thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S `2 is convergent q in X ; V ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a is_>=_than X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B `1 = b `1 ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `1 <= b `1 ; assume b in X ; assume k <> 1 ; f = Product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is from squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `1 = x `1 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , W be Walk of G ; let G be _Graph , W be Walk of G ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b , c ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; let y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom f ; let x be element ; let k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = b ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} ; assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Point of TOP-REAL 2 ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is not discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , I be Program of SCM+FSA ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 ; cluster uparrow x -> \mathclose { \rm c } ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; L~ L~ o >= x ; G . y <> 0 ; let X be RealNormSpace , x be Point of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , W be Subspace of V ; assume x in - M ; k < s . a ; not t in { p } ; let Y be set , f be Function ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded & L is upper-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `2 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= i-32 ; 1 <= i-32 ; p\pi c= PI ; 1 <= ii & ii <= len G ; 1 <= ii & ii <= len G ; LMP C in L ; 1 in dom f ; let seq , seq1 , seq2 ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 or b2 >= Z1 ; assume w = 0. V ; assume x in A . i ; g in the carrier of X ; y in dom t ; i in dom g ; assume P [ k ] ; thesis ; x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , A be non-empty MSAlgebra over S ; assume P [ n ] ; assume union S is independent & finite S is finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , A be non-empty ManySortedSet of I ; b ` c= b9 ` & b ` c= y ; assume not x in INT + ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec . x > 0 ; assume y in rng S ; let x , y be element ; i2 < i1 & i1 < len f ; a * h in a * H ; p , q in Y ; redefine func sqrt I ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n & bn < n ; assume A c= dom f ; Re ( f ) is_integrable_on M ; let k , m be element ; a , a // b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_continuous_in x0 ; assume O is symmetric transitive ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int ( V ) ; let v be VECTOR of V ; P3 halts_on s & P3 halts_on s ; d , c // a , b ; let t , u be set ; let X be set with non-empty ManySortedSet of I ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , A be Subset of X ; [ a , b ] in R ; x + w < y + w ; { a , b } >= c ; let B be Subset of A , C be Subset of B ; let S be non empty ManySortedSign ; let x be variable of f , A ; let b be Element of X , x be Element of X ; R [ x , y ] ; x ` = x & y = y ; b \ x = 0. X ; <* d *> in D |^ 1 ; P [ k + 1 ] ; m in dom ( mn ) ; h2 . a = y ; P [ n + 1 ] ; redefine func G * F -> | J ; let R be non empty multMagma , x be Element of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co /\ L~ co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `2 ; let M be id mamaid id id id ; let N be non empty seq of M ; let R be RelStr with finite finite finite 1 ; let n , k be Nat ; let P , Q be be be be be be be be let RelStr ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I is not ` ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < v8 ; x <= c2 . x ; x in F ` & y in F ` ; redefine func S --> T -> ManySortedSet of I ; assume that t1 <= t2 and t2 <= t2 ; let i , j be even Integer ; assume that F1 <> F2 and F2 <> F1 ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> A2 & A2 <> A1 ; set i1 = i + 1 ; assume that a1 = b1 and a2 = b2 ; dom g1 = A & dom g2 = B ; i < len M + 1 ; assume not -infty in rng G ; N c= dom ( f1 + f2 ) ; x in dom sec /\ dom sec ; assume [ x , y ] in R ; set d = x / y ; 1 <= len g1 & 1 <= len g2 ; len s2 > 1 & len s1 > 1 ; z in dom ( f1 + f2 ) ; 1 in dom ( D2 | indx ( D2 , D1 , j1 ) ) ; ( p `2 ) ^2 = 0 ; j2 <= width G & j2 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; gcd ( i , i ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be not thesis ; cluster m * n -> square ; let kk be Nat , p be FinSequence ; i - 1 > m - 1 ; R is transitive & R is transitive ; set F = <* u , w *> ; p-2 c= P3 & p-2 c= P3 ; I is_closed_on t , Q & I is_halting_on t , Q ; assume [ S , x ] is thesis ; i <= len ( f2 | k ) ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 + f2 ) ; assume [ X , p ] in C ; BX c= [ X , Y ] ; n2 <= ( 2 to_power 4 ) ; A /\ cP c= A ` cluster x -valued for Function ; let Q be Subset-Family of S , P be Subset of T ; assume n in dom g2 & m in dom g2 ; let a be Element of R ; t `2 in dom ( e2 `2 ) ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , M be Element of S ; i . y in rng i ; REAL c= dom f & dom f = REAL ; f . x in rng f ; mt <= ( r / 2 ) ; s2 in r-5 & s1 in r-5 ; let z , z be complex number ; n <= Nseq . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = [' S , T '] ; let x be non positive Real ; let m be Element of M ; f in union rng ( F1 | n ) ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , p be Polynomial of K ; let i be Element of NAT , k be Nat ; rng ( F * g ) c= Y dom f c= dom x & rng f c= dom y ; n1 < n1 + 1 & n2 + 1 <= len f ; n1 < n1 + 1 & n2 + 1 <= len f ; cluster 1. T -> \overline W ; [ y2 , 2 ] = z ; let m be Element of NAT , n ; let S be Subset of R ; y in rng ( S29 | X ) ; b = sup dom f & b = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom ( h2 . n ) ; w + 1 = a + 1 ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k2 + 1 <= k2 ; i be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete Subthesis of m ; assume f = g & p = q ; n1 <= n1 + 1 & n2 <= n1 + 1 ; let x be Element of REAL ; assume x in rng ( s2 ^\ k ) ; x0 < x0 + 1 & x0 + 1 < x0 + 1 ; len ( L5 * L5 ) = W ; P c= Seg ( len A ) ; dom q = Seg n & dom q = Seg n ; j <= width M *' ; let seq1 be real-valued sequence of X ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT ; assume z in len ( 0 := len A ) ; i be set ; n -' 1 = n-1 - 1 ; len ( n * ( - n ) ) = n ; \mathop { \rm Set } ( Z , c ) c= F assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , F be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q & dom q = Seg n ; let s be Element of E ^ ; let B1 be Basis of x , B ; L3 /\ L2 = {} ; L1 /\ L2 = {} implies L1 + L2 = L2 + L1 assume downarrow x = downarrow y ; assume b , c // b , c ; LIN q , c , c ; x in rng ( f-129 | n ) ; set nn8 = n + j ; let D7 be non empty set , f be Function ; let K be add-associative right_zeroed right_complementable non empty addLoopStr , M be Matrix of K ; assume f `1 = f & h `2 = h ; R1 - R2 is total & R2 - R1 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & K1 ` is open ; assume that a , b ) is maximal distance in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster non ns] for \in nest ; not u in { ag } ; the carrier of f c= B \/ { v } reconsider z = x as VECTOR of V ; cluster the r (#) H is as as as as as as as as as as as as as ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be strict universal MSAlgebra over S , A be Element of U0 ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in : ( y in : y in { x } ) ; let x , y be Element of X ; let A , I be contradiction / 2 ; [ y , z ] in [: O , O :] ; ( } Macro i ) = 1 & ( card Macro i ) = 2 ; rng Sgm ( A ) = A ; q |- \! such that q in L~ All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b & LIN o , a , b ; p . 2 = Z / Y ; ( DD ) `2 = {} ; n + 1 + 1 <= len g ; a in [: CQC-WFF ( Al ) , { 0 } :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f1 + f2 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i -' k + 1 <= S ; cluster associative associative non empty multiplicative magma ; x in support ( support ( support ( t ) ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `2 <= len ( y `2 ) ; assume that p divides b1 + b2 and b1 divides b2 ; M <= sup M1 & M <= sup M2 ; assume x in W-min ( X ) & y in L~ f ; j in dom ( z | k ) ; let x be Element of D ( ) ; IC s4 = l1 & IC s4 = l1 ; a = {} or a = { x } ; set uG = Vertices G , uH = Vertices G ; seq " is non-zero & ( seq " ) (#) seq is non-zero ; for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; h-4 c= h-14 & hh2 c= h-14 ; ]. a , b .[ c= Z ; X1 , X2 are_separated & X2 , X1 are_separated ; a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 -' 1 = k - 1 ; cluster -> real-valued for Relation ; ex v st C = v + W ; let IT be non empty addLoopStr , p be Point of IT ; assume V is Abelian add-associative right_zeroed right_complementable ; X-21 \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper Subset of B & sup B is upper ; let L be non empty reflexive antisymmetric RelStr , x be Element of L ; R is reflexive & X is transitive ; E , g |= the_right_argument_of ( H ) ; dom G `2 /. y = a ; ( 1 / 4 ) * ( 1 / 4 ) >= - r ; G . p0 in rng G & G . p0 in rng G ; let x be Element of FH , y be Element of FH ; D [ P-6 , 0 ] ; z in dom id ( B ) & z in dom id ( B ) ; y in the carrier of N & y in the carrier of N ; g in the carrier of H & h in the carrier of G ; rng fl c= NAT & rng fl c= NAT ; j `2 + 1 in dom s1 & j + 1 in dom s1 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL ; f . z1 in dom h & h . z2 in dom h ; P . k1 in rng P & P . k2 in rng P ; M = AM +* {} .= AM +* {} ; let p be FinSequence of REAL , k be Nat ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; holds holds not |. a - b .| = b-a ; assume the distance of V , Q is_V ; let a be Element of ( the carrier of V ) ; let s be Element of [: P , Q :] ; let PA be non empty \cal RelStr , a be Element of Y ; let n be Nat ; the carrier of g c= B & the carrier of g c= the carrier of L ; I = halt SCM R & I = halt SCM R ; consider b being element such that b in B ; set BM = BCS K , BM = BCS K ; l <= j & j <= j implies ( j - 1 ) <= j assume x in downarrow [ s , t ] ; ( x `2 ) ^2 in uparrow t & ( x `2 ) ^2 in uparrow t ; x in O implies dom ( 1 -tuples_on the carrier of T ) = { 0 } let h be Morphism of c , a ; Y c= 1. R & Y c= dom ( R | Y ) ; A2 \/ A3 c= L2 \/ L3 \/ L1 \/ L2 ; assume LIN o , a , b & LIN o , a , b ; b , c // d1 , e2 ; x1 , x2 in Y & y1 in Y ; dom <* y *> = Seg 1 & dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in [: X , X :] ; for n be Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> non empty -> closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 in P & q2 in P ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] ; let R , Q be ManySortedSet of A ; set d = 1 / ( n + 1 ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , V be Subset of V ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( the InternalRel of R ) ; let b be Element of the carrier of T ; dist ( e , z ) - r-r > r-r ; u1 + v1 in W2 & v1 in W1 + W2 ; assume func support L -> Subset of rng G ; let L be lower-bounded antisymmetric transitive antisymmetric RelStr ; assume [ x , y ] in [: a , b :] ; dom ( A * e ) = NAT & dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool ( M . i ) ; 0 <= Arg a & Arg a < 2 * PI ; o , a9 // o , y & o , a9 // o , y ; { v } c= the carrier of l & { v } c= the carrier of l ; let x be bound of A ; assume x in dom ( uncurry uncurry f ) & y in dom ( uncurry uncurry f ) ; rng F c= ( Product f ) |^ X assume D2 . k in rng D & D2 . k in rng D ; f " . p1 = 0 & f " . p2 = 0 ; set x = the Element of X , y = the Element of Y ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; let n be Element of NAT ; assume LIN c , a , e1 & LIN c , a , e1 ; cluster -> \/ [ f ] -> ) -valued for FinSequence ; reconsider d = c as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of g ; conv @ S c= conv @ A & conv @ S c= conv @ A ; reconsider B = b as Element of the carrier of T ; J , v |= P \lbrack l \rbrack ; redefine func J . i -> non empty TopSpace equals J . i ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 is_field ( W1 + W2 ) & R is_field ( W1 + W2 ) ; assume x in the carrier of R & y in the carrier of R ; dom ( n --> ( n + 1 ) ) = Seg n .