thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is rng ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ) ; assume x in I ; q is as as Nat ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is rng ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is / one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Element of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , \cdot ; Q halts_on s ; x in that for of S holds x in \in that x in \in that x in \in S ; M < m + 1 ; T2 is open ; z in b \rm \hbox { - } ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o : o : a ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be complex normed space , x be Point of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a\lbrace a - b .| <= az ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial & s is non empty ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , x be Element of T ; the object of F is one-to-one ; sgn x = 1 ; k in dom a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; St is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U1 , U2 , E ; pp = c & p = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= jj & jj <= width G ; set A = L /\ L ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has no \cdot F ; assume n0 <= m ; T is increasing implies T is increasing e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected in union M ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; Element of Y ; let f be ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v + \HM { the } \HM { carrier } ; - y in I ; let A be non empty set , B be set ; P0 = 1 ; assume r in F . k ; assume f is simple function of S ; let A be l -countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IX , I , J ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , TOP-REAL 2 ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is \times hh/. ; assume f is additive marr-n\rm L~ f ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len f ; f | A is non empty continuous ; f . x - a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CH in X ; q2 c= C1 & not q2 in C ; a2 < c2 & a2 < b2 ; s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be { w } ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w be Element of V ; R8 ; let a , b be Real , x be Point of TOP-REAL 2 ; let a be Object of C ; let x be Vertex of G ; let o be object of C , a be object of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , n be Nat ; s4 . n = N ; set y = ( x `1 ) * ( y `2 ) ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; not G-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A0 is dense and A is open ; |. f . x .| <= r ; Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xx c= Z1 & xx c= Z1 ; dom f = C1 & rng f = C2 ; assume [ a , y ] in X ; Re ( seq ^\ k ) is convergent ; assume that a1 = b1 and a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , I ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom ( g2 | k ) ; n in dom g1 & m in dom g2 ; k + 1 in dom f ; the still of not s in { s } ; assume that x1 <> x2 and x2 <> x3 ; v2 in [: the carrier of V , the carrier of V :] ; not [ b `1 , b `2 ] in T ; i-35 + 1 = i ; T c= T & T c= T ; ( l `1 ) ^2 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AA is_integrable_on M & AA is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; Product seq is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume c2 = b2 & c2 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vq is convergent and lim vq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; ( z `2 ) ^2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S & ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one full full full full ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be halting Instruction of S , S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = K1 & p2 = K1 & p3 = D2 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMMInt A is closed assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; R ( ) is stable Subset of R ; set cR = Vertices R , R = the carrier of R ; p0 c= P3 & p1 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; \HM { a } = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_equipotent ; assume a in A ( ) ; k in dom ( q | k ) ; p is 1 -element FinSequence of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= len G ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for } commutative commutative Ring ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gik } ; W-min C in C & W-min C in C ; assume x in { Gik } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & rng I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & rng S = dom G ; let s be Element of NAT , k be Nat ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds S is holds S is non void ; let f be ManySortedSet of I ; let z be Element of COMPLEX , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= [: V , V :] ; assume I is_closed_on s , P & I is_halting_on s , P ; U2 = U2 & U2 = U2 implies U2 = U2 M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ff <= ff & ff <= ff & ff <= ff ; let l be Element of L ; x in dom ( F . -17 ) ; let i be Element of NAT , k be Nat ; r8 is COMPLEX -valued Function of COMPLEX , COMPLEX ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = Seg ( k + 1 ) ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict sublattice for Sublattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite over F , v be Vector of V ; A * B on B , A ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in II ; Q * ( Q * ( 1 , 3 ) ) = 0 ; set j = x0 gcd m , m = x0 gcd m ; assume a in { x , y , c } ; j2 - jj > 0 - 1 ; I = I I I I as Element of 1 -tuples_on U ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / 2 ; s1 , s2 are_) & s1 , s2 are_) implies s1 , s2 are_carrier of R j1 -' 1 = 0 & j2 -' 1 = j2 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 , h = g | D-21 ; assume that X is lower and 0 <= r ; p1 `1 = 1 & p2 `2 = 1 ; a < ( p3 `1 ) * ( p3 `2 ) ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len f ; 1 <= i1 -' 1 & i1 + 1 <= len f ; i + i2 <= len h & i + 1 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 2 ; set H = h . gg , I = h . gg , J = h . M ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 ; assume x in ( X /\ 4 ) /\ X ; ||. h .|| < d1 & ||. h .|| < s ; not x in the carrier of f & not x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = k\leq - l ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \langle \rm / 2 *> ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive transitive RelStr , x be Element of L ; S-20 is x -basis i ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z ) ; P [ len F ( ) ] ; assume InsCode i = 8 & InsCode i = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster non empty ( i -tuples_on U ) -valued for Element of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T2 is SubSpace of T2 & T1 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of set with zero ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) * ( p `2 ) ; not r in ]. p , q .] ; let R be FinSequence of REAL , x be Element of REAL ; not S7 does not destroy b1 & not S7 does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT , k be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= ( 0 + 1 ) ; H + G = F- ( GG ) ; Cx1 . x = x2 & Cy1 . x = y2 ; f1 = f .= f2 .= ( f | X ) . x .= f . x ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a1 } ; a1 , b1 _|_ b , a ; d3 , o _|_ o , a3 & d1 , o _|_ o , a3 ; II is reflexive & II is transitive ; IO is antisymmetric & IO is antisymmetric implies [: the carrier of O , the carrier of O :] is antisymmetric sup rng H1 = e & sup rng H2 = e ; x = ( a * 8 ) * ( a * 8 ) ; |. p1 .| ^2 >= 1 ; assume that j2 -' 1 < j2 and j2 + 1 < width G ; rng s c= dom f1 & rng s c= dom f2 ; assume that support a misses support b and b in support b ; let L be associative commutative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed I1 = I1 & Directed I2 = I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined NAT -defined NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* \hbox { $ 1 } } -> complete for non trivial TopSpace ; ( 1 - a ) " = a " ; ( q . {} ) `1 = o ; ( n - 1 ) > 0 ; assume ( 1 / 2 ) * t `1 <= 1 ; card B = k + - 1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in dom f ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & the vertices of G = { v } ; let G be let G be let let e , v6 be set ; c . ii in rng c & c . ii in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 , z2 = - z1 ; assume w is llas of S , G ; set f = p |-count ( t - p ) , g = p |-count ( t - p ) , h = p |-count ( t - p ) , n = p |-count ( t - p ) , m let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , I be Element of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM & q is FinSequence of the carrier of SCM ; stop I ( ) c= P-12 & stop I ( ) c= P-12 ; set ci = fJ /. i , fj = fj /. j ; w ^ t ^ s ^ t ^ s ^ t ^ t ^ s ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ t ^ s ^ t ^ t ^ s ^ t ^ W1 /\ W = W1 /\ W ` .