thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b <> c ; let X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is open ; a in A ; 1 < x ; S is finite ; u in I ; z divides z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is differentiable ; not x in Y ; z = + \infty ; let k be Nat ; K is being_line ; assume n >= N ; assume n >= N ; assume X is \equiv ; assume x in I ; q is 0 ; assume c in x ; 1-r > 0 ; assume x in Z ; assume x in Z ; 1 <= k12 ; assume m <= i ; assume G is finite ; assume a divides b ; assume P is closed ; 1-r > 0 ; assume q in A ; W is not bounded ; f is one-to-one ; assume A is dense ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is odd ; assume i in I ; assume 1 <= k ; X is not empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is negative ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= D-2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , f be FinSequence of E ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is cod ; Q halts_on s , P ; x in ] ; M < m + 1 ; T2 is open ; z in b relation ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be .. ; P3 is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_on Z ; let x0 ; let E be Ordinal ; o symbol of 4 ; O <> O ; let r be Real ; let f be FinSequence ; let i be Nat ; let n be Nat ; Cl A = A ; L c= card L ; A /\ M = B ; let V be complex RealUnitarySpace , W be Subset of V ; not s in Y |^ 0 ; rng f <= w ; b "/\" e = b ; m = m1 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealLinearSpace , W be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is connected ; H = G . i ; 1 <= i + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a-f <= b-a ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial & s is trivial ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , S ; the object of F is one-to-one ; sgn x = 1 ; k in Seg len a ; 1 in Seg 1 ; rng f = X ; len T in X ; \Vert < n ; Smax is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U ; p1 = c ; j in dom h ; let k ; f | Z is_differentiable_on Z ; k in dom G ; UBD C = B ; 1 <= len M ; p in LSeg ( x , y ) ; 1 <= j1 & j1 <= width G ; set A = <^ A , B , C , D \rbrace ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is_has has has \textit { H } ; assume x0 <= m ; T is increasing ; e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V A c= conv A ; S c= dom F ; m in dom f ; X1 be set ; c = sup N ; R is connected & R is connected implies R is connected assume not x in REAL ; Im f is complete ; x in Int { y } ; dom F = M ; a in On W ; assume e in A ; C c= { C1 } ; -5 <> {} ; let x be Element of Y ; let f be Fin\infty Relation , g be \widetilde of C ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and n <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v . ( len G ) ; - y in I ; let A be non empty set , f be FinSequence of A ; P0 = 1 ; assume r in F . k ; assume f is simple _net ; let A be Ncountable set ; rng f c= NAT ; assume P [ k ] ; { f } <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let I ; assume that 1 <= j and j < l and j < l ; v = - u ; assume s . b > 0 ; d in dom 4 ; assume t . 1 in A ; Y be non empty TopStruct , X be non empty TopSpace ; assume a in ]. s , t .[ ; let S be non empty RelStr ; a , b // b , a ; a * b = p * q ; assume x , y // the carrier of X ; assume x in [#] ( f ) ; [ a , c ] in X ; FF <> {} ; M + N c= M + N ; assume M is connected & M is connected ; assume f is with_B-PCCCCCCCCCCCCCCCCCCCCCCC let x , y ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 + 1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re ( y ) = 0 ; k1 <= j1 & k2 <= j1 ; f | A is continuous ; f . x <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ^ q ; j |^ ( y -' 1 ) divides m ; set m = max ( A , B ) ; [ x , x ] in R ; assume x in succ 0 ; a in sup \varphi ; { C } is connected ; q2 c= C1 \/ C2 ; a2 < c2 ; s2 is 0 -started ; IC s = 0 ; s3 = s2 ; let V ; let x , y ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be Subset-Family of L ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y1 , y2 is_collinear ; R1 is connected ; let a , b be Real , b be Real ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , a , b be element ; r '&' q = P \lbrack l , P \rbrack ; let i , j ; let s be State of A , A be Subset of S ; seq . n = N . n ; set y = ( x `1 ) ^2 ; NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in { C } ; V is not empty iff V is not empty let x be Element of X ; 0 <> f . ( g . g ) ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \varphi in N ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= REAL ; G = 0 .--> 0 ; let A be Subset of X ; assume { A } is open & A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W1 ; P [ k , a ] ; let X be Subset of L ; let b be element ; let A , B be category ; set X = Vars ( V , C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; { x } c= Z ; dom f = C1 ; assume [ a , y ] in X ; Re ( seq ) is convergent ; assume a1 = b1 & b1 = b2 ; A = ssA ; a <= b or b <= a ; n + 1 in dom f ; let F be sequence of S , s be sequence of S ; assume r2 > x0 ; Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 ; n in dom ( g1 * g2 ) ; k + 1 in dom f ; the still not bound not bound ( { s } ) is finite ; assume x1 <> x2 ; v1 in { V } ; [ b `1 , b ] in T ; x9 + 1 + 1 = i ; T c= Hom ( T ) ; ( l ) `1 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; A8 : ex A st A is_integrable_on M & for n st n <= n holds ex m st n <= m holds ( ex n st n <= m holds ( ( M set t = "/\" _ { t } ; let A , B be real-membered set ; k <= len G + 1 ; { C } misses { V } ; product ( G ) is not empty ; e <= f or f <= e ; cluster -> ordinal for sequence of X ; assume c2 = b ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . ( m1 + 1 ) ; cluster R .: X -> empty ; p . n = H . n ; assume seq is Cauchy ; IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} ; ( z `1 ) ^2 = 0 ; p1 <> p3 ; assume z in { y , z } ; MaxADSet ( a ) c= F ; ex_sup_of { s } , S ; f . x <= f . y ; let T be continuous non empty TopSpace ; q |^ m >= 1 ; a >= X & b >= X ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one & G is one-to-one ; A \/ { a } c= B ; 0. V = 0. Y ; I be Instruction of S , s be State of S ; ( ( reproj ( i , x ) . i ) . x = 1 ; assume z \ x = 0. X ; C4 = 2 |^ ( n + 1 ) ; let B be sequence of Omega ; assume X1 = p .: D ; n + k2 in NAT ; f " P is compact ; assume x1 in REAL + ( REAL * f ) ; p1 = K & K = ( K + L ) `2 ; M . k = <*> REAL ; \varphi . 0 in rng \varphi ; OSMMMA is closed assume z <> 0. L ; n < N . ( k + 1 ) ; 0 <= seq . ( 0 ) ; - q + p = v ; { v } is Subset of B ; set g = f /. ( len f ) ; { R } is stable Subset of R ; set \cal R = Vertices R , R = G \ { {} } ; { p } c= { P } ; x in [. 0 , 1 .] ; f . y in dom F ; let T be continuous TopStruct ; inf the carrier of S = S ; downarrow a = downarrow b ; P , C , D is_collinear ; assume x in LSeg ( s , t ) ; 2 |^ i < 2 |^ m ; x + z = x + z ; x \ ( a \ x ) = x ; ||. \mathopen { \Vert } x-y .|| <= r ; assume Y c= field Q & Y <> {} ; a \times b = a ; assume a in A . i ; k in dom ( q | ( len q ) ) ; p is FinSequence of S ; i -' 1 = i - 1 ; f | A is one-to-one ; assume x in f .: { X } ; i2 - 1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster -> with_D_net for Relation ; |. q .| ^2 > 0 ; |. p2 .| = |. p .| ; s2 - s1 > 0 ; assume x in { G } ; min ( C , n ) in C ; assume x in { G } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + 1-1 ; dom S = dom F ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void ManySortedSign ; let f be ManySortedSet of I ; let z be Element of COMPLEX , f be FinSequence of COMPLEX ; u in { |[ g , g ]| : g < g } ; 2 * n < 2 * ( n + 1 ) ; x , y // x , y ; { B } c= V ; assume I is_closed_on s , P ; U = { U } ; M /. 1 = z /. 1 ; x9 = { x9 } ; i + 1 < n + 1 ; x in { {} , {} } ; { f } <= { f . ( len f + 1 ) } ; let l be Element of L ; x in dom ( ( F | X ) | X ) ; let i be Element of NAT ; { r } is ( { r } ) -valued ; assume <* o , o *> <> {} ; s . x |^ 0 = 1 ; card ( K . ( len K ) ) in M ; assume X in U & Y in U ; let D be \hbox { - } ; set r = ]. k + 1 , k + 1 .[ ; y = W . ( 2 * x ) ; assume dom g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster subSubSublattice of L -> strict for Subspace of L ; a1 in B . ( s1 . a ) ; let V be finite VectSp of F , W be Subspace of V ; A * B on B ; { f } = { NAT } --> 0 ; A , B , C is_collinear ; z1 = P1 . j & z2 = P2 . j ; assume f " ( P ) is closed ; reconsider j = i as Element of M ; a , b // a , b ; assume q in A \/ B ; dom ( F * G ) = o ; set S = { { 0 } } ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f ; B be ManySortedSet of I , A be ManySortedSet of I ; sqrt ( 2 * PI * PI ) < Arg z ; reconsider z1 = 0 as Nat ; LIN a , d , c ; [ y , x ] in [: I , I :] ; ( Q ) `2 = 0 ; set j = { x } div m ; assume a in { x , y } ; j1 - 1 > 0 ; I \! \mathop { + } = 1 ; [ y , d ] in F ; let f be Function of X , Y ; set A2 = ]. B , C .[ ; s1 , s2 , s1 is_collinear & s2 , s2 is_collinear ; j1 -' 1 = 0 ; set k2 = 2 * n + j ; reconsider t = t as bag of n ; I . j = m . j ; i |^ s , n are_relative_prime ; set g = f | ( len f ) ; assume X is lower & 0 <= r ; ( p1 `1 ) ^2 = 1 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 ; 1 <= i1 -' 1 ; i + i2 <= len h ; x = E-max ( P ) ; [ x , z ] in X \times Z ; assume y in [. x0 , x0 + r .[ ; assume p = <* 1 , 2 , 3 , 4 , 5 *> ; len <* A1 *> = 1 ; set H = h . ( g . ( g . ) ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= w ; set h = h2 .: { h } ; assume x in X1 /\ X2 ; ||. h .|| < d ; not x in the carrier of ( f | X ) ; f . y = F ( y ) ; for n holds X [ n ] ; k -' l = kl ; <* p , q *> /. 2 = q ; let S be Subset of Y ; P , Q , t is_collinear ; Q /\ M c= ( F | M ) /\ M f = b * ( ( card S ) - 1 ) ; let a , b , c be Element of G ; f .: X <= f . ( sup X ) ; let L be non empty RelStr , X be Subset of L ; SO is x -to_power i ; let r be non negative Real ; M |= { v } ; v + w = 0. V ; P [ len F ] ; assume InsCode ( i ) = 8 ; the zero of M = 0 ; cluster z * seq -> summable ; let O be Subset of the carrier of C ; |. f .| is continuous ; x2 = g . ( j + 1 ) ; cluster xx -> non empty Element of BOOLEAN ; reconsider l1 = ll as Nat ; { v } is Vertex of G ; TT is SubSpace of ( ( TOP-REAL 2 ) | P ) ; Q /\ Q <> {} ; let k be Nat ; q " is Element of X ; F . t is w.r.t. M ; assume n <> 0 & n <> 1 ; set d1 = EmptyBag n , d2 = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( TOP-REAL 2 ) | K1 ; not r in ]. p , q .[ ; let R be FinSequence of REAL ; S7 not empty & not ( b1 , b2 , b3 is_collinear ) & b1 <> b2 & b1 , b3 is_collinear & b1 <> b3 & b1 <> b3 & b1 <> b3 & b1 <> b3 & b1 IC SCM R <> a ; |. p - [ x , y ] .| >= r ; 1 * ( s - t ) = s - t * ( s - t ) ; let x be FinSequence of NAT ; let f be Function of C , D ; for a , b being Element of L holds 0. L + b = a IC s = s . NAT .= ( IC s ) ; H + G = FH + ( G ) ; { C . x } . x = x2 . x ; f1 = f .= f2 .= f1 .= f2 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + W ; { a1 , a2 } = { a1 , a2 } ; a1 , b1 // b , c ; d , o // o , d ; I1 is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is antisymmetric & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & I is transitive & upper_bound ( ( H ) .: { H } ) = e ; x = a1 * a2 + a3 * a1 + a3 * a2 * a3 ; |. p1 .