thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is rng ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is .= X ; assume x in I ; q is as as as Nat ; assume c in x ; of p ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is finite ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is Assume f is Seg one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 + 1 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , ; Q halts_on s ; x in for of of -1 holds x in \in \in that x M < m + 1 ; T2 is open ; z in b \rm \hbox { - } ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o : o <= 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y |^ 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , M be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aZ <= non < \pi ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Subset of V ; s is trivial & s is non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U2 , U1 , U2 ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in `1 /\ L~ x ; 1 <= j9 & j9 <= len f ; set A = st :] ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is has no ex F ; assume n0 <= m ; T is increasing ; e2 <> e1 & e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected in union M ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be ) Int of X , x be element ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v + \HM { v } ; - y in I ; let A be non empty set , f be Function of A , B ; Px0 = 1 ; assume r in F . k ; assume f is simple ; let A be \cdot ^ ; rng f c= NAT ; assume P [ k ] ; ff <> {} ; let o be Ordinal ; assume x is sum of from squares ; assume not v in { 1 } ; let II , A , B ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in d2 ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , X ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is \mathclose hhhz ; assume f is cbrst rst } is crst } ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len f ; f | A is Sum ; f . x being Z <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cj in X ; q2 c= C1 & q2 in C2 ; a2 < c2 & a2 < c1 ; s2 is 0 -started ; IC s = 0 ; s4 `2 = s4 `2 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be <> of L ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y , w is_collinear ; R8 ; let a , b be Real , x be Point of X ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , a be Object of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , n be Nat ; s4 . n = N ; set y = ( x `1 ) / ( 1 + x `1 ) ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in C2 ; V1 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A0 is dense and A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= Z1 & xY c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ^\ k ) is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , i be Nat ; assume r2 > x0 & x0 < r2 ; let Y be non empty set , f be Function of Y , Z ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 /\ dom g2 ; k + 1 in dom f ; the still of s is finite ; assume that x1 <> x2 and y1 <> y2 ; v1 in V1 & v2 in V1 ; not [ b `1 , b `2 ] in T ; i-35 + 1 = i ; T c= and T c= and T is finite ; ( l `1 ) ^2 = 0 ; n be Nat ; ( t `2 ) ^2 = r ^2 ; AA is_integrable_on M & f | A is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; [: C , C :] misses [: V , C :] ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume c2 = b2 & c1 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p01 <> p1 & p2 <> p3 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one , full ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; I be non empty non empty Instruction of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C2 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact ; assume x1 in [: REAL , REAL :] ; p1 `1 = K0 & p2 `2 = p2 `2 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMas is closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= ( seq . 0 ) . 0 ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; [: the carrier of R , the carrier of R :] is stable ; set cR = Vertices R , R = Vertices R ; px0 c= P3 & px0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; A2 = downarrow b & a in the carrier of S ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_equipotent ; assume a in A ( i ) ; k in dom ( q | k ) ; p is \HM of } is FinSequence of S ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 - i2 = 0 ; j2 + 1 <= i2 & j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for REAL ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min ( C ) in C & W-min ( C ) in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n .= dom F ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F .= dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void non empty non void ManySortedSign ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x be Element of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= [: V1 , V1 :] ; assume I is_closed_on s , P & I is_halting_on s , P ; U2 = U2 & U2 = U2 implies U2 is open M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | n ) . x <= ( f | n ) . x ; let l be Element of L ; x in dom ( F | k ) ; let i be Element of NAT ; r8 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in card M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = - { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite over F , A be Subset of V ; A * B on B , A ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F (#) C ) = o ; set S = INT , X = INT ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f /\ dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in II ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 gcd m , i = x0 gcd m ; assume a in { x , y , c } ; j2 - j2 > 0 & j2 - j2 > 0 ; I = I as 1 -element & I = 1 ; [ y , d ] in [: F-8 , F-8 :] ; let f be Function of X , Y ; set A2 = ( B - C ) / ( A , B ) ; s1 , s2 are_\in the carrier of S ; j1 -' 1 = 0 & j2 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 , h = f | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ^2 + ( p2 `2 ) ^2 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len f ; 1 <= i1 -' 1 & i1 + 1 <= len f ; i + i2 <= len h implies i + 1 <= len h x = W-min ( P ) & x in L~ f ; [ x , z ] in X ~ ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . g9 , I = h . x , J = h . y , K = h . z , N = h . x , M = h . y , N card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 , h1 = h2 ** h2 ; assume x in X2 /\ ( X1 union X2 ) ; ||. h .|| < d1 & ||. h .|| < s ; not x in the carrier of f . ( x + 1 ) ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl1 - l ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be + + s ; Q /\ M c= union ( F | M ) f = b * ( CFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , X be Subset of L ; S-20 is x -thesis of x -f1 -basis i let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. Z .= 0. Z ; P [ ( len F ) + 1 ] ; assume InsCode ( i ) = 8 or InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster non empty for Element of \ast S ; reconsider l1 = l- 1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; 3 is SubSpace of T2 & 3 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q1 <> {} ; k be Nat ; q " is Element of X & q is Element of X ; F . t is set of empty \rm \hbox { - } \rm st M , t is_; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) ^2 , ( p `2 ) ^2 ; not r in ]. p , q .[ ; let R be FinSequence of REAL , x be Element of REAL ; S7 does not destroy b1 & S7 does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - - |[ x , y ]| .| >= r ; 1 * ( seq ^\ k ) = seq ^\ k ; let x be FinSequence of NAT , n be Element of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= succ IC s ; H + G = F- ( GG ) ; Cx1 . x = x2 & Cy1 . x = y1 ; f1 = f , f2 = g , f3 = h ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 & d1 , o _|_ a3 , o ; II is reflexive & II is transitive ; IO is antisymmetric implies [: the carrier of X , the carrier of Y :] is antisymmetric upper_bound rng H1 = e & upper_bound rng H2 = e ; x = ( a * ( - 1 ) ) * ( - 1 ) ; |. p1 .| ^2 >= 1 ; assume j2 -' 1 < j2 & j2 + 1 < j2 ; rng s c= dom f1 /\ dom f2 & rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and a <> b ; let L be associative commutative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed I1 = I1 , I2 = I2 , I2 = I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r be Real such that r in A ; cluster non empty -> NAT -defined for Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , 0 ] *> -> complete non trivial ; ( 1 - a " ) * ( 1 - a " ) = a ; ( q . {} ) `1 = o ; n - ( i - 1 ) > 0 ; assume ( 1 / 2 ) <= t `1 & t `2 <= 1 ; card B = k + 1-1 ; x in union rng ( f | X ) ; assume x in the carrier of R & y in the carrier of S ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= the vertices of G ; let G be let G be } wwfinite _Graph ; e , v6 be set , x be set ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* q is divergent_to+infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 , z1 = - z2 , z2 = - z1 , z2 = - z2 ; assume w is \mathop llas of S , G ; set f = p |-count ( t - p ) , g = p |-count ( t - p ) , h = p |-count ( t - p ) , n = p |-count ( t - p ) , n let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , f be Function of X , Y ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is finite implies p is non empty & p is non empty stop I ( ) c= PGij ( ) ; set ci = f^ ( f /. i ) ; w ^ t ^ s ^ ( p ^ q ) ^ q ^ s ^ p ^ q ^ q ^ ( p ^ q ) ^ ( p ^ q ) ^ ( p ^ q ) ^ ( p W1 /\ W = W1 /\ W ` .= the carrier of W1 ; f . j is Element of J . j ; let x , y be \rm \rm \rm \hbox { - } of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 implies c <> 0 ord x = 1 & x is not a ; set g2 = lim ( seq ^\ k ) , g1 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . F-21 = 1 ; x1 \/ R1 = x1 & y1 = x2 ; ( ( sin (#) sin ) `| Z ) . x <> 0 ; ( ( #Z n ) * ( f ^ ) ) . x > 0 ; o1 in ( X /\ O2 ) /\ ( X /\ O2 ) ; e , v6 be set , x be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ( L ) ) ; let J be closed non empty Subset of R ; h . p1 = f2 . O & h . O = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M .= len ( p | i ) ; the carrier of LK c= A & the carrier of LK c= A ; dom f c= union rng ( F | X ) ; k + 1 in support ( ( support ( n ) ) | k ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( an \/ { y } ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = b mod n ; h . x2 = g . x1 & h . x2 = f . x2 ; F c= 2 -tuples_on the carrier of X reconsider w = |. s1 .