= W1 /\ W2 ; f . j is Element of J . j ; let x , y be \rm \cdot of T2 , a , b be element ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is positive ; set g2 = lim ( seq ^\ k ) , g1 = ( lim seq ) ^\ k ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . F-21 = 0 ; / ( X \/ R1 ) = / ( X \/ R1 ) ; ( sin * cos ) . x <> 0 & ( sin * cos ) . x <> 0 ; ( ( #Z n ) * ( exp_R + f ) ) . x > 0 ; o1 in ( X /\ O2 ) /\ ( X /\ O2 ) ; let e , v6 be set ; r3 > ( 1 / 2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed Subset of R , left ideal non empty Subset of R ; h . p1 = f2 . O & h . O = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M & width ( q | i ) = width M ; the carrier of CL c= A & the carrier of CK c= A ; dom f c= union rng ( F | X ) ; k + 1 in dom ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( \HM { the } \HM { carrier of R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = b mod n ; h . x2 = g . x1 & h . x2 = h . x2 ; F c= 2 -tuples_on the carrier of X & F is one-to-one ; reconsider w = |. s1 .| as Real_Sequence , r be Real ; ( 1 / m ) * m + r < p ; dom f = dom ( I --> ( 0 , 1 ) ) .= { 0 } ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) .= K1 ; cluster - ( x - y ) -> ExtReal ; then { d1 } c= A & A is closed ; cluster ( TOP-REAL n ) | A -> finite-ind ; let w1 be Element of M , w2 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 & u in W3 ; reconsider y = y as Element of L2 & x = y ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , x be Point of X ; dist ( x `1 , y ) < r / 2 ; reconsider mm = m , mn = n as Element of NAT ; x- x0 < r1 - x0 & x0 < r2 - x0 ; reconsider P = P `1 as strict Subgroup of N ; set g1 = p * idseq ( q `2 ) , g2 = p * idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . I8 in { x } & D2 . I8 in { x } ; cluster subcondensed condensed -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( cos , 1 ) ; let n be Element of NAT , x be Point of TOP-REAL n ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X `2 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , I be Program of SCMPDS ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , z be element ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt ( c / sqrt ( 1 + ( x ^2 ) ) ^2 ) ) ; reconsider t7 = T-1 , T8 = T" as Point of TOP-REAL 2 ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q . ( y1 + y2 ) ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 & len W1 = len W2 + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume that p2 = E-max ( K ) and p1 <> 0. K ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster seq + seq + seq1 -> summable for sequence of X ; assume j in dom ( M1 /. i ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* xxy *> ^ <* y *> ^ <* y *> ^ x iff y in dom x ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of x & y is Element of L ; k = 0 & n <> k or k > n & k > n ; then X is discrete for A is closed Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be 9 9 9 ; then z is_>=_than waybelow x & z >= compactbelow x ; M \lbrack f , g .] = f & M \lbrack g , g .] = g ; ( ( ( \mathop { 1 } ) /. 1 ) `1 ) = TRUE ; dom g = dom f -tuples_on X & rng f = dom f ; mode : of G is ^ trivial Walk of G ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y as Element of H ; let f be Element of ( dom Subformulae p ) -tuples_on the carrier of K ; F1 . ( a1 , - a1 ) = G1 . ( a1 , - a1 ) ; redefine func being set equals LSeg ( a , b , r ) ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 + f2 ) ) ; curry curry ' ( F-19 , k ) is additive additive K ; set k2 = card dom B , k1 = card dom B , k2 = card dom C ; set G = DTConMSA X , A = the Sorts of A ; reconsider a = [ x , s ] as 0. of G ; let a , b be Element of [: M , M :] ; reconsider s1 = s , s2 = t as Element of ( the carrier of S ) ; rng p c= the carrier of L & p . ( len p ) = 0. L ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W I-21 in dom stop I & I-21 in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | D ; reconsider i0 = len p1 , i1 = len p2 as Integer ; dom f = the carrier of S & rng f = the carrier of T ; rng h c= union ( the carrier of J . i ) ; cluster All ( x , H ) -> non empty for element ; d * N1 ^2 > N1 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " | D1 , h = f " | D2 ; dom ( p | mmm1 ) = mm1 & dom ( p | mm1 ) = mm1 ; 3 + - 2 <= k + - 2 & k + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot * arccot ) . x & cot . x > 0 ; x in rng ( f /^ ( len p -' 1 ) ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 & p ( ) in the carrier of S2 ; rng f " = dom f & rng f = dom f & f " = rng f ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G - 1 & width G -' 1 <= width G ; assume that v in rng ( S | E1 ) and v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 < r ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of ( TOP-REAL 2 ) | K1 , q be Point of ( TOP-REAL 2 ) | D ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_the carrier of C-20 & <* S7 *> is_\! \! \smallfrown C-20 ; i <= len G -' 1 & j + 1 <= width G ; let p be Point of ( TOP-REAL 2 ) | K1 , q be Point of ( TOP-REAL 2 ) | D ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q = Sthesis " ( Q ) .= Q " ( Q /\ R " ( Q /\ R ) ) ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) (#) ( 1 / 2 ) is summable ; - p + I c= - p + A & - p + I c= - p + I ; n < LifeSpan ( P1 , s1 ) + 1 & I <= LifeSpan ( P2 , s2 ) ; CurInstr ( p1 , s1 ) = i .= ( the InstructionsF of SCM+FSA ) . IC SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of CompactSublatt L , x be Element of L ; let f be Function of S , T ; reconsider g = g opp as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 4 ; let C1 , C2 be subcategory of C , a , b be Element of C1 ; reconsider V1 = V , V2 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " is Subgroup of H & H |^ a = H |^ a ; let A1 be Element of O , A2 be Element of E ; p2 , r3 , q3 is_collinear & p1 , r2 , p3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 . n < M . E8 & M . E8 < M . E8 ; op ( c ) / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( c / ( d / ( d + consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Line *> -> Line \langle *> , the carrier of L ; set i1 = the Nat , i2 = the Element of NAT , i1 = the Element of NAT ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def1 : cos X c= cos Y ; let y be upper Subset of Y , x be Point of X ; cluster the InternalRel of x `1 -> non \rm \hbox { - } NAT for non empty non empty set ; set S = <* Bags n , il *> , T = <* Bags n , i *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / 2 < ( 2 * PI ) / 2 ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f2 ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = ( p1 `1 ) * ( p1 `2 ) + ( p1 `2 ) * ( p1 `2 ) ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & width <* P *> = len P ; set N-26 = the \subseteq of the \subseteq of N , Nw = the Element of N ; len gLet + ( x + 1 ) - 1 <= x ; a on B & not b on B implies b on B reconsider rr = r * I . v as FinSequence of REAL ; consider d such that x = d and a (#) d [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ^2 ( n ) ; set q2 = N-min L~ Cage ( C , n ) , q2 = W-min L~ Cage ( C , n ) ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " V & f " D /\ h " D = f " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) & H = ( the_right_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( the Sorts of Free ( S , X ) ) . s ; rng f c= the carrier of S2 & f . x = f . x ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G `1 = E \/ { E } .= { E } ; reconsider m = len ( k - 1 ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { i } is non empty Subset of K ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = pp1 . i & pp2 . i = pp2 . i ; let PA , G be a_partition of Y , a be Element of Y ; pred 0 < r & r < 1 means : Def1 : 1 < r & r < 1 ; rng ( ( a , X ) --> ( a , b ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl FinMeetCl ( the topology of X ) & Q c= the topology of X ; dom ( f | 0 ) c= dom ( f | 0 ) & dom ( f | 0 ) c= dom ( f | 0 ) ; pred n divides m means : Def1 : m divides n & n = m ; reconsider x = x as Point of [: I[01] , I[01] :] ; a in dom not y0 in the still of f & not ( ex y st y in dom f & not y in the carrier of f ) ; Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len p and p . k1 = q . k1 ; consider c , d such that dom f = c \ d and c in dom f ; [ x , y ] in [: dom g , dom k :] ; set S1 = l1 = m2 & l1 = l2 & l2 = i2 implies l1 + l2 = i2 x0 in dom ( u01 /\ A01 ) & x0 in dom ( u01 /\ A01 ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 & the carrier of I[01] = the carrier of I[01] & the carrier of I[01] = the carrier of I[01] ; f . p4 <= f . ( f . p1 ) & f . p2 <= f . p1 ; ( ( F /. x ) `1 ) ^2 / ( |. x .