thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ; assume x in I ; q is as as Nat ; assume c in x ; z > 0 ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is means : Def1 : f is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 + 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be non empty Subset of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is \setminus ; Q halts_on s ; x in that x in that x in that y in \in that y in \in that x ; M < m + 1 ; T2 is open ; z in b \mathclose a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o : o >= 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subspace of V ; not s in Y to_power 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a\rrangle <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial & s is non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , x be Element of T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U2 , U1 , U2 ; pp = c & pp = d ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in `1 ; 1 <= ( j + 1 ) ; set A = \it number ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has \rrangle has { \HM { the } \HM { as } \HM { 0. } } ; assume n0 <= m ; T is increasing ; e2 <> e1 & e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} & mm <> {} ; let x be Element of Y ; let f be ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v `2 ; - y in I ; let A be non empty set , x be Element of A ; Px0 = 1 ; assume r in F . k ; assume f is simple ; let A be l countable set ; rng f c= NAT * ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of lim ] ; assume not v in { 1 } ; let II , J ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d2 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , x be Point of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} & mm <> {} ; M + N c= M + M ; assume M is \mathclose hh/. ; assume f is additive for bb-nst ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len f ; f | A is non empty ; f . x being Z <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ ( y divides m ) ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cv in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c1 ; s2 is 0 -started State of SCMPDS ; IC s = 0 & IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be { F } ; y " <> 0 & y " <> 0 ; y " <> 0 & y " <> 0 ; 0. V = u-w ; y2 , y are_not zero ; R8 in X ; let a , b be Real , x be Point of TOP-REAL 2 ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , m be Morphism of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , n be Nat ; s4 . n = N ; set y = ( x `1 ) ^2 ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; V1 is non empty & V2 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent & f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng g c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A0 is dense and A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x9 c= Z1 & x9 c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim ( Im seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = sInt ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , i be Nat ; assume r2 > x0 & x0 < r2 ; let Y be non empty set , x be Element of Y ; 2 * x in dom W ; m in dom ( g2 | m ) ; n in dom g1 & m in dom g2 ; k + 1 in dom f ; the still of not s in { s } ; assume that x1 <> x2 and x2 <> x3 ; v1 in [: V1 , V2 :] ; not [ b `1 , b ] in T ; i-35 + 1 = i ; T c= and T c= G ; ( l `1 ) ^2 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AA is_integrable_on M & AA is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; [: C ( ) , C ( ) :] misses [: C ( ) , C ( ) :] ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for sequence ; assume c2 = b2 & c2 = b3 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that v-4 is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int ( G1 \/ G2 ) <> {} ; ( z `2 ) ^2 = 0 ; p01 `1 <> p1 `1 & p01 `2 <> p1 `2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one full full ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be halting Instruction of S , S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in [: the carrier of S , the carrier of T :] ; p1 = K1 & p2 = K1 & p3 = K1 ; M . k = <*> ( the carrier of V ) ; phi . 0 in rng phi ; OSMInt A is closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; [: the carrier of R , the carrier of R :] is stable ; set cR = Vertices R ; p0 c= P3 & p2 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; \HM { a } = the carrier of b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ \rrangle , b ~ are_isomorphic ; assume a in A ( i ) ; k in dom ( q | Seg n ) ; p is non empty \HM { finite set } ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: [: X ( ) , Y ( ) :] ; i2 - i1 = 0 & i2 = 0 ; j2 + 1 <= i2 & j2 + 1 <= j2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom F = dom G ; let s be Element of NAT , n be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void non empty non void non empty non void ManySortedSign ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x be Element of COMPLEX ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= [: V1 , V1 :] ; assume I is_closed_on s , P ; U2 = U2 & U2 = U2 implies U2 is closed M /. 1 = z /. 1 ; x9 = x9 & y9 = y9 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | n ) <= ( f | n ) ; let l be Element of L ; x in dom ( ( F . n ) | X ) ; let i be Element of NAT , x be Element of NAT ; r8 is COMPLEX -valued & r8 is ( len r ) -element ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in N ; assume that X in U and Y in U ; let D be \frac of Omega ; set r = Seg ( k + 1 ) ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , x be Point of X ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for Sublattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite field of F , W be Subspace of V ; A * B on B & A on C ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) * PI < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in [: I , I :] ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 div m , i = x0 mod m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I = I as 1 -element Element of S ; [ y , d ] in [: F-8 , F-8 :] ; let f be Function of X , Y ; set A2 = ( B \/ C ) /\ ( C \/ D ) ; s1 , s2 are_) & s2 , s1 are_) implies s1 , s2 are_T j1 -' 1 = 0 & j2 -' 1 = j2 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ n , m are_relative_prime ; set g = f | D-21 , h = g | D-21 ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ^2 & ( p1 `2 ) ^2 = 1 ^2 ; a < p3 `1 & p3 `1 < a ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= i2 ; 1 <= i1 -' 1 & i1 + 1 <= i2 ; i + i2 <= len h & i + 1 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & width <* A1 *> = 2 ; set H = h . g9 , I = h . x , J = h . y , M = h . z , N = h . z , N = h . x , S card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 ; assume x in ( X3 /\ X2 ) ; ||. h .|| < d1 & ||. h .|| < s ; not x in the carrier of f & not x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing - k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be + q be \rm \rm \HM { of s } ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , x be Element of L ; S-20 is x -f1 -basis i let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z ) ; P [ len ( F | n ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> [#] S -> [#] < ^2 ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; k be Nat ; q " is Element of X & q is Element of X ; F . t is set of empty & F . t is J ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) ^2 & y is root ; not r in ]. p , q .[ ; let R be FinSequence of REAL , x be Element of REAL ; S7 does not destroy b1 & S7 does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * ( seq . n ) = seq . n ; let x be FinSequence of NAT , n be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s ; H + G = F- ( GG ) ; Cx1 . x = x2 & Cy1 . x = y2 ; f1 = f .= f2 .= ( f | X ) ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a & b1 , c1 _|_ a , b ; d3 , o _|_ o , a3 & d3 , o _|_ a3 , o ; I is reflexive & I is transitive implies I is transitive I is antisymmetric & I is antisymmetric implies I is antisymmetric upper_bound rng ( H1 | n ) = e & upper_bound rng ( H1 | n ) = e ; x = ( a * ( - 1 ) ) * ( - 1 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 + 1 < j2 ; rng s c= dom f1 & rng s c= dom f2 ; assume support a misses support b & support b misses support a ; let L be associative commutative non empty doubleLoopStr , x be Element of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , I2 ) = I1 & Directed ( I2 , I2 ) = I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , ] *> -> complete non trivial ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; - ( i -' 1 ) > 0 ; assume ( 1 / 2 ) <= t `1 & t `2 <= 1 ; card B = k + - 1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in D ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & the vertices of G = { v } ; let G be : wwgraph ; let e , v9 be set , x be set ; c . ( i9 + 1 ) in rng c & c . ( i9 + 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* q is divergent_to+infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 ; assume w is llas of S , G ; set f = p |-count ( t - p ) , g = p |-count ( t - p ) , h = p |-count ( t - p ) , n = p |-count ( t - p ) , n let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IB be Subset-Family of X , I be set ; reconsider p = p , q = q as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is finite implies p is non empty & p is non empty stop I ( ) c= P-12 & stop I ( ) c= P-12 ; set ci = ( f /. i ) `1 , cj = ( f /. j ) `1 , cj = ( f /. j ) `1 , cj = ( f /. j ) `2 , c w ^ t Q Q Q Q Q ^ t ; W1 /\ W = W1 /\ W ` .= W1 /\ W ; f . j is Element of J . j ; let x , y be \rm \HM { of T2 } ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is not positive ; set g2 = lim ( seq , n ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . F-21 = 1 ; / ( X \/ R1 ) = id X & id ( X \/ R1 ) = id X ; ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; ( exp_R . x ) ^2 > 0 & exp_R . x > 0 ; o1 in [: X /\ O2 , X /\ O2 :] ; let e , v9 be set , x be set ; r3 > ( 1 - r2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed non empty Subset of R ; h . p1 = f2 . O & h . O = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q | ( len M ) ) = width M ; the carrier of CK c= A ; dom f c= union rng ( F-10 . n ) ; k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( \HM { the } \HM { carrier of R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = h . x2 ; F c= 2 -tuples_on the carrier of X & F is one-to-one ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 / m * m + r ) < p ; dom f = dom ( I . 0 ) & dom g = dom ( I . 0 ) ; [#] ( P-17 ) = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal for ExtReal ; then { d } c= A & A is closed ; cluster ( TOP-REAL n ) | ( i + 1 ) -> finite-ind ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 & W3 in W3 implies u + v in W3 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x `2 , y ) < ( r / 2 ) ; reconsider mm = m , mn = n as Element of NAT ; x- x0 < r1 - x0 & x - x0 < r2 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `2 ) , g2 = p * idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 ) in { x } ; cluster subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gij in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; let n be Element of NAT , x be Element of X ; reconsider ST = S , ST = T as Subset of T ; dom ( i .