| as Real_Sequence ; ( 1 / m * m + r ) < p ; dom f = dom ( I --> ( a , b ) ) ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - x -> ExtReal for ExtReal ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M , a be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u + v in W2 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of [: T , T :] ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x `1 , y ) < ( r / 2 ) ; reconsider mm = m , mn = n as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 + r2 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `2 ) , g2 = p * idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . I8 in { x } & D2 . I8 in { x } ; cluster subcondensed condensed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; n be Element of NAT , p be Point of TOP-REAL n ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , a be Int-Location ; let t be 0 -started State of SCMPDS , Q be State of SCMPDS ; b , b , x , y , z is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt ( c ^2 - 1 ) / sqrt ( 1 - c ^2 ) ) ; reconsider t7 = T7 as TopSpace , T7 = T7 as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y2 , y1 ) /\ Q2 & z2 in Q /\ Q2 ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 .= len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume p2 `1 = ( E-max ( K ) ) `1 & p2 `2 <= ( E-max ( K ) ) `1 ; len G + 1 <= i1 + 1 ; f1 (#) f2 /* x0 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster s-10 + s-10 - p -> summable ; assume that j in dom M1 and i = len M1 ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - 4 * ( a * c ) >= 0 ; <* xx : <* y *> ^ <* y *> Q Q Q Q Q Q Q Q Q [ x ] } P ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* J ; consider w being Nat such that q = z + w ; x ` is Element of x implies x ` is Element of X k = 0 & n <> k or k > n ; then X is discrete for A is closed ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= 1 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the TopStruct of TOP-REAL n ; N , M be \mathbin >= >= >= L ; then z is_>=_than waybelow x /\ compactbelow y ; M | M = f & M | [. g , g .] = g ; ( ( ( TOP-REAL 1 ) | 1 ) /. 1 ) = TRUE ; dom g = dom f /\ X .= dom f /\ X ; mode : such that G is ^ of W , G ; [ i , j ] in Indices ( M * ( i , j ) ) ; reconsider s = x " , t = y " as Element of H ; let f be Element of ( dom ( f | ( dom f ) ) ) , p be Element of ( dom f ) ; F1 . ( a1 , - a2 ) = G1 . ( a1 , - a2 ) ; redefine func Sphere ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 - f2 ) ) ; curry ' ( F-19 , k ) is additive ; set k2 = card dom B , k2 = card dom C , k2 = card card D ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as of G ; let a , b be Element of ML , f be Function of ML , M ; reconsider s1 = s , s2 = t as Element of ( S ) * ; rng p c= the carrier of L & p . ( len p ) = p . ( len p ) ; let d be Subset of the bound of A ; ( x .|. x = 0 iff x = 0. W ) ; I-21 in dom stop I & card I-21 = card I + 1 ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | D ; reconsider i0 = len p1 , j1 = len p2 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( ( the carrier of J ) --> { x } ) cluster All ( x , H ) -> non empty for set ; d * N1 / ( 2 * n ) > N1 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 , h = f " D2 , f = f " D2 ; dom ( p | mm1 ) = mm1 .= dom ( p | mm1 ) ; 3 + - 2 <= k + - 2 & - 2 <= k + - 2 ; tan is_differentiable_in ( ( arccot * arccot ) `| Z ) . x ; x in rng ( f /^ ( n + 1 ) ) ; let f , g be FinSequence of D ; [: p , q :] in the carrier of S1 & [: p , q :] in the carrier of S2 ; rng f " = dom f & rng f = dom f ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G - 1 & width G - 1 < width G ; assume v in rng ( S | E1 ) & v in rng ( S | E1 ) ; assume x is root or x is root & x is root ; assume 0 in rng ( g2 | A ) & 0 < r ; let q be Point of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , a , b be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 ( C ) ; i <= len ( G-6 /^ 1 ) + 1 ; let p be Point of TOP-REAL 2 , a , b be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < x0 } ; Q2 = Sthesis " ( Q ) .= ( the carrier of S ) \/ Q ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) (#) ( 1 / 2 ) is summable ; - p + I c= - p + A implies - p + I c= - p + I n < LifeSpan ( P1 , s1 ) + 1 & I ( ) . a = s . a ; CurInstr ( p1 , s1 ) = i .= CurInstr ( p2 , s2 ) ; A /\ ( Cl { x } \ { x } ) <> {} ; rng f c= ]. r , r + 1 .[ /\ dom f ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z as Element of CompactSublatt L , x be Element of L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be subcategory of C , a be object of C1 , b be object of C2 ; reconsider V1 = V , V1 = V as Subset of X | B ; attr p is valid means : Def3 : All ( x , p ) is valid ; assume that X c= dom f and f ^ \circ X c= dom g ; H |^ a " is Subgroup of H & H |^ a = H ; let A1 be p1 of O , E be Element of E ; p2 , r3 , q2 is_collinear & q1 , q2 , q2 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } \/ { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 in M . ( E . n ) & M . ( E . n ) < M . ( E . n ) ; ^ ( c , b ) / ( c , a ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> on \mathbin ' -' being for Lattice of L ; set i1 = the Nat , i2 = the Element of NAT , x = [ x , y ] ; let s be 0 -started State of SCM+FSA , a be Int-Location ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f ) ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def3 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of Y ; cluster -> non \rm \rm A1 -> non \rm \rm \rm \rm \hbox { - } \sum f -> non empty ; set S = <* Bags n , i *> , T = <* i *> , S = <* i *> , T = <* i *> , S = <* i *> , T = <* i *> , T = <* i *> , S = i , set T = [. 0 , 1 / 2 .] , S = [. 1 / 2 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f2 ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f \/ Support ( f , T ) ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & len <* P *> = 1 ; set N-26 = the Element of the seq of N , N-26 = the seq of N ; len g\vert + ( x + 1 ) - 1 <= x ; not a on B & b on B & c on B ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a D is_less_than c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ( n |-> p ) ; set q2 = Int L~ Cage ( C , n ) , q2 = ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . q2 ; f " D meets h " ( V /\ W ) & f " D meets h " ( V /\ W ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) & ( the_right_argument_of H ) '&' ( the_right_argument_of H ) = ( the_right_argument_of H ) '&' ( the_right_argument_of H ) assume t is Element of ( S , X ) . s & t is Element of ( S , X ) . s ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( thesis - k ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { i } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = p1 . i & p1 . i = p1 . i ; let PA , G be a_partition of Y , A be Subset of Y ; pred 0 < r & r < 1 implies 1 < ( 1 - r ) / 2 ; rng ( ( a , X ) --> ( a , b ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( ( canFS ( s ) ) | ( n + 1 ) ) = card ( n + 1 ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q is finite ; dom ( f | u ) c= dom ( f | u ) & dom ( f | v ) c= dom f ; redefine pred n divides m & m divides n implies n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in ' ( the carrier of T2 , the carrier of T2 ) ; not y0 in the still of f & not y0 in the carrier of f ; Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f ; consider c , d such that dom f = c \ d and dom f = c \/ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = Let x , S2 = y , S2 = z ; l1 = m2 & l2 = i2 & l2 = j2 implies l1 = i2 x0 in dom ( u + v ) /\ ( dom ( v + u ) ) ; reconsider p = x , q = y , r = z as Point of Euclid 2 ; I[01] = R^1 | ( B , B ) & R^1 | ( B , B ) is continuous ; f . p4 `2 <= f . p1 `2 & f . p2 `2 <= f . p1 `2 ; ( ( F . x ) `1 ) ^2 <= ( ( F . x ) `2 ) ^2 ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset-Family of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K .= ( 0 -tuples_on the carrier of K ) --> a ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] & Q [ succ a ] ; reconsider s\mathclose = s\hbox { a } as w of D , a be Element of D ; ( - i ) <= len ( - j ) ; [#] S c= [#] the TopStruct of T & [#] S is SubSpace of the TopStruct of T ; for V being strict RealUnitarySpace holds V in being Subspace of V implies V in the carrier of W assume k in dom mid ( f , i , j ) & k + 1 in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K , n , m be Nat ; - a * - b = a * b & - a * - b = - a * b ; for A being Subset of AS holds A // A implies A is being_line ( for o2 being object of o2 st o2 in <^ o2 , o2 ^> holds [ o2 , o2 ] in f . ( o1 , o2 ) ) ; then ||. x .|| = 0 implies x = 0. X & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len upper_volume ( g , D1 ) & indx ( D2 , D1 , j ) <= len upper_volume ( g , D1 , j ) ; b = Q . ( len Q - 1 + 1 ) .= Q . ( len Q - 1 ) ; f2 * f1 /* s is divergent_to+infty & f2 * f1 is divergent_to+infty ; reconsider h = f * g as Function of [: N2 , I[01] :] , G ; assume that a <> 0 and Let a , b , c ; [ t , t ] in the Relation of A & [ t , t ] in the carrier of B ; ( v |-- E ) | n is Element of ( T . n ) -tuples_on the carrier of T ; {} = the carrier of L1 + L2 & { v } is Subset of L1 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p1 = p +* I ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p , L ) \ { p } <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & [ s , 1 ] in the carrier of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( P + Q ) + len ( P + Q ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x3 `2 ) ^2 .= ( x2 `1 ) ^2 + ( x3 `2 ) ^2 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 } ; let x , y be Element of FT1 ( n ) , n be Element of NAT ; p = |[ p `1 , p `2 ]| & p `2 = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h * h .= h " * g * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " * ( R " ) .= R " * ( R " ) ; n in Seg ( len ( f /^ n ) ) & ( f /^ n ) . n = p ; for s be Real st s in R holds s <= s2 implies s1 <= s2 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for for for X being Subset of 2 , A being Subset of X holds A is finite ; 1_ K * 1_ K = 1_ K & 1_ K * 1_ K = 1_ K ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w / f ) . w & w in F ; curry ' ( P+* ( i , k ) ) # x is convergent ; cluster open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) , s be Element of S ; b1 , c1 // b9 , c & b1 , c1 // b9 , c ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) = 0 ; Reloc ( J , card I + 1 ) does not destroy a ; goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , s3 = Comput ( p3 , s3 , 1 ) , P3 = P3 ; IC SCMPDS in dom Initialize p & IC SCMPDS in dom Initialize p & IC SCMPDS in dom Initialize p ; dom t = the carrier of SCM & dom t = the carrier of SCM & t . {} = s . {} ; ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union Int F ) c= Cl ( Int union F ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) union ( X2 union X1 ) ) ; assume not LIN a , f . a , g . a , g . a ; consider i being Element of M such that i = dI and i in A ; then Y c= { x } or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H ; consider m be element such that m in Intersect ( FF . m ) and x = Intersect ( FF . m ) ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -\bf -> string for string of S ; Ln2 /. n2 = Ln2 . n2 .