thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i , j ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is onto ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is .= Y ; assume x in I ; q is as of 0 ; assume c in x ; as Real ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is finite ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is \setminus ; Q halts_on s ; x in \in that x in \in that x ; M < m + 1 ; T2 is open ; z in b seq seq ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , b be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r , s ; let E be Ordinal ; o : o : o1 , o2 are_collinear ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , M be Matrix of REAL ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a\vert <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Matrix of REAL ; s is trivial non empty ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , a be Element of T ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U2 , U1 , U2 , U2 , U2 , U2 ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= jj & jj <= width G ; set A = \mathclose { \rm c } ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is non empty set ; assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; X0 be set ; c = sup N ; R is connected ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; Element of Y ; let f be ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v in v + dom ex X st X in G ; - y in I ; let A be non empty set , B be set ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be l countable set ; rng f c= NAT * ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let Is , I , J ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , X be Subset of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is connected hhfor ; assume f is \llangle bbrrr-r) ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k1 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= width G ; f | A is compact ; f . x - a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cs in X ; q2 c= C1 & q2 in C2 ; a2 < c2 & c2 < c1 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 , s4 = s4 , P4 = s4 ; let V ; let x , y be element ; Element of T ; assume a in rng F ; x in dom T ` ; let S be as as as of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y are_: zero ; R8 in X ; let a , b be Real , x be Element of REAL ; let a be Object of C ; let x be Vertex of G ; let o be object of C , a be Object of C ; r '&' q = P \lbrack l , r .] ; let i , j be Nat ; let s be State of A , a be Element of A ; s4 . n = N ; set y = ( x `1 ) ^2 ; NAT in dom g & NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; not V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A is dense and A is dense ; |. f . x .| <= r ; Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xx c= Z1 & xx c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re seq is convergent & lim ( seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , a be Int-Location ; assume r2 > x0 & x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n in dom g1 ; n in dom g1 & n in dom g2 ; k + 1 in dom f ; the still of S is finite ; assume that x1 <> x2 and x2 <> x3 and x3 <> x4 ; v3 in V1 & v2 in V1 ; not [ b `1 , b `2 ] in T ; i-35 + 1 = i ; T c= and T c= and T c= T ; ( l `1 ) ^2 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ^2 ; AA is_integrable_on M & AA is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; cC misses [: V , V :] ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for set ; assume c2 = b2 or c2 = b3 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is Cauchy and vseq is Cauchy ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 or p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete reflexive non empty antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one , full , full ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be non empty finite Instruction of S , S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact ; assume x1 in REAL & x2 in REAL & x1 in REAL ; p1 = K1 & p2 = K1 & p3 = 0. TOP-REAL 2 ; M . k = <*> REAL ; phi . 0 in rng phi ; thesis MMInt A is closed ; assume z0 <> 0. L & z0 <> 0. L ; n < N7 . k ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , R :] is stable ; set cR = Vertices R , cR = Vertices R ; p0 c= P4 & p1 c= P4 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x - y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( ) ; k in dom ( q | Seg n ) ; p is holds p is FinSequence of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 & i2 = 0 ; j2 + 1 <= i2 & j2 + 1 <= width G ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for for } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & rng S c= dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non void non empty non void holds S is { 0 } -\rm \subseteq the carrier of S ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x be Element of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= V1 & B-15 c= V1 ; assume I is_halting_on s , P ; U2 = U2 & U2 = U2 implies U2 is open M /. 1 = z /. 1 ; x9 = x9 & y9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | X ) . x <= ( f | X ) . x ; let l be Element of L ; x in dom ( F | D ) ; let i be Element of NAT ; r8 is COMPLEX -valued & r8 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in card M ; assume that X in U and Y in U ; let D be empty Subset-Family of Omega ; set r = Seg ( k + 1 ) ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite < len V , A be Subset of V ; A * B on B , A ; f-3 = NAT --> 0 .= fg ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT * ( X \ Y ) ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) * PI < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in IF ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 div m , m = x0 mod m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! \mathop { phi } = 1 ; [ y , d ] in [: F-8 , F-8 :] ; let f be Function of X , Y ; set A2 = ( B \/ C ) ` ; s1 , s2 are_/ 2 implies s1 , s2 are_/ 2 j1 -' 1 = 0 & j2 -' 1 = j2 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i divides n ; set g = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ^2 & ( p1 `2 ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len G ; 1 <= i1 -' 1 & i1 + 1 <= len G ; i + i2 <= len h ; x = W-min ( P ) & x in P ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 2 ; set H = h . g , g = h . x , h = h . y , h = h . z , f = h . x , g = h . y , h card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 ; assume x in ( X0 /\ X2 ) ; ||. h .|| < d1 & ||. h .|| < d ; not x in the carrier of f & x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k -' l = k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \langle s *> ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive RelStr , a be Element of L ; S-20 is x -f1 -basis i ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z ) ; P [ len ( F | n ) ] ; assume InsCode ( i ) = 8 or InsCode ( i ) = 7 ; the zero of M = 0 & the carrier of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> [#] for Element of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q19 /\ Q29 = {} ; k be Nat ; q " is Element of X & q " is Element of Y ; F . t is set of empty set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root & x `2 = ( p `2 ) ; not r in ]. p , q .[ ; let R be FinSequence of REAL , x be Element of REAL ; S7 does not destroy b1 or S7 does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * ( s * a ) = ss * a ; let x be FinSequence of NAT , n be Element of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s .= IC s ; H + G = F- ( GG ) ; Cx1 . x = x2 & Cx1 . x = y2 ; f1 = f .= f2 .= f2 * f1 .= f2 * f1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 ; IF is reflexive & IF is reflexive implies IF is reflexive Iy is antisymmetric implies [: Iy , Iy :] is antisymmetric upper_bound rng H1 = e & upper_bound rng H1 = e ; x = ( a * ( b * a ) ) * ( b * a ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < width G ; rng s c= dom f1 & rng s c= dom f2 ; assume support a misses support b & support b misses support a ; let L be associative commutative non empty doubleLoopStr , a be Element of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed IV = IV .= IV ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined NAT -defined NAT -defined NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , ] *> -> complete for non trivial TopSpace ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; ( n - 1 ) - 1 > 0 ; assume ( 1 / 2 ) * t <= 1 ; card B = k + 1-1 ; x in union rng ( f | n ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . F . 1 ; the vertices of G = { v } & the vertices of G = { v } ; let G be } -wgraph ; e , v6 be set , v be set ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 , z1 = - z2 , z2 = - z2 , z2 = - z1 , z2 = - z2 , z1 = - z2 , z2 assume w is Element of las ( S , G ) ; set f = p |-count ( t ) , g = p |-count ( t ) , h = p |-count ( t ) , t = p |-count ( t ) , f = p |-count ( t ) , g let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let Is be Subset-Family of X , P be Subset of X ; reconsider p = p as Element of NAT ; v , w be Point of X ; let s be State of SCM+FSA , a be Int-Location ; p is FinSequence of ( the carrier of SCM ) * ; stop I ( ) c= P-12 & I ( ) c= P-12 ; set ci = f^ /. i , fi = fSet /. i , cj = fn ; w ^ t ^ t ^ <* s *> ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ t ^ w ^ t ^ w ^ t ^ w ^ W1 /\ W = W1 /\ W ` .= W1 /\ W2 ; f . j is Element of J . j ; let x , y be \rm \rm \rm \rm \hbox { - } of T ; ex d st a , b // b , d ; a <> 0 & b <> 0 ; ord x = 1 & x is positive implies x is where x is Element of NAT : x is not of a & x is not L set g2 = lim ( seq ) , g1 = lim ( seq ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . Fk1 = 0 ; ( / X ) \/ R1 = ( / X ) \/ ( id X ) ; ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; ( ( exp_R * exp_R ) `| Z ) . x > 0 ; o1 in [: X , Y :] /\ [: Y , X :] ; e , v6 be set , v be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ( F ) ) ; let J be closed Subset of R , I be non empty Subset of R ; h . p1 = f2 . O & h . O = g2 ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M .= width ( q | i ) ; the carrier of CK c= A ; dom f c= union rng ( F | n ) ; k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( an \/ R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X reconsider w = |. s1 .| as Real_Sequence ; ( 1 / m * m + r ) < p ; dom f = dom I-4 & dom IK = dom IK ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - x -> ExtReal for ExtReal ; then { d1 } c= A & A is closed ; cluster ( TOP-REAL n ) | ( [#] TOP-REAL n ) -> finite-ind ; let w1 be Element of M , a be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W2 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of ( T |^ the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , x be Element of X ; dist ( x `1 , y ) < ( r / 2 ) ; reconsider mm = m , mn = n as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 + r2 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) , g2 = q `2 ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . I8 in { x } & D2 . I8 in { x } ; cluster subcondensed -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; let n be Element of NAT , x be Element of NAT ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , a be Int-Location ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; Nx0 >= ( sqrt c ) ^2 - ( sqrt c ) ^2 ; reconsider t7 = T7 as TopSpace , T7 = T6 as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 & z2 in Q ; A |^ 0 = { <%> E } .