--> X `2 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , n be Nat ; let t be 0 -started State of SCMPDS , Q be t be State of SCMPDS ; b , b , x , y be element ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N2 >= ( sqrt ( c ^2 - 1 ) / ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * reconsider t7 = T-1 as TopSpace , T7 = T7 as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 . ( y2 ) ; A |^ 0 = { <%> E } & A |^ 1 = A ; len W2 = len W + 2 & len W = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) & i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom g ; assume p2 = E-max ( K ) & p1 <> 0. TOP-REAL 2 ; len G + 1 <= i1 + 1 & 1 <= i2 ; f1 (#) f2 is convergent & f2 /* ( seq + k ) = f2 /* seq ; cluster ( seq + s ) - ( x - s ) -> summable ; assume that j in dom M1 and i in Seg n ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/ y *> ^ <* y *> Q Q Q Q Q Q Q Q [ x ] ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) & width ( K (#) G ) = width G ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* J , P2 = P +* J , s2 = Comput ( P2 , s2 , 1 ) , P2 = P2 +* J , P3 = P3 ; consider w being Nat such that q = z + w ; x ` ` is Element of x & y is Element of X ; k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the is \hbox { $ T } ; let N , M be \mathbin { H } ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M | [. f , g .] = f & M | [. g , g .] = g ; ( ( ( ( L ) to_power 1 ) * ( L to_power 1 ) ) to_power 1 ) to_power 1 = TRUE ; dom g = dom f -tuples_on X & dom g = dom f ; mode *> is * \rm <= <= len W ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y as Element of H ; let f be Element of ( Subformulae p ) -tuples_on Subformulae ( f ) ; F1 . ( a1 , - 1 ) = G1 & F1 . ( a2 , - 1 ) = G2 ; redefine func being set , a , b , r be Real ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 + f2 ) ) ; curry ( F-19 , k ) is additive ; set k2 = card ( dom B ) , k1 = card ( dom B ) ; set G = the Sorts of A ; reconsider a = [ x , s ] as 0. of G ; let a , b be Element of MF , x be Element of MF ; reconsider s1 = s , s2 = t as Element of ( the carrier of S ) ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | D ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng g = the carrier of S ; rng h c= union ( ( the carrier of J ) --> ( the carrier of L ) ) cluster All ( x , H ) -> non \widetilde LSeg ; d * N1 / ( 1 - d ) > N1 * 1 / ( 1 - d ) ; ]. a , b .[ c= [. a , b .] ; set g = f " | D1 , h = f " | D2 ; dom ( p | ( mm ) ) = ( m + 1 ) -tuples_on NAT ; 3 + - 2 <= k + - 2 & k + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot * arccot ) . x & tan . x > 0 ; x in rng ( f /^ ( n -' 1 ) ) ; let f , g be FinSequence of D ; [: p , q :] in the carrier of S1 & [: p , q :] in the carrier of S2 ; rng f " = dom f & rng f = dom f ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 & width G - 1 < width G ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 < g2 . A ; let q be Point of TOP-REAL 2 , r be Real ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & <* S7 *> is in the carrier of C-20 ; i <= len ( G * ( len G -' 1 , j ) ) ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sp2 " ( Q ) .= ( S * R ) " ( Q ) ; ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 & n <= LifeSpan ( P2 , s2 ) ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z , t = y as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , T :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 4 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ ( a " ) is Subgroup of H & H |^ a is Subgroup of H ; let A1 be p1 of O , A2 be Element of E ; p2 , r3 , q2 is_collinear & p1 , r2 , q1 is_collinear & p2 , q2 , q2 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 < M . E8 & M . E8 < M . E8 ; ^ ( c , c ) ` = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> 0. for > w -| the carrier of L ; set i1 = the Nat , i2 = the Nat , i1 = i2 = the Nat , i2 = the Nat , j1 = the Nat , j2 = the Nat ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def1 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of Y ; cluster -> -> -> -> -> -> -> -> -> -> of \rm \leq implies x is l \rm div ; set S = <* Bags n , ih *> , T = <* i , j *> , S = <* j *> , T = <* i , j *> , S = <* j , k *> , T = <* i , j *> , T set T = [. 0 , 1 / 2 .] , S = [. 1 / 2 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI * PI ) / 2 < ( 2 * PI ) / 2 ; x2 in dom f1 /\ dom f & x2 in dom ( f1 + f2 ) ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p1 `1 ) ^2 + ( p1 `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & width <* P *> = width P ; set N-26 = the \subseteq of the seq of N , Ny = the seq of N ; len g\vert + ( x + 1 ) - 1 <= x ; a does not on B & b does not on B ; reconsider rr = r * I . v as FinSequence of REAL ; consider d such that x = d and a is_less_than d [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ^2 n .= n ; set q2 = \hbox { q2 : q2 `2 <= q1 `2 & q1 `2 <= q2 `2 } ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . q2 ; f " D meets h " V & h " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) & ( the_right_argument_of H ) '&' ( the_right_argument_of H ) = the_right_argument_of H ; assume t is Element of ( gF ) . X ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f2 . ( a2 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len thesis - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) , S1 = LSeg ( m , UMP C ) , S2 = LSeg ( n , UMP C ) , S2 = LSeg ( m , UMP C ) [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { i } is of K ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pi1 . i & pi2 . i = pi2 . i ; let PA , PA , G be a_partition of Y , PA be set ; pred 0 < r & r < 1 means : Def1 : 1 < r & r < 1 ; rng ( ( the on of X ) | X ) = [#] X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) \/ the topology of Y ) ; dom ( f | u ) c= dom ( f | u ) & dom ( f | u ) c= dom ( f | u ) ; pred n divides m & m divides n & n = m ; reconsider x = x , y = y , z = z as Point of I[01] ; a in dom the not y0 in the still of f & not y0 in the carrier' of f ; Hom ( ( a [: b , c :] ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < p " ; consider c , d such that dom f = c \ d and dom g = d ; [ x , y ] in [: dom g , dom k :] ; set S1 = l1 = m2 & l1 = l2 & l2 = j2 & l2 = j2 implies l1 = l2 x0 in dom ( u01 ) /\ ( dom ( f | A ) ) ; reconsider p = x , q = y , r = z as Point of TOP-REAL 2 ; I[01] = R^1 | B01 & I[01] = ( TOP-REAL 2 ) | B01 ; f . p4 <= _ P P & f . p1 = f . p2 ; ( ( ( F . x ) `1 ) / ( 1 + x ) ) ^2 <= ( ( F . x ) `2 ) ^2 ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) & ( 0 -tuples_on the carrier of K ) = ( 0 -tuples_on the carrier of K ) ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] & Q [ succ a ] ; reconsider sp2 = s\frac ( 1 - s ) as \rangle , sp2 = sp2 ; ( - ( i -' 1 ) ) <= len thesis - j ; [#] S c= [#] T & [#] T c= the TopStruct of T ; for V being strict RealUnitarySpace holds V in and V is Subspace of W implies V is Subspace of W assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K , n be Nat ; - a * - b * - b = a * b - a * b ; for A being Subset of AS holds A // A & A // A ( for o2 being element st o2 in dom <* o2 , o2 *> holds o2 . ( o1 , o2 ) = F ( o2 , o2 ) ) ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , x be Element of G ; j >= len upper_volume ( g , D1 ) & len upper_volume ( g , D2 ) = len D2 ; b = Q . ( len Q- 1 + 1 ) .= Q . ( len Q- 1 + 1 ) ; f2 * f1 /* s is divergent_to+infty & f2 * f1 /* s is divergent_to+infty ; reconsider h = f * g as Function of [: N1 , N2 :] , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- ( E , X ) ) | n is Element of T7 ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L2 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p2 = p +* I , p3 = p +* I ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of <* Ids L , \subseteq *> ; "/\" ( uparrow p , L ) \ { p } <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( P + ( len P ) ) + len ( P + ( len P ) ) ; ( x1 `1 ) ^2 = ( x2 `1 ) ^2 + ( x2 `2 ) ^2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FT1 ( n ) ; p = |[ p `1 / |. p .| - cn ]| ; g * 1_ G = h " * g * h * h ; let p , q be Element of thesis of being Element of being Element of being Element of being Element of V ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 & x1 . x0 = x2 . x0 ; ( R qua Function ) " = R " * ( R * ( R * ( R * ( R * ( R * ( S , S ) ) ) ) ) ; n in Seg len ( f /^ ( len f -' 1 ) ) ; for s being Real st s in R holds s <= s2 implies s <= s2 rng s c= dom ( f2 * f1 ) & rng s c= dom ( f2 * f1 ) ; synonym for for for for for for X being Subset of \mathop { \rm being Subset of X } ; 1. K * 1. K = 1_ K & 1. K * 1. K = 1_ K ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) , S = Segm ( P2 , P1 , Q1 ) , T = Segm ( P2 , P1 , Q1 ) , S = Segm ( P2 , P1 , Q1 ) , ex w st e = ( w - f ) / 2 & w in F ; curry ' ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* ( P+* cluster open -> open for Subset of T\sigma ( T ) ; len f1 = 1 .= len f3 .= len f3 + len f3 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c & b1 , c1 // c , d ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) = n ; Reloc ( J , card I + 2 ) does not destroy a ; goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , D = Comput ( p3 , s3 , IC SCMPDS in dom Initialize p & IC SCMPDS in dom Initialize p & IC SCMPDS in dom p ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 & ( ( E-max L~ f ) .. f ) .. f = ( ( E-max L~ f ) .. f ) .. f ; let a , b be Element of thesis , x be Element of V ; Cl Int ( union F ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) union ( X1 union X2 ) ) ; assume not LIN a , f . a , g . a , g . b ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = {} or Y = { x } ; M , v |= H1 / ( ( y , x ) / ( y , x ) ) ; consider m being element such that m in Intersect ( FF . m ) and x = Intersect ( FF . m ) ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a4 and a4 <> a5 ; cluster s | ( s , V ) -> non empty for string of S ; Ln2 /. n2 = Ln2 . n2 .= Ln2 . n2 .= Ln2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and r-7 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , x be Point of TOP-REAL n ; assume [ k , m ] in Indices ( ( D | ( i + 1 ) ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) / ( 2 |^ n ) ; ( F . N | E8 ) . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card ( X-18 ) <= card u & card ( X-18 ) <= card ( X \/ Y ) ; set g = z \circlearrowleft ( ( E-max L~ z ) .. z ) ; then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathop { 0 } ; reconsider B = A as non empty Subset of TOP-REAL n , C be Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , x be Element of Y ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 & n <= len D1 ; ( ( g2 ) . O ) `1 = - 1 & ( g2 ) . I = 1 ; j + p .. f - len f <= len f - len f - len f ; set W = W-bound C , S = S-bound C , E = E-bound C , N = N-bound C , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , S1 . ( a `2 , e `2 ) = a + e `2 .