| ^2 + 1 >= 1 ; assume i2 -' 1 < i2 -' 1 ; rng s c= dom ( f1 (#) f2 ) ; assume support a misses { b } ; let L be associative non empty multMagma , n be Element of NAT ; s " + 0 < n + 1 ; p . c = ( f " ) . c ; R . n <= R . ( n + 1 ) ; Directed ( I ) = ( card I + 2 ) ; set f = + ( x , y ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined NAT -defined NAT -defined NAT ; let X be non empty directed Subset of S ; S be non empty full relational substructure of L ; cluster <* L1 . N , L1 . N *> -> complete ; sqrt ( 1 - a ) ^2 = a ; ( q . {} ) `2 = o ; ( i -' 1 ) - 1 > 0 ; assume sqrt ( 1 - 2 ) <= t `1 ; card B = k + 1 ; x in union rng ( f | X ) ; assume x in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } ; let G be Go-board ; e , f , g , h is_collinear ; c . ( i1 + 1 ) in rng c ; f2 /* q is divergent_to+infty & f2 /* q is convergent ; set z1 = - ( z1 - z2 ) , z2 = - z2 + z2 - z1 - z2 ; assume w is \mathbin { l-to to w ; set f = p \! \mathop { t } ; let c be Object of C ; assume pred P [ a ] means P [ a ] ; let x be Element of REAL m m m ; let I1 be Subset-Family of X ; reconsider p = p `1 as Element of NAT ; v , w as Point of X ; let s be State of SCM+FSA , a be Int-Location ; p is FinSequence of NAT ; stop I c= P & card I c= card I ; set ci = ( f /. i ) `1 ; w ^ t ^ w ^ w ^ w ^ t ^ w ^ w ^ t ^ w ^ t ^ w ^ w ^ t ^ w ^ t ^ w ^ w ^ t ^ w ^ w ^ W1 /\ W = W1 /\ ( W2 /\ V ) ; f . j is Element of J . j ; let x , y be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 implies c = 0 ord x = 1 & x is 0. X ; set g2 = lim ( seq ) , g1 = ( lim seq ) * ( ( seq ) ) " ) ; 2 * x >= 2 * x ; assume ( a 'or' c ) . z <> TRUE ; f \circ g in Hom ( c , d ) ; Hom ( c , c + d ) <> {} ; assume 2 * ( Sum ( q | m ) ) > m ; L1 . ( L1 . ( L1 . ( L1 . ( L1 . j ) ) ) = 0 ; indx ( X \/ R1 ) \/ R1 = R1 \/ R2 ; ( ( ( ( ( - 1 ) (#) ( ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ( ( ( ( ( ( - 1 ) (#) ( ( ( ( - 1 ) (#) ( ( ( ( ( - 1 ) (#) ( ( ( ( - 1 ) (#) ( ( ( ( ( - 1 ) / o1 in { X where X is Subset of L : X in O & X c= O } ; e , f , g , h is_collinear ; s3 > sqrt ( 1 - 2 ) * ( 1 - 2 ) ; x in P .: ( F " { x } ) ; let J be non empty TopSpace , I be Subset of R ; h . p1 = f2 . O ; Index ( p , f ) + 1 <= j ; len ( q ) = width M & len ( q @ ) = width M ; the carrier of K c= A ; dom f c= union rng ( F | X ) ; k + 1 in Seg ( n + 1 ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y ] in \sqcup ( R ~ ) ; i = D1 or i = D2 . i ; assume a mod n = b mod n ; h . x2 = g . x2 ; F c= 2 |^ ( n + 1 ) reconsider w = |. seq .| as sequence of X ; sqrt ( 1 / m ) < p ; dom f = dom ( I * J ) ; [#] ( ( TOP-REAL 2 ) | K1 ) = K1 ; cluster - x -> -> -> -> -> -> -> zero ; then { d } c= A ; cluster { p1 } -> finite-ind ; w be Element of M ; let x be Element of REAL-NS n ; u in W1 & v in W2 implies u in W2 reconsider y1 = y as Element of L2 ; N is full relational structure of T ; ex_sup_of { x , y } , L ; g . n = n |^ ( n + 1 ) .= n ; h . J = EqClass ( u , J ) . ( J ) ; seq be \mathbin { \uparrow } k is convergent & seq is convergent implies seq is convergent dist ( x , y ) < r / 2 ; reconsider mm = m as Element of NAT ; x0 < r1 - x0 & r1 < r2 & r2 < x0 + r2 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * ( q , i ) ; let n , m , k , m be Nat ; assume that 0 < e and f | A is bounded and f | A is bounded ; D2 . ( I + 1 ) in { x } ; cluster Subset of T -> subopen ; P be compact non empty Subset of TOP-REAL 2 ; G * ( 1 , j ) `2 in LSeg ( G * ( 1 , j ) , G * ( 1 , j ) ) ; let n be Element of NAT , m be Nat ; reconsider S8 = S as Subset of T ; dom ( i .--> X ) = { i } ; X be non-empty ManySortedSet of I ; X be non-empty ManySortedSet of I ; op ( {} ) c= { [ {} , {} ] } ; reconsider m = i-1 as Element of NAT ; reconsider d = x as Element of C ; let s be 0 -started State of SCMPDS , P be s , Q be Initialize s , t be State of SCMPDS ; let t be 0 -started State of SCMPDS ; b , a // b , c ; assume i = n \/ { n } & j = k \/ { n } ; f be PartFunc of X , Y ; N >= sqrt ( c * ( sqrt ( c ^2 - sqrt ( c ^2 - d ) ) ) ; reconsider tt = T as Point of T ; set q = h * p ^ <* d *> ; z2 in U ( ) /\ Q ( ) ; A |^ 0 = { <* <* E *> *> , <* E *> } ; len W2 = len W + len W ; len ( f2 ^ g2 ) in dom f2 ; i + 1 in Seg ( len s2 ) ; z in dom ( ( g1 * ( f | X ) ) | X ) ; assume p2 = |[ - 1 , 1 ]| ; len G + 1 <= i1 + 1 ; f1 * f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 is convergent & f2 cluster seq + seq1 -> summable for Real_Sequence ; assume j in dom ( ( M * ( i , j ) ) | ( i , j ) ) ; let A , B , C , D , E , F , G , J , F , J , J , F , J , F , J , F , J , J , F , J , J , F , J , x , y // x , y & x , y // y , z ; b ^2 - ( 4 * a ) >= 0 ; <* xy *> ^ <* y *> reduces x , y ; a , b // a , b ; len p2 is Element of NAT ; ex x being element st x in dom R & R [ x , y ] ; len q = len ( K * G ) ; s1 = Initialize s1 .= s2 ; consider w being Nat such that q = z + w ; x ` is Element of L ; k = 0 & n <> 0 or k > 0 ; then X is discrete ; for x st x in L holds x is finite ||. f /. c .|| <= r1 * ( ||. c .|| ) ; c in ]. p , q .[ & not c in { p } ; reconsider V = V as Subset of the topology of T ; N , M is_Re_of L ; then z >= \twoheaddownarrow x ; M = f & M = g implies M = g ( ( ( ( ( ( m , 1 ) , 1 ) , 1 ) ) `1 ) `1 = TRUE ; dom g = dom f /\ ( dom f /\ ( dom g \ { 0 } ) ) ; { A } is with_constant ; [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of dom Subformulae p ; F1 . ( a1 , b1 ) = G1 . ( a1 , b1 ) ; cluster AffineMap ( a , b , r , s ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( ( f2 * f1 ) `| Z ) ; [: F , G :] is additive additive ; set k2 = card ( B \ { x } ) ; set G = coprod ( X ) ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of [: M , M :] , M ; reconsider s1 = s as Element of S1 ; rng p c= the carrier of L ; let d be Subset of the carrier of A ; ( x | x ) | ( ( len x ) | ( len x ) ) = 0. V ; I1 . ( len I + 1 ) in dom stop I ; let g be continuous Function of X , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i1 = len p1 as Element of NAT ; dom f = the carrier of S ; rng h c= union ( the carrier of L ) ; cluster All ( x , H ) -> All of x , H ; d * N > N * ( N * ( N * ( i , j ) ) ) ; ]. a , b .[ c= [. a , b .] ; set g = f " ( dom ( f | ( dom g ) ) ) ; dom ( p | ( m + 1 ) ) = REAL ; 3 + 2 <= k + 2 ; the carrier of ( ( TOP-REAL 2 ) | K1 ) = K1 ; x in rng ( f /^ n ) ; f , g be FinSequence of D ; [ p , q ] in the InternalRel of S1 & [ p , q ] in the InternalRel of S2 ; rng f " { 0 } = dom f ; ( the Target of G ) . e = v ; width G -' 1 < width G ; assume v in rng ( S | E ) ; assume x is root or x is root or x is root or x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) ; let q be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S *> is in the carrier of C & <* S *> is the carrier of C ; i <= len G -' 1 ; let p be Point of TOP-REAL 2 ; x1 in the carrier of I[01] & x2 in the carrier of ( TOP-REAL 2 ) | K1 ; set p1 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < x0 } ; Q2 = Sn8 \/ ( Q /\ R ) ; ( ( ( 1 / 2 ) (#) ( ( ( ( ( 1 / 2 ) (#) ( ( ( ( ( 2 ) ) (#) ( ( ( ( ( 2 ) ) (#) ( ( ( ( ( 2 ) ) ) ) ) ) - p + I c= - p + I ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i ; A /\ { x } <> {} ; rng f c= ]. r , s .[ ; let g be Function of S , V ; let f be Function of L1 , L2 ; reconsider z = z as Element of [: L , L :] ; let f be Function of S , T ; reconsider g = g as Morphism of c , d ; [ s , I ] in S \times A ; len ( the connectives of C ) = 4 ; let C1 , C2 be subfunctor of C1 , C2 , C1 , C2 be subfunctor from C1 , C2 ; reconsider V = V as Subset of X | B ; attr p is valid means : Def3 : p in rng p ; assume X c= dom f & X c= dom g implies f .: X c= dom g H |^ a is Element of H |^ a ; A1 be Element of O , A2 be Element of O ; p2 , q2 is_collinear & p2 , p3 is_collinear & p2 , q2 is_collinear & p2 , p3 is_collinear & q , q2 is_collinear & q , q2 is_collinear & q <> q2 & q <> q2 & q <> q2 & q <> q2 & q <> q2 & consider x being element such that x in v ^ <* x *> ; not x in { 0. TOP-REAL 2 } ; p in [#] ( ( TOP-REAL 2 ) | K1 ) ; 0 ( REAL ) < M . ( E ) ; ^ ( c ^ d ) = c ^ d ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . ( ( ( ) ) | ( dom F ) ) ) ; cluster with_Mgenerated ' -> with_M) ; set i1 = the Element of NAT ; let s be 0 -started State of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f + 1 ) ; x , f . x // f . ( x , y ) ; attr X c= Y means : only : cos X c= Y ; y be upper Subset of Y , x , y be Element of Y ; cluster ( x `1 ) ^2 -> non empty finite sequence of elements of D ; set S = <* Bags n , <* an *> , <* an *> *> ; set T = [. 0 , PI / 2 .] ; 1 in dom mid ( f , 1 , len f ) ; sqrt ( 4 * PI * PI ) < sqrt ( 2 * PI * PI * PI ) ; x2 in dom ( ( f1 + f2 ) `| Z ) /\ dom ( ( f1 + f2 ) `| Z ) ; O c= dom I & { O } c= { O } ; ( the Target of G ) . ( x , y ) = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G ; h1 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( ( p `1 ) ^2 + ( p `2 ) ^2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P + len <* P *> ; set NN = the Element of the CastNode ( N , v ) ; len g\mathbin -' ( x + 1 ) + 1 <= len g-1 ; a on B & b on B & b on C & c on D & d on D & d on D & d on D & d on D & d on D ; reconsider rr = r * I . ( v + 1 ) as FinSequence of K ; consider d such that x = d and a [= d and a [= d ; given u such that u in W and x = v + u ; len f -' n = len Rev <* n *> ; set q2 = Cage ( C , n ) , q2 = Cage ( C , n ) /. ( i + 1 ) ; set S = <* [ S1 , S2 ] , S2 ] , S2 = <* [ S1 , S2 ] , S2 = <* S2 , S2 , S2 ] , S2 = [ S1 , S2 ] , S2 = [ S1 , S2 ] , S2 = [ MaxADSet ( b ) c= MaxADSet ( b ) /\ MaxADSet ( b ) ; Cl ( ( q . ( q1 . n ) ) c= F . ( ( q . n ) `1 ) ; f " ( D ) meets h " ( D ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( H '&' ( H ) ) => ( H '&' ( H ) ) ; assume t is Element of [: { F } , { F } :] ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( a1 , b1 ) ; the carrier of G = { E } \/ { E } ; reconsider m = len fk as Element of NAT ; set S1 = LSeg ( n , d ) ; [ i , j ] in Indices ( M1 @ ) ; assume P c= Seg m & P is Seg m ; for k st m <= k holds z in K . ( k + 1 ) consider a being set such that p in a and a in G ; L1 . p = p * ( 1 - p ) ; p2 . i = p1 . i .= p1 . i ; let PA , G , PA , PA , G be Subset of Y ; attr 0 < r & r < 1 & r < 1 ; rng \langle a , b *> = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( ( s | ( len s ) ) = card ( rng s ) ; reconsider x2 = x1 as Element of L1 ; Q in { the topology of X where X is Subset of X : X in F } ; dom ( ( ( ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( attr n divides m & n divides m ; reconsider x = x as Point of I[01] ; a in \mathop { \rm Point of T2 , T2 be Point of T2 ; not y in the still not bound ( f ) & not y in rng f implies not y in rng f Hom ( a , b ) /\ Hom ( b , c ) <> {} ; consider k1 such that p " < k1 and k1 < k1 & k1 < n ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g \times ( k + 1 ) ; set S1 = [ <* x , y *> , f1 ] ; s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & s3 = k2 & x0 in dom ( u + v ) /\ dom ( v + u ) ; reconsider p = x as Point of TOP-REAL 2 ; reconsider \mathbb I = REAL n as Subset of REAL n ; f . p3 <= f . p3 ; ( ( F . n ) `1 <= ( F . n ) `1 ; ( x `1 ) ^2 = ( ( ( W ) ^2 + ( W ) ^2 ) ^2 ) ^2 + ( W `1 ) ^2 ; for n being Element of NAT holds P [ n ] ; J , K , L , L , R be Subset of Y ; assume 1 <= i & i <= len <* a *> ; 0 |-> a = <*> the carrier of K ; X . i in 2 |^ ( i + 1 ) \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] ; reconsider cin = |[ |[ ]| , |[ ]| , |[ ]| , |[ ]| ]| ]| `1 ]| `1 ; ( i -' 1 ) - 1 <= len w- 1 ; [#] S c= [#] T ; let V being strict Subspace of V ; assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 ; let A , B be Matrix of n , m , k , m , n , k , Nat ; - a * b = a * b ; let A be Subset of [: A , B :] ; id ( o ) in <* o , o *> ; then ||. x .|| = 0 & x = 0. X ; let N , H be strict Subgroup of G ; j >= len ( g , D1 ) ; b = Q . ( len Q + 1 ) .= Q . ( len Q + 1 ) ; f2 * f1 /* seq is convergent ; reconsider h = f * g as Function of I[01] , TOP-REAL 2 ; assume that a <> 0 and delta ( a , b , c , d ) >= 0 ; [ t , t ] in the InternalRel of A ; ( v |-- E ) | ( n + 1 ) is Element of T ; {} = the carrier of L1 + ( the carrier of L1 ) .= the carrier of L1 ; Directed I is_closed_on s , P , s ) ; Initialized p = Initialize ( p +* q ) ; reconsider N2 = N as strict net of [: N , N :] ; reconsider Y = Y as Element of \langle \mathop { \rm to } ( L ) , \subseteq \rangle ; "/\" ( { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j + 1 and j <= len z ; [ s , 0 ] in the InternalRel of S2 & [ s , 0 ] in the InternalRel of S2 ; m in ( B /\ C ) \ { {} } ; n <= len ( ( P . ( len P ) + 1 ) + 1 ) ; ( x1 , x2 ) `2 = ( x2 , x3 ) `2 ; InputVertices S = { x , y , z } ; let x , y be Element of FFFFFFFFFFFFare } ; p = [ p `1 , p `2 ] ; g * h = h " * g ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( ( x1 - x2 ) / ( n + 1 ) ) /\ dom ( ( x1 - x2 ) / ( n + 1 ) ) ; ( R qua Function ) " = R " * ( R qua Function ) ; n in Seg len ( ( f /^ ( n + 1 ) ) | ( i + 1 ) ) ; for s be Real st s in R holds s <= s rng s c= dom ( ( f2 * f1 ) `| Z ) ; synonym subsets X for non empty Subset of X ; 1_ K * ( ( 1_ K ) * ( ( 1_ K ) * ( ( 1_ K ) * ( ( 1_ K ) ) ) ) = 0. K ; set S = Segm ( A , P , Q ) ; ex w st e = sqrt ( w , f ) & w in F & w in F ; curry k . ( n + k ) is convergent ; cluster open -> open for Subset of T ; len ( f1 ^ f2 ) = 1 .