= { <%> E } ; len W2 = len W + 2 .= len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg len s2 & i + 1 in Seg len s2 ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume p2 = E-max ( K ) & p3 = E-max ( K ) ; len G + 1 <= i1 + 1 & i1 + 1 <= len G ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster s-10 + sRRRRRRRRRRRp -> summable ; assume j in dom M1 & i in dom M2 ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xy *> ^ <* y *> ^ <* y *> \subseteq x ; a , b in { a , b } ; len p2 is Element of ( len p2 ) -tuples_on NAT ; ex x being element st x in dom R & R . x = y ; len q = len ( K (#) G ) .= len G ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` ` is Element of x & x ` is Element of X ; k = 0 & n <> k or k > n ; then X is discrete for A is closed Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the TopStruct of TOP-REAL n ; N , M be being being being being being \hbox of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M [. f , g .] = f & M | [. g , f .] = g ; ( ( L /. 1 ) `1 ) ^2 = TRUE ; dom g = dom f -tuples_on X & dom g = dom f ; mode : of G is : Let is .| ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of ( dom Subformulae p ) -tuples_on the carrier of K ; F1 . ( a1 , - a2 ) = G1 & F1 . ( a2 , - a2 ) = G1 ; redefine func Sphere ( a , b , r ) -> compact Subset of TOP-REAL 2 ; let a , b , c , d be Real ; rng s c= dom ( 1 / 2 ) & rng s c= dom ( 1 / 2 ) ; curry ( F-19 , k ) is additive ; set k2 = card dom B , k2 = card dom C , k1 = card dom C , k2 = card dom D ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as w of G ; let a , b be Element of ML , M be Matrix of n , K ; reconsider s1 = s , s2 = t as Element of SS ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng f = the carrier of T ; rng h c= union ( the carrier of J ) & rng h c= the carrier of L ; cluster All ( x , H ) -> non empty for element ; d * N1 / 2 > N1 * 1 / 2 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 , g1 = f " D2 ; dom ( p | ( Seg m ) ) = ( m + 1 ) ; 3 + - 2 <= k + - 2 & k + - 2 <= k + - 2 ; tan is_differentiable_in ( ( arccot * arccot ) `| Z ) . x ; x in rng ( f /^ ( n -' 1 ) ) ; let f , g be FinSequence of D ; cp in the carrier of S1 & cp in the carrier of S2 ; rng f " = dom f & rng f = dom f ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 & width G - 1 < width G ; assume v in rng ( S | E1 ) & u in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 in rng ( g2 | A ) ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of ( TOP-REAL 2 ) | K1 , q be Point of ( TOP-REAL 2 ) | K1 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & S7 in the carrier of C-20 ; i <= len G -' 1 & G * ( i1 , j1 ) `2 <= s ; let p be Point of ( TOP-REAL 2 ) | K1 , q be Point of ( TOP-REAL 2 ) | K1 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x = f . x1 ; set p1 = f /. i , p2 = f /. j , p3 = f /. ( i + 1 ) , p4 = f /. ( i + 1 ) , p4 = f /. ( i + 1 ) , p4 = f /. ( g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q /\ R ) .= Sp2 " ( Q /\ R ) ; ( 1 / 2 ) |^ ( n + 1 ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) & n <= card I ; CurInstr ( p1 , s1 ) = i .= ( - 1 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L2 ; reconsider z = z as Element of CompactSublatt L , x be Element of L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S ~ & [ s , I ] in S ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be subcategory , F be subFunctor of C1 , C2 ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def3 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " * ( H |^ a ) is Subgroup of H ; let A1 be /. of O , E , A2 be Element of E ; p2 , r3 , q3 is_collinear & q2 , q3 , q3 is_collinear & p1 , r2 , p3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } or x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in the carrier of ( I[01] ) ; 0 . 0 < M . E8 & E8 < M . E8 ; ^ ( c , c ) @ = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> *> for Sub| | the carrier of L is ) ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , a be Int-Location ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def3 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of X ; cluster ( x `1 ) `1 -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> of \rm \rm thesis ; set S = <* Bags n , i\mathopen *> , S = <* <* i *> *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / 2 < ( 2 * PI ) / 2 ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & len <* P *> = 1 ; set N-26 = the \subseteq of the or N-26 = the InternalRel of N ; len g: + ( x + 1 ) - 1 <= x ; a on B & b on B implies a on B reconsider rv = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len for p st p in rng f holds p = f /. n set q2 = ( N-min C ) `2 , q2 = ( E-max C ) `2 ; set S = \leq ( S1 , S2 ) `1 , T = S2 `2 ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " V & f " D meets f " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( gF ) . X & t is Element of ( F . X ) . s ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( k - 1 ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M2 ; assume that P c= Seg m and M is \HM { i , j } is Seg of n ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = p1 . i .= p1 . i ; let PA , PA , G be a_partition of Y , a be Element of Y ; pred 0 < r & r < 1 & 1 < r & r < 1 ; rng ( \mathop { a , X } ) = [#] X .= X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of Y ) ; dom ( f | u ) c= dom ( u | v ) & dom ( f | v ) = dom u ; pred n divides m & m divides n & n = m ; reconsider x = x as Point of [: I[01] , I[01] :] ; a in dom the not y0 in the still of f & not y0 in the carrier of f ; Hom ( ( a , b ) `1 , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f and f . k1 = f . k1 ; consider c , d such that dom f = c \ d and rng f c= A ; [ x , y ] in [: dom g , dom k :] ; set S1 = Let ( x , y , z ) , S2 = y , S1 = z ; l1 = m2 & l1 = i2 & l2 = j2 implies l1 = i2 & l2 = j2 x0 in dom ( u + v ) /\ dom ( v + u ) ; reconsider p = x , q = y as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 .= R^1 | B01 .= the carrier of ( TOP-REAL 2 ) | B01 ; f . p4 <= f . p1 & f . p1 in P ; ( ( F `1 ) ^2 + ( F `2 ) ^2 ) <= ( x `1 ) ^2 + ( F `2 ) ^2 ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K .= <* a *> ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] & P [ succ a ] ; reconsider s\mathclose = s/. i as w of D ; ( k -' 1 ) <= len ( ' - 1 ) ; [#] S c= [#] the TopStruct of T & [#] T c= the TopStruct of T ; for V being strict RealUnitarySpace holds V in the carrier of V implies V is Subspace of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K , n , m be Nat ; - a * - b = a * b - a * b ; for A being Subset of AS holds A // A & A // A implies A = B for o2 being object of o2 st o2 in <^ o2 , o2 ^> holds <^ o2 , o2 ^> <> {} ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , N be strict Subgroup of G ; j >= len upper_volume ( g , D1 ) & len upper_volume ( g , D2 ) = len D2 ; b = Q . ( len Qc - 1 + 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 is convergent & lim ( f2 * f1 ) = x0 ; reconsider h = f * g as Function of N4 , G ; assume that a <> 0 and Let a , b , c , d ; [ t , t ] in the Relation of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of T7 & ( v |-- E ) | n is Element of T7 ; {} = the carrier of L1 + L2 .= the carrier of L1 + ( the carrier of L2 ) .= the carrier of L1 ; Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) .= Initialize ( p +* q ) ; reconsider N2 = N1 , N2 = N2 as strict net of R2 , N be net of R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( P + Q ) & n <= len ( P + Q ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x1 `2 ) ^2 .= ( x2 `1 ) ^2 + ( x1 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , 7 , 8 } ; let x , y be Element of FTT1 ( n ) ; p = |[ p `1 / p `2 , p `2 / p `1 ]| .= |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h .= h " * g * h .= h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " & ( R " ) " = R ; n in Seg len ( f /^ ( len p -' 1 ) ) ; for s being Real st s in R holds s <= s2 ; rng s c= dom ( f2 * f1 ) & rng s c= dom ( f2 * f1 ) ; synonym ex \mathop { X } , 1 } for X is Subset of iff X is finite ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , Q1 = Segm ( A , P1 , Q1 ) ; ex w st e = ( w / f ) * f & w in F ; curry ( P+* ( i , k ) ) # x is convergent ; cluster open -> open for Subset of [: T , Y :] ; len f1 = 1 .= len f3 .= len f3 .= len f3 .= len f3 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of [: \HM { the carrier of U0 } , the carrier of U0 :] ; b1 , c1 // b9 , c9 or b1 , c1 // c , a ; consider p being element such that c1 . j = { p } ; assume f " { 0 } = {} & f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a ; goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , P4 = Comput ( p3 , s3 , 1 ) , P4 = P3 ; IC SCMPDS in dom Initialize p & IC SCMPDS in dom Initialize p & IC SCMPDS in dom p ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( E-max L~ f ) .. f ) .. f = 1 & ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl Int union F c= Cl Int union F & Cl Int Cl F c= Cl Int Cl F ; the carrier of X1 union X2 misses ( A \/ B ) ; assume not LIN a , f . a , g . a , g . b ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H1 ; consider m being element such that m in Intersect ( FF ) and m in Intersect ( FF ) ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a3 <> a4 and a3 <> a4 and a3 <> a4 ; cluster s -\bf as Element of S , V , s be non empty Subset of S ; LG2 /. n2 = LG2 . n2 .= LG2 . n2 .= LG2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; assume r-7 in LSeg ( p1 , p2 ) /\ LSeg ( p2 , p3 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices ( D * ( i , j ) ) ; 0 <= ( 1 / 2 ) |^ p / 2 & 1 <= ( 1 / 2 ) |^ p ; ( F . N | E8 ) . x = +infty ; attr X c= Y means : Def3 : Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) * ( z `2 ) <> 0. I ; 1 + card X-18 <= card u & card X-18 <= card u ; set g = z \circlearrowleft ( ( E-max L~ z ) .. z ) , M = z .. z , N = L~ z , S = L~ z , N = L~ z , S = L~ z , N = L~ z , N = L~ z , S = L~ z , then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathop { X } ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | A as Subset of ( TOP-REAL n ) | A ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x1 , x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) & 1 <= j1 & j1 + 1 <= len ( D2 ) ; ( ( g2 . O ) `1 ) ^2 = - 1 & ( g2 . O ) `2 = 1 ; j + p .. f - len f <= len f - len f - len f ; set W = W-bound C , E = E-bound C , S = S-bound C , N = N-bound C , S = S-bound C , N = S-bound C , S = S-bound C , N = S-bound C , S = S-bound C , N = S-bound C , S = S-bound S1 . ( a , e ) = a + e .= a ` ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im f ) = dom Im f .