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) & 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f ) ) = dom Im ( f ) /\ dom Im ( g ) ; ( ^2 ) = W . ( a , *' ( a , p ) ) ; set Q = ( -> ( _ of ( g , f , h ) ) . ( x , h ) ) ; cluster -> MSsorted for ManySortedSet of U1 * -valued Relation of U1 , U2 ; attr A is discrete means : Def1 : ex F being Subset-Family of A st F = { A } ; reconsider z9 = \hbox { z } , z9 = z as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng f1 c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & g = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 , H ) & E , j |= All ( x2 , H ) ; reconsider n1 = n , n2 = m , n3 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 & card ( x \ B1 ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set qlim = ( q , <* s *> ) : q in dom f & p in f .: X } ; for x being element st x in X holds x in rng ( f1 + f2 ) h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , ( B * A ) ) ; t in Seg width ( ( I ^ ( n , n ) ) * ( I ^ ( n , n ) ) ) ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% - l %> + k .= <% - l %> ; S-bound L~ f <= q `2 & q `2 <= q `2 & q `2 <= N-bound L~ f ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 0 ; x , z , y is_collinear & x , z , y is_collinear & x , z , y is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set y9 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. 1 in rng Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 & p `2 = ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = E-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u , v2 = v as VECTOR of ( X | Y ) ; p |-count ( Product Sgm ( X11 ) ) = 0 & p |-count ( Product Sgm ( X11 ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = card I + 4 .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 x in { x , y } & h . x = {} ( TF , T ) ; consider y being Element of F such that y in B and y <= x `2 ; len S = len ( the charact of ( ( the charact of ( A ) ) * the charact of ( B ) ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = ( G ) \ ( G-15 ) , N8 = ( G ) \ ( G-15 ) ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr ( { a } ) ; P is and P is and ( F , n , r ) -valued implies P is in P f . k , f . ( mod n ) are_relative_prime in rng f & ( f . m ) mod n in rng f ; h " P /\ [#] ( T1 | P ) = f " P /\ [#] ( T2 | P ) ; g in dom f2 \ ( f2 " { 0 } ) & ( f2 " { 0 } ) \ ( f2 " { 0 } ) c= dom f2 ; g+ X /\ dom f1 = g1 " X & X = dom g1 & Y = g1 " { 0 } ; consider n being element such that n in NAT and Z = G . n ; set d1 = being thesis , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( y2 , y2 ) , d2 = dist ( y2 , y2 ) , b `2 / ( 1 + ( 1 + 1 ) ) ^2 < ( 1 + ( 1 + 1 ) ) ^2 ; reconsider f1 = f , g1 = g as VECTOR of the carrier of X ; pred i <> 0 means : Def1 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg ( len ( g2 . i2 ) ) & j2 in Seg ( len g2 ) ; dom ( i4 * i4 ) = dom ( i4 * i4 ) .= a ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of ]. PI / 2 , PI .[ , REAL ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = y0 as Function of S , T ; reconsider R1 = x , R2 = y , R1 = z as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rq ; S1 +* S2 = S2 +* S1 +* S2 +* S2 & S2 +* S2 = S1 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ; ( ( exp_R * ( cos + cos ) ) `| Z ) = f ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f3 ) ; E8 . e2 = E8 . e2 .= ( - 2 ) * T . e2 .= ( - 2 ) * T . e2 ; ( ( ( arctan * ( f1 + f2 ) ) `| Z ) = f ; upper_bound A = ( PI * 3 / 2 ) * 2 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f ) ) is_transformable_to F . ( cod f , - F . ( cod f ) ) ; reconsider pbeing Point of TOP-REAL 2 , p8 = q8 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & g . W = [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) /\ LSeg ( g , i ) ; rng s c= dom f /\ ]. -infty , x0 + r .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq ( 2 ) , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , n1 = n , n2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y + r for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: ( the carrier of X1 ) , BX1 = f .: ( the carrier of X2 ) , BX2 = f .: ( the carrier of X1 ) , BX2 = f .: ( the carrier of X2 ) , BX2 = f .: ( the carrier of X2 ) , B ex d being Element of L st d in D & x << d ; assume that R -Seg ( a ) c= R -Seg ( b ) and R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) & y = v + ( z + v1 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; pred x1 <> x2 means : Def1 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 , p3 - p1 , p1 - p3 - p3 .| is linearly-independent and p1 - p2 - p3 , p3 - p1 + p3 - p1 , p1 - p3 be 0. V ; set q = ( f | 'not' A ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( P , T . t ) ) = dom ( T * ( P , T . t ) ) ; consider x being element such that x in wc iff x in c & x in d ; assume ( F * G ) . v = v . x4 & ( F * G ) . x3 = v . x4 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 and the Sorts of D2 c= the Sorts of D1 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .[ as Subset of REAL ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G n1 -' len f + 1 <= len f + 1 - len f + 1 - 1 + 1 - 1 + 1 ; \lbrace \lbrace \lbrace q , O1 , a , b , c , d } , b , c } = { u , v , a , b , c } ; set C-2 = ( ( ( `1 ) `1 ) + ( G `2 ) `2 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * Sum p .= Sum ( L (#) p ) ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 <= n implies $1 <= n ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I , s4 = P2 +* J , s4 = P2 +* J , P4 = P3 ; let l be variable of k , A-30 , A be Subset of k -tuples_on A ; reconsider U2 = union ( G-24 ) , a = union ( G-24 ) as Subset-Family of TS ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; pccr = <* - c , 1 *> .= <* - c , 1 *> ; synonym f is real-valued means : Def1 : rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x0 < card ( X0 ) + card ( Y0 ) & x0 < ( 1 - 1 ) * ( 1 - 1 ) ; attr X c= B1 means : Def1 : for B1 , B2 being Subset of X st B1 c= B2 & B2 c= B1 holds X = B2 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , z ) ; pred 1 <= len s means : Def1 : ( for i being Element of NAT holds s . i = s . i ) & ( for i being Element of NAT st i in dom s holds s . i = s . i ) ; fJ c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in TAUT ( A ) means q in TAUT ( A ) & p in TAUT ( A ) & q in TAUT ( A ) ; - ( ( t `1 ) / |. t .| - sn ) < ( t `1 ) / |. t .| - sn ; U2 . 1 = U2 /. 1 .= ( U2 /. 1 ) `1 .= ( U2 /. 1 ) `1 .= ( U2 /. 1 ) `1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( ( the carrier of O1 ) --> ( the carrier of O1 , the carrier of O1 ) ) = [: the carrier of O1 , the carrier of O1 :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M / \square & ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is \cup ( A * B ) & f is \setminus of A * B ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| Let |[ w1 `1 , v1 `2 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| <> 0. TOP-REAL 2 ; reconsider t = t as Element of INT * , s be Element of INT * ; C \/ P c= [#] ( ( ( ( ( ( ( ( ( ( ( G ) \ A ) \/ A ) ) \/ B ) \/ C ) \/ D ) ) \/ A ) ) ; f " V in ( the topology of X ) /\ D & f " ( the topology of X , the topology of Y ) = D ; x in [#] ( ( the carrier of A ) /\ ( delta ( F ) ) ) ; g . x <= h1 . x & h . x <= h1 . x & h . y <= h2 . x ; InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = ( Line ( M , i ) * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) + len ( F2 ^ F1 ) .= len B2 + len F2 ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom ( max ( - ( f + g ) , f + g ) ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y2 ; dom ( p1 ^ p2 ) = dom ( f | 12 ) & dom ( p1 ^ p2 ) = dom ( f | 12 ) ; M . [ 1 / y , y ] = 1 / ( 1 / y ) * v1 .= y ; assume that W is not trivial and W .vertices() c= the carrier' of G2 and W is not trivial and W is not trivial ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\lbrace b \rbrace <= b * ( upper_bound rng fdom f ) - ( ( ( q1 `1 ) / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ [: NAT , NAT :] ) \/ [: { l } , NAT :] c= R ; consider p being element such that p in such that p in such and p in L~ f and x = f /. p ; Indices ( [: X , Y :] ) = [: Seg n , Seg 1 :] & [: X , Y :] = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( Int Z ) , ( ( N-min Z ) / 2 ) ) implies p in LSeg ( ( Int Z ) , ( ( \mathopen Z ) / 2 ) ) set R8 = R / ( 1 / 2 ) , R8 = ( 1 / 2 ) (#) ( R / 2 ) ; IncAddr ( I , k ) = SubFrom ( da , db ) .= goto ( da + 1 ) .= goto ( da + 1 ) ; seq . m <= ( ( the Sorts of seq ) . k ) . n & ( ( seq ^\ k ) . n ) . n <= ( ( seq ^\ k ) . n ) . n ; a + b = ( a ` *' b ) ` + ( a ` *' b ) ` .= ( a ` + a ` ) ` + ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x & h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U2 as non empty Subset of U0 , G = U1 /\ U2 , H = U2 /\ U1 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ m ) /\ j ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set such that card A = ( the carrier of R ) \/ ( the carrier of S ) ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min P ) `2 ) = ( ( N-min P ) `2 ) & ( ( N-min P ) `2 ) = ( ( N-min P ) `2 ) ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a2 = f . a2 ` & f . a2 = f . a2 ` ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 .= g . s0 ; the InternalRel of S is \lbrace the carrier of S , the carrier of S , the carrier of S \rbrace ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 + 1 ) & phi . ( $2 ) = phi . ( $2 ) ; F . a1 = F . ( s2 . a1 ) & F . a2 = F . ( s2 . a1 ) ; x `2 = A . a .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= f " P1 ; FinMeetCl ( ( the topology of S ) \/ the topology of T ) c= the topology of T & the topology of S = the topology of T ; synonym o is \bf means : Def1 : o <> *' & o <> {} & o <> {} ; assume that X = Y + Z and card X <> card Y and Y <> {} and X <> {} ; the finite the { s } <= 1 + ( the *> of s ) & the finite Subset of ( the carrier of S ) * ; LIN a , a1 , d or b , c // b1 , c1 & a , c // a1 , c1 or a , c // a1 , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; ES1 in SS1 & not ES2 in { NS1 } & not ES2 in SS2 ; set J = ( l , u ) If ; set A1 = Let ( ( a , b , c ) --> ( x , y , c ) ) ; set vs = [ <* c , d *> , '&' ] , f3 = [ <* d , c *> , '&' ] , f4 = [ <* c , d *> , '&' ] , f4 = [ <* d , c *> , '&' ] , f4 = [ <* c , d *> , '&' ] , [ <* d , c *> , '&' ] , [ <* c , x * z `2 * x " in x * ( z * N ) * x " * x * ( z * N ) ; for x being element st x in dom f holds f . x = g2 . x & g . x = g2 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f & Int cell ( G , 1 , j ) c= RightComp f ; U2 is_an_arc_of W-min C , E-max C & ( W-min C ) `1 <= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; set f-17 = f @ g "/\" @ @ @ f ; attr S1 is convergent means : Def1 : S2 is convergent & S1 is convergent & S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> 0. for non empty transitive RelStr -reflexive non empty non empty non void RelStr -reflexive RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not a in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( a |^ 0 ) .