= len f1 + len f2 .= len f1 + len f2 ; sqrt ( i * p ) < sqrt ( 2 * p ) ; let x , y be Element of [: U1 , U2 :] ; b1 , c1 // b1 , c1 ; consider p being element such that c1 . j = { p } ; assume f " { 0 } = {} & f " { 0 } = {} ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I + card J ) not a ; goto ( card I + 1 ) not a ; set m1 = LifeSpan ( p1 , s ) + 1 ; IC Comput ( P , s , k ) in dom Initialize s ; dom t = the carrier of R ; ( E-max L~ f ) .. f = 1 ; let a , b , c be Element of PFuncs ( V , C ) ; Cl F c= Cl F ; the carrier of X1 \/ X2 misses the carrier of X1 & the carrier of X2 = the carrier of X2 ; assume not LIN a , f . ( a , b ) , f . ( a , b ) ; consider i being Element of M such that i = d and i <= n ; then Y c= { x } or Y = { x } ; M , v |= ( ( { y } \leftarrow { x } ) ) . ( ( { y } \leftarrow { x } ) ) . ( ( { y } \leftarrow { x } ) ) . ( { y } ) ) |= H . ( { x } consider m being element such that m in Intersect ( F ) ; reconsider A1 = ( support u ) as Subset of X ; card A \/ B = card ( 2 * ( 2 * ( 1 + 1 ) ) ; assume a1 <> a3 & a2 <> a3 & a3 <> a4 & a1 <> a4 & a1 <> a4 & a1 <> a4 & a2 <> a4 & a1 <> a4 & a1 <> a4 & a1 <> a4 & a1 <> a4 & a1 <> a4 & a1 <> a4 & a1 <> a4 & cluster s \! \mathop { - V } -> ( S , V ) -provable ; L1 /. ( n + 1 ) = L1 . ( n + 1 ) ; let P be compact non empty Subset of TOP-REAL 2 ; assume |[ p1 , p2 ]| in LSeg ( |[ - 1 , 1 ]| , |[ 1 , 1 ]| ) ; let A be non empty Subset of TOP-REAL n , B being Subset of TOP-REAL n , C being Subset of TOP-REAL n st C = { A } & C is compact & C is compact & C is compact & C is compact holds C is compact assume [ k , m ] in Indices ( D1 ^ D2 ) ; 0 <= ( ( 1 - 2 ) |^ ( n + 1 ) ) * ( ( 1 - 2 ) |^ ( n + 1 ) ) ) ; ( F . N ) . x = + \infty . x ; attr X c= Y & Z c= Y implies X \ Z c= Y \ Z ( y - z ) * ( ( - z ) * ( y - z ) ) <> 0. F ; 1 + card ( X1 /\ X2 ) <= card X1 + card X2 ; set g = z /^ ( len z -' 1 ) ; then k = 1 implies p . k = <* x , y *> . k cluster C -\mathbin { - } functor -> total for Relation of X , Y ; reconsider B = A as non empty Subset of TOP-REAL n ; let a , b , c , d , e , f , g , h be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( g2 . O ) `2 = - 1 ; j + 1 <= len f -' 1 ; set W = \langle W , W , E , F , G , F *> ; S1 . a = a + e .= a + e ; 1 in Seg width ( M * ( ( ( M , j ) , i ) ) ) ; dom ( i * ( ( f . i ) * ( ( ( f . i ) * ( ( f . i ) * ( ( f . i ) * ( ( f . i ) * ( ( f . i ) * ( ( f . \varphi . x = W . ( a , p ) ; set Q = |= ( g , f ) ; cluster -> MSsorted for Relation of U1 ; attr F = { A } means : ex B st F = { A } ; reconsider reproj = reproj ( i , z ) as Element of product G ; rng f c= rng ( f1 ^ f2 ) \/ rng ( f2 ^ g2 ) ; consider x such that x in f .: A and x in f .: A ; f = <*> the carrier of V & f is one-to-one implies f is one-to-one E |= All ( x , H ) ; reconsider n1 = n as Morphism of o1 , o2 ; assume that P is commutative and R is commutative and R is commutative & P is commutative ; card ( B \/ { x } ) = card ( B \/ { x } ) ; card ( x \ B ) = 0 ; g + R in { s : g-r < s & s < g } ; set q1 = ( q , <* s *> ) . ( n + 1 ) , q2 = ( q , n ) `2 ; for x being element st x in X holds x in rng ( f1 | X ) h /. ( i + 1 ) = h . ( i + 1 ) ; set Gw = max ( B , A ) , R = max ( B , A ) , S = max ( B , A ) , S = max ( A , B ) , T = max ( A , B ) , T = max ( A , B t in Seg width ( I ^ <* n *> ) ; reconsider X = dom f as Element of Fin ( V ) ; IncAddr ( i , k ) = goto l + k ; ( S - ( f /. ( n + 1 ) ) `1 <= ( q `1 ) `1 ) `1 ; attr R is condensed means : Def3 : for n st n in dom R holds R . n is condensed ; attr 0 <= a & a <= 1 & b <= 1 & a <= 1 & b <= 1 & a <= 1 & b <= 1 & a <= 1 & b <= 1 & a <= 1 & b <= 1 & a <= 1 & b <= 1 & a <= 1 & b <= 1 & b u in ( c /\ d ) /\ ( e /\ f ) ; u in ( c /\ d ) /\ ( b /\ e ) ; len C + 1 - 2 >= 9 + 2 - 2 ; x , y // x , y & x , y // y , z ; a |^ ( n1 + 1 ) = a |^ ( n1 + 1 ) ; <* \underbrace 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 set y1 = <* y , c , d *> ; { F /. 1 } in rng ( Line ( D , 1 ) ) ; p . m joins r , s . ( m + 1 ) ; ( ( GoB f ) * ( i , j ) `2 = ( GoB f ) * ( i , j ) `2 ; W in ( the carrier of X ) \/ ( the carrier of X ) ; 0 + ( p `2 ) <= 2 * ( r `2 ) `2 + ( r - p `2 ) `2 ; x in dom g & not x in dom g implies x in dom g f1 /* seq is divergent_to+infty & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent & f2 /* seq is convergent reconsider v2 = u as VECTOR of [: X , Y :] , [: X , Y :] ; p \! \mathop { \rm \hbox { - } count ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( - - p ) ) ) /. /. 1 ) ) ) ) ) ) ) ) ) ) ) ) len <* x *> < i + 1 ; assume I is not empty & I /\ { x } = { x } ; set i2 = card I + 4 + 0 ; x in { x , y } & h . x = {} ; consider y being Element of F such that y in B and y <= x and x <= y ; len S = len ( the connectives of A ) .= len the connectives of A ; reconsider m = M , n = I as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . ( j + 1 ) ; set N8 = // // // // // // // // // // // // // // // // , // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // rng F c= the carrier of gr { a } ; NQ \ { F ( n ) } is rng -valued ; f . k , f . ( prime ( n + 1 ) ) are_relative_prime ; h " ( P /\ Q ) /\ ( P /\ Q ) = f " ( P /\ Q ) ; g in dom ( f2 \ ( dom f2 ) ) ; gX /\ dom ( ( g1 | X ) | X ) = g1 /\ g2 .= g1 /\ g2 ; consider n being element such that n in NAT and Z = G . n ; set d = dist ( x1 , x2 ) , e = dist ( x2 , x3 ) , f = dist ( x2 , x3 ) , f = dist ( x2 , x3 ) , g = dist ( x2 , x3 ) ; b `1 + sqrt 5 < sqrt 5 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 + ( sqrt 5 ) ^2 ; reconsider f1 = f as VECTOR of X , f2 = g as VECTOR of X ; attr i <> 0 implies i mod ( i mod ( i mod ( i mod ( i mod ( i mod ( i mod ( i mod ( n ) ) ) ) ) ) = 1 j1 in Seg ( len g2 + 1 ) ; dom ( ( i + 4 ) |-> ( i + 4 ) ) = dom ( i + 4 ) .= dom ( i + 4 ) ; cluster sec | ]. - 1 , 1 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . ( p , e ) , e ) ; reconsider x1 = x1 as Function of S , T ; reconsider R1 = x , R2 = y as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] and b in A ; ( <* 1 *> ^ <* p *> ) ^ <* 1 *> in { R } ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ; ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( ( - 1 ) / 2 ) ) * ( ( ( ( ( ( ( 1 / 2 ) / 2 ) * ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( cluster -> one-to-one for Function of C , D ; set cp = 1GateCircStr ( <* z , x *> , '&' ) , dp = 1GateCircStr ( <* z , x *> , '&' ) ; E . ( 8 ) = ( E . ( 8 + 1 ) ) . ( n + 1 ) .= ( E . ( n + 1 ) ) . ( n + 1 ) ; ( ( ( ( ( ( - 1 ) * ( ( ( ( ( ( ( ( ( 1 / 2 ) * ( ( ( ( ( ( 2 ) ) * ( ( ( ( ) ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) is_differentiable_on Z ; upper_bound A = cos * ( 3 * ( 2 * ( 1 + 1 ) ) `1 & lower_bound A = cos * ( 3 * ( 1 + 1 ) `1 ; F . ( dom f ) is Morphism of dom f , cod f ; reconsider p8 = q as Point of TOP-REAL 2 ; g . W in [#] Y & g . W in [#] Y ; let C be compact non empty Subset of TOP-REAL 2 ; LSeg ( f , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , r .[ ; assume x in { idseq ( 2 ) , <* ( 2 *> ) . ( <* 2 *> ) *> ; reconsider n2 = n , n2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g . y <= g . y for k st P [ k ] holds P [ k + 1 ] m = m1 + ( m + 1 ) .= m + ( n + 1 ) .= m + ( n + 1 ) ; assume for n holds ( G . n ) . ( n + 1 ) = G . ( n + 1 ) . ( n + 1 ) ; set BX = f .: ( the carrier of X ) ; ex d being Element of L st d in D & x <= d ; assume R " { a } c= R " { b } ; t in ]. r , s .[ or t in ]. r , s .[ ; z + v2 in W & x + y = u + ( z + y ) ; x2 = x2 iff P [ x2 , y2 ] attr x1 <> x2 means : Def3 : |. x1 - x2 .| > 0 ; assume p2 - p1 = p2 - p1 & - p1 = p2 - p1 ; set q = \mathbin { ^ \smallfrown } <* 'not' 'not' p *> ; f be PartFunc of REAL , REAL n ; ( n mod 2 ) -' ( k + 1 ) -' 1 = n - 2 ; dom ( T * ( <* t *> ) ) = dom <* T *> ; consider x being element such that x in w iff x in { w } ; assume ( F * G ) . ( ( " ) * ( F " ) ) . ( ( " ) * ( F " ) ) . ( ( " ) * ( F " ) ) . ( ( " ) ) = v ; assume the carrier of D1 c= the carrier of D2 & the carrier of D2 c= the carrier of D2 ; reconsider A1 = [. a , b .] as Subset of REAL ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = Cage ( C , n ) /. ( i + 1 ) ; n1 -' len f + 1 <= len f + 1 ; ConsecutiveDelta ( q , O ) . ( O , O ) = [ u , v ] ; set SG = ( the_Vertices_of G ) . ( k + 1 ) ; Sum ( L * p ) = 0. V .= Sum ( L * p ) .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q . ( $1 + 1 ) ; set s3 = Comput ( P1 , s1 , k ) , P3 = Comput ( P1 , s1 , k ) , s4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 , k ) , P4 = Comput ( P2 , s2 let l be Nat , A be Matrix of k , Al , A , B be Matrix of k , Al ; reconsider U = union { G where G is Subset of T : G c= F } as Subset of T ; consider r such that r > 0 and Ball ( p , r ) c= Q ; ( h | ( n + 2 ) ) /. ( i + 2 ) = p1 `1 ; reconsider B = the carrier of X1 as Subset of X ; { p } = <* - c , - c , d *> ; synonym f is one-to-one for rng f c= { 0 } ; consider b being element such that b in dom F and a = F . b ; x0 < card ( X \/ { x0 } ) + ( card { x0 } ) ; attr X c= { x1 , x2 , x3 , x4 } ; then w in Cl Ball ( x , r ) ; angle ( x , y , z ) = angle ( x , y , z ) ; attr 1 <= len s means : Def3 : for n st n in dom s holds ( ( the InternalRel of G ) * ( s , n ) ) . ( n ) = s . n ; { f } c= f . ( k + 1 ) ; the carrier of ( ( TOP-REAL 2 ) | K1 ) = { [ { 0. TOP-REAL 2 , { 0. } } , { 0. TOP-REAL 2 } } ; pred p '&' q in TAUT ( Y ) ; ( - t ) `1 < ( - t ) `1 ; U . 1 = U /. ( len U + 1 ) .= U /. ( len U + 1 ) ; f .: ( the carrier of S ) = the carrier of S ; the carrier of ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL n ) | ( ( TOP-REAL for n being Element of NAT holds G . n c= G . ( n + 1 ) then V in M .: { x } ; ex f being Element of [: { F } , { F } :] st f is [: { F } , { F } :] & f is [: { F } , { F } :] ; [ h . 0 , h . 3 ] in the InternalRel of G ; s +* ( intloc 0 ) = s1 +* ( intloc 0 ) ; [ w , v ] <> 0. TOP-REAL 2 & [ w , v ] <> 0. TOP-REAL 2 ; reconsider t = t as Element of REAL n ; C \/ P c= [#] ( ( ( ( ( ) \ { x } ) ) \/ P ) ) ; f " ( [#] X ) /\ ( X /\ X ) in Hom ( X , X ) /\ Hom ( X , X ) ; x in [#] ( ( TOP-REAL n ) | A ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { x , y , z } \/ { x , y , z } ; for n be Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) , a = Line ( M , i ) ; assume M1 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 is being_line & M2 reconsider a = f . ( i1 -' 1 ) as Element of K ; len ( ( Len ( F ) ) = len ( ( ( ( ( F ^ <* d *> ) ^ <* d *> ) ) ^ ( ( <* d *> ^ <* d *> ) ) ) ) ) ; len ( ( the InternalRel of K ) * ( i , j ) ) = n ; dom ( ( f + g ) `| Z ) = dom ( f + g ) ; ( the InternalRel of Y ) . ( n + 1 ) = ( ( the InternalRel of Y ) . ( n + 1 ) ) . ( ( n + 1 ) ) ; dom ( p1 ^ p2 ) = dom ( p1 ^ p2 ) ; M . [ 1 , y ] = 1 * ( ( 1 - y ) * ( M . 1 ) ) .= 1 ; assume W is not trivial & W is not trivial & W is not trivial & W is not trivial & W is not trivial & W is not trivial & W is not trivial & W is not trivial & W is not trivial ; { C _ { 6 } } /. 1 = G * ( 1 , 1 ) `1 ; { C } |- 'not' p => ( 'not' p ) => ( 'not' p ) ; for b st b in rng g holds b <= b - sqrt ( ( ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = 1 ; ( LSeg ( c , m ) \/ LSeg ( c , m ) ) \/ LSeg ( c , m ) c= R ; consider p being element such that p in LSeg ( x , p ) and p in LSeg ( f , p ) ; the carrier of X |^ ( n + 1 ) = [: the carrier of X , the carrier of X :] ; cluster s => ( q => r ) -> valid ; Im ( F ) is convergent & ( Partial_Sums ( F ) ) . m is convergent implies ( ( F ) . n ) to_power ( k + 1 ) <= ( Partial_Sums ( F ) ) . m cluster f . ( x1 , x2 ) -> Element of D ; consider g being Function such that g = F . t and g is one-to-one ; p in LSeg ( |[ - 1 , 1 ]| , |[ 1 , 1 ]| ) ; set R1 = R |^ ( b + 1 ) , R2 = R |^ ( b + 1 ) ; IncAddr ( I , k ) = Exec ( I , s ) . ( k + 1 ) ; seq . m <= ( ( ( n + 1 ) * ( ( ( n + 1 ) / ( m + 1 ) ) * ( ( ( n + 1 ) / ( m + 1 ) ) ) ) / ( ( ( n + 1 ) / ( ( n + 1 ) * ( ( n + 1 ) * ( ( a + b = ( a ` ` ) ` .