= Seg n ; s4 misses s2 & s4 in s4 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in an & [ a , y ] in the InternalRel of R ; assume that not that that that that that not I c= J and not I c= J ; Im ( lim seq ) = 0 & Im ( lim seq ) = 0 ; ( sin * cos ) . x <> 0 & ( sin * cos ) . x <> 0 ; sin is_differentiable_on Z & cos is_differentiable_on Z implies cos * cos is_differentiable_on Z & for x st x in Z holds cos . x <> 0 t3 . n = t0 . n & t1 . n = t2 . n ; dom ( ( dom ( F | A ) ) ) c= dom F ; W1 . x = W2 . x & W2 . x = W1 . x ; y in W .vertices() \/ W .vertices() \/ W .vertices() ; ( k <= len vM ) & ( k + 1 <= len vM ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P & proj2 .: S c= proj2 .: P ; h . p4 = g2 . I & h . I = g2 . I ; G = ( U /. 1 ) `1 .= G * ( 1 , k ) `1 ; f . rp1 in rng f & f . rp1 in rng f ; i + 1 + 1 <= len - 1 ; rng F = rng ( F | ( dom F ) ) .= dom F ; mode then empty multMagma is well unital associative associative non empty multMagma ; [ x , y ] in [: A , { a } :] ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of m c= B & the carrier of m c= B ; not [ y , x ] in id X ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower & seq ^\ k1 is lower ; len F-12 = len I & len F-12 = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number , x be Point of X ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be Element of of of of of P ; cluster empty -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K . j1 ; redefine func J => y -> total ( J , I ) -defined Function ; K c= 2 -tuples_on the carrier of T & K is finite ; F . b1 = F . b2 & F . b2 = F . b2 ; x1 = x or x1 = y or x1 = z ; pred a <> {} means : Def1 : a - 1 = 1 ; assume that a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o , b , b9 & LIN o , b , b9 ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non trivial non trivial FinSequence of D ; let FF2 be non empty element ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pp2 = x , pp2 = y as Subset of m ; let A , B , C be Element of R ; redefine func strict non empty s3 _ l -> strict non empty be be \times over K ; rng c `1 misses rng ( e[: , { 0 } :] ) ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( cot * cot ) /\ dom ( cot * cot ) ; the component of Q c= UBD A & the component of Q c= UBD A ; reconsider E = { i } as finite Subset of I ; g2 in dom ( 1 / ( f . x ) ) ; pred f = u means : Def1 : a * f = a * u ; for n holds P1 [ \mathop { \rm VERUM } ] { x . O : x in L } <> {} ; let x be Element of V . s ; let a , b be Nat ; assume that S = S2 and p = S2 ; gcd ( n1 , n2 , k ) = 1 & gcd ( n2 , n2 , k ) = 1 ; set ok = a * ( 0. INT ) , ok = a * ( 0. INT ) ; seq . n < |. r1 .| & |. seq . n .| < r ; assume that seq is increasing and r < 0 and seq is increasing ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] & c <= n ; set g = { n to_power 1 : n in NAT } ; k = a or k = b or k = c ; not ( ex a , b st a , b // a , b & a <> b ) ; assume that Y = { 1 } and s = <* 1 *> ; Ip1 . x = f . x .= 0 .= 0 ; W3 .last() = W3 . 1 & W1 .last() = W3 . 2 ; cluster trivial -> trivial finite for Walk of G ; reconsider u = u as Element of Bags X ; A in B ^ -> FinSequence of REAL implies A , B N N x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 / |. q .| - cn ) / ( 1 - cn ) ; f1 is_<= _ { f , g } , T ; ( f /. i ) `2 <= ( q `2 ) ^2 ; h is_the carrier of Cage ( C , n ) ; ( b `2 ) ^2 / ( |. b .| ) ^2 <= ( |. b .| ) ^2 ; let f , g be Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom max ( - f , - f ) ; p2 in NH . p1 & p2 in NH . p1 ; len ( the_left_argument_of H ) < len ( H ) & len ( H ) < len ( H ) ; F [ A , F-14 . A ] ; consider Z such that y in Z and Z in X ; hence 1 in C & A c= C ^ B ; assume that r1 <> 0 or r2 <> 0 and r1 <> 0 ; rng q1 c= rng C1 & rng q2 c= rng C2 ; let A1 , L , A2 , A3 , A3 be non empty set ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in C & c in C & d in C ; then S is atomic & P-2 [ S ] ; Cl Int [#] T = [#] T & Cl Int [#] T = [#] T ; f12 | A2 = f2 | A2 & f12 | A2 = f2 | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; let v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V ; let X be Subset of [: S , T :] ; consider H1 such that H = 'not' H1 and H1 in X ; 1. ( K , 1 ) c= ( \mathop { 0 } * ( 1 / 2 ) ) ; 0 * a = 0. R .= a * 0. R .= a ; A |^ ( 2 , 2 ) = A ^^ A ; set vFinSequence = v4 /. n , v5 = v5 /. n ; r = 0. ( REAL-NS n ) & ||. 0. ( REAL-NS n ) .|| = 0. ( REAL-NS n ) ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W Line ( W , i ) ) .= len W + 1 ; f /* ( s * G ) is divergent_to+infty ; consider l being Nat such that m = F . l ; t8 does not destroy b1 & not t8 does not destroy b1 ; reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i as non zero Element of NAT ; c . x >= id ( L . x ) ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> non pair for element ; downarrow a /\ downarrow t is Ideal of T & a /\ downarrow t is Ideal of T ; let X be with \hbox { NAT , D } , f be Function ; rng f = being Element of \rm \rm set ( S , X ) ; let p be Element of B , the carrier' of S ; max ( N1 , 2 ) >= N1 & max ( N2 , 2 ) >= N2 ; 0. X <= b |^ ( m * mm1 ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 & p2 = q2 & p1 = q2 ; assume gRRRRRRRRg in the carrier of g ; let A1 , A2 be Point of S , A be Subset of X ; x in h " P /\ [#] T1 & x in h " P /\ [#] T1 ; 1 in Seg 2 & 1 in Seg 3 & 2 in Seg 3 ; reconsider X-5 = X , Xseq = Y as non empty Subset of T<* T , S *> ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the Source of G ) -defined for Function ; n1 <= i2 + len g2 & n2 <= len g2 + len g2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume that v in the carrier' of G2 and v in the carrier' of G1 ; y = Re y + ( Im y ) * i ; ( ( - 1 ) * p ) gcd p = 1 ; x2 is_differentiable_on ]. a , b .[ & x2 is_differentiable_on ]. a , b .[ ; rng M5 c= rng D2 & len M5 = len D2 ; for p be Real st p in Z holds p >= a ( 1. X ) * ( f /. x ) = proj1 . x .= ( 1. X ) * ( f /. x ) ; ( seq ^\ m ) . k <> 0 & ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d & ( p |-- M ) . 3 = d ; A \oplus ( B \ominus C ) = ( A \oplus B ) \ominus C h \equiv gg . ( mod P ) & g . ( mod P ) = gg . ( mod P ) ; reconsider i1 = i-1 , i2 = i2 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being Subspace of V holds V is Subspace of [#] V reconsider i-7 = i , im2 = j as Element of NAT ; dom f c= [: C ( ) , D ( ) :] ; x in ( the Sorts of B ) . n & ( the Sorts of B ) . n in rng the Sorts of A ; len } in Seg ( len f2 ) & len ( f2 | n ) = n ; pp1 c= the topology of T & pp1 c= the topology of T ; ]. r , s .] c= [. r , s .] ; let B2 be Basis of T2 , f be Function of T1 , T2 ; G * ( B * A ) = ( id o1 ) * A ; assume that p , u , v , q is_collinear and p , q , v , q is_collinear ; [ z , z ] in union rng ( F | X ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , R = $1 .. S ; LIN a1 , a3 , b1 & LIN a1 , a3 , b1 & LIN a1 , a3 , b2 ; f " ( f .: x ) = { x } ; dom w2 = dom r12 & dom ( r12 . x ) = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( ( g2 ) . O ) `2 ) ^2 <= 1 ; p in LSeg ( E . i , F . i ) ; IK * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; qq . x in rng ( q | Seg k ) & qq . x in rng ( q | Seg k ) ; Carrier ( LLet ) misses Carrier ( LR1 ) ` & Carrier ( LR2 ) c= Carrier ( LR2 ) ; consider c being element such that [ a , c ] in G ; assume that Nreal = N\HM and for o being Element of NAT holds o <= o ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ C-1 ) \/ ( F |^ C-1 ) ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [: [. f . j , f . j .] , { f . j } :] ; pred 0 <= x & x <= 1 & x ^2 <= 1 ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 - q `2 <> 0. TOP-REAL 2 ; redefine func being aa] ( S , T ) -> non empty RelStr ; let x be Element of [: S , T :] ; ( the Arrows of F ) . ( a , b ) is one-to-one ; |. i .| <= - ( - 2 to_power n ) ; the carrier of I[01] = dom P & the carrier of I[01] = the carrier of I[01] ; n * ( n + 1 ) ! > 0 * th ; S c= ( A1 /\ A2 ) /\ A3 & S /\ A2 c= ( A1 /\ A2 ) /\ A3 ; a3 , a4 // b3 , b2 & a3 , a4 // b3 , b3 ; then dom A <> {} & dom A <> {} & rng A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y in X implies x = y set v2 = ( v /. ( i + 1 ) ) * v /. ( i + 1 ) ; x = r . n .= ( r . n ) . x .= ( r . n ) . x ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g = the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: [: A2 , A1 :] , [: A2 , A1 :] :] ; 0 < ( p / ||. z .|| + 1 ) / ( ||. z .|| + 1 ) ; e . ( mm + 1 ) <= e . ( mm + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y -infty < Integral ( M , Im ( g | B ) ) ; cluster O := F -> \HM { + } -valued for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , f be Function of U1 , U2 ; Proj ( i , n ) * g is_differentiable_on X , i ; let x , y , z be Point of X , p be Point of X ; reconsider p0 = p . x , p0 = p . x as Subset of V ; x in the carrier of Lin ( A ) & x in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and b is lower and a <= b ; Int Cl A c= Cl Int Cl A & Int Cl A c= Cl Int Cl A ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; p2 `2 / |. p2 .| <= ( |. p2 .| ) / ( |. p2 .| ) ; Cl Q ` = [#] ( T | P ) .= [#] ( T | P ) ; set S = the carrier of T , T = the carrier of T ; set I8 = for f |^ n , I8 = f |^ n ; len p - n = len ( thesis - n ) .= len p - n ; A is Permutation of Swap ( A , x , y ) ; reconsider nnseq = n8 - 1 as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s | k ) ; let q\subseteq , qSet , qJ be Element of M ; ( a in the carrier of S1 ) & ( a in the carrier of S1 ) ; c1 /. n1 = c1 . n1 & c2 /. n1 = c2 . n1 & c1 /. n1 = c2 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 ; y = ( f * S8 ) . x .= ( f * S8 ) . x ; consider x being element such that x in Assume that x in Assume that A = f . x ; assume r in ( ( dist ( o ) ) .: P ) ; set i2 = width ( the / 2 ) , i1 = len ( the / 2 ) ; h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) = M . i .= Line ( M29 , k ) ; reconsider m = ( x - 1 ) / 2 as Element of ( the carrier of X ) ; let U1 , U2 be strict Subspace of U0 , A be Element of U1 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p1 + 1 <= len p2 ; let T1 , T2 be Scott `1 of L , x be Point of T1 , y be Point of T2 ; then x <= y & : -> : x in : x in { y } ; set M = n -tuples_on ( the carrier of K ) ; reconsider i = x1 , j = x2 as Nat ; rng the_arity_of ( a9 , b9 ) c= dom H & rng the_arity_of ( a9 , b9 ) c= dom H ; z1 " = ( z " ) * ( z " ) .= ( z " ) * ( z " ) ; x0 - r / 2 in L /\ dom f & x0 - r / 2 in dom f ; then w is that rng w /\ L <> {} & rng w /\ L <> {} ; set x-10 = ( x ^ <* Z *> ) . ( x + 1 ) , x-10 = ( x ^ <* Z *> ) . ( x + 1 ) ; len w1 in Seg ( len w1 + len w2 ) & len w2 in Seg ( len w1 + len w2 ) ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) * ( |. b . n .| ) ; p `1 <= G * ( i1 , 1 ) `1 & p `1 <= G * ( i1 , 1 ) `1 ; rng ( g | 1 ) c= L~ ( g | 1 ) \/ L~ ( g | 1 ) ; reconsider k = i-1 * ( i + j ) as Nat ; for n being Nat holds F . n is \HM { -infty } ; reconsider x-10 = x-7 , x29 = xm2 , x29 = xm2 as VECTOR of M ; dom ( f | X ) = X /\ dom f .= X /\ dom f ; p , a // p , c & b , a // c , c ; reconsider x1 = x , y1 = y , z1 = z as Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ( ag . ( bg . ( bg . ( bg . ( bg . ( bg . ( bg . ( len g ) ) ) ) ) ) ) = p . ( a . ( g . ( len g ) a / ( s . m - 1 ) / ( s . n - 1 ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume that B1 \/ C1 = B2 \/ C2 and B2 = C1 \/ C2 ; X . i = { x1 , x2 } . i .