| ) ^2 <= ( |. x .| ) ^2 / ( |. x .| ) ^2 ; ( x `2 ) ^2 = ( W `2 ) ^2 + ( W `2 ) ^2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) .= ( 0 -tuples_on the carrier of K ) ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] & Q [ succ a ] ; reconsider s\mathclose = snon empty where s is Element of D : s is ' of D } as finite Subset of D ; ( i - 1 ) <= len ( thesis - j ) ; [#] S c= [#] ( the TopStruct of T ) & the TopStruct of T = the TopStruct of T ; for V being strict RealUnitarySpace holds V in and V in and V is Subspace of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 , q1 , q2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K , M be Matrix of n1 , K ; - a * - b = a * b & - a * b = - b ; for A being Subset of AS holds A // A & A is being_line implies A is being_line ( for o2 being Element of NAT holds o2 in dom <* o2 , o2 *> ) implies o2 = o1 then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , x be Element of G ; j >= len upper_volume ( g , D1 ) & len upper_volume ( g , D2 ) = len D2 ; b = Q . ( len Q - 1 ) + 1 .= Q . ( len Q - 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 /* s is divergent_to+infty ; reconsider h = f * g as Function of [: N1 , N2 :] , G ; assume that a <> 0 and Let a , b , c ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T . n ) -tuples_on ( T . n ) ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L1 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) .= Initialize ( p +* q ) .= p +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 , the carrier of R2 ; reconsider Y = Y as Element of ( Ids L ) , \subseteq the carrier of L ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D & not contradiction ; n <= len ( P + ( len P ) ) + len ( P + ( len P ) ) ; ( x1 `1 ) ^2 = ( x2 `2 ) ^2 + ( x2 `2 ) ^2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTT1 ( n ) ; p = |[ p `1 , p `2 ]| & q = |[ p `1 , q `2 ]| ; g * 1. G = h " * g * h .= h " * g .= h ; let p , q be Element of V , a , b , c ; x0 in dom ( x1 + x2 ) /\ dom ( y1 + y2 ) & x0 in dom ( y1 + y2 ) ; ( R qua Function ) " = R " * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ) ) ) ) ) ) ) n in Seg len ( f /^ ( len p -' 1 ) ) ; for s being Real st s in R holds s <= s2 implies s <= s1 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym ) for for for for for for ( for X holds X in R ) ; 1. K * 1. K = 1. K & 1. K * 1. K = 1. K ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w / f ) & w in F ; curry ' ( P+* ( x , k ) ) # x is convergent ; cluster open -> open for Subset of T<* S , T *> ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total and f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a & Reloc ( J , card I ) does not destroy a ; ( goto ( card I + 1 ) ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , P4 = p +* I , P4 = p +* I ; IC SCMPDS in dom Initialize ( p +* I ) & IC SCMPDS in dom Initialize ( p +* I ) ; dom t = the carrier of SCM & dom t = the carrier of SCM & t . a = s . a ; ( E-max L~ f ) .. f = 1 & ( E-max L~ f ) .. f = ( E-max L~ f ) .. f ; let a , b be Element of V , C be Element of V ; Cl Int ( union F ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( the carrier of X1 union X2 ) ; assume not LIN a , f . a , g . a , g . b ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = { x } ; M , v |= H1 / ( y , x ) & M , v |= H2 ; consider m being element such that m in Intersect ( FF . 0 ) and m in dom f ; reconsider A1 = support u1 , A2 = support v1 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a1 <> a5 ; cluster s -\bf carrier of S -> $ string of S , D be string of S ; Lf2 /. n2 = Lf2 . n2 & Lf2 /. n2 = Lf2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and r-7 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a , b , c , d be Real ; assume [ k , m ] in Indices ( D | [: Seg n , Seg n :] ) ; 0 <= ( 1 / 2 ) |^ p & ( 1 / 2 ) |^ p <= 1 ; ( F . N | E8 ) . x = +infty & ( F . N ) . x = +infty ; pred X c= Y means : Def1 : Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card ( X-18 ) <= card u & card ( X-18 ) <= card ( X \/ Y ) ; set g = z :- ( E-max L~ z ) , M = z .. z , N = .. z , S = L~ z , N = .. z , N = .. z , S = .. z , N = .. z , N = .. z , S = .. z then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -O , the carrier of S ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | B ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 & indx ( D2 , D1 , j1 ) + 1 <= len D2 ; ( ( g2 . O ) `1 ) ^2 = - 1 & ( ( g2 . O ) `2 ) ^2 = 1 ; j + p .. f -' len f <= len f - len f + 1 ; set W = W-bound C , S = S-bound C , E = E-bound C , N = N-bound C , N = N-bound C , S = S-bound C , N = E-bound C , S = E-bound C , N = E-bound C , N = E-bound C , S = E-bound S1 . ( a `1 , e `2 ) = a + e `2 .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f , x ) ) = dom Im ( f , x ) ; ( ^2 x ) = W . ( a , *' ( a , p ) ) ; set Q = non empty ( \rm \rm \rm \rm I ( ) } ) ; cluster Carrier ( U1 ) -> MS[ U1 , U2 ] ] -> MS[ U1 , U2 ] ; attr A means : Def1 : ex A st F = { A } ; reconsider z9 = \hbox { z } , z9 = z as Element of product G ; rng f c= rng f1 \/ rng f2 & f . 1 = f1 . 1 \/ f2 . 2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f = ( <*> ( the carrier of F_Complex ) ) ; E , j |= All ( x1 , x2 , H ) ; reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 .= k + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies x in ( x \ B1 ) /\ ( x \ B1 ) g + R in { s : g-r < s & s < g + r } ; set q-19 = ( q , <* s *> ) : not contradiction } , qv1 = ( q , <* s *> ) : not contradiction } ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , dom ( R | NAT ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f , C = C as Element of Fin ( NAT ) ; IncAddr ( i , k ) = <% - l . k , k %> + k .= succ k ; S-bound L~ f <= q `2 & q `2 <= ( q `2 ) * ( 1 + ( q `2 / q `1 ) ^2 ) ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 9 + - 2 ; x , z , y is_collinear & x , z , y is_collinear & x , z , y is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 *> , x ) in Line ( x , a * x ) ; set y9 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 . 1 = Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 & ( f /. i1 ) `2 = ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to+infty & f2 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u , v2 = v as VECTOR of ( the carrier of V ) --> ( u , v ) ; p |-count Product ( Sgm ( X11 ) ) = 0 & p |-count ( Sgm ( X11 ) ) = 1 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 ; x in { x , y } & h . x = {} ( Th . x , h . y ) ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( A . 0 ) ) .= len ( the charact of ( A . 0 ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : ( G is : n <= len G-15 & n <= len G-15 ) ; rng F c= the carrier of gr { a } & F . a = ( gr { a } ) . a ; g is ) of |. Q . ( K , n , r ) .| is a |. f .| ; f . k , f . ( mod n ) in rng f & f . ( mod n ) in rng f ; h " P /\ [#] T1 = f " P /\ [#] T1 .= [#] T1 /\ [#] T2 .= [#] T1 ; g in dom f2 \ f2 " { 0 } & ( f2 " { 0 } ) . g in dom f2 ; gX /\ dom f1 = g1 " { 0 } & gX /\ dom f2 = g2 " { 0 } ; consider n being element such that n in NAT and Z = G . n ; set d1 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) ; b `2 + ( 1 - r ) < ( 1 - r ) + ( 1 - r ) ; reconsider f1 = f , g1 = g as VECTOR of the carrier of X , Y ; pred i <> 0 means : Def1 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & ( g2 . i2 ) . j2 = ( g2 . i2 ) . j2 ; dom ii = dom ( i - 1 ) .= dom ( i - 1 ) .= dom ( i - 1 ) .= dom ( i - 1 ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x0 , y2 = x0 as Point of [: S , T :] ; reconsider R1 = x , R2 = y , R2 = z as Relation of L , the carrier of K ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RX ; S1 +* S2 = S2 +* S1 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( #Z n ) * ( cos * ( cos - cos ) ) ) `| Z ) = f ; cluster -> continuous for Function of C , REAL * , a be Real ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f3 ) ; Ea1 . e2 = E8 . e2 + T . e2 .