= ( a ` ` ) ` ; id X = id X & id X = id X ; for x being element st x in dom h holds h . x = f . x reconsider H = U \/ { {} } as non empty Subset of U ; u in ( ( c /\ d ) /\ ( b /\ d ) /\ ( b /\ d ) ) /\ ( b /\ d ) /\ ( b /\ d ) /\ ( b /\ d ) /\ ( b /\ d ) ) ; consider y being element such that y in Y and P [ y , x ] ; consider A being finite non empty set such that card A = card ( A /\ B ) ; p2 in rng ( f ^ <* p1 *> ) \ { p1 } ; len s1 > 0 & len s2 > 0 & len s2 > 0 implies len s2 = len s2 ( ( N-min L~ Cage ( C , n ) ) `2 = ( E-max L~ Cage ( C , n ) ) `2 ; Ball ( e , r ) c= LeftComp Cage ( C , n ) ; f . a1 ` ` = f . a1 ` ` .= f . a1 ; ( seq ^\ k ) . n in ]. x0 - r , x0 + r .[ ; g1 . ( s . ( n + k ) ) = g . ( s . ( n + k ) ) ; the InternalRel of S is transitive ; deffunc F ( Ordinal , Ordinal ) = L . ( $1 + 1 ) ; F . s1 = F . s2 .= F . s2 ; x ` = A . ( o , a ) .= Den ( o , A ) . ( a , a ) ; Cl ( f " { p } ) c= f " { p } ; the topology of ( T ) c= the topology of T ; synonym o is \ast means : Def3 : o <> {} ; assume X + + 1 = Y ^ <* X *> & X <> Y implies X /\ ( X \/ 1 ) <> Y the carrier of s <= 1 + ( the carrier of S ) ; LIN a , d , b or b , c // b , c ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 ; { E } in { S } & { E } in { E } ; set J = ( l , u ) -TruthEval ; set A1 = \llangle a , b , c , d \rrangle , cin = [ <* a , b , c , dp , cin , dp , cin , cin , dp , cin , dp , cin , cin , dp , cin , dp , cin , cin *> , cin , dp , cin , dp , cin *> , cin *> ; set c9 = [ <* c , 8 *> , <* d *> , f1 ] , cin = [ <* d , c *> , f2 ] , dp = [ <* d , c *> , f2 ] , cin = [ <* d , c *> , f2 ] , cin = [ <* d , 8 *> , f2 ] , *> , *> ; x * z " * x in x * ( z * ( x * z ) ) ; for x being element st x in dom f holds f . x = g . x right cell ( GoB f , 1 , 1 ) c= RightComp f \/ { f . ( 1 + 1 ) } ; U is reduces of E-max L~ Cage ( C , n ) , E-max L~ Cage ( C , n ) ; set f9 = f ^ <* d *> ^ <* d *> ; attr S1 is convergent means : only : for n holds S1 . n is convergent & ( for n holds S1 . n = ( lim ( S1 ) ) * ( ( lim S2 ) ) ) & ( lim ( S1 ) ) = ( lim S1 ) * ( ( lim S2 ) * ( lim S2 ) ) ; f . ( 0 qua Ordinal ) = ( 0 qua Ordinal ) + 1 .= a ; cluster reflexive transitive for transitive RelStr ; consider d being element such that R reduces b , d and R reduces b , d and R reduces b , c and R reduces b , d and R reduces b , c and R reduces b , d and R reduces b , c and R reduces b , d and R reduces b , c and R reduces b , d ; not b in dom Start-At ( card I + 2 , SCMPDS ) ; ( z + a ) + x = z + ( a + x ) .= z + x .= z + x ; len ( l (#) ( l ) ) = len ( l (#) ( l (#) ( F ) ) ) ; tt is ( X \/ Y ) -valued & ( X \/ Y ) \ Y is ( X \/ Y ) \ Y is finite ; t = <* F . t *> ^ ( C ^ D ) .= <* F . t *> ^ ( C ^ D ) ; set p1 = ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; k1 -' ( i + 1 ) = k1 - ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D and u in u ` ; len ( ( width G ) |-> ( a , b ) ) = width G ; { F ( o ) } . x in dom ( ( G * the_arity_of o ) . x ) ; set H = the carrier of ( TOP-REAL 2 ) | K1 , G = the carrier of ( ( TOP-REAL 2 ) | K1 , G | K1 ) ; set H = the carrier of ( ( TOP-REAL n ) | K1 ) | K1 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q , t , k ) = { l } + 1 ; dom ( ( ( ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( - 1 cluster <* l *> -> ( 1 + 2 ) -element ; set b = [ <* \hbox { \boldmath $ p $ } , { p } , { p } , { p } , { p } } ] ; Line ( M , i ) = L * ( Sgm Seg len M , i ) ; n in dom ( ( the Sorts of A ) * ( ( the ResultSort of S ) * ( the ResultSort of S ) ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , REAL ; consider y being Point of X such that a = y and ||. \mathopen { \Vert } \mathclose { \Vert } <= r ; set x8 = t . ( DataLoc ( ( m + 2 ) + 3 ) , 3 ) ; set p1 = stop I , p2 = stop I , s2 = stop I , s2 = Comput ( P2 , s2 , 1 ) , P2 = P2 , s2 = P2 ; consider a being Point of D2 such that a in W1 and b = g . a ; { A , B , C } = { A , B , C } \/ { D , E , F , J , M } ; let A , B , C , D , E , F , J , J , M , N , N , F , J , J , M , N , F , J , F , J , J , F , J , J , F , J , M ; |. p2 .| ^2 - ( |. p2 .| ) ^2 >= 0 ; l -' 1 + 1 = l * ( m + 1 ) + 1 ; x = v + ( a * b ) + ( b * c ) .= ( a * b ) * ( b * c ) + ( b * c ) * ( b * c ) ; the TopStruct of L = ( the TopStruct of L ) | ( the carrier of L ) ; consider y being element such that y in dom ( ( H . n ) | ( ( ) ) | ( ( { y } \ { y } ) ) ) and x = H . ( y ) ; { f } \ { n } = { ( ( 'not' 'not' 'not' 'not' f ) . n ) } ; let Y being Subset of X , X be non empty Subset of Y ; 2 * n in { N : N * ( n + 1 ) = N * ( n + 1 ) } ; let s being FinSequence of D ; for x st x in Z holds ( ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 rng ( f2 * f1 ) c= the carrier of ( TOP-REAL 2 ) | K1 ) ; j + 1 <= len f + ( len f -' 1 ) ; reconsider R1 = R * I as PartFunc of REAL , REAL n ; seq . ( n + k ) = seq . ( n + k ) .= seq . ( n + k ) ; <% ( z , z ) . ( n + 1 ) %> . ( n + 1 ) = 1 .= x ; t is_not at ( C , s ) & t is_not at the connectives of S ; ( support f ) \/ { x } c= ( support f ) \/ { x } ex N st N = j1 & 2 * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * ( ( - N ) * for y , p , q being Element of Y st P [ p , q ] holds P [ p , q ] { [ x1 , x2 ] } is Subset of [: X , Y :] ; h = ( i |-> h ) . ( i , j ) .= H . ( i , j ) .= H . ( i , j ) ; ex x1 be Element of G st x1 = x & x1 in A & x1 in A & y1 in B ; set X = ( ( d , O ) `1 , O ) `2 , O = ( d , O ) `2 , I = ( d , O ) `2 , I = ( d , O ) `2 , I ) `2 , I = ( d , O ) `2 , I = ( d , O ) `2 , O = I ; b . n in { g1 : x0 < g1 & g1 < x0 } ; f /* s1 is convergent & f /* s1 is convergent & f /* s1 is convergent implies f /* s1 is convergent & f /* s1 is convergent & lim s1 = lim s1 the lattice of Y = the lattice of Y & the carrier of Y = the carrier of X ; 'not' a . x 'or' b . x = TRUE ; k2 = len ( ( q ^ <* 0 *> ) ^ <* 1 *> ) + len <* 1 *> .= len ( q ^ <* 1 *> ) + len <* 1 *> ; ( ( ( ( ( ( 1 / 2 ) * ( ( ( ( ( ( ( 2 ) * ( ( ( ( ( 2 ) ) * ( ( ( ( 2 ) * ( ( ( ( 2 ) ) * ( ( ( ( 2 ) ) * ( ( ( ( 2 ) ) * ( ( ( ( ( 2 ) ) * ( ( ( ) ) ) ) set K = lim ( ( ( H ) | A ) | A ) , H = ( lim ( H | A ) | A ) | A ) | A ; assume e in { \frac w + ( 2 * e ) + ( 2 * e ) / ( 2 * ( 2 * e ) + ( 2 * e ) / ( 2 * ( 2 * e ) ) } ; reconsider d = dom a , e = dom F , e = F . ( len F ) , f = F . ( len F ) , g = F . ( len F ) , g = F . ( len F ) , h = F . ( len F ) , h = F . ( len F ) , f = F . ( len F ) , g = F LSeg ( f , j ) = LSeg ( f , j ) ; assume X in { T . ( N , T ) : h . ( N , T ) = N . ( N , T ) } ; assume Hom ( d , c ) <> {} & Hom ( d , c ) * f = <* c , d *> * f ; dom Sseq = dom S /\ ( dom ( S | ( n + 1 ) ) ) .= dom ( S | ( n + 1 ) ) /\ ( ( n + 1 ) \ { n } ) .= ( ( S | ( n + 1 ) ) /\ ( ( n + 1 ) \ { n } ) /\ ( n + 1 ) ) ; x in { H } implies ex g st x = g |^ k & g in H a * ( a , n ) = a * ( n , n ) .= a * ( n , n ) ; D2 . j in { r : r <= D1 & D1 <= len D2 } ; ex p being Point of TOP-REAL 2 st p = x & |. p .| <= 1 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> 0. TOP-REAL 2 & p <> for c holds f . c <= g . c implies f ^ ) ^ g ^ g ^ h ^ h ^ h ^ h ^ h dom ( ( ( ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( 1 / 2 ) / 2 ) * ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( ( 1 / 2 ) / 2 ) * ( ( 1 = sqrt ( p * ( ( 1 - p `2 ) * ( 1 - p `2 ) ) .= p `1 ; len g = len f + len <* x *> .= len <* x *> + len <* y *> .= len <* x *> ; dom ( F | ( N \/ { N } ) = dom ( F | ( N \/ { N } ) ) ; dom ( f . t ) = dom ( f . t ) ; assume a in ( ( sup ( { T } ) .: D ) .: D ) .: D ; assume g is one-to-one & ( the carrier of S ) /\ ( the carrier of T ) c= ( the carrier of T ) /\ ( the carrier of S ) ; ( x \ ( x \ z ) ) \ ( x \ z ) = 0. X ; consider f such that f * f = id Z and f is one-to-one ; ( ( ( ( ( 2 * ( ( ( ( 2 * ( ( 2 * ) ) ) ) * ( ( ( ( 2 * ( ( 2 * ( ( 2 * ( 2 ) ) ) ) ) ) ) ) ) ) ) ) `| Z ) ) ) is differentiable ; Index ( p , co ) <= len ( L (#) ( G , 1 ) ) - len ( L (#) ( G , 1 ) ) ; t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) ) ) ) . ( ( ( ( ( ( ( ( ) ) . ( ( ( ( ( ( ) ) ) . ( ( ( ( ( ( ) ) . ( ( ( ( ( ( ) ) . ( i , ) ) ) ) ) ) ) then P [ f . ( i1 + 1 ) ] & F ( i1 + 1 ) . ( i1 + 1 ) < j + 1 ; Q [ ( [ D , {} ] , <* {} *> ] ) `1 = [ D , {} ] `1 , D ] ; consider x being element such that x in dom ( F . s ) and y = F . x ; l . i < r . i & l . i < r . i ; the Sorts of A = ( the Sorts of ( the Sorts of A ) ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) . ( ( the Sorts of A ) consider s being one-to-one Function such that s is one-to-one & dom s = NAT & rng s = { s } ; dist ( b1 , c1 ) <= dist ( b1 , c1 ) + dist ( b1 , c1 ) ; ( <* C *> /. ( n + 1 ) ) `1 = W-bound L~ Cage ( C , n ) `1 ; q <= ( ( E-max L~ Cage ( C , n ) ) `1 ; LSeg ( f | ( i + 1 ) , f /. ( i + 1 ) ) /\ LSeg ( f , i ) = {} ; given a being ExtReal such that a <= I and A = { a } ; consider a , b being complex number such that z = a & y = b and a = a + b ; set X = { b } , Y = { b } , Z = { b } , Y = { b } , Z = { b } , Y = { b } , Z = { b } , { b } , { b } } ; ( x * z ) \ ( x \ z ) = 0. X ; set x9 = [ <* x9 , cin *> , '&' ] , y9 = [ <* cin , dp *> , '&' ] , c9 = [ <* cin , dp *> , '&' ] , cin , dp ] ; l1 /. ( len l + 1 ) = l1 . ( len l + 1 ) .= l /. ( len l + 1 ) ; sqrt ( ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = 1 ; sqrt ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( 1 + 2 ) / 2 ) * ( ( 1 + 2 ) / 2 ) ) ) ) / ( ( 1 + 2 ) * ( ( 1 + 2 ) / 2 ) ) ) ) < 1 ; ( ( ( ( ( ( X \/ Y ) \/ Y ) \/ Y ) \/ Y ) \/ ( ( X \/ Y ) \/ Y ) ) \/ Y ) ) /\ ( X \/ Y ) ) /\ ( X \/ Y ) ) = ( X \/ Y ) /\ ( X \/ Y ) ; ( seq - ( k + 1 ) ) . ( n + 1 ) = seq . ( n + 1 ) - seq . ( n + 1 ) ; rng ( h + c ) c= dom ( ( h + c ) ^\ n ) ; the carrier of ( X ) = the carrier of X & the carrier of X = the carrier of X ; ex p3 st p3 = p1 & |. p3 .| = r & |. p3 .| <= 1 & |. p3 .| <= 1 & |. p3 .| <= 1 & |. p3 .| <= 1 & |. p3 .| = 1 & |. p3 .| = 1 & |. p3 .| = 1 & |. p3 .| = 1 & |. p3 .| = 1 & |. p3 .| = 1 & |. p3 .| = 1 & |. p3 .| = set h = \raise .4ex ( X , Y ) , A , B , C , D , E , F , J , M , N , N , F , J , M , N , N , F F J J , J , M , F F N , J , J , M , N , F F F N , J , J N N , F F J J J M M , M , R |^ ( 0 * n ) = R |^ ( 0 * n ) .= R |^ ( 0 * n ) ; ( Partial_Sums ( F ) ) . ( n + 1 ) is n1 + 1 <= len ( ( F ) . ( n + 1 ) ) ; f2 = { C ( ) : for n , m st n >= 8 ( ) holds ( for n st n >= 8 ( ) holds ( ( for n st n >= >= 8 ( ) holds ( ( the Eof G ) . ( n + 1 ) ) . ( m + 1 ) = - ( n + 1 ) ) S1 . b = s1 . b .= s2 . b ; p2 in LSeg ( p2 , p2 ) /\ LSeg ( p2 , p2 ) ; dom ( f . t ) = Seg n & dom ( f . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 11 in ( the carrier' of S ) . 11 ; set \varphi = ( l1 , {} ) , l1 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} ) , r2 = ( l1 , {} synonym p is T means : Def3 : ex q being Polynomial of n , L st q is w.r.t. I & q <> 0. L ; ( ( Y ) | ( ( X \/ Y ) | ( X \/ Y ) ) ) | ( X \/ Y ) = ( Y | ( X \/ Y ) ) | ( X \/ Y ) ) | ( X \/ Y ) defpred X [ Nat , set ] means for n being Nat st $1 in dom $2 holds $2 = F ( n ) ; consider k being Nat such that for n being Nat st n <= k holds s . n < x0 + r ; Det ( I |^ ( m -' n ) ) = 0. K ; sqrt ( b - sqrt b ) - sqrt ( b - sqrt ( b - sqrt 5 ) ) < 0 ; { C . d } = { C . d } ; attr X1 is open means : only : ( X /\ Y ) /\ Y is open & X /\ Y is open implies X /\ Y is open ; deffunc F ( Element of E , Element of E ) = ( the Element of E ) . ( $2 , $2 ) ; t ^ <* n *> in { t ^ <* n *> *> ; ( x \ y ) \ ( x \ y ) = ( x \ y ) \ ( x \ y ) .