . i for x st x in Z holds exp_R * f is_differentiable_in x & exp_R * f is_differentiable_in x ; rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | ( [#] ( TOP-REAL 2 ) ) ) | K1 ; j + - len f <= len f + ( len g - len f ) - len f + ( len g - len f ) ; reconsider R1 = R * I as PartFunc of REAL n , REAL-NS n , REAL-NS n ; C8 . x = s1 . ( a - 1 ) .= C8 . x - 1 .= C8 . x - 1 ; power ( F_Complex ) . ( z , n ) = 1 .= ( x |^ n ) |^ ( z , n ) .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t & t . ( t , I ) = s . ( t , I ) ; support ( f + g ) c= support f \/ ( support g ) /\ support ( f + g ) ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] } is Subset of [: X1 , X2 :] & { [ x1 , x2 ] } is Subset of [: X2 , Y2 :] ; h = ( i , j ) |-- id ( B , i ) .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A & N c= A ; set X = ( ( st ( q , O1 ) ) `1 , ( q , O2 ) ) `1 , X = ( ( q , O1 ) `1 , 4 = ( q , O1 ) `1 , 5 = ( q , O1 ) `1 , 5 = ( q , O1 ) `1 , 6 = ( q , O1 ) `1 , 5 = ( q , O1 ) `1 , 6 = ( q , O1 ) `1 , b . n in { g1 : x0 < g1 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = x0 the lattice of the lattice of Y = the lattice of the lattice of the topology of Y & the carrier of X = the carrier of X & the carrier of X = the carrier of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( ( q ^ r1 ) ^ ( p ^ r1 ) ) + len ( ( q ^ r1 ) ^ ( p ^ r1 ) ) ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z ; set K1 = integral ( ( lim H ) || ( A , H ) ) , D2 = ( ( lim H ) || A ) , K1 = ( lim H ) || A ; assume e in { ( w1 - w2 ) : w1 in F & w2 in G & w1 - w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = F `1 as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j ) /\ LSeg ( f , q ) .= LSeg ( f , j + q .. f ) ; assume that X in { T . ( N2 , K1 ) : h . N2 = N2 } and X in { N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S29 = dom S /\ Seg n .= dom L6 /\ Seg n .= Seg n /\ Seg n .= Seg n /\ Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H & a in H * ( ( 0 , 1 ) --> ( a , 1 ) ) = a `1 - ( 0 * n ) .= a `1 ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= upper_bound A } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `1 = x & p `2 <= 0 ; for c holds f . c <= g . c implies f ^ @ c <= g @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X /\ dom ( f2 (#) f1 ) ; 1 = ( p * p ) / p .= p * ( 1 / p ) .= 1 / p ; len g = len f + len <* x + y *> .= len f + 1 + 1 .= len f + 1 + 1 ; dom F-11 = dom ( F | [: N1 , S :] ) .= [: N1 , S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f = id b and f * f = id b and f * g = id b and f = id b ; ( cos | [. 2 * PI , 0 + PI / 2 .] ) | [. PI , PI / 2 .] is increasing Index ( p , co ) <= len LS - Index ( Gij , LS ) + 1 - Index ( Gij , LS ) + 1 - 1 ; t1 , t2 , t be Element of ( the Sorts of A ) . s , t2 be Element of ( the Sorts of A ) . s ; "/\" ( ( Frege curry H ) . h , L ) <= "/\" ( ( Frege ( curry G ) . h ) , L ) ; then P [ f . i0 ] & F ( f . i0 ) < j & F ( f . i0 ) < j ; Q [ ( D . x ) `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is for of G . i holds l . i is a < r . i the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= ( the Sorts of A1 ) +* ( the Sorts of A2 ) ; consider s being Function such that s is one-to-one and dom s = NAT & rng s = F . 0 and rng s c= NAT ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( b2 , a ) ; ( Lower_Seq ( C , n ) ) /. len ( Cage ( C , n ) ) = W /. len ( Cage ( C , n ) ) ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & q `2 <= ( UMP L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} implies LSeg ( f | i2 , i ) = {} given a being ExtReal such that a <= II and A = ]. a , I .[ and a < I ; consider a , b be Complex such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= k & k <= n } ; ( ( x * y * z ) \ x ) \ z = 0. X ; set xy = [ <* xy , y , z *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* x , y *> , f3 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* y , z *> , f3 ] , xy = [ <* z , lv /. len lv = ( l . ( len lv ) ) * ( l . ( len l ) ) .= ( l . ( len l ) ) * ( l . ( len l ) ) ; ( ( q `2 ) / |. q .| - sn ) / ( 1 + sn ) = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 - sn ) ) / ( 1 - sn ) < 1 ; ( ( ( ( S \/ Y ) \/ X ) \/ Y ) \/ X ) `2 = ( ( ( S \/ Y ) \/ X ) \/ Y ) `2 ; ( seq - seq ) . k = seq . k - ( seq . k - seq . k ) .= ( seq ^\ k ) . k - seq . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X is the carrier of X0 & the carrier of X0 = the carrier of X & the carrier of X = the carrier of X0 ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set h = chi ( X , A ) , A = chi ( X , A ) , B = chi ( X , A ) ; R |^ ( 0 * n ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ 0 ; ( Partial_Sums ( curry ( F1 , n ) ) ) . n is nonnegative & ( Partial_Sums ( F2 , n ) ) . n is nonnegative ; f2 = C7 . ( ( the EESet of V , len H ) . ( len H ) ) .= H . ( len H ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p11 ) /\ LSeg ( p1 , p11 ) c= { p2 } /\ LSeg ( p11 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & o in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) <> ( l1 , l2 ) . ( l + 1 ) , phi = ( l1 , l2 ) . ( l + 1 ) , phi = ( l1 , l2 ) . ( l + 1 ) , phi = ( l1 , l2 ) . ( l + 1 ) , phi = ( l1 , l2 ) . ( l + 1 ) ; synonym p is is invertible for p , q be Polynomial of n , L means : Def4 : p = 1 & q = 1 & p = q ; ( Y1 = - 1 & Y2 <> {} & Y1 <> {} & Y2 <> {} & Y1 <> {} & Y2 <> {} implies Y1 = {} ) implies ( Y1 = Y2 ) defpred X [ Nat , set , set ] means P [ $1 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 ] ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g / 2 ; Det ( I |^ ( m -' n ) ) * ( m - n ) = 1. K * ( - n ) .= ( - 1_ K ) * ( - n ) ; ( - b - sqrt ( b ^2 - ( 4 * a * c ) ) ) / 2 < 0 ; Cs . d = Cs . ( ( d mod 2 ) + 1 ) mod Cs . ( d mod 2 ) .