= Ln2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; assume r-7 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , p be Point of TOP-REAL n ; assume that [ k , m ] in Indices ( ( - 1 ) * ( i , j ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / p ; ( F . N | E8 ) . x = +infty ; pred X c= Y means : Def3 : Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card ( X-18 ) <= card ( u \/ { v } ) ; set g = z \circlearrowleft ( ( E-max L~ z ) .. z ) ; then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -function of X , the carrier of S ; reconsider B = A as non empty Subset of TOP-REAL n , p be Point of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , f be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - indx ( D2 , D1 , j1 ) + 1 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . I ) `1 = - 1 ; j + p .. f -' len f <= len f -' len f + 1 - len f ; set W = W-bound C , E = E-bound C , G = Gauge ( C , n ) ; S1 . ( a `1 , e `2 ) = a + e .= a `1 ; 1 in Seg width ( ( M * ( ColVec2Mx p ) ) * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f , x ) ) = dom Im ( f , x ) ; that ^2 . ( x `2 ) = W . ( a , *' ( a , p ) ) ; set Q = ( -> Element of \rm \rm \rm : _ 0 ( g , f , h ) ) ; cluster -> topological for ManySortedSet of U1 , B be ManySortedSet of U2 ; attr F = { A } means : Def3 : F is discrete ; reconsider z9 = \hbox { y } as Element of product ( G . i ) ; rng f c= rng f1 \/ rng f2 & f1 . 0 = f1 . 1 \/ f2 . 2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f = <*> the carrier of F_Complex implies f = <*> the carrier of F_Complex E , j |= All ( x1 , x2 , x3 , x4 ) implies E , j |= H reconsider n1 = n , n2 = m , n3 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies card ( x \ B1 ) = 0 g + R in { s : g-r < s & s < g + r } ; set q0x0 = ( q , <* s *> ) \mathop { 1 } ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , dom ( R | NAT ) ) ; t in Seg width ( I ^ ( n , n ) ) & t in Seg n ; reconsider X = dom f /\ C , Y = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% - l , - l , - l , - l %> + k ; ( S-bound L~ f ) `2 <= ( q `2 ) ^2 & ( q `2 ) ^2 <= ( q `2 ) ^2 ; attr R is condensed means : Def3 : Int R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ j ; len C + - 2 >= 9 + - 3 + - 3 ; x , z , y is_collinear & x , z , z is_collinear implies x , y , z , x is_collinear a |^ ( n1 + 1 ) = a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set y9 = <* y , c *> ; Fk2 /. 1 in rng Line ( D , 1 ) & Fk2 /. 1 in rng Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; ( p `2 ) ^2 = ( f /. i1 ) ^2 + ( f /. i2 ) ^2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u , v2 = v as VECTOR of P`1 ( X , Y ) ; p |-count ( Product Sgm ( X11 ) ) = 0 & p |-count ( Product Sgm ( X11 ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ik2 = card I + 4 .--> goto 0 , ik2 = goto ( 0 + 4 ) ; x in { x , y } & h . x = {} ( Ty , Ty ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of ( ( the charact of A ) . 0 ) ) .= len the charact of ( A . 0 ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : ( G is : ( G is finite ) & ( G is finite ) ) ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; P is and P is and for K , n , r being FinSequence st P is every FinSequence of K holds P is FinSequence of K f . k , f . ( Let ( Let n ) + 1 ) in rng f ; h " P /\ [#] ( T1 | P ) = f " P /\ [#] ( T1 | P ) ; g in dom f2 \ ( f2 " { 0 } ) & ( f2 " { 0 } ) " { 0 } c= dom f2 ; g+ gX /\ dom f1 = g1 " X & gX /\ dom f1 = dom g1 ; consider n being element such that n in NAT and Z = G . n ; set d1 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) ; b `1 + ( 1 / 2 ) < ( 1 / 2 ) + ( 1 / 2 ) ; reconsider f1 = f , f2 = g as VECTOR of the carrier of X , Y ; pred i <> 0 means i ^2 mod ( i + 1 ) = 1 ; j2 in Seg ( len ( g2 . i2 ) ) & j2 = ( g2 . i2 ) . j2 ; dom ( i ) = dom ( i ) .= a .= dom ( i ) .= a ; cluster sec | ]. PI / 2 , PI .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) .= Ball ( u , e ) ; reconsider x1 = x0 , y1 = x1 , y2 = x2 as Point of S ; reconsider R1 = x , R2 = y , R1 = z as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RH ; S1 +* S2 = S2 +* S2 +* S2 +* S2 & S2 +* S2 +* S2 = S1 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( #Z n ) * ( ( cluster -> continuous for Function of C , REAL , x be Real ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; Ea1 . e2 = E8 . e2 & E8 . e2 = E8 . e2 ; ( ( ( arctan * ( f1 + f2 ) ) `| Z ) = f ; upper_bound A = ( PI * 3 / 2 ) * ( 2 * PI ) & lower_bound A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F ) & F . ( dom f , - F ) = F . ( dom f , - F ) ; reconsider pbeing being Point of TOP-REAL 2 , q = ( q `2 / |. q .| - sn ) / ( 1 + sn ) as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & [#] Y0 c= [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) \/ LSeg ( g , i ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & f . x0 < 0 ; assume x in { idseq ( 2 ) , Rev ( idseq ( 2 ) ) } ; reconsider n2 = n , n2 = m , n3 = n + 1 as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y implies g <= y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: ( the carrier of X1 ) , BX1 = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume that R " ( a ) c= R " ( b ) and R " ( a ) c= R " ( b ) ; t in ]. r , s .[ or t = r or t = s & t < s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] & P [ y2 , x2 ] ; pred x1 <> x2 means : Def3 : |. x1 - x2 .| > 0 & |. x2 - y2 .| > 0 ; assume p2 - p1 , p3 - p1 - p2 , p4 - p1 - p1 , p1 - p2 - p1 , p3 - p1 - p1 is_collinear ; set q = ( be non empty v ^ <* 'not' A *> ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( succ t ) ) = dom ( succ t ) .= dom ( T . ( t + 1 ) ) ; consider x being element such that x in wc and x in c ; assume ( F (#) G ) . v . x3 = v . x3 & ( F (#) G ) . x3 = v . x4 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D2 c= the carrier of D1 and the carrier of D2 c= the carrier of D2 ; reconsider A1 = [. a , b .[ , B1 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , G = Gauge ( C , n ) * ( i , 1 ) , G = Gauge ( C , n ) * ( i , 1 ) , G = Gauge ( C , n ) * ( i , 1 ) , G = Gauge ( C , n ) * ( i , n1 -' len f + 1 <= len ( g | n1 ) + 1 - len f ; \lbrace EqClass ( q , O1 ) , [ a , v , a , b ] } = { [ u , v , a , b ] } ; set C-2 = ( ( n + 1 ) .--> ( G . ( k + 1 ) ) ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * Sum p .= Sum ( L (#) p ) ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 + 1 <= len f ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P2 , s2 , k ) , s4 = Comput ( P2 , s2 , k + 1 ) , P4 = Comput ( P2 , s2 , k + 1 ) , P4 = Comput ( P2 , s2 , k + 1 ) , P4 let l be variable of k , A , AA be Subset of k , x be element ; reconsider U2 = union G-24 , G-24 = union G-24 as Subset-Family of [: T , T :] ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; pccc: ( p , c ) = <* - 1 , 1 *> .= ( - 1 ) * ( - 1 ) ; synonym f is real-valued means : Def3 : rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x10 < card X0 + card Y0 & card ( Y0 \/ Y0 ) <= card X0 + 1 ; attr X c= B1 means : Def3 : for B st B c= succ B1 holds X c= succ B & X c= B ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; pred 1 <= len s means : Def3 : for i being Element of NAT holds ( for j being Element of NAT st j <= i holds s . j = F ( j ) ) ; f[: f , k :] c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in TAUT ( A ) means : Def3 : q '&' p in TAUT ( A ) & q '&' p in TAUT ( A ) ; - ( t `1 / t `2 ) < ( t `2 / t `1 ) / t `1 ; ( ( U1 ) . 1 ) `1 = ( ( U1 /. 1 ) `1 ) `1 .= ( ( U1 /. 1 ) `1 ) `1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( ( n + 1 ) -tuples_on the carrier of K ) = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) then V in M .: \square & ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is is \cup & f is is \setminus & f is \setminus closed ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = |[ w1 , v1 ]| ; reconsider t = t as Element of INT * , n , m be Element of INT ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) \/ [#] GX ; f " V in ( the topology of X ) /\ D & f " ( the topology of X ) /\ D = D ; x in [#] ( the carrier of A ) /\ delta ( A ) implies x in [#] ( the carrier of A ) /\ A g . x <= h1 . x & h . x <= h1 . x implies h . x <= h . x InputVertices S = { xy , y , z } \/ { xy , y , z } \/ { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = ( Line ( M , i ) * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M1 is being_line and M2 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len F1 ^ F2 ) .= len ( Len F1 ) + len ( Len F2 ) ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom max ( f , g ) = dom ( f + g ) .= dom f /\ dom g ; ( for n be Nat holds seq . n = upper_bound Y1 ) implies for n be Nat holds seq . n = upper_bound Y1 dom ( p1 ^ p2 ) = dom ( f ^ <* p *> ) .= dom ( f ^ <* p *> ) .= dom f ; M . [ 1 / y , y ] = 1 / ( 1 - y ) * v1 .= 1 / ( 1 - y ) * v1 ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and W .vertices() c= the carrier' of G2 ; C6 * ( i1 , i2 ) `1 = G1 * ( i1 , i2 ) `1 .= G1 * ( i1 , i2 ) `1 ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\lbrace b - a , b + a .[ <= b - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ [: l , k :] ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in such that p in LSeg ( x , p ) and p in L~ f ; Indices ( ( X @ ) * ( i , j ) ) = [: Seg n , Seg n :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is measurable of E , REAL & ( Partial_Sums F ) . m is measurable ; cluster f . ( x1 , x2 ) -> Element of D * & f . ( y1 , y2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( Int Z ) , ( ( Int Z ) ` ) / 2 ) implies LSeg ( p , q ) c= LSeg ( p , q ) set R8 = R / 1 , R8 = ]. b , +infty .[ , R8 = ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , db ) .= SubFrom ( da , db ) .= goto - ( card I + 1 ) ; seq . m <= ( ( the Sorts of A ) * ( seq ^\ k ) ) . n & ( ( seq ^\ k ) * ( seq ^\ k ) ) . n <= ( ( seq ^\ k ) * ( seq ^\ k ) ) . n ; a + b = ( a ` *' b ) ` .= ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id X /\ id Y .