= T . e2 + T . e2 ; ( ( ( arctan * ln ) `| Z ) . ( x + x0 ) ) (#) ( ln * ln ) is_differentiable_on Z ; upper_bound A = PI * ( 3 / 2 ) & lower_bound A = 0 ; F . ( dom f , - F . ( cod f ) ) is_transformable_to F . ( cod f , - F . ( cod f ) ) ; reconsider pbeing being Point of TOP-REAL 2 , p8 = ( |. q .| ) as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] ( Y | X ) ; let C be compact non vertical non vertical non horizontal Subset of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) .= LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , x0 .[ & ( for n holds s . n < x0 ) implies f | ]. x0 , x0 + r .[ is convergent assume x in { idseq ( 2 ) , Rev Rev idseq ( 2 ) } ; reconsider n2 = n , m2 = m , n1 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y & y <= g for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: ( the carrier of X1 ) , B" = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R -Seg ( a ) c= R -Seg ( b ) & R -Seg ( b ) c= R -Seg ( a ) ; t in ]. r , s .] or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] or P [ x2 , y2 ] ; pred x1 <> x2 means : Def1 : |. x1 - x2 .| > 0 & |. x2 - x1 .| > 0 ; assume that p2 - p1 , p3 - p1 - p1 , p2 - p1 - p1 , p3 - p1 - p1 is_collinear ; set q = ( -1 f ) ^ <* 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS 1 , x0 be Point of REAL-NS 1 , x be Point of REAL-NS 1 ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * succ t ) = dom ( \mathop { 0 } --> 1 ) .= dom ( T * succ t ) ; consider x being element such that x in wX and x in c and x in X ; assume ( F * G ) . v . x3 = v . x3 & ( F * G ) . x3 = v . x3 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = q ; n1 -' len f + 1 <= len ( - 1 ) + 1 + 1 - len f + 1 ; \lbrace \lbrace q , O1 , a , b , a , b , b } = { [ u , v , a , b ] } ; set C-2 = ( ( n + 1 ) .--> G ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * Sum p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & ( $1 + 1 ) <= n ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I , s4 = P2 +* I ; let l be -> -> -> [: of k , Al ( ) , D ( ) :] , A ; reconsider U2 = union G-24 , G-24 = union G-24 , G-24 = union G-24 as Subset-Family of TL ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p2 . ( i + 2 ) ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p$ 9 = <* - vs , 1 , - 1 , - 1 , 1 *> .= <* - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 *> ; synonym f is real-valued means : Def1 : rng f c= NAT & for n being Nat holds f . n = f . n ; consider b being element such that b in dom F and a = F . b ; x10 < card X0 + card Y0 & card ( X0 \/ Y0 ) <= card ( X0 \/ Y0 ) ; pred X c= B1 means : Def1 : for B1 st X c= B1 holds X c= B1 & not X c= B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , p2 ) ; pred 1 <= len s means : Def1 : len ( the { of S } --> 0 ) = s & for i being Nat holds s . i = 0 ; fP1 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in TAUT ( A ) means : Def1 : q '&' p in TAUT ( A ) ; - ( ( t `1 ) / |. t .| ) < ( ( t `2 ) / |. t .| ) ; ( ( U . 1 ) = U2 /. 1 ) .= ( ( U . 1 ) * ( U2 /. 1 ) ) .= ( ( U . 1 ) * ( U2 /. 1 ) ) ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices O = [: Seg n , Seg n :] & Indices O = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is unital & ( f is unital of A-29 ) & ( f is the carrier of A-29 ) ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w , v1 ]| = |[ w , v1 ]| ; reconsider t = t as Element of INT * , s be Element of INT ; C \/ P c= [#] ( GX | ( [#] ( GX \ A ) ) ) ; f " V in ( the carrier of X ) /\ D & f " ( the carrier of X ) = D /\ ( the carrier of X ) ; x in [#] ( the carrier of ( the carrier of ( F . 0 ) ) /\ A ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = ( Line ( M , i ) * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M2 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len F1 ^ F2 ) .= len ( Len F1 ) + len ( Len F2 ) .= len ( Len F1 ) + len ( Len F2 ) ; len ( ( the S of n ) --> i ) = n & len ( ( the Sorts of n ) --> i ) = n ; dom max ( - ( f + g ) , ( - f ) ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y2 ; dom ( p1 ^ p2 ) = dom ( f12 ) & dom ( f12 ) = dom ( f12 ) ; M . [ 1 , y ] = 1 / ( 1 - M ) * v1 .= 1 / ( 1 - M ) .= 1 / ( 1 - M ) ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and not W is trivial and not W is trivial ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) .= G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\rbrace <= b & b <= upper_bound rng f\rbrace - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ LSeg ( l , k ) ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in { x } and p in L~ f and x in L~ f ; Indices ( ( X @ ) * ( i , j ) ) = [: Seg n , Seg n :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) , ( Partial_Sums F ) . n ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( NW-corner Z , NW-corner L~ f ) /\ LSeg ( NW-corner Z , NW-corner L~ f ) ; set R8 = R / ( 1 - R ) , R8 = R / ( 1 - R ) ; IncAddr ( I , k ) = SubFrom ( da , da ) .= IncAddr ( da , da ) .= ( - - - n ) ; seq . m <= ( the Sorts of seq ) . k & ( the Sorts of seq ) . k <= ( the Sorts of seq ) . k ; a + b = ( a ` *' b ) ` + ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ id Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U2 \/ U2 , U1 = U1 /\ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ m /\ n ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable set of R such that card A = len R and card A = len R ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s1 - 1 > 0 ; ( N-min P ) `2 = N-bound P & ( N-min P ) `2 = N-bound P & ( E-max P ) `2 = N-bound P ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a2 = f . a2 ` & f . a2 = f . a2 ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in dom f ; gg . s0 = g . s0 | G . s0 .= g . s0 .= g . s0 ; the InternalRel of S is \lbrace field ( the InternalRel of S ) , the InternalRel of S ( ) } ; deffunc F ( Ordinal , Ordinal ) = phi . ( $2 , $1 ) & phi . ( $2 , $2 ) = phi . ( $2 , $2 ) ; F . a1 = F . ( s2 . a1 ) & F . a1 = F . ( s2 . a1 ) ; x `2 = A . o .= Den ( o , A . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= Cl ( f " P1 ) ; FinMeetCl ( ( the topology of S ) \/ ( the topology of T ) ) c= the topology of T & the topology of T = the topology of T ; synonym o is \bf means : Def1 : o <> {} & o <> {} & o <> {} ; assume that X = Y + Z and card X <> card Y and card Y <> card Z and card X = card Z ; the *> of s <= 1 + ( the +* ( s +* ( x +* ( s +* ( x +* ( x +* ( x , y ) ) ) ) ) ) ; LIN a , a1 , d or b , c // b1 , c1 & a , c // a1 , c1 or b , c // b1 , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; E in SS1 & not ES1 in { NS1 } & not ES1 in SS2 ; set J = ( l , u ) If ; set A1 = } , A2 = ( a , b , c , d ) , A2 = ( a , b , c , d ) ; set vs = [ <* cin , cin *> , '&' ] , xy = [ <* A1 , cin *> , '&' ] , i2 = [ <* cin , cin *> , '&' ] , a3 = [ <* A1 , cin *> , '&' ] ; x * z `2 * x `2 * x `2 in x * ( z * N ) * x `2 ; for x being element st x in dom f holds f . x = g3 . x & f . x = g3 . x ; Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min C , W-min C & P = LSeg ( W-min C , E-max C ) implies P = L~ f set f-17 = f @ "/\" ( g @ ) ; attr S1 is convergent means : Def1 : S is convergent & lim ( S - x ) = 0 & ( lim S ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + ( 0 qua Ordinal ) .= a + ( 0 qua Nat ) .= a + ( 0 qua Nat ) ; cluster -> \llangle -> \in \lbrace reflexive transitive transitive transitive non empty RelStr , F , G , F , G , F , G , H , F , G , H , G , H , F , G , H , H , F , G , H , G , F , G , H , H , F , G , H , F consider d being element such that R reduces b , d and R reduces c , d and R reduces d , b ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a \rbrack ) = len l & len ( l (#) x ) = len l ; t4 } is ( {} \/ rng t4 ) -valued ( {} \/ rng t4 ) -valued FinSequence of NAT ; t = <* F . t *> ^ ( C . p ) .= ( C . p ) ^ ( C . q ) ; set p-2 = W-min L~ Cage ( C , n ) , pw2 = Cage ( C , n ) , pw2 = Cage ( C , n ) ; ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i - ( i + 1 ) ) ; consider u being Element of L such that u = u `1 ^ ( u `2 ^ v `2 ) and u in D ; len ( ( width ( a |-> b ) ) |-> a ) = width ( ( a --> b ) * ( a --> b ) ) .= len ( a --> b ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) & ( G * the_arity_of o ) . x = ( G * the_arity_of o ) . x ; set cH2 = the carrier of H2 , cH1 = the carrier of H2 , cH2 = the carrier of H1 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q , t , k ) = ( l + 1 ) .= ( IC t ) + 1 ; dom ( ( cos * sin ) `| REAL ) = REAL & dom ( ( cos * sin ) `| REAL ) = REAL & dom ( ( cos * sin ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* A1 , cin *> , <* cin , cin *> ] , b5 = [ <* A1 , cin *> , '&' ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= Line ( M , x ) ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & ( ( the Sorts of A ) * the_arity_of o ) . n = ( the Sorts of A ) . n ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of S ; consider y being Point of X such that a = y and ||. x-y .