= Cs . d mod 2 ; attr X1 is dense dense means : Def4 : X2 is dense dense & X1 /\ X2 is dense implies X1 /\ X2 is dense ; deffunc FF ( Element of E , Element of I , Element of I ) = $1 * $2 & $2 = $1 * $2 ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ 0. X .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , \subseteq the topology of X , the topology of Y *> synonym A , B are_separated means : Def4 : ( Cl A ) misses B & ( Cl B ) misses Cl ( Cl B ) ; len M8 = len p & width M8 = width M & width M8 = width M & width M8 = width M & width M8 = width M ; J . v = { x where x is Element of K : 0 < v . x & x < 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; inf divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ s = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= ( 0 + n ) + n ; IC Comput ( P , s , 1 ) = IC ( s , 9 ) .= 5 + 9 .= 5 + 9 .= ( card I + 9 ) ; ( IExec ( W6 , Q , t ) ) . intpos ( 8 + 1 ) = t . intpos ( 8 + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) & LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x or x <= y ; integral ( f , C ) = f . ( upper_bound X ) - f . ( lower_bound X ) .= f . ( upper_bound X ) - f . ( lower_bound X ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y ` in Y & x in X ` holds y ` <= x ` ` + y ` ; func |. p .| -> variable of A , NAT equals min ( NBI , p ) . ( p . ( p . ( p . ( p . ( p . ( p . ( p . ( p . ( p . ( p . ( p . ( p . ( 1 - 1 ) ) ) ) ) ) ) ) ) ; consider t `1 being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len x2 & len y1 = len y1 & len y1 = len y1 & len y1 = len y1 & len y1 = len y2 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f /* s1 .|| & ||. f /* s1 .|| = ||. f /* s1 .|| ; ( the InternalRel of A ) ` ` /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} .= {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and i + 1 in dom p and p . i = p . j ; reconsider h = f | X ( ) as Function of X ( ) , rng h ( ) , rng h ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & v = ( the carrier of W1 ) + ( the carrier of W2 ) + ( the carrier of W1 ) + ( the carrier of W2 ) = the carrier of W1 + W2 ; defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y ) = - x + - y .= - x + - y .= - x + - y .= x + - y ; given a being Point of GX such that for x being Point of GX holds a , x + a are_<= x and a , x + b are_ fSet = [ [ [ dom ( f ^ f2 ) , cod ( f ^ g2 ) ] , cod ( f ^ g2 ) ] , cod ( f ^ g2 ) ] ; for k , n being Nat st k <> 0 & k < n & n is prime & k , n are_relative_prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( A ` ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a and a in A ; - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) > 0 ; L-13 . k = LF . ( F . k ) & F . k in dom LF & F . k in dom LF ; set i2 = SubFrom ( a , i , - n ) , i1 = goto - n ; attr B is \frac means : Def4 : Subthat Subthat [ B , SZ ] = ( B ) `1 & S = ( B ) `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D } ; |( \square , q29 - ( q - q1 ) * |( REAL , q29 )| >= |( \square , 1 )| * |( q , q1 )| ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= ( - f ) . ( upper_bound A ) ; G * ( len G , k ) = G * ( len G , k ) .= G * ( len G , k ) .= G * ( len G , k ) ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . ( LM ) . ( LM . x ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( - 1 ) (#) ( reproj ( i , x ) ) ) . ( x + x0 ) ; redefine func ( cos . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 ; ex t being SortSymbol of S st t = s & h1 . t = h2 . ( t . x ) & ( for x being set st x in dom h1 holds h1 . x = F ( x ) ) ; defpred C [ Nat ] means P8 . $1 is non empty & ( A is non empty implies A is non empty or A is empty ) & ( A is non empty implies A is non empty or A is non empty ) ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Basis of ( A . ( index B ) ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st c in dom T holds T . ( c , d ) = id d ( for f , n , p being FinSequence holds f = ( f | n ) ^ <* p *> .= f ^ <* p *> ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p = ( f | ( n , L ) ) *' - ( f *' ) .= ( f *' ) - ( f *' ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ ( r . 8 ) `1 , ( r . 8 ) `2 ]| ) in f1 .: W1 & f2 . ( |[ r . 8 , ( r . 8 ) `2 ]| in W2 .: W2 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a * ( x | n ) .= a * x ; z = DigA ( tx , x9 ) .= DigA ( ty , x ) .= DigA ( ty , x ) .= DigA ( ty , x ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , F = { Intersect S where S is Subset-Family of X : S c= G } ; consider S19 being Element of D such that S ` = S19 ^ <* d *> and S = S19 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x3 = f . x3 ; - 1 <= ( q `2 / |. q .| - sn ) / ( 1 + sn ) ; 0. ( V ) is Linear_Combination of A & Sum ( L ) = 0. V implies Sum ( L ) = 0. V & Sum ( L ) = 0. V let k1 , k2 , k2 , x4 , k2 , 6 , 7 , 8 , 8 , 6 , 8 , 7 , 8 be Element of NAT , p be FinSequence of NAT ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and j in dom a ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x3 ; consider a being Real such that p = \hbox p1 * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & c <= d and [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , 1 , width Gauge ( C , m ) -' 1 , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : i <= n & n <= len S } ; ( T * b1 ) . y = L * b2 /. y .= ( F `1 * b1 ) . y .= ( F `1 * b2 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 / ( 2 * k ) ; then p => q in S & not x in the carrier of S & not p => All ( x , q ) in S & not x in S ; dom ( the InitS of rn ) misses dom ( the InitS of rn ) & dom ( the InitS of rn ) misses dom ( the InitS of rn ) ; synonym f is extended real means : Def4 : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 + 1 .