= ( X * f ) . i ; r2 in dom ( h1 + h2 ) & r2 in dom ( h1 + h2 ) ; - - 0. R = a & b-0 = b ; F8 is_closed_on t2 , Q & F8 is_halting_on t , Q & F8 is_halting_on t , Q ; set T = -> InInInInInInof X , x0 , x1 ; Int Cl Int R c= Int Cl R & Int Cl R c= Cl Int R ; consider y being Element of L such that c . y = x ; rng Fp1 = { Fp1 . x } .= { Fp1 . x } ; G-23 " { c } c= B \/ S & G . c = G . c ; f[#] is Relation of [: X , Y :] , X & f is Function of X , Y ; set RQ = the Point of P , RQ = the carrier of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; let k2 be Element of NAT , k be Nat ; reconsider pSubset = u , pSubset = v as Element of ( TOP-REAL n ) | ( the carrier of TOP-REAL n ) ; g . x in dom f & x in dom g implies f . x = g . x assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of ( G / ( N , 1 ) ) ; len Pt <= len P-35 & len Pt <= len P-35 ; x " in the carrier of A1 & x " in the carrier of A1 ; [ i , j ] in Indices ( A * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple Function of S , REAL f . x = a . i .= a1 . k .= a1 . k ; let f be PartFunc of REAL i , REAL , x be Point of REAL m ; rng f = the carrier of ( Carrier A ) & f . x = ( Carrier A ) . x ; assume that s1 = sqrt ( 2 / p ) - 1 and s2 = sqrt ( 2 / p ) - 1 ; pred a > 1 & b > 0 & a / b > 1 ; let A , B , C be Subset of [: I , J :] ; reconsider X0 = X , Y0 = Y as RealNormSpace ; let f be PartFunc of REAL , REAL , x be Point of REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , t-3 , tt2 be Relation of T , the carrier of S ; Q [ e-14 \/ { v-14 } , f . vW1 , f . vW1 , f . vW2 ] ; g \circlearrowleft W-min L~ z = z implies ( g /. 1 ) .. z < ( g /. len z ) .. z |. |[ x , v ]| - |[ x , y ]| .| = v\rrangle ; - f . w = - ( L (#) w ) .= - ( L (#) w ) ; z - y <= x iff z <= x + y & y <= z ; ( 7 / ( 1 / e ) ) to_power ( 1 / e ) > 0 ; assume X is BCK-algebra of 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 & ( f | X ) . x2 = f . x2 ; ( tan * sec ) . x in dom ( sec * sec ) /\ dom ( sec * sec ) ; i2 = ( f /. len f ) & ( f /. len f ) = ( f /. len f ) ; X1 = X2 \/ ( X1 \ X2 ) & X2 = ( X1 \ X2 ) \/ ( X2 \ X1 ) ; [. a , b , 1. G .] = 1_ G & a * b = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be FinSequence of V ; dom g2 = the carrier of I[01] & rng g2 = the carrier of I[01] & g2 . 0 = p2 ; dom f2 = the carrier of I[01] & rng f2 = the carrier of I[01] & f2 . 0 = p2 ; ( proj2 | X ) .: X = proj2 .: X .= proj2 .: X .= X ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & x0 < x0 + r ; |. ( f /* s ) . k - G . ( k + 1 ) .| < r ; len Line ( A , i ) = width A & len Line ( A , i ) = width A ; SFinSequence @ = ( S . g ) @ .= ( S . g ) @ ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized p & ( Initialized p ) . intloc 0 = 1 ; i1 does not destroy ( i2 , 3 ) & not ( i1 does not destroy ( i2 , 3 ) ) does not destroy ( i2 , 3 ) ; arccos r + arccos r = ( PI / 2 + 0 ) * ( PI / 2 + 0 ) ; for x st x in Z holds f2 * ( f1 + f2 ) is_differentiable_in x ; reconsider q2 = ( q - x ) / ( q - x ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 & i + 1 <= j ; assume f in the carrier of [: X , Omega Y :] ; F . a = H / ( x , y ) . a ; ( ( {} T ) at ( C , u ) ) . x = TRUE ; dist ( ( a * seq ) . n , h ) < r / 2 ; 1 in the carrier of [. 0 , 1 .] & 2 in the carrier of I[01] ; ( p2 `1 ) - x1 > - g & ( p2 `2 ) - g < ( p2 `2 ) - g ; |. r1 - p .| = |. a1 .| * |. thesis .| .= |. - a1 .| ; reconsider S-14 = 8 as Element of ( the carrier of K ) * ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W .\rbrack = D0W ..\rbrack + 1 ; i1 = ma + n & i2 = K + n & i1 = K + n ; f . a [= f . ( f . O1 "\/" a ) ; pred f = v & g = u , h = v + u ; I . n = Integral ( M , F . n ) ; chi ( [: T1 , T2 :] , S ) . s = 1 .= ( the Sorts of T1 ) . s ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k1 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ ( R4 * R4 ) & L~ ( R4 * R4 * R4 ) misses L~ ( R4 * R4 * R5 ) ; set h = the continuous Function of X , R , x be Point of X ; set A = { L . ( k . n ) : n <= k } ; for H st H is atomic holds P7 [ H ] ; set b\HM = S5 ^\ ( i + 1 ) , Sseq = Sseq ^\ ( i + 1 ) ; Hom ( a , b ) c= Hom ( a opp , b ) ; ( 1 / ( n + 1 ) ) < ( 1 / ( n + 1 ) ) ; ( l ) `1 = [ dom l , cod l ] `2 .= [ dom l , cod l ] `2 .= dom l ; y +* ( i , y /. i ) in dom g & y +* ( i , y ) in dom g ; let p be Element of CQC-WFF ( Al ) , P , l be Element of CQC-WFF ( Al ) ; X /\ X1 c= dom ( f1 - f2 ) & f1 - f2 c= dom ( f1 - f2 ) ; p2 in rng ( f /^ ( len f -' 1 ) ) & p2 in rng ( f /^ ( len f -' 1 ) ) ; 1 <= indx ( D2 , D1 , j1 ) & indx ( D2 , D1 , j1 ) <= len D2 ; assume x in ( ( K /\ / 3 ) \/ ( K /\ 4 ) ) /\ ( K /\ 5 ) ; - 1 <= ( ( f2 ) . O ) `2 & ( ( f2 ) . O ) `2 <= 1 ; let f , g be Function of I[01] , ( TOP-REAL 2 ) | K1 , R^1 ; k1 -' k2 = k1 - k2 + 1 .= k1 - k2 + 1 .= k1 - k2 ; rng seq c= ]. x0 , x0 + r .[ & ( for n holds seq . n < x0 ) implies seq is convergent & lim seq = x0 g2 in ]. x0 , x0 + r .[ & g2 in ]. x0 , x0 + r .[ ; sgn ( p `1 , K ) = - ( - 1_ K ) .= - ( 1_ K ) ; consider u being Nat such that b = p |^ y * u ; ex A being as as as as as - normal sequence of W st a = Sum A ; Cl ( union H ) = union ( ( Cl H ) \/ ( Cl H ) ) ; len t = len t1 + len t2 & len t1 = len t1 + len t2 + len t2 ; v-29 = v + w |-- v + AA .= v + AA ; cv <> DataLoc ( t0 . GBP , 3 ) & cv <> DataLoc ( t0 . GBP , 3 ) ; g . s = sup ( d " { s } ) .= sup ( d " { s } ) ; ( \dot y ) . s = s . ( y . s ) ; { s : s < t } in INT & t = {} or t = {} & s = {} ; s ` \ s = s ` \ 0. X .= ( s ` \ s ) ` .= ( s ` \ s ) ` ; defpred P [ Nat ] means B + $1 in A & A . $1 = B . $1 ; ( 339 + 1 ) ! = 3339 ! * ( 339 + 1 ) ; 1. ( A , succ A ) = 1. ( A , succ A ) .= ( A , A ) --> 0. ( A , A ) ; reconsider y = y as Element of COMPLEX , x be Element of COMPLEX ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f ; reconsider p = Y | ( Seg k ) as FinSequence of ( the carrier of K ) ; set f = ( S , U ) \mathop \mathop { \it Boolean } , g = ( S , U ) \mathop { \it Boolean } ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , ( TOP-REAL n ) | P , p1 , p2 be Point of TOP-REAL n ; ( SAT M ) . [ n + i , 'not' A ] <> 1 ; ex r being Real st x = r & a <= r & r <= b ; let R1 , R2 be Element of REAL n , a , b be Real ; reconsider l = 0. ( { v } ) , r = 0. ( A ) as Linear_Combination of A ; set r = |. e .| + |. n .| + |. w .| + |. s .| ; consider y being Element of S such that z <= y and y in X ; a 'or' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ; ||. ( x - g ) . x - g /. x0 .|| < r2 / 2 ; b9 , a9 // b9 , c9 & b9 , c9 // b9 , c9 & b9 , c9 // a9 , c9 ; 1 <= k2 -' k1 & k2 + 1 = k2 & k2 + 1 = k2 + 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 >= 0 ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 < 0 ; E-max C in cell ( Rg , 1 , 1 ) & ( E-max L~ g ) .. ( Rg ) = ( L~ g ) .. ( R ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) | D ) ; LIN b , a , c or LIN b , c , a ; p `1 , a `2 // a `1 , b or p `2 , a `2 // b `2 , a `2 ; g . n = a * Sum ( f | 1 ) .= f . n ; consider f being Subset of X such that e = f and f is being being being set ; F | ( N2 ~ ) = CircleMap * ( F | ( N2 ~ ) ) .= ( F | ( N2 ~ ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( m , r ) c= Ball ( m , r ) ; the carrier of (0). V = { 0. V } .= { 0. V } ; rng ( cos | [. - 1 , 1 .] ) = [. - 1 , 1 .] .= [. - 1 , 1 .] ; assume that Re ( seq ) is summable and Im ( seq ) is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / ( ||. x .|| + e / ( ||. y .|| + e ) ) ; set g = O --> 1 ; reconsider t2 = t11 , t2 = 0 as string of S2 , I = the carrier of S2 ; reconsider x-29 = seq , xseq = seq as sequence of REAL n ; assume that C meets L~ Cage ( C , n ) and L~ Cage ( C , n ) meets L~ Cage ( C , n ) ; - ( ( - 1 ) / ( 1 - r ) ) < F . n - ( - 1 ) / ( 1 - r ) ; set d1 = dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d2 = dist ( x2 , z2 ) ; 2 |^ ( 100 -' 1 ) = 2 |^ ( 100 - 1 ) ; dom vF2 = Seg ( len d6 ) .= dom d6 .= dom ( d7 ^ d8 ) ; set x1 = - k2 + |. k2 .| + 4 , x2 = - k2 + 4 ; assume for n being Element of X holds 0. ( \overline { f . n } ) <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( Carrier ( LX + L2 ) ) c= I2 & the carrier of ( Carrier ( LX + L2 ) ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal normal \hbox { - } \rm \mathbb N } ; Z c= dom ( ( sin * ( f1 + f2 ) ) `| Z ) ; |. 0. TOP-REAL 2 - q .| < r / 2 + |. q - p .| ; o c= ConsecutiveSet2 ( A , succ ( d , B ) ) & ( for B st B in A holds d . B = F ( B ) ) ; E = dom ( L (#) G ) & L (#) G is_measurable_on E & ( L (#) G ) | E is_measurable_on E ; C / ( A + B ) = C / B * C ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of V implies W1 + W2 = W2 I . IC Comput ( P , s , k ) = P . IC Comput ( P , s , k ) .= ( card I + 1 ) ; pred x > 0 means : Def1 : 1 / x = x / ( - 1 ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) .= LSeg ( f , k ) ; consider p being Point of T such that C = [: [. p , q .] , p :] ; b , c are_connected & - C , - C + - C + D + D + D + E + F + G + D + E + F + D + E + F + J + M + E + F + J + M + D + E + F + F + D + D + assume f = id ( the carrier of O1 ) & g = id ( the carrier of O1 ) ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( ( the carrier of V ) --> 0. V ) ; reconsider g = f " as Function of U2 , U1 , ( the carrier of U1 ) --> ( the carrier of U2 ) ; A1 in the points of G_ ( k , X ) & A2 in the carrier of G_ ( k , X ) ; |. - x .| = - ( - x ) .= - ( - x ) .= - x ; set S = ) ( x , y , c ) ; Fib n * ( 5 * Fib ( n ) - 1 ) >= 4 * \/ / 5 ; vM /. ( k + 1 ) = vM . ( k + 1 ) .= vM . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - ( i * ( 0 qua Nat ) ) ; Indices M1 = [: Seg n , Seg n :] & Indices M1 = [: Seg n , Seg n :] ; Line ( St , j ) = St . j .= ( S . j ) * ( Line ( St , j ) ) ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y1 , x2 ] ; |. f - Re ( |. f .| * ( card b ) ) .| is nonnegative ; assume that x = ( a1 ^ <* x1 *> ) ^ b1 and y = ( a1 ^ <* x2 *> ) ^ b2 ; ME is_closed_on IExec ( I , P , s ) , P & ME is_halting_on IExec ( I , P , s ) , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= intpos ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x + y & |. y .| = - y ; LIN c , q , b & LIN c , q , c & LIN c , q , b ; f| ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= y1 + ( z1 + z2 ) ; f, , f . a = f\in . a & v in InputVertices S & [ v , f . a ] in InputVertices S ; p `1 <= ( E-max C ) `1 & ( E-max C ) `2 <= ( E-max C ) `2 ; set R8 = Cage ( C , n ) \circlearrowleft E8 , R8 = Cage ( C , n ) ; p `1 >= ( E-max C ) `1 & ( E-max C ) `2 <= ( E-max C ) `2 ; consider p such that p = p-20 and s1 < p & p <= s2 ; |. ( f /* ( s * F ) ) . l - G . l .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 + 1 ) = width N .= width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = x0 ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m & rng ( Proj ( i , n ) * s ) c= REAL n ; n = k * ( 2 * t ) + ( n mod ( 2 * k ) ) ; dom B = 2 -tuples_on the carrier of V & rng B = the carrier of V & rng B = the carrier of V ; consider r such that r _|_ a and r _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 <= 1 ; for L being complete LATTICE holds <* <* \mathclose { L } , L *> *> , L are_isomorphic [ gi , gj ] in [: I , I :] \ ( I \ { j } ) ; set S2 = 1GateCircStr ( x , y , c ) , S2 = 1GateCircStr ( y , c , d ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and f2 is_differentiable_in x0 ; reconsider y = ( a ` ) ` , z = ( a ` ) ` , t = ( a ` ) ` as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - g ) (#) f ) . c ) <= h . c ; set G3 = the u of G , v = the Vertex of G , w = the Vertex of G , e = the Element of G ; reconsider g = f as PartFunc of REAL , REAL-NS n , REAL-NS n ; |. s1 . m / p .| / |. p .