|| <= r ; set x3 = being Element of NAT , Q = Q . DataLoc ( s4 . SBP , 2 ) , x4 = Q . DataLoc ( s3 . SBP , 2 ) , P4 = Q . DataLoc ( s3 . SBP , 2 ) , P4 = Q . DataLoc ( s3 . SBP , 2 ) , P4 = Q . DataLoc ( s3 . SBP set p-3 = stop I ( ) , p-3 = stop I ( ) , p-3 = stop I ( ) , p-3 = stop I ( ) , ps1 = stop I ( ) , ps1 = stop I ( ) , ps1 = stop I ( ) , ps1 = stop I ( ) , ps1 = stop consider a being Point of D2 such that a in W1 and b = g . a and a in W1 ; { A , B , C , D , E } = { A , B } \/ { C , D , E } let A , B , C , D , E , F , J , M , N , M , N , N , A , M , N , M , N , A , N , M , N , A , N , M , N , A , N , M be set ; |. p2 .| ^2 - ( ( p2 `2 ) ^2 - ( p2 `2 ) ^2 ) >= 0 ; l -' 1 + 1 = n-1 * ( l + ( 1 + 1 ) ) + 1 .= ( 1 + 1 ) + 1 ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = , , , the TopStruct of L = [: the topology of L , the topology of L :] ; consider y being element such that y in dom H1 and x = H1 . y and y in H . x ; fH \ { n } = Free ( All ( v1 , H ) ) & not f . ( n + 1 ) in Free ( H ) ; for Y being Subset of X st Y is summable & Y is summable holds Y is not summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } \rm \rm \rm \rm ' } Shift ( s ) ) = len s & len ( the { - 1 } ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 ; rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | ( the carrier of TOP-REAL 2 ) ) | ( the carrier of ( TOP-REAL 2 ) | K1 ) ; j + ( len f ) - len f <= len f + ( len g - len f ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= C8 . x ; power F_Complex . ( z , n ) = 1 .= x |^ n .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t .= f . ( the connectives of S ) . t ; support ( f + g ) c= support f \/ ( support g ) & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( ( r4 | N ) | N ) > N ; for y , p st P [ p ] holds P [ All ( y , p ) ] ; { [ x1 , x2 ] where x1 is Point of [: X1 , X2 :] : x1 in X1 & x2 in X2 } c= the carrier of [: X1 , X2 :] h = ( i = j |-- h , id B . i ) .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A ; set X = ( ( \lbrace q , O1 } ) . ( q , 4 ) ) `1 , Y = ( ( { q , O1 } ) . ( q , 4 ) ) `1 , Z = { q , p } ; b . n in { g1 : x0 < g1 & g1 < x0 & g1 < x0 } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of Y = the lattice of the lattice of Y & the carrier of Y = the carrier of the carrier of Y & the carrier of Y = the carrier of Y ; ( 'not' ( a . x ) '&' b . x ) 'or' a . x '&' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len ( q1 ^ q2 ) .= len ( q1 ^ q2 ) + len ( q2 ^ r2 ) .= len ( q1 ^ q2 ) + len ( q2 ^ r2 ) ; ( 1 / a ) (#) ( sec * f1 ) - id Z ) is_differentiable_on Z & ( ( 1 / a ) (#) ( sec * f1 ) ) `| Z = f ; set K1 = integral ( ( lim ( lim ( H , A ) ) || ( A , B ) ) , D2 = integral ( ( lim ( H , A ) || ( A , B ) ) , D ) ; assume e in { ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d6 = dom F `1 , d6 = dom F `1 as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j ) + q .. f .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom SA2 = dom S /\ Seg n .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= dom ( L | Seg n ) ; x in H |^ a implies ex g st x = g |^ a & g in H & g in H a * 0. ( INT , n ) . ( a , 1 ) = a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ @ g < @ f dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) * p .= p * ( p * p ) .= p * p .= p ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f + 1 ; dom F-11 = dom ( F | [: N1 , S-23 :] ) .= [: N1 , S-23 :] .= [: N1 , S-23 :] ; dom ( f . t ) * I . t = dom ( f . t ) * g . t .= ( f . t ) * g . t ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D & b in ( the carrier of S ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and rng g c= dom f ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f * f `2 = id a and f is one-to-one and f is one-to-one ; ( cos | [. 2 * PI , 0 + ( 2 * PI * 0 ) .] ) | [. 2 * PI , 0 + ( 2 * PI * 0 ) .] is increasing ; Index ( p , co ) <= len LS - LS .. LS - LS .. LS + 1 .= len LS - LS .. LS + 1 ; let t1 , t2 , Z be Element of [: T , S :] , s , t be Element of S ; ( Frege ( ( Frege ( curry H ) ) . h ) ) . h <= "/\" ( rng ( ( Frege ( ( Frege G ) . h ) . ( i + 1 ) ) ) ; then P [ f . i0 , f . ( i0 + 1 ) ] & F ( f . i0 , f . ( i0 + 1 ) ) < j ; Q [ [ D . x , 1 ] , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is Element of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= the Sorts of A1 +* A2 .= the Sorts of A2 ; consider s being Function such that s is one-to-one and dom s = NAT & rng s = F and rng s = the carrier of S ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Upper_Seq ( C , n ) ) /. len ( Upper_Seq ( C , n ) ) = WL~ Cage ( C , n ) ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP L~ Cage ( C , 1 ) ) `2 <= ( E-max L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= II and A = ]. a , II .] and a <= II ; consider a , b being complex number such that z = a & y = b & z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= k } , Y = { b |^ n where b is Element of NAT : b <= n } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* x , y *> , f2 ] , yz = [ <* z , x *> , f3 ] ; lq /. len lq = lq . len ( lq | ( len q -' 1 ) ) .= ( q | ( len q -' 1 ) ) . len ( q | ( len q -' 1 ) ) ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) * ( 1 + sn ) < 1 ; ( ( E-max X ) `2 ) ^2 = ( ( E-max X ) `2 ) ^2 + ( ( E-max X ) `2 ) ^2 .= ( ( E-max X ) `2 ) ^2 + ( ( E-max X ) `2 ) ^2 ; ( seq - seq ) . k = seq . k - seq . k .= ( seq ^\ k ) . k - seq . k .= ( seq ^\ k ) . k - seq . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X = the carrier of X & the carrier of X = the carrier of X & the carrier of X = the carrier of X ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A5 ) , c5 = chi ( X , A5 ) ; R to_power ( 0 * n ) = I\HM ( X , X ) .= R to_power n .= R to_power ( 0 * n ) ; ( Partial_Sums ( curry ( F-19 , n ) ) ) . n is nonnegative & ( ( curry ( F-19 , n ) ) . n ) . m = ( ( ( curry ( F-19 , n ) ) . m ) . n ) . m ; f2 = C7 . ( len E7 , K , len H ) .= C8 . ( len E7 + len H ) .= ( the V of V ) . ( len H + 1 ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p01 ) /\ LSeg ( p1 , p01 ) & p2 in LSeg ( p1 , p01 ) /\ LSeg ( p1 , p01 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & the connectives of S = ( the connectives of S ) . 11 & the connectives of S = the carrier' of S ; set phi = ( l1 , l2 ) \mathop { {} } , phi = ( l1 , l2 ) \mathop { {} } , F = ( S , l2 ) \mathop { {} } , G = ( S , l2 ) \mathop { {} } , F = ( S , l2 ) \mathop { {} } , G = ( S , l2 ) \mathop { {} } , F = ( S , l2 ) \mathop { {} } , G = synonym p is invertible for p is invertible & HT ( p , T ) = 1. L & p is invertible ; ( Y1 `2 ) ^2 = - 1 & 0. ( TOP-REAL 2 ) <> 0. ( TOP-REAL 2 ) & ( the carrier of ( TOP-REAL 2 ) | K1 ) = the carrier of ( TOP-REAL 2 ) | K1 ; defpred X [ Nat , set , set , set ] means P [ $2 , $2 , $2 , $2 , $2 ] ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g and s . n < x0 + g ; Det ( I |^ ( m -' n ) ) * ( m - n ) = 1. K & Det ( I |^ ( m -' n ) ) = 0. K ; ( - b - sqrt ( b - a ^2 ) ) / ( 4 * a * c ) < 0 ; Cd . d = Cd . d mod Cd . ( dd + 1 ) .= Cd . d mod Cd . ( dd + 1 ) .= Cd . d mod Cd . ( Cd + 1 ) ; attr X1 is dense means : Def1 : X2 is dense dense & X1 is dense SubSpace of X & X2 is dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = ( $1 * $2 ) * ( $1 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set holds for F being Subset-Family of X holds F is Basis of [: X , UniCl ( Y ) :] synonym A , B are_separated means : Def1 : Cl A misses Cl B & Cl B misses Cl Cl Cl A & Cl Cl B = Cl Cl A ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & v . x = 1 } ; ( Sgm ( seq ( m ) ) . d - ( Sgm ( seq ( m ) ) . e ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len B1 + 1 ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= ( 5 + 9 ) ; ( IExec ( W6 , Q , t ) ) . intpos ( \mathbb d + 3 ) = t . intpos ( 0 + 3 ) .= t . intpos ( 0 + 3 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( f , C ) , A ) = f . ( upper_bound C ) - lower_bound ( rng ( f | C ) ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y `1 in Y & x in X ` holds y `1 <= x `1 + x `2 func |. Sum ( p \bullet q ) .| -> -> [: of A , A :] equals min ( NBI , p ) .= Sum ( NNI ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 '||' y `2 , t `2 ; dom x1 = Seg ( len x1 ) & len x1 = len l1 & for i st i in dom x1 holds x1 . i = ( x1 . i ) * ( x2 . i ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 / 2 and |. y2 - x0 .