--> x ) = len l & len ( l |^ 0 ) = len l ; t4 \+\ {} is ( {} \/ rng t4 ) -valued ( {} , {} ) -valued finite Function ; t = <* F . t *> ^ ( C . p ^ ( C . q ) ) .= ( C . p ^ ( C . q ) ) ^ ( C . q ) ; set p-2 = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i + 1 ) ; consider u being Element of L such that u = u ` ` and u in D ` ; len ( ( width ( ( a |-> b ) ) * ( A @ ) ) ) = width ( ( a * A ) @ ) ; FF . x in dom ( ( G * the_arity_of o ) . x ) & ( ( G * the_arity_of o ) . x ) = ( ( G * the_arity_of o ) . x ) . x ; set H = the carrier of H2 , I = the carrier of H , J = the carrier of H , I = the carrier of H , J = the carrier of I ; set H = the carrier of H1 , I = the carrier of H2 , J = the carrier of H2 , I = the carrier of H1 , J = the carrier of H2 , I = the carrier of H2 , J = the carrier of J , M = the carrier of G , I = the carrier of J , J = the carrier of G , M ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) + 1 ; dom ( ( cos * sin ) `| REAL ) = REAL & dom ( ( cos * sin ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* ( ( z + 1 ) , ( z + 1 ) *> , <* ( z + 1 ) , ( z + 1 ) *> ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * ( Sgm Q ) . x .= L * ( x , y ) ; n in dom ( ( ( ( the Sorts of A ) * the_arity_of o ) * the_arity_of o ) . n ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y being Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t2 . DataLoc ( s4 . SBP , 2 ) , x4 = t2 . DataLoc ( s3 . SBP , 2 ) , P4 = s3 . DataLoc ( s3 . SBP , 3 ) , P4 = s3 . DataLoc ( s3 . SBP , 3 ) , P4 = s3 . SBP , P4 = s3 . SBP , P4 = s3 . set p-3 = stop I ( ) , p-3 = Initialize s2 , p-3 = Initialize s2 , p-3 = Initialize s2 , pE = Initialize s2 , pE = Initialize s2 , pE = Initialize s2 , pE = Initialize s2 , pE = Initialize s2 , pE = Initialize s2 , pE = Initialize s2 , consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D } = { A , B , C } \/ { D , E , F , J } let A , B , C , D , E , F , J , M , N , M , N , N , M be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 & ( p2 `2 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( l + 1 ) + ( \setminus l ) + 1 ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = , the TopStruct of L = \langle the Scott of L , the Scott Function of L , the topology of L *> ; consider y being element such that y in dom H1 and x = H1 . y and y in H ; ( f \ { n } ) \ { n } = ( Free ( All ( v1 , H ) ) \ { n } ) ; for Y being Subset of X st Y is summable & Y is not summable holds X is not summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } Shift ( s ) ) = len s & len ( the { - } Shift ( s ) ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & exp_R * f is_differentiable_in x & f . x > 0 ; rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | ( dom g2 ) ) | K1 ; j + ( len f ) - len f <= len f + ( len g - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , I ; C8 . x = s1 . x0 .= ( C . x0 ) * ( C . x0 ) .= C . x0 * ( C . x0 ) ; power F_Complex = 1 .= ( x |^ n ) * ( z |^ n ) .= ( x |^ n ) * ( z |^ n ) ; t at ( C , s ) = f . ( the connectives of S ) . t & t at ( C , s ) = f . ( t , I ) ; support ( f + g ) c= support f \/ ( support g ) & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( ( r4 | N ) | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] ; { [ x1 , x2 ] , [ x2 , y2 ] } is Subset of [: X1 , X2 :] ; h = ( j |-- h , id B ) . i .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A ; set X = ( ( \lbrace q , O1 } ) . ( q , 4 ) ) `1 , Y = ( ( { q , O1 } ) . ( q , 4 ) ) `1 , Z = ( { q , O1 } ) `1 , X = ( { q , O1 } ) . ( q , 4 ) , Y = ( { q , O1 } ) `1 , Z = { q , s } ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of Y = the lattice of the lattice of Y & the topology of Y = the topology of Y & the topology of Y = the topology of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( b . x ) = FALSE ; q2 = len ( q0 ^ r1 ) + len q1 & q2 = len ( q2 ^ r1 ) + len q1 & q1 = q2 ^ r1 + len q1 ; ( ( 1 / a ) (#) ( sec * f1 ) - id Z ) is_differentiable_on Z & ( ( 1 / a ) (#) ( sec * f1 ) ) `| Z ) = f ; set K1 = integral ( ( lim ( H || A ) ) || ( ( lim ( H || A ) ) ) , ( lim ( H || A ) ) || ( ( lim ( H || A ) ) ) ) ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `2 , d6 = dom F `2 , d8 = dom F `2 , d8 = dom F `2 , d7 = dom F `2 , d8 = dom F ; LSeg ( f /^ q , j ) = LSeg ( f , j ) + q .. f .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S29 = dom S /\ Seg n .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= dom ( L | Seg n ) ; x in H |^ a implies ex g st x = g |^ a & g in H & a in H a * ( 0. ( INT , n ) ) = a `2 - ( 0 * n ) .= a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ g < @ @ c ; dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) * p .= p * ( p * p ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 + 1 .= len f + 1 + 1 .= len f + 1 ; dom ( F-11 ) = dom ( F | [: N1 , S :] ) .= [: N1 , S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( ( T |^ the carrier of S ) , F ) ) .: D ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `2 = id b and f * f `2 = id a and f * g = id b ; ( cos | [. 2 * PI , 0 + 2 * PI .] ) | [. 2 * PI , 0 + 2 * PI .] is increasing ; Index ( p , co ) <= len LS - Gij .. LS - 1 & Index ( p , LS ) + 1 <= len LS - 1 ; let t1 , t2 , t2 , t1 be Element of ( T . s ) * , t2 be Element of ( T . s ) * ; ( -> "/\" ( ( Frege ( ( Frege H ) . h ) ) , L ) <= "/\" ( rng ( ( Frege G ) . h ) , L ) ; then P [ f . ( i0 + 1 ) , F ( f . ( i0 + 1 ) ) ] & F ( f . ( i0 + 1 ) , F ( f . ( i0 + 1 ) ) ) < j ; Q [ ( [ D . x , 1 ] ) `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is the Element of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier' of S1 ) .= ( the carrier' of S1 ) --> ( the carrier' of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Upper_Seq ( C , n ) /. len Upper_Seq ( C , n ) ) `1 = W & ( Cage ( C , n ) /. len Upper_Seq ( C , n ) ) `1 = W ; q `2 <= ( UMP C ) `2 & ( UMP C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= II and A = ]. a , I .[ and a < I ; consider a , b being complex number such that z = a & y = b & z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= k } , Y = { b |^ n where n is Element of NAT : n <= k } , Z = { b |^ n : n <= k } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* x , y *> , f3 ] , zx = [ <* y , z *> , f3 ] , zx = [ <* z , x *> , f3 ] , ] ; lq /. len lq = lq . len lq .= ( lq | len lq ) /. 1 .= ( lq | len lq ) /. 1 ; ( ( ( ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 = 1 ; ( ( ( p `2 / |. p .| - sn ) / ( 1 - sn ) ) / ( 1 - sn ) ) ^2 < 1 ; ( ( ( ( S \/ Y ) `2 ) / 2 ) * ( ( S \/ Y ) `2 ) / 2 ) = ( ( S \/ Y ) / 2 ) * ( ( S \/ Y ) / 2 ) ; ( ( seq - seq ) . k ) = ( seq . k - seq . ( k + 1 ) ) / ( seq . k - seq . ( k + 1 ) ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X1 = the carrier of X1 & the carrier of X2 = the carrier of X2 implies X1 = X2 ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set h = chi ( X , A5 ) , A = ( X --> A ) | A ; R to_power ( ( 0 * n ) ) = I\HM ( X , X ) .= R to_power ( n ) ; ( Partial_Sums ( curry ( F1 , n ) ) . n ) . x is nonnegative & ( ( curry ( F1 , n ) ) . x ) . x = ( ( Partial_Sums ( F1 , n ) ) . x ) . x ; f2 = C7 . ( ( V , K , len H ) + 1 ) & f2 = C8 . ( ( V , K ) + 1 ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= ( s2 * s2 ) . b .= ( s2 * s2 ) . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p01 ) & p2 in LSeg ( p1 , p01 ) /\ LSeg ( p1 , p01 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & o in ( the carrier' of S ) . 12 ; set phi = ( l1 , l2 ) support phi , phi = ( l1 , l2 ) If , phi = ( l1 , l2 ) If , phi = ( l1 , l2 ) If , Q = ( l1 , l2 ) If , E = ( l1 , l2 ) If , E = ( l2 , l2 ) If , F = ( l1 , l2 ) $ , F = ( l1 , l2 ) $ , N = ( l2 synonym p is invertible for p is invertible & p = 1 implies p * ( p , T ) = ( p * ( p , T ) ) * ( p , T ) ; ( Y1 ) `2 = - 1 & 0. ( TOP-REAL 2 ) | Y1 <> ( TOP-REAL 2 ) | Y1 & ( Y1 is 0. TOP-REAL 2 ) | Y2 <> 0. ( TOP-REAL 2 ) | Y1 ; defpred X [ Nat , set , set ] means P [ $2 , $2 ] & $2 = F ( $1 , $2 ) ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g and s . n < x0 + g ; Det ( I |^ ( ( m -' n ) * ( m -' n ) ) ) = 1_ K & Det ( I |^ ( m -' n ) ) = 1_ K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cd . d = Cd . d mod Cd . d .= Cd . d mod Cd . e .= Cd . d mod Cd . e ; attr X1 is dense means : Def1 : X2 is dense dense & X1 is dense dense & X2 is dense dense implies X1 union X2 is dense SubSpace of X & X1 is dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = $1 * ( ( $1 + 1 ) * ( ( $2 ) * ( $2 ) ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T ( t ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ 0. X .= 0. X ; for X being non empty set for X being Subset-Family of X holds X is Basis of <* X , UniCl ( Y , X ) *> synonym A , B are_means : Def1 : Cl ( A , B ) misses Cl ( B , C ) & A misses Cl ( A , B ) ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J = { v where x is Element of K : 0 < v . x & v . x < 0 } ; ( Sgm ( Seg m ) . d - ( Sgm ( Seg m ) . e ) ) * ( m - 1 ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) .= D2 . ( k + 1 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h = [. 0 , 1 .] & h is one-to-one ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . y = ( h . y ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len w + 1 ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) + n .= IC Exec ( i , s2 ) + n ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= 5 + 9 .= ( card I + 9 ) + 9 ; ( IExec ( W6 , Q , t ) ) . intpos ( 8 + 1 ) = t . intpos ( 8 + 1 ) .= t . intpos ( 8 + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) & LSeg ( f /^ q , j ) misses LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x or y <= y ; Integral ( M , ( f `| X ) . x ) = f . ( upper_bound C ) - ( f `| X ) . x .= ( r (#) f ) . x ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y in Y & x in X ` holds y <= x ` & y <= x ` ; func |. ( p \bullet <* p *> ) /. ( i + 1 ) -> variable of A equals min ( NBI . ( p , <* p *> ) , p ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 & x `2 '||' y `2 & y `2 '||' t `2 ; dom x1 = Seg ( len x1 ) & len x1 = len l1 & len x2 = len l1 & len x1 = len l1 & len x2 = len l1 & len x1 = len l1 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X .= ( ||. f .|| | X ) /* s1 .= ( ||. f .|| | X ) /* s1 ; ( the InternalRel of A ) ` ` ` /\ Y = {} \/ {} .= {} \/ {} .= {} .= {} .= {} ; assume i in dom p implies for j being Nat st j in dom q holds P [ i , j ] & i + 1 in dom p & j in dom p & p . i = p . j ; reconsider h = f | X ( ) as Function of X ( ) , rng ( f | X ( ) ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & u1 in the carrier of W1 & v1 = ( the carrier of W1 ) /\ the carrier of W2 implies u1 = v1 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= g . $1 & g . $1 <= h . $1 ; not ( u , a , v , y ) = s * x + ( - ( s * x ) + y ) .