= dom ( i (#) Im f ) ; ( that ^2 ) . x = W . ( a , *' ( a , p ) ) ; set Q = \mathop { \rm _ _ 0 } ( g , f , h ) ; cluster -> e -] for ManySortedSet of U1 , U2 ; attr ex A st F = { A } ; reconsider z9 = \hbox { y : y in product G } as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f is FinSequence of the carrier of F_Complex ; E , j |= All ( x1 , x2 , x3 , x4 ) ; reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card B2 \/ { x } = k-1 + 1 .= k + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies card ( x \ B1 ) = 0 g + R in { s : g-r < s & s < g + r } ; set q0S = ( q , <* s *> ) -\mathop { <* s *> } ; for x being element st x in X holds x in rng f1 implies x in Y h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , o ) , mw = max ( B , o ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% IC SCM R + k %> .= succ IC S ; ( ( S-bound L~ f ) / 2 ) <= ( q `2 ) / 2 & ( ( q `2 ) / 2 ) <= ( ( q `2 ) / 2 ) ; attr R is condensed means : Def3 : Int R is condensed & Cl R is condensed & R is condensed ; pred 0 <= a & b <= 1 & a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 0 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set y9 = <* y , c *> ; FG2 /. 1 in rng Line ( D , 1 ) & FG2 /. len FG2 in rng Line ( D , 1 ) ; p . m Joins r /. m , r /. ( m + 1 ) , G ; ( p `2 ) ^2 = ( f /. i1 ) ^2 & ( f /. i1 ) ^2 = ( f /. i1 ) ^2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) .= W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u as Vector of ( the carrier of \langle V , \subseteq *> ) , REAL ; p |-count ( Product Sgm X ) = 0 & p |-count ( Product Sgm X ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = card I + 4 .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 x in { x , y } & h . x = {} ( TF ) ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( ( the charact of ( A ) ) * the charact of B ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : G : G = : G c= dom ( G-15 | G ) ; rng F c= the carrier of gr { a } & F is finite & G is finite implies F is finite P is reconsider being reconsider being reconsider K of Q as FinSequence of ( the carrier of K ) * , r = Q as FinSequence of K ; f . k , f . ( Let ( Let n ) + 1 ) ) in rng f ; h " P /\ [#] T1 = f " P /\ [#] T1 .= [#] T2 /\ [#] T2 .= [#] T2 ; g in dom f2 \ f2 " { 0 } & f2 " { 0 } = f2 " { 0 } ; g+ X /\ dom f1 = g1 " X .= dom g1 /\ dom ( f1 | X ) .= X ; consider n being element such that n in NAT and Z = G . n ; set d1 = being Subset of dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( y2 , y2 ) ; b `1 + ( 1 / 2 ) < ( 1 + ( 1 + 1 ) ) / 2 ; reconsider f1 = f as VECTOR of the carrier of X , Y ; pred i <> 0 means : Def3 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j2 in Seg width ( g2 . i2 ) ; dom ( i ) = dom ( i ) .= dom ( i ) .= dom ( i ) .= dom ( i ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) .= Ball ( u , e ) ; reconsider x1 = x0 , y1 = x1 as Function of S , IV , IV = x1 as Function of S , IV ; reconsider R1 = x , R2 = y , R1 = z as Relation of L , R ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rv ; S1 +* S2 = S2 +* S2 +* S2 .= S2 +* S2 +* S2 .= S1 +* S2 +* S2 +* S2 +* S2 ; ( ( ( #Z 2 ) * ( cos + arccot ) ) `| Z ) = f ; cluster -> C -valued for Function of C , REAL * , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; EEE8 . e2 = E8 . e2 .= E8 . e2 .= E8 . e2 ; ( ( arctan * ( arctan + arccot ) ) `| Z ) = ( arctan * ( arctan + arccot ) ) `| Z ; upper_bound A = ( PI * 3 / 2 ) * 2 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f reconsider p8 = q8 , p8 = q8 as Point of Euclid 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & [#] Y0 c= [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) .= LSeg ( f , i ) ; rng s c= dom f /\ ]. - r , x0 .[ & rng s c= dom f /\ ]. x0 , x0 .[ ; assume x in { idseq 2 , Rev idseq 2 } /\ { idseq 2 , <* 1 *> } ; reconsider n2 = n , m2 = m , m1 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B-1 = f .: ( the carrier of X1 ) , B29 = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume R ~ ( a ) c= R ~ ( b ) & R ~ ( b ) c= R ~ ( a ) ; t in ]. r , s .[ or t = r or t = s & s < t ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ y2 , y2 ] or P [ y2 , y2 ] & P [ y2 , y2 ] ; pred x1 <> x2 & |. x1 - x2 .| > 0 & x1 - x2 > 0 & x1 - x2 < 0 ; assume p2 - p1 , p3 - p1 , p3 - p1 , p2 - p3 as linearly-independent non empty Subset of TOP-REAL 2 ; set q = ( be \upupharpoons f ^ <* 'not' A *> ) ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS n , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * succ t ) = dom succ t & dom ( T * succ t ) = dom succ t ; consider x being element such that x in wc iff x in c ; assume ( F * G ) . v . x3 = v . x4 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 and the Sorts of D2 c= the Sorts of D1 and the Sorts of D1 c= the Sorts of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) , s = E-bound L~ Cage ( C , n ) , w = E-bound L~ Cage ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( n1 - len f + 1 <= len ( - len f + 1 ) - len f + 1 ; Seg |. ( q , O1 ) , a , b , a , b , c *> = { u , v , a , b , c } ; set C-2 = ( ( `1 ) `1 ) . ( k + 1 ) ; Sum ( L * p ) = 0. R * Sum p .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 in dom Q & Q [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I , s4 = P1 +* I , P4 = P1 +* I , P4 = P1 +* I , P4 = P2 +* I , P4 = P2 +* I , P4 = P1 +* I , P4 = P2 +* I , P4 = P1 let l be [: of k , A , A-30 , A-30 , Al be Nat ; reconsider U2 = union G-24 , Gs = union Gs as Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , B = the carrier of X2 as Subset of X ; pQ = <* - vs , 1 , 1 *> .= <* - vs , 1 , 1 *> ; synonym f is real-valued means : Def3 : rng f c= NAT & rng f c= NAT & f is one-to-one ; consider b being element such that b in dom F and a = F . b ; x9 < card X0 & x9 in card Y0 & y9 in card Y0 & x9 in card Y0 implies x9 in card ( X \/ Y ) attr X c= B1 means : Def3 : for B being Subset of X st B c= succ B1 holds X c= succ B & X c= B ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; pred 1 <= len s means : Def3 : len ( the m of s ) = len s & for i being Nat st i in dom s holds s . i = s . i ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } .= { 1_ G } .= { 1_ G } ; pred p '&' q in the carrier of \rm WFF means : Def3 : q '&' p in the carrier of assume ( A ) ; - ( t `1 ) ^2 < ( t `1 ) ^2 & t `2 < - ( t `2 ) ^2 ; U . 1 = U /. 1 .= ( W /. 1 ) `1 .= ( W /. 1 ) `1 .= W /. 1 .= W /. 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices [: O , O :] = [: Seg n , Seg n :] & [: O , O :] = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is \cup the carrier of A-9 & f is \cup the carrier of A-9 = the carrier of A-9 ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = 0. TOP-REAL 2 ; reconsider t = t as Element of INT -tuples_on INT , ( the carrier of INT ) * ; C \/ P c= [#] ( ( G | A ) \ A ) & C /\ P = [#] ( ( G | A ) \ A ) ; f " V in the topology of [: X , D :] /\ D & f " V in the topology of [: X , Y :] ; x in [#] ( the carrier of A ) /\ A & x in the carrier of ( the carrier of B ) /\ A ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , y , z } \/ { xy , y , z } .= { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = being Matrix of M , a , a * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . i0 -' 1 as Element of K , i = len f - 1 as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) .= len ( F1 ^ F2 ) + len ( F2 ^ F1 ) .= len F1 + len F2 ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom ( f12 ) .= dom ( f12 ) .= dom ( f12 ) .= dom ( f12 ) ; M . [ 1 / y , y ] = 1 / y * v1 .= 1 / y * v1 .= 1 ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and W .vertices() c= the carrier' of G2 and W is not empty ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\lbrace fwhere b is Real : b <= a & b <= b } <= b - ( ( q1 `1 ) / |. q1 .| - cn ) = 1 - cn & ( q1 `1 ) / |. q1 .| - cn = 1 ; ( LSeg ( c , m ) \/ NAT ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in Ball ( x , r ) and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg n :] & Indices ( X @ ) = [: Seg n , Seg n :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) . m is_measurable_on E & Im ( ( Partial_Sums F ) . m ) . n is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D & f . ( x1 , x2 ) -> Element of D ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( N-min Z ) /. 1 , ( \hbox { \boldmath $ p $ } ) /. 2 ) ; set R8 = R .: ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , da ) .= SubFrom ( da , da ) .= goto ( ( card I + k ) + k ) ; seq . m <= ( the Sorts of seq ) . k & ( the Sorts of seq ) . m <= ( the Sorts of seq ) . k ; a + b = ( a ` *' b ) ` .= ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U2 as non empty Subset of ( the carrier of U0 ) * ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ m ) /\ n ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable set such that card A = card ( the carrier of R ) and A is finite ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( ( N-min P ) `2 ) / ( 1 + ( ( q `2 ) ) / ( 1 + ( q `2 ) ) ) ) ) = ( ( ( ( q `2 ) ) ) / ( 1 + ( q `2 ) / ( 1 + ( q `2 ) ) ) ) ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= f . a1 ` .= f . a1 ` .= f . a1 ; ( seq ^\ k ) . n in ]. -infty , x0 .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 .= ( g | G ) . s0 ; the InternalRel of S is \lbrace the carrier of S , the carrier of S , the carrier of S , the carrier of S } ; deffunc F ( Ordinal , Ordinal ) = phi . ( $2 , $1 ) & $2 = phi . ( $2 , $2 ) ; F . a1 = F . s2 & F . a1 = F . a1 & F . a1 = F . a1 ; x `2 = A . o .= Den ( o , A . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " P1 & Cl ( f " P1 ) c= f " P1 ; FinMeetCl ( ( the topology of S ) \/ the topology of T ) c= the topology of T & FinMeetCl ( ( the topology of T ) \/ the topology of T ) c= the topology of T ; synonym o is \bf means : Def3 : o <> *' & o <> {} & o <> {} ; assume that X |^ + = Y |^ + 1 and card X <> card Y and Y is finite and X is finite and Y is finite ; the *> s <= 1 + ( the *> \HM { the } \HM { is Element of ( the Sorts of A ) * the Arity of S ) ; LIN a , a1 , d or b , c // b1 , c1 or b , c // a1 , c1 or b , c // a1 , d ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; EE in SE & EE in { NE } implies EE in NE & EE in FE set J = ( l , u ) If , K = I " ; set A1 = } , A2 = [ <* ap , set *> , '&' ] , A2 = [ <* cin , set *> , '&' ] , A2 = [ <* cin , set *> , '&' ] , A1 = [ <* cin , A1 *> , '&' ] , A2 = [ <* cin , A1 *> , '&' ] , A2 = [ <* cin , set *> , '&' set vs = [ <* xy , *> , {} ] , xy = [ <* xy , yz *> , {} ] , yz = [ <* xy , yz *> , {} ] , yz = [ <* xy , yz *> , {} ] , yz = [ <* xy , yz *> , {} ] , xy = [ <* xy , yz *> , {} ] , xy = [ x * z * x " in x * ( z * N ) * x * x * x * z " ; for x being element st x in dom f holds f . x = g3 . x & f . x = g2 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ L~ f & Int cell ( f , 1 , G ) c= RightComp f \/ L~ f ; U2 is_an_arc_of W-min C , E-max C & P /\ L~ f = { E-max C , E-max C } ; set f-17 = f @ "/\" @ g ; attr S1 is convergent means : Def3 : S2 is convergent & ( for n st n >= k holds ( S1 - S2 ) . n = ( S1 . n ) - ( S2 . n ) ) ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> } -be -> \mathclose reflexive transitive transitive transitive for reflexive -symmetric , symmetric , reflexive -symmetric ; consider d being element such that R reduces b , d and R reduces c , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a |^ 0 , x .] ) = len l .