| < d / p / p ; for x being element st x in consider ( for u being element st u in ( ( the carrier of R ) \ { 0 } ) holds x in ( the carrier of R ) P = the carrier of ( TOP-REAL n ) | P & Q = the carrier of ( TOP-REAL n ) | P ; assume that p01 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) and LSeg ( p1 , p2 ) /\ LSeg ( p01 , p2 ) = { p1 } ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , cod f ) ; 2 * a * b + ( 2 * c * d ) <= 2 * C1 * C2 ; let f , g , h be Point of the carrier of X , g be Point of Y ; set h = Hom ( a , g (*) f ) ; then idseq ( n ) | ( Seg m ) = idseq ( m ) | ( Seg m ) & m <= n ; H * ( g " * a ) in the right of H & I * ( g " * a ) in the carrier of H ; x in dom ( cos / sin ^2 ) & ( cos / sin ^2 ) . x = ( cos . x ) ^2 / ( cos . x ) ^2 ; cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 -' 1 ) misses C ; LE q2 , p4 , P , p1 , p2 & LE q1 , q2 , P , p1 , p2 ; pred B is an component of A means : Def1 : B c= BDD A & B c= A ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len ( p + - n ) + - n & n + - n < len p + ( - n ) ; pred a <> 0. K means : Def1 : the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom /\ /\ dom _ $ I and I = len _ { w + j : j in dom } ; consider x1 such that z in x1 and x1 in P8 and x = [ x1 , x2 ] ; for n ex r being Element of REAL st X [ n , r ] set CP1 = Comput ( P2 , s2 , i + 1 ) , CP2 = Comput ( P2 , s2 , i + 1 ) , CP2 = P2 ; set cv = 3 / 4 * PI , cv = 2 * PI , cv = 3 / 4 * PI , cv = 4 * PI ; conv @ W c= union ( F .: ( E " W ) ) & conv @ W c= union ( F .: ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( arccot * arccot ) & 1 in dom ( arccot * arccot ) ; r3 <= s0 + ( r0 - ( |. v2 - v1 .| ) / ( |. v2 - v1 .| ) ) ; dom ( f (#) f4 ) = dom f /\ dom f4 .= dom ( f (#) f4 ) /\ dom ( g (#) f4 ) ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & f1 . x0 in dom f2 \ f2 . x0 ; reconsider gg = gp , gq = gq , gq = gq as Point of TOP-REAL n ; ( T * h . s ) . x = T . ( h . s . x ) ; I . ( L . ( J . x ) ) = ( I * L ) . ( J . x ) ; y in dom ( *> <* *> ) implies commute ( Frege ( ( Frege ( A . o ) ) . o ) ) = ( ( Frege ( A . o ) ) . y ) . y for I being non degenerated commutative commutative Ring holds the carrier of I is commutative commutative commutative commutative non empty doubleLoopStr set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* I +* J ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S1 in the carrier of [. a , b .] ; v . ( l-13 . i ) = ( v *' l.| ) . i .= ( v *' l.| ) . i ; consider n being element such that n in NAT and x = ( sn " ) . n ; consider x being Element of c such that F1 . x <> F2 . x and x in F2 . x ; Funcs ( X , 0 , x1 , x2 , x3 ) = { E } & card ( X \ { x1 , x2 , x3 } ) = 1 ; j + ( 2 * kk ) + m1 > j + ( 2 * kk ) + ( 2 * kk ) ; { s , t } on A3 & { s , t } on B3 & { s , t } on B3 ; n1 > len crossover ( p2 , p1 , p2 , n1 , n2 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 mg . HT ( mg , T ) = 0. L & g . HT ( mg , T ) = 0. L ; then H1 , H2 are_) & card ( H1 , H2 ) , ( H2 ) / ( 2 |^ n ) are_relative_prime ; ( N-min L~ f ) .. ( ( f /. len f ) .. ( f /. 1 ) ) + ( ( f /. len f ) .. ( f /. 1 ) .. ( f /. 1 ) ) .. ( f /. 1 ) .. ( f /. 1 ) .. ( f /. 1 ) .. ( f /. 1 ) .. ( f /. 1 ) ]. s , 1 .[ = ]. s , 2 .] /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | L~ g ) & x2 in ( ( TOP-REAL 2 ) | L~ g ) . x2 ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , x be Point of S ; DigA ( t-23 , z9 ) is Element of k -tuples_on ( k -tuples_on ( k + 1 ) ) ; I is Element of NAT & I is Element of NAT & I is Element of NAT & I is Element of NAT & I is Element of NAT ; [: u , { u9 } :] = { [ a , u9 ] } .= [: { a } , { b } :] ; ( w | p ) | ( p | ( w | w ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u2 in W2 and v = v + u2 ; for y st y in rng F ex n st y = a |^ n & n <= len F ; dom ( ( g * f ) . ( f . K ) | K ) = K ; ex x being element st x in ( ( the Sorts of U0 ) \/ A ) . s & x in ( the Sorts of U0 ) . s ; ex x being element st x in ( the Sorts of O1 ) . s \/ A . s ; f . x in the carrier of [. - r , r .] & f . x in [. - r , r .] ; ( the carrier of X1 union X2 ) /\ ( the carrier of X1 union X2 ) <> {} & ( the carrier of X1 union X2 ) /\ ( the carrier of X2 ) <> {} ; L1 /\ LSeg ( p01 , p2 ) c= { p01 } /\ LSeg ( p01 , p2 ) ; ( b + bs0 ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of GX such that z = y and P [ z ] and z in A ; ( the sequence of ( ( the carrier of X ) --> ( the carrier of X ) ) ) . ( TOP-REAL n ) <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 + 1 .= len w + 1 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 ; f | E-4 ` = g | E-4 ` & g | E11 = g | E11 ` & g | E11 = g | E11 ` ; reconsider i1 = x1 , i2 = x2 , j1 = x3 , j2 = x4 as Element of NAT ; ( a * A * B ) @ = ( a * ( A * B ) ) @ ; assume ex n0 being Element of NAT st f to_power n0 is Seg len ( ( the thesis ) --> ( ( len f2 ) --> ( len f1 ) ) ) = dom ( ( the support of K ) --> ( len f1 ) ) ; ( Complement ( A . m ) ) . n c= ( Complement ( A . n ) ) . ( ( Complement ( A . m ) ) . n ) ; f1 . p = p9 & g1 . p = q9 & g2 . p = d & g1 . p = q9 & g2 . p = g2 . p ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) .= FinS ( F , Y ) ; ( x | y ) | z = z | ( y | x ) ; ( |. x .| |^ n ) / ( n + 1 ) <= ( ( r2 |^ n ) / ( n + 1 ) ) ; Sum F-12 = Sum f & dom F-12 = dom g & for x st x in dom F-12 holds F-12 . x = g . x ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W3 and W1 /\ W2 is Subspace of W3 and W1 /\ W2 = W2 /\ W3 ; ||. ( t-15 . x ) .|| = lim ||. ( x - y ) .|| .= ||. ( x - y ) .|| .= ||. x - y .|| ; assume that i in dom D and f | A is lower and g | A is lower and g | A is lower ; ( ( p `2 ) ^2 - 1 ) / ( 1 + ( - 1 ) ) <= ( ( - 1 ) / ( 1 + ( p `2 / p `1 ) ^2 ) ) / ( 1 + ( p `2 / p `1 ) ^2 ) ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) .= id ( Sphere ( p , r ) ) ; set N8 = ( N-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ; for T being non empty TopSpace holds T is countable countable implies the TopStruct of T is countable width B |-> 0. K = Line ( B , i ) .= B * ( i , j ) .= B * ( i , j ) ; pred a <> 0 means : Def1 : ( A \+\ B ) Y. = ( A Y. ) \diffsym ( B f2 ) ; then f is_\cal 2 , u & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and b <> 0 and c > 0 and a > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } ; p2 /. IC Comput ( p2 , s , k ) = p2 . IC Comput ( p2 , s , k ) .= ( I . IC Comput ( p2 , s , k ) ) ; ind ( T-10 | b ) = ind b .= ind B .= ind ( T-10 | b ) .= ind b ; [ a , A ] in the carrier of G_ ( Al , A ) & [ a , A ] in the carrier of G_ ( Al , A ) ; m in ( the Arrows of C ) . ( o1 , o2 ) & ( the Arrows of C ) . ( o1 , o2 ) = ( the Arrows of C ) . ( o2 , o1 ) ; ( a , CompF ( PA , G ) ) . z = FALSE & ( a , CompF ( PA , G ) ) . z = FALSE ; reconsider phi = phi , phi = phi , phi = phi , phi = phi as Element of ( S , D ) * ; len s1 - 1 * ( len s2 - 1 ) + 1 > 0 + 1 * ( len s2 - 1 ) ; delta ( D ) * ( f . sup A ) - lower_bound ( rng f ) < r ; [ f21 , f22 ] in the carrier' of A & [ f21 , f22 ] in the carrier' of B ; the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z and q = g2 . z ; [#] ( V1 + V2 ) = { 0. V } .= the carrier of ( (0). V ) + ( the carrier of V ) .= the carrier of V ; consider P2 being FinSequence such that rng P2 = M and P2 is one-to-one and for k being Nat st k in dom P2 holds P2 . k = P2 . k ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and |. f /. x1 - f /. x0 .| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ^ <* p *> ; c /. ( |[ b , c ]| ) = c /. c .= |[ a , c ]| .= |[ a , c ]| ; reconsider t1 = p1 , t2 = p2 , t2 = p3 as Term of C , V ; ( 1 / 2 ) * ( 1 / 2 ) in the carrier of [. 1 / 2 , 1 .] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D .= ( h . p1 ) `2 + D ; R . b - R . b = 2 * - b .= 2 * - b .= - b ; consider \hbox such that B = 1- 1 * ] + ( - 1 ) * A and 0 <= 1 ; dom g = dom ( ( the Sorts of A ) * ( a , b ) ) .= the carrier of S ; [ P . ( l ) , P . ( l + 1 ) ] in => ( ( P . ( l + 1 ) ) . ( k + 1 ) ) ; set s2 = Initialize s , P2 = P +* I ; reconsider M = mid ( z , i2 , i1 ) , N = L~ z as non empty Subset of ( TOP-REAL 2 ) | ( L~ z ) ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) & y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 ; assume x in the left of g or x in the left of g & y in the carrier of g & x = g . x ; consider M being strict Subgroup of AJ such that a = M and T is Subgroup of M and the carrier of M = the carrier of J ; for x st x in Z holds ( ( ( #Z n ) * f ) + ( #Z n ) * f ) `| Z ) . x <> 0 len W1 + len W2 + m = 1 + len W3 + len W3 + m .= len W1 + len W2 + m .= len W1 + len W2 + m ; reconsider h1 = ( vseq . n ) - t-16 as Lipschitzian LinearOperator of X , Y ; ( - ( len p + q ) mod ( len p + q ) ) in dom ( p + q ) ; assume that s2 is_\emptyset and F in the Element of s2 and not F in the Element of s2 and not F in the Element of s2 ; ( ( ( ( ( ex x , y st x in Y ) ) * ( x , 3 ) ) + ( ( - 1 ) * ( x , 2 ) ) ) / ( 2 * ( x , 3 ) ) ) = gcd ( x , y , 3 ) ; for u being element st u in Bags n holds ( p `2 + m ) . u = p . u + m . u for B be Subset of u-5 st B in E holds A = B or A misses B or A = B ; ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree p \/ W1 , W1 = tree p , W2 = tree q ; x in { X where X is Ideal of L : X is non empty Subset of L & X is non empty Subset of L } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W1 /\ W2 implies W1 + W2 = W2 ( 1 / a + b ) * id a = ( 1 / a + b ) * id a .= ( 1 / a + b ) * id a ; ( ( X --> f ) . x ) . x = ( X --> dom f ) . x .= f . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) , y = the Element of LSeg ( g , m ) /\ LSeg ( g , n ) ; p => ( q => r ) => ( p => q ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( ( i - 2 ) |^ ( n -' m ) ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) /\ dom ( f2 (#) f3 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and b1 . r = { c2 . r } ; ex P st a1 on P & a2 on P & b on P & c on P & c on P ; reconsider gf = g `1 * f `2 , hg = h `2 * g `2 as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and ( downarrow v1 ) ` = ( downarrow v1 ) ` ; n in { i where i is Nat : i < n0 + 1 & i <= n + 1 } ; ( F * ( i , j ) ) `2 >= ( F * ( m , k ) ) `2 ; assume K1 = { p : p `1 / |. p .| >= cn & p `2 >= 0 & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) . ( ( succ O1 ) . ( ( succ O1 ) . ( ( succ O1 ) . ( ( succ O1 ) . ( ( succ O1 ) . ( ( succ O1 ) . ( ( succ O1 ) . ( succ O1 ) ) ) ) ) ) ; set IW1 = in dom SubFrom ( a , intloc 0 ) , IW2 = SubFrom ( a , intloc 0 ) , IW2 = SubFrom ( a , intloc 0 ) , IW2 = SubFrom ( a , intloc 0 ) ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & ( the carrier of L1 ) \/ ( the carrier of L2 ) c= the carrier of L1 ; consider x9 being Element of GF ( p ) such that x9 |^ 2 = a & x9 |^ 2 = b ; reconsider eX = eX , fX = fX , fY = fY as Element of D ; ex O being set st O in S & C1 c= O & M . O = 0. ( \overline { A } ) ; consider n being Nat such that for m being Nat st n <= m holds S . m in U1 and S . n in U2 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) . x ) . x0 ; defpred P [ Nat ] means A + succ $1 = succ A & ( A + ) = ( A + ) + ( B + $1 ) ; the left of - g = the left of g & the left of - g = the left of g & the carrier of - g = the carrier of g ; reconsider p\mathopen = x , p\mathopen = y , p\mathopen = z as Point of TOP-REAL 2 , a , b , c , d ; consider g3 such that g3 = y and x <= ex g2 st g2 <= x & g2 <= x0 & x0 <= g2 & g2 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 .= len ( x2 ^ y2 ) + len ( y2 ^ y1 ) .= len ( x2 ^ y2 ) + len ( y1 ^ y2 ) ; for x being element st x in X holds x in the set of Real & x in the set of ( the set of 0 ) | X & x in the carrier of ( 0 -tuples_on REAL ) LSeg ( p01 , p2 ) /\ LSeg ( p1 , p2 ) = {} & LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} ; func that ) of ) ( X ) -> set equals [: [: X , X :] , [: X , X :] :] ; len ( ( { ( C /. len C ) *> ^ ( C /^ 1 ) ) ) <= len ( C | 1 ) + len ( C /^ 1 ) ; pred K is has a , a & a <> 0. K & v . ( a |^ i ) = i * v . a ; consider o being OperSymbol of S such that t `1 . {} = [ o , the carrier of S ] and t . {} = [ o , the carrier of S ] ; for x st x in X ex y st x c= y & y in X & y is NAT & f . x is a + 1 / ( f . x ) IC Comput ( P-6 , sseq , k ) in dom ( Pseq ( ) ) & IC Comput ( Pseq , sseq , k ) in dom ( Pseq ( ) ) ; pred q < s means : Def1 : r < s & s <= q & s <= q ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) `1 and ( F . c ) `2 = 3 ; func the ResultSort of S2 -> Function of the carrier of S2 , the carrier of S2 means : Def1 : the ResultSort of it = the carrier of S2 & the ResultSort of it = the ResultSort of S2 ; set y9 = [ <* y , z *> , f2 ] , z9 = [ <* z , x *> , f3 ] ; assume x in dom ( ( ( #Z n ) * ( arccot ) ) `| Z ) & x in dom ( ( #Z n ) * ( arccot ) ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f & r-7 in cell ( GoB f , i , width GoB f ) \ L~ f ; q `2 >= ( Cage ( C , n ) /. ( i + 1 ) ) `2 & ( Cage ( C , n ) /. ( i + 1 ) ) `2 >= ( Cage ( C , n ) ) `2 ; set Y = { a "/\" a ` : a in X } ; i -' len f <= len f + len f -' len f & i + 1 <= len f + len f - len f ; for n ex x st x in N & x in N1 & h . n = x- ( x0 - h . n ) set s0 = ( \mathop { a , I , p , s ) . i , s1 = ( \mathop { a , I , p , s ) . i , s1 = ( \mathop { a , I , p , s ) . i , s1 = ( \mathop { a , I , p , s ) . i , s1 = ( \mathop { a , I , p , s ) p ( k ) . 