= 0. X ; let X being non empty Subset-Family of [: X , Y :] ; synonym A , B , C , D , E , F , G , G , F , G , G , F } ; len ( M * ( i , j ) ) = len ( M * ( i , j ) ) & len ( M * ( i , j ) ) = len ( M * ( i , j ) ) ; J . v = { x where x is Element of K : 0 < x & x < 1 } ; ( ( Sgm m ) . d ) . ( ( Sgm m ) . d ) - ( ( Sgm m ) . d ) ) <> 0 ; lower_bound divset ( D2 , k ) + ( lower_bound divset ( D2 , k ) - ( lower_bound A ) - ( lower_bound A ) <= ( upper_bound A ) - ( lower_bound A ) - ( lower_bound A ) ) ; g . r1 = ( 2 * ( 1 + 2 ) ) * ( ( 1 + 2 ) * ( ( 1 + 2 ) * ( ( 1 + 2 ) * ( 1 + 2 ) ) ) ) & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= 0 ; f . x = ( h . x ) `1 & g . x = ( h . x ) `1 ; ex w st w in dom B & <* w *> ^ B = <* w *> ^ B ; [ 1 , {} , {} ] in ( { [ {} , {} ] } \/ { {} } ) \/ { {} } ; IC Exec ( i , s1 ) + n = IC Exec ( i , s1 ) + n .= ( IC Exec ( i , s1 ) + n ) ; IC Comput ( P , s , 1 ) = succ IC Comput ( P , s , 1 ) .= ( card I + 1 ) .= 0 ; ( IExec ( W6 , Q , t ) ) . intpos ( m + 1 ) = t . intpos ( m + 1 ) ; LSeg ( f , i ) misses LSeg ( f , i ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x & x <= y ; ]. f /. ( n + 1 ) - f /. ( n + 1 ) .[ = f . ( n + 1 ) - f /. ( n + 1 ) ; let F being one-to-one FinSequence of D , G being FinSequence of D , F being FinSequence of D st F misses G & F is one-to-one & G is one-to-one & G is one-to-one & F is one-to-one & G is one-to-one & G is one-to-one & F is one-to-one & G is one-to-one & G is one-to-one & G is one-to-one holds F is one-to-one ||. R /. ( h . ( h . ( k + 1 ) ) - R /. ( h . ( k + 1 ) ) .|| < e * ( K . ( k + 1 ) ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p2 = [ 2 , 0 ] .--> ( 2 * 0 ) ; consider x , y being Subset of X such that [ x , y ] in F and [ x , y ] in F and [ x , y ] in F ; for y , z being Element of REAL m , x being Element of REAL m st y in Y & x in X & y in Y holds x + z in X func |. p .| -> ManySortedSet of NAT equals |. p .| ; consider t being Element of S such that x = z and x , y // z , t ; dom x1 = Seg len x1 & len x1 = len x1 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x2 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 & len x1 = len x2 implies x1 = x2 consider x2 being Real such that x2 = x2 and 0 <= x2 and x2 <= 1 and x2 <= 1 and x2 <= 1 and x2 <= 1 and x2 <= 1 and x1 <= 1 and x2 <= 1 & x2 <= 1 & x2 <= 1 & x2 <= 1 & x1 <= 1 & x2 <= 1 & x2 <= 1 & x2 <= 1 & x2 <= 1 & x1 <= 1 & x2 <= 1 & x2 <= 1 & x1 <= 1 & x2 <= 1 & x2 <= 1 & x2 ||. f .|| = ||. ( f | X ) . ( n + 1 ) - f /. ( n + 1 ) .|| .= ||. f /. ( n + 1 ) - f /. ( n + 1 ) .|| ; ( the InternalRel of A ) \/ ( the InternalRel of A ) /\ ( the InternalRel of A ) = {} .= {} ; assume i in dom p implies for j st j in dom p holds p . j = q . j reconsider h = f | X as Function of X , Y , ( ) | X ) , ( Y | X ) | X ; u1 in the carrier of W1 & u1 in the carrier of W2 & u in the carrier of W1 & u1 in the carrier of W2 & u in the carrier of W1 ; defpred P [ Element of L ] means M <= f . ( $1 + 1 ) & f . ( $1 + 1 ) <= f . ( $1 + 1 ) ; T . ( u , a ) = s * ( x , a ) .= s * ( x , a ) ; ( - ( a2 - a3 ) ) . ( x - y ) = - ( a2 - a3 ) . ( x - y ) .= - ( a1 - a2 ) ; given a being Point of G such that for x being Point of G , y being Point of G st [ x , y ] in the InternalRel of G holds [ x , y ] in [: the carrier of G , { x } :] ; f = [ <* dom ( f ^ <* f *> ) *> , <* f *> ] ; let k , n be Nat ; for x being element holds x in A |^ ( n + 1 ) iff x in A |^ ( n + 1 ) consider u , v being Element of R such that l /. i = u * v and u in I and v in I ; ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( - 1 ) / 2 ) ) ) ) / ( ( - 1 ) * ( ( - 1 ) / 2 ) ) ) ) ) ) ^2 ) > 0 ; L1 . ( k + 1 ) = L1 . ( k + 1 ) & L1 . ( k + 1 ) = L1 . ( k + 1 ) ; set i2 = if>0 ( a , i , n , k ) ; If B is universal & B is universal & C is universal & D is universal & B is universal & C is being_line & D is being_line & C is being_line & D is being_line & D is being_line & D is being_line & B is being_line & D is being_line & D is being_line & B is being_line & D is being_line & D is being_line & D is being_line & D is being_line & D is being_line & D is being_line & D is being_line & D is being_line & { a } "/\" D = { a "/\" b where a is Element of N : a in D & b in D } ; ( \square ) * ( ( \square , len ( ( ( n ) ) * ( ( \square , len ( ( n ) ) ) ) ) ) ) + ( ( ( n + 1 ) * ( ( \square , len ( ( n ) ) ) ) ) ) ) ) * ( ( ( \square , len ( ( ( n ) ) * ( ( \square , len ( ( n ) ) ) ) ) ) ) ) ) ) >= ( n ) * ( - f ) . ( upper_bound A ) = ( - f ) . ( upper_bound A ) .= ( - f ) . ( lower_bound A ) .= ( - f ) . ( lower_bound A ) ; ( G * ( i , j ) `1 = ( G * ( i , j ) `1 ) `1 ; ( Proj ( i , n ) . ( Proj ( i , n ) . ( ( Proj ( i , n ) . ( ( Proj ( i , n ) . ( ( Proj ( i , n ) * ( ( Proj ( i , n ) * ( ( Proj ( i , n ) * ( ( Proj ( i , n ) * ( ( Proj ( i , n ) * ( ( Proj ( i , n ) * ( ( Proj ( i f1 + f2 * ( ( ( ( i - f2 ) * f1 ) ) `| Z ) . x = ( ( i - f2 ) * f1 ) `| Z ) . x ; attr ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) ) ) ) ) ) ) ) ) ex t being SortSymbol of S st t = s & ( for n being Nat holds ( h . n ) . ( x , n ) = h . ( x , n ) ; defpred C [ Nat ] means ( for n being Nat st n >= $1 holds P [ n ] implies ( for n st n >= $1 & n <= $1 holds P [ n ] implies P [ n + 1 ] ) & ( for n st n >= $1 & n <= $1 & n <= $1 holds P [ n ] implies P [ n + 1 ] ) & P [ n + 1 ] ) implies P [ n + consider y being element such that y in dom ( p ^ <* y *> ) and q = ( p ^ <* y *> ) . i ; reconsider L = product ( { x1 , x2 } ) as Subset of TOP-REAL n ; for c being Element of C , d being Element of D st T . ( c , d ) = id d holds T . ( c , d ) = id d LIN f , n , p . ( n + 1 ) .= f . ( n + 1 ) ; ( f * g ) . x = f . ( x , y ) & ( f * g ) . x = f . ( x , y ) ; p in { 1 / 2 * ( ( G * ( i + 1 , j ) `1 ) + G * ( i , j + 1 ) `1 } ; f ` - ( c ` ) = ( - ( c ` ) ) ` .= ( - ( c ` ) ) ` .= ( - ( c ` ) ) ` ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + 1 ; f1 ( ( ( ( ( ( ( ( ( ( ( ( ( G ) /. i ) , 1 ) , 1 ) , 1 ) , 1 ) ) ) ) ) `1 in { ( ( ( GoB f ) * ( ( GoB f ) * ( 1 , 1 ) ) ) `1 } ) ; eval ( a , ( n + 1 ) , x ) = ( a , x ) . ( n + 1 ) .= ( a , x ) . ( n + 1 ) ; z = \llangle `1 , z `2 , z `2 , z ] .= [ `1 , z `2 , z `2 , z `2 , z ] ; set H = { Intersect ( S ) where S is Subset of X : S is open } ; consider S19 being Element of D such that S = { S19 } and S = { S19 } and { 19 } = { 19 } ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 ; - 1 <= sqrt ( ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) ; { 0. V } is Carrier of A & { 0. V } is Carrier of V let k1 , k2 , k2 , k1 , k2 , k2 , k2 , k1 , k2 , k2 , k2 , k2 , k2 , k1 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k1 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , consider j being element such that j in dom a and j in dom g and x = g . j ; p1 . ( x + y ) c= p1 . ( x + y ) or p1 . ( x + y ) c= p1 . ( x + y ) ; consider a being Real such that p = a * ( ( 1 - a ) * ( ( 1 - a ) * ( ( 1 - a ) * ( ( 1 - a ) * ( 1 - a ) ) ) ) + ( 1 - a ) * ( 1 - a ) ) ; assume a <= c & b <= d & c <= d & d <= b & a <= b & b <= c & d <= c & c <= d & d <= b & d <= b & b <= c & c <= d & d <= b & d <= b & b <= c & c <= d & d <= d & d <= b & c <= d & d <= b & d <= b & c <= d & d <= b & d <= b & c cell ( Gauge ( C , m , k ) * ( i , j ) , G * ( i , j ) ) is not empty ; A5 in { ( S . ( i + 1 ) ) `1 where i is Element of NAT : i <= n & n <= len S } ; ( T * ( b1 /. ( len b1 ) ) . ( len b1 ) = L . ( b1 /. ( len b1 ) ) .= ( F /. len b1 ) . ( len b1 ) ; g . ( s , I ) . ( y , I ) = s . ( y , I ) . ( y , I ) . ( y , I ) .= s . ( I , I ) . ( y , I ) ; ( log ( 2 , k ) ) ^2 + ( ( 2 * ( ( ( ( ( 2 * ( ( 2 * ( ( 2 * ( ( 2 * ( ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( then p => q in S & not p in the carrier of S & p in the carrier of S & q in the carrier of S & p => q in the carrier of S ; dom ( ( the Target of G1 ) +* ( the carrier' of G2 ) ) misses ( the carrier' of G1 ) \/ ( the carrier' of G2 ) ; synonym f is -> extended real-valued for for f is extended real-valued Function of X , Y ; assume for a being Element of D holds f . ( a , b ) = a & f . ( a , b ) = f . ( a , b ) ; i = len ( ( p ^ <* x *> ) + len <* x *> ) .= len <* x *> + len <* x *> .= len <* x *> + len <* y *> .= len <* y *> + len <* y *> ; ( l ) `1 = ( g /. ( k + 1 ) ) `1 + ( g /. ( k + 1 ) ) `1 .= ( g /. ( k + 1 ) ) `1 + ( g /. ( k + 1 ) ) `1 ; CurInstr ( P2 , Comput ( P2 , s2 , i ) ) = halt SCMPDS ; assume for n be Nat holds ||. ( seq . n ) . n .|| <= ( ||. seq .|| . n ) . ( ( seq . n ) . n ) & ( seq . n ) . ( ( seq . n ) ) . ( ( seq . n ) . ( ( seq . n ) . n ) ) <= ( seq . n ) . ( ( seq . n ) . ( ( seq . n ) . ( ( seq . n ) ) ) ; sin . r2 = sin . ( cos . r2 ) .= cos . ( cos . r2 ) .= cos . ( cos . r2 ) .= cos . ( cos . r2 ) .= cos . ( cos . r2 ) ; set q = [ g1 , g2 ] `2 , r = [ r , g2 ] `2 ; consider G being sequence of S such that for n being Element of NAT holds G . n in F . n ; consider G such that F = G and G in { S } and G in { S } ; the carrier of ( ( the Sorts of Free ( C , X ) ) . s ) . ( ( the Sorts of Free ( C , X ) ) . s ) = ( ( the Sorts of Free ( C , X ) ) . s ) . ( ( ( the Sorts of Free ( C , X ) ) . s ) ; Z c= dom ( ( ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) * ( ( ( ( ) ) ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ) ) ) * ( ( ( ( ( ) / 2 ) ) * ( ( ( ( for k being Element of NAT holds ( ( ( Im ( f ) ) . k ) . ( n + 1 ) ) . k = ( ( Im ( f ) ) . ( n + 1 ) ) . k assume that 1 < n and n < len ( ( f | n ) | n ) and ( f | n ) | n = ( f | n ) | n ; assume that f is continuous and a < b and f is one-to-one and f | [. a , b '] is continuous and f | [' a , b '] is bounded and f | [' a , b '] is bounded and f | [' a , b '] is bounded and f | [' a , b '] is bounded and f | [' a , b '] is bounded and f | [' a , b '] is bounded and f | [' a , b '] is bounded consider r being Element of NAT such that s = Comput ( P1 , s1 , i ) and r <= ( Comput ( P1 , s1 , i ) ) . ( k + 1 ) ; LE f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) ) , f /. ( i + 1 ) , f /. ( i + 1 ) , f /. ( i + 1 ) ) ; assume that x in the carrier of K and y in the carrier of K and x in the carrier of K and y in the carrier of K and y in the carrier of K and y in the carrier of K and x in the carrier of K and y in the carrier of K and y in the carrier of K and y in the carrier of K ; assume f +* ( i1 , i2 ) . ( i1 + 1 ) in ( ( ( ( ) -' 1 ) + 1 ) ) . ( i1 + 1 ) ) . ( i1 + 1 ) ; rng ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( \ ) \ ) ) ) | ( ( ( ( \ ) ) | ( ( ( ( \ \ ( ) | ( ( ( \ \ ( ) \ ( ( \ \ ( ) \ ( ( \ \ ( ) ) | ( ( \ ( ) \ ( ( \ \ ( \ \ ( ) ) ) | ( ( \ ( \ ( ) ) ) | ( ( ( \ assume z in { ( the carrier of G ) \/ { t } where t is Element of G : t in X } ; consider l being Nat such that for m be Nat st l <= m holds ||. ( ( ( G . m ) - ( G . m ) ) - ( G . m ) ) - ( G . m ) ) .|| < g ; consider t being VECTOR of product G such that for n being Nat holds ( ex m be Element of NAT st n <= m & m <= n & n <= m holds ( G . n ) . ( m + 1 ) <= 1 ) ; assume that the topology of v = 2 and v in dom ( <* 0 *> ^ ( <* 1 *> ) ) and v in dom <* 1 *> ^ ( <* 1 *> ^ <* 0 *> ) ; consider a being Element of the Points of X such that a on X and A on X ; ( - x ) |^ ( k + 1 ) = 1 ; let D being set such that for i being Nat st i in dom p holds p . i in D . i ; defpred R [ element ] means ex x , y being element st [ x , y ] in $1 & [ y , x ] in R & [ x , y ] in R ; L~ f2 = union { LSeg ( f2 , len f2 ) where f2 is Point of TOP-REAL 2 : len f2 = 2 } ; i -' len ( h ) + 1 - len ( h ) + 1 - len ( h ) + 1 - len ( h ) + 1 - len ( h ) + 1 ) < i - len ( h ) + 1 - len ( h ) ; for n being Element of NAT st n in dom F holds F . n = |. ( F . n ) .| for r , s being Real holds ( for n being Nat holds ( for n holds s . n ) `1 <= r & ( for n st n >= 1 holds r <= s . n ) `1 ) implies ex m st m <= n & m <= m & m <= n & n <= len s ) implies m <= n assume v in { G where G is Subset of T : G in B & G * ( i , j ) `1 <= G * ( i , j ) `1 } ; let g be as as as as as as as as as as as as as as as as as as as as as as as as as as differentiable differentiable differentiable differentiable non empty Element of A , D ; min ( g . ( [ x , y ] , k ] , k ) = ( min ( g . ( k + 1 ) , k ) ) . ( ( k + 1 ) ) ; consider q1 being sequence of NAT such that for n holds P [ n , q1 . n ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) ; reconsider BO = B /\ B , GO = O /\ ( B /\ { O } ) as Subset of T ; consider j being Element of NAT such that x = ( the InternalRel of K ) * ( ( n + 1 ) , j ) ) `1 and 1 <= j & j <= n & j <= n & n <= len f & f /. j = f /. j ; consider x such that z = x and card { O where O is Subset of L : O in F & O c= F } and x in { O where O is Subset of L : O in F } ; ( C * ( ( G . ( n + 2 ) ) ) . 