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable set of R such that card A = len R and card A = 1 ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min P ) `2 ) = ( ( N-min P ) `2 ) & ( ( N-min P ) `2 ) = ( ( E-max P ) `2 ) ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a2 = f . a2 ` & f . a2 = f . a2 ` ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 | G . s0 ; the InternalRel of S is \lbrace x , y } & the InternalRel of S is transitive ; deffunc F ( Ordinal , Ordinal ) = phi . ( $2 , $1 ) & phi . ( $2 , $2 ) = phi . ( $2 , $2 ) ; F . a1 = F . s2 & F . a1 = F . a1 & F . a2 = F . a2 ; x `2 = A . o . a .= Den ( o , A . a ) ; ( Cl f ) " P1 c= f " ( Cl P1 ) & ( Cl f ) " P1 c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) \/ { i } ) c= the topology of T ; synonym o is \bf means : Def3 : o <> \ast & o <> * & o <> * ; assume that X c= Y + X and card X <> card Y and card Y <> card X and card X = card Y ; the { F of s <= 1 + ( the *> of s ) & ( the { F } , s ) `2 = ( the Element of s ) `2 ; LIN a , a1 , d or b , c // b1 , c1 & a , b // b1 , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; ES1 in SS1 & ES2 in SS2 implies ES1 in { NS1 } set J = ( l , u ) If , K = ( l , u ) If , L = ( l , u ) If , M = ( l , u ) If , N = ( l , u ) If , N = ( l , u ) If ) ; set A1 = } , A2 = [ <* a9 , b9 , c *> , A2 = [ <* b9 , c *> , d ] , A2 = [ <* c , d *> , e ] ; set vs = [ <* xy , } , <* ] , '&' , sin ] , xy = [ <* A1 , cin *> , '&' ] , yz = [ <* A1 , cin *> , '&' ] , A1 = [ <* 8 , A1 *> , '&' ] , A2 = [ <* A1 , 8 *> , '&' ] , A2 = [ <* 8 , 8 *> , '&' x * z ` * x " in x * ( z * N ) * x " * x " ; for x being element st x in dom f holds f . x = g9 . x & f . x = g2 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ RightComp f \/ RightComp f \/ RightComp f \/ RightComp f U2 is closed & ( W-min C ) `1 <= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; set f-17 = f @ "/\" g @ ; attr S1 is convergent means : Def3 : S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \in be be be be be be be be reflexive transitive RelStr , F , G be non empty reflexive transitive non empty reflexive RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a , ( A * ) .--> x ) = len l & len ( l * a ) = len l ; t4 \+\ {} is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng ( {} \/ rng ( {} \/ rng ( {} \/ rng ( {} \/ rng ( {} \/ rng ( {} \/ rng ( {} \/ rng ( {} \/ rng p ) ) ) ) ) ) ) * p ; t = <* F . t *> ^ ( C . p ^ q ) .= ( C . p ^ q ) ^ ( C . q ^ r ) ; set p-2 = W-min L~ Cage ( C , n ) , p-2 = W-bound L~ Cage ( C , n ) , p-2 = W-bound L~ Cage ( C , n ) ; ( k -' ( i + 1 ) ) - ( i + 1 ) = ( k - ( i + 1 ) ) - ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D ` and u in D ; len ( ( width ( ( a - b ) |-> ( a - b ) ) + ( b - a ) ) ) = width ( ( a - b ) |-> ( a - b ) ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) & ( ( G * the_arity_of o ) . x ) . x = ( G * the_arity_of o ) . x ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= Comput ( P , s , 6 ) . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) + 1 ; dom ( ( ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) * ( ( 1 / 2 ) * ( 1 / 2 ) ) ) ) ) `| REAL ) ) = REAL ; cluster <* l *> ^ phi -> ( 1 + not ( n + 1 ) ) -element for string of S ; set b5 = [ <* a, A1 *> , <* A1 , A2 *> , <* A1 , A2 *> ] , b5 = [ <* A1 , A2 *> , <* A2 , A1 *> ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * ( Sgm Q ) . x .= Line ( M , i ) ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( ( the Sorts of A ) * ( the_arity_of o ) ) . n = ( the Sorts of A ) . n ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y and ||. y - x .|| <= r ; set x3 = t3 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( P1 , s1 , 2 ) . SBP , s4 = Comput ( P2 , s2 , 2 ) . SBP , P4 = Comput ( P2 , s2 , 2 ) . SBP , P4 = Comput ( P2 , s2 , 2 ) . SBP , P4 = Comput set p-3 = stop I ( ) , p-3 = Initialize s ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a in W1 ; { A , B , C , D , E } = { A , B } \/ { C , D } let A , B , C , D , E , F , J , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , N , M , N , N , N , M , N , N , M , N , N , M , |. p2 .| ^2 - ( ( p2 `2 ) ^2 + ( p2 `2 ) ^2 ) >= 0 ; l -' 1 + 1 = n-1 * ( x + ( - 1 ) ) + ( - 1 ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = TopSpaceMetr ( the TopStruct of L ) & the TopStruct of L = TopSpaceMetr ( the TopStruct of L ) ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H2 ; ff \ { n } = ( \mathop { v1 , v2 } \/ { v1 } ) \/ ( { v2 } \/ { v1 } ) ; for Y being Subset of X st Y is summable holds Y is iff Y is iff X is element 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of s } ) = len s & len ( the { s } ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 ; j + ( len f ) - len f <= len f + ( len g ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . x0 .= ( s1 . x0 ) * ( s2 . x0 ) .= ( s2 . x0 ) * ( s2 . x0 ) ; power F_Complex . ( z , n ) = 1 .= ( x |^ n ) |^ ( z , n ) .= ( x |^ n ) |^ ( z , n ) ; t at ( C , s ) = f . ( the connectives of S ) . t & t at ( C , s ) = f . t ; support ( f + g ) c= support f \/ support g & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] , [ y1 , y2 ] } is Subset of [: X1 , X2 :] ; h . i = ( j |-- h , id B ) . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in A ; set X = ( ( \lbrace q , O1 , O1 , O2 , O2 , O1 } ) . [ q , p , q ] ) ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = lim ( f /* s1 ) the lattice of Y = the lattice of the lattice of Y & the carrier of Y = the carrier of X & the carrier of Y = the carrier of Y ; ( 'not' a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( b . x ) = FALSE ; q2 = len ( q0 ^ r1 ) + len q1 .= len q1 + len q2 + len q2 .= len q1 + len q2 + len q2 ; ( 1 / a ) (#) ( sec * f1 ) - id Z * ( ( 1 / a ) (#) ( sec * f1 ) ) is_differentiable_on Z ; set K1 = integral ( ( lim ( lim ( H , A ) ) || ( A , B ) ) , D2 ) , A = ( ( lim ( H , A ) ) || ( A , B ) ) || ( A , B ) ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d7 = dom F `1 , d7 = dom F `1 , d7 = dom F `1 , d8 = dom F `1 , d7 = dom F `1 , d8 = dom F `1 , d8 = dom F `1 , d8 = dom F `1 , d8 = dom F `1 , d8 = dom F `1 LSeg ( f /^ j , j ) = LSeg ( f , j + q .. f ) .= LSeg ( f , j + q .. f ) ; assume X in { T . N2 , K : h . N2 = N2 & h . I = I } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom Sspace = dom S /\ Seg n .= dom ( L | n ) .= dom ( L | n ) .= dom ( L | n ) .= dom ( L | n ) ; x in H |^ a implies ex g st x = g |^ a & g in H & a in H a * ( 0. INT ) . ( a , 1 ) = a `1 - ( 0 * n ) .= a `2 - ( 0 * n ) ; D2 . j in { r : lower_bound A <= r & r <= upper_bound A } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ g ^ @ f = g ^ @ f dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom f1 /\ X ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 + 1 .= len f + 1 ; dom ( F-11 | [: N1 , S :] ) = dom ( F | [: N1 , S :] ) .= [: N1 , S :] ; dom ( f . t ) * I . t = dom ( f . t ) * g . t .= dom ( f . t ) * I . t ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D & b in ( the carrier of S ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f * f `2 = id a and f is one-to-one ; ( ( cos | [. 2 * PI , 0 + 1 .] ) | [. 0 , 1 .] is increasing ; Index ( p , co ) <= len LS - Index ( Gij , LS ) + 1 & Index ( Gij , LS ) + 1 <= len LS ; let t1 , t2 , 3 be Element of ( the carrier of S ) * , s be Element of ( the carrier of S ) * ; \langle -> Element of ( Frege ( curry ( curry H ) ) ) . h , ( Frege ( curry G ) ) . h *> <= J . j ; then P [ f . i0 , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) , f . ( i0 + 1 ) Q [ ( D . ( x , 1 ) ) `1 , F ( x , 1 ) ) `1 , F ( x , 2 ) ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is for i holds r . i is for of G . i , G . i the Sorts of A2 = ( the carrier of S2 ) --> { the carrier of S } .= the carrier of S ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a , b2 ) <= dist ( a , b2 ) + dist ( b , b1 ) ; ( for n holds ( C /. ( len C ) ) /. n = W-min L~ Cage ( C , n ) ) implies ( C /. ( len C ) ) /. n = W-min L~ Cage ( C , n ) q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP L~ Cage ( C , 1 ) ) `2 <= ( UMP L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} implies LSeg ( f | i2 , j ) = {} given a be ExtReal such that a <= II and A = ]. a , II .] and a < II and a <= b ; consider a , b be complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= m } , Y = { b |^ n where m is Element of NAT : m <= n } ; ( ( x * y * z ) \ x ) \ z = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , zx = [ <* z , x *> , f3 ] , f4 = [ <* x , y *> , f3 ] , f4 = [ <* z , x *> , f3 ] , f4 = [ <* x , y *> , f3 ] , f4 = [ <* z , x *> Uq /. ( len ( l ) ) = ( l . ( len ( l ) ) ) `1 .= ( l . ( len l ) ) `1 ; ( ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 = 1 ; ( ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( ( S \/ Y ) \/ X ) \/ Y ) \/ X ) `2 = ( ( ( S \/ Y ) \/ X ) \/ Y ) `2 .= ( ( ( S \/ Y ) \/ X ) \/ X ) `2 ; ( ( s1 - s2 ) . k ) . k = ( s1 . k - s2 . k ) . k .= ( s1 . k - s2 . k ) . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X0 = the carrier of X0 & the carrier of X0 = the carrier of X0 implies X = the carrier of X0 ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = 1 ; set ch = chi ( X , A ) , Ah = chi ( X , A ) , Ah = chi ( X , A ) ; R |^ ( 0 * n ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ n ; ( Partial_Sums ( curry ( F-19 , n ) ) ) . n is nonnegative implies ( ( curry ( F-19 , n ) ) . n ) . x = ( ( Partial_Sums ( curry ( F-19 , n ) ) ) . x ) . x f2 = C7 . ( E7 , K ) .= C7 . ( E7 , K ) .= ( the carrier of K ) --> ( f , g ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p10 ) \/ LSeg ( p10 , p2 ) /\ LSeg ( p1 , p10 ) \/ LSeg ( p10 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 11 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) \mathop { {} } , phi = ( l1 , l2 ) \mathop { {} } , N = S S , M = S S S S S S , N = S S , M = S S , N = S S , M = S S , N = S S , M = S S , N = S , N = S , M = S , N = S , M = synonym p is is is invertible for p = 1 implies ( p - q ) / ( p - q ) = 1 / p ; ( Y1 `2 = - 1 ) & ( 0. TOP-REAL 2 ) <> ( Y1 `2 or ( Y1 `1 = - 1 ) & ( - 1 ) * ( Y1 `2 ) <> 0. TOP-REAL 2 ) implies Y1 is not empty defpred X [ Nat , set , set ] means P [ $1 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 , $2 consider k being Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) * ( m -' n ) = 1. K & Det I * ( m -' n ) = 1. K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cd . d = Cd . d mod Cd . e & Cd . e mod Cd . e = Cd . e mod Cd . e - Cd . e mod Cd . e mod Cd . e mod Cd . e mod Cd . e - 1 mod Cd . e mod Cd . e mod Cd . e mod Cd . e mod Cd . e ) attr X1 is dense means : Def3 : X1 is dense dense & X2 is dense implies X1 /\ X2 is dense SubSpace dense SubSpace SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = ( $1 * $2 ) * ( ( $1 * $2 ) * ( ( $1 * $2 ) * ( ( $1 * $2 ) * ( $2 ) ) ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T ( ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set for X being Subset-Family of X holds for Y being Subset-Family of X holds Y is Basis of [: X , FinMeetCl Y :] synonym A , B are_separated means : Def3 : Cl ( A , B ) misses Cl ( B , C ) & A misses Cl ( B , C ) ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & v . x = 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( support ( m ) ) . e ) . d <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . y = ( h . y ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & ( <* 1 *> ^ w ) ^ s = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) + n .