= len p3 + 1 + 1 ; ( l ) `1 = ( g ) `1 ) `1 + ( k ) `1 .= ( g ) `1 + ( k ) - ( k ) .= ( g ) `1 + ( k - 1 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l ) ) .= halt SCM+FSA ; assume for n be Nat holds ||. seq . n .|| <= ( R . n ) & ( R . n ) is summable & ( R . n ) is summable & ( R . n ) is summable ; sin . ( PI ) = sin . ( PI ) * cos . ( PI ) .= cos . ( PI ) * sin . ( PI ) .= 0 ; set q = |[ g1 . t `1 , g2 . t `2 , g1 . t `2 ]| , g2 = |[ g2 . t `1 , g2 . t `2 ]| , g1 = |[ g2 , g2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G . n in implies G . n = ( G . n ) . n ; consider G such that F = G and ex G1 st G1 in SM & G = [: G1 , G2 :] & ( for G being strict Subgroup of M st G in SM holds G is open ) ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & t in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( exp_R * f1 ) ) ) /\ dom ( exp_R * ( f + f1 ) ) ; for k be Element of NAT holds seq1 . k = ( ( Im ( Im ( f ) ) ) . k ) * ( ( Im ( f ) ) . k ) assume that - 1 < n and n > 0 and ( q `2 ) > 0 and ( q `1 ) < 0 and ( q `1 ) < 0 and q `1 < 0 ; assume that f is continuous and a < b and f is continuous and c < d and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that sd = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f + 1 ) , f /. len f ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } = inf { x , y } and x <= y ; assume that f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A ) and f . ( i1 + 1 ) in ( proj ( F , i2 ) ) .: A ; rng ( ( ( ( Flow M ) ~ | ( the carrier of M ) ) | ( the carrier' of M ) ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : t in the carrier of T } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 / 2 * ||. t .|| ; assume that the ] that the ] degree degree v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . 1 = v ; consider a being Element of the Points of [ X , A ] , A being Element of the Points of [ X , A ] such that a on A and b on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ k ) " = 1 / ( ( - x ) |^ k ) " ; for D being set st for i st i in dom p holds p . i in D holds p . i is FinSequence of D & p . i = p . i defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y ] & P [ x ] ; L~ f2 = union { LSeg ( p0 , p2 ) , LSeg ( p10 , p2 ) } .= { p2 } \/ { p2 } .= { p2 } \/ { p2 } ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 2 - 1 + 1 - 1 + 2 - 1 + 2 - 1 + 2 - 1 + 2 - 1 < i + 2 - 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nX . ( n -' 1 ) ) .| ; for r , s1 , s2 , s3 being Real holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & s2 <= 1 assume v in { G where G is Subset of T2 : G in B2 & G c= z & G c= z & z in G & G c= z } ; let g be \vert succ A , Z be Element of INT , b be Element of INT , c be Element of Z ; min ( g . [ x , y ] , k ) = ( min ( g , k , x , z ) ) . y ; consider q1 being sequence of CH such that for n holds P [ n , q1 . n ] and q1 . n = f . ( n + 1 ) ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for x being Element of NAT holds f . x = F ( n ) ; reconsider B-6 = B /\ O , OO = O , $ Z = O , Z = O , Z = O as Subset of B ; consider j being Element of NAT such that x = the j j j and 1 <= j and j <= n and f . j = f . j ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x in L2 . O2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( ( of T4 ( k , n2 ) ) . 0 ) ) .= C . ( ( k + 1 ) + 1 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = X --> f ; ( ( SpStSeq L~ SpStSeq C ) `2 <= ( ( SpStSeq L~ SpStSeq C ) `2 ) / ( 2 |^ ( ( ( L~ SpStSeq C ) `2 ) + ( S-bound L~ SpStSeq C ) `2 ) ) ; synonym x , y are_collinear means : Def4 : x = y or ex l being Nat st { x , y } c= l & x in l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L , a , b being Element of Im k st a = x & b = y holds x << b and a << b ; ( 1 / 2 * ( ( ( ( - 1 / 2 ) * ( ( ( ( #Z n ) * ( f1 + #Z n ) ) / ( 1 + 1 ) ) ) ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A2 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( 0 + 1 ) .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= ( f . g1 ) * ( f . g2 ) .= ( f . g1 ) * ( f . g2 ) .= ( f . g1 ) * ( f . g2 ) ; ( M * F-4 ) . n = M . ( F( F . n ) ) .= M . ( ( ( canFS Omega ) . n ) ) .= M . ( ( canFS Omega ) . n ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L1 + ( the carrier of L2 ) ; pred a , b , c , x , y , c , x , y , c , x , y , y , z , x , y , z ; ( the PartFunc of s ) . n <= ( the PartFunc of s ) . n * s . n & ( the Sorts of s ) . n <= ( the Sorts of s ) . n ; attr - 1 <= r & r <= 1 implies ( arccot * ( arccot * ( arccot * ( arccot * ( arccot * ( arccot * f ) ) ) ) ) `| Z ) = - 1 ; s in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & n < len p + 1 } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = x2 - |[ y2 , y2 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = x2 - y2 ; attr m is nonnegative means : Def4 : F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( G . z ) ) = len ( ( ( G . ( x , y ) ) + ( G . ( y , z ) ) ) .= len ( G . ( x , y ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W3 /\ W3 and v in W2 /\ W3 ; given F being finite FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum ( F ) = k ; 0 = 1 * 'not' 1- ( 1 * uon ) iff 1 = ( ( 1 - ( - 1 ) ) * ( - ( 1 - ( - 1 ) ) * ( - ( 1 - ( 1 - ( 1 - ( 1 - 0 ) ) * ( - ( 1 - 0 ) ) * ( - ( 1 - 0 ) ) * ( - 1 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> Boolean for non empty _ of L , ( ( let L ) | ( D ) ) \hbox \hbox { $ ( ( ( \rm _ 2 ) | D ) ) | ( D ) is Boolean & ( ( _ 2 ) | D ) | D is Boolean ; "/\" ( BF , L ) = Top B .= Top S .