0 = 1 or p ( k ) . 0 = - 1 or p ( k ) . 0 = - 1 & p ( k ) . 0 = - 1 ; u + Sum ( L-18 ) in ( U \ { u } ) \/ { u + Sum ( L-18 ) } ; consider x9 being set such that x in x9 and x9 in V1 and f . x = [ x9 , the carrier of K ] ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( len p ) .= p . ( len p ) ; g + h = gg + h1 & A1 + ( g + h ) = g + h & A2 + h = g + h ; L1 is distributive & L2 is distributive implies [: L1 , L2 :] is distributive & the carrier of L1 = the carrier of L2 & the carrier of L1 = the carrier of L2 & the carrier of L1 = the carrier of L2 pred x in rng f & y in rng ( f | x ) means : Def1 : y in rng ( f | x ) & f . x = f . y ; assume that 1 < p and ( 1 - p ) * q + ( 1 - p ) * q = 1 and 0 <= a and a <= b ; F* ( f , sA1 ) = rpoly ( 1 , M ) *' t + 1. F_Complex .= 0. F_Complex + 0. F_Complex .= 0. F_Complex ; for X being set , A being Subset of X holds A ` = {} implies A = {} & A = {} & A = {} & A = {} ( N-min X ) `1 <= ( ( N-min X ) `1 ) / ( 1 + ( ( ( ( ( ( the carrier of X ) ) / ( 1 + ( the carrier of X ) ) / ( 1 + ( the carrier of X ) ) ) ) / ( 1 + ( the carrier of X ) ) ) ) ; for c being Element of the *> of the function of A , a being Element of the \subseteq the free of A holds c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= s2 . GBP .= Exec ( i2 , s2 ) . GBP .= s2 . GBP .= Exec ( i2 , s2 ) . GBP .= s2 . GBP ; for a , b being Real holds |[ a , b ]| in ( y >= 0 ) & b >= 0 implies b >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y \ x = ( x \ y ) ` mode BCK-algebra of i , j , m , n , m , m , n , m , m , n ; set x2 = |( Re ( y - Im ( x - Im y ) ) , Im ( y - Im ( x - Im y ) ) )| ; [ y , x ] in dom u5 & u5 . ( y , x ) = g . y & [ u , x ] in dom g ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .] c= A & upper_bound divset ( D , k ) = upper_bound divset ( D , k ) ; 0 <= delta ( S2 ) . n & |. delta ( S2 ) . n - 0 .| < ( e / 2 ) / 2 ; ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) <= ( - ( q `2 / |. q .| - cn ) ) / ( 1 + cn ) ; set A = 2 / b-a ; for x , y being set st x in R" holds x , y are_\hbox { - } x , the carrier of S deffunc FF2 ( Nat ) = b . ( $1 + 1 ) * ( M * G ) . ( $1 + 1 ) ; for s being element holds s in -> Element of S iff s in -> Element of \rm : _ 0 ( f , g ) \/ _ _ 0 ( f , g ) for S being non empty non void holds S is connected holds S is connected iff S is connected max ( degree ( ( z `1 ) ^2 + ( z `2 ) ^2 ) , degree ( ( z `2 ) ^2 + ( z `2 ) ^2 ) ) >= 0 ; consider n1 being Nat such that for k holds seq . ( n1 + k ) < r + s and seq . ( n1 + k ) < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A /\ B ) & Lin ( A /\ B ) is Subspace of Lin ( B ) set n-15 = n-13 '&' ( M . x qua Element of ( the carrier of X ) --> TRUE ) , n-15 = ( M . x ) --> TRUE ; f " V in ' ( X ) & f " V in D & f " V in D & f " V in D & f " V in D ; rng ( ( a ^\ c ) +* ( 1 , b ) ) c= { a , c , b } \/ { b } ; consider y being set such that y `1 = y and dom y `1 = WWG and rng y `2 = WWG and y `2 = WWG ; dom ( 1 / f ) /\ ]. - 1 , 0 .[ c= ]. - 1 , 1 .[ & dom ( 1 / f ) /\ ]. - 1 , 1 .[ c= dom ( 1 / f ) ; as Morphism of j , j , n , r be Element of j , ( - r ) * ( - r ) ; v ^ ( ( n |-> 0 ) ^ ( ( n |-> 0 ) ^ ( ( n |-> 0 ) ^ ( ( n |-> 0 ) ^ ( ( n |-> 0 ) ^ ( ( n |-> 0 ) ^ ( n |-> 0 ) ) ) ) ) ) in Lin ( rng ( ( n |-> 0 ) ^ ( n |-> 0 ) ) ) ; ex a , k1 , k2 st i = a := k1 & j = b := k2 & k2 = b := k2 & k2 = b := k2 ; t . NAT = ( NAT .--> succ i1 ) . NAT .= succ i1 .= succ i1 .= succ i1 .= ( NAT --> succ i1 ) . NAT .= ( NAT --> succ i1 ) . NAT .= ( NAT --> succ i1 ) . NAT ; assume that F is bbfamily and rng p = F and dom p = Seg ( n + 1 ) and for i being Nat st i in Seg ( n + 1 ) holds p . i = F . i ; not LIN b , b9 , a & not LIN a , a9 , c & LIN b9 , a9 , c & LIN b9 , a9 , a & LIN b9 , a9 , c ( L1 \rangle ) \& O c= ( L1 => L2 ) \& O & ( L2 = L1 => L2 ) Let O ; consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) and for d being Element of E holds F . d = G ( d ) ; consider a , b such that a * ( 0. V ) = b * ( -w ) and 0 < a and 0 < b ; defpred P [ FinSequence of D ] means |. Sum ( $1 ) .| <= Sum ( |. $1 .| ) ; u = cos / ( x , y ) . v * x + ( cos / ( x , y ) . v ) * y .= v ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , |. p .| \bullet |. p .| , {} ( the Sorts of A ) . p , id ( the Sorts of A ) . p ] ; consider X being Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and X is non empty and innot X in X ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) + 1 & ( W-min L~ Cage ( C , n ) ) .. Cage ( C , n ) <= ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & h <= g } ; vol ( ( G . n ) vol ) <= vol ( ( G . n ) vol ) + vol ( ( G . n ) vol ) ; f . y = x .= x * 1. L .= x * power L .= x * ( power L ) .= x * ( 1. L ) ; NIC ( <% i1 , i2 %> , ( the carrier of SCM+FSA ) --> ( the carrier of SCM+FSA ) ) = { i1 , succ i2 } .= { i1 , succ i2 } .= { i1 , i2 } ; LSeg ( p01 , p2 ) /\ LSeg ( p1 , p01 ) = { p1 } /\ LSeg ( p1 , p2 ) .= { p1 } ; Product ( ( the carrier of I-15 ) +* ( i , { 1 } ) ) in [: Z , Z :] ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) .= Following ( s1 , n ) .= Exec ( i , s1 ) ; W-bound ( Q `1 ) <= ( q `1 ) / ( |. q .| ) & ( |. q .| ) <= ( |. q .| ) / ( |. q .| ) ; f /. i2 <> f /. ( ( len f + len g -' 1 ) + len g ) & f /. ( len f + 1 ) = f /. ( len f + 1 ) ; M , f / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) |= H ; len ( ( P ^ ) ^ ( Q ^ ) ) in dom ( ( P ^ ) ^ ( Q ^ ) ) & len ( ( P ^ ) ) + ( Q ^ ) = len ( Q ^ ) + len ( Q ^ ) ; A |^ ( m , n ) c= A |^ ( m , n ) & A |^ ( k , n ) c= A |^ ( k , l ) ; R |^ n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X \not c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( id the carrier of V ) . v .| & ||. v .|| = |. ( id the carrier of V ) . v .| for phi holds phi in X implies phi in X & ( phi in X & phi in X ) & ( phi in X & phi in X ) rng ( Sgm dom ( f | dom ( f | dom ( f | dom ( f | dom q ) ) ) ) ) c= dom ( f | dom ( f | dom q ) ) ; ex c being FinSequence of D ( ) st len c = k & P [ c ] & a = c & c = d ; the_arity_of ( a , b , c ) = <* Hom ( b , c ) , Hom ( a , b ) *> .= <* Hom ( a , b ) , Hom ( b , c ) *> ; consider f1 being Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and for x being Point of X holds f1 . x = f . x ; a1 = b1 & a2 = b2 or a1 = b2 & a2 = b2 & b1 = b2 & b2 = b3 or b1 = b3 & b2 = b3 or b1 = b2 & b2 = b3 ; D2 . indx ( D2 , D1 , n1 + 1 ) = D1 . ( n1 + 1 ) .= D2 . ( n1 + 1 ) .= D2 . ( n1 + 1 ) ; f . ( ||. r .|| ) = ||. ( r (#) f ) /. 1 .|| .= <* r * f /. 1 *> .= r * f /. 1 .= r * f /. 1 .= r * f /. 1 ; consider n being Nat such that for m being Nat st n <= m holds C-25 . m = C-25 . m and C-25 . n = C-25 . m ; consider d being Real such that for a , b being Real st a in X & b in Y holds a <= d and d <= b ; ||. L /. h - ( K * |. h .| ) + ( K * |. h .| ) .|| <= p0 + ( K * |. h .| ) ; attr F is commutative associative means : Def1 : for b being Element of X holds F -\hbox { b } f = f . b ; p = - ( - p0 + 0. TOP-REAL 2 ) + 0. TOP-REAL 2 .= 1 * ( p0 `1 ) + 0. TOP-REAL 2 .= ( - 1 ) * ( p0 `1 ) + 0. TOP-REAL 2 .= ( - 1 ) * ( p0 `1 ) + 0. TOP-REAL 2 .= ( - 1 ) * ( p0 `1 ) .= ( - 1 ) * ( p0 `1 ) .= ( - 1 ) * ( p0 `1 ) ; consider z1 such that b `1 , x3 , z1 is_collinear and o , x1 , z1 is_collinear and o <> z1 and o <> z1 and o <> z1 and o <> z1 ; consider i such that Arg ( ( Rotate ( s , r ) ) . q ) = s + Arg q + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card f . x and rng g = f . x and g . x = f . x ; assume that A = P2 \/ Q2 and P2 <> {} and Q2 <> {} and P2 <> {} and P2 <> {} and Q2 <> {} and P2 <> {} and Q2 <> {} and P2 <> {} ; attr F is associative means : Def1 : F .: ( f , g ) = F .: ( f , g ) & F .: ( g , h ) = F .: ( f , g ) ; ex x being Element of NAT st m = x `1 & x in z `2 & x in { i } or m in { i } & m in { i } ; consider k2 being Nat such that k2 in dom P-2 and l in P-2 . k2 and PW1 . k2 = PW1 . k2 ; seq = r (#) seq implies for n holds seq . n = r * seq . n & seq . n = r * seq . n F1 . [ ( id a ) , [ a , a ] ] = [ f * ( id a ) , [ a , b ] ] .= [ f , f ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & p in D2 } & x in D1 "\/" D2 ; consider z being element such that z in dom ( ( dom F ) . 0 ) and ( ( dom F ) . 0 ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y Int cell ( G , i , 1 ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and ( T | E1 ) . e = v ; ( F `1 * b1 ) . x = ( Mx2Tran ( J , BY. , Z , b1 ) ) . ( Y. /. j ) .= ( Mx2Tran J ) . j ; - 1 / ( - 1 ) = mmD (#) D | n .= mmD (#) ( - 1 ) .= ( - 1_ K ) (#) ( - 1 ) .= ( - 1_ K ) (#) ( - 1 ) .= ( - 1_ K ) * ( - 1 ) .= ( - 1_ K ) ; pred for x being set st x in dom f /\ dom g holds g . x <= f . x & g . x <= g . x ; len ( f1 . j ) = len f2 /. j .= len ( f2 . j ) .= len ( f2 . j ) .= len ( f2 . j ) .= len ( f2 . j ) ; All ( 'not' a , A , G ) |= Ex ( 'not' All ( a , B , G ) , A , G ) ; LSeg ( E . k0 , F . k0 ) c= Cl RightComp Cage ( C , k + 1 ) & LSeg ( E , k + 1 ) c= RightComp Cage ( C , k + 1 ) ; x \ a |^ m = x \ ( a |^ k * a ) .= ( x \ a ) |^ k .= ( x \ a ) |^ k ; k -inininininininininininin1 = ( commute ( I . k ) ) . ( i + 1 ) .= ( commute ( I . k ) ) . ( i + 1 ) .= ( ( commute I ) . ( i + 1 ) ) . ( i + 1 ) .= ( ( commute I ) . ( i + 1 ) ) . ( i + 1 ) ; for s being State of A2 holds Following ( s , n ) . ( 0 + ( n + 2 ) * n + 1 ) is stable ; for x st x in Z holds f1 . x = a ^2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 ) implies f1 - f2 is_differentiable_on Z & for x st x in Z holds f1 . x = 1 / x - ( x ^2 ) support ( Sgm ( n ) \/ support ( Sgm ( n ) ) ) c= support max ( n , support ( m ) ) \/ support ( m ) ; reconsider t = u as Function of ( the carrier of A ) \/ ( the carrier of B ) , the carrier' of C , f = ( the carrier of B ) \/ ( the carrier of C ) ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + a ^2 ) ) ; phi /. ( succ b1 ) = g . a & phi /. ( a . a ) = f . ( g . a ) & phi /. ( a . a ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) . i ) and i = len ( F ^ <* p *> ) ; { x1 , x2 , x3 , x4 , x5 } = { x1 } \/ { x2 , x3 , x4 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 } .= { x1 } \/ { x2 , x3 , x4 , x5 } ; the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 & the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 /\ ( U1 "\/" U2 ) ; ( - ( 2 * a * ( b - a ) ) + b ) / ( 2 * a * ( b - a ) ) > 0 ; consider W00 such that for z being element holds z in W00 iff z in N & P [ z ] & P [ z ] ; assume that ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = r and ( the Arity of S ) . o = <* a *> and ( the Arity of S ) . o = a ; Z = dom ( exp_R * ( arccot - arccot ) ) /\ dom ( ( arccot - arccot ) (#) ( arccot - arccot ) ) ; sum ( f , SS1 ) is convergent & lim ( \HM { the carrier of S } ) = integral ( f , SS1 ) & lim ( f , SS1 ) = integral ( f , SS1 ) ; ( X . ( ( a . f ) => ( g . x ) ) => ( ( g . x ) => ( g . x ) ) ) in [: the carrier of l , the carrier of l :] ; len ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M1 ) = n ; attr X1 union X2 is open SubSpace of X means : Def1 : X1 , X2 are_separated & ( X1 , X2 are_separated ) & ( X1 , X2 are_separated ) & ( X2 , X1 are_separated ) & ( X1 , X2 are_separated implies X2 , X1 are_separated ) ; for L being upper-bounded antisymmetric RelStr , X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-129 = F1 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) as Function of M , M ; consider w being FinSequence of I such that the InitS of M = ( the InitS of M ) Carrier ( <* s *> ^ w ) and len w = len q ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= ( g . ( a |^ 0 ) ) |^ 0 .