= b ; - ( - ( - ( - x ) ) ) = - ( x + - ( - y ) ) .= - ( x + y ) .= - ( x + y ) ; given a being Point of GX such that for x being Point of GX holds a , x are_\sum ( G , a ) and x , a are_not ed ; fT = [ [ dom ( @ f2 ) , cod ( @ g2 ) ] , [ cod ( @ g2 ) , cod ( @ g2 ) ] ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & ( ( A ` ) |^ d ) ` = ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; - ( ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = Ln . ( F . k ) & F . k in dom ( L * F ) & F . k in dom ( L * F ) ; set i2 = SubFrom ( a , i , - n ) , i1 = goto ( - n + 1 ) , i2 = goto ( - n + 1 ) , i2 = goto ( - n + 1 ) , i2 = goto ( - n + 1 ) ; attr B is thesis means : Def1 : for S being Subuniversal ( B , S-13 ) = ( B `1 ) \/ ( B `2 ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" b = ( a "/\" d ) "/\" ( a "/\" b ) ; |( \square , q29 )| * |( q29 , q29 )| * |( q29 )| >= |( \square , q29 )| * |( q29 , q29 )| ; ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> .= ( proj ( i , n ) ) . LM ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) + f2 ) * reproj ( i , x ) ) . x0 ; pred ( cos . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 ) ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & ( for x being set st x in dom h1 holds h1 . x = F ( x ) ) ; defpred C [ Nat ] means ( P . $1 is non empty & A is $1 empty & A is non empty & A is non empty & A is non empty & A is non empty & A is non empty ; consider y being element such that y in dom p9 and q9 . i = p9 . y and p9 . i = q9 . i ; reconsider L = product ( { x1 } +* ( index B , l ) ) as non empty Subset of ( A . index B ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st c in dom T holds T . ( id c ) = id d ( f , n , p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p = ( f | ( n , L ) ) *' ( - ( f | ( n , L ) ) ) .= ( f - ( f | ( n , L ) ) ) *' ( - ( f | ( n , L ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 , r2 ]| ) in f1 .: ( W1 /\ W2 ) & f2 .: ( W1 /\ W3 ) in f1 .: ( W2 /\ W3 ) ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) , x ) .= a * ( x | ( n , L ) ) .= a * ( x | ( n , L ) ) ; z = DigA ( ty , x9 ) .= DigA ( ty , x9 ) .= DigA ( ty , x9 ) .= DigA ( ty , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset-Family of X : S c= G } , F = G , G = H \ { Intersect S where S is Subset-Family of X : S c= G } , H = { Intersect S } , G = { Intersect S where S is Subset of X : S c= G } , F = H \ { Intersect S } , G consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 / ( 1 + sn ) ^2 ; 0. V is Linear_Combination of A & Sum ( 1. V ) = 0. V & Sum ( L (#) F ) = 0. V & Sum ( L (#) F ) = 0. V ; let k1 , k2 , k2 , x4 , k2 , x4 be Instruction of SCM+FSA , a be Int-Location , b be Int-Location ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and y = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = len implies p * p1 + ( a * p2 ) * p2 and 0 <= a and a <= 1 ; assume that a <= c & c <= d & [' a , b '] c= dom f and [' a , b '] c= dom g and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; Ax in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * b2 /. y .= ( F `1 * b1 ) . y .= ( F `2 * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) to_power ( 2 * k + 1 ) >= ( log ( 2 , k + 1 ) ) to_power ( 2 * k + 1 ) ; then that p => q in S and not x in the still of p & not x in S & not x in S & not x in S & not x in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-11 ) & dom ( the InitS of r-11 ) misses dom ( the InitS of r-11 ) ; synonym f is extended integer means : Def1 : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 ; l ( ) = ( g /. ( 1 , 3 ) + ( k ( ) ) * ( k , 3 ) - ( e ( ) * ( k , 3 ) ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l ) ) ; assume for n be Nat holds ||. seq .|| . n <= ( R * ||. seq .|| ) . n & ( R * ||. seq .|| ) . n <= ( R * ||. seq .|| ) . n ; sin . ( M * ( K - 1 ) ) = sin . ( r * ( cos . ( K - 1 ) ) ) .= 0 ; set q = |[ g1 . t0 , g2 . t0 ]| , r = |[ s . t0 , t . t0 ]| , s = |[ s . t0 , t . t0 ]| , t = |[ s . t0 , t . t0 ]| , s = |[ t . t0 , t . t0 ]| , t = |[ t . t0 , t . t0 ]| , s = |[ t . t0 , t . t0 ]| , t = |[ t . t0 ]| , t = |[ t . a , t . a ]| consider G being sequence of S such that for n being Element of NAT holds G . n in G and G . n in G ; consider G such that F = G and ex G1 st G1 in SM & G = \mathopen { X : X in G & X in G } ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s = [ x , s ] ; Z c= dom ( exp_R * ( f + ( ( #Z 3 ) * ( f1 + #Z 3 ) ) ) ) & Z c= dom ( exp_R * ( f + ( #Z 3 ) * ( f1 + #Z 3 ) ) ) ; for k being Element of NAT holds rx0 . k = ( sum ( Im ( f , S-3 ) , S-3 ) ) . k + ( Im ( f , S-3 ) ) . k ; assume that - 1 < n ( ) and q `2 > 0 and ( q `2 <= 1 ) and ( q `2 <= 1 ) and ( q `2 <= 1 ) ; assume that f is continuous one-to-one and a < b and f < c and f = g and f . a = c and g . b = d and f . c = d ; consider r being Element of NAT such that s-> Element of NAT such that s-> Element of NAT and r <= q and q <= r ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and inf ( { x , y } , L ) = inf ( { x , y } , L ) ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( ( proj ( F , i2 ) ) " ( A ) ) & ( proj ( F , i2 ) ) . ( ( proj ( F , i2 ) ) . ( A ) ) = ( proj ( F , i2 ) ) . ( A . ( A . ( i + 1 ) ) ; rng ( ( ( ( ( ( ( ( ( ( ( ( ( ( the M ) ) ) | ( the carrier' of M ) ) ) | ( the carrier' of M ) ) ) | ( the carrier' of M ) ) ) ) ) ) ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \/ { t } where t is Element of T : t in the carrier of T } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g & g . x0 < g ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the degree degree of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . v = p . v ; consider a being Element of the Points of X39 , A being Element of the lines of X39 such that a does not contradiction and A is not contradiction ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p is FinSequence of D & for i being Nat st i in dom p holds p . i = F ( i ) defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & Q [ y , x ] ; L~ f2 = union { LSeg ( p0 , p01 ) , LSeg ( p1 , p01 ) , LSeg ( p1 , p01 ) } .= { p1 , p2 } \/ { p2 } ; i -' len h11 + 2 - 1 < i -' len h11 + 2 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 < i + 2 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( ( F . n ) - ( F . n ) ) .| ; for r , s1 , s2 , r st r in [. s1 , s2 .] & s1 <= s2 holds r <= ( s1 - s2 ) * ( s1 - s2 ) assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 } ; let g be \vert element of A , INT , ( b , a ) --> ( b , b ) <> 0 & ( a , b ) --> ( b , c ) <> 0 ; min ( g . [ x , y ] , k ) = ( min ( g , k , x ) ) . y .= min ( g , k , x ) ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n ] & q1 is convergent & q1 is convergent & q2 is convergent & lim q1 = lim q2 ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and f is one-to-one ; reconsider B-6 = B /\ B , Od = O , Bd = I , Bd = I as Subset of B ; consider j being Element of NAT such that x = the the ` of n and j <= n and 1 <= j & j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x . O2 in L1 & x . O2 in L2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( ( of T4 ( k , n2 ) ) * ( C * ( k , n2 ) ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) | X ) = dom ( X --> f ) & dom ( ( X --> f ) | X ) = X ; S-bound L~ SpStSeq C <= ( ( SpStSeq C ) `2 ) / 2 & ( ( SpStSeq C ) `2 <= ( ( SpStSeq C ) `2 ) / 2 & ( ( SpStSeq C ) `2 ) / 2 <= ( ( SpStSeq C ) `2 ) / 2 ) / 2 ; synonym x , y are_collinear means : Def1 : x = y or ex l being \HM { x , y } c= l & x is Subset of S ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L , a , b being Element of Im k st a = x & b = y & x << y holds a << b ; ( 1 / 2 * ( ( ( - ( ( ( - ( ( - ( 0 ) ) ) * ( ( 0 ) ) / 2 ) ) * ( ( 0 - ( 0 ) ) / 2 ) ) ) ) ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( ( the Sorts of A1 ) * ( $1 + 1 ) ) . x = A1 . $1 & ( ( the Sorts of A2 ) * ( $1 + 1 ) ) . x = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= ( f . g1 ) * 1_ H .= ( f . g1 ) * ( g . g2 ) .= ( f . g1 ) * ( g . g2 ) .= ( f . g1 ) * ( g . g2 ) ; ( M * F-4 ) . n = M . ( ( canFS ( Omega ) ) . n ) .= M . ( { ( canFS ( Omega ) ) . n } ) .= M . ( ( canFS ( Omega ) ) . n ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 = the carrier of L1 \/ the carrier of L2 & the carrier of L1 = the carrier of L2 & L1 is the carrier of L2 ; pred a , b , c , x , y be element means : Def1 : a , b // o , c & b , c // o , y & x , y // o , y & x , y // o , y ; ( the PartFunc of s ) . n <= ( ( the Sorts of s ) . n ) * ( ( the Sorts of s ) . n + ( the Sorts of s ) . n ) ; pred - 1 <= r & r <= 1 & ( arccot ) . r = - 1 & ( arccot ) . r = - 1 & ( arccot ) . r = 1 ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & n in T1 } implies for x being element st x in T1 & x in T2 holds x in T1 & x in T2 |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = x2 - |[ y2 , y2 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = y2 - |[ y1 , y2 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 - |[ y1 , y2 ]| . 2 ]| . 2 = y2 - |[ y1 , y2 ]| . 2 - attr m be Nat means : Def1 : F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( 2 * G ) . z ) = len ( ( ( 2 * G ) . ( x9 + 1 ) ) + ( ( 2 * G ) . ( y9 + 1 ) ) ) .= len ( ( 2 * G ) . ( x9 + 1 ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W3 /\ W3 and v in W3 /\ W3 ; given F be finite Subset of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } and Sum F = k and Sum F = k ; 0 = 0 * 0 * 0 ^2 + 1 * 0 = ( ( - 1 ) * ( - 1 ) ) * ( ( - 1 ) * ( - 1 ) ) ; consider n being Nat such that for m being Nat st n <= m holds |. ( f # x ) . m - ( lim ( f # x ) ) .| < e ; cluster -> as } for non empty implies ( ( let L ) | ( ( let c ) | ( c , d ) ) ) | ( ( c | ( c , d ) ) ) is Boolean non empty ; "/\" ( BB , L ) = Top ( BB , L ) .= Top ( I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - 2 * |[ a , c ]| - ( 2 * r1 - 2 * |[ b , c ]| ) = 0. TOP-REAL 2 - ( 2 * r1 - 2 * r2 ) ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( - ( K , n , 1 ) ) ) * ( ( - ( K , n , 1 ) ) * ( ( - ( K , n , 1 ) ) ) ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in downarrow t and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M7 ) ) | ( n + 1 ) ) . n consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and x = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 and H1 is Subgroup of H2 ; for S , T being non empty that T , d being Function of T , S st T is complete holds d is directed-sups-preserving implies d is monotone & d is monotone & d is monotone [ a + ( 0. F_Complex ) , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a + ( 0. F_Complex ) , b2 ] in [: the carrier of V , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( x |^ n ) ) , mm = max ( len F1 , len F2 ) as Element of NAT ; I <= width GoB ( ( ( ( ( ( ( ( ( ( ( ( Y + Y ) ) ) * ( h + c ) ) / 2 ) ) * ( 2 * ( ( Y + 1 ) / 2 ) ) * ( 2 * ( 2 * ( 2 * ( Y + 1 ) ) ) ) ) + 2 ) ) ) & I <= len ( ( ( ( ( ( ( Y + 1 ) / 2 ) * ( 2 * ( Y + 1 ) ) / 2 ) ) * ( 2 * ( 2 * ( Y + 1 ) ) + 2 ) f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 is linearly-independent & A2 misses A2 & ( Lin ( A1 ) /\ Lin ( A2 ) ) /\ Lin ( A1 ) = (0). V & Lin ( A2 ) /\ Lin ( A1 ) = (0). V & Lin ( A1 ) /\ Lin ( A2 ) = (0). V ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } & for x being Element of R st x in C holds s <= x ; dom ( Line ( v , i + 1 ) (#) ( ( Line ( p , m ) ) * ( \square , 1 ) ) ) = dom ( F ^ G ) .