= "/\" ( I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - 2 * |[ a , c ]| - ( 2 * r1 - 2 * |[ b , c ]| ) = 0. TOP-REAL 2 - 2 * |[ b , c ]| ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - 1 ) ) * ( ( - ( K , n , 1 ) ) * ( 1 , 1 ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in < t and x = [ x1 , x2 ] and [ x1 , x2 ] in < s and [ x2 , x3 ] in dom f ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M7 ) ) | n ) . n consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 ; for S , T being non empty RelStr , d being Function of T , S st T is complete holds d is directed-sups-preserving iff d is monotone & d is monotone [ a + 0 , b + i ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a + 0 , b + i ] in [: the carrier of F_Complex , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( <* x *> |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( 1 , 1 ) , ( GoB h ) * ( 1 , 1 ) ) & I <= width GoB ( ( GoB h ) * ( 1 , 1 ) ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def4 : A1 is linearly-independent & A2 misses ( the carrier of A1 ) & ( for x being Element of A1 holds x in ( the carrier of A1 ) /\ ( the carrier of A2 ) ) implies ( x in ( the carrier of A1 ) /\ ( the carrier of A2 ) ) ; func A -carrier of C -> set equals union { A . s where s is Element of R : s in C & s in C } ; dom ( Line ( v , i + 1 ) (#) ( ( Line ( p , m ) ) * ( Line ( p , 1 ) ) ) ) = dom ( F ^ <* p . m *> ) ; cluster [ x , 4 ] -> [ x , 4 ] , [ x , 4 ] , [ x , 4 ] , [ x , 5 ] ] -> reduces x , 4 & [ x , 5 ] in dom R ; E , { All ( x2 , x1 ( ) ) } |= All ( x2 , x2 ( ) ) => ( x2 ( ) ) '&' ( x3 ( ) ) '&' ( x3 ( ) ) '&' ( x3 ( ) ) '&' ( x3 ( ) ) '&' ( x3 ( ) ) ) ; F .: ( id ( X , g ) ) . x = F . ( id ( X , g ) . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) + ( h . m ) - ( h . m ) ; cell ( G , ( X -' 1 , Y ) , ( t + 1 ) ) \ ( ( t + 1 ) - ( t + 1 ) ) meets ( ( L~ f ) \ ( L~ f ) ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= card I .= card I + card J + card J + card J + card J + 3 .= card I + card J + card J + 3 .= card I + card J + card J + 3 ; sqrt ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y = a . x0 and x0 in g .: { x0 } and x0 in { x0 } ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ dom ( chi ( A , C ) ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= dom ( ( r1 (#) chi ( A , C ) ) | A ) .= A ; d-7 . [ y , z ] = ( ( y - z ) * ( z - w ) ) * ( y - w ) .= ( ( y - z ) * z ) * ( z - w ) ; attr i being Nat means : Def4 : C . i = A . i /\ B . i holds L~ C c= ( L~ C ) /\ ( L~ C ) ; Suppose x0 in dom f and f is continuous and f is_differentiable_in x0 and ( for x st x in dom f holds f . x <> 0 ) implies f is_differentiable_in x0 & for x st x in dom f holds f . x = - f . x ) & for x st x in dom f holds f . x = - f . x ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q implies A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| + |. y2 - x2 .| func {} -> /. Nat means : Def4 : a in it & for b being Ordinal st a in it holds it . b c= b ; [ a1 , a2 , a3 ] in ( the carrier of A ) /\ ( the carrier of A ) & [ a1 , a2 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - x0 .|| < ( e / ( ||. x .|| + ||. x .|| ) ) * ||. x - x0 .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Z & z in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( { x } ) , sup ( compactbelow [ s , t ] ) ] .= [ sup ( compactbelow s ) , sup ( compactbelow t ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in II and [ f . i , f . j ] in II and [ i , j ] in II ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e39 being Element of the affine of X such that c9 , a9 // a9 , e and a9 <> c9 & c9 <> e & e <> e & e <> e & e <> x & e <> x & e <> x & e <> x & e <> x & e <> x & e <> x & e <> x & e <> x & e <> x & e <> x ; set U2 = I \! \mathop { \vert I . m .| , U2 = I \! \mathop { \vert I . m .| } ; |. q2 .| ^2 = ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + |. q2 .| ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y iff x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( ( the charact of U1 ) * ( the charact of U1 ) ) ; dom ( h | X ) = dom h /\ X .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( ( h | X ) | X ) .= dom ( h | X ) ; for N1 , N2 being Element of G holds dom ( h . K1 ) = N & rng ( h . K1 ) = N & rng ( h . K1 ) c= N & rng ( h . K1 ) c= N ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) < - 1 or q `2 >= - 1 & - ( q `1 ) >= - 1 & - ( q `1 ) >= - 1 & - ( q `1 ) >= - 1 & - ( q `1 ) >= - 1 ; attr r1 = f & r2 = f & for x st x in dom f holds r1 * f . x = ( f . x ) * ( f . x ) & ( f . x ) * ( f . x ) = ( f . x ) * ( f . x ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( ( vseq . m ) (#) ( vseq . m ) ) . x ; attr a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( c , a , b ) = 0 ; consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s and s < p2 ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |. p .| ) ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 ^ q1 = p1 ^ q1 and len q1 = len q1 and len q1 = len q1 and len q1 = len q1 and len q1 = len q1 and len q1 = len q1 + 1 and len q1 = len q1 + 1 ; ( the _ of A ) . ( r1 , r2 , s1 , s2 , s1 , s2 , s2 , s2 , t2 ) = ( s2 * s1 ) * ( s2 * s2 ) .= ( s2 * s1 ) * s2 .= ( s2 * s1 ) * s2 ; ( ex w being Real st ( for A being Subset of TOP-REAL 2 st A = proj2 .: ( A /\ holds w is non empty ) ) & ( for B being Subset of TOP-REAL 2 st B = proj2 .: A holds B is non empty ) & ( for B being Subset of TOP-REAL 2 st B = B holds B is non empty or B is non empty ) implies B is non empty s , ( ( k + 1 ) |= H1 , H2 ) iff s |= for k being Nat holds s |= ( H1 , k ) iff s |= ( H2 , k ) ) & s |= ( H2 , k ) len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z `1 >= y holds z `1 >= x `1 & z `2 >= y `1 ; LSeg ( UMP D , |[ ( W-bound D ) + ( W-bound D ) / 2 , ( S-bound D ) + ( S-bound D ) / 2 ) ) /\ D = { UMP D } /\ D .