0 = ( ( C . ( n + 2 ) ) . 0 ) . 0 ; dom ( X --> ( n + 1 ) ) = X & dom ( X --> ( n + 1 ) ) = X ; ( S - ( T ) ) . ( ( - S ) . ( T . ( T . n ) ) <= ( ( S - T ) . ( T . n ) ) `1 ; synonym x is collinear means : Def3 : { x , y } = { x , y } ; consider X being element such that X in dom ( f | X ) and ( f | X ) . X = ( f | X ) . X ; assume that Im k is continuous and for x , y being Element of L st x in X & y in X & x <= y holds x + y <= y + ( x + y ) ; ( 1 / 2 * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( ( ( ( n ) * ( ( ( n + 2 ) * ( ( ( ( n + 2 ) ) * ( ( ( ( 1 + 2 ) * ( ( ( 1 + 2 ) * ( ( ( ( 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) is_differentiable_on Z ) ) defpred P [ Element of omega ] means ( ( the InternalRel of $1 ) . ( len $1 ) = ( the InternalRel of $1 ) . ( len $1 ) & ( the InternalRel of $1 ) . ( len $1 ) = ( the InternalRel of $1 ) . ( len $1 ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 2 ) .= ( card I + 2 ) .= ( card I + 2 ) .= ( card I + 2 ) + 2 ; f . x = f . ( ( g . x ) * f . x ) .= f . ( ( g . x ) * f . x ) .= f . ( g . x ) ; ( M * ( F . n ) ) . ( ( M . n ) . ( j + 1 ) ) = M * ( ( ( ( ( M . n ) . ( j + 1 ) ) . ( j + 1 ) ) . ( j + 1 ) ) .= M * ( ( M . n ) . ( j + 1 ) ) ; the carrier of ( ( TOP-REAL n ) | K1 ) \/ ( ( TOP-REAL n ) | K1 ) \/ ( ( TOP-REAL n ) | K1 ) ) \/ ( ( TOP-REAL n ) | K1 ) ) /\ K1 = K1 ; pred a , b , c , d is_collinear means : Def3 : for x , y , z being Element of Y st x in X & y in X & z in Y holds x , y // z , x ; ( ( the InternalRel of product G ) . ( n + 1 ) ) . ( ( n + 1 ) ) <= ( ( the InternalRel of G ) . ( n + 1 ) ) . ( ( n + 1 ) ) . ( ( n + 1 ) ) ; attr 1 <= r & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= 1 & r <= ( r <= 1 & r <= 1 & r <= seq . ( n + 1 ) in { p where p is Element of NAT : p in dom <* p *> & p in T } ; [ x1 , x2 ] . ( 2 * ( 2 * ( ( 2 * ( ( 2 * ( ( ( ( ( - 1 ) / 2 ) ) * ( ( ( - 1 ) / 2 ) ) ) ) ) ) ) ) . ( 2 * ( 2 * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) ) ) ) ) ) ) hence for m be Nat holds ( ( Partial_Sums F ) . m ) . ( n + 1 ) is non-negative len ( <* G *> ^ <* y *> ) = len ( <* G *> ^ <* y *> ) + len <* y *> .= len <* G *> + len <* y *> ; consider u , v being VECTOR of V such that x = u + v and u in W and v in W and u in W and v in W and u in W and v in W and W /\ W = { u } ; given F being FinSequence of NAT such that F = x & dom F = n & dom F = n ; 0 = r1 * cos . If iff 1 = r1 * cos . If consider n being Nat such that for m be Nat st n <= m holds |. ( ( f # x ) . m - g .| < e ; cluster non empty transitive for non empty RelStr ; "/\" ( { B } , L ) = "/\" ( { B } , L ) .= "/\" ( { B } , L ) .= "/\" ( { B } , L ) .= "/\" ( { B } , L ) .= "/\" ( { B } , L ) .= "/\" ( { B } , L ) .= "/\" ( { B } , L ) ; sqrt ( r ^2 + ( r ^2 + ( r ^2 ) ) ^2 ) + ( r ^2 ) ^2 <= r ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 ) ; for x being element st x in A /\ B holds ( ( f `| A ) `| A ) . x >= r 2 * ( a - b ) * ( b - c ) = 0. TOP-REAL n ; reconsider p = P /. ( \square , j ) , q = P /. ( j , j ) as FinSequence of K ; consider x1 , y1 , y2 being element such that x1 in uparrow s and y1 in uparrow s and x = [ x1 , y1 ] and y = [ x1 , y1 ] and [ x1 , y1 ] in uparrow [ x1 , y1 ] ; for n be Nat st 1 <= n & n <= len q holds ( ( ( ( ( ) /. n ) ) `1 <= ( ( ( ( ( ( G /. n ) ) `1 ) ) `1 ) ^2 ) consider y , z being element such that y in the carrier of A and z in the carrier of A and y = [ y , z ] and z = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & ( ex g being Element of G st g = H1 & g in H2 & g in H ) & g in H ) & f = g . ( g . x ) ; let S being non empty RelStr , T be non empty Poset , S be full non empty Subset of T ; [ a + 0 , b ] in ( the carrier of V ) \/ { a } ; reconsider mF = max ( ( len F - 1 ) , ( len F - 1 ) - 1 ) as Element of NAT ; I <= width ( ( GoB f ) * ( i , j ) , ( GoB f ) * ( i , j ) ) `1 ; f2 /. ( len f2 ) = ( f2 /* ( f1 /* ( seq + k ) ) ) /. ( ( f2 /* ( seq ^\ k ) ) ) /. ( ( ( f2 /* seq ) ^\ k ) ) .= ( f2 /* ( seq ^\ k ) ) /* ( seq ^\ k ) ) .= ( f2 /* ( seq ^\ k ) ) /* ( seq ^\ k ) ) ^\ k ) . ( ( ( ( ( n + k ) - k ) ) ; attr A1 \/ A2 is linearly of V means : Def3 : for n , m being Nat st n <= m & m <= len ( ( m + n ) |-> ( m + n ) ) holds ( ( m , n ) --> ( m , n ) ) . ( m + 1 ) = ( ( m , n ) --> ( m , n ) ) . ( m + 1 ) ; func A -ManySortedSet of I means : Def3 : for n being Element of I holds it . n = { A . n } ; dom ( ( Line ( ( ( ( ( ( ( ( ( ( ( ( ( ( , m , , , width ( ) ) ) , ( ( ( ( ( ( ( ( , , m ) , ( ( ( ( , ) , ) , ( ( ( ( ( ( ( ( , ) , ) , ( ( ( ( ( ( , ) ) , ( ( ( ( ( ( ) ) , ( ( ( ) ) ) , ( ( ( ( ( ) ) ) , ( ( ( ( ( ) ) ) , ( ( ( ( ( ( ( ( ( ) ) ) cluster [ x , y ] -> Point of TOP-REAL 2 equals [ x , y ] `1 , x ] ; E |= All ( x , H ) => All ( x , H ) => All ( x , H ) => All ( x , H ) => All ( x , H ) ) => All ( x , H ) = All ( x , H ) => All ( x , H ) ; F .: ( { x } \/ { y } ) = F .: ( { x } \/ { y } ) .= F .: { x } ; R . ( h . m ) = F . ( ( h . m ) . ( n + 1 ) ) + R . ( h . ( n + 1 ) ) .= F . ( ( h . m ) . ( n + 1 ) ) + F . ( n + 1 ) ; cell ( G , i1 , j1 -' 1 , j1 -' 1 ) meets L~ f ; IC Comput ( P2 , s2 , k ) = IC Comput ( P2 , s2 , k ) .= ( card I + 2 ) + 2 ; sqrt ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) / 2 ) ) * ( ( ( ( 1 + 2 ) / 2 ) ) ) ) ) ) ) ) ) ^2 ) ) ) ) ) ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom g and x0 = g . ( n + k ) ; dom ( ( r (#) ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( 1 / 2 ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ) = dom ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) d . ( y , z ) = ( ( y , z ) . ( x , y ) ) . ( y , z ) .= ( ( y , z ) . ( y , z ) ) . ( y , z ) ; hence for i being Nat , C being Subset of X , D being non empty Subset of X st C . i = A /\ D holds C is open assume that x0 in dom f and f | X is continuous and f | X is continuous ; p in A implies for K st K in A & K is open & p in K & K c= A for x being Element of REAL n st x in Line ( x1 , x ) holds |. ( x1 - x2 ) - ( y1 - y2 ) .| <= |. x1 - x2 .| func <* a *> -> e of a , b , c *> means : Def3 : for b being Ordinal of n , b , c being Ordinal of n , L st b in b & c in b & b in b holds it . ( b , c ) = b * c + ( b * c ) * ( b , c ) [ a1 , a2 ] in ( the InternalRel of A ) \/ ( the InternalRel of A ) \/ ( the InternalRel of A ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the InternalRel of S2 ; ||. ( ||. seq .|| . n ) - ( ( seq . n ) . m ) .|| < r / 2 ; then Z in { Y where Y is Subset of [: I , I :] : Y in F } ; ex_sup_of { s ( ) where s is Element of L : s in X ( ) & s in X ( ) } , L ( ) is "\/" Subset of L ( ) consider i , j being Element of NAT such that i < j and [ i , j ] in Indices GoB f and [ i , j ] in Indices GoB f and [ i , j ] in Indices GoB f ; let D being non empty set , p , q , r being FinSequence of D , s being FinSequence of D st p = q & r = s & s = r & p ^ s = s holds p ^ s = q consider d1 being Element of the carrier of X such that c , d1 // a , b and c , d // b , c and b , c // c , d ; set U = I \! \mathop { + } , SS = I \! \mathop { + } ; |. q .| ^2 = ( ( ( ( q `1 ) / |. q .| ) ^2 + ( ( q .| ) ^2 ) ) ^2 ) ^2 + ( ( q `2 ) ^2 ) ^2 + ( ( q `2 ) ^2 ) ^2 ) .= ( ( q `2 ) ^2 + ( q `2 ) ^2 ) ^2 + ( q `2 ) ^2 ; let T being non empty TopStruct , x , y being Element of T , a , b being Element of T st x = a "\/" b & y in { x } & x <= y & y <= b holds x is Subset of T dom ( ( the InternalRel of U1 ) * ( the Arity of S ) ) = dom ( the ResultSort of S ) & ( the ResultSort of S ) . ( ( the ResultSort of S ) . ( the carrier' of S ) = ( the ResultSort of S ) . ( the carrier' of S ) ; dom ( h | X ) = dom ( h | X ) .= ( h | X ) /\ X .= ( h | X ) /\ X .= ( h | X ) /\ X .= ( h | X ) /\ X .= ( h | X ) /\ X .= ( h | X ) /\ X ; for N , K being non empty TopSpace , f being Function of [: N , N :] , [: N , N :] , [: N , N :] , [: N , N :] , { f } :] , [: N , N :] = [: N , N :] ; ( mod ( u , m ) ) . ( i + 1 ) = ( ( mod m ) . ( i + 1 ) ) . ( ( m + 1 ) mod m ) . ( i + 1 ) ) ; - ( q `1 ) / ( 1 + ( q `1 / |. q .| - cn ) ) <= - ( q .| / ( 1 + cn ) ) / ( 1 + cn ) or - ( q `1 / |. q .| - cn ) <= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; attr r1 = f & r2 = g & r1 = h & r2 = h implies r1 = g & r2 = h & r1 = h & r2 = h & h = f & h = h & h = g & h = h & h = f & h = h & h = h & h = g & h = h & h = h * ( h , h ) implies h = h * ( h , h , h ) Partial_Sums ( seq ) . m is bounded & ( for n be Nat holds seq . n = ( ( ||. seq .|| . m ) * ( ( ||. seq .|| . n ) * ( ||. seq .|| . m ) ) ) . m attr a <> b & b <> c & a <> b & b , c is_collinear & a , b is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & a , b , c is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & b , c is_collinear & a , c is_collinear & b , c is_collinear & b , c is_collinear & a , c is_collinear & a consider i , j being Nat such that p1 = [ i , j ] and i = [ i , j ] and i = [ i , j ] and j = [ i , j ] ; |. p .| ^2 - ( 2 * ( ( 2 * ( ( ( ( ( ( ( - p ) / |. p .| - cn ) / ( ( 1 + cn ) / ( ( 1 + cn ) ) ^2 ) ) ) ) ) ) .| = |. p .| - ( ( ( ( - 1 ) / ( |. p .| - cn ) ) ) ) ^2 ) .| ; consider p1 , p2 being Element of [: X , Y :] such that y = p1 ^ p2 and ( for n being Element of NAT holds p1 . n = p1 ^ p2 ) & ( for n being Element of NAT holds p1 . n = p2 . n ) implies ex k being Element of X st k <= n & k <= len p1 & k <= len p1 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <= len p2 & k <* A , B , C , D , E , F , G , G , D , F , G , J , J , F , J , M , J , F , J , M , N , N , F , J , J , M , F , J , M , N , F , J , J , M , N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( X ) ) | X ) ) | X ) ) | X ) ) | X ) ) | ( ( ( ( ( X \ X ) | X ) | X ) | ( ( ( ( X \ X ) | X ) | X ) ) ) | ( ( ( X \ X ) | X ) | ( ( ( X \ X ) | X ) ) ) ) ) ) ) ) ) ) ) ) ) & ( ( ( X \ X ) | X ) | ( ( ( X \ X ) | X ) ) s |= All ( H , H ) implies s |= All ( H , H ) . ( len H ) len ( ( b + d ) + 1 ) = card ( ( b + d ) + d ) .= len ( b + d ) + d .= len ( b + d ) + d .= len ( b + d ) + d .= len ( b + d ) + d .= len ( b + d ) + d .= len ( b + d ) + d .= len ( b + d ) + d ; consider z being Element of L1 such that z >= x and z >= y and z >= y ; LSeg ( |[ ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) | K1 , ( ( TOP-REAL 2 ) | K1 ) | K1 ) | K1 ) = { |[ ( ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) ) : 1 <= cn & cn >= 0 & cn >= 0 & cn <= 0 & ( ( TOP-REAL 2 ) | K1 ) ^2 <= 0 & ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) ^2 <= 0 & ( ( ( TOP-REAL 2 ) | K1 ) ^2 <= 0 & ( ( ( TOP-REAL 2 ) | K1 ) ^2 ) & ( ( ( TOP-REAL 2 ) | K1 ) lim ( ( ( f `| N ) `| N ) - ( ( f `| N ) `| N ) /* ( h ^\ N ) ) ) = ( ( f `| N ) - ( ( f `| N ) `| N ) `| N ) . ( ( ( f `| N ) `| N ) . ( ( f `| N ) `| N ) . ( ( ( f `| N ) `| N ) . ( ( ( f `| N ) `| N ) - ( ( f `| N ) `| N ) ) . ( ( ( h ) - ( ( f `| N ) `| N ) - ( ( f `| N ) `| N P [ i , ( ( the InternalRel of A ) . ( i + 1 ) ) ] ; for r be Real st 0 < r ex m be Nat st for n be Nat st n <= m holds |. ( seq . n ) - ( seq . n ) .| < r let X being non empty set , P , Q being Subset of X , Q being Subset of X , Q being Subset of X st Q = P & Q is open & P is open & Q is open & Q is open holds P is open Z c= dom ( ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( 1 ) ) * ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ) ) / 2 ) ) * ( ( ( ( ( ( ) ) ) * ( ( ( ( ( ( ) ) / 2 ) * ( ( ( ( ( ( ( ( ( ) ) ) * ( ( ( ( ( ( ex j being Nat st j in dom ( l ^ <* x *> ) & ( i = j ) & ( j = 1 implies j = 1 ) & ( i = j implies i = j ) & ( i = j ) implies i = j ) & ( i = j implies i = j ) implies i = j ) & ( i = j ) implies i = j ) & i = j for u , v being VECTOR of V , w being VECTOR of V st 0 < u & u in W holds ( r * u + ( r * v ) ) * ( ( r * w ) ) in W A , B , C , D is_collinear ; - Sum <* v , u , w *> = - ( - u ) .= - ( - u ) .= - ( - u ) .= - ( - u ) .