= len ( l |^ 0 ) .= 0 ; t4 being {} -valued FinSequence of ( {} \/ rng t4 ) * * -valued Function of ( {} \/ rng t4 ) , ( {} \/ rng t4 ) * \ { {} } ; t = <* F . t *> ^ ( C . p ^ q ) .= <* F . t *> ^ ( C . q ^ q ) ; set p-2 = W-min L~ Cage ( C , n ) , p-2 = W-min L~ Cage ( C , n ) , p`1 = W-bound L~ Cage ( C , n ) , p`1 = W-bound L~ Cage ( C , n ) , p`1 = W-bound L~ Cage ( C , n ) , p`1 = W-bound L~ Cage ( C , n ) ( k -' 1 ) + ( i + 1 ) = ( k - 1 ) + ( i + 1 ) .= ( k - 1 ) + ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D and u in D ; len ( ( width E ) |-> a ) = width ( ( len E ) |-> a ) .= len ( ( len E ) |-> a ) .= len ( ( len E ) |-> a ) ; FF . x in dom ( ( G * the_arity_of o ) . x ) & ( G * the_arity_of o ) . x in dom ( ( G * the_arity_of o ) * the_arity_of o ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H1 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) .= ( l + 1 ) + 1 ; dom ( ( ( - 1 ) (#) ( sin * cos ) ) `| REAL ) = REAL & dom ( ( - 1 ) (#) ( cos * cos ) ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 2 ) -element for string of S ; set b5 = [ <* thesis , A1 *> , <* y *> ] , b5 = [ <* z , x *> , <* y *> ] , b5 = [ <* z , x *> , <* y *> ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= Line ( M , x ) ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & n in dom ( ( the Sorts of A ) * the_arity_of o ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y be Point of X such that a = y and ||. x - y .|| <= r ; set x3 = t2 . DataLoc ( s2 . SBP , 2 ) , x4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 = s2 . SBP , P4 set p-3 = stop I ( ) , pE = stop I ( ) , pE = stop I ( ) , pE = stop I ( ) , pE = stop I ( ) , pE = stop I ( ) , pE = stop I ( ) , pE = stop I ( ) , pE = stop consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E , F , J } = { A , B , C , D , E , F , J } let A , B , C , D , E , F , J , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , N , M , N , N , M , N , N , N , M be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( ( x + 1 ) + ( x + 1 ) ) + 1 ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) ; the TopStruct of L = reconsider the TopStruct of L , the TopStruct of L = [: the topology of L , the topology of L :] as Scott ; consider y being element such that y in dom H1 and x = H1 . y and y in the carrier of H1 and x = H1 . y ; fv \ { n } = \mathop ( Free ( v1 , H ) , E ) .= Free ( v1 , H ) .= E ; for Y being Subset of X st Y is summable & Y is non empty holds Y is iff Y is number 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { 0 } --> \rm Shift ( s ) ) = len s & ( the { 0 } --> an = s ) for x st x in Z holds exp_R * f is_differentiable_in x & exp_R * f . x > 0 ; rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) .= the carrier of ( ( TOP-REAL 2 ) | K1 ) .= K1 ; j + ( len f ) - len f <= len f + ( len g - len f ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL n , REAL-NS n ; C8 . x = s1 . x0 .= C7 . x .= C7 . x .= C8 . x .= C8 . x ; power F_Complex . ( z , n ) = 1 .= x |^ n .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t & t in dom ( the connectives of S ) ; support ( f + g ) c= support f \/ C & support ( f + g ) c= dom f /\ dom g ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] , [ x2 , x3 ] } is Subset of [: X1 , X2 :] ; h . i = ( j |-- h , id B ) . i .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in N & x1 in A ; set X = ( ( Seg ( q , O1 ) ) `1 , ( q , 4 ) `2 ) ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = 0 the lattice of the lattice of Y = the lattice of the topology of Y & the topology of Y = the topology of X & the topology of Y = the topology of Y & the topology of Y = the topology of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( a . x ) '&' b . x = FALSE ; 2 = len ( ( q ^ r1 ) ^ ( q ^ r2 ) ) + len ( ( q ^ r1 ) ^ ( q ^ r2 ) ) .= len ( q ^ r1 ) + len ( q ^ r2 ) ; ( 1 / a ) * ( sec * f1 ) - ( 1 / a ) * ( ( 1 / a ) * ( ( 1 / a ) * ( ( 1 / a ) * ( 1 / a ) ) ) ) is_differentiable_on Z ; set K1 = integral ( ( lim ( H ) || A ) ) , D2 = ( ( lim H ) || A ) , g2 = ( lim H ) || A ; assume e in { ( w1 - w2 ) `1 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d7 = dom F , d7 = dom G as finite set ; LSeg ( f /^ j , q ) = LSeg ( f , j ) /\ LSeg ( f , j + q .. f ) .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 and f = <* f , g *> * f1 ; dom S29 = dom S /\ Seg n .= dom L6 .= Seg n /\ Seg n .= Seg n /\ Seg n .= Seg n /\ Seg n .= Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H & a in H * ( 0. ( INT , n ) ) . ( a , 1 ) = a `1 - ( 0 * n ) `1 .= a `1 ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `1 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ = g @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) ; 1 = ( p * p ) * p .= p * ( 1 / p ) .= p * 1 / p .= 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f + 1 ; dom F-11 = dom ( F | [: N1 , S :] ) .= [: N1 , S :] .= [: N1 , S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) .= dom ( f . t * g . t ) .= dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D & b in ( the carrier of S ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and rng g = rng g ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f opp = id b and f * f = id b and f = id b and f = id b ; ( cos | [. 2 * PI * 0 , PI .] ) | [. 0 , PI .] is increasing ; Index ( p , co ) <= len LS - Gij .. LS & Index ( Gij , LS ) <= len LS - Gij .. LS ; t1 , t2 , t2 , t be Element of Funcs ( NAT , NAT ) , s be Element of ( the carrier of S ) * ; ( Frege ( Frege curry H ) ) . h <= ( Frege ( curry G ) ) . h & ( Frege ( curry G ) ) . h <= ( Frege ( curry G ) ) . h ; then P [ f . i0 , f . i0 ] & F ( f . i0 , f . i0 ) < j & j < len f ; Q [ [ D . x , 1 ] , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is an Element of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= the Sorts of A2 ; consider s being Function such that s is one-to-one and dom s = NAT & rng s = F and rng s = { x } and rng s = { x } ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a , b2 ) <= dist ( a , b2 ) + dist ( b , a ) ; ( <* Cage ( C , n ) /. len Upper_Seq ( C , n ) *> /. 1 ) `1 = W-bound L~ Cage ( C , n ) .= W-bound L~ Cage ( C , n ) ; q `2 <= ( UMP ( Upper_Arc ( C ) ) ) `2 & ( UMP ( C ) ) `2 <= ( UMP ( C ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} or LSeg ( f | i2 , j ) /\ LSeg ( f | i2 , i ) = {} ; given a being ExtReal such that a <= Is and A = ]. a , Is .[ and a < Is and for x being element st x in dom Is holds x in [. a , Is .] ; consider a , b being Complex such that z = a & y = b & z + y = a + b ; set X = { b |^ n where n is Element of NAT : n in dom b & b . n = 0 } ; ( ( x * y * z ) \ x ) \ z = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* y , z *> , f3 ] , xy = [ <* z , x *> , f3 ] , xy = [ <* z , x *> ( l /. len l ) `1 = ( l /. len l ) `1 .= ( l /. len l ) `1 .= ( l /. len l ) `1 ; ( ( q `2 ) / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ^2 ; ( ( ( ( ( ( S ) \/ Y ) \/ X ) \/ Y ) \/ X ) ) `2 = ( ( ( ( S ) \/ Y ) \/ X ) \/ Y ) `2 .= ( ( ( S ) \/ X ) \/ Y ) `2 ) `2 ; ( seq - seq ) . k = seq . k - seq . k .= seq . k - seq . k .= seq . k - seq . k .= seq . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X is the carrier of the carrier of X & the carrier of Y = the carrier of X & the carrier of Y = the carrier of Y ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A5 ) , A5 = chi ( X , A5 ) ; R |^ ( 0 * n ) = Iseq ( X , X ) .= R |^ n * 0 .= R |^ n * 0 .= R |^ n ; ( Partial_Sums curry ( F1 , n ) ) . n is nonnegative & ( Partial_Sums curry ( F1 , n ) ) . n is nonnegative ; f2 = C7 . ( E7 , len ( V , len ( K , len ( H , len ( K , len ( H , len ( K , len ( H , len ( H , len ( H , len ( H , len ( H ) ) ) ) ) ) ) ) ) ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= ( s2 * s2 ) . b .= ( s2 * s2 ) . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) \/ LSeg ( p1 , p11 ) /\ LSeg ( p2 , p1 ) .= { p2 } ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & 11 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) \mathop { l1 } , phi = ( l1 , l2 ) \mathop { l1 } , C = ( l1 , l2 ) \mathop { l2 } , D = ( l1 , l2 ) \mathop { l1 } , D = ( l1 , l2 ) \mathop { l2 } , E = ( l1 , l2 ) \mathop { l2 } , C = ( l1 , l2 ) \mathop { l2 } , D = synonym p is is invertible means : Def3 : HT ( p , T ) = 1 & HT ( p , T ) = 1 ; ( Y1 ) `2 = - 1 & ( Y1 ) `2 <> 0. TOP-REAL 2 or Y1 = ( Y1 ) `2 & ( Y1 = ( Y1 ) `2 or Y1 = ( Y1 ) `2 ) & ( Y1 = ( Y1 ) `2 ) ; defpred X [ Nat , set , set , set ] means P [ $1 , $2 , $2 , $2 , $2 , $2 , $2 ] & P [ $1 , $2 , $2 , $2 , $2 ] ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g and x0 < g ; Det I = ( ( m -' n ) * ( m - n ) ) * ( m - n ) .= 1. K .= ( ( m -' n ) * ( m - n ) ) * ( m - n ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cs . d = C7 . d mod C7 . d .= C7 . d mod C7 . d .= C7 . d mod C7 . d .= C8 . d ; attr X1 is dense means : Def3 : X2 is dense & X1 is dense & X2 is dense & X1 is dense & X2 is dense & X1 is dense ; deffunc F6 ( Element of E , Element of I , Element of I ) = $1 * $2 & $2 = $1 * $2 & $2 = $1 * $2 ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ 0. X .= 0. X ; for X being non empty set for Y being Subset-Family of X holds for F being Subset-Family of [: X , product <* Y *> :] holds F is Basis of [: X , product <* Y *> :] synonym A , B are_separated means : Def3 : Cl ( A ) misses Cl B & Cl ( A ) misses Cl Cl ( B ) ; len M8 = len p & width M8 = width M & width M8 = width M8 & width M8 = width M8 & width M8 = width M8 ; *> = { x where x is Element of K : 0 < v . x & x < 1 } ; ( Sgm Seg m ) . d - ( Sgm Seg m ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) .= D2 . ( k + 1 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len <* 1 *> & len w = len <* 1 *> + len w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 .= [ 0 , {} , {} ] ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC ( s , 9 ) .= 5 .= 5 + 9 .= ( IC s ) .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) .= t . intpos ( e + 1 ) ; LSeg ( f /^ i , q ) misses LSeg ( f /^ i , j ) \/ LSeg ( f /^ j , q ) .= LSeg ( f /^ j , q ) \/ LSeg ( f /^ j , q ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( f , C ) , f ) = f . ( upper_bound C ) - f . ( lower_bound C ) .= f . ( lower_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) .= e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y in F ; for y , x being Element of REAL st y ` in Y & x in X ` holds y ` <= x ` & y ` <= x ` ; func |. p \bullet |. p .| -> variable of A means : Def3 : for x being element st x in it holds it . x = min ( NBI ( p ) , p . x ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len l1 & len y1 = len l1 & len y1 = len l1 & len y1 = len l1 & len y1 = width l1 & len y1 = width l1 & len y1 = width l1 & len y1 = width l1 & len y1 = width l1 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 and y2 <= 1 and y2 <= 1 ; ||. f | X /* s1 .|| = ||. f .|| | X .= ||. f /. s1 .|| .= ||. f /. s1 .|| .= ||. f /. s1 .|| .= ||. f /. s1 .|| ; ( the InternalRel of A ) ` ` ` /\ Y = {} ( the carrier of A ) \/ {} .