= { UMP D } ; lim ( ( ( f `| N ) / g ) /* b ) = lim ( ( f `| N ) / g ) .= ( ( f `| N ) / g ) . x0 .= ( ( f `| N ) / g ) . x0 ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /* seq ) . k .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & a in P holds a = b Z c= dom ( ( ( - 1 ) (#) f ) `| Z ) /\ ( dom ( ( - 1 ) (#) f ) `| Z ) & Z = dom ( ( - 1 ) (#) f ) /\ dom f ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + j & j = len l + 1 & z = l . i & y = ( l ^ <* x *> ) . j ; for u , v being VECTOR of V , r being Real st 0 < r & u in mid N & v in c= c= len ( - r ) holds r * u + ( - r ) * v in c= c= c= c= c= c= - N A , Int ( A ) , Cl ( A ) , Cl ( Int ( A ) , Cl ( A ) ) / ( Cl ( A ) , Cl ( A ) ) / ( Cl ( A ) , Cl ( A ) ) / ( Cl ( A ) , Cl ( A ) ) / ( Cl ( A ) , Cl ( A ) ) / ( Cl ( A ) , Cl ( A ) ) / ( Cl ( A ) ) ; - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + u .= - ( v + u ) + u .= - v + u ; Exec ( a := b , s ) . IC SCM = ( Exec ( a := b , s ) ) . IC SCM .= Exec ( ( a := b , s ) , s ) . IC SCM .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= ( ( a := b ) , s ) . IC SCM ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty directed Subset of S1 , D being non empty directed Subset of S2 , x being Element of S1 , y being Element of S2 holds cos ( x ) is directed iff x is directed & cos ( y ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & for z st z in X & z <> x holds z = x or z = y or z = x or z = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) :- Cage ( C , n ) ) implies ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) <= ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) for T , T being DecoratedTree , p , q being Element of dom T st p >= q & ( T is with with dom p implies p in T ) & q in T implies p in T [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides ( k gcd n ) & n divides ( k gcd n ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) implies ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " = F " * F " & F " * F = F " * F " & F " * F = F " * F " * F " consider C being finite Subset of V such that C c= A and card C = n and the \mathbb of V = Lin ( BM \/ C ) and C is linearly-independent and C is linearly-independent and C is linearly-independent and C is linearly-independent ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) ; - sqrt ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) .= - 1 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 0 = p2 & f . 1 = p4 ; attr f is partial x0 means : Def4 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 , u0 ) is_differentiable_in ( proj ( 2 , 3 ) ) . ( u0 + 1 ) & SVF1 ( 2 , f , u0 ) . u = ( proj ( 2 , 3 ) ) . u ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( len G , 1 ) `2 & s < G * ( 1 , 1 ) `2 & G * ( len G , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is FinSequence of TOP-REAL 2 and 1 <= t and t <= len G and G * ( t , width G ) `2 >= ( GoB f ) * ( t , 1 ) `2 and G * ( t , 1 ) `2 <= ( GoB f ) * ( t , 1 ) `2 ; attr i in dom G means : Def4 : r * ( f * reproj ( G , i ) ) = r * ( f * reproj ( G , i ) ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 and c = c2 + c2 and c1 = c2 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) = the carrier of X . k2 .= ( C ^ Y ) . ( k2 + 1 ) .= C . ( k2 + 1 ) .= C . ( k2 + 1 ) .= C . ( k2 + 1 ) .= C . ( k2 + 1 ) ; attr M1 = len M2 means : Def4 : width M1 = width M2 & width M1 = width M2 & width M2 = width M2 & width M1 = width M2 & width M2 = width M2 & width M1 = width M2 & width M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom f & f . ( y - x0 ) < g2 & g2 in dom f } c= dom f /\ dom g ; assume x < ( - b + sqrt ( let a , b , c ) ) / 2 or x > ( - b - sqrt ( a , b , c ) ) / 2 ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i ; for i , j st [ i , j ] in Indices M3 + M1 holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i divides len f holds i divides f /. i & i divides len f & i divides len f implies i divides f /. i & i divides f /. ( i + 1 ) assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\bf X & a c= c holds b c= c } ; b2 * q2 + ( b3 * q3 ) + ( - ( b2 * q2 ) + ( b1 * q2 ) ) = 0. TOP-REAL n + ( - ( b2 * q2 ) ) .= ( - ( b2 * q2 ) ) + ( - ( b2 * q2 ) ) .= ( - ( b2 * q2 ) ) + ( - ( b2 * q2 ) ) ; Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & A c= D & B c= D & B c= D } ; attr seq is summable means : Def4 : seq is summable & seq is summable & ( for n holds seq . n = Sum ( seq ^\ n ) ) & ( for n holds seq . n = Sum ( seq ^\ n ) ) & ( for n holds seq . n = Sum ( seq ^\ n ) ) ; dom ( ( ( cn max ( 1 - cn ) ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; |[ X , Z ]| is full full non empty SubRelStr of ( [#] Z ) |^ the carrier of Z & [ X , Y ] is full full SubRelStr of ( [#] Z ) |^ the carrier of Z ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( i , j ) `2 <= G * ( i , j ) `2 & G * ( i , j ) `2 <= G * ( i , j ) `2 ; synonym m1 c= m2 means : Def4 : for p being set st p in P holds the non empty Element of ( m + 1 ) -tuples_on NAT , x being set st x in P & the InternalRel of ( m + 1 ) \rm \hbox \hbox \hbox { - } Seg ( m + 1 ) = ( m + 1 ) -tuples_on NAT ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) ; attr IT is in the carrier of K means : Def4 : the multMagma of IT , the multF of IT #) & the multF of IT , the multF of IT #) = [ the carrier of IT , the carrier of IT ] & the multF of IT , the multF of IT #) = the multF of IT ; sequence ( a , b , 1 ) + sequence ( c , d ) = b + the carrier of L .= b + the carrier of L .= b + d .= b + d .