= 0 ; IC Comput ( P , s , 1 ) = succ IC s .= ( 5 + 9 ) .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( 8 + 1 ) = t . intpos ( 8 + 1 ) .= t . intpos ( 8 + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) .= f . ( lower_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & ( F ^ G ) ^ <* G *> is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y in d and x \not c= d ; for y , x being Element of REAL st y in Y & x in X holds y `1 <= x `1 + x `2 func |. p \bullet |. p .| -> variable of A means : Def3 : for x being element st x in it holds it . x = min ( NBI ( p ) , p ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 , z `2 '||' y `2 , t `2 ; dom x1 = Seg ( len x1 ) & len x1 = len y1 & for i st i in Seg ( len x1 ) holds x1 . i = y1 . i ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 and not ( ex y1 , y2 st y1 in X & y2 in X ) ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X = ||. f .|| | X & ||. f .|| | X = ||. f .|| | X ; ( the InternalRel of A ) ` /\ Y ` = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume that i in dom p and for j be Nat st j in dom q holds P [ i , j ] and for i be Nat st i in dom p & i + 1 in dom p holds P [ i , j ] ; reconsider h = f | X ( ) , g = ( f | X ( ) ) | X ( ) as Function of X ( ) , Y ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 implies ( u1 + u2 ) + ( v1 + v2 ) = u1 + u2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y ) = - x + - ( - y ) .= - x + - y .= - x + - y .= x + y .= x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_ed ed and a , x are_ed ed ; fSet = [ [ dom ( f1 , f2 ) , cod ( f2 , g2 ) ] , h2 ] , h2 = [ cod ( f1 , f2 ) , cod ( f2 , g2 ) ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime & k , n are_relative_prime holds k , n are_relative_prime for x being element holds x in A |^ d implies x in ( ( A ` ) |^ d ) ` & ( ( A ` ) |^ d ) ` = ( A ` ) |^ d consider u , v being Element of R , a being Element of A such that l /. i = u * a * v and a * v = v ; - ( ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = Ln . ( F . k ) & F . k in dom ( L * F ) & F . k in dom ( L * F ) ; set i2 = SubFrom ( a , i , - n ) , i1 = goto - ( n + 1 ) ; attr B is thesis means : Def3 : for S being Subuniversal Subset of D holds ( S is ( ) `1 ) & ( S is ( ) `1 ) & ( S is ( ) `1 ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & a "/\" b = b } ; |( \square , q29 )| * |( q , q29 )| + |( q , q29 )| * |( q , q1 )| >= |( \square , b )| * |( q , q1 )| + |( q , q1 )| * |( q , q1 )| ; ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A .= ( - f ) . sup A ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . ( Carrier ( proj ( i , n ) ) . LM ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( reproj ( i , x ) + f2 * reproj ( i , x ) ) . x ; redefine pred ( ( for x st x in Z holds ( ( tan (#) f ) `| Z ) . x = 1 ) & ( ( tan (#) f ) `| Z ) . x = 1 ) ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & ( for x being set st x in dom h1 holds h1 . x = F ( x ) ) ; defpred C [ Nat ] means P8 ( ) is as n -seq of ( n + 1 ) , A ( ) ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( Carrier A ) . ( index B ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st T . ( id c ) = id d holds c = d be Element of ( f , n ) * p = ( f | n ) ^ <* p *> .= f ^ <* p *> ; ( f (#) g ) . x = f . g . x & ( f (#) h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p = ( f | ( n , L ) ) *' ( - ( f | ( n , L ) ) ) .= ( - ( f | ( n , L ) ) ) *' ( - ( f | ( n , L ) ) ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 , r2 ]| ) in f1 .: [: W1 , W2 :] & f2 . ( |[ r2 , s2 ]| ) in f1 .: [: W1 , W2 :] ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) , x ) .= a * eval ( x , x ) .= a * eval ( x , x ) ; z = DigA ( tk , x9 ) .= DigA ( tk , ( k + 1 ) + 1 ) .= DigA ( tk , ( k + 1 ) + 1 ) .= DigA ( tk , ( k + 1 ) + 1 ) .= DigA ( tk , ( k + 1 ) + 1 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , F = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset of X : S c= G } , G = { Intersect S where S is Subset of X : S is finite } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ; (0). ( V ) is Linear_Combination of A & Sum ( ( - L ) (#) ( - L ) ) = 0. V implies Sum ( - L ) = Sum ( - L ) * Sum ( - L ) let k1 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 be Nat , k2 be Integer , k2 be Integer , k2 be Integer , k2 be Integer ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and y = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x3 or H1 . x3 c= H1 . x3 & H1 . x4 = H2 . x3 ; consider a being Real such that p = L~ ( means * p1 + a * p2 ) and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c & c <= d and [' a , b '] c= dom f and [' a , b '] c= dom g and f . a = g . b ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : i <= n } ; ( T * b1 ) . y = L * b2 /. y .= ( F `1 * b1 ) . y .= ( F `1 * b1 ) . y .= ( F `1 * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) / ( 2 * k + 1 ) >= ( log ( 2 , k + 1 ) ) / ( 2 * k + 1 ) ; then p => q in S & not x in the still of p & not p => All ( x , q ) in S & not x in S & p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-10 ) & ( the InitS of r-10 ) . ( ( the InitS of r-10 ) . ( ( the InitS of r-10 ) . ( ( the InitS of r-10 ) . ( ( the InitS of r-10 ) . ( n + 1 ) ) ) ) = the carrier of r-10 ; synonym f is extended integer means : Def3 : for x being set st x in rng f holds x is integer ; assume that for a being Element of D holds f . { a } = a and for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p1 + len <* x *> .= len p1 + 1 .= len p1 + 1 + 1 .= len p1 + 1 ; l ( ) = g /. ( 1 , 3 ) + ( k ( ) + 1 ) - ( k ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) + 1 ) * ( e ( ) CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l ) ) .= halt SCM+FSA ; assume for n be Nat holds ||. seq . n .|| <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= 1 ; sin . \mathclose { 0 } = sin r * cos ( ( - cos r ) * sin ( s ) ) .= 0 ; set q = |[ g1 `1 / t `2 , g2 `2 / t `1 ]| , g1 = |[ g1 `1 / t `2 , g2 ]| , g2 = |[ g2 `1 / t `2 / t `2 , g2 `2 / t `2 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G in implies for x being Element of S holds G . x in implies G . x in implies G . x in being Element of S consider G such that F = G and ex G1 , G2 st G1 in SX & G2 in SX & G1 in SX & G2 in SX & G2 in X ; the root of [ x , s ] in ( ( the Sorts of Free ( C , X ) ) * ( the Arity of S ) ) . s & ( the Sorts of Free ( C , X ) ) . s = ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( ( exp_R * ( f1 + ( #Z 3 ) * f ) + ( ( #Z 3 ) * f1 ) ) `| Z ) ; for k be Element of NAT holds seq1 . k = ( sum ( Im ( f ) , Sseq ) ) . k & ( Sum ( Im ( f ) , Sseq ) ) . k = Sum ( ( Im ( f ) ) , Sseq ) ) assume that - 1 < n and ( q `2 / |. q .| - sn ) < 0 and ( q `2 / |. q .| - sn ) < 0 and ( q `2 / |. q .| - sn ) < 0 ; assume that f is continuous and a < b and c < d and f = g and f = h and f = h and f = k and g = k ; consider r being Element of NAT such that s-> Element of NAT , s1 , s2 , r being Element of NAT such that r = Comput ( P1 , s1 , i ) and s1 <= s2 and s2 <= s2 ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } = inf { x , y } and x <= y ; assume that f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A . i2 ) and ( proj ( F , i2 ) ) . ( A . i2 ) = ( proj ( F , i2 ) ) . ( A . i2 ) ; rng ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M & rng ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \/ { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 * ||. x0 .|| + g / 2 * ||. x0 .|| ; consider t be VECTOR of product G such that mt = ||. D . t .|| and ||. t .|| <= 1 and ||. t .|| <= 1 ; assume that the ] degree of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . ( len p + 1 ) in dom p and p . ( len p + 1 ) in dom p ; consider a being Element of the Points of X39 , A being Element of the Points of X39 such that a on A and a on A and a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i is FinSequence of D & p . i is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p10 , p1 ) } .= { p1 , p2 } \/ { p2 , p1 } \/ { p2 , p1 } ; i -' len h11 + 2 - 1 < i - len h11 + 1 - len h11 + 2 - 1 + 1 - len h11 + 2 - 1 + 1 - len h11 + 2 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 - len h11 + 1 for n being Element of NAT st n in dom F holds F . n = |. ( F . n ) . ( n -' 1 ) .| + |. ( F . n ) . ( n -' 1 ) .| for r , s1 , s2 , s2 , s3 holds r in [. s1 , s2 .] iff s1 <= s2 & s2 <= 1 & s1 <= s2 & s2 <= 1 assume v in { G where G is Subset of T2 : G in B1 & G c= z1 & G c= z2 & G c= z1 } ; let g be in Z -:] , X be INT -valued Function of [: the carrier of A , the carrier of A :] , the carrier of A ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n ] & q1 . n = U ( n + 1 ) ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ O , OO = O , OO = I , I = I , I = J as Subset of B ; consider j being Element of NAT such that x = ( the ` of n ) | j and j <= n and 1 <= j and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 and x in L2 ; ( C * ) . ( k , n2 ) = C . ( ( _ of T4 ( k , n2 ) ) . 0 ) .= C . ( ( _ of T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = X ; ( S-bound L~ SpStSeq C ) `2 <= ( N-bound L~ SpStSeq C ) `2 & ( S-bound L~ SpStSeq C ) `2 <= ( S-bound L~ SpStSeq C ) `2 & ( S-bound L~ SpStSeq C ) `2 <= ( S-bound L~ SpStSeq C ) `2 ; synonym x , y are_collinear means : Def3 : x = y or ex l being Subset of S st { x , y } c= l & ex l being Subset of S st { x , y } c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L , a , b being Element of Im k st a = x & b = y holds x << y iff a << b ; ( 1 / 2 * ( ( ( ( ( ( ( ( ( ( ( ( ( ( r ) ) * ( ( ( r ) ) * ( 1 / 2 ) ) * ( 1 / 2 ) ) ) ) * ( ( ( 1 / 2 ) * ( 1 / 2 ) ) * ( 1 / 2 ) ) ) ) ) ) ) ) `| REAL ) ) = f ; defpred P [ Element of omega ] means ( for n holds ( ( n + 1 ) to_power $1 ) to_power ( n + 1 ) = A1 . ( n + 1 ) ) implies ( ( n + 1 ) to_power ( n + 1 ) ) to_power ( n + 1 ) = A1 . ( n + 1 ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * f . g2 ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( { ( canFS ( Omega ) ) . n } ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L1 & the carrier of L1 + L2 = the carrier of L2 ; pred a , b , c , x , y , c , x , y , z , y , z , x , y , z , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , y , z , x , y , z , x ( the PartFunc of s ) . n <= ( ( the PartFunc of s ) . n ) * ( ( the Sorts of s ) . ( n + 1 ) ) & ( ( the Sorts of s ) . n ) * ( ( the Sorts of s ) . ( n + 1 ) ) <= ( ( the Sorts of s ) . n ) * ( ( the Sorts of s ) . ( n + 1 ) ) ; pred - 1 <= r & r <= 1 implies ( ( - 1 ) (#) ( arccot * f ) ) . r = - ( 1 / r ) * ( 1 / r ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 } implies ex n be Nat st p in T1 & p ^ <* n *> in T1 |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = |[ x2 , y2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 ]| ; attr m be Nat means : Def3 : F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative implies ( Partial_Sums F ) . m is nonnegative ; len ( w ) = len ( ( len ( G ) ) + len ( ( G ) ) + len ( ( G ) ) ) .