= ( g . ( a |^ 0 ) ) |^ 0 .= ( g . ( a |^ 0 ) ) |^ 0 .= ( g . ( a |^ 0 ) ) |^ 0 ; assume for i be Nat st i in dom f ex z be Element of L st f . i = rpoly ( 1 , z ) & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier ( L ) = C & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 ; reconsider o-21 = o `1 , oY = p `2 , oY = p `2 , oY = p `2 , oY = p `2 , oY = p `2 , oY = p `2 , oY = p `2 , oY = p `2 , oY = p `2 ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + <* \underbrace { 0 , \dots , 0 } , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) .= x1 + x2 + 0 ; Ek " . 1 = ( Ek qua Function ) " . 1 .= ( ( 1 - k ) |^ 1 ) " .= ( ( 1 - k ) |^ 1 ) " .= ( ( 1 - k ) |^ 1 ) " .= ( ( 1 - k ) |^ 1 ) " ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , v1 = the carrier of U1 /\ ( U1 "\/" U2 ) as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" ( x "\/" y ) ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . l1 ) .| < ( 1 / |. M .| + 1 / ( |. M .| + 1 ) ) ; LSeg ( ( Upper_Seq ( C , n ) ) /. ( i + 1 ) , ( Upper_Seq ( C , n ) ) /. ( i + 1 ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- x ) + R /. ( x- x0 ) ; g . c * ( - g . c ) + f . c <= h . c * ( - g . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) .= f | divset ( D , i ) + g | divset ( D , i ) ; assume that ColVec2Mx f in the set of K and ColVec2Mx f in the carrier of K and len ColVec2Mx b = width A and width ColVec2Mx f = width A and width ColVec2Mx f = width A and width ColVec2Mx f = width A and width ColVec2Mx f = width A ; len ( - M1 ) = len M1 & width ( - M1 ) = width M1 & width ( - M1 ) = width M2 & width ( - M1 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( the InternalRel of thesis ) \/ the InternalRel of ( the InternalRel of G ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 ; pred a <> 0 & b <> 0 & Arg a = Arg b & Arg ( - a ) = Arg ( - b ) & Arg ( - a ) = Arg ( - b ) ; for c being set st not c in [. a , b .] holds not c in Intersection ( the open of a , b , c ) & not c in Intersection ( the InternalRel of a , b , c ) assume that V1 is linearly-independent and V2 is linearly-independent and V2 is closed and v in V1 and u in V1 and v in V1 and v in V2 and v in V2 and v + u in V2 ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N ; rng ( ( PS1 qua Function ) " * SS2 ) = Seg ( card dS2 ) .= Seg ( card dS2 ) .= dom ( ( PS2 ) " * ( PS2 ) ) .= dom ( ( PS2 ) " * ( PS2 ) ) ; consider s2 being rational Real_Sequence such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b . n and ( for n holds s2 . n <= b . n ) & ( for n holds s2 . n <= b . n ) ; h2 " . n = h2 . n " & 0 < h2 . n & 0 < - ( 1 / ( ( 1 - ( ( 1 / ( n + 1 ) ) * ( 1 / ( n + 1 ) ) ) ) ) ; ( Partial_Sums ( ||. seq1 .|| ) ) . m = ||. ( seq1 . m ) .|| .= ||. ( seq . m ) .|| .= ||. ( seq . m ) .|| .= ( ||. seq .|| ) . m .= ( ||. seq .|| ) . m .= ( ||. seq .|| ) . m ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b ; - v = ( - 1_ G ) * v & - w = ( - 1_ G ) * v & ( - w ) * v = ( - 1_ G ) * v & ( - w ) * v = 0. G ; sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: D ) .= k . sup D .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) .= sup ( k .: D ) ; A |^ ( k , l ) ^^ ( A |^ ( n , .. A ) ) = ( A |^ ( k , .. A ) ) ^^ ( A |^ ( k , .. A ) ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( p `1 ) ^2 + sqrt ( 1 + ( p `2 / p `1 ) ^2 ) .= ( p `2 ) ^2 + ( p `2 / p `1 ) ^2 ; for a , b being non zero Nat st a , b are_relative_prime holds ( for n being Nat holds support ( a * b ) = support ( a ) + support ( b ) ) & ( a * b ) = support ( a ) + support ( b ) consider A5 being countable set such that r is Element of CQC-WFF ( Al ) & A5 is ( len A5 ) -element & ( not ( ex n being Nat st n in dom A5 & n < len A5 ) & not ( n < len A5 ) ) ; for X being non empty addLoopStr for M being Subset of X , x , y being Point of X st y in M holds x + y in M + M { [ x1 , x2 ] , [ y1 , y2 ] } c= [: { x1 } , { x2 } :] \/ [: { y1 } , { y2 } :] ; h . ( f . O ) = |[ A * ( f . O ) + B , C * ( f . O ) + D ]| ; ( Upper_Seq ( C , n ) ) * ( k , i ) in L~ Upper_Seq ( C , n ) /\ L~ Upper_Seq ( C , n ) & ( Cage ( C , n ) ) * ( k , i ) in L~ Upper_Seq ( C , n ) ; cluster m , n are_relative_prime means : Def1 : the carrier of it is prime & for p being prime Nat holds p divides m & p divides n & p divides n ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ a <= c holds a "\/" b <= c consider b being element such that b in dom ( H / ( x , y ) ) and z = ( H / ( x , y ) ) . b and ( H / ( x , y ) ) . b = ( H / ( x , y ) ) . b ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G & e Joins W . 3 , W . 5 , G & W . 7 in G ; ( ( h (#) o ) . ( 2 * n ) ) . x = ( h * ( f . n ) ) . ( 2 * n ) .= ( ( h * f ) . ( x + h . n ) ) . ( x + h . n ) ; j + 1 = ( len h ) + ( len h ) + 1 .= i + 1 - len h + 2 .= i + 1 - len h + 2 .= i + 1 - len h + 2 .= i + 1 - len h + 2 ; ( S *' ) . f = S *' . ( ( S *' ) . f ) .= S . ( ( S *' ) . f ) .= S . ( ( S *' ) . f ) .= ( S *' ) . f ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L2 * H ) and Sum ( L2 * H ) = Sum ( L2 * H ) ; attr R is + } means : Def1 : for p , q st p in R & q in R holds ex P st P is special & p in P & q in P & p in P ; dom Product ( X --> f ) = meet ( dom ( X --> f ) ) .= meet ( ( X --> f ) . ( dom f ) ) .= meet ( dom ( X --> f ) ) .= dom f .= dom f .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= dom ( X --> f ) .= upper_bound ( proj2 .: ( Upper_Arc C /\ Lower_Arc C ) /\ from ( ( TOP-REAL 2 ) | ( Upper_Arc C ) ) .: ( ( TOP-REAL 2 ) | ( ( TOP-REAL 2 ) | ( ( TOP-REAL 2 ) | ( ( TOP-REAL 2 ) | ( ( TOP-REAL 2 ) | ( K ) ) ) ) ) ) ) ) <= upper_bound ( proj2 .: ( ( the carrier of TOP-REAL 2 ) /\ ( the carrier of TOP-REAL 2 ) ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - pp2 .| < r / 2 i * f-28 - fand f = i * fN - ( i * fN ) .= i * ( fN - ( i * fN ) ) .= i * ( fN - ( i * fN ) ) ; consider f being Function such that dom f = 2 -tuples_on X ( ) & for Y being set st Y in 2 -tuples_on X ( ) holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and f = [ g1 , g2 ] and g = [ g1 , g2 ] ; func d |-count n -> Nat means : Def1 : d |^ n divides d & it |^ ( n + 1 ) divides d |^ n & it |^ ( n + 1 ) divides d |^ n ; f\in . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . ( 2 * x ) .= ( - P ) . ( x , t ) .= a ; t = h . D or t = h . B or t = h . C or t = h . E or t = h . F or t = h . J or t = M ; consider m1 being Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( ( seq . n ) + ( seq . n ) ) ; ( ( q `1 ) / |. q .| ) ^2 <= ( ( q `2 ) / |. q .| ) ^2 + ( ( q `2 / |. q .| ) ^2 ) ; h0 . ( i + 1 + 1 ) = h0 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) .= h0 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier of S } such that a = [ o , x2 ] and [ o , x2 ] in the carrier' of S ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & b >= a & b >= a & b >= a ||. h1 .|| . n = ||. ( h1 . n ) .|| .= |. ( h . n ) .| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| .= ||. ( h . n ) .|| ; ( ( - ( exp_R * f ) ) `| Z ) . x = f . x - ( exp_R * f ) . x .= ( ( - exp_R * f ) `| Z ) . x .= ( ( - exp_R * f ) `| Z ) . x .= ( ( - exp_R * f ) `| Z ) . x ; pred r = F .: ( p , q ) means : Def1 : len r = min ( len p , len q ) & for i st i in dom r holds r . i = F . ( p . i ) ; ( r8 / 2 ) ^2 + ( r8 / 2 ) ^2 <= ( r ^2 + ( r ^2 + 1 ) / 2 ) ^2 + ( r ^2 + 1 ) ^2 ; for i being Nat , M being Matrix of n , K st i in Seg n holds Det M = Sum ( ( Det M ) | ( i , j ) ) then a <> 0. R & a " * ( a * v ) = 1 * v & a " * v = 1 * v & a " * v = 1 * v ; p . ( j -' 1 ) * ( q *' r ) . ( i + 1 -' j ) = Sum ( p . ( j -' 1 ) * ( q *' r ) ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) " ) . $1 .= ( ( R /* ( h ^\ n ) ) " ) . $1 ; assume that the carrier of H2 = f .: ( the carrier of H1 ) and the carrier of H2 = f .: ( the carrier of H2 ) and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H2 = the carrier of H2 ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o .= ( the Sorts of Free ( S , X ) ) . o ; H1 = n + 1 & |. 2 to_power ( n + 1 ) + h .| = n + 1 & |. 2 to_power ( n + 1 ) + h .| = n + 1 & |. 2 to_power ( n + 1 ) + h .| = n + 1 ; ( O = 0 & ( O = 1 & O = 2 & O = 3 ) & ( O = 1 & O = 2 or O = 3 ) & ( O = 1 & O = 2 or O = 3 ) & ( O = 1 & O = 3 ) & ( O = 1 implies O = 3 ) ) ; F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } ; pred b <> 0 & d <> 0 & b <> d & ( a - b ) / ( d - c ) = ( - e ) / ( d - b ) ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ; for i being set st i in dom g ex u , v being Element of L st g /. i = u * a & v = a * v & u in B & v in C g `2 * P `2 * g `2 = g `2 * ( g `2 * P `2 ) * g `2 .= g `2 * ( g `2 * P `2 ) .= g `2 * ( g `2 * P `2 ) .= g `2 ; consider i , s1 such that f . i = s1 and if ( not i in dom s1 & s1 . ( i + 1 ) <> s1 . ( i + 1 ) ) & s1 . ( i + 1 ) <> s1 . ( i + 1 ) & s1 . ( i + 1 ) <> s1 . ( i + 1 ) ; h5 | ]. a , b .[ = ( g | ]. a , b .[ ) | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] are_connected & [ s2 , t2 ] , [ s3 , t2 ] are_connected & [ s3 , t2 ] , [ s3 , t2 ] are_connected & [ s3 , t2 ] `2 = [ s1 , t2 ] ; then H is negative & H is non empty and H is non empty and H is non empty and H is non empty and H is non -ggex F being Function of H , D st F is not negative -g+* F & F is not an -gof H ; attr f1 is total means : Def1 : f1 is total & f2 is total & ( for c st c in dom f1 holds f1 . c = f2 . c ) & ( f1 . c = f2 . c ) & ( f1 . c = f2 . c ) ; z1 in W2 \mathclose ( W2 ) or z1 = z2 & not ( ex z2 st z2 in W2 & not ( z1 in W2 & not z2 in W1 & not z2 in W2 & not z2 in W1 & not z2 in W2 ) ) ; p = 1 * p .= a " * a * p .= a " * ( b * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a " * ( b " * q ) .= a ; for seq1 be Real_Sequence for K be Real_Sequence for n be Nat st for n be Nat holds seq1 . n <= K holds upper_bound rng ( seq1 ^\ n ) <= upper_bound rng ( seq1 ^\ n ) C meets L~ go \/ L~ pion1 or C /\ L~ pion1 = { go /. ( len go + 1 ) } or C /\ L~ co = { pion1 /. ( len pion1 + 1 ) } \/ L~ co or C /\ L~ co = { pion1 /. ( len pion1 + 1 ) } \/ L~ co ; ||. f . ( g . ( k + 1 ) ) - g . ( g . k ) .|| <= ||. g . ( 1 - g . k ) .|| * ( K to_power k ) ; assume h = ( ( B .--> B ' ) +* ( C .--> D ' ) +* ( E .--> F ' ) +* ( F .--> J ) +* ( J .--> M ' ) +* ( M .--> N ) +* ( N .--> N ' ) +* ( F .--> N ) +* ( M .--> N ) +* ( N .--> M ) +* ( N .--> N ) +* ( N .--> M ) +* ( N .--> M ) +* ( N .--> N ) +* ( N .--> M ) +* ( N .--> N ) +* ( N .--> M ) +* ( N .--> M ) +* ( N .--> N ) |. ( ( lower_bound ( H . n ) || A ) . k - ( lower_bound ( H . n ) || A ) . k .| <= e * ( ( upper_bound ( H . n ) || A ) . k ) ; ( ( { x1 , x1 , x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 } ; assume that A = [. 0 , 2 * PI .] and integral ( ( exp_R * cos ) , A ) = - 1 & integral ( ( exp_R * cos ) , A ) = - 1 and integral ( ( exp_R * cos ) , A ) = - 1 ; p `2 is Permutation of dom f1 & p `2 " = ( Sgm Y ) " * p & p `2 " * Sgm X = ( Sgm Y ) " * p & p `2 = Sgm Y ; for x , y st x in A & y in A holds |. ( 1 / ( f . x ) - 1 ) / ( f . y ) .| <= 1 * |. f . x - f . y .| p2 `2 = |. q2 .| * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) .= ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ; for f be PartFunc of the carrier of CNS , REAL , x be Point of CNS , r be Real st dom f is compact & f is continuous & x in dom f holds f | X is continuous assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , CompF ( B , G ) ) ) . x = TRUE ; consider FM such that dom FM = n1 and for k be Nat st k in n1 holds Q [ k , FM . k ] and Q [ k , FM . k ] ; ex u , u1 st u <> u1 & u , u1 // v , v1 & u , u1 // v , u1 & u , v1 // v , v1 & u1 , v1 // v , u1 & v , u1 // v , v1 & v , u1 // v , u1 & v , v1 // v , v1 & v , u1 // v , u1 & v , u1 // v , v1 & v , v1 // v , u1 & v , u1 // v , v1 & v , u1 // v , v1 & v , u1 // v , u1 implies v , u1 // v , v1 & v , v1 // v for G being Group , A , B being non empty Subset of G , N being normal Subgroup of G holds ( N N ` A ) * ( N ` B ) = N ` A * N for s be Real st s in dom F holds F . s = integral ( R , ( R + e ) (#) integral ( f , ( f + g ) (#) e ) ) . s ) ; width AutMt ( f1 , b1 , b2 ) = len b2 .= len b1 .= len ( ( len b1 ) |-> ( len b2 ) ) .= len ( ( len b1 ) |-> ( len b1 ) ) .= len ( b1 * b1 ) .= len b1 ; f | ]. - PI / 2 , PI / 2 .[ = f & dom f = ]. - 1 , 1 .[ & f | ]. - 1 , 1 .[ = f | ]. - 1 , 1 .[ ; assume that X is closed w.r.t. as and a in X and a in X and y in a ^ f and x in { { [ n , x ] } \/ y : x in X } \/ a in X ; Z = dom ( ( ( #Z n ) * ( arctan + arccot ) ) `| Z ) /\ dom ( ( ( #Z n ) * ( arctan + arccot ) ) `| Z ) .= dom ( ( #Z n ) * ( ( #Z n ) * ( f1 + #Z n ) ) `| Z ) ; func [: V , V :] -> Subset of V means : Def1 : for k st 1 <= k & k <= len it holds it . k in [: V , V :] & it . k in [: V , V :] ; for L being non empty TopSpace , N being net of L , M being net of N , c being Point of L st c is net of M & c is continuous holds c is continuous & c is continuous for s being Element of NAT holds ( ( for v being Element of C\mathop ( C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , C\mathop ( v , Cq ) ) ) ) ) ) ) ) ) ) ) ) ) . s ) ) . s = ( ( ( v + C\mathop ( v , then z /. 1 = ( N-min L~ z ) .. z & ( N-min L~ z ) .. z < ( N-min L~ z ) .. z & ( N-min L~ z ) .. z < ( E-max L~ z ) .. z ; len ( p ^ <* ( 0 qua Real ) * ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) * ( 0 qua Real ) .= len p + 1 .= len p + 1 .= len p + 1 ; assume that Z c= dom ( - ( ln * f ) ) and for x st x in Z holds f . x = x & f . x > 0 & f . x > 0 ; for R being add-associative right_zeroed right_complementable left distributive non empty doubleLoopStr , I being Subset of R , J being Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f being Function of [: B1 , B2 :] , B1 , B2 being Element of [: B1 , B2 :] such that for x being Element of [: B1 , B2 :] holds f . x = F ( x ) and f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= Seg len x .= len ( x2 + y2 ) .= len ( x + y ) .= len ( x + y ) .= len ( x + y ) .= len ( x + y ) .= len ( x + y ) ; for S being Functor of C , B for c being object of C holds card S . id c = id ( ( Obj S ) . c ) & ( Obj S ) . c = id ( ( Obj S ) . c ) ex a st a = a2 & a in f6 /\ f5 & or F ( a , f ) = or F ( a , f ) = Im ( f , a ) & F ( a , f ) = F ( a , f ) ; a in Free ( H / ( x. 4 , x. k ) ) '&' ( H2 / ( x. k , x. k ) ) '&' ( H2 / ( x. k , x. k ) ) '&' ( H2 / ( x. k , x. k ) ) ; for C1 , C2 being v1 , f being Function of C1 , C2 , g being Function of C1 , C2 st ( for x being Element of C1 holds f . x = g . x ) holds f = g ( W-min L~ go \/ L~ co ) `1 = W-bound L~ go \/ ( W-bound L~ co ) .= W-bound L~ go \/ W-bound L~ co .= W-bound L~ go \/ W-bound L~ co .= W-bound L~ go \/ W-bound L~ co .= W-bound L~ go \/ W-bound L~ co .= W-bound L~ go \/ W-bound L~ co .= W-bound L~ go ; assume that u = <* x0 , y0 *> and f is_or f is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or f is_or g is_or g is_or f is_or f is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_or g is_ then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & ( t . {} ) `2 = ( x . {} ) `2 & ( x = {} ) `2 & ( x = {} implies x = {} ) & ( x = {} ) & x = {} ) ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b & b >= a ; func Class R -> Subset-Family of R means : Def1 : for A being Subset of R holds A in it iff ex a being Element of R st a in it & R . a = Class ( R , a ) ; defpred P [ Nat ] means ( ( \HM { the } \HM { vertices } \HM { of G , v } ) `1 ) `1 c= G * ( $1 + 1 ) `1 & ( the Source of G ) `2 c= G * ( $1 + 1 ) `2 ; assume that dim ( W1 ) = 0 and dim ( W1 ) = 0 and dim ( W2 ) = 0 and V = the carrier of ( W1 ) /\ ( W2 ) and f = f & f = f | ( the carrier of W1 ) & f = f | ( the carrier of W1 ) & f = f | ( the carrier of W1 ) ; mamain ( m . t ) `1 = ( m . t ) `1 .= ( [ m . t , the carrier of C ] `1 ) `1 .= ( [ m . t , the carrier of C ] `2 ) `1 .= m . t ; d11 = x11 ^ d22 .= f . ( ( y , d22 ) /. ( y , d22 ) ) .= f . ( ( y , d22 ) /. ( y , d22 ) ) .= ( f | d22 ) . ( y , d22 ) .= ( f | d22 ) . ( y , d22 ) .= ( f | d22 ) . ( y , d22 ) .= ( f | d22 ) . ( y , d22 ) ; consider g such that x = g and dom g = dom f0 and for x being element st x in dom f0 holds g . x in f0 and g . x in f0 and g . x in f0 and g . x in f0 ; x + 0. F_Complex / ( len x ) = x + len x |-> 0. F_Complex .= ( x + 0. F_Complex ) * x .= ( x + 0. F_Complex ) * x .= x + 0. F_Complex .= x ; ( k -' ( k + 1 ) ) + 1 in dom ( f | ( len ( k -' ( k + 1 ) ) ) | ( k + 1 ) ) & ( f | ( k + 1 ) ) . ( k + 1 ) = ( f | ( k + 1 ) ) . ( k + 1 ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 = { p1 , p2 } and P1 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } and P1 /\ P2 = { p1 , p2 } ; reconsider a1 = a , b1 = b , b1 = c , c1 = p `1 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c2 = p `2 ; reconsider Gtt1f = G1 . ( t , b ) * F1 . f , FFf = G1 . ( t , a ) * F2 . f , FFf = G1 . ( t , a ) * F2 . f , FFf . ( t , b ) * F2 . f ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( f , i + i1 -' 1 ) ; Integral ( M M , P . m ) | dom ( P . n ) <= Integral ( M , P . n ) | dom ( P . m ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ x , y ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( G * ( i , 1 ) `1 - G * ( i + 1 , 1 ) `1 ) , ( G * ( i + 1 , 1 ) `2 - G * ( i + 1 , 1 ) `2 ) ) ; for G being Group , H being Subgroup of G , a being Element of G , b being Element of H st a = b holds for i being Integer holds a |^ i = b |^ i & b |^ i = b |^ i consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { 7 where 7 is Point of TOP-REAL 2 : P [ 7 ] & P [ 7 ] } , K1 = { p : P [ 7 ] } as Subset of ( TOP-REAL 2 ) | K1 ; ( ( N-bound C ) - ( S-bound C ) ) / 2 <= ( ( S-bound C ) - ( S-bound C ) ) / 2 + ( ( S-bound C ) - ( S-bound C ) ) / 2 + ( ( S-bound C ) - ( S-bound C ) ) / 2 ; for x be Element of X , n be Nat st x in E holds |. Re ( F . n ) .| . x <= P . x & Im ( F . n ) <= P . x & Im ( F . n ) <= P . x len ( @ @ ( @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 4 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( consider r being Element of M such that M , v2 / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m ) / ( x. 4 , m func w1 \ w2 -> Element of Union ( G , R^ R^ R^ R^ R^ R^ R^ ( G , R^ R^ R^ R^ R^ w ) ) equals ( ( ( the Sorts of G ) * ( the Arity of G ) ) . ( ( the Arity of G ) . ( the Arity of G ) ) . ( ( the Arity of G ) . ( the Arity of G ) ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= s1 . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s2 . b2 .= s2 . b2 .= s2 . b2 .= s2 . b2 .= s2 . b2 .= s2 . b2 .= s2 . b2 .= s2 . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums |. seq .| ) . ( n + k ) - ( Partial_Sums |. seq .| ) . ( n + k ) + ( Partial_Sums |. seq .| ) . ( n + k ) set F = S -\mathop { 0 } ; ( Partial_Sums ( seq ) ) . K + Partial_Sums ( seq ) . ( K + 1 ) >= ( Partial_Sums ( seq ) ) . K + ( Partial_Sums ( seq ) ) . ( K + 1 ) + ( Partial_Sums ( seq ) ) . K ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x- x ) + R . ( x- x ) ; func the closed of \HM { a , b , c , d : a = the Element of \HM { \HM { a , b , c : b in P & c in P } , Q = the closed Subset of \HM { a , b , c , d } } ; a * b ^2 + ( a * c ) ^2 + ( b * a ^2 + c * a ^2 ) + ( b * c ) ^2 + ( b * a ^2 + c * a ^2 + b * a ^2 + c * a ^2 ) >= 6 * a * b * c ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x2 , m2 ) / ( x2 , m1 ) = v / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m2 ) ; Rotate ( Q ^ <* x *> , M ) = ( ( \mathop { Q } ) +* ( { x } --> FALSE ) ) +* ( ( ( { x } --> FALSE ) +* ( { x } --> FALSE ) ) +* ( ( { x } --> FALSE ) +* ( { x } --> FALSE ) ) .= ( ( { x } --> FALSE ) +* ( { x } --> FALSE ) ) +* ( { x } --> FALSE ) ; Partial_Sums ( F ) . n = r |^ ( n1 + 1 ) * Partial_Sums ( C ) . n1 .= C . ( n1 + 1 ) .= C . ( n1 + 1 ) .= C . ( n1 + 1 ) .= C . ( n1 + 1 ) .= C . ( n1 + 1 ) ; ( GoB f ) * ( len GoB f , 2 ) `1 = ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums ( s ) ) . $1 = ( a * ( $1 + 1 ) ) * ( $1 + 1 ) + b * ( $1 + 1 ) * ( $1 + 1 ) + b * ( $1 + 1 ) ; the_arity_of g = ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( ( the Arity of S ) . g ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g ; ( X ~ ) c= X ~ & card ( ( X ~ ) \/ Y ) = card ( X ~ ) & card ( ( X ~ ) \/ Y ) = card ( X ~ ) ; for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . n & b = N . ( n + 1 ) \ G . s holds b = N . ( n + 1 ) \ G . s E , f |= All ( x , ( ( x. 2 ) . ( x. 0 ) ) ) '&' ( ( x. 2 ) . ( x. 1 ) ) '&' ( ( x. 2 ) . ( x. 1 ) ) '&' ( ( x. 2 ) . ( x. 1 ) ) '&' ( ( x. 2 ) . ( x. 1 ) ) '&' ( ( x. 2 ) . ( x. 1 ) ) '&' ( x. 2 ) ) ; ex R2 being 1-sorted st R2 = ( p | ( n + ( n + 1 ) ) ) . i & ( the carrier of p ) = the carrier of R2 & ( the carrier of p ) c= the carrier of R2 & ( the carrier of p ) c= the carrier of R2 ) ; [. a , b + 1 / ( k + 1 ) .[ is Element of the \in of the set of set & ( the partial of f ) . ( k + 1 ) is Element of the carrier of a & ( the partial of f ) . ( k + 1 ) is Element of the carrier of a ) ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 , Comput ( P , s , 2 ) ) .= Exec ( a3 , Comput ( P , s , 2 ) ) .= Exec ( a3 , s ) ; card ( h1 ) . k = power ( F_Complex ) . ( ( - 1. F_Complex ) * k , k ) .= ( ( - 1_ F_Complex ) * ( ( - 1_ F_Complex ) * k ) ) * u .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) * u .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) * ( - 1_ F_Complex ) .= ( ( - 1_ F_Complex ) * ( - 1_ F_Complex ) ) * u ; ( f / g ) /. c = f /. c * ( g /. c ) " .= f /. c * ( ( 1 / g ) /. c ) .= ( f (#) ( g (#) ( g / ( g / ( g / ( g - f ) ) ) ) ) ) /. c .= ( f (#) ( g / ( g / ( g - f ) ) ) ) /. c ; len Cs - len ( ( C | ( len ( C | ( len C -' 1 ) ) ) ) = len ( C | ( len C -' 1 ) ) .= len ( ( C | ( len C -' 1 ) ) ) .= len ( ( C | ( len C -' 1 ) ) ) .= len ( ( C | ( len C -' 1 ) ) ) .= len ( ( C | ( len C -' 1 ) ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom f /\ X .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n ) + ( 5 * Fib ( n ) * Fib ( n ) + 5 * Fib ( n ) * Fib ( n ) ) ; consider f being Function of INT , INT such that f = f `1 and f is onto and ( n + 1 ) < n & f " { f . n } = { n + 1 } and f " { f . n } = { n } ; consider vs being Function of S , BOOLEAN such that c9 = chi ( A \/ B , S ) and E7 . ( A \/ B ) = Prob ( Q , S \/ B ) and E7 . ( A \/ B ) = Prob ( Q , S \/ B ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , L ( ) ) and Q [ y ] ; assume that A c= Z and f = ( f `| Z ) (#) ( ( #Z 2 ) * ( sin + cos ) ) + ( ( id Z ) (#) ( cos + cos ) ) (#) ( ( id Z ) + sin + cos ) ) and Z = dom f and f = ( ( id Z ) (#) ( cos + cos ) ) (#) ( ( id Z ) (#) ( cos + cos ) ) ; ( f /. i ) `2 = ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 ) `2 .= ( GoB f ) * ( 1 , j2 + 1 ) `2 .