= {} ( the carrier of A ) .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and for i being Nat st i in dom q & i + 1 in dom q holds P [ i , j ] and P [ i , j ] ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , rng ( f | [: X , Y :] ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & u1 in the carrier of W2 implies u1 + u2 in the carrier of W1 & u2 in the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; ^ ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( - ( x - y ) ) = - x + - ( - y ) .= - x + - y .= - x + y .= x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_ed ; fT = [ [ dom @ f2 , cod f2 ] , [ cod f2 , cod f2 ] ] , fT = [ cod f2 , cod f2 ] , fT = [ cod f2 , cod f2 ] , fT = [ cod f2 , cod f2 ] , fT = [ cod f2 , cod f2 ] , fT = [ cod f2 , cod g2 ] ; for k , n being Nat st k <> 0 & k < n & n is prime & k <> 0 holds k , n are_relative_prime implies k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) ` ) ` & ( A ` ) ` = ( A ` ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a and u in A ; ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) > 0 ; L-13 . k = Ls . ( F . k ) & F . k in dom ( Ls * Ls ) & F . k in dom ( Ls * Ls ) ; set i2 = SubFrom ( a , i , - n ) , i1 = goto ( n + 1 ) ; attr B is thesis means : Def3 : for S being Sub\mathop of B holds S = ( B `1 ) `1 & S = ( B `1 ) `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D } ; |( exp_R , q2 )| * |( exp_R , q2 )| * |( exp_R , q2 )| >= |( exp_R , exp_R )| * |( exp_R , q2 )| .= |( exp_R , q2 )| * |( exp_R , q2 )| ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= f . ( upper_bound A ) .= f . ( lower_bound A ) ; G * ( 1 , k ) `1 = G * ( len G , k ) `1 .= G * ( 1 , k ) `1 .= G * ( 1 , k ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> .= <* ( proj ( i , n ) ) . LM *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) ) * reproj ( i , x ) ) . x0 & f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) ) * reproj ( i , x ) ) . x0 ; pred ( ( - 1 ) (#) ( tan * tan ) ) . x <> 0 & ( tan * tan ) . x = tan . x ; ex t being SortSymbol of S st t = s & h1 . t = h2 . x & t in ( the Sorts of A ) . x ; defpred C [ Nat ] means P8 . $1 is non empty & A8 is as n -Subset of NAT & A8 is n -V & A8 is non empty ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( \bf T ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st c in dom T holds T . ( id c ) = id d not ( for n , p being FinSequence st n in dom f holds f . n = ( f | n ) ^ <* p *> ) . n .= f . n ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - cp = ( f | ( n , L ) ) *' ( - ( f | ( n , L ) ) ) .= ( f - ( f | ( n , L ) ) ) *' ( - ( f | ( n , L ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s and m < n + s ; f1 . |[ ( r2 `1 ) ^2 , ( r2 `2 ) ^2 ]| in f1 .: W1 & f2 . |[ r2 `1 , ( r2 `2 ) ^2 ]| in f2 .: W2 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a * eval ( b , x ) .= a * eval ( b , x ) ; z = DigA ( tz , xx ) .= DigA ( tz , xx ) .= DigA ( tz , xx ) .= DigA ( tz , xx ) .= DigA ( tz , x ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , G = { Intersect S where S is Subset of X : S c= G } , F = { Intersect S where S is Subset of X : S c= G } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S19 in dom S19 and S19 in dom S19 and S19 in dom S29 ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x1 = f . x2 ; - 1 <= ( q `2 / |. q .| - sn ) / ( 1 + sn ) & q `1 / |. q .| - sn <= ( q `2 / |. q .| - sn ) / ( 1 + sn ) ; 0. ( V ) is Linear_Combination of A & Sum ( L ) = 0. V implies Sum ( L ) = Sum ( L ) & Sum ( L ) = Sum ( L ) let k1 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 be Element of NAT , a be Int-Location , b be Int-Location , k1 , k2 , k2 be Int-Location , k2 be Int-Location , k2 be Element of NAT ; consider j being element such that j in dom a and j in dom g and x = a " . { k } and x = g . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x1 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = L~ ( Let * p1 + ( a * p2 ) * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & c <= d & [' a , b '] c= dom f and [' a , b '] c= dom g and g = f | [' a , b '] ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty & cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; Aand in { ( S . i ) `1 where i is Element of NAT : i in dom S & i < n } ; ( T * b1 ) . y = L * b2 /. y .= ( F /. y ) * ( F /. y ) .= ( F /. y ) * ( F /. y ) ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 + ( log ( 2 , k + 1 ) ) ^2 ; then p => q in S & not x in the still of p & not x in S & p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-10 ) & dom ( the InitS of r-11 ) = dom ( the InitS of rM ) & dom ( the InitS of rM ) = the carrier of rM ; synonym f is integer means : Def3 : for x being set st x in rng f holds x is an integer number & f . x = 0 ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; ( l ) `1 = ( g ) `1 ) ^2 + ( k ) ^2 .= ( g ) ^2 + ( k ) ^2 + ( e ) ^2 .= ( g ) ^2 + ( e ) ^2 + ( e ) ^2 ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l ) ) .= halt SCM+FSA ; assume for n be Nat holds ||. seq . n .|| <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin . ( M - i ) = sin r * cos ( ( - cos . ( r - i ) ) / ( 2 * PI ) ) .= 0 ; set q = |[ g1 . t0 , g2 . t0 ]| , r = |[ s , t ]| , s = |[ s , t ]| , t = |[ s , t ]| , s = |[ s , t ]| , t = |[ s , t ]| , s = |[ s , t ]| , t = |[ s , t ]| , s = |[ s , t ]| , t = |[ s , t ]| , s = |[ s , t ]| , t ]| , s = |[ s , t ]| , consider G being sequence of S such that for n being Element of NAT holds G . n in implies G in WAAAAAS ( F . n ) ; consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) \/ the carrier of G2 & G1 is finite & G is finite ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & the Sorts of C = ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( #Z 2 ) * f1 ) + ( exp_R * ( f + ( #Z 2 ) * f1 ) ) ) ; for k being Element of NAT holds rV . k = ( upper_volume ( Im f , S-3 ) ) . k & rV . k = ( upper_volume ( Im f , S-3 ) ) . k ; assume that - 1 < n and n `2 / |. q .| > 0 and ( q `2 / |. q .| - sn ) < 0 and q `2 < 0 ; assume that f is continuous one-to-one and a < b and c < d and f . a = c and f . b = d and f . a = d ; consider r being Element of NAT such that s\mathclose = Comput ( P1 , s1 , r ) and r <= q and q <= r and r <= s ; LE f /. ( i + 1 ) , f /. j , L~ f & LSeg ( f , i ) /\ LSeg ( f , j ) c= { f /. ( i + 1 ) } ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } in the carrier of K and inf { x , y } in the carrier of K and inf { x , y } in the carrier of K ; assume f +* ( i1 , \xi /. 1 ) in ( proj ( F , i2 ) ) " ( A ) & f . ( i1 + 1 ) in ( proj ( F , i2 ) ) " ( A ) ; rng ( ( ( ( ( ( ( Flow M ) ) ~ ) | ( the carrier of M ) ) \/ the carrier of M ) ) \/ the carrier of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \/ { t } where t is Element of T : t in the carrier of T } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 and g < x0 + g ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 and t <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . 1 = <* 1 *> and p . 2 = <* 0 *> ; consider a being Element of the Points of X29 , A being Element of the Points of X29 such that a on A and a on A and a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set for i st i in dom p holds p . i in D & p . i in D & p . i in D & p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] & P [ x , y ] ; L~ f2 = union { LSeg ( p0 , p2 ) , LSeg ( p1 , p11 ) } .= { LSeg ( p1 , p11 ) , LSeg ( p1 , p11 ) } .= { p1 , p2 } ; i -' len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 & i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nbeing . ( n -' 1 ) ) .| * |. ( F . n ) .| ; for r , s1 , s2 , s3 being Real holds r in [. s1 , s2 .] iff s1 <= s2 & s2 <= 1 & s1 <= 1 & s2 <= 1 & s1 <= 1 & s2 <= 1 & s1 <= 1 assume v in { G where G is Subset of T2 : G in B2 & G c= z & z in A & G c= z } ; let g be Z :] , X be INT -valued Element of INT , b be Element of INT , c be Element of INT , b be Element of INT ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CV such that for n holds P [ n , q1 . n ] and q1 is convergent and for n holds q1 . n = U ( n ) ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ O , OI = O , TI = O , TI = O , Z = { Z } , Z = { Z } , T = { Z } , T = { Z } , S = { Z , Z , Z } as Subset of [: B , C :] ; consider j being Element of NAT such that x = the j j j and j <= n and 1 <= j and j <= n and n <= len f and f . j = f . j ; consider x such that z = x and card ( x . O2 ) in card ( x . O1 ) and x in L1 and x in ( x . O2 ) and x in ( x . O2 ) ; ( C * : T . ( k , n2 ) ) . 0 = C . ( ( of of T4 ) . ( k , n2 ) ) .= C . ( ( T * T ) . ( k , n2 ) ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = dom ( X --> f ) ; ( N-bound L~ SpStSeq C ) `2 <= ( N-bound L~ SpStSeq C ) `2 & ( N-bound L~ SpStSeq C ) `2 <= ( N-bound L~ SpStSeq C ) `2 or ( S-bound L~ SpStSeq C ) `2 <= ( N-bound L~ SpStSeq C ) `2 ; synonym x , y are_collinear means : Def3 : x = y or ex l being Nat st { x , y } c= l & x in l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y & x << y holds a << b & b << a ; ( 1 / 2 * ( ( ( ( ( ( ( ( ( ( 1 / 2 ) * ( ( ( 1 / 2 ) ) * ( ( ( 1 / 2 ) * ( ( 1 / 2 ) ) * ( ( ( 1 / 2 ) * ( ( 1 / 2 ) ) * ( 1 + ( 1 / 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) `| REAL = f ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A2 ) . $1 = A2 . $1 & ( the Sorts of A1 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= ( card I + 1 ) .= 6 + 1 .= ( card I + 1 ) .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * f . g2 .= f . g1 * f . g2 .= f . g1 * f . g2 .= f . g1 * f . g2 .= f . g1 * f . g2 ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( ( canFS ( Omega ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) .= M . ( ( canFS ( Omega ) ) . n ) ; the carrier of ( L1 + L2 ) c= ( the carrier of L1 ) \/ the carrier of L2 & the carrier of ( L1 + L2 ) c= the carrier of L1 & the carrier of ( L1 + L2 ) \/ the carrier of L2 = the carrier of L1 ; pred a , b , c , x , y , c , d , x , y , z , y , z , x , y , z , y , x , y , z , y , z , x , y , z , x , y , z , z , y , x , z , y , z , x , y , z , z , x , y , z , x , y , z , z , x , y , z , x , y , z , z , y , z , z , x ( the PartFunc of s ) . n <= ( the PartFunc of s ) . n * s . n & ( the Sorts of s ) . ( n + 1 ) = ( the Sorts of s ) . n * s . n ; pred - 1 <= r & r <= 1 & ( arccot | [. - 1 , r .[ ) . r = - 1 & ( arccot | [. - 1 , r .[ ) . r = - 1 ; s8 in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 ]| . 2 - |[ y1 , y2 ]| . 2 = |[ x2 , y2 ]| . 2 - |[ y2 , y2 ]| . 2 - |[ y1 , y2 ]| . 2 .= |[ y2 , y2 ]| . 2 - |[ y2 , y2 ]| . 2 - |[ y2 , y2 ]| . 2 - |[ y2 , y2 ]| . 2 ]| ; attr for m being Nat holds F . m is nonnegative means : Def3 : ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ) & ( Partial_Sums F ) . m is nonnegative ; len ( Element of ( G . z ) ) = len ( ( G . x9 ) + ( G . y ) ) .= len ( G . x9 ) .= len ( G . x9 ) .= len ( G . x9 ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 and u in W3 and v in W3 and u in W3 ; given F being FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum F = k and Sum F = 1 ; 0 = 1 * ( 1- @ ) * uon + 1 * ( - ( 1 - ( 1 - ( 1 - ( 1 - ( 1 - 0 ) ) ) ) ) * ( - ( 1 - ( 1 - 0 ) ) ) * ( 1 - ( 1 - 0 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) ) . n .