| < r ; ||. f | X .|| /* s1 = ||. f .|| | X & ||. f .|| /* s1 = ||. f .|| /* s1 .= ( f | X ) /* s1 ; ( the InternalRel of A ) ` /\ ( the InternalRel of A ) = {} \/ {} .= {} \/ {} .= {} .= {} ; assume that i in dom p and for j be Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and p . i = q . j and j + 1 in dom p and p . j = p . j ; reconsider h = f | X ( ) as Function of X ( ) , rng f , rng f :] , rng f ; u1 in the carrier of W1 & u2 in the carrier of W2 & v in the carrier of W1 & v = [ v1 , v2 ] ; defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y - x ) = - x + - ( - y ) .= - x + - y .= x + y .= x ; given a being Point of GX such that for x being Point of GX holds a , x , a , x , y is_collinear and a , x , y is_collinear ; fJ = [ dom @ f2 , cod @ g2 ] & [ dom @ f2 , cod @ g2 ] in dom @ ( @ f2 ) ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( A ` ) |^ d consider u , v being Element of R , a being Element of A such that l /. i = u * a * v and a in I ; ( ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = L9 . ( F . k ) & F . k in dom ( L9 | dom F ) & F . k = L9 . ( F . k ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto - ( card I + 1 ) ; attr B is thesis means : Def1 : for S being SubSubSub of B holds S = ( B `1 ) \/ ( B `2 ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & ( for x being Element of N holds d in D iff x in D ) ; |( \square , q29 )| * |( q , q29 )| + |( \square , q29 )| * |( q , q29 )| >= |( \square , q29 )| ; ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> .= ( proj ( i , n ) ) . LM ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( reproj ( i , x ) ) . i ) & f2 + ( ( reproj ( i , x ) ) . x ) = ( f2 + ( reproj ( i , x ) ) . i ) ; pred ( cos * tan ) . x <> 0 means : Def1 : ( tan * tan ) . x = tan . x * tan . x ; ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t . x & ( h1 . t ) . x = h2 . x ; defpred C [ Nat ] means ( P . $1 ) is non empty and ( P . $1 is non empty ) & ( not P [ $1 ] ) & ( not P [ $1 ] ) ; consider y being element such that y in dom ( p | 8 ) and ( p | 8 ) . y = ( p | 8 ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( Carrier A ) . l ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for a being Element of C holds T . ( id c ) = id d N = ( f | n ) ^ <* p *> .= ( f | n ) ^ <* p *> .= f | n ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j + 1 ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - cp = ( f | ( n , L ) ) *' - ( f | ( n , L ) ) .= ( f - ( f | ( n , L ) ) ) *' ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ ( r `1 ) / ( 1 + ( r `2 / r `1 ) ^2 ) , ( r `2 ) / ( 1 + ( r `2 / r `1 ) ^2 ) ]| ) in f1 .: W1 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) , x ) .= a . ( x * x ) .= a . ( x * x ) ; z = DigA ( tk , xx ) .= DigA ( tk , ( k + 1 ) ) .= DigA ( tk , ( k + 1 ) ) .= DigA ( tk , ( k + 1 ) ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { meet S where S is Subset of X : S c= G } , F = the carrier of X ; consider S19 being Element of D * , d being Element of ( the carrier of K ) * such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 and f . x2 = f . x2 ; - 1 <= ( q `2 / |. q .| - sn ) / ( 1 + sn ) & q `2 / |. q .| - sn <= ( q `2 / |. q .| - sn ) / ( 1 + sn ) ; 0. ( V ) is Linear_Combination of A & Sum ( 1. ( V ) ) = 0. V & Sum ( 0. ( V ) ) = 0. V ; let k1 , k2 , k1 , k2 , k2 , k2 , 6 be Instruction of SCM+FSA , a , b , c , k2 be Int-Location ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and y = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = or p = a * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & c <= d & [' a , b '] c= dom f and [' a , b '] c= dom g and g . a = g . b ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; A, AX in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * b2 /. y .= ( F /. y ) . y .= ( F /. y ) . y .= ( F /. y ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then p => q in S & not x in the still of p & not x in the carrier of p & not x in the carrier of p & not x in the carrier of p ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-11 ) & dom ( the InitS of r-11 ) = the carrier of r-11 & dom ( the InitS of r-11 ) = the carrier of r-11 ; synonym f is integer means : Def1 : for x being set st x in rng f holds x is Integer & f . x is Integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p1 + len <* x *> .= len p1 + len <* x *> .= len p1 + 1 .= len p1 + 1 ; l ( ) = g /. ( ( - 1 ) * k ) + ( k ( ) * k ) - ( e /. ( - 1 ) * k ) .= ( e /. ( - 1 ) ) + ( e /. ( - 1 ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , l ) ) ; assume for n be Nat holds ||. seq .|| . n <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin ( 0. K ) = sin r * cos ( - r ) .= cos ( - r ) * sin ( - r ) .= cos r * sin ( - r ) .= - sin r * sin r ; set q = |[ g1 . t0 `1 , g2 . t0 `2 , g1 . t0 `2 ]| , r = |[ r , g2 . t0 `2 ]| , s = |[ r , g2 . t0 `2 ; consider G being sequence of S such that for n being Element of NAT holds G . n in G and G . n in implies G . n in consider G such that F = G and ex G1 st G1 in SM & G = [: X , G1 :] & G = [: X , G1 :] ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s = ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( #Z 3 ) * ( f + ( #Z 3 ) ) ) ) ; for k being Element of NAT holds seq1 . k = ( sum ( Im ( f , S-3 ) ) ) . k + ( Im ( f , S-3 ) ) . k assume that - 1 < n and ( q `2 / |. q .| - sn ) > 0 and ( q `2 / |. q .| - sn ) < 0 and ( q `2 / |. q .| - sn ) < 0 ; assume that f is continuous one-to-one and a < b and a < c and f = g and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that s-> Element of NAT such that s-> = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and inf { x , y } = inf { x , y } ; assume f +* ( i1 , \xi ) . 1 in ( proj ( F , i2 ) ) " ( A . 1 ) & f . ( i1 + 1 ) = ( proj ( F , i2 ) ) . ( A . 1 ) ; rng ( ( ( Flow M ) ~ | ( the carrier of M ) ) ) c= the carrier' of M & rng ( ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \/ { t } where t is Element of T : t in the carrier of T } ; consider l be Nat such that for m be Nat st l <= m holds ||. ( s1 . m - x0 ) .|| < g / 2 ; consider t being VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> in dom p and v ^ <* 1 *> in dom p and v ^ <* 1 *> in dom p ; consider a being Element of the carrier of [ X , A ] , A being Element of the lines of [ X , A ] such that not a on A and not b on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i is FinSequence of D & p . i = p . i defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p01 ) , LSeg ( p01 , p2 ) } .= { LSeg ( p01 , p2 ) } \/ { LSeg ( p01 , p2 ) } ; i -' len h11 + 2 - 1 < i -' len h11 + 2 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( F . n ) . ( n -' 1 ) .| ; for r , s1 , s2 , r holds r in [. s1 , s2 .] iff r <= s1 & s1 <= s2 & s1 <= s2 & s1 <= s2 & s2 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 } ; let g be \vert \vert is \vert non-empty Function of A , INT , b be Element of INT ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g . k , k , x ) ) . y ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n ] & P [ n , q1 . n ] ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ O , OO = O /\ Z , Z = { O } , Z = { O , O } , S = { O , O } , T = { O , O } , O = { O , O } , O = { O , O } , Q = { O , O } , S = { O , O } , T = { O , O } , Q = { O , O } , S = { consider j being Element of NAT such that x = the ` of n and j <= n and 1 <= j and j <= n and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x . O2 in L1 . O2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( _ T4 ( k , n2 ) ) . 0 ) .= C . ( ( T . k ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = dom ( X --> f ) ; S-bound L~ SpStSeq L~ f <= ( ( SpStSeq L~ f ) /. 1 ) `2 & ( ( 0. L~ f ) `2 <= ( ( 0. L~ f ) `2 ) `2 ; synonym x , y are_collinear means : Def1 : x = y or ex l being Nat st { x , y } c= l & x in l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L , a , b being Element of Im k st a = x & b = y holds x << y & x << y & y << a ; ( 1 / 2 * ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( 1 / 2 ) ) ) ) ) ) `| REAL = ( 1 / 2 * ( ( #Z 2 ) * ( 1 / 2 ) ) ) ; defpred P [ Element of omega ] means ( the Sorts of A1 ) . $1 = A1 . $1 & ( the Sorts of A2 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . ( g1 . g2 ) .= ( f . g2 ) * ( f . g2 ) .= ( f . g1 ) * ( f . g2 ) .= ( f . g2 ) * ( f . g2 ) .