= b + d ; cluster ( + _ ) -> $ -valued for Element of INT , i , j be Element of INT holds ( i , j ) = ( i , j ) --> ( i , j ) + ( j , i ) = ( i , j ) --> ( i , j ) + ( j , i ) --> ( j , i ) ; - s2 * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - s2 * p2 ) ) ) = ( - r2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 ) ) ) * p2 ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being Subset of S st V in the topology of S holds V meets V and for V being open Subset of S st V in V holds V meets V ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) . k ) = ( T. ( q11 , w ) ) . k and T-7 . ( ( q11 , w ) . k ) = ( T-7 . ( q11 , w ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) + ( a |^ ( n + 1 ) ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , H ) ) ) & M , v1 |= All ( x. 0 , ( x. 0 ) '&' ( ( x. 4 , H ) / ( x. 0 , H ) ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 and for x1 st x1 in l holds f . x1 - f . x0 < f . x0 and for x1 st x1 in l holds f . x1 - f . x0 < f . x1 ; for G1 being _Graph , W being Walk of G1 , e being set , G being Walk of G1 , v being Vertex of G2 st not e in W & v in W holds W is_Walk_from ( v ) , ( W ) . e , ( W ) . ( e ) , ( W ) . ( e ) , ( W ) . ( e ) , ( W ) . ( e ) , ( W ) . ( e ) ; c9 is not empty iff ( for y st y is not empty & y is not empty or not ( ex x st x is not empty & y is not empty & not ( x is not empty or y is not empty ) & not ( x is not empty or y is not empty ) & not ( x is not empty or y is not empty ) ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] c= [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] c= [: Seg width GoB f :] ; for G1 , G2 , G3 being finite Subgroup of O , O being stable Subgroup of O st G1 is stable & G2 is stable & G1 is stable & G2 is stable holds G1 * G2 is stable & G1 * ( G2 * G1 ) = G1 * ( G2 * G2 ) UsedIntLoc ( int ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , - 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 , 1 , for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ] holds Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] implies Q [ f1 ^ f2 ] ( p `1 ) ^2 / ( 1 + ( p `1 ) ^2 ) = ( q `1 ) ^2 / ( 1 + ( q `1 ) ^2 ) .= ( q `1 ) ^2 / ( 1 + ( q `1 ) ^2 ) ; for x1 , x2 , x3 be Element of REAL n holds |( ( x1 - x2 ) , x1 - x2 )| = |( x1 , x1 - x2 )| + |( x3 , x2 - x3 )| + |( x3 , x2 - x3 )| + |. x2 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x2 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| < + |. x1 - x2 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| + |. x3 - x3 .| for x st x in dom ( ( F | A ) | A ) holds ( ( ( F | A ) ) | A ) . ( - x ) = - ( ( ( F | A ) | A ) . x ) for T being non empty TopSpace , P being Subset-Family of T , B being Basis of T st P c= the topology of T for x being Point of T st B c= P & x in P holds P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( ( a . x ) 'or' b . x ) 'or' c . x .= TRUE '&' TRUE .= TRUE ; for e being set st e in A ex X1 being Subset of X st e = [: X1 , Y1 :] & ex Y1 being Subset of X st e = [: Y1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f being Function of [: S , S1 :] , S1 . i st f = H . i & F . i = f | ( i + 1 ) holds F . i = f | ( i + 1 ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ( ) ) , J ( ) ) . v = Valid ( VERUM ( Al ( ) ) , J ( ) ) . w card D = card D1 + card D2 - card { i , j } .= ( c1 + c2 ) - ( c1 + c2 ) + ( c2 + c1 ) - ( c1 + c2 ) .= 2 * c1 + ( c2 + c2 ) - ( c1 + c2 ) .= 2 * c1 + ( c2 + c1 ) - ( c1 + c2 ) .= 2 * c2 + 1 - 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( 0 + 1 ) ) ) . 0 .= ( 0 .--> ( 0 .--> 1 ) ) . 0 .= ( 0 .--> 1 ) . 0 .= ( 0 .--> 1 ) . 0 .= 0 ; len f /. ( len f -' 1 ) + 1 = len f -' 1 + 1 .= len f - 1 + 1 .= len f - 1 + 1 .= len f - 1 + 1 .= len f - 1 + 1 .= len f - 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k <= a holds a <= b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 or a = b + b-2 ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st i in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= len f lim ( ( curry ( P+* ( k , n + 1 ) ) # x ) = lim ( ( curry ( P+* ( k , n ) ) # x ) ) + lim ( ( curry ( F+* ( k , n ) ) # x ) ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 & [ f . 0 , f . 2 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A ( ) , Y is Subset of B ( ) st R in FF & Y in FF holds ( Intersect ( R , X ) ) = Intersect ( G , X ) holds ( Intersect ( R , X ) ) = Intersect ( G , X ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on N and a on M and c on N and p on N and p on M and a on N and p on N and p on M and c on N and p on N and p on M and p on N and p on N and p on M and p on N and p on N and p on N and p on N and p on N and p on M and p on N and p on N and p on N and p on N and p on N and p on N and p on N and p on N and p on M and p on N and p on N and p on M and p on N and p on N and p on N and p on N and p on N and p on M and p on N and p on M and p on N and p on M and p on M Suppose T is \hbox { T _ 4 } and ex F being Subset-Family of T st F is closed & for n being Nat holds F . n is finite-ind & ( for m being Nat st m <= n holds F . m <= 0 ) and ( for n being Nat st n <= m holds F . n <= 0 ) implies T is finite-ind ) ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - g2 , r + g2 .[ holds |. f . g1 - f . g2 .| <= ( g1 - f ) . g2 - f . g2 .| ( ( - ( - ( x + y ) ) ) * ( z1 + z2 ) ) = ( ( - ( x + y ) ) * ( z2 + z2 ) ) * ( z2 + z2 ) .= ( ( - ( x + y ) ) * ( z2 + z2 ) ) * ( z2 + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b + a ) to_power ( n + 1 ) .= <* ( ( n + 1 ) to_power ( n + 1 ) ) * ( b |^ ( n + 1 ) ) .= ( ( n + 1 ) to_power ( n + 1 ) ) to_power ( n + 1 ) .= ( ( n + 1 ) to_power ( n + 1 ) ) to_power ( n + 1 ) ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & for n holds f . n = R ( n , f . n ) ; func f * F -> FinSequence of V means : Def4 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) * ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 } \/ { x4 , x5 , x5 } .