= len ( ( G ) ) + len ( ( G ) ) + len ( ( y ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W1 /\ W3 and v in W2 /\ W3 ; given F be finite Subset of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k + 1 and Sum F = k ; 0 = 0 * 0 * 0 ^2 + 1 * ( - ( - ( - 1 ) ) * ( - ( - ( 0 ) ) * ( - ( 0 ) ) * ( - ( 0 ) ) * ( - ( 0 ) ) * ( - ( 0 ) ) * ( - ( 0 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) . n .| < e ; cluster } -> being being being being } Boolean non empty iff ( ( let L , M ) --> ( ( \in L ) --> ( x , y ) ) ) is Boolean & ( ( w + x ) --> ( y , z ) ) is Boolean "/\" ( BB , {} ) = Top B .= Top S .= the carrier of S .= "/\" ( I , {} ) .= "/\" ( I , {} ) .= "/\" ( I , {} ) ; ( r / 2 ) ^2 + ( rbeing / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - c * |[ b , c ]| ) = 0. TOP-REAL 2 & ( 2 * r1 - c ) * |[ b , c ]| = 0. TOP-REAL 2 ; reconsider p = P * ( ( - 1 ) * ( - ( - ( - ( K , n , 1 ) ) ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in < t and x = [ x1 , x2 ] and [ x1 , x2 ] in F . ( x1 , x2 ) ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) & q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H2 and H2 is Subgroup of H2 ; for S , T being non empty RelStr , d being Function of T , S , g being Function of T , S st d is complete holds d is monotone & g is monotone [ a + 0 , b + ( i + 1 ) ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a , b ] in [: the carrier of F_Complex , the carrier of V :] /\ [: the carrier of V , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( x |^ n ) ) , mm = max ( len F1 , len ( p . n ) * ( x |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB ( h ) ) * ( 1 , j ) ) & ( ( GoB ( h ) ) * ( 1 , j ) ) `2 <= ( GoB ( h ) ) * ( 1 , j + 1 ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def3 : A1 misses A2 & for x , y st x in A1 & y in A2 holds Lin ( A1 \/ A2 ) = Lin ( A1 \/ Lin ( A2 ) ) & Lin ( A1 \/ B ) = Lin ( A2 \/ Lin ( B ) ) ; func A -carrier of C -> set means : Def3 : for s being Element of R holds s in it iff s in C & for x being Element of R st x in C holds it . x = A ( x ) ; dom ( Line ( v , i + 1 ) ) ^ ( ( Line ( p , m ) ) * ( \square , 1 ) ) = dom ( F ^ <* 1 *> ) .= dom ( F ^ <* 1 *> ) .= dom ( F ^ <* 1 *> ) ; cluster [ ( x `1 ) , ( x `2 ) ] -> non empty & [ ( x `2 ) , ( x `2 ) ] `1 = [ x `1 , ( x `2 ) ] `1 , ( x `2 ) ] `2 = [ x `1 , ( x `2 ) ] `2 ; E , { All ( x2 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 ) } |= All ( x2 , x3 , x4 , x5 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - ( h . m ) + ( h . ( m + 1 ) - ( h . m ) ) ; cell ( G , X9 -' 1 , ( Y + 1 ) + ( t + 1 ) ) \ L~ f meets ( UBD L~ f ) \/ ( ( L~ f ) ` ) ; IC Comput ( P2 , s2 , LifeSpan ( P2 , s ) ) = IC Comput ( P2 , s2 , LifeSpan ( P2 , s ) ) .= ( card I + 1 ) .= ( card I + 1 ) + 1 .= ( card I + 1 ) + 1 ; sqrt ( ( - ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 + ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y0 = a . x0 and x0 in dom ( g | X ) and x0 in X and x0 in X ; dom ( r1 (#) chi ( A , A ) ) = dom chi ( A , A ) /\ dom chi ( A , A ) .= dom ( r1 (#) chi ( A , A ) ) /\ dom ( r2 (#) chi ( A , A ) ) .= dom ( r1 (#) chi ( A , A ) ) /\ dom ( r2 (#) chi ( A , A ) ) .= dom ( r2 (#) chi ( A , A ) ) ; d-7 . [ y , z ] = ( ( y - z ) `2 ) * ( ( y - z ) `2 ) .= ( ( y - z ) `2 ) * ( ( y - z ) `2 ) ; attr i be Nat means : Def3 : C . i = A . i /\ B . i & C . i c= A /\ B . i ; assume that x0 in dom f and f is_continuous_in x0 and f is_continuous_in x0 and for r st x0 in dom f holds ||. f /. x0 - f /. x0 .|| < r & f /. x0 - f /. x0 .|| < r ; p in Cl A implies for K being Basis of p , Q being Basis of p , Q being Subset of T st Q in K & p in Q holds A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func Sum <*> -> w \rm w -> Ordinal means : Def3 : a in it & for b being Ordinal st a in it holds it . b c= b & for b being Ordinal st b in it holds it . b c= a ; [ a1 , a2 , a3 ] in ( the carrier of A ) /\ ( the carrier of A ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] /\ [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in [: the carrier of S1 , the carrier of S2 :] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - x0 .|| < ( e / ( ||. x .|| + ||. x .|| ) * ||. x - x0 .|| ) * ||. x - x0 .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & z in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( { s } /\ compactbelow [ s , t ] ) , sup ( { t } /\ compactbelow [ s , t ] ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in II and [ f . i , z ] in II and [ f . i , z ] in II ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e19 being Element of the carrier of X such that c9 , a9 // a9 , b9 and a9 <> b9 and c9 <> b9 and a9 <> b9 and a , b // c9 , b9 and a , c // a9 , b9 and a , b // a9 , b9 and a , b // a9 , b9 ; set U2 = I \! \mathop { \vert : not contradiction } , U2 = I \! \mathop { \vert : |. I .| c= 1 } , U1 = { |. I .| : |. I .| c= 1 } , U2 = { |. I .| : |. I .| c= 1 } , U2 = { |. I .| : |. I .| c= 1 } , U2 = { |. I .| : |. I .| c= 1 } , U2 = { |. I .| : |. I .| c= 1 } , U2 = { |. I .| } , U2 = { |. I .| ^ |. I .| } , U2 = { |. I .| ^ |. I .| ^ |. I .| |. q3 .| ^2 = ( |. q3 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x "\/" y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & dom ( the charact of U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) ; for N1 , N2 being Element of GX , h being Element of G st dom h = N & rng ( h . K1 ) = N & rng ( h . K1 ) c= N & h . ( h . K1 ) = N holds h . N1 = h . N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) + mod ( v , m ) ) . i .= ( mod ( v , m ) + mod ( v , m ) ) . i ; - ( q `1 / |. q .| - cn ) < - ( q `1 / |. q .| - cn ) or - ( q `1 / |. q .| - cn ) >= - ( q `1 / |. q .| - cn ) & - ( q `1 / |. q .| - cn ) < - ( q `1 / |. q .| - cn ) ; attr r1 = f9 & r2 = g9 & ex f , g st r1 * f = f9 & g * g = g9 & f * g = g9 & g * f = g9 & g * g = g9 & f * g = g9 ; vseq . m is bounded Function of X , the carrier of Y & vseq . m = ( ( vseq . m ) + ( vseq . n ) ) . x & ( vseq . m ) + ( vseq . n ) . x = ( ( vseq . m ) + ( vseq . n ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( b , c , a ) = 0 ; consider i , j , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and j < len f and f . i = f . j ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 + |. q .| ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 in X ( ) and p1 ^ q1 = p1 ^ q1 and q1 in X ( ) and q1 in X ( ) and q1 in X ( ) and q2 in X ( ) and q1 = q1 ^ q2 ; , , + ( r1 , s1 ) , s2 = ( s2 + s1 ) / 2 , s1 = ( s2 + s1 ) / 2 , s2 = ( s2 + s2 ) / 2 , s1 = ( s2 + s2 ) / 2 , s2 = ( s2 + s2 ) / 2 ; ( ( LMP A ) `2 ) = lower_bound ( proj2 .: ( A /\ Vertical_Line w ) ) & ( proj2 .: ( A /\ Vertical_Line w ) ) is non empty implies proj2 .: ( A /\ Vertical_Line w ) is non empty s , ( k + 1 ) |= H1 => H2 iff s , ( k + 1 ) |= ( H ) & ( s , ( k + 1 ) ) . ( k + 1 ) |= ( H ) . ( k + 1 ) ; len ( s ) + 1 = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z `1 >= y holds z `2 >= z `2 ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D + E-bound D ) / 2 ]| ) /\ D = { UMP D } ; lim ( ( ( f `| N ) / g ) /* b ) = ( ( f `| N ) / g ) /* b .= lim ( ( f `| N ) / g ) .= lim ( ( f `| N ) / g ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . i ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( ( seq . k ) - ( seq . m ) ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & x in P & b in P holds a = b Z c= dom ( ( ( #Z n ) * f ) / ( ( #Z n ) * f ) ) \ ( ( ( #Z n ) * f ) " { 0 } ) & f | Z is continuous ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + j & j = len ( l ^ <* x *> ) & z = ( l ^ <* x *> ) . j ; for u , v being VECTOR of V , r being Real st 0 < r & u in N holds r * u + ( 1-r * v ) in N + A , Int A , Cl ( A , Cl ( A , B ) ) , Cl ( A , Cl ( A , B ) ) / ( Cl ( A , B ) , Cl ( A , B ) ) / ( Cl ( A , B ) , Cl ( A , B ) ) / ( Cl ( A , B ) , Cl ( A , B ) ) / ( Cl ( A , B ) , Cl ( A , B ) ) ) / ( Cl ( Cl ( A , B ) ) , Cl ( Cl ( A , B ) ) / ( Cl ( A , B ) ) / ( Cl ( A , B ) - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) + ( w + w ) ; Exec ( a := b , s ) . IC SCM R = ( Exec ( a := b , s ) ) . NAT .= Exec ( ( a := b ) , s ) . NAT .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x and h . x in ( the carrier of J ) . x ; for S1 , S2 , D , E , T be non empty RelStr , f , g be Function of S1 , S2 , g be Function of S2 , T , h be Function of S2 , T , k be Element of S , g be Function of S2 , T st f = g & g = k & k <= n holds g . k is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or ex z st z in X & z in X & x = z or x = y & y = z or x = z & y = z E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft Cage ( C , n ) ) ; for T , T being Tree , p , q being Element of dom T st p in dom T holds ( T , q ) `1 = T . q & ( T , p ) `2 = T . q & ( T , q ) `2 = T . q ; [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster that the gcd of k , n and k divides ( m * n ) and n divides ( m * n ) and ( m * n ) divides ( m * n ) and ( m * n ) divides ( m * n ) ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X1 ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = n and the carrier of W = Lin ( B9 \/ C ) and Lin ( B \/ C ) = Lin ( C \/ B ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] & for v being Element of B ( ) , v1 ] holds P [ v1 , v ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) .