= ( GoB f ) * ( 1 , j2 + 1 ) `2 ; dom Shift ( Seq q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & j in dom Seq q2 } & len Seq q1 = len Seq q1 + len Seq q2 } ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 & G2 <= G1 & f is Morphism of G1 , G2 and g is Morphism of G2 , G3 and f is Morphism of G1 , G2 and g is Morphism of G2 , G3 and g is Morphism of G2 , G3 and f is Morphism of G1 , G2 ; func - f -> PartFunc of C , V means : Def1 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c & for c st c in dom it holds it /. c = - f /. c + f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a and for v holds union rng L c= a & L . a c= union ( union ( L | [. v , v .] ) ) iff L . a in rng L & L . a c= H ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - n ) * ( i - 1 ) and for n1 being Nat st n1 <> 0 & n1 <= n & n <= len p holds sqrt p = ( i - n ) * ( i - 1 ) and ( i <= n implies p . n1 = 0 ) ; assume that not 0 in Z and Z c= dom ( ( arccot * ( f1 + f2 ) ) `| Z ) and for x st x in Z holds ( ( 1 / 2 ) (#) ( ( arccot * ( f1 + f2 ) ) `| Z ) . x = - 1 / ( 1 + x ^2 ) ) and for x st x in Z holds 1 / ( 1 + x ^2 ) = 1 / ( 1 + x ^2 ) ; cell ( G1 , i1 -' 1 , ( 2 |^ ( m -' 1 ) ) * ( ( Y -' 1 ) + ( 2 |^ ( m -' 1 ) ) * ( ( Y -' 1 ) + ( 2 |^ ( m -' 1 ) ) * ( ( Y -' 1 ) + ( Y -' 1 ) ) * ( ( Y -' 1 ) + ( Y -' 1 ) + ( Y -' 1 ) ) * ( ( Y -' 1 ) + ( Y -' 1 ) ) ) ) c= BDD L~ f1 ; ex Q1 being open Subset of X st s = Q1 & ex F8 being Subset-Family of Y st F8 c= F & F8 is finite & ( for x being Point of Y , Q being Subset of X st Q in F8 & Q c= Q holds Q = Q ) & ( for x being Point of Y holds Q [ x , Q . x ] ) & ( for x being Point of Y holds Q [ x , Q . x ] ) ; gcd ( ( 1. ( A , B ) ) , ( 1. ( A , B ) ) , ( 1. ( A , B ) ) , ( 1. ( A , B ) ) ) = 1 / ( ( 1. ( A , B ) ) * ( 1. ( A , B ) ) ) .= 1 / ( ( 1. ( A , B ) ) * ( 1. ( A , B ) ) ) ; R8 = ( ( ( the InternalRel of s2 ) . ( 1 + 1 ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= ( ( ( the Let of s2 ) . ( m2 + 1 ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= [ 3 , ( the InternalRel of s2 ) . ( m2 + 1 ) ] .= [ 3 , ( the InternalRel of s2 ) . ( m2 + 1 ) ] ; CurInstr ( P-6 , Comput ( P-6 , sseq , m3 + 1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= CurInstr ( P3 , s3 ) .= CurInstr ( P3 , s3 ) .= CurInstr ( P3 , s3 ) .= CurInstr ( P3 , s3 ) .= CurInstr ( P3 , s3 ) .= CurInstr ( P3 , s3 ) .= halt SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) ) \/ { p2 } ) \/ { p1 } ; func not bound in the Sorts of Al means : Def1 : a in it iff ex i st i in dom f & ex p st p in dom f & p = f . i & a in the Sorts of A & f . p = ( f . i ) . p & a in the Sorts of A & f . p = ( f . i ) . p ; for a , b being Element of F_Complex st |. a .| > |. b .| & for f being Polynomial of F_Complex st f >= 1 holds f is \cap |. b .| is non empty & f is is \cap & f is *> implies f * ( - b * card f ) is \cup |. b * card f .| defpred P [ Nat ] means 1 <= $1 & $1 <= len g & for i , j st [ i , j ] in Indices G & G * ( i , j ) = g . ( $1 + 1 ) & G * ( i , j ) = g . ( j + 1 ) & G * ( i , j ) = g . ( $1 + 1 ) ; assume that C1 , C2 are_{} and for f , g being State of C1 , s1 , s2 being State of C2 , f being Function of C1 , C2 st f = s2 & g = s1 holds s1 * f is stable & s2 * f is stable & s1 * g is stable ; ( ||. f .|| | X ) . c = ||. f .|| . c .= ||. f /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f /. c .|| .= ||. f |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 & 0 + ( q `2 ) ^2 < ( q `2 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of T7 st F is open & not {} in F & for A , B being Subset of T7 st A in F & B in F & A <> B & A <> B holds card F = card A & card F = card B & card F = card B & card A = card B assume that len F >= 1 and len F = k + 1 and len F = len G and for k st k in dom F holds H . k = g . k and for k st k in dom F & k <> k & k <> n holds H . k = g . ( F . k , G . k ) ; i |^ ( \mathop { \rm mod n - i |^ s ) = i |^ ( s + k ) - i |^ s .= i |^ s * i |^ k - i |^ s * 1 .= i |^ ( s + k ) - i |^ s * 1 .= i |^ ( s + k ) - i |^ s * 1 .= i |^ ( s + k - i ) ; consider q being oriented oriented Chain of G such that r = q and q <> {} and F8 . ( q . 1 ) = v1 and F7 . ( q . len q ) = v2 and rng q c= rng p-2 and q . ( len q ) = v2 and rng q c= rng p and p . ( len q ) = v1 . ( len p ) ; defpred P [ Element of NAT ] means $1 <= len ( I . ( Z , I ) ) & ( g . ( Z , I ) ) . $1 = ( ( g . ( Z , I ) ) . ( len ( g . ( Z , I ) ) ) ) . ( len ( g . ( Z , I ) ) + $1 ) ) ; for A , B being square Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B & width ( A * B ) = width B consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a in I & b in J & s . i = b * a ; func |( x , y )| -> Element of COMPLEX equals |( ( Re x ) , ( Re y ) )| - ( ( Re x ) ^2 + ( Re y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 ) , ( Im x ) ^2 + ( Im y ) ^2 + ( ( Im y ) ^2 + ( Im y ) ^2 + ( Im y ) ^2 ) ; consider f0 be FinSequence of FH such that f0 is continuous & rng f0 c= A & g2 . 1 = x1 & g2 . len g2 = x2 & g2 . len g2 = y1 & rng g2 = A & g2 . len g2 = y1 & rng g2 = B & g2 . len g2 = y2 & rng g2 = A & g2 . len g2 = y1 ; then n1 >= len p1 & n2 >= len p1 & n1 >= len p2 & n2 >= len p1 & n1 >= len p1 & n2 >= len p1 & n1 >= len p2 & n2 >= len p1 & n2 >= len p1 & n1 >= len p2 & n2 >= len p1 & n2 >= len p1 & n2 >= len p1 & n2 >= len p1 & n2 >= len p1 & n2 >= len p1 & n2 >= len p1 & n2 >= len p1 + n2 + n2 + n2 + n3 + n3 ; ( q `1 ) * a <= ( q `1 ) * a & ( q `2 ) * a <= ( q `2 ) * a or q `1 >= ( q `2 ) * a & ( q `2 ) * a <= ( q `2 ) * a or q `1 >= ( q `2 ) * a ; F6 . ( len p6 ) = F6 . ( p . ( len p ) ) .= F6 . ( len p ) .= v6 . ( len p ) .= v6 . ( len p ) .= v6 . ( len p ) .= v6 . ( len p ) .= ( v . ( len p ) ) .= v . ( len p ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( <* a := intloc 0 *> ) ^ ( ( intloc 0 ) --> 1 ) ^ ( ( intloc 0 ) --> 1 ) ^ ( ( intloc 0 ) --> 1 ) ^ ( ( intloc 0 ) --> 1 ) ) ^ ( ( intloc 0 ) --> 1 ) ; consider B8 being Subset of B1 , y8 being Function of B1 , A1 such that B8 is finite and D8 = the carrier of A1 and the carrier of 8 = the carrier of B1 and the carrier of 8 = the carrier of A1 and the carrier of 8 = the carrier of B1 and the carrier of 8 = the carrier of A1 and the carrier of 8 = the carrier of A2 ; v2 . b2 = ( curry ( F2 , g ) * ( curry Map ( B , g ) ) ) . b2 .= ( ( curry F ) . ( ( curry Map ( B , g ) ) . b2 ) ) . b2 .= ( ( curry F ) . ( ( curry Map ( B , g ) ) . b2 ) . b2 .= ( ( curry F ) . ( ( curry Map ( B , g ) ) . b2 ) . b2 .= ( ( curry F ) . b1 ) . b2 .= ( ( ( curry F ) . b2 ) . b2 ) . b2 .= ( ( ( curry F ) . b2 ) . b2 .= ( ( ( F . b2 ) . b2 ) . b2 .= ( ( curry F ) . b2 ) . b2 .= ( ( ( ( ( ( curry F ) . b2 ) . b2 ) . b2 .= ( ( ( curry F ) . b2 ) . b2 dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < d-32 holds |. h .| " * ||. ( R2 + R1 ) /. h .|| < e / ( ||. ( R2 + R1 ) /. h .|| + e / ( ||. ( R2 + R1 ) /. h .|| ) ) ) ; LSeg ( G * ( len G , 1 ) + |[ 1 , - 1 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 1 ) \/ { G * ( len G , 1 ) + |[ 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 + 1 ) ) .= LSeg ( h , i ) .= LSeg ( h , i ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p2 , p1 , P , p2 & LE p2 , p1 , P , p1 , p2 } , P , p1 , p2 & LE p1 , p2 , P , p2 & LE p2 , p1 , p2 , P , p1 , p2 , P , p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p2 , P , p1 , p2 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE ( ( - x ) .|. y ) = ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( p `2 ) ^2 + ( p `2 / p `2 ) ^2 .= ( p `2 ) ^2 + ( p `2 / p `2 ) ^2 .= ( p `2 ) ^2 + ( p `2 / p `1 ) ^2 ; ( ( U . W ) * ( W7 * ( W7 ) ) ) * ( W . W ) = ( ( U . W ) * ( W7 ) ) * ( W . W ) .= ( ( U . W ) * ( W . W ) ) * ( W . W ) .= ( ( U . W ) * ( W . W ) ) * ( W . W ) .= ( ( U . W ) * ( W . W ) ) * ( W . W ) .= ( ( U . W ) ; func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def1 : dom it = dom ( - h ) & for x st x in dom it holds it . x = - h . x & for x st x in dom it holds it . x = ( - h ) . x + ( - h ) . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that not y in Free H and x in Free H and not x in Free H and not y in Free H and not x in Free H and not x in Free H and not x in Free H and not x in Free H and x in Free H and not x in Free H and x = H . ( x , y ) ; defpred P11 [ Element of NAT , Element of NAT , Element of NAT , Element of NAT , Element of NAT , Element of NAT , Element of NAT , Element of NAT , Element of NAT , Element of REAL n , Element of REAL n st ( $1 = p |^ $2 & $2 = $1 |^ $2 & $2 = p |^ $2 & $2 = $1 |^ $2 ) & $2 = p |^ $2 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 = p |^ $1 & $2 func \sigma ( C ) -> non empty Subset-Family of X means : Def1 : for A being Subset of X holds A in it iff for W being Subset of X holds W in it iff for A being Subset of X holds A in it iff for W being Subset of X st W in it & W in it & A c= W holds C . W = C . W \/ C . A ; [#] ( ( dist ( ( dist ( P ) ) ) .: Q ) ) = ( dist ( ( dist ( P ) ) .: Q ) ) .: Q & lower_bound [#] ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) ) ; rng ( F | ( [ S ] |^ 2 ) ) = {} or rng ( F | ( [ S ] |^ 2 ) ) = { 1 } or rng ( F | ( [ S ] |^ 2 ) ) = { 2 } or rng ( F | ( [ S ] |^ 2 ) ) = { 1 } or rng ( F | ( [ S ] |^ 2 ) ) = { 2 } ; ( f " ( rng f ) ) . i = f . i " . ( ( rng f ) . i ) .= ( f . i ) " . ( ( f . i ) " . ( f . i ) ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . i .= ( f . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P1 /\ P2 = { p1 , p2 } and P1 = { p1 , p2 } and P1 = { p1 , p2 } and P2 = { p1 , p2 } and P1 = { p1 , p2 } and P2 = { p1 , p2 } ; f . p2 = |[ ( p2 `1 ) ^2 + ( p2 `2 ) ^2 - ( p2 `2 ) ^2 + ( p2 `2 ) ^2 .= ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 - ( p2 `2 ) ^2 + ( p2 `2 ) ^2 ; ( ( ( AffineMap ( a , X ) ) " ) . x ) = ( ( ( AffineMap ( a , X ) ) qua Function ) . x ) " .= ( ( ( the carrier of X ) --> a ) . x ) " .= ( ( the carrier of X ) --> a ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( the carrier of X ) --> a ) . x .= ( ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x ) + ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x ) + ( ( x ) ) . x .= ( ( ( the carrier of X ) . x ) + ( ( the carrier of X ) . x .= ( ( the carrier of X ) . x .= ( ( the carrier of X ) . for T being non empty normal TopSpace , A , B being closed Subset of T st A <> {} & A misses B & B misses B for p being Point of T , r being Real st p in A & r in B & p in A & p in B holds ( <* in A , B *> ) . p = r * ( ( in > 0 ) * ( for p being Point of T holds p in A ) ) for i , j st i + 1 in dom F for G1 , G2 being strict normal Subgroup of G st G1 = F . i & G2 = F . i & G2 = F . ( i + 1 ) holds G1 * F is strict Subgroup of G1 & G1 * G = the Subgroup of G2 for x st x in Z holds ( ( ( #Z n ) * ( arccot - arccot ) ) `| Z ) . x = ( ( #Z n ) . ( x + 2 ) - 1 / ( 1 + x ^2 ) ) / ( 1 + x ^2 ) synonym f is right continuous means : Def1 : x0 in dom ( f /* a ) & ( for a st rng a c= dom f & a in dom f holds f /. a is convergent & ( for b st b in dom f holds f /. b is convergent ) & ( ex a st a in dom f & b in dom f holds f /. b = ( f /* a ) /. x0 ) ; then X1 , X2 are_separated & ( X1 union X2 ) misses X2 & ( ex Y1 , Y2 being non empty SubSpace of X st Y1 misses Y2 & Y1 is open & Y2 is open & Y1 is open & Y2 is open & Y2 is open & Y1 is open & Y2 is open & Y2 is open & Y1 is open & Y2 is open & Y2 is open & Y1 is open & Y2 is open ) ; ex N being Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds SVF1 ( 1 , f , u ) . x - SVF1 ( 1 , f , u ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) + R . ( x - x0 ) ( p2 `1 ) * sqrt ( 1 + ( p3 `2 / p2 `1 ) ^2 ) >= ( ( 1 + ( p3 `2 / p3 `1 ) ^2 ) * sqrt ( 1 + ( p3 `2 / p3 `1 ) ^2 ) ) * sqrt ( 1 + ( p3 `2 / p3 `1 ) ^2 ) ; ( ( 1 / t ) (#) ||. ( f1 (#) ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) , ( g `| Z ) . ( g `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) . ( x `| Z ) ) = ( ( g `| Z ) . ( x `| Z assume that for x holds f . x = ( ( sin (#) cot ) `| Z ) . x and x + h / 2 in dom ( ( sin (#) cot ) `| Z ) and x + h / 2 in dom ( ( sin (#) cot ) `| Z ) and ( ( sin (#) cot ) `| Z ) . x = ( sin (#) cot ) `| Z ) . x ; consider X-23 being Subset of Y , Y1 being Subset of X such that t = [: X1 , Y1 :] and Y1 is open and ex Y1 being Subset of X st Y1 = [: Y1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open ; card ( S . n ) = card { [: d , Y :] + ( a * b ) where d is Element of GF ( p ) : [ d , Y ] in R } .= { d , b } \/ { b , c } .= { d , b } \/ { c , d } .= { d , b } \/ { c , d } .= { d , b } \/ { c , d } ; ( W-bound D - W-bound D ) * ( ( i1 - W-bound D ) / 2 ) * ( ( i - W-bound D ) / 2 ) = ( W-bound D - W-bound D ) * ( ( i - W-bound D ) / 2 ) .= ( W-bound D - W-bound D ) * ( ( i - W-bound D ) / 2 ) * ( ( i - W-bound D ) / 2 ) .= ( ( W-bound D - W-bound D ) / 2 ) * ( ( i - W-bound D ) / 2 ) ;