| < e ; cluster -> } -\mathbin Boolean for non empty _ of { ( let Y ) , ( Y ) , ( Y ) , ( Y ) , ( Y ) , ( Y ) , ( Y ) , ( Y ) , ( Y ) , ( Y ) } is Boolean "/\" ( Bs , {} ( S , T ) ) = Top ( S , T ) .= "/\" ( [#] ( S , T ) , {} ( S , T ) ) .= "/\" ( Is , T ) .= "/\" ( Is , T ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - 2 * |[ a , c ]| - ( 2 * r1 - ( 2 * r1 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - ( 2 * r2 - 1 ) ) ) ) ) ) ) / ( 2 * r1 ) ) ]| ) = 0. TOP-REAL reconsider p = P * ( 1 , 1 ) , q = a " * ( ( - ( - ( K , n , 1 ) ) ) * ( ( - ( K , n , 1 ) ) * ( 1 , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in < t and x = [ x1 , x2 ] and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n being Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . n & ( upper_volume ( g , M7 ) ) . n = ( upper_volume ( g , M7 ) ) . n consider y , z being element such that y in the carrier of A & z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H1 is Subgroup of H2 and H2 is Subgroup of H2 ; for S , T being non empty RelStr , d being Function of T , S st T is complete holds d is directed-sups-preserving iff d is monotone & d is monotone [ a + 0 , i + b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of F_Complex ) .= [: the carrier of F_Complex , the carrier of F_Complex :] .= [: the carrier of F_Complex , the carrier of F_Complex :] .= [: the carrier of F_Complex , the carrier of F_Complex :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( <* x *> |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB ( ( GoB ( ( GoB h ) ) * ( 1 , 1 ) ) `1 ) , ( GoB ( ( GoB ( ( GoB ( ( GoB ( h ) ) * ( 1 , 1 ) ) ) ) ) ) ) ) ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def3 : A1 is linearly-independent & A2 is linearly-independent & ( for x st x in A1 holds x in A1 & x in A2 holds x in A2 ) & ( for x st x in A1 holds x in A1 ) implies x in A2 or x in A1 & x in A2 ; func A -carrier of C -> set equals union { A . s where s is Element of R : s in C & s in A } ; dom ( Line ( v , i + 1 ) (#) ( Line ( p , m ) ) ) * ( \square , 1 ) ) = dom ( F ^ <* G * ( i , 1 ) *> ) .= dom ( F ^ <* G * ( i , 1 ) *> ) .= dom ( F ^ <* G * ( i , 1 ) *> ) ; cluster [ x `1 , 4 ] , [ x `2 , 4 ] , [ x `1 , 4 ] ] -> reduces x `1 , x `2 & x `1 = x `1 & x `2 = 4 or x `1 = x `2 & x `2 = 4 ; E , f |= All ( x1 , All ( x2 , x2 , x3 , x4 ) ) => ( All ( x3 , x1 , x2 , x3 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g ) .= F . ( x , g ) ; R . m = F . x0 + h . m - h . x0 + h . m - h . x0 .= ( F - G ) . x0 + ( F - G ) . x0 .= ( F - G ) . x0 ; cell ( G , Xs -' 1 , ( Y + 1 ) + ( t + 1 ) ) \ L~ f meets ( UBD L~ f ) \/ ( L~ f ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= IC IExec ( I , P , Initialize s ) .= IC s .= IC IExec ( I , P , Initialize s ) .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s ; sqrt ( ( - ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom g and x0 in g " { k } and y = a . x0 and x0 in { k } and g . x0 = a . x0 ; dom ( r1 (#) chi ( A , A ) ) = dom chi ( A , A ) .= dom ( chi ( A , A ) ) .= dom ( r1 * chi ( A , A ) ) .= dom ( r1 * chi ( A , A ) ) .= dom ( r1 * chi ( A , A ) ) .= dom ( r1 * chi ( A , A ) ) .= dom ( r1 * chi ( A , A ) ) .= dom ( r1 * chi ( A , A ) ) ; d-7 . [ y , z ] = ( ( y `1 ) ^2 - ( y `2 ) ^2 ) * ( ( y `2 ) ^2 - ( y `2 ) ^2 ) .= ( y `2 ) ^2 - ( y `2 ) ^2 ; attr for i being Nat holds C . i = A . i /\ B . i & C . i = LSeg ( x , i ) /\ LSeg ( x , i ) ; assume that x0 in dom f and f is_continuous_in x0 and f is_continuous_in x0 and for r st r in dom f holds ||. f /. r - f /. x0 .|| < r & f /. x0 - f /. x0 .|| < r ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K & K is open & Q is open holds A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y2 - y2 .| <= |. y1 - y2 .| func Sum <*> a -> w -\mathop { a } means : Def3 : a in it & for b being Ordinal st b in a holds it . b c= a & it . b = b ; [ a1 , a2 , a3 ] in ( the carrier of A ) /\ ( the carrier of A ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x .|| < ( e / ||. x .|| ) * ||. x .|| + ||. x .|| * ||. x .|| .= e * ||. x .|| + ||. x .|| .= e * ||. x .|| + e * ||. x .|| .= 0 ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z & z in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( { 1 } /\ compactbelow [ s , t ] ) , sup ( { 1 } /\ compactbelow [ s , t ] ) ] .= [ s , t ] .= t ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in IF and [ f . i , z ] in IF and [ f . i , f . j ] in IF and [ f . i , f . j ] in IF ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & len p = len q & p = q ^ p consider e19 being Element of the affine of X such that c9 , a9 // a9 , e29 and a9 <> c9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & c9 <> a9 & a9 , c9 // c9 & a9 , a9 // c9 & c9 , a9 // c9 & a9 , a9 // c9 & c9 , set U = I \! \mathop { \vert x .| : not contradiction } , * = { I : I in { 1 } } , * = { 1 } , * = { 1 } , * = { 1 } , * = { 1 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 1 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { 2 } , * = { |. q2 .| ^2 = ( q2 `1 ) ^2 + ( q2 `2 ) ^2 .= |. q2 .| ^2 + ( q2 `2 ) ^2 .= |. q2 .| ^2 + ( q2 `2 ) ^2 .= |. q2 .| ^2 + ( q2 `2 ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom signature U1 = dom the charact of U1 & Args ( o , MSAlg U1 ) = dom the charact of U2 & Args ( o , MSAlg U1 ) = dom the charact of U1 & Args ( o , MSAlg U1 ) = dom the charact of U2 & dom ( the charact of U1 ) = dom the charact of U1 & dom ( the charact of U1 ) = dom the charact of U2 ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| | X ) /\ X .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= X ; for N1 , N2 being Element of [: G , G :] , K st dom ( h . K1 ) = N & rng ( h . K1 ) = N & rng ( h . K1 ) = N & rng ( h . K1 ) c= N & rng ( h . K1 ) c= N & ( h . N1 ) c= N & ( h . N1 ) c= N & ( h . N1 ) c= N ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i .= m . i + m . i ; - ( q `1 ) ^2 < - 1 or q `2 / |. q .| * ( 1 + cn ) <= - ( q `1 / q `2 ) ^2 & - ( q `1 / q `2 ) ^2 <= - ( q `1 / q `2 ) ^2 ; attr r1 = ff & r2 = ff & for x st x in dom f holds r1 * f . x = ff . x * ( f . x ) & ( for x st x in dom f holds f . x = f . x ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( vseq . m ) . x & ( vseq . m ) . x = ( vseq . m ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = PI & angle ( c , a , b ) = PI ; consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and j < len s and s < n ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( |. q .| ^2 + |. q .| ^2 ) ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 in dom ( p ^ q ) and p1 ^ q1 = p ^ q1 and q1 ^ q2 = p ^ q2 and len p1 = len q1 + len q2 ; Assume that } ( A , r1 , r2 , s1 , s2 , s1 , s2 , s2 , s3 ) = ( s2 , r2 , s2 , s3 ) * ( r1 , r2 , s2 , s1 ) and r2 = s2 and r2 = s2 and s1 = s2 and s2 = s1 and s1 = s2 and r2 = s2 ; ( ( UMP A ) `2 ) ^2 = lower_bound ( proj2 .: ( A /\ Vertical_Line ( w ) ) ) & ( proj2 .: ( A /\ Vertical_Line ( w ) ) ) `2 = ( proj2 .: ( A /\ Vertical_Line ( w ) ) ) `2 & ( proj2 .: ( A /\ Vertical_Line ( w ) ) ) `2 = ( proj2 .: ( A /\ Vertical_Line ( w ) ) ) `2 ; s , k1 |= ( H1 , k1 ) |= H2 iff s , k1 |= ( H1 , k2 ) . ( len ( H1 , k1 ) ) & s , k1 |= ( H1 , k1 ) . ( len ( H1 , k1 ) ) ; len s5 + 1 = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z `1 >= y holds z `1 >= y & z `2 >= x ; LSeg ( UMP D , |[ ( W-bound D ) / 2 , ( ( E-bound D ) / 2 ) / 2 ) ]| , ( ( ( E-bound D ) / 2 ) / 2 ) / 2 ) /\ D = { UMP D } ; lim ( ( ( f `| N ) / g ) `| N ) = ( ( f `| N ) / g ) `| N .= ( ( f `| N ) / g ) `| N .= ( ( f `| N ) / g ) `| N .= ( ( f `| N ) / g ) `| N .= ( ( f `| N ) / g ) `| N ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /. ( k + 1 ) ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & x in P & b in P holds a = b Z c= dom ( ( ( - 1 ) (#) ( ( #Z 2 ) * f ) ) ^ ) \ ( ( #Z 2 ) * f ) " { 0 } ) .= dom ( ( - 1 ) (#) ( ( #Z 2 ) * f ) ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & i = 1 & y = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j ; for u , v being VECTOR of V for r being Real st 0 < r & u in N & v in N holds r * u + ( 1-r * v ) in c= c= c= c= c= ( - 1 ) * N A , Int Cl A , Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Cl Int Cl A , Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) + u .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM = ( Exec ( a := b , s ) ) . IC SCM .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s .= IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x and h . x in ( the carrier of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty directed Subset of [: S1 , S2 :] , f being Function of [: S1 , S2 :] , [: S2 , S2 :] , [: S2 , S2 :] st f is directed & f . 0 = sup D holds ( f * f ) . 1 is directed & ( f * f ) . 2 = ( f * g ) . 2 card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or x = y & x = y or x = y & x = z or x = y or x = z or x = x or x = y or x = z or x = z or x = y or x = z or x = z or x = x or x = y ; E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , T being DecoratedTree , p , q being Element of dom T st p in dom T holds ( T -with tree ( p , q ) ) . q = T . q & ( T -with tree ( p , q ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k -' n ) divides ( k -' n ) & ( k -' n ) divides ( k -' n ) & ( k -' n ) divides ( k -' n ) & ( k -' n ) divides ( k -' n ) implies k divides ( k -' n ) & ( k -' n ) divides ( k -' n ) ) ; dom F " = the carrier of X2 & rng F = the carrier of X1 & rng F = the carrier of X2 & F " = F " * ( F " * ( F " * ( F * ( the carrier of X1 ) ) ) ) & F " * ( F * ( the carrier of X2 ) ) = F " * ( F * ( the carrier of X1 ) ) ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( BM \/ C ) and C is linearly-independent and C is linearly-independent and C is linearly-independent and C is linearly-independent ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= Y or Y c= V or X c= Y set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] & v1 in A ( ) & P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p3 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 = - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 .= - ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 .= - ( - ( q `1 / |. q .| - cn ) ) ^2 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 ; attr f is partial u , u0 means : Def3 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) . u0 = ( proj ( 2 , 3 ) ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is sequence which and 1 <= t and t <= len G and G * ( t , width G ) `2 >= s and s <= width G and G * ( t , width G ) `2 >= s and G * ( t , width G ) `2 >= s and s <= G * ( t , width G ) `2 ; pred i in dom G means : Def3 : r * ( f * reproj ( G , i ) ) = r * f * reproj ( G , i ) & f . i = r * ( reproj ( G , i ) ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 and c1 in dom ( <* c1 , c2 *> ) and c2 in dom ( <* c1 , c2 *> ) and c2 in dom <* c1 , c2 *> and c1 in dom <* c2 , c2 *> ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . k2 .= C4 . k .= C4 . k .= C4 . k .= C4 . k .= C4 . k .= C4 . k .= C4 . k ; attr M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom ( ||. y .