= dom ( F ^ G ) ; cluster [ ( x `1 ) , ( x `2 ) ] -> non empty & [ x `2 , ( x `2 ) ] `1 = x & [ x `2 , ( x `2 ) ) `2 = x `2 ; E , f |= All ( All ( x2 , ( x2 'in' x1 ) '&' ( x2 'imp' x1 ) ) => All ( x2 , ( x2 '&' x1 ) '&' ( x2 '&' x1 ) ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . m - h . x0 / ( h . m ) (#) ( h . m - h . x0 ) / ( h . m ) (#) ( h . m - h . x0 ) / ( h . m - h . x0 ) ; cell ( G , ( ( X -' 1 ) , ( Y + 1 ) ) \ L~ f ) meets ( UBD L~ f ) \/ ( ( L~ f ) \ ( L~ f ) ) ; IC Comput ( P2 , s2 , i ) = IC Comput ( P2 , s2 , i ) .= card I .= card I + card J + 2 .= card I + card J + 2 .= card J + card J + 2 .= card J + card J + 2 ; sqrt ( ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom a & y0 in g " { k } and y0 = a . x0 & x0 in dom g & g . x0 = b . x0 ; dom ( r1 (#) chi ( A , A ) ) = dom ( chi ( A , A ) ) /\ dom ( chi ( A , A ) ) .= dom ( ( r1 (#) chi ( A , A ) ) | A ) .= dom ( ( r1 (#) chi ( A , A ) ) | A ) .= dom ( ( r1 (#) chi ( A , A ) ) | A ) .= A ; d-7 . [ y , z ] = ( ( ( y , z ) `2 ) - ( ( y , z ) `2 ) ) * ( ( y , z ) `2 ) .= ( ( y , z ) `2 ) * ( ( y , z ) `2 ) ; attr i being Nat means : Def1 : C . i = A . i /\ B . i & C . i c= C . i /\ C . i ; assume that x0 in dom f and f is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 & ||. f .|| is_continuous_in x0 & ||. f .|| is_continuous_in x0 & ||. f .|| is_continuous_in x0 ; p in Cl A implies for K being Basis of p , Q being Basis of T st Q in K & A meets Q holds A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| + |. y2 - x .| func the NAT of <*> a -> w w Ordinal means : Def1 : a in it & for b being Ordinal st a in b holds it . b c= b & it . a c= b ; [ a1 , a2 , a3 ] in ( ( the carrier of A ) \/ ( the carrier of B ) ) \/ ( ( the carrier of C ) \/ ( the carrier of D ) ) & [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of C ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & y = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x .|| < ( e / ( ||. x .|| + 1 ) ) * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of [: I , I :] : F c= Y & Z in x } holds z in { x where x is Element of [: I , I :] : F . x = x } ; upper_bound compactbelow [ s , t ] = [ sup ( ( sup ( { s } ) ) , sup ( ( compactbelow t ) ) ] , sup ( ( sup ( ( compactbelow t ) ) ) ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in II and [ f . i , z ] in II and [ y , z ] in II and [ z , y ] in II ; for D being non empty set , p , q being FinSequence of D st p c= q ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e19 being Element of the carrier of X such that c9 , a9 // a9 , e29 and a9 <> c9 & b9 <> c9 & a , c9 // a9 , e & a , e // a9 , c9 & a , c // a9 , c9 & a , c // a9 , c9 & a , b // a9 , c9 & c , d // a9 , c9 & a , b // a9 , c9 ; set U2 = I \! \mathop { \vert I .| } , U1 = I \! \mathop { |. I .| } , U2 = I \! \mathop { |. I .| } , U2 = I \! \mathop { |. I .| } , E = { |. I .| } , SS = { |. I .| } , SS = { |. I .| } , SS = { |. I .| } , SS = { |. I .| , E = { |. I .| } , SS = { E } , SS = { E } , SS = { E } , SS = { E } , SS = { E } , SS = { E } , SS = { E |. q2 .| ^2 = ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & dom ( the charact of U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| | X ) /\ X .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) ; for N1 , N1 being Element of ( the carrier of G ) * , ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N2 ( ( mod ( u , m ) + mod ( v , m ) ) ) . i = ( mod ( u , m ) + mod ( v , m ) ) . i + ( mod ( v , m ) ) . i ; - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 < - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 & - ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 < - ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ; pred r1 = fp & r2 = fp & r1 = fp & r2 = fp & for x st x in dom f holds f . x = ( f . x ) ^2 + ( f . r2 ) ^2 ; ( for m be bounded Function of X , the carrier of Y , Y st x9 . m = ( ( vseq . m ) (#) ( vseq . m ) ) . x holds ( vseq . m ) (#) ( vseq . m ) ) . x = ( ( vseq . m ) (#) ( vseq . m ) ) . x pred a <> b & b <> c & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = PI & angle ( c , a , b ) = PI & angle ( c , a , b ) = PI ; consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and r < s and s < p2 and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 + |. q .| ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 in X and p1 ^ q1 = p2 and q1 = q2 and q1 = q2 and q2 = q2 and p1 = q1 and q1 = q2 ; ( ( ( ( ( - 1 ) * ( r1 , r2 ) ) * ( r2 , s2 ) ) * ( r2 , s2 ) ) * ( r2 , s2 ) ) = ( ( ( ( - 1 ) * ( r2 , s2 ) ) * ( r2 , s2 ) ) * ( r2 , s2 ) ) ; ( ( LMP A ) `2 ) = lower_bound ( proj2 .: ( A /\ /\ /\ and ( proj2 .: ( A /\ \mathop { w } ) ) ) & proj2 .: ( ( proj2 .: ( A /\ \mathop { w } ) ) /\ ( proj2 .: ( A /\ \mathop { w } ) ) ) is non empty ; s |= ( ( k , ( ( k , 1 ) element ) |= H1 ) iff s |= ( ( H , ( k , 1 ) ) element ) & ( ( H , ( k , 1 ) ) |= H2 ) & ( s |= ( ( H , ( k , 1 ) ) element ) ) ; len ( s + 1 ) = card support b1 + 1 .= card support b2 + 1 .= card support b2 + 1 .= card support b2 + 1 .= card support b1 + 1 .= card support b2 + 1 .= len b1 + 1 + 1 .= len b1 + 1 + 1 .= len b1 + 1 + 1 .= len b1 + 1 + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z >= y & z >= x ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( N-bound D + ( E-bound D ) / 2 ) / 2 ]| , ( ( UMP D + ( S-bound D ) / 2 ) / 2 ) / 2 ) = { UMP D } ; lim ( ( ( ( f `| N ) / g ) /* b ) - ( ( f `| N ) / g ) /* b ) = ( ( ( f `| N ) / g ) /* b ) / ( g `| N ) ) . 0 .= ( ( ( f `| N ) / g ) /* b ) . 0 ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) , pr2 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( ( seq . k ) - ( R /* seq ) ) . k .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & x in P & y in P & x <> a & y in P holds a = b Z c= dom ( ( ( #Z 2 ) * ( ( #Z 2 ) * f ) - ( #Z 2 ) * f ) ) \ ( ( ( #Z 2 ) * ( ( #Z 2 ) * f ) ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & z = 1 + ( len l + 1 ) & z = ( l + 1 ) * ( len l + 1 ) & z = ( l + 1 ) * ( len l + 1 ) ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in dom ( holds r * u + ( 1-r * v ) in N ) holds r * u in N A , Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl ( A , Cl ( A , Cl ( A , Cl A , Cl ( A , Cl ( A , Cl ( A , - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + ( u + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) /\ ( the carrier of L ) and h . x = ( the carrier of J ) /\ ( the carrier of L ) ; for S1 , S2 being non empty reflexive RelStr , D being non empty Subset of S1 , D being non empty directed Subset of S2 , x being Element of S1 , y being Element of S2 , z being Element of S2 st x in D & y in D & x <= y holds ( cos * ( x , y ) ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & z = y or z = x & z = y or z = y & z = x or z = y & z = x or z = y ; E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , T being as as as as Tree , p , q being Element of dom T st p in dom T & q in dom T holds ( T -\hbox { p } ) . q = T . q & ( T -\hbox { q } ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides ( k * n ) & n divides ( k * n ) & ( k divides ( k * n ) & ( k divides ( k * n ) ) & ( k divides ( k * n ) ) & ( k divides ( k * n ) ) implies ( k divides n ) & ( k divides n implies ( k divides n ) & ( k divides n ) & ( k divides n ) & ( k divides n ) & ( k divides n ) & ( k divides n ) & ( k divides n implies ( k divides n ) & ( k divides n implies ( k divides n ) & ( k divides dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " = the carrier of X2 & F " = F " * F & F " = F " * F " & F " * F = F " * F " * F " & F " * F = F " * F " * F " ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( BM \/ C ) and C is linearly-independent & C is linearly-independent & C is linearly-independent & C is linearly-independent ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V & Y c= V holds X = Y or Y = V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Z = { F ( v2 ) : P [ v1 ] } , Z = { F ( v2 ) : P [ v2 ] } , Z = { Z ( ) : Q [ v1 ] } , Z = { Z ( ) where v2 is Element of B ( ) : P [ v2 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 ) + angle ( p4 , p1 , p2 ) .= angle ( p3 , p4 ) + angle ( p4 , p1 , p2 ) .= angle ( p3 , p4 ) + angle ( p4 , p1 , p2 ) ; - sqrt ( ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 - cn ) ) ^2 ) ) = - sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 - cn ) ) ^2 ) .= - ( ( - ( q `2 / |. q .| - cn ) ) / ( 1 - cn ) ) ^2 ) .= - ( - ( ( q `2 / |. q .| - cn ) ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 & f . 2 = p4 & f . 3 = p4 & f . 1 = p4 & f . 3 = p4 ; attr f is_is_is_is_differentiable on u0 means : Def1 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) . u = ( proj ( 2 , 3 ) * pdiff1 ( f , 3 ) ) . u ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 <= N-bound L~ f ; pred i in dom G means : Def1 : r * ( f * reproj ( i , x ) ) = r * f * reproj ( i , x ) + r * ( f * reproj ( i , x ) ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 and ( decomp c ) /. k = c1 + c2 and ( decomp c ) /. k = c2 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & s1 < G * ( 1 , 1 ) `2 & G * ( 1 , j ) `2 < s1 & s1 < G * ( 1 , j + 1 ) `2 } ; ( ( X ^ Y ) . k ) = the carrier of X . k2 .= ( ( C ^ Y ) . k2 ) . k .= ( C . k2 ) . k .= ( C . k2 ) . k .= ( C . k2 ) . k .= ( C . k2 ) . k ; attr M1 = len M2 & width M1 = width M2 & M1 = M2 & M2 = M1 & M1 = M2 implies M1 - M2 = M2 - M1 & M1 - M2 = M2 - M1 & M1 - M2 = M2 - M1 & M1 - M2 = M2 - M2 & M1 - M2 = M2 - M1 & M1 - M2 = M2 - M1 ; consider g2 being Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom f & f . y = f . ( y - x0 ) + g2 & g2 in dom f } c= N2 ; assume x < ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) or x > ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M1 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i divides f /. i holds i divides Sum ( f | ( i + 1 ) ) & i divides Sum ( f | ( i + 1 ) ) assume F = { [ a , b ] where a , b is set , c is set : for a , b being set st a in B\mathopen { \rbrack a , b .[ & b in B\mathopen { a , b .[ holds a c= c } ; b2 * q2 + ( b3 * q3 ) + - ( ( a1 * q2 ) + ( a2 * q3 ) ) + ( ( a2 * q2 ) + ( a2 * q3 ) ) = 0. TOP-REAL n + ( ( a2 * q2 ) + ( a2 * q3 ) ) .