= ( f . g1 ) * ( f . g2 ) ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( { ( canFS ( Omega ) ) . n } ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L1 & the carrier of L1 + L2 = the carrier of L1 + L2 ; pred a , b , c , x , y , c , d , x , y , z , y , z , x , y , z , x , y , z , x , y , z , x , y , z , x , y , z , z , x , y , z , x , y , z , x , z , y , z , x , z , y , z , x , y , z , x , y , z , x , y , z , z , x , y , z ( the partial of s ) . n <= ( the Sorts of s ) . n * ( the Sorts of s ) . ( n + 1 ) & ( the Sorts of s ) . n = ( the Sorts of s ) . n ; pred - 1 <= r & r <= 1 & ( arccot - 1 ) * ( arccot - 1 ) = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 , x4 ]| . 2 - |[ y1 , y2 , x3 , x4 ]| . 2 = x2 - y2 & |[ y1 , y2 , x3 , x4 ]| . 2 = x2 - y2 ; attr m be Nat means : Def1 : F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( G . z ) . x ) = len ( ( ( G . ( x , y ) ) + ( G . ( y , z ) ) ) . x ) .= len ( G . ( x , y ) ) .= len ( G . ( y , z ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and v in W3 /\ W3 ; given F be finite FinSequence of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } and Sum F = k and Sum F = k ; 0 = 1 * over \llangle 0 , 0 * u] iff 1 = ( 1 - ( 1 - ( 1 - ( 1 - 0 ) ) * ( 1 - 0 ) ) ) / ( 1 - 0 ) consider n being Nat such that for m being Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> \mathclose means : Def1 : ( the carrier of \mathop { \rm o } ) is Boolean non empty & ( the carrier of \mathop { \rm o } ) is Boolean & ( the carrier of \mathop { \rm o } ) is Boolean & ( the carrier of \mathop { \rm o } ) is Boolean ; "/\" ( BB , L ) = Top BB .= Top ( S , L ) .= "/\" ( [#] I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) .= "/\" ( I , L ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - ( 2 * r1 - ( 2 * r1 - 1 ) ) * ( b - a ) = 0. TOP-REAL 2 .= ( 2 * r1 - ( 2 * r2 - 1 ) ) * ( b - a ) ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - a ) * ( ( - a ) * ( - b ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . n & ( the Sorts of M7 ) . n = ( the Sorts of M7 ) . n ; consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and the carrier of H1 = the carrier of H2 and H2 is Subgroup of H2 ; for S , T being non empty < , d being Function of T , S st T is complete holds d is directed-sups-preserving & d is monotone & d is monotone & d is monotone [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) \/ ( the carrier of F_Complex ) & [ a + 0. F_Complex , b2 + 0. F_Complex ] in ( the carrier of F_Complex ) \/ ( the carrier of V ) ; reconsider mm = max ( len F1 , len ( p . n ) * ( x |^ n ) ) , mm = max ( len F1 , len ( p . n ) * ( x |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , width GoB h ) ) & ( GoB ( ( GoB h ) * ( len GoB h , width GoB h ) ) `2 <= ( GoB h ) * ( 1 , width GoB h ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 is linearly-independent & A2 is linearly-independent & Lin ( A1 \/ A2 ) = Lin ( A1 \/ A2 ) & Lin ( A1 \/ A2 ) = Lin ( A1 \/ A2 ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } & for s being Element of R holds s in C . s ; dom ( Line ( v , i + 1 ) ) = dom ( ( F . ( p + m ) ) ^ ( ( F . ( p + m ) ) . ( p + m ) ) ) .= dom ( F . ( p + m ) ) ; cluster [ x `1 , 4 ] , [ x `2 , 4 ] , [ x `1 , 4 ] ] -> to [ x `1 , 4 ] , [ x `1 , 4 ] , [ x `1 , 4 ] ] -> to ; E , f |= All ( x2 , ( x2 } \hbox ( x1 , x2 ) ) '&' ( x1 '&' x2 ) '&' ( x2 '&' x3 ) '&' ( x1 '&' x2 ) '&' ( x2 '&' x3 ) '&' ( x1 '&' x2 ) '&' ( x2 '&' x3 ) '&' ( x2 '&' x3 ) '&' ( x1 '&' x2 ) '&' ( x2 '&' x3 ) '&' ( x2 '&' x3 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - ( h . x0 ) + ( h . x0 - h . x0 ) .= ( F . x0 - h . x0 ) + ( F . x0 - h . x0 ) ; cell ( G , ( X -' 1 ) + ( Y -' 1 ) , ( X + 1 ) ) \ L~ f meets ( L~ f ) \/ ( L~ f ) & ( L~ f ) \/ ( L~ f ) = ( L~ f \/ L~ f ) \/ ( L~ f ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= IC IExec ( I , P , Initialize s ) .= ( card I + 1 ) .= ( card I + 1 ) .= ( card I + 1 ) .= ( card I + 1 ) ; sqrt ( ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) ) > 0 ; consider x0 being element such that x0 in dom a & x0 in g " { k `2 } and y0 = a . x0 and a . x0 = b . x0 and b . x0 = a . x0 and a . x0 = b . x0 ; dom ( r1 (#) chi ( A , A ) ) = dom chi ( A , A ) .= dom ( chi ( A , A ) ) /\ dom ( chi ( A , A ) ) .= dom ( ( r1 (#) chi ( A , A ) ) | A ) .= dom ( ( r1 (#) chi ( A , A ) ) | A ) .= dom ( ( r1 (#) chi ( A , A ) ) | A ) .= dom ( ( r1 (#) chi ( A , A ) ) ; d-7 . [ y , z ] = ( y `2 ) - ( y `2 ) * ( y `2 ) .= ( y `2 ) - ( y `2 ) * ( y `2 ) .= ( y `2 ) - ( y `2 ) * ( y `2 ) ; pred for i being Nat holds C . i = A . i /\ B . i means : Def1 : C . i c= C . i /\ C . i ; assume that x0 in dom f and f is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K & A is open & Q is open holds A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func /. <*> a -> Ordinal means : Def1 : a in it & for b being Ordinal st a in b holds it . b c= b & it . b = a ; [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of A ) & [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of A ) & [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of A ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x .|| < ( e / ||. ( ||. x .|| + ||. y .|| ) * ||. x .|| ) * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z } holds z in Z & z in Z ; sup compactbelow [ s , t ] = [ sup ( { s } . ( s , t ) ) , sup ( { s } . ( s , t ) ) ] .= [ sup ( { s } . ( s , t ) ) , t ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in IX and [ f . i , z ] in IX and [ f . i , f . j ] in IX ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e39 being Element of the carrier of X such that c9 , a9 // a9 , e39 and a9 <> c9 and a9 <> b9 and b9 <> c9 and a9 <> c9 and a9 <> b9 and b9 <> c9 and a9 <> c9 and a9 <> b9 and a9 <> c9 & b9 <> c9 ; set U2 = I \! \mathop { - } , U2 = I \! \mathop { - } , E = I \! \mathop { - } , F = S S S S S S S S S S S S S ; |. q3 .| ^2 = ( |. q3 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = y /\ x implies x "/\" y = y dom signature ( U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) ; for N1 , N2 being Element of G8 holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) = N2 & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) . i ) .= ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 / ( |. q .| ) ^2 < - ( q `2 ) ^2 or ( q `2 ) ^2 / ( |. q .| ) ^2 >= - ( q `2 / |. q .| ) ^2 / ( |. q .| ) ^2 ; pred r1 = ff & r2 = ff & for x st x in dom ff holds r1 * ( x - y ) = ff . x * ( x - y ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( vseq . m ) . x & ( vseq . m ) . x = ( vseq . m ) . x ; pred a <> b & b <> c & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 = p1 ^ q1 and q1 = q1 ^ q1 and q1 = q1 ^ q2 and q1 = q2 ^ q1 and q1 = q2 ^ q1 and q1 = q2 ^ q1 ; ( 1. ( A , B ) ) . ( r1 , r2 , s1 , s2 , s2 , Amp ) = ( s2 . ( r2 , s2 ) ) * ( r2 , s2 ) .= ( s2 . ( r2 , s2 ) ) * ( r2 , s2 ) ; ( ( LMP A ) `2 ) ^2 = lower_bound ( proj2 .: ( A /\ from ( w + 1 ) ) /\ ( proj2 .: ( A /\ from ( w + 1 ) ) ) ) & proj2 .: ( A /\ from ( w + 1 ) ) is non empty ; s |= ( H , H1 ) |= H2 iff s |= ( H1 , H2 ) & s |= ( H , H1 ) & ( H , H1 |= H2 iff s |= ( H , H1 ) ) & ( s |= ( H , H2 ) ) ; len s5 + 1 = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= len ( b1 + 1 ) + 1 .= len ( b1 + 1 ) + 1 .= len ( b1 + 1 ) + 1 .= len ( b1 + 1 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y `1 and z `2 >= y `2 and z `2 >= y `2 ; LSeg ( UMP D , |[ W-bound D , ( W-bound D ) / 2 ) * ( ( W-bound D ) / 2 ) + ( ( E-bound D ) / 2 ) * ( ( W-bound D ) / 2 ) ) = { UMP D } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = lim ( ( f `| N ) / ( g `| N ) ) .= ( ( f `| N ) / ( g `| N ) ) /* b ; P [ i , pr1 ( f ) . i , pr2 ( f ) . ( i + 1 ) , pr2 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( seq . k ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & x in P & b in P holds a = b Z c= dom ( ( #Z n ) /\ ( dom ( ( #Z n ) * f ) ) \ ( ( #Z n ) * f ) " { 0 } ) & Z c= dom ( ( #Z n ) * f ) \ ( ( #Z n ) * f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + len l + j & z = ( l ^ <* x *> ) . j & i = 1 + len l + j ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in dom _ N holds r * u + ( 1-r ( V ) ) . v in L~ N A , Int A , Int Cl A , Cl Int A , Cl Int Cl A , Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Int Cl A , Cl Int Cl Cl Int Cl A , Cl Cl Cl Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Int Cl A , Cl Int Cl A , Cl Cl A , Cl Cl A , Cl Int Cl A , Cl - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + w .= - ( v + u ) + u .= - v + u ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= Exec ( ( a := b ) , s ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= ( succ IC s ) .