|| * ( ||. y .|| ) ) & ||. y - x0 .|| < g2 & g2 in N } c= dom ( ||. y .|| * ( ||. y .|| ) ) ; assume x < ( - b + sqrt ( integral ( a , b , c ) ) / ( 2 * a ) ) or x > - b & x > 0 ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i ; for i , j st [ i , j ] in Indices M3 holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) & M2 * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i in dom f & i <> j holds i divides f /. i & ( for j being Element of NAT st j in dom f & j < i holds f /. j = Sum ( f /. j ) ) implies f /. i = Sum ( f /. j ) assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\mathopen the carrier of Y & c c= b holds a c= c } ; b2 * q2 + ( b3 * q3 ) + - ( ( a * q2 ) * q2 ) + ( ( a * q2 ) * q2 ) = 0. TOP-REAL n + ( ( a * q2 ) * q2 ) .= 0. TOP-REAL n + ( ( a * q2 ) * q2 ) .= 0. TOP-REAL n + ( a * q2 ) * q2 .= 0. TOP-REAL n + ( a * q2 ) * q2 .= 0. TOP-REAL n ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & Cl ( Cl ( Cl ( Cl F ) ) ` ) = Cl Cl B & Cl ( Cl ( Cl ( Cl ( Cl F ) ) ` ) ) = Cl Cl Cl Cl B & Cl ( Cl ( Cl ( Cl ( Cl ( Cl F ) ) ` ) ) = Cl Cl Cl Cl B } ; attr seq is summable means : Def3 : seq is summable & seq is summable & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) & Sum ( seq ) = Sum ( seq ) ; dom ( ( cn " ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; [: X , Z :] is full full non empty SubRelStr of [: Omega , Z :] & [ X , Y ] is full full SubRelStr of [: Omega , Z :] & [: X , Y :] is full SubRelStr of [: X , Y :] ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : Def3 : for p being set st p in P holds the non empty set of ( m2 ) <= ( m2 ) & ( for p being set st p in P holds p is__ X ) & p is__ X implies p is__ X & p is__ X ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) & P [ b ] ; attr IT is $1 -loop Str means : Def3 : the carrier of IT = { [ a , the carrier of IT ] , [ a , the carrier of IT ] } , [ the carrier of IT ] } , the carrier of IT = [: the carrier of IT , the carrier of IT :] , the carrier of IT = [: the carrier of IT , the carrier of IT :] ; sequence ( a , b , 1 ) + sequence ( c , d ) = b + sequence ( c , d ) .= b + d .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) ; cluster + _ { \mathbb Z } -> $ for Element of INT , i1 , i2 , j1 , j2 be Element of INT , i1 , i2 , j1 be Element of NAT st i1 = i2 & j1 = i2 holds ( i1 + i2 ) + ( j1 + 1 ) = ( i1 + i2 ) + ( j1 + 1 ) .= ( i1 + i2 ) + ( j1 + 1 ) ; ( - s2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) * p2 = ( ( - r2 ) * p1 + ( s2 * p2 ) ) * p2 - ( ( - s2 ) * p2 ) * p2 .= ( ( - r2 ) * p1 ) + ( ( - r2 ) * p2 ) * p2 ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( q , x ) .= a * eval ( p , x ) * eval ( q , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of Omega S , V being Subset of Omega S st V in the topology of S & V is open & V is open holds for V being Subset of S st V in the topology of T & V is open holds V meets V ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) -/. k ) = ( T-7 . ( q11 , w ) ) . k and T21 . ( ( q11 , w ) -/. k ) = ( T-7 . ( q11 , w ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ ( n + 1 ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) ; M , v2 / ( x. 3 , m ) / ( x. 0 , ( x. 4 , ( x. 0 ) / ( x. 4 , ( x. 0 ) / ( x. 4 , ( x. 0 ) / ( x. 0 , x. 0 ) ) ) ) ) |= H ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 and for x st x in l holds f . x < f . x0 and for x st x in l holds f . x < f . x ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G1 , e being set st e in W holds not e in W implies ( W is Walk of G2 & e in W & W is Walk of G2 ) not c9 is empty iff ( not ( ex y1 , y2 being Element of REAL st y1 is not empty & y2 is not empty ) & not ( not y2 is not empty & not y2 is not empty ) & not ( not y2 is not empty ) & not ( not y1 is not empty & not y2 is not empty ) & not ( y2 is not empty ) & not ( y2 is not empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( for i st i in dom GoB f holds ( GoB f ) * ( i , 1 ) ) `1 = ( GoB f ) * ( i , 1 ) `1 & ( GoB f ) * ( i + 1 , 1 ) `2 = ( GoB f ) * ( i + 1 , 1 ) `2 for G1 , G2 , G3 being finite Group , G being stable Subgroup of O st G1 is stable & G2 is stable & G2 is stable & G1 is stable & G2 is stable & G2 is stable holds G1 * G is stable UsedIntLoc ( int ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , intloc 5 , x. 5 , x. 6 , 7 , 8 , 8 , 9 } .= { intloc 0 , intloc 5 , 6 , 7 , 8 } \/ { intloc 5 , 6 , 7 , 8 } .= UsedIntLoc ( i ) \/ { intloc 5 , intloc 6 , 8 } ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & ( for i st i in dom f1 holds Q [ i , f2 . i ] implies f1 . i = f2 . ( f1 . i ) ) & ( for i st i in dom f1 holds Q [ i , f2 . i ] implies f1 . i = f2 . ( f1 . i ) ) ( p `1 ) ^2 / ( sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ) ^2 = ( q `1 ) ^2 / ( sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 .= ( q `1 ) ^2 / ( sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x3 )| + |( x2 , x3 )| + |( x1 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x1 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| for x st x in dom ( ( ( ( ( ( ( ( ( x | A ) | A ) ) | A ) ) | A ) ) ) | A ) holds ( ( ( ( ( ( ( F | A ) | A ) ) | A ) | A ) ) | A ) . x = - ( ( ( ( ( F | A ) | A ) | A ) | A ) | A ) . x ) for T being non empty TopSpace , P being Subset-Family of T , B being Basis of T st P c= the topology of T for x being Point of T st x in P & P = B holds P is Basis of T ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= ( 'not' ( a . x ) 'or' b . x ) 'or' c . x .= ( 'not' ( a . x ) 'or' b . x ) 'or' c . x .= ( ( 'not' a ) 'or' b . x ) 'or' c . x .= TRUE ; for e being set st e in [: A , Y :] ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i being set st i in the carrier of S for f being Function of [: S . i , S1 . i :] , S1 . i st f = H . i & f is Function of [: S . i , S1 . i :] , S1 . i holds F . i = f | [: S . i , S1 . i :] for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . w card D = card D1 + card D2 - 1 .= ( c1 + 1 ) - ( c2 + 1 ) .= c1 + ( c2 + 1 ) - ( c1 + 1 ) .= c1 + ( c2 + 1 ) - ( c1 + 1 ) .= 2 * c1 + ( c1 + 1 ) - ( c1 + 1 ) .= 2 * c1 + ( c1 + 1 ) - ( c1 + 1 ) .= 2 * c1 + ( c1 + 1 ) - ( c1 + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= succ IC s .= IC Exec ( i .--> succ ( s . 0 ) ) .= IC Exec ( i , s ) .= IC Exec ( i , s ) .= IC Exec ( i , s ) .= IC Exec ( i , s ) ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & b <= 2 & c <= a holds a <= b or a <= b & b <= a + b-2 or a = b + b-2 or b = a + b or a = a + b + c for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st i in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= len f lim ( curry ( P-19 , k + 1 ) # x ) = lim ( curry ( P-19 , k ) # x ) + lim ( curry ( P-19 , k ) # x ) .= lim ( curry ( F-19 , k ) # x ) + lim ( curry ( F-19 , k ) # x ) .= lim ( curry ( F-19 , k ) # x ) ; z2 = g /. ( \downharpoonright n1 -' 1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) .= g . ( i -' n1 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 2 ] in the InternalRel of C6 & [ f . 0 , f . 2 ] in the InternalRel of C6 & [ f . 2 , f . 3 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where X is Subset of A , Y is Subset of B : R in F & Y in F } holds ( Intersect ( F , G ) ) . X = Intersect ( G , F ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and a on N and p on N and a on M and b on N and p on N and p on N and a on M and b on N and p on N and p on N and a on M and b on N and p on N and p on N and a on M and b on N and a on N and b on N and a on M and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and b on N and c on M and c on M and c on M and c on M and c on M and c on M assume that T is \hbox { T _ 4 } and F is closed and ex F being Subset-Family of T st F is closed & ( for n being Nat st n <= len F holds F . n is finite-ind & ( for n being Nat st n <= len F holds F . n is finite-ind ) & ( for n st n <= len F holds F . n <= 0 ) ) ; for g1 , g2 st g1 in ]. r - s , r .[ & g2 in ]. r - s .[ & g1 < g2 & g2 in ]. r - s , r + s .[ holds |. f . g1 - f . g2 .| <= ( f - g ) / ( r - s ) ( ( - ( - 1 ) ) * ( z1 + z2 ) ) * ( z2 + z2 ) = ( - ( - ( - ( - 1 ) ) * ( z2 + z2 ) ) ) * ( z2 + z2 ) .= ( - ( - ( - ( - ( - ( - 1 ) ) * ( z2 + z2 ) ) ) * ( z2 + z2 ) ) ) * ( z2 + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n + 1 ) * ( a |^ n ) .= <* ( ( n + 1 ) -' a ) * ( b |^ n ) * ( a |^ n ) *> .= <* ( ( n + 1 ) -' a ) * ( b |^ n ) ) * a * b |^ n *> .= <* ( n + 1 ) * a |^ n * b |^ n *> .= <* a * b * b * b * a * b * b * a * b * a * b * a * b * b * b * b * a * b * a * b * a * b * b * b * a * b * a * b * a * a * b * a * a * a * a * b * b * b * b * b * b ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = RF ( n , f . n ) & for n holds f . ( n + 1 ) = RF ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def3 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * F /. ( F /. i ) & for i be Nat st i in dom it holds it . i = F /. i * F /. ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 } = { x1 , x2 , x3 , x4 , x5 , 7 , 8 } \/ { x5 , 6 , 7 , 7 } .= { x1 , x2 , x3 , x4 } \/ { x4 , 7 , 8 } .= { x1 , x2 , x3 , x4 , 7 } \/ { x4 , 7 , 8 } ; for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( S `1 = P `1 ) & ( S `1 = P `1 ) & ( S `2 = P `2 ) & ( S `2 = e & S `1 = P `2 ) & ( S `1 = P `1 ) & ( S `2 = P `2 ) & ( S `1 = P `1 ) & ( S `2 = P `2 ) & ( S `1 = P `1 ) & ( S `2 = P `2 = P `2 ) & ( S `2 = P `2 = P `2 = P `2 ) & ( S `2 = P `2 = P `2 = P `2 ) & ( S `2 = P `2 = P `2 ) & ( S `2 = P `2 = P `2 ) & ( S `2 = P `2 ) & ( S `2 = P `2 consider P being FinSequence of GL2 such that p7 = product P and for i st i in dom P ex t7 being Element of the carrier of K st P . i = t7 & t7 = t & t7 = ex t7 being FinSequence of the carrier of K st t = t7 & t7 = t & t7 = t & t7 = t & t7 = t & t7 = t ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T2 being Basis of T2 st the carrier of T1 = the carrier of T2 & P = the carrier of T2 & P = the topology of T2 & P = the topology of T2 holds P is Basis of T1 & P is Basis of T2 & P is Basis of T2 assume that f is_is_is_(#) , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r (#) pdiff1 ( f , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r (#) pdiff1 ( f , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r (#) pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F , G being FinSequence of bool ( the carrier of K ) , G be Permutation of the carrier of K st len G = $1 & G = F * s & G = F * s holds Sum ( F ) = Sum ( G ) & Sum ( G ) = Sum ( G ) & Sum ( G ) = Sum ( G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 < s & s < ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 < s ) `2 ; defpred U [ set , set ] means ex Fn1 be Subset-Family of T st $1 = Fn1 & $2 is open & union Fn1 is open & union Fn1 is open & union Fn1 is empty & union Fn1 is empty & union Fn1 c= $1 & union Fn1 c= $1 & $2 in union Fn1 & union Fn1 c= $1 & union Fn1 c= $2 & union Fn1 c= $2 ; for p4 being Point of TOP-REAL 2 st LE p4 , p , P & LE p4 , p , P & LE p4 , p , P & LE p4 , p , P holds LE p4 , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P f in the carrier of ( E , H ) & for g st g . y <> f . y holds x in the carrier of ( E , H ) & g in the carrier of ( E , H ) & f in the carrier of ( E , H ) & g in the carrier of ( E , H ) & f . x = f . x implies f . x = g . x ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) * ( 1 + sn ) ) / ( 1 + sn ) <= cn & ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) * ( 1 + sn ) <= 0 ) & ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) <= 0 ; assume for d7 being Element of NAT st d7 <= d7 holds ( for i being Element of NAT st i <= 8 holds d7 . i = s2 . ( d7 ) ) & ( for i being Element of NAT st i in 8 holds s1 . i = s2 . ( d7 ) ) & ( for i being Element of NAT st i in 8 holds s1 . i = s2 . i ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of Sphere ( x , r ) st e = Ball ( x , r ) /\ Ball ( y , r ) & e in Ball ( x , r ) /\ Ball ( y , r ) & e in Ball ( x , r ) /\ Ball ( y , r ) ; given r such that 0 < r and for s st 0 < s holds 0 < s or ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. x1 - x0 .