= { x1 , x2 , x3 } \/ { x4 , x5 , x5 } .= { x1 , x2 } \/ { x3 } .= { x1 , x2 } \/ { x3 , x4 , x5 } ; for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o . ( n + 1 ) in InnerVertices S ( x , n ) & o . ( n + 1 ) in InnerVertices S ( x , n ) ex S1 being Element of QC-WFF ( Al ( ) ) st SubP ( P , l , e ) = S1 & ( for x being Element of CQC-WFF ( Al ( ) ) holds ( x is Element of D ( ) ) & ( x is Element of D ( ) ) implies S [ x ] ) & ( x is Element of D ( ) implies S [ x ] ) consider P being FinSequence of GL2 such that p7 = Product P and for i being Element of dom t ex t9 being Element of the carrier of G st P . i = t9 & t . i = t . i & t . i = t . i & t . i = t . i & t . i = t . i & t . i = t . i ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T2 being Basis of T2 st the carrier of T1 = the carrier of T2 & P = the topology of T2 & P = the topology of T2 holds P = P & P = the topology of T1 & P = the topology of T2 implies P is Basis of T1 Suppose f is PartFunc of REAL , REAL . u . 3 Then r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 & partdiff ( r (#) pdiff1 ( f , 3 ) , u , 3 ) = r (#) pdiff1 ( f , u ) . 3 & partdiff ( r (#) pdiff1 ( f , 3 ) , u , 3 ) = r (#) pdiff1 ( f , u , 3 ) . 3 ; defpred P [ Nat ] means for F , G being FinSequence of bool ( Seg $1 ) , s be Permutation of ( Seg $1 ) st len F = $1 & rng s = rng F & for s being Permutation of ( Seg $1 ) st s = F * s holds Sum ( F ) = Sum ( G ) * s ; ex j st 1 <= j & j < width GoB f & ( ( GoB f ) * ( 1 , j ) ) `2 <= s & s * ( 1 , j ) `2 <= ( ( GoB f ) * ( 1 , j ) ) `2 & s * ( 1 , j ) `2 <= ( ( GoB f ) * ( 1 , j ) ) `2 ; defpred U [ set , set ] means ex F-23 being Subset-Family of T st $2 = F-23 & F is open & union F-23 is open & for n being Nat holds F . n is open & F . n is discrete & F . n is discrete & F . n is discrete & F . n is discrete ; for p4 being Point of TOP-REAL 2 st LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 holds LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 f in the carrier of D ( ) & for g st g <> f . y holds x = g implies for y st y in D ( ) holds g . y = y iff f . y = f . y ) & for x st x in D ( ) holds f . x = f . ( All ( x , H ) . x ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( - 1 ) * ( |. 8 .| ) ) / ( |. 8 .| ) ) >= 8 & ( ( - 1 ) * ( |. 8 .| ) ) / ( |. 8 .| ) >= 0 & ( ( - 1 ) * ( |. 8 .| ) ) / ( |. 8 .| ) >= 0 ; assume for d7 being Element of NAT st d7 <= ( n -`1 ) holds s1 . ( ( n -\hbox { t } ) . ( n + 1 ) ) = s2 . ( ( n -\hbox { t } ) . ( n + 1 ) ) & s1 . ( ( n + 1 ) + 1 ) = s2 . ( ( n + 1 ) + 1 ) ; Suppose s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of E st { e } = Ball ( s , r ) /\ Sphere ( x , r ) and not e in Sphere ( s , t ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s st 0 < s ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. f /. x1 - f /. x0 .| < r and |. f /. x1 - f /. x0 .| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | x ) | ( x | x ) ) | ( p | ( x | x ) ) .= ( ( x | x ) | ( x | x ) ) | ( x | x ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( cos . x ) = ( 4 * sin . x + cos . x ) * sin . x + cos . x * cos . x ) and cos . x = ( 4 * sin . x + cos . x ) ^2 + cos . x * cos . x ; assume that i in dom A and len A > 1 and B c= 1 and for i st i in dom A & i < len B holds A * ( i , j ) = ( A * ( i , j ) ) * ( B * ( i , j ) ) and A * ( i , j ) = ( A * ( i , j ) ) * ( B * ( i , j ) ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* n *> or i = <* n *> & i <> n & i <> n & i <> n implies h . i = ( 1. F_Complex ) . ( n + i ) & h . i = ( 1. F_Complex F_Complex ) . ( n + i ) ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( c2 'imp' c2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' b2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( b2 '&' c2 ) ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 assume that for x holds f . x = ( ( ( - cot * cot ) `| Z ) . x ) and for x st x in dom cot holds ( ( - cot * cot ) `| Z ) . x = cos . ( x- x ) and ( - cot * cot ) . x = cos . ( x- x ) and ( - cot * cot ) . x = cos . ( x- x ) ; consider R8 , I8 be Real such that R8 = Integral ( M , Re F ) and I8 = Integral ( M , Im F ) and Integral ( M , Im F ) = Integral ( M , Im F ) and Integral ( M , Im F ) = Integral ( M , Im F ) + Integral ( M , Im F ) ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. q-x - f /. x .|| < r holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } or x in { x1 , x2 , x3 } or x in { x1 , x2 , x3 } or x in { x3 } or x in { x4 , x5 , x5 } ; G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j f1 * p = p .= ( ( the Arity of S1 ) * the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> DecoratedTree means : Def4 : q in it iff ex p , q st p in P & q in T & p = q ^ r & p in T1 & q in T1 & p = r ^ q ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= FV . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= FV . ( k + 1 -' 1 ) .= F|^ ( p . k , k + 1 -' 1 ) .= FV . ( k + 1 -' 1 ) .= FV . k ; for A , B , C being Matrix of len C st len B = len C & width B = width C & len B = width C & len B = width C & len B > 0 & len C > 0 & len A > 0 & len B > 0 & len C > 0 & len A > 0 & len B > 0 & len A = len B & width B = width C holds A * B = C * ( B * C ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of CP ) ~ and y in ( the carrier of CP ) and x in ( the carrier of CP ) and y in ( the carrier of CP ) and z = [ x , y ] ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( for k st k in $1 holds f . k = ( ( VAL g ) . k ) '&' ( ( VAL g ) . k ) '&' ( ( VAL g ) . k ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that cn < 1 and q `1 > 0 and ( q `2 ) > 0 and ( q `2 <= 1 & q `2 <= 1 or q `1 >= 0 & q `1 = 1 & q `1 = 1 or q `1 = 1 & q `1 = 1 or q `1 = 1 & q `2 = 1 or q `1 = 1 & q `1 = 1 & q `2 = 1 ; for M being non empty TopSpace , x being Point of M , f being Point of M st x = x `1 holds ex x being Point of M st for n being Element of NAT holds f . n = Ball ( x `1 , 1 / ( n + 1 ) ) & ex f being sequence of M st f is sequence of M & f is one-to-one defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = ( ( f1 - f2 ) `| Z ) . x - ( ( f1 - f2 ) `| Z ) . x = ( ( f1 - f2 ) `| Z ) . x - ( f2 - g2 ) `| Z ; defpred P1 [ Nat , Point of CNS ] means ( $1 in Y & $2 in Y & ||. $2 - x0 .