= - ( - u ) .= - ( - u ) .= - ( - u ) .= - ( - u ) .= - ( - u ) .= - u .= - u .= - u ; ( a := b ) . ( IC SCM R R ) = ( a := b ) . ( IC SCM R ) .= ( a := b ) . ( IC R ) . ( IC R R R ) ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x = I . x ; let S being non empty RelStr , S1 , S2 being non empty Subset of S , S2 being non empty Subset of S1 , S2 being non empty Subset of S2 st S1 = S2 & S2 = S2 & S2 is open & S2 is open holds S1 is open card X = 2 implies for x , y being Element of X st x in X & y in X & x in X & y in X holds x = y ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) in rng Cage ( C , n ) ; let T being decorated with T , p , q , r be Element of dom T , s be Element of dom T , t being Element of dom T , r be Element of T ; [ i2 + 1 , j1 + 1 ] in Indices G & [ i2 + 1 , j1 + 1 ] in Indices G * ( i2 , j1 ) = G * ( i2 , j1 ) ; cluster the InternalRel of k -> natural for Nat ; dom F " { 0 } = the carrier of X & rng F = the carrier of X & rng F = the carrier of X & rng F = the carrier of X ; consider C being finite Subset of V such that C c= A and card C = n and card C = n and card C = n and card C = n and card C = n ; V is prime implies for X , Y being Subset of T st X in { {} } & Y c= X holds V c= Y set X = { { F ( ) where F is Element of B ( ) : P [ F ] } , { F ( ) where F is Element of B ( ) : P [ F ( ) , F ( ) ] } ; angle ( p1 , p2 , p3 ) = 0 .= 0 * ( 2 * ( 2 * ( ( 2 * ( ( ( 2 * ( ( 1 , width f ) ) ) + ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * ( 2 * - sqrt ( ( ( ( ( ( ( ( ( ( - ( q `1 / |. q .| - cn ) / |. q .| - cn ) / ( 1 + cn ) ) / ( ( 1 + cn ) ) ^2 ) ) ) ) = ( ( ( ( ( ( ( ( - ( ( q `1 / |. q .| - cn ) ) / ( ( 1 + cn ) ) ^2 ) ) ) ^2 ) ) ) .= ( ( ( ( ( ( ( ( - cn ) / ( ( 1 + cn ) / ( ( 1 + cn ) ) ^2 ) ) ^2 ) ) ^2 ) ) ^2 ) ^2 ) .= ( ( ex f being Function of I[01] , TOP-REAL 2 st f is continuous & f is continuous & rng f = P & f is one-to-one & f is one-to-one & f . 0 = p1 & f . 1 = p2 & f . 1 = p2 & f . 1 = p2 & f . 0 = p2 & f . 1 = p2 & f . 1 = p2 & f . 1 = p2 & f . 0 = p2 & f . 1 = p2 & f . 1 = p2 & f . 1 = p2 & f . 1 = p2 & f . 1 = p2 & f . 1 = p2 & f . 1 & f . 1 = p2 & attr f is PartFunc of REAL , REAL means : Def3 : for r be Real st r in dom f holds f /. r = r * ( r * f /. r ) ; ex r st x = |[ r , s ]| & r < s & s < 1 & G * ( 1 , 1 ) `2 < s & s < 1 } c= { p } assume that f is FinSequence which elements which <= len G and t <= len G and t <= len G and G * ( 1 , j ) `1 <= G * ( 1 , j ) `1 ; attr i in dom G means : Def3 : r * ( ( f . i ) - ( f . i ) ) = r * ( ( f . i ) - ( f . i ) ) ; consider c1 , c2 being bag of o1 such that ( ( EmptyBag n ) /. ( k + 1 ) ) = <* c1 . ( k + 1 ) *> and c1 . ( k + 1 ) = <* c1 . ( k + 1 ) *> and c1 . ( k + 1 ) = <* c1 . ( k + 1 ) *> ; |[ r1 , r2 ]| in { |[ r1 , r2 ]| : |[ r1 , r2 ]| in Indices G & |[ r1 , r2 ]| in Indices G & G * ( 1 , 1 ) `1 <= G * ( 1 , 1 ) `1 } ; Cl ( X ^ Y ) = the carrier of ( X \/ Y ) .= ( the carrier of X ) \/ ( the carrier of Y ) .= ( the carrier of X ) \/ ( the carrier of Y ) .= ( the carrier of X ) \/ ( the carrier of Y ) .= ( the carrier of X ) \/ ( the carrier of Y ) ; attr M1 = len ( M2 @ ) & width ( M2 @ ) = width ( M2 @ ) & width ( M2 @ ) = width ( M2 @ ) ; consider g2 being Real such that 0 < g2 & g2 < g2 & g2 < x0 & g2 < g2 & g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 is convergent & lim g2 = g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 g2 & g2 is convergent & lim ( g2 , g2 ) = g2 g2 g2 g2 ) ; assume x < sqrt ( a * b ) + sqrt ( a * b ) * sqrt ( a * b ) * sqrt ( a * b ) * sqrt ( a * b ) * sqrt ( a * b ) * sqrt ( a * b ) ; ( ( ( ( ( 3 ) --> ( 0 ) ) +* ( ( 3 , 1 ) .--> ( ( 3 , 1 ) ) ) ) ) . ( ( 3 , 1 ) ) . ( ( 3 , 1 ) ) = ( ( ( 3 , 1 ) --> ( 3 , 1 ) ) . ( ( 3 , 1 ) --> ( 3 , 1 ) ) . ( ( 3 , 1 ) ) . ( ( 3 , 1 ) ) ) & ( ( ( ( 3 , 1 ) ) . ( ( 3 , 1 ) ) . ( ( 3 , 1 ) ) . ( ( 3 , 1 ) ) . ( ( 3 , 1 ) ) for i , j st [ i , j ] in Indices ( M * ( i , j ) , ( i , j ) ) & [ i , j ] in Indices ( M * ( i , j ) ) & ( ( M * ( i , j ) ) * ( i , j ) ) * ( i , j ) ) * ( i , j ) = ( M * ( i , j ) ) * ( i , j ) ) * ( i , j ) let f being FinSequence of NAT , i being Element of NAT , j being Nat st i in dom f & j <= n & i <= len f holds f . i = ( Sum f ) . ( i + 1 ) assume F = { [ a , b ] : a in B & b in B & a in C } ; b2 * ( q - ( q - ( q - ( q - ( q - q ) ) ) ) = 0. TOP-REAL n + ( q - q ) * ( ( q - ( q - q ) ) * ( ( q - q ) - ( q - q ) ) * ( ( q - q ) - ( q - q ) ) * ( ( q - q ) - ( q - q ) ) * ( ( q - q ) - ( q - q ) ) .= ( ( q - q ) - ( ( q - q ) - ( ( q - q ) ) * ( ( q - q ) - ( q - q ) ) * ( ( ( q - q ) - ( q card F = card ( D /\ { x } ) ; attr attr attr attr attr : : : for n be Nat holds ( for m be Nat holds ( for n be Nat holds ( n >= 1 ) * ( ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) ) ) ) ) & ( n >= 1 ) * ( ( n + 1 ) * ( n + 1 ) ) ) = ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) ) & ( n + 1 ) * ( n + 1 ) ) * ( ( n + 1 ) * ( n + 1 ) ) * ( n + 1 ) * ( n + 1 ) ) * ( dom ( ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) | K1 ) = ( ( ( TOP-REAL 2 ) | K1 ) | K1 ) | K1 ) | K1 ) .= K1 ; [ X \to Z ] is full & Z is full implies X is full ( G * ( i , j ) `2 <= ( G * ( i , j ) `2 ) `2 & ( G * ( i , j ) `2 <= ( G * ( i , j ) `2 ) `2 ; synonym m1 c= m + ( n + 1 ) for p , q being Element of n + 1 st p in P & q in P & ( for k being Nat st k in P & k <= n holds ( for k being Nat st k in P & k <= m holds ( ( P [ k ] implies P [ k + 1 ] ) implies ( P [ k + 1 ] ) & ( for n being Nat st n <= m holds ( P [ n ] implies P [ n ] implies P [ n + 1 ] implies P [ n + 1 ] implies P [ n + 1 ] ) implies P [ n + 1 ] ) implies P [ n + 1 ] ) implies P [ n + 1 ] ) & ( for n + 1 ] consider a being Element of B such that x = F ( a ) and a in { [ a , b ] } ; synonym -multiplicative loop s for for for for carrier of [: the carrier of L , the carrier of L , the carrier of L , the carrier of L :] is [: the carrier of L , the carrier of L , the carrier of L :] & the carrier of L is [: the carrier of L , the carrier of L , the carrier of L , the carrier of L :] is [: the carrier of L , the carrier of L , the carrier of L , the carrier of L , the carrier of L ; AffineMap ( a , b , c , d ) . ( b + c ) = b + c .= b + c .= b + d ; cluster strict for Subspace of V , W , L , L be Subset of V ; ( ( ( ( - 1 ) (#) ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( - 1 ) (#) ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) eval ( a , x ) = eval ( a , x ) * eval ( a , x ) .= a * eval ( x , x ) ; assume the TopStruct of S = the TopStruct of T & the TopStruct of S = the TopStruct of T ; assume that 1 <= k + 1 and k <= len ( w ^ <* q *> ) and ( w ^ <* q *> ) . ( k + 1 ) = ( w ^ <* q *> ) . ( k + 1 ) ; 2 * ( ( a |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) * ( a |^ ( n + 1 ) ) + ( b |^ ( n + 1 ) ) * ( b |^ ( n + 1 ) ) ) >= a |^ ( n + 1 ) + b |^ ( n + 1 ) ; M , v |= All ( x , H ) => All ( x , H ) ; assume that f is_differentiable_on Z and for x st x in Z holds f . x = f . x - r / 2 ; let G being _Graph , W being Subset of G , W being Subset of G , a , b being Point of G st a in W & b in W & b in W & a in W & b in W & b in W & W is open & W is there being Subset of G st W is open & W is open & W is open & W is open & W is open & W is open & W is open & W is open & ( for W being Subset of G st W is open & ( for W being Subset of G st W is open & ( for W is open & ( for W being Subset of G st W is open & ( ex W being Subset of G st W is open & ( for W is open & ( for W being Subset of G st empty 01 is not empty iff ex y being Element of Y st y is not empty & y is not empty & not empty & not y is not empty & not empty or ex z being Element of Y st z is not empty & not empty & not empty & not empty & not empty iff ex y being Element of Y st y is not empty & not empty & not empty & ex z being Element of Y st z is not empty & z is not empty & z is not empty & not empty & not empty iff iff ex z is not empty & z is not empty & not empty iff iff iff ex y is not empty & z is not empty & z is not empty & z is not empty & z is not empty & not empty iff iff iff ex z is not empty & z is the carrier of ( TOP-REAL 2 ) | K1 = K1 & ( ( GoB f ) | K1 ) | K1 = K1 & ( GoB f ) | K1 or ( GoB f ) | K1 = K1 or ( GoB f ) | K1 = K1 or ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 & ( GoB f ) | K1 or ( GoB f ) | K1 = K1 & ( GoB f ) | K1 or ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 & ( GoB f ) | K1 = K1 or ( GoB f ) | K1 = let G1 , G2 being Group , F , G be Element of [: the carrier of G , the carrier of G :] , the carrier of G , the carrier of H :] ; UsedIntLoc ( f , 2 ) = { ( f , 2 ) . ( 3 + 1 ) } ; for f1 , f2 being FinSequence of F st f1 is FinSequence of F & f2 is FinSequence of F & f1 is FinSequence of F & f2 is FinSequence of F & f1 is FinSequence of F & f2 is FinSequence of F & f1 is FinSequence of F & f2 is FinSequence of F & f2 is FinSequence of F & f1 is FinSequence of F sqrt ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( - 1 ) / 2 ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ^2 ) = ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( let x1 , x2 , x3 , x4 , x5 , x5 , %> = <* x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x6 , x5 , x5 , x5 , x5 , x6 , x5 , x5 , x5 , x6 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , for x st x in dom ( ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) ) ) ) ) ) ) ) ) ) = ( ( G . n ) * ( ( G . n ) * ( ( G . n ) * ( ( G . n ) ) ) ) ) ) ; let T being non empty TopStruct , P be Subset-Family of T , Q being Subset-Family of T , Q being Subset-Family of T st Q c= P & Q is open & Q is open holds Q is open ( a 'or' b ) . x = 'not' a . x 'or' ( b 'or' c ) . x .= TRUE 'or' ( c ) . x .= TRUE ; for e being set st e in A & e in B & e in A & e in B & e in A & e in B & e in A & e in A & e in B & e in A & e in B & e in A & f in A & f in A & f in A & f in A & f in A & f in A & f is one-to-one & f is one-to-one & f is one-to-one & f is one-to-one & f is one-to-one & f is one-to-one & f is one-to-one & f is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one & g is one-to-one for i be set st i in the carrier of S & i in the carrier of S & ( for n being Nat st n in dom F holds F . n = f . ( n + 1 ) ) holds F . ( n + 1 ) = f . ( n + 1 ) for v , w being Element of l st for y , z being Element of l st for y , z being Element of l holds ( J . ( y , z ) ) . ( y , z ) = J . ( y , z ) card D = card ( ( ( ( i + 1 ) - 1 ) / 2 ) ) .= 2 * ( ( i - 1 ) - 1 ) / 2 ) .= 2 * ( ( i - 1 ) - 1 ) / 2 ) .= 2 * ( i - 1 ) ; IC Exec ( i , s ) = ( s +* ( i , s ) ) . ( IC s ) .= ( s +* ( i , s ) ) . IC s .= ( s +* ( i , s ) ) . IC s .= ( s +* ( i , s ) ) . IC s ; len f -' 1 = len f -' 1 .= len f -' 1 .= len f -' 1 ; for a , b , c being Element of NAT st 1 <= a & b <= c & c <= b holds a + c <= b + c let f being FinSequence of TOP-REAL 2 , p , q , r being Real st p in LSeg ( f , i ) & q = f /. ( i + 1 ) holds f /. ( i + 1 ) = f /. ( i + 1 ) lim ( ( ( curry ( k ) ) # x ) = ( lim ( ( ( ( ( vseq ^\ k ) # x ) ) ) ) ) . n + ( ( ( vseq # x ) ) . n ) ) . n ; z2 = g /. ( i + 1 ) .= g /. ( i + 1 ) .= g /. ( i + 1 ) ; [ f . 0 , f . ( 0 + 1 ) ] in [: the carrier of G , { the carrier of G } , { the carrier of G } ; let G being Subset-Family of B , F being Subset-Family of A , G being Subset-Family of B st G = { [ F , G ] where F , G ] where F is Element of A ( ) , G is Subset of B ( ) : F is finite } ; CurInstr ( P1 , Comput ( P1 , s1 , m ) ) = ( CurInstr ( P1 , s1 ) ) . ( IC Comput ( P1 , s1 , m ) ) .= ( halt SCMPDS ) . IC Comput ( P2 , s2 , m ) ) . IC Comput ( P2 , s2 , m ) ) ; assume a on M & b on M & b on M & c on M & d on M & a on M & b on M & a on M & b on M & b on M & d on M & a on M & b on M & b on M & c <> M & b <> M & b <> d & b <> d & b <> d & b <> d & b <> d & b <> d & b <> c & b <> d & b <> d & b <> c & b <> c & b <> c & b <> c & b <> c & b <> c & b <> d & b <> c & b <> c & b <> d & b <> c & d <> d & b <> d & b <> c & d <> d & d <> d & d <> d & d <> d & d <> d & d <> d & d <> d & d <> d & assume that T is with_with_BB) and for F being Subset-Family of T st F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & F is open & ( for n st n >= 1 & n >= 1 holds F is open implies implies ( for n st n >= 1 & n >= 1 holds F is open & ( for n st n >= 1 & n >= 1 & n <= n & n >= 1 implies implies implies implies implies ( for n >= 1 & n >= 1 implies implies implies for n >= 1 implies implies for n >= 1 & n >= 1 implies for n >= 1 & n >= 1 & n >= 1 & n <= n & n >= 1 & n >= 1 & n >= 1 & n >= 1 for g1 , g2 being Real st g1 in ]. x0 - r , x0 + r .