= - 1 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 ; attr f is partial differentiable on on on u0 , u0 means : Def3 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . u0 = ( proj ( 2 , 3 ) , u0 ) . u0 + SVF1 ( 2 , 3 ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , j ) `2 < s & s < G * ( 1 , j + 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= ( GoB f ) * ( t , width G ) `2 and G * ( t , width G ) `2 >= ( GoB f ) * ( t , width G ) `2 ; pred i in dom G means : Def3 : r (#) ( f (#) reproj ( i , x ) ) = r (#) reproj ( i , x ) & f . i = r (#) reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = ( decomp c1 ) /. k and c1 = ( decomp c1 ) /. ( k + 1 ) and c2 = ( decomp c1 ) /. ( k + 1 ) ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; ( ( X ^ Y ) . k ) = the carrier of X . k2 .= ( ( X ^ Y ) . k2 ) . k2 .= ( ( X ^ Y ) . k2 ) . k2 .= ( ( X ^ Y ) . k2 ) . k2 .= ( ( X ^ Y ) . k2 ) . k2 ; pred len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & g2 . y - x0 < g2 & g2 . y < x0 } c= N2 & N c= dom f & f . x0 - f . x0 < r & g2 . y < 0 } c= N2 ; assume that x < ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) or x > ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M1 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & for j being Element of NAT st j in dom f holds i divides f /. j holds i divides ( f /. j ) assume F = { [ a , b ] where a , b is set , c is set : for a , b , c being set st a in Bimplies a c= c & b c= c } & ( for a , b st a in Bimplies b c= c ) & c c= a & a c= b ) ; b2 * q2 + ( b3 * q3 ) + - ( ( b3 * q2 ) * q1 ) + - ( ( a * q2 ) * q2 ) = 0. TOP-REAL n + ( ( a * q2 ) * q1 ) .= 0. TOP-REAL n + ( a * q2 ) * q2 ; Cl ( Cl ( Cl F ) where D is Subset of T : ex B being Subset of T st D = Cl B & ex B being Subset of T st B in F & A = Cl B & B in F } c= Cl ( Cl ( Cl F ) ) attr seq is summable means : Def3 : seq is summable & ( for n holds seq . n = Sum ( seq ) ) & ( for n holds seq . n = Sum ( seq ) ) implies seq is summable & ( for n holds seq . n = Sum ( seq ) ) & ( for n holds seq . n = Sum ( seq ) ) & ( for n holds seq . n = Sum ( seq ) ) ; dom ( ( ( ( ( TOP-REAL 2 ) | D ) | D ) | D ) ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) | D .= D ; [: X , Z :] is full SubRelStr of [: ( Omega Z ) |^ the carrier of X , ( Omega Z ) |^ the carrier of Y :] & [: X , Y :] is full SubRelStr of [: ( Omega Z ) |^ the carrier of Y , ( Omega Z ) |^ the carrier of Y :] ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 ; synonym m1 c= m2 means : Def3 : for p be set st p in P holds the } is \HM { p where p is Element of NAT : the } & the set of p <= ( m2 + 1 ) & the set of p <= ( m2 + 1 ) + 1 ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) ; synonym IT is multiplicative non empty multMagma means : Def3 : the carrier of it = [ the carrier of IT , the carrier of IT , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , the carrier of it , 0. it -> Relation of the carrier , the carrier , 0. it #) ; sequence ( a , b ) + + ( c , d ) = b + ( the carrier of T , 1 ) .= b + ( a + c ) .= b + ( a + c ) .= ( a + c ) + b + c ; cluster + _ -> in INT means : Def3 : for i1 , i2 , j1 , j2 being Element of INT holds it . ( i1 , i2 ) = + ( i1 , i2 ) + ( j1 , j2 ) + ( j2 , j2 ) ; ( - s2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) = ( - r2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) .= ( ( - s2 ) * p1 ) + ( s2 * p2 ) .= ( ( - s2 ) * p2 ) + ( s2 * p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= eval ( a | ( n , L ) ) * eval ( p , x ) .= eval ( a | ( n , L ) ) * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being open Subset of Omega S , D being open Subset of Omega S st D in V & V is open holds V meets V and V is open and for V being open Subset of S st V in V holds V meets V ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q , w ) -) . k = ( T-7 . ( q , w ) ) . ( ( q , w ) -) . k and TU . ( ( q , w ) -) . ( ( q , w ) -) . ( ( q , w ) -) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n + 1 ) + ( b |^ n + 1 ) + ( b |^ n + 1 ) ; M , v / ( x. 3 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 4 , m ) ) / ( x. 0 , m ) / ( x. 4 , m ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 & for x1 st x1 in l holds f . x1 - f . x0 < f . x0 and f . x1 - f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , W being Walk of G2 , x being set st e in W & x in W holds not ex W being Walk of G1 st e in W & W is Walk of G2 not c9 is not empty iff not ( iff not ( ex y1 , y2 st y1 is not empty & not y2 is not empty & not q1 is not empty & not q2 is not empty ) & not not ( not q1 is not empty & not q2 is not empty & not q2 is not empty ) & not q1 is not empty & not q2 is not empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j ) in [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j ) = ( GoB f ) * ( i1 + 1 , j ) ; for G1 , G2 , G3 being strict Subgroup of O , a , b , c being Element of G1 , x being Element of G2 , y being Element of G2 , a being Element of G1 , b being Element of G2 st a in G1 & b in G2 holds x * y = a * x & a * y = b * x UsedIntLoc ( int -insort non empty or I = { intloc 0 , intloc 1 , intloc 2 , intloc 0 , intloc 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 ) , 1 = [ 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 0 , 1 , 1 , for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ] holds Q [ f1 ^ f2 , f2 ^ f1 ] & Q [ f2 ^ f1 , f2 ^ f1 ] ( ( p `1 ) ^2 + ( sqrt ( 1 - ( p `1 / p `2 ) ^2 ) ) ^2 ) = ( ( q `1 / q `2 ) ^2 + ( q `1 / q `2 ) ^2 ) * ( 1 - ( q `1 / q `2 ) ^2 ) ) / ( 1 - ( q `1 / q `2 ) ^2 ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x3 )| = |( x1 , x3 - x3 )| + |( x2 , x3 - x3 )| + |( x3 , x3 - x4 )| + |( x2 , x3 - x3 )| + |( x3 , x3 - x4 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| = |( x1 , x3 )| + 0 )| + |( x2 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| for x st x in dom ( ( element | A ) | A ) holds ( ( ( ( ( the carrier of X ) | A ) | A ) | A ) . ( - x ) ) = - ( ( ( ( the carrier of X ) | A ) | A ) | A ) . ( - x ) for T being non empty TopSpace , P being Subset-Family of T , B being Subset-Family of T , x being Point of T , B being Point of T st B c= P & x in B holds P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c .= ( 'not' ( a 'or' b ) . x 'or' c ) 'or' c .= ( 'not' ( a 'or' b ) . x 'or' b ) 'or' c .= ( 'not' ( a 'or' b ) . x 'or' b ) 'or' c .= TRUE ; for e being set st e in A ex X1 being Subset of X , Y1 being Subset of Y , Y2 being Subset of X st e = [: X1 , Y1 :] & Y1 is open & [: Y1 , Y2 :] c= [: Y1 , Y2 :] & [: Y1 , Y2 :] c= [: Y1 , Y2 :] for i be set st i in the carrier of S for f be Function of [: S , T :] , S1 , S2 be Function of [: S , T :] , S1 , S2 be Function of [: S , T :] , S2 , S2 be Function of S , T st f = H . i & f = F | [: S1 , S2 :] holds f | [: S1 , S2 :] = f | [: S1 , S2 :] for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ) , J ) . v = Valid ( VERUM ( Al ) , J ) . w card D = card D1 + card D1 - card D2 .= ( i + 1 ) + ( i + 1 ) - 1 .= ( i + 1 ) + ( i + 1 ) - 1 .= ( i + 1 ) + 1 - 1 .= ( i + 1 ) - 1 .= ( i + 1 ) - 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= succ ( s . 0 ) .= succ 0 ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k < a holds a <= b + b-2 or a = a + b-2 or b = a + b-2 or a = b + b-2 or a = a + b-2 or a = b + b-2 or a = a + b-2 or a = a + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , f being FinSequence of TOP-REAL 2 , i being Nat st i in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= Index ( p , f ) + Index ( p , f ) ( curry ' ( P+* ( P+* ( i , k + 1 ) ) ) # x ) . x = ( ( curry ' ( P+* ( i , k + 1 ) ) ) # x ) . x + ( ( curry ' ( P+* ( i , k + 1 ) ) # x ) . x ) . x ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 2 ] in the InternalRel of G ; for G being Subset-Family of B st G = { R [ X ] where X is Subset of A , Y is Subset of B st X in F6 & Y in F6 holds ( for X being Subset of A st X in F6 holds X is finite ) holds ( ( for X being Subset of A holds X in F ) implies X is finite ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and a <> b and c <> d and p on M and a <> b and p <> d and p <> c and p <> d and a <> b and p <> d and p <> b and a <> b and p <> c and a <> b and p <> d and a <> b and p <> d and a <> b ; assume that T is \hbox { T _ 4 } and F is closed and ex F be Subset-Family of T , A be finite-ind of T st F is closed & A is finite-ind & ind F <= 0 and ind ( T , A ) <= 0 and ind ( T , A ) <= 0 ; for g1 , g2 st g1 in ]. r - s , r .[ & g2 in ]. r , r .[ holds |. f . g1 - f . g2 .| <= ( g1 - f ) / ( r - s ) & |. f . g2 - f . g2 .| <= ( g1 - f ) / ( r - s ) ( ( - ( x + y ) ) * ( z1 + z2 ) ) = ( ( - ( x + y ) ) * ( z1 + z2 ) ) * ( z2 + z2 ) .= ( ( - ( x + y ) ) * ( z1 + z2 ) ) * ( z2 + z2 ) .= ( ( - ( x + y ) ) * ( z2 + y2 ) ) * ( z2 + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n + 1 ) * ( a |^ n ) .= ( ( ( n + 1 ) + a |^ n ) + b |^ n ) * ( a |^ n ) .= ( ( n + 1 ) + a |^ n ) * ( b |^ n ) .= ( ( n + 1 ) + a |^ n ) * ( b |^ n ) ; ex y being set , f being Function st y = f . n & dom f = A ( ) & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & f . ( n + 1 ) = y ; func f (#) F -> FinSequence of V means : Def3 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * F /. i & for i be Nat st i in dom it holds it . i = f /. i * F /. i ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( for S , x , y being Element of Al ( ) holds ( S , x , y ) `1 = x ) & ( S , x , y ) `1 = x & ( S , y , z ) `2 = y & ( S , x , y ) `1 = y ) ; consider P being FinSequence of G8 such that p9 = Product P and for i st i in dom P ex t7 being Element of the carrier of G st P . i = t & ex t7 being Element of the carrier of G st P . i = t7 & t . i = t . i & t . i = ( the in of G ) . i ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T1 , T2 being Basis of T2 st the carrier of T1 = the carrier of T2 & the topology of T2 = the topology of T2 & the topology of T1 = the topology of T2 & the topology of T2 = the topology of T2 & the topology of T1 = the topology of T2 holds T1 is Basis of T1 assume that f is_\/ pdiff1 ( f , 3 ) and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r * partdiff ( pdiff1 ( f , 3 ) , u0 , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r * partdiff ( f , u0 , 3 ) ; defpred P [ Nat ] means for F , G be FinSequence of REAL , G be Permutation of Seg $1 , s be Permutation of Seg $1 , f be Permutation of rng F st len G = $1 & for i be Nat st i in dom F holds Sum ( F , s ) = Sum ( F , s ) . i & Sum ( G , s ) = Sum ( F , s ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s ; defpred U [ set , set ] means ex F-23 be Subset-Family of T st $1 = F-23 & union F-23 is open & union F-23 is open & for f be Function of T , the carrier of T st f is open & f is open holds f is discrete discrete of ( T . $1 ) , ( T . $1 ) ` ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P & LE p4 , p , P & LE p4 , p , P & LE p4 , p , P & LE p , p , P holds LE p4 , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , P & LE p , p , C & LE p , p , C & LE p , p4 , C & LE p , q , C & LE p , q , C & LE p , q , C & LE p , q , C & LE q , q , C & LE q , q , C & LE q , q , C & LE q , q , C & LE q , q , C & LE q , q , C & LE q , q , C & LE q , q , C & LE q f in \rbrace ( E , H ) & ( for y st y <> x holds g . y = f . y ) implies for y st y in \rbrace ( E , H ) & ( for y st y in E holds f . y = f . y ) & ( for y st y in E holds f . y = f . y ) & ( y = x implies f . y = f . ( y , x ) ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( for q being Point of TOP-REAL 2 st q in 8 holds |. q .