= ( ( a2 * q2 ) + ( a2 * q3 ) ) + ( ( a2 * q2 ) + ( a2 * q3 ) ) ; Cl ( Cl ( F ) ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & D in F } & F is closed & Cl ( Cl ( F ) ) = Cl ( Cl ( B ) ) ; attr seq is summable means : Def1 : seq is summable & seq is summable & ( for n holds seq . n = ( seq . n ) * ( seq . n ) ) & ( seq is summable implies seq is summable & seq is summable ) implies seq is summable & seq is summable & lim seq = Sum ( seq ) + Sum ( seq ) dom ( ( ( ( ( ( ( ( TOP-REAL 2 ) | D ) ) | D ) ) | D ) ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) ) /\ D ) .= the carrier of ( ( ( TOP-REAL 2 ) | D ) | D ) .= D ; [: X , Z :] is full full non empty SubRelStr of [: Y , Z :] |^ the carrier of Z & [ X \to Y ] is full SubRelStr of [: Y , Z :] |^ the carrier of Z ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : Def1 : for p being set st p in P holds the } is the carrier of ( m , n ) \rm the carrier of ( m , n ) | the carrier of ( m , n ) = ( the $ m2 ) | the carrier of ( m , n ) | the carrier' of ( m , n ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) ; synonym mode multiplicative loop Let R -> non empty multMagma means : Def1 : the multMagma of it = [ ( the carrier of R ) , ( the multF of R ) ] means the multF of it = [ the carrier of R , ( the multF of R ) ] ; sequence ( a , b ) + 1 + and and and sequence ( c , d ) = b + and sequence ( c , d ) = b + d + 1 .= b + ( c + d ) .= ( sequence ( a + c ) + ( d + d ) ) + ( ( d + c ) + ( d + c ) ) ; cluster + ( i1 , i2 ) -> INT -valued for Element of INT , i , j be Element of INT , i1 , i2 be Element of INT , i2 be Element of INT st i1 = i2 & i2 = i2 & i1 = i2 & i2 = i2 holds ( i1 + i2 ) + ( i2 + 1 ) = i2 + ( i1 + i2 ) + ( i2 + 1 ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 ) ) = ( ( - s2 ) * p1 + ( s2 * p2 ) ) * ( p1 - p2 ) + ( s2 * p2 ) * ( p1 - p2 ) .= ( ( ( - s2 ) * p1 ) + ( s2 * p2 ) ) * ( p1 - p2 ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) , x ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( q , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being open Subset of S st V in the topology of S & V = V holds V meets V and for W being open Subset of S st W in V & W is open & V is open holds W is open & V is open & W is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( ( ( T , w ) | ( k + 1 ) ) | ( k + 1 ) ) ) = ( ( T , w ) | ( k + 1 ) ) | ( k + 1 ) ) | ( k + 1 ) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= ( a |^ n + ( b |^ n ) * b |^ n ) + ( ( a |^ n ) * b |^ n ) + ( ( a |^ n ) * b |^ n ) + ( ( a |^ n ) * b |^ n ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , All ( x. 0 , All ( x. 4 , All ( x. 0 , All ( x. 0 , All ( x. 0 , All ( x. 0 , All ( x. 0 , All ( x. 0 , x. 0 , x. 0 ) ) ) ) ) ) ) ) ) ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 & f . x0 < 0 or for x0 st x0 in l holds f . x0 < 0 & f . x0 < 0 & f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , W being Walk of G2 , e being set st e in W .vertices() & e in W .vertices() & W is Walk of G holds e in W implies W is Walk of G not ( not c is not empty iff not iff iff not ( not f1 is not empty & not f2 is not empty & not f1 is not empty & not f2 is not empty & not f1 is not empty & not f2 is not empty & not f1 is not empty & not f2 is not empty ) & not not not f1 is not empty & not f2 is not empty & not f2 is not empty ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j1 ) in [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j1 ) in [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j1 ) in [: dom GoB f , Seg width GoB f :] ; for G1 , G2 , G3 being Group , O being stable Subgroup of G1 , G2 being stable Subgroup of G2 , A being set st G1 is stable & G2 is stable & A is stable & A is stable & B is stable holds ( G1 * G2 ) * A = ( G1 * A ) * ( G2 * A ) UsedIntLoc ( in4 ( f ) ) = { intloc 0 ( 1 ) , intloc 1 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ( 2 ) , intloc 0 ) ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ p ^ <* p *> ] & Q [ p ^ <* p *> ] & P [ p ^ <* p *> ] holds P [ f1 ^ f2 ] & Q [ p ^ <* p *> ] & Q [ p ^ <* p *> ] ; ( ( p `1 ) / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ) ^2 = ( ( q `1 ) / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 + ( ( q `2 ) / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ) ^2 ; for x1 , x2 , x3 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x3 )| + |( x2 , x3 )| + |( x1 , x3 )| + |( x2 , x3 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x3 , x3 )| + |( x3 , x3 )| + |( x3 , x3 )| for x st x in dom ( ( ( ( ( ( ( ( ( ( ( x - x ) ) ) | A ) ) | A ) ) | A ) ) ) ) holds ( ( ( ( ( ( ( ( x - x ) | A ) ) | A ) ) | A ) ) | A ) . x = - ( ( ( ( ( ( x - x ) | A ) | A ) | A ) ) . x ) for T being non empty TopSpace , P being Subset-Family of T , B being Basis of T st P c= the topology of T for x being Point of T st P c= B ex B being Basis of x st B c= P & x in B & P is Basis of B ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( ( a . x ) 'or' c . x ) 'or' c . x .= TRUE 'or' ( ( a . x ) 'or' c . x ) 'or' c . x .= TRUE 'or' ( ( a . x ) 'or' c . x ) 'or' c . x .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open for i being set st i in the carrier of S for f being Function of [: S , T :] , S1 . i st f = H . i & F . i = f | ( F . i ) holds F . i = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . w card D = card D1 + card D1 - card { i , j } - 1 .= c1 + 1 - 1 + 1 - 1 .= c1 + 1 - 1 + 1 - 1 .= c1 + 1 - 1 + 1 - 1 .= c1 + 1 - 1 + 1 - 1 .= c1 + 1 - 1 + 1 - 1 .= c1 + 1 - 1 + 1 .= c1 + 1 - 1 + 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( ( 0 .--> s . 0 ) ) . 0 .= ( ( 0 .--> s . 0 ) +* ( ( 0 .--> s . 0 ) ) ) . 0 .= ( ( 0 .--> s . 0 ) .--> ( ( 0 .--> s . 0 ) ) . 0 ) .= ( ( 0 .--> s ) . 0 ) . 0 .= ( ( 0 .--> s . 0 ) . 0 ) .= ( ( 0 .--> ( s . 0 ) . 0 .= ( ( 0 .--> s . 0 ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 .= len f /. ( \downharpoonright i1 -' 1 + 1 ) = len f -' i1 + 1 - 1 + 1 .= len f -' i1 + 1 - 1 + 1 .= len f -' i1 + 1 - 1 + 1 .= len f -' 1 + 1 - 1 + 1 .= len f -' 1 + 1 - 1 + 1 .= len f - 1 + 1 - 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k < a or a <= b & k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b + a or k = a + b + a ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) & i <= len f & i <= len f & p in LSeg ( f , i ) holds Index ( p , f ) <= Index ( p , f ) ( curry ( ( curry ( ( P , k + 1 ) ) # x ) ) # x ) = ( ( curry ( ( curry ( P , k ) ) # x ) ) . x ) + ( ( curry ( ( curry ( P , k ) ) # x ) # x ) ) . x ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g . ( i -' n2 + 1 + 1 ) .= g . ( i -' n2 + 1 + 1 ) .= g . ( i -' n2 + 1 + 1 ) .= g . ( i -' n2 + 1 + 1 ) .= g . ( i -' n2 + 1 + 1 ) .= g . ( i + 1 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 2 , f . 3 ] in the InternalRel of G & [ f . 1 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B st G = { R [ X ] where X is Subset of A ( ) , Y is Subset of B ( ) st X in F & Y in F & X c= Y holds ( Intersect G ) . X = Intersect G & ( Intersect G ) . Y = Intersect G & ( Intersect G ) . Y = Intersect G ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= halt SCMPDS .= halt SCMPDS ; assume that a on M and b on M and c on N and d on M and p on N and c on M and d on N and p on P and c on P and d on P and p on Q and c on Q and d on P and p on Q and d on P and c on Q and d on P and d on Q and p on Q ; assume that T is \hbox { T _ 4 } and F is closed and ex F being Subset-Family of T st F is closed & F is finite-ind & ind F <= 0 & ind T <= 0 and ind T <= 0 and ind T <= 0 ; for g1 , g2 st g1 in ]. r - s , r .[ & g2 in ]. r - s .[ holds |. ( f . g1 ) - ( f . g2 ) .| <= ( ( f - g ) / ( r - s ) ) / ( r - s ) ( ( - ( ( - 1 ) / ( n + 2 ) ) * ( ( - 1 ) / ( n + 1 ) ) ) * ( ( - 1 ) / ( n + 2 ) ) ) = ( ( - 1 ) / ( n + 1 ) ) * ( ( - 1 ) / ( n + 2 ) ) * ( ( - 1 ) / ( n + 2 ) ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) + ( a |^ n ) .= ( b |^ n ) + ( a |^ n ) .= ( ( ( n + 1 ) ) / ( n + 1 ) ) * ( ( a |^ n ) / ( n + 1 ) ) .= ( ( b |^ n ) |^ n ) / ( n + 1 ) ; ex y being set , f being Function st y = f . n & dom f = A ( ) & f . 0 = R ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & f . ( n + 1 ) = R ( n , f . n ) ; func f * F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) & for i be Nat st i in dom it holds it . i = F /. ( F /. i ) * ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 } \/ { x5 , 6 } ; for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( for S1 being Element of CQC-WFF ( Al ) st S1 = S2 & S1 is non empty & S2 is non empty & S1 is non empty & S2 is non empty & S1 is non empty & S2 is non empty & S1 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is non empty & S2 is consider P being FinSequence of Gq2 such that p9 = Product P and for i being Element of NAT st i in dom P ex t being Element of the carrier of G st P . i = t & t is i -element & P . i = ( t . i ) * ( t . i ) ; for T1 , T2 being non empty TopSpace , P being Basis of T1 , T2 being Basis of T2 st the carrier of T1 = the carrier of T2 & P = the topology of T2 & P = the topology of T2 & P = the topology of T2 & P = the topology of T2 & P = the topology of T2 & P = the topology of T2 holds P is Basis of T1 & P is Basis of T2 assume that f is_is_finite , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r * pdiff1 ( f , 3 ) . u0 & partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 3 ) = r * pdiff1 ( f , 3 ) . u0 ; defpred P [ Nat ] means for F , G be FinSequence of REAL , G be Permutation of Seg $1 , s be Permutation of rng F st len s = $1 & G = F * s & not ( ex F be Permutation of Seg $1 st F = G * s & F is one-to-one & s = F * s ) & ( for i being Nat st i in rng F holds F . i = G . i ) & ( F is one-to-one implies F is one-to-one ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s * ( 1 , j ) `2 < ( GoB f ) * ( 1 , j + 1 ) `2 & s * ( 1 , j + 1 ) `2 < ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex Fa1 be Subset-Family of T st $2 = Fa1 & ( union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is closed ) & ( union Fa1 is closed & union Fa1 is closed & union Fa1 is closed ) & ( union F is discrete discrete & union F is discrete discrete ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 holds LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 f in ) & for H st for y st g . y <> f . y holds x in Free ( E , H ) & g in ( ( the Sorts of H ) . ( g . y ) implies f in ( the Sorts of H ) . ( g . x ) & f in ( the Sorts of H ) . ( g . y ) & g in ( the Sorts of H ) . ( g . y ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( ( ( ( ( ( ( ( ( p `2 ) / |. p .| - sn ) ) / |. p .| - sn ) ) / ( 1 - sn ) ) / ( 1 - sn ) ) ) * ( 1 - sn ) ) & ( ( ( ( ( ( ( p `2 / |. p .| - sn ) / ( 1 - sn ) ) / ( 1 - sn ) ) / ( 1 - sn ) ) ^2 ) >= 0 ) & ( ( ( ( p `2 / ( 1 - sn ) ) * ( 1 - sn ) ) / ( 1 - sn ) ) / ( 1 - sn ) ) * ( 1 - sn ) ) / ( 1 - sn ) ) ^2 >= 0 & ( ( 1 - sn ) ) * ( 1 - sn ) ) ^2 >= 0 & ( ( ( p `2 / ( 1 - sn ) ) * ( assume for d7 being Element of NAT st d7 <= d7 holds ( s1 . d7 = s2 . ( d7 ) & s2 . ( d7 ) = s2 . ( d7 ) & ( s2 . ( d7 ) = s2 . ( d7 ) ) & ( s2 . ( d7 ) = s2 . ( d7 ) ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of E st { e } = Sphere ( s , t ) /\ Sphere ( x , r ) & t = Sphere ( s , t ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s st 0 < s holds not 0 < s or ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. f /. x1 - f /. x0 .