[ & g1 in ]. x0 - r , x0 + r .[ holds g1 in ]. x0 - r , x0 + r .[ exp_R /. ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) ) ) ) ) ) ) = ( ( - 1 ) * ( ( - 1 ) ) ) ) * ( ( ( - 1 ) ) ) * ( ( ( ( - 1 ) * ( ( ( - 1 ) * ( ( ( - 1 ) * ( ( ( - 1 ) * ( ( - 1 ) ) ) ) ) .= ( ( - 1 ) ) ) * ( ( ( ( ( 1 ) ) ) .= ( ( - 1 F . i = F /. ( i + 1 ) .= <* b /. ( i + 1 ) *> ^ <* b *> . ( i + 1 ) .= <* b *> /. ( i + 1 ) .= <* b *> /. ( i + 1 ) ; ex y being set st y = f . n & for n being Nat holds y in dom f & f . n = R ( n ) & f . n = R ( n ) ; func f * F -> FinSequence of V means : Def3 : for i , j being Nat st i in dom F holds it . ( i + 1 ) = F . ( i + 1 ) * F . ( i + 1 ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 } ; for n being Nat , x , y being Element of NAT , n being Nat st x = h . ( n + 1 ) & y in rng h & n <= len h holds h . n = o ( x , y , n ) ex S1 being Element of [: A , B :] st [ S1 , S2 ] is [: A , B :] & [ S1 , S2 ] is ^ & [ S1 , S2 ] is ^ & [ S1 , S2 ] is ^ ^ <* S1 , S2 *> ; consider P being FinSequence of [: { \mathbb R } , { \mathbb R } :] such that P . ( i + 1 ) = P . ( i + 1 ) and P . ( i + 1 ) = Q * ( i + 1 ) ; let T being strict TopStruct , R be Subset-Family of T , S be Subset of T ; assume that f is PartFunc of dom f , dom ( r (#) f ) and r (#) f is_differentiable_on Z ; defpred P [ Nat ] means for F being FinSequence of REAL , G being Matrix of n , REAL st len F = $1 & G is one-to-one & G is one-to-one & G is one-to-one & G is one-to-one holds Sum ( F ) = Sum ( G ) ex j st 1 <= j & j < len GoB f & ( GoB f ) * ( i , j ) `1 <= s & s * ( i , j ) `1 <= s & s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j ) `2 & s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j ) `2 <= s * ( i , j ) `2 <= s * ( i , j ) `2 & s * ( i , j + 1 ) `2 defpred U ( set , set ) = { F ( ) where F is Subset-Family of T : for n being Nat st n >= $1 & n <= $1 holds F . n is open } ; for p1 being Point of TOP-REAL 2 st p1 `1 <= p2 & p2 `1 <= 1 holds LE p1 , p2 , P f in St ( H ) & for y st y in { x } holds g . y in { y } & g . y = f . y ex p2 being Point of TOP-REAL 2 st x = p2 & p2 `1 <= p2 `1 & p2 `2 <= p2 `2 & p2 `2 <= - 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 `2 <= 1 & p2 assume for d being Element of NAT st d <= ( d + 1 ) * ( ( d + 1 ) * ( ( d + 1 ) * ( d + 1 ) ) ) & ( ( d + 1 ) * ( d + 1 ) ) * ( d + 1 ) ) * ( d + 1 ) ) = ( d + 1 ) * ( d + 1 ) * ( d + 1 ) ; assume that s <> t and not s is Point of Closed-Interval-TSpace ( x , r ) and not ex e being Point of Closed-Interval-TSpace ( x , r ) st e in [. x , r .[ & e in [. x , r .[ ; given r such that 0 < r and for n st n in dom r holds |. ( f /. n ) - f /. ( n + 1 ) .| < r ; ( p | ( ( len p ) | ( len p ) ) ) | ( ( len p ) | ( len p ) ) = ( ( len p ) | ( len p ) ) | ( ( len p ) ) ; assume that x + h in dom ( ( cos * ( ( ( ( ( ( ( ( - h ) / 2 ) * ( ( ( ( ( - h ) / 2 ) * ( ( ( - h ) / 2 ) * ( ( ( - h ) / 2 ) * ( ( ( - h ) / 2 ) * ( ( ( - h ) / 2 ) * ( ( ( ( - h ) / 2 ) * ( ( ( - h ) / 2 ) * ( ( ( ( ( ( ( ( ( ( 2 ) ) * ( ( ( ( - h ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) = ( ( ( ( ( - h ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( 2 * ( ( ( ( ( ( ( ( 2 ) * ( ( ( ( 2 * ( ( - h ) * ( assume that i in dom A and len A > 0 and A is Matrix of n , len A , len A , n , D , k , Nat , Nat , Nat , Nat st k > 0 & A is \times ( A , n ) & A * ( i , j ) = A * ( i , j ) ; for i being non zero Element of NAT st i in Seg n holds h . i = <* <* 1_ L *> . i , h . ( i + 1 ) *> ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) ) ) /. L~ f ) ) ) /. ( m + 1 ) ) ) /. ( m + 1 ) ) ) ) ) ) ) ) ) ) ) /. ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( m m ) /. 1 ) ) /. ( m + 1 ) ) /. ( m + 1 ) ) /. ( m + 1 ) ) /. ( m + 1 ) -' 1 ) -' 1 ) -' 1 ) -' 1 ) -' 1 ) -' 1 ) -' 1 ) -' 1 ) -' 1 ) ) ) ) ) /. ( ( m + 1 ) -' 1 ) ) ) ) /. ( ( m ) -' 1 ) -' 1 ) ) /. ( ( ( 1 ) -' 1 ) -' 1 ) ) ) /. ( ( ( cluster ( ( for PartFunc of REAL , REAL , REAL ) . x ) `| Z ) . x = ( ( ( \HM { the } \HM { function } ) * ( ( \HM { the } \HM { function } \HM { cos } ) `| Z ) . x ) & ( ( \HM { the } \HM { f } ) `| Z ) . x = ( ( \HM { the } \HM { function } ) `| Z ) . x ) . x ; consider R1 , R2 being Real such that R1 = ( ( |. F .| * ( i + 1 ) ) | ( i + 1 ) ) and ( ( ( |. F .| * ( i + 1 ) ) | ( i + 1 ) ) | ( i + 1 ) ) = ( ( ( ( F ) | ( i + 1 ) ) | ( i + 1 ) ) | ( i + 1 ) ) ; ex k being Element of NAT st k = k & 0 < r & r < 1 & r < 1 & r < 1 & r < 1 & r < 1 & r in dom f & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & r = r & r = r & r = r & f /. k = r & r = r & r = r & f /. k = r & f /. k = r & ex r be Real st r = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & f /. k = r & x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } iff x in { x1 , x2 , x3 , x4 , x5 , x5 } ( G * ( i , j ) `2 = ( G * ( i , j ) `2 ) `2 .= ( G * ( i , j ) `2 ) `2 .= ( G * ( i , j ) `2 ) `2 ; f1 * ( ( the Arity of S ) * ( the Arity of S ) ) = ( ( the Arity of S ) * ( the Arity of S ) ) . o .= ( the ResultSort of S ) . o ; func from { [ T , P ] : p in P & P [ p ] } -> Subset of T ; F /. ( k + 1 ) = F . ( k + 1 ) .= Fq . ( k + 1 ) .= Fq . ( k + 1 ) ; let A being Matrix of n , K , D , k , D , k , m , n , m , k , m , n , m , k , m , k , n , m , k , m , n , m , k , n , m , k , m , k be Nat st n > k & k <= m & k <= n & k <= n & k <= n & k <= n & k <= n & n <= m holds ( ( ( n , m ) * ( ( n , m ) * ( ( n , m ) ) * ( ( n , m ) ) * ( ( n , m ) * ( ( n , m ) ) * ( ( n , m ) ) = ( n , m ) * ( ( n , m ) ) * ( ( ( n , m ) ) * ( ( n , m ) * ( ( n , k ) * ( ( n , m ) ) ) * seq . ( k + 1 ) = 0. V + ( seq . ( k + 1 ) ) .= ( seq . ( k + 1 ) ) . ( k + 1 ) .= ( seq . ( k + 1 ) ) . ( k + 1 ) ; assume x in ( the InternalRel of C ) . ( the carrier of C ) & y in the carrier of C & z in the carrier of C & z in the carrier of C ; defpred P [ Element of NAT ] means ( for k st k <= $1 holds ( ( ( f /. k ) /. ( $1 + 1 ) ) /. ( $1 + 1 ) ) `1 = ( ( ( ( ( f /. k ) /. ( $1 + 1 ) ) ) `1 ) `1 ; assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i , j ) `1 and f /. k = G * ( i , j ) `1 and f /. k = G * ( i , j ) `1 ; assume that s < 1 and p `1 >= 0 and p <> 0. TOP-REAL 2 and p <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q <> 0. TOP-REAL 2 & q let M being non empty TopSpace , x , y being Point of M , r being Real st x = r & y in M & x = r & y in M & x in M & y in M & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open & M is open defpred P [ Element of omega ] means ( ( for n st n >= 1 holds ( ( ( n + 1 ) / ( n + 1 ) ) * ( ( ( n + 1 ) * ( ( n + 1 ) ) ) ) `| Z ) . $1 = ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) * ( ( n + 1 ) ) ) ) ) . $1 ; defpred P [ Nat , Real ] means ( for n st n in dom f holds ( f /. n ) `1 <= ( f /. $1 ) `1 ) `1 & ( f /. ( n + 1 ) `1 <= ( f /. n ) `1 ) `1 & ( f /. ( n + 1 ) ) `1 <= ( f /. n ) `1 ) `1 ; ( f ^ mid ( g , 2 , len g ) ) . ( len g + 1 ) = ( g ^ mid ( g , 2 , len g + 1 ) ) . ( len g + 1 ) .= ( g ^ mid ( g , 2 , len g + 1 ) ) . ( len g + 1 ) .= ( g ^ mid ( g , 2 , len g + 1 ) ) . ( len g + 1 ) ; sqrt ( 1 - ( 2 * ( ( 2 * ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( - 1 / 2 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) = ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( defpred P [ Nat ] means ( the carrier of G ) \/ the carrier of G ) \/ the carrier of G = the carrier of G & the carrier of G = the carrier of G implies the carrier of G = the carrier of G ) & G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict or G is strict G is strict or G is strict or G is strict assume that f . ( u + 1 ) in Ball ( u , r ) and f . ( u + 1 ) = ( u + 1 ) * ( u + 1 ) ; defpred P [ Element of NAT ] means ( ( Partial_Sums ( ( F ) . $1 ) . ( n + 1 ) ) . ( ( n + 1 ) ) . ( ( n + 1 ) ) . ( ( n + 1 ) ) = ( Partial_Sums ( F ) ) . ( n + 1 ) ) . ( n + 1 ) ; for x being Element of product F st x in dom ( the InternalRel of F ) & x in dom ( the InternalRel of F ) & x in dom ( the InternalRel of F ) & ( for i being Nat st i in dom ( the InternalRel of F ) . i holds x in dom ( the InternalRel of F ) & ( for i be Nat st i in dom ( the InternalRel of F ) . i ) holds x in dom ( the InternalRel of F ) ( x " ) * ( ( x " ) * ( x " ) ) = ( ( x " ) * ( x " ) ) * ( x " ) .= ( x " ) * ( x " ) * ( x " ) .= ( x " ) * ( x " ) * ( x " ) .= ( x " ) * ( x " ) ; DataPart Comput ( P +* I , s , k ) = DataPart Comput ( P +* I , s , k ) .= DataPart Comput ( P +* I , s , k ) ; given r such that 0 < r and for g st g in dom f & g in dom f holds g in dom ( f | X ) ; assume X c= dom ( ( f1 (#) f2 ) `| Z ) & ( f1 (#) f2 ) `| Z ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x & ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x = ( f1 (#) f2 ) . x = ( f1 (#) f2 let L being continuous continuous continuous continuous continuous non empty Poset , X , Y being Subset of L , a , b being Element of L st X = { b } & b in X & a in X holds b is open consider i being Element of NAT such that i in dom A and A /. i = m \ast ( p *' ( q *' p ) ) ; ( ( ( f1 - f2 ) /* seq ) ^\ k ) . n = ( f1 /* seq ) . n ) - ( f1 /* seq ) . n ) .= ( f1 /* seq ) . n - ( f1 /* seq ) . n ; ex p1 being Element of [: A ( ) , A ( ) :] st F ( p ) = g ( p ) & for n being Nat holds F ( n ) = p ( n ) & F ( n ) = g ( n ) ; ( mid ( f , i , len f ) ) /. ( i + 1 ) = ( f /. ( i + 1 ) ) /. ( i + 1 ) .= ( f /. ( i + 1 ) ) /. ( i + 1 ) .= ( f /. ( i + 1 ) ) `1 ; ( p ^ q ) . ( n + 1 ) = ( ( p ^ q ) . ( n + 1 ) ) . ( ( len p + 1 ) + 1 ) .= ( len p + 1 ) + ( len q ) ; len ( D2 , indx ( D2 , D1 , j1 ) + 1 ) = len D2 + 1 ; x * z = ( x * ( ( ( ( ( - x ) * z ) * z ) ) * ( ( - x ) * z ) ) .= ( x * ( - x ) * z ) * ( ( - x ) * z ) .= x * ( - x ) * ( - x ) .= x * ( - x ) .= x * ( - x ) * ( - x ) .= x * ( - x * z ) .= x * ( - x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * ( - x * ( - x * z ) * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * ( - x * z ) .= x * ( - x * z ) .= x * ( - x * ( - x * z ) .= x * ( - x v . ( <* x , y *> . ( i + 1 ) ) = <* <* y *> . ( i + 1 ) *> . ( ( ( <* y *> . ( i + 1 ) ) - ( <* z *> . ( i + 1 ) ) ) ) ) . ( ( <* y *> . ( i + 1 ) ) ) . ( ( i + 1 ) ) - ( ( i + 1 ) ) ) . ( ( i + 1 ) ) ) ; i * i = <* 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , Sum ( L * F ) = Sum ( L * F ) .= Sum ( L * F ) + Sum ( ( L * F ) ) .= Sum ( L * F ) + Sum ( ( L * F ) * F ) .= Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) + Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) + Sum ( L * F ) .= Sum ( L * F ) ; ex r be Real st for Y be Subset of X , Y being Subset of X st Y in Y & Y c= X holds r in Y ( ( GoB f ) * ( i , j ) `2 = f /. ( k + 1 ) `2 & ( GoB f ) * ( i , j ) `2 = f /. k & ( GoB f ) * ( i , j + 1 ) `2 = f /. k ) `2 ; ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( 1 / 2 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) ) ) ) ) ) / ( ( ( ( - 1 ) / 2 ) * ( ( ( ( - 1 ) / 2 ) * ( ( ( - 1 ) / 2 ) * ( ( - 1 ) / 2 ) ) ) ) ) ) / ( ( ( - 1 ) / 2 ) * ( ( ( ( ( 1 - 1 ) / 2 ) * ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( 1 - 1 ) / 2 ) ) ) ) ) ) ) / ( ( ( ( ( ( ( ( - 1 ) / 2 ) * ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( - 1 ) / 2 ) ) ) ) ) ) ) ) ) ) / ( ( ( ( ( ( ( - 1 ) / 2 ) / 2 ) ) ) ) ) ) = ( ( ( ( ( ( ( ( ( ( ( ( x- ( a * b ) + ( - b * c ) * ( - b * c ) < 0 & - b * c + b * c < 0 ; cluster inf { X where X is Subset of L : X in F & X is directed } -> directed Subset of L ; ( ( ( ( B , i ) --> ( j , i ) ) . ( j , i ) ) . ( j , i ) = ( i |-> ( j , i ) ) . ( j , i ) ) . ( j , i ) .= ( i |-> ( j , i ) ) . ( j , i ) ) . ( j , i ) .= ( i |-> ( j , i ) ) . ( j , i ) ) . ( j , i ) ;