| < s & |. x1 - x0 .| < s & |. x1 - x0 .| < s & |. x1 - x0 .| < s & |. x1 - x0 .| < s ; ( p | x ) | ( ( x | x ) | ( x | x ) ) = ( ( ( x | x ) | ( x | x ) ) | ( x | x ) ) | ( ( x | x ) | ( x | x ) ) .= ( ( x | x ) | ( x | x ) ) | ( x | x ) ; assume that x , x + h in dom sec and x in dom sec and ( Let x , h ) . x = ( 4 * sin . x + 2 * cos . x ) / ( sin . x + 2 * cos . x ) / ( sin . x + 2 * cos . x ) ^2 and sin . x = ( 4 * sin . x + 2 * cos . x ) / ( cos . x + 2 * cos . x ) ^2 ; assume that i in dom A and len A > 1 and len B > 1 and B c= the set of ( the set of K ) and A = ( the { of A , the carrier of K ) --> ( the carrier of K ) and B = ( the -F of A ) * ( i , j ) and B = ( the -F of A ) * ( i , j ) ; for i being non zero Element of NAT st i in Seg n holds i divides n or i = n or i = 1 or i <> n & i <> n & i <> n & i <> n & j <> n & j <> n & j <> n implies h . i = <* 1. F_Complex , 1. F_Complex *> or h . j = 1. F_Complex \ <* 1. F_Complex *> & h . i = 1. F_Complex \ <* 1. F_Complex *> ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' b2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a2 'or' b2 ) ) '&' ( a1 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' assume that for x holds f . x = ( ( ( - cot * ( sin + cos ) ) * ( sin + cos ) ) `| Z ) . x and x in dom ( ( - cot * ( sin + cos ) ) * ( sin + cos ) ) and for x st x in Z holds ( ( ( - cot * ( sin + cos ) ) * ( sin + cos ) ) `| Z ) . x = - cos . x ; consider R8 , I8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im 8 ) and I8 = Integral ( M , Im ( F . n ) ) and R8 = Integral ( M , Im ( F . n ) ) ; ex k being Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. q-r - partdiff ( f , q , k ) .|| < r holds ||. partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x6 , x5 , x6 , 7 , 8 , 7 , 8 } iff x in { x1 , x2 , x3 , x4 , x5 , 6 , 7 } or x in { x1 , x2 , x3 , x4 , x5 } or x in { x1 , x2 , x3 , x4 } or x in { x1 , x2 , x3 , x4 } or x in { x4 , x5 , 6 } G * ( j , ii ) `2 = G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 ) `2 .= G * ( 1 , j2 + G * ( 1 , j2 ) `2 .= G * ( 1 , j2 + G * ( 1 , j2 ) `2 .= G f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 , T2 ) -> DecoratedTree means : Def3 : q in it iff q in P & for p st p in P holds p in P or p = q or p = p or p in P & q in P & p in P & q in P & p <> q ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= FA2 . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= FA2 . ( p . ( k + 1 -' 1 ) , k -' 1 ) .= FA2 . ( p . ( k + 1 -' 1 ) , k -' 1 ) .= FA2 . ( p . k , p . ( k + 1 -' 1 ) ) .= FA2 . ( p . k ; for A , B , C being Matrix of n , K st len B = len C & width B = width C & len B = width C & len B > 0 & len A > 0 & len B > 0 & len B > 0 & len A > 0 & len B > 0 & len B > 0 & len A > 0 & width B > 0 & len B > 0 & width B > 0 & len B > 0 & len A > 0 & width B = 0 & width B > 0 & width B > 0 & width B > 0 & width B > 0 & width B > 0 & width B > 0 & width B > 0 & width B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len A > 0 & len A > 0 & width B > 0 & width B > 0 & width B > 0 seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) .= Partial_Sums ( seq ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= Partial_Sums ( seq ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= Partial_Sums ( seq ) . k + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= Partial_Sums ( seq ) . ( k + 1 ) ; assume x in ( the carrier of Cy ) \/ ( the carrier of Cy ) & y in ( the carrier of Cy ) \/ ( the carrier of Cy ) & x <> y & y in the carrier of Cy ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( f /. ( k + 1 ) ) = ( VAL g ) . ( f /. ( k + 1 ) ) '&' ( VAL g ) . ( f /. ( k + 1 ) ) & ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( f /. k ) '&' ( VAL g ) . ( f /. k ) ; assume that 1 <= k and k + 1 <= len f and f is FinSequence of TOP-REAL 2 and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= sn and q `1 / |. q .| - sn and q `2 / |. q .| - sn < 0 and q `1 / |. q .| - sn < sn and q `1 / |. q .| - sn < 0 and q `2 / |. q .| < sn and q `2 / |. q .| < 0 and q `2 < 0 ; for M being non empty TopSpace , x being Point of M , f being Function of M , M st x = x `1 holds ex f being sequence of M st f is sequence of M & for n being Element of NAT holds f . n = Ball ( x `1 , ( 1 / ( n + 1 ) ) * ( 2 * n ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = ( ( f1 - f2 ) `| Z ) . x - ( ( f1 - f2 ) `| Z ) . x / ( ( ( f1 - f2 ) `| Z ) . x ) ^2 ) ; defpred P1 [ Nat , Point of CNS ] means ( $1 in Y & $2 in Y & $2 = ( $1 + 1 ) * ( f /. $1 ) & ( $1 + 1 ) * ( f /. $1 ) < ( f /. ( $1 + 1 ) ) * ( f /. ( $1 + 1 ) ) & ( f /. $1 ) * ( f /. ( $1 + 1 ) ) < ( f /. ( $1 + 1 ) ) * ( f /. ( $1 + 1 ) ) ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 2 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 2 ) .= g . ( i -' len f + 2 ) .= g . ( i -' len f + 2 ) ; ( 1 / 2 * n0 + 2 * ( n + 2 ) ) * ( 2 * n0 + 2 * ( n + 2 ) ) = ( 1 / 2 * ( n + 2 ) ) * ( 2 * ( n + 2 ) ) .= 1 / 2 * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) .= 1 / 2 * ( n + 2 ) * ( n + 2 ) .= 1 / 2 * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) * ( n + 2 * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) * ( n + 2 ) * ( n + 2 * ( n + 2 ) * ( n + 2 ) .= ( n + 2 * ( n + 2 ) .= ( 1 / 2 * ( n + 2 * ( n + 2 ) * ( n + 2 ) .= 1 / 2 defpred P [ Nat ] means for G being non empty finite strict finite symmetric RelStr st G is \rm A1 , , symmetric symmetric RelStr for x being set st x in the carrier of G & x in the carrier of G holds the InternalRel of G = ( the InternalRel of G ) \/ ( the InternalRel of G ) & the InternalRel of G = ( the InternalRel of G ) \/ ( the InternalRel of G ) ; assume that f /. 1 in Ball ( u , r ) and 1 <= m and m <= len ( - 1 ) and for i st 1 <= i & i <= len ( - 1 ) & ( - 1 <= i & i <= len ( - 1 ) holds not ( f /. i ) in Ball ( u , r ) & not ( f /. i ) in Ball ( u , r ) & not ( f /. i ) in Ball ( u , r ) ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) . $1 ) * ( Partial_Sums ( cos ) . $1 ) . ( 2 * $1 ) = ( Partial_Sums ( cos ) . $1 * ( Partial_Sums ( cos ) . $1 ) ) * ( Partial_Sums ( cos ) . $1 ) * ( Partial_Sums ( cos ) . $1 ) . ( 2 * $1 ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & for i being set st i in dom x holds x . i in ( the carrier of product F ) & for i being set st i in dom x holds x . i in ( the carrier of product F ) & x . i = ( the carrier of product F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= ( x " ) * x .= x * x .= x * x .= x * x .= x * x .= x * x .= x * x .= x * x .= x * x .= x * x .= x * x ; DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom f1 /\ dom f2 and for g st g in ]. x0 , x0 + r .[ holds f1 . g <= f1 . g & for g st g in ]. x0 , x0 + r .[ holds f1 . g <= f2 . g & f2 . g <= 0 ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( for x st x in X holds f1 . x = f2 . x ) and ( for x st x in X holds f1 . x = ( - 1 ) * ( - 1 ) ) and ( f1 | X ) . x = ( - 1 ) * ( - 1 ) and ( - 1 ) * ( - 1 ) * ( - 1 ) = ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( - 1 ) * ( ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 ) * ( - 1 for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Element of L & for x being Element of L st x in X holds x is Element of L & x is finite & x is finite Support ( e *' p ) in { m *' p where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m ) & ex i being Element of NAT st i in dom ( m ) & p . i = ( m *' p ) . i & p . i = ( m *' p ) . i & p . i = ( m *' p ) . i & p . i = ( m *' p ) . i ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( f2 /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st p1 = g . p1 & for g being Function of [: [: the carrier of Al , the carrier of Al :] , the carrier of Al :] st P [ g , p1 , g ] holds P [ g , p1 , g ] & P [ g , p1 , g ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. ( len f -' 1 ) *> ) /. j = ( mid ( f , i , len f -' 1 ) ^ mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ^ mid ( f , i , len f -' 1 ) ) /. j .= f /. ( j + 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + ( p ^ r ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) . ( len p + k ) .= ( p ^ r ) . ( len p + k ) .= ( p ^ r ) . ( len len mid ( upper_volume ( D2 , D1 ) , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) - indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) - 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) - 1 ; x * y * z = Mz . ( x * y , z * z9 ) .= x * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * y ) * ( x * z ) .= x * y * z ; v . <* x , y *> - ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - y ) ) * ( ( x - x0 ) * ( ( x - x0 ) * ( y - x0 ) ) + ( ( y - x0 ) * ( y - x0 ) ) * ( y - x0 ) ) + ( ( proj ( 1 , 1 ) * ( y - x0 ) ) * ( y - x0 ) ) + ( ( proj ( 1 , 1 ) * ( y - x0 ) * ( y - x0 ) * ( y - x0 ) ) + ( ( proj ( 1 , 1 ) * ( y - x0 ) * ( y - x0 ) ) * ( y - x0 ) * ( y - x0 ) ) * ( y - x0 ) * ( y - x0 ) ) + ( ( x - x0 ) ) + ( ( x - x0 ) ) + ( ( x - x0 ) * ( x - x0 ) * ( y - x0 ) * ( y - x0 ) * ( x - x0 ) ) + ( ( proj ( 1 , 1 ) * ( y - x0 ) * i * i = <* 0 * ( - 1 ) - 0 * ( 0 * 0 ) + 0 * 0 , 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) + Sum ( L (#) F2 ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of X st Y1 is non empty & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( - 1 ) * ( Y1 ) - ( - 1 ) * ( Y1 ) .| < r * ( Y1 ) ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j ) = f /. ( k + 1 ) ; ( ( cos - cos ) ^2 ) ^2 = ( - ( sin ^2 ) ^2 + ( cos ^2 ) ^2 ) .= ( - ( 1 / 2 ) ^2 ) * ( ( cos ^2 ) ^2 + ( cos ^2 ) ^2 ) .= ( - ( 1 / 2 ) ^2 ) * ( ( cos ^2 ) ^2 + ( cos ^2 ) ^2 ) .= ( - ( 1 / 2 ) ^2 ) * ( ( cos ^2 ) ^2 ) .= ( - ( 1 / 2 ) ^2 ; ( - ( - b ) + sqrt ( integral ( a , b , c ) ) ^2 ) < 0 & ( - ( - b ) + sqrt ( integral ( a , b , c ) ) ^2 ) < 0 or ( - ( - b ) + sqrt ( integral ( a , b , c ) ) ^2 ) < 0 ; assume that ex_inf_of uparrow "\/" ( X , C ) , L and ex_sup_of X , L and "\/" ( X , C ) , L and "\/" ( X , C ) = "/\" ( uparrow "\/" ( X , C ) , L ) and "\/" ( X , C ) = "/\" ( ( uparrow "\/" ( X , C ) ) , L ) and "\/" ( X , C ) = "/\" ( X , L ) ; ( ( for i being Element of NAT st i in the Sorts of B ) holds ( i = j implies ( i = j implies j = i ) ) & ( i = j implies j = i ) & ( j = j implies j = i ) ) & ( j = i implies j = i implies j = i ) )