|| < r & $2 - x0 .|| < r & ||. $2 - x0 .|| < r ) & ||. f /. $2 - f /. x0 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= g . ( i -' 1 ) .= ( g . i ) . i ; ( 1 / 2 * n0 + 2 * ( n0 + 2 * ( n0 + 2 ) ) ) = ( 1 / 2 * ( ( n + 2 ) * ( n + 2 ) ) ) * ( ( n + 2 ) * ( n + 2 ) ) .= 1 / 2 * ( n + 2 ) * ( n + 2 ) .= 1 / 2 * ( n + 2 ) * ( n + 2 ) .= 1 / 2 * ( n + 2 ) ; defpred P [ Nat ] means for G being non empty finite strict strict finite RelStr , F being Function of G , F st G is Let G being non empty finite non empty finite RelStr st G is LSeg & F is the carrier of G holds the RelStr of F = ( the RelStr of G ) \/ ( the RelStr of F ) & the RelStr of F = ( the RelStr of G ) \/ ( the RelStr of F ) ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and for i st 1 <= i & i <= len f holds not f . i in Ball ( f , r ) and not f . ( m + 1 ) in Ball ( u , r ) and not f . m in Ball ( u , r ) and not f . m in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos * cos ) ) . $1 = ( Partial_Sums ( cos * cos ) ) . $1 - ( cos * cos ) . $1 & ( cos * cos ) . $1 = ( Partial_Sums ( cos * cos ) ) . $1 - ( cos * cos ) . $1 ; for x being Element of product F holds x is FinSequence of G & ( for i being set st i in dom F holds x . i = I . i ) & for i being set st i in dom F holds x . i in ( the carrier of G ) . i ) & for i being set st i in dom F holds F . i = ( the carrier of G ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( x * x ) |^ n * x " .= ( x * x ) |^ n * x " .= ( x * x ) |^ n * x " .= ( x * x ) |^ n * x " .= ( x * x ) |^ n * x " .= ( x * x ) |^ n ; DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) ) = DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= dom ( f1 + f2 ) /\ dom ( f2 + f3 ) and for g st g in ]. x0 , x0 + r .[ /\ dom ( f2 + f3 ) holds ( f1 + f2 ) . g <= ( f1 + f2 ) . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and ( for x st x in X /\ dom f2 holds f2 . x = ( f1 + f2 ) | X ) and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f2 - g2 ) | X is continuous and ( f1 + f2 ) | X is continuous ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is directed & for x being Element of L st x in X holds x is directed & x is directed & x is directed Support ( e *' A ) = { m *' p where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' A ) & ex q being Polynomial of n , L st q = p & q = ( m *' A ) . ( m *' q ) & p . ( m + 1 ) = p . ( m + 1 ) ; ( f1 - f2 ) /* s1 = lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f2 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f2 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f2 /* s1 ) - ( f2 /* s1 ) ) .= lim ( f2 /* s1 ) ; ex p1 being Element of QC-WFF ( A ) st F . p1 = g . p1 & for g being Function of [: [: D ( ) , D ( ) :] , D ( ) ) st P [ g , p1 , g ] holds P [ g , p1 , g ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. ( len f -' 1 ) *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= f /. ( j + 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) .= ( ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) .= ( ( ( p ^ q ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k ) ) . ( len p + k ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k len mid ( ( ( D2 , D1 ) + 1 , indx ( D2 , D1 , j1 ) ) + 1 , indx ( D2 , D1 , j1 ) ) = indx ( D2 , D1 , j1 ) + 1 - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 ; x * y * z = MF . ( ( y * z ) * ( z * z ) ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * y ) * ( z * z ) ; v . ( <* x , y *> ) - ( <* x0 , y *> ) . i = partdiff ( v , ( x - y ) ) * ( ( proj ( 1 , 1 ) ) . ( ( proj ( 1 , 1 ) ) . ( x - x0 ) ) + ( ( proj ( 1 , 1 ) ) . ( x - x0 ) ) * ( ( proj ( 1 , 1 ) ) . ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) - 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 Sum ( L * F ) = Sum ( L * ( F1 ^ F2 ) ) .= Sum ( L * F1 ) + Sum ( L * F2 ) .= Sum ( L * F1 ) + Sum ( L * F2 ) .= Sum ( L * F1 ) + Sum ( L * F2 ) .= Sum ( L * F1 ) + Sum ( L * F2 ) .= Sum ( L * F1 ) + Sum ( L * F2 ) .= Sum ( L * F1 ) ; ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of X st Y1 is non empty & ( for Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y holds |. ( the carrier of X ) . Y1 - ( the carrier of X ) . Y2 .| < r ) ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) ; ( ( cos . x ) ^2 ) ^2 = ( ( cos . x ) ^2 ) ^2 .= ( ( 1 / 2 ) ^2 ) ^2 .= ( ( 1 / 2 ) ^2 ) ^2 .= ( ( 1 / 2 ) ^2 ) ^2 .= ( ( 1 / 2 ) ^2 ) ^2 .= ( ( 1 / 2 ) ^2 ) ^2 .= ( 1 / 2 ) ^2 .= ( 1 / 2 ) ^2 ; ( - b + sqrt ( Let a , b , c ) ) / 2 * a < 0 & ( - b + sqrt ( a , b , c ) ) / 2 * a < 0 & ( - b + sqrt ( a , b , c ) ) / 2 * a < 0 or - b < - b & - b < c ; ex_inf_of uparrow "\/" ( X , L ) /\ C & ex_sup_of ( X , L ) /\ C , L & "\/" ( ( subrelstr X ) /\ C ) = "/\" ( ( subrelstr X ) /\ C ) & "\/" ( ( subrelstr X ) /\ C ) = "/\" ( ( subrelstr X ) /\ C ) & "\/" ( ( subrelstr X ) /\ C ) = "/\" ( ( uparrow X ) /\ C ) ; ( for j being Element of NAT st j = i holds ( j = i implies j = i ) implies ( j = i implies j = i ) ) & ( for j being Element of NAT st j in i holds j = i implies j = i ) implies ( j = i implies j = i ) )