|| < r & |. f /. x0 - f /. x0 .| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | x ) | ( x | x ) ) | p .= ( ( ( x | x ) | x ) | p ) | p .= ( ( ( x | x ) | x ) | p ) | p ; assume that x , x + h / 2 in dom sec and ( for x st x in dom sec holds ( ( sec * sec ) `| Z ) . x = ( ( 4 * sin . x + h / 2 ) * sin . x ) ^2 + ( ( cos * sin ) `| Z ) . x ) ^2 and ( ( cos * sin ) `| Z ) . x = ( ( 4 * sin . x + h / 2 ) / ( cos . x ) ^2 ) ; assume that i in dom A and len A > 1 and B c= the set of ( the set of A ) and A c= the set of ( the m of A ) \/ the m of ( the m of B ) and B = ( the 0. of A ) \/ ( the 0. K ) and B = ( the 0. K ) \/ ( the 0. K ) ; for i being non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex , n *> & ( i divides n & n divides n & i <> 0 implies h . i = ( ( 1. F_Complex ) * ( i , n ) ) * ( h . n ) ) & ( i divides n implies h . i = ( ( 1. F_Complex ) * ( i , n ) ) * ( h . n ) ) ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( b1 'or' c2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'or' b2 ) '&' ( b1 'or' c2 ) '&' ( c1 '&' c2 ) '&' ( a1 'or' a2 ) '&' ( b1 'or' a2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a2 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a2 'or' b2 assume that for x holds f . x = ( ( cot * sin ) `| Z ) . x and x in dom ( ( cot * sin ) `| Z ) & for x st x in Z holds ( ( cot * sin ) `| Z ) . x = - 1 / ( sin . x ) ^2 and for x st x in Z holds ( ( cot * sin ) `| Z ) . x = - 1 / ( sin . x ) ^2 and f . x = 1 / ( sin . x ) ^2 and f . x = 1 / ( sin . x ) ^2 and f . x = 1 / ( sin . x ) ^2 and f . x = 1 / ( sin . x ) ^2 and f . x = - 1 / ( sin . x ) ^2 and f . x = 1 / ( sin . x - cos . x - 1 / ( sin . x - 1 / ( sin . x ) ^2 and f . x = 1 consider R8 , I-8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k being Element of NAT st ( ex q being Element of product G st q = k & 0 < d & for q being Element of product G st q in X & ||. q-r .|| < d holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r ) & ||. partdiff ( f , q , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } iff x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 } \/ { x5 , x5 } G * ( j , ( G * ( j , i ) ) `2 ) = G * ( 1 , ( G * ( j , i ) ) `2 ) .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 f1 * p = p .= ( ( the Arity of S1 ) * g ) . o .= ( ( the Arity of S2 ) * g ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S2 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S2 ) . o ; func \vert \vert T , P , T1 , T2 ] -> DecoratedTree means : Def1 : q in it iff q in P & for p st p in P holds p in T or ex q st q in P & q in T & p = q or p = q or q = p & q = p ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= Fx0 ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= Fx0 ( p . ( k + 1 -' 1 ) , k + 1 ) .= Fx0 ( p . k , k + 1 -' 1 ) .= Fx0 ( p . k , k + 1 -' 1 ) .= Fx0 ( p . k , k + 1 ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width C & len C > 0 & len A > 0 & len B > 0 & len C > 0 & len A > 0 & len B > 0 & width A > 0 & width B = 0 & A = C * B & C * B = C * B + C * C * A seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of Cq ) \/ ( the carrier of Cq ) and y in ( the carrier of Cq ) \/ ( the carrier of Cq ) and z = [ x , y ] and [ y , z ] in the InternalRel of Cq and [ x , z ] in the InternalRel of Cq ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k = $1 holds ( ( VAL g ) . k = ( ( VAL g ) | 1 ) . k ) holds ( ( ( VAL g ) | ( k -' 1 ) ) ) . f = ( ( VAL g ) | ( k -' 1 ) ) . f ) '&' ( ( VAL g ) | ( k -' 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that cn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 ; for M being non empty dist , x being Point of M , f being Point of M st x = x `2 holds ex x being Point of M st f . x = Ball ( x `1 , ( 1 / 2 ) * ( x `2 ) ) & f . x = Ball ( x `2 , ( 1 / 2 ) * ( x `2 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds f1 . x = - x ) & ( for x st x in Z holds f1 . x = - x ) & ( for x st x in Z holds f1 . x = - x ) & ( f1 - f2 ) is_differentiable_on Z & ( f1 - f2 ) is_differentiable_on Z implies f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( f1 - f2 ) is_differentiable_on Z & f2 is_differentiable_on Z & ( f1 - f2 ) | Z & ( f1 is_differentiable_on Z & f2 is_differentiable_on Z & f2 is_differentiable_on Z & ( f1 - f2 ) | Z & ( f1 - f2 ) | Z implies ( f1 - f2 ) | Z & ( f1 - f2 ) | Z & ( f1 - f2 ) . x = ( f1 - f2 ) . x = ( f1 - f2 ) . x = ( f1 - f2 ) . x = ( f1 - f2 ) . x = ( ( f1 - f2 defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. ( f /. $1 ) - ( f /. ( $1 + 1 ) ) .|| < r & ||. ( f /. ( $1 + 1 ) ) - ( f /. ( $1 + 1 ) ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= ( g . ( i -' len g ) ) + ( g . ( i + 1 ) ) .= g . ( i -' len g ) + ( g . ( i + 1 ) ) .= g . ( i + 1 ) + ( g . ( i + 1 ) ) .= g . ( i + 1 ) ; ( 1 - 2 * ( 2 * n0 + 2 * ( 2 * n0 + 2 * n0 ) ) ) * ( 2 * ( 2 * n0 + 2 * n0 ) ) = ( ( 1 - 2 * ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * ( 2 * n0 + 1 ) ) ) * ( 2 * ( 2 * n0 + 1 ) ) * ( 2 * n0 + 1 ) ) * ( 2 * ( 2 * n0 ) ) * ( 2 * ( 2 * n0 ) ) .= ( 1 / 2 * ( 2 * n0 ) * ( 2 * ( 2 * n0 ) ) * ( 2 * ( 2 * n0 ) ) * ( 2 * ( 2 * n0 ) * ( 2 * n0 ) .= ( 1 / 2 * ( 2 * n0 ) * ( 2 * n0 ) + 2 * ( 2 * n0 ) + 2 * ( 2 * n0 ) ) * ( 2 * ( 2 * n0 ) * ( 2 * n0 ) + 2 * ( 2 defpred P [ Nat ] means for G being non empty finite strict non empty finite strict strict non empty RelStr st G is space & card the carrier of G = $1 & the carrier of G in the carrier of G & the carrier of G in the carrier of G & the InternalRel of G in the carrier of G & the InternalRel of G in the carrier of G & the InternalRel of G in the carrier of G & the InternalRel of G in the carrier of G ; assume that f /. 1 in Ball ( u , r ) and 1 <= m and m <= len ( - 1 ) and for i st 1 <= i & i <= len ( f | ( i + 1 ) ) /\ Ball ( u , r ) & ( not i in Ball ( u , r ) & not i in Ball ( u , r ) holds m . i <> 0 ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( cos * ( ( cos - r ) / ( 2 * $1 ) ) ) ) . ( 2 * $1 ) = ( Partial_Sums ( ( cos * ( ( cos - r ) / ( 2 * $1 ) ) ) ) . ( 2 * $1 ) ) * ( ( cos * ( ( cos - r ) / ( 2 * $1 ) ) / ( 2 * $1 ) ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & x . i = ( the carrier of F ) . i & for i being set st i in dom F holds x . i = ( the carrier of F ) . i & for i being set st i in dom F holds x . i = ( the carrier of F ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) |^ n ) * x .= ( ( x |^ n ) |^ n ) * x .= ( ( x |^ n ) |^ n ) * x .= ( ( x |^ n ) |^ n ) * x .= ( ( x |^ n ) |^ n ) * x .= ( ( x |^ n ) |^ n ) * x .= ( ( x |^ n ) |^ n ) |^ n ; DataPart Comput ( P +* ( I , P +* I , Initialize s ) , LifeSpan ( P +* I , Initialize s ) + 3 ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= ( dom f1 /\ dom f2 ) /\ ( ]. x0 , x0 + r .[ ) and for g st g in ]. x0 , x0 + r .[ /\ dom f2 holds f1 . g <= ( f2 * f1 ) . g & f2 . g <= ( f2 * f1 ) . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( for r st r in X /\ dom f2 holds f1 | X is continuous ) and ( for r st r in X /\ dom f2 holds f2 | X is continuous ) & ( for r st r in X /\ dom f2 holds f2 | X is continuous ) implies f2 | X is continuous & ( f2 | X ) is continuous & ( f2 | X is continuous & ( f2 | X is continuous & ( f1 | X is continuous & f2 | X is continuous & f2 | X is continuous & f2 | X is continuous & ( f2 | X is continuous & ( f2 | X is continuous & ( f1 | X is continuous & ( f2 | X is continuous & ( f1 | X is continuous & f2 | X is continuous & ( f1 | X is continuous & ( f1 | X is continuous & f2 | X is continuous & f2 | X is continuous & f2 | X is continuous & ( f2 | X is continuous & ( f2 | X is continuous & ( f1 | X is for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Element of L & x is an & x is an & x is an & x is an L implies x is directed Support ( e *' p ) in { Support ( m *' p ) where m is Polynomial of n , L : ex i being Element of NAT st i in dom ( m *' p ) & ( m *' p ) . i = ( m *' p ) . i & ( m *' p ) . i = ( m *' p ) . i ; ( f1 - f2 ) /* s1 = ( lim ( f1 /* s1 ) - ( f2 /* s1 ) ) - ( lim ( f2 /* s1 ) ) .= lim ( ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ) - ( ( f2 /* s1 ) - ( ( f2 /* s1 ) - ( f2 /* s1 ) ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g `2 & for g being Function of [: Al ( ) , D ( ) :] , D ( ) st P [ g ] & Q [ g , h ] holds P [ g , h . ( len F ) ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. ( len f -' 1 ) *> ) /. j = ( mid ( f , i , len f -' 1 ) ^ mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) /. j ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) + ( p . ( len p + k ) .= ( p . ( len p + k ) + ( p . ( len p + k ) + ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) + ( len q + k ) + ( p . ( len p + k ) + ( p . ( len p + k ) + ( p . ( len p + k ) .= ( p . ( len p + k ) + ( len mid ( upper_volume ( f , D2 ) , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j ) ) = indx ( D2 , D1 , j1 ) - ( indx ( D2 , D1 , j1 ) + 1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 .= indx ( D2 , D1 , j1 ) + 1 - 1 ; x * y * z = Mz . ( x * y , z ) .= x * ( y * z ) .= ( x * y ) * ( z * z ) .= ( x * y ) * ( z * z ) .= ( x * y ) * ( z * z ) .= ( x * y ) * ( z * z ) .= ( x * y ) * ( z * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) * ( x - x0 ) + ( y - x0 ) * ( x - x0 ) ) + ( ( proj ( 1 , 1 ) * ( x - x0 ) + ( proj ( 1 , 1 ) * ( x - x0 ) ) * ( x - x0 ) ) + ( proj ( 1 , 1 ) * ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) * ( 0 - 0 ) * ( 0 * 0 ) + 0 * ( 0 * 0 ) + 0 * ( 0 * 0 ) + 0 * ( 0 * 0 ) + 0 * ( 0 * 0 ) .= <* - 1 * 0 , 0 * 0 , 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) + Sum ( ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F1 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F1 ) + Sum ( L (#) F1 ) + Sum ( L (#) F1 ) + Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ex r be Real st for e be Real st 0 < e ex Y be finite Subset of X st Y is non empty & Y c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( - 1 ) * ( Y - 1 ) .| < r * ( Y - 1 ) * ( Y - 1 ) ; ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 2 ) = f /. ( k + 2 ) ; ( ( cos . x ) ^2 ) = ( ( r - 1 ) * ( cos . x ) ^2 + ( cos . x ) ^2 .= ( ( r - 1 ) * ( cos . x ) ) ^2 + ( ( cos . x ) ^2 ) .= ( ( r - 1 ) * ( cos . x ) ) ^2 + ( ( r - 1 ) * ( cos . x ) ^2 ) .= ( r * ( cos . x ) ^2 ) ; - ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 & - ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 or - ( - ( - b + sqrt ( 2 * a , c ) ) / ( 2 * a ) ) / ( 2 * a ) < 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex_sup_of X , L and ex_sup_of X , L and "\/" ( Y , L ) , L & "\/" ( X , L ) = "/\" ( uparrow "\/" ( X , L ) , L ) and for x being Element of L holds x < sup ( uparrow x /\ L ) & x <= sup ( uparrow x /\ L ) ; ( ( for j being Element of NAT st j in the Sorts of B ) . i = ( j = i ) |-- id ( ( B , i ) , ( B , j ) ) ** id ( ( B , i ) .: ( ( B , j ) .: ( ( B , i ) .: ( B , j ) ) ) ) = ( ( i , j ) ** id ( ( B , i ) .: ( B , j ) ) ) ** ( ( B , i ) , ( A , j ) ) ;