| <= 8 ) & ( |. q .| ) ^2 >= 8 & ( |. q .| ) ^2 >= 8 implies |. q .| ^2 >= 8 & ( |. q .| ) ^2 + ( |. q .| ) ^2 ) >= 8 * ( |. q .| ) ^2 ; assume for d7 being Element of NAT st d7 <= d7 holds ( for t being Element of NAT st t <= ( n + 1 ) holds s1 . t = s2 . t ) & ( for n being Nat st n in dom s1 holds s1 . n = s2 . n ) & s1 . t = s2 . t ) & s1 . t = s2 . t ; assume that s <> t and s is Point of Sphere ( x , r ) and not s is Point of Sphere ( x , r ) and ex e being Point of E st e = Ball ( x , t ) & ex e being Point of E st e = Ball ( s , t ) & e in Ball ( x , r ) & Ball ( e , s ) c= Sphere ( x , r ) ; given r such that 0 < r and for s st 0 < s ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. f /. x1 - f /. x0 .|| < r / 2 ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | ( x | x ) ) | ( p | ( x | x ) ) ) | ( p | ( x | x ) ) .= ( ( x | x ) | ( x | x ) ) | p ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( x + h ) (#) sec . x = ( 4 * sin ( x + h ) + sin ( x ) * sin ( x ) ) / sin ( x ) ^2 and sin . x = sin ( x ) * sin ( x ) + sin ( x ) * sin ( x ) * sin ( x ) ) ^2 ; assume that i in dom A and len A > 1 and for i , j st i in dom A & j in dom A & i <> j holds A * ( i , j ) = ( ( i , j ) |-> ( i , j ) ) . ( i , j ) and ( i + j ) = ( i + j ) |-> ( i , j ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = n or i = n or i = n & i <> n & j <> n & j <> n implies h . i = <* 1. F_Complex , 1. F_Complex , 0. F_Complex *> & i <> n implies h . i = <* 1. F_Complex , 0. F_Complex , 0. F_Complex *> ( ( b1 => b2 ) '&' ( c1 => c2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) assume that for x holds f . x = ( ( ( - 1 ) (#) ( sin * ( x - h ) ) (#) ( sin * ( x - h ) ) ) `| REAL ) . x and for x st x in dom ( ( - 1 ) (#) ( sin * ( x - h ) ) (#) ( sin * ( x - h ) ) ) holds ( ( - 1 ) (#) ( sin * ( x - h ) ) ) `| REAL ) . x = ( - 1 ) * ( sin * ( x - h ) ) . x ) / ( sin * ( x - h ) ) . x - ( sin . x - h ) . x - ( sin . x ) / ( sin . x ) / ( sin . x ) / ( sin . x ) / ( sin . x ) ^2 and ( sin . x ) ^2 and ( sin . x ) ^2 and ( sin . x ) ^2 and ( sin . x ) consider R8 , I8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Re ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. qthesis - f /. x .|| < r holds ||. partdiff ( f , q , x ) - partdiff ( f , x ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } \/ 7 } \/ { A } \/ { A , N } \/ { A , 7 } \/ { A , 7 } \/ { A , 7 } \/ { A } \/ { A , 7 } \/ { A , 7 } \/ { A } \/ { A , 7 } \/ { A , 7 } \/ { A , 8 G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) * ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S1 ) ) . o .= ( ( the Arity of S1 ) * ( the Arity of S1 ) ) . o ) ; func \vert tree ( T , P , T1 ) -> Tree means : Def3 : q in it iff q in P & for p st p in P holds p in P or ex p , q st p in P & q in P & p ^ q in P & p ^ q in P & p ^ q in P & p ^ q in P & p ^ q in P ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= F\cdot ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F\cdot ( p . k , k + 1 -' 1 ) .= F\cdot ( p . k , k + 1 -' 1 ) .= F\cdot ( p . k , k + 1 -' 1 ) .= FD * ( p . k , k ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & len A = width C & len B = len C & width A > 0 & len B > 0 & width A > 0 & len A > 0 & width A > 0 & width A > 0 & len B > 0 & width A > 0 holds A * ( B * C ) = ( A * B ) * C ) + ( B * C ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of Cy ) \/ ( the carrier of Cy ) and y in ( the carrier of Cy ) \/ ( the carrier of Cy ) and [ x , y ] in the InternalRel of Cy and [ x , y ] in the InternalRel of Cy and [ x , y ] in the InternalRel of Cy ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( for k st k in dom f holds ( VAL g ) . k = ( VAL g ) . ( k + 1 ) ) & ( for i st i in dom g holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i , j ) and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i , j ) ; assume that sn < 1 and ( q `1 > 0 & ( q `2 / |. q .| - sn ) / ( 1 + sn ) <= 0 ) and ( for p st p in sn holds p `2 / |. q .| - sn ) / ( 1 + sn ) <= 0 and ( p `2 / |. q .| - sn ) / ( 1 + sn ) <= 0 ) and ( p `2 / |. p .| - sn ) / ( 1 + sn ) and q `2 / |. q .| = 0 ; for M being non empty dist , x being Point of M , f being Point of M , x being Point of M st x = x `1 holds ex f being sequence of M st f is sequence of rng ( x `2 ) & for n being Element of NAT holds f . n = Ball ( x `1 , ( 1 / n ) * ( x `2 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds ( f1 - f2 ) . x = f1 . x - f2 . x / ( f1 . x - f2 . x ) / ( f1 . x ) ^2 & ( f1 - f2 ) . x = f1 . x - f2 . x / ( f1 . x - f2 . x ) / ( f1 . x - f2 . x ) ^2 ; defpred P1 [ Nat , Point of CNS ] means ( $1 in Y & ||. s1 . $1 - $2 .|| < r & ||. f /. $2 - f /. x0 .|| < r ) implies ||. f /. $2 - f /. x0 .|| < r / 2 * ||. ( $1 - $2 ) - f /. x0 .|| < r / 2 * ||. ( $1 - $2 ) - f /. x0 .|| ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= ( mid ( g , 2 , len g ) ) . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) ; ( 1 - 2 * n0 + 2 * ( n + 2 * ( n + 1 ) ) ) * ( 2 * ( n + 1 ) ) = ( ( 1 - 2 * ( n + 1 ) ) * ( n + 1 ) ) * ( 2 * ( n + 1 ) ) .= ( 1 - 2 * ( n + 1 ) ) * ( n + 1 ) .= ( 1 - 2 * ( n + 1 ) ) * ( n + 1 ) ; defpred P [ Nat ] means for G being non empty strict finite RelStr , A , B being non empty finite RelStr st G is space & card the carrier of A = $1 & the carrier of B = the carrier of B & the carrier of A = the carrier of B & the InternalRel of B = the RelStr of A holds A is finite ; assume that f /. 1 in Ball ( u , r ) and 1 <= m and m <= len ( - 1 ) and LSeg ( f , i ) /\ Ball ( u , r ) <> {} and LSeg ( f , i ) /\ Ball ( u , r ) <> {} and LSeg ( f , i ) <> {} and LSeg ( f , i ) /\ Ball ( u , r ) <> {} ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( cos (#) ( cos * ( ( cos * ( ( cos * ( ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos * ( cos , ( cos * ( cos , \frac ) / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / for x be Element of product F , i be set st x in I & ( for x be set st x in I holds x in dom ( the support of F ) ) & ( for x be set st x in dom ( the Sorts of F ) holds ( x in I ) implies ( x in I ) ) & ( x in I implies x = ( the carrier of F ) . i ) ( x " ) |^ ( n + 1 ) = ( ( x " ) * x ) |^ n * x .= ( ( x " ) |^ n ) * ( x |^ n ) .= ( ( x " ) |^ n ) |^ n * x .= ( ( x " ) |^ n ) |^ n * x .= ( ( x " ) |^ n ) |^ n * x .= ( ( x " ) |^ n ) * x ; DataPart Comput ( P +* I , s , LifeSpan ( P +* I , Initialize s ) + 3 ) = DataPart Comput ( P +* I , s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , Initialize s ) + 3 ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= ( dom f1 /\ dom f2 ) /\ dom ( f1 | ]. x0 , x0 + r .[ ) and for g st g in ]. x0 , x0 + r .[ /\ dom ( f2 | ]. x0 , x0 + r .[ ) holds f1 . g <= f1 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 | X ) is continuous and ( f1 | X ) is continuous and f2 | X is continuous and ( f1 | X ) is continuous and f2 | X is continuous and f2 | X is continuous and f2 | X is continuous and f2 | X is continuous ; for L being continuous complete LATTICE for l being Element of L , X being Subset of L , x being Element of L st l = sup X & for X being Subset of L st X in X holds x is compact & for x being Element of L st x in X holds x is compact holds x is compact & x is compact Support ( e /. i ) in { m *' p where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m ) & ( p /. i ) `1 = p & ( p /. i ) `2 = q `2 & ( p /. i ) `2 = q `2 & p `2 <= q `2 ) ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st p1 = g . p1 & for g being Function of [: [: D , D :] , D ( ) :] , [: D ( ) , D ( ) :] st P [ g , p1 , p2 , p1 , p2 , p3 , q2 ] holds P [ g , p1 , p2 , q2 , q2 , q3 , q3 , p4 , Real , Real ) ( mid ( f , i , len f -' 1 ) ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j ; ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) . ( len p + k ) . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) . ( len p + k ) . ( len p + k ) . ( len p + k ) .= ( p . ( len p + k ) .= ( ( p + k ) + ( p . ( len p + k ) .= ( ( p . ( len p + k ) + ( p . ( len p + k ) .= ( p . ( len p + k ) + ( p . ( len p + k ) + ( k + k ) .= ( p . len mid ( upper_volume ( f , D2 ) , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) - indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 - indx ( D2 , D1 , j1 ) + 1 ; x * y * z = Mz * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) ; v . ( <* x , y *> ) + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) ) + partdiff ( u , ( x - x0 ) ) * ( ( x - x0 ) * ( ( x - x0 ) * ( y - x0 ) ) + partdiff ( u , ( x - x0 ) * ( y - x0 ) ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 0 ) + ( 0 * ( - 1 ) ) + ( - 1 ) * ( - 1 ) + ( - 1 ) * ( - 1 ) .= <* - 1 , 0 , 0 , 0 *> + ( - 1 ) * ( - 1 ) .= <* - 1 , 0 , 0 , 0 *> + ( - 1 ) * ( - 1 ) * ( - 1 ) .= <* - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) + Sum ( ( L (#) F2 ) ^ ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) ^ ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) ^ ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( F1 (#) F2 ) ; ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of X st Y1 is non empty & for Y be finite Subset of X st Y is non empty & Y is finite & for Y1 be Subset of X st Y1 c= Y holds |. Sum ( Y1 ) - Sum ( Y2 ) .| < r / 2 ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) ; ( ( ( r / 2 ) (#) ( cos * f ) ) `| REAL ) . x = ( ( r / 2 ) (#) ( cos * f ) ) . x .= ( ( 1 / 2 ) (#) ( cos * f ) ) . x .= ( ( 1 / 2 ) (#) ( cos * f ) ) . x .= ( ( 1 / 2 ) (#) ( cos * f ) ) . x ; ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 & ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) / ( 2 * a ) < 0 or - ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) / ( 2 * a ) ) > 0 ; assume that ex_inf_of uparrow X /\ C , L and ex_sup_of X , L and ex_sup_of X , L and for x st x in X holds "\/" ( X , L ) = "\/" ( uparrow "\/" ( X , L ) , L ) and "\/" ( X , L ) = "\/" ( uparrow "\/" ( X , L ) , L ) and "\/" ( X , L ) = "\/" ( uparrow "\/" ( X , L ) , L ) ; ( for j being Element of NAT holds ( j = j ) implies ( j = j ) implies ( j = i implies ( j = i implies j = i ) ) & ( j = i implies j = i ) & ( j = j implies j = i ) implies j = i )