= ( succ IC s ) ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x and h . x in ( the carrier of J ) . x ; for S1 , S2 , S2 , D being non empty reflexive RelStr , D being non empty Subset of [: S1 , S2 :] holds cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or x = y & x = y or x = y & y = x or x = y & y = x or y = x & x = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & W-min L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , t being tree , p being Element of dom T , q being Element of dom T st p element q in dom T holds ( T -tree ( p , T ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides ( k gcd n ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) implies k divides n ) ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X1 & F " = the carrier of X2 ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( BM \/ C ) and C = Lin ( BM \/ C ) and C = Lin ( BM \/ B ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V & X c= Y holds X c= Y or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) : P [ v1 ] } , Z = { F ( v1 ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) ; - sqrt ( ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - sqrt ( ( - ( ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) ) .= - ( ( - ( q `2 / |. q .| - cn ) / ( 1 + cn ) ) ) .= - ( - ( q `2 / |. q .| - cn ) ) ; ex f being Function of I[01] , ( TOP-REAL 2 ) | P st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p2 & f . 1 = p3 & f . 1 = p4 & f . - 1 = p4 ; attr f is partial differentiable of REAL , u0 means : Def1 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . u = SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . u ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t and t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 >= N-bound L~ f and f /. 1 = ( f /. len f ) `2 and f /. len f = ( f /. len f ) `2 ; pred i in dom G means : Def1 : r (#) ( f * reproj ( i , x ) ) = r (#) f * reproj ( i , x ) & for i st i in dom G holds f . i = r * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = ( decomp c1 ) /. k and ( decomp c ) /. k = ( decomp c1 ) . ( c1 + c2 ) and ( decomp c ) /. k = ( decomp c1 ) . ( c2 + c1 ) ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; ( X ^ Y ) . k = the carrier of X . k2 .= ( C . k2 ) . k2 .= ( C . k2 ) . k2 .= ( C . k2 ) . k2 .= ( C . k2 ) . k2 .= ( C . k2 ) . k2 .= ( C . k2 ) . k2 ; pred len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & len M1 = width M2 ; consider g2 being Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom f & f . y = ( f | N ) . ( y - x0 ) + g2 . ( y - x0 ) ; assume x < ( - b + sqrt ( delta ( a , b , c ) ) ) / ( 2 * a ) or x > ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M1 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & for j being Element of NAT st j in dom f & j <> i holds i divides f /. j holds i divides Sum f & f /. j = Sum f assume F = { [ a , b ] where a , b is set : for c being set st c in B39 & c in B39 & a c= c holds b c= c } & F c= c & a c= c & b c= c ; b2 * q2 + ( b3 * q3 ) + ( - ( a * q2 ) + ( - ( a * q3 ) ) ) = 0. TOP-REAL n + ( - ( a * q2 ) + ( a * q3 ) ) .= 0. TOP-REAL n + ( a * q2 ) .= ( a * ( - a * q2 ) ) + ( a * ( - a * q2 ) ) .= 0. TOP-REAL n + ( a * ( - a * q2 ) ) .= 0. TOP-REAL n ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & Cl ( Cl ( Cl F ) ) = Cl ( Cl ( Cl ( Cl F ) ) ) & Cl ( Cl ( Cl ( Cl F ) ) ) = Cl ( Cl ( Cl ( Cl F ) ) ) ) ; attr seq is summable means : Def1 : seq is summable & seq is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is convergent & Partial_Sums ( seq ) is convergent & Partial_Sums ( seq ) is convergent & lim ( seq ) = Sum ( seq ) + Partial_Sums ( seq ) ; dom ( ( ( ( cn max ) | D ) | D ) ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) ; X is full full full full full full SubRelStr of ( [#] Z ) |^ the carrier of Z & [ X \to Y ] is full full SubRelStr of ( [#] Z ) |^ the carrier of Z ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : Def1 : for p being set st p in P holds the } of p in the carrier of ( m + 1 ) & the carrier of ( m + 1 ) in the carrier of ( m + 1 ) -tuples_on the carrier of ( m + 1 ) -tuples_on the carrier of L ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym mode multiplicative loop over R means : : : : the carrier of it is multiplicative loop of R means : Def1 : the carrier of it = the carrier of R & the multF of it = the multF of R & the multF of it = the multF of R ; L ( a , b , 1 ) + L ( c , d ) = b + L ( c , d ) .= b + L ( c , d ) .= b + ( c + d ) .= the carrier of L ( a + c , b + d ) ; cluster + _ ( \mathbb Z ) -> } means : Def1 : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = + ( i1 , i2 ) & it . ( i1 , i2 ) = + ( i2 , i1 ) ; ( ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 ) ) ) * p1 + ( s2 * p2 - ( s2 * p2 ) ) * p1 - ( s2 * p2 - ( s2 * p2 ) ) * p1 ) = ( ( - s2 ) * p1 + ( s2 * p2 ) ) * p1 + ( s2 * p2 - ( s2 * p2 ) ) * p1 - ( s2 * p2 - ( s2 * p2 ) ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) , x ) * eval ( p , x ) .= eval ( a | ( n , L ) , x ) * eval ( p , x ) .= eval ( a , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being Subset of Omega S st V in D & V is open & V is open & for V being Subset of S st V in V holds V is open & V is open & V is open & V is open & V is open & V is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( len ( q , w ) -O ) . k ) = ( T-7 . ( len ( q , w ) -O ) ) . k and T-7 . ( ( len ( q , w ) -O ) . k ) = ( T-7 . ( len ( q , w ) -O ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ n + ( b |^ n ) + ( b |^ n ) + ( b |^ n ) + ( b |^ n ) + ( a |^ n ) + ( b |^ n ) + ( b |^ n ) + ( b |^ n ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , All ( x. 0 , All ( x. 4 , H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H ( x. 0 ) ) ) ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 & for x0 st x0 in l holds 0 < f . x0 & f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , W being Walk of G1 , e being Vertex of G2 , x being set st e in W & not e in W holds W is Walk of G1 & W is Walk of G2 not c9 is not empty iff iff iff not ( y1 is not empty & not y2 is not empty & not y2 is not empty & not y1 is not empty & not y2 is not empty & not y2 is not empty & not q1 is not empty & not q1 is not empty & not q2 is not empty ) & not q1 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & i1 + 1 in dom GoB f & i2 + 1 in Seg width GoB f & j + 1 in Seg width GoB f & f /. ( i1 + 1 ) = GoB f & f /. ( i1 + 1 ) = GoB f & f /. ( i1 + 1 ) = GoB f ; for G1 , G2 , G3 being Group , O being Subgroup of G1 , G2 being Subgroup of G2 , G1 being Subgroup of G2 st G1 is stable & G2 is stable & G1 is stable & G2 is stable holds G1 * G2 is stable Subgroup of G2 * & G1 * G2 is stable Subgroup of G1 * & G2 * G1 is stable Subgroup of G2 * G1 UsedIntLoc ( in4 ( f , intloc 0 ) ) = { intloc 0 , intloc 1 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , intloc 0 , 1 , 1 ) , 1 } \/ UsedIntLoc ( in4 ( f , intloc 0 , intloc 0 , intloc 0 , 1 ) ) ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ] holds Q [ f1 ^ f2 ] ( p `1 ) ^2 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) = ( q `1 ) ^2 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ; for x1 , x2 , x3 being Element of REAL n holds |( ( x1 - x2 ) , ( x2 - x3 ) )| = |( x1 , x2 - x3 )| & |( x1 - x2 , x2 - x3 )| = |( x2 , x3 )| + |( x2 , x3 )| + |( x3 , x2 - x3 )| + |( x2 , x3 )| + |( x3 , x3 )| for x st x in dom ( ( F | A ) | A ) holds ( ( ( F | A ) | A ) . ( - x ) = - ( ( F | A ) . x ) * ( - ( F | A ) ) for T being non empty TopSpace , P being Subset-Family of T , x being Point of T , B being Subset of T st P c= the topology of T & x in P holds ex B being Basis of T st B c= P & B is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( ( a . x ) 'or' b . x ) 'or' c . x .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE ; for e being set st e in [: A , Y :] ex X1 being Subset of [: X , Y :] , Y1 being Subset of Y st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open holds Y1 is open for i be set st i in the carrier of S for f be Function of [: S . i , S1 . i :] , S1 . i st f = H . i & F . i = f | ( the carrier of S1 ) holds F . i = f | ( the carrier of S2 ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . v card D = card D1 + card D2 - card { i , j } .= ( c1 + c2 ) + ( { i , j } - 1 ) .= c1 + ( c2 + ( { j } - 1 ) ) - 1 .= c1 + ( c2 + ( { j } - 1 ) ) - 1 .= 2 * c1 + ( c2 + ( { j } - 1 ) ) - 1 .= 2 * c1 + ( c2 + ( { j } - 1 ) ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( 0 , s ) ) ) . 0 .= ( 0 .--> succ ( 0 , s ) ) . 0 .= ( 0 .--> succ ( 0 , s ) ) . 0 .= succ IC s .= succ IC s .= succ IC s .= ( IC s ) ; len f /. ( len f -' 1 ) + 1 = len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k <= len b holds a <= b + b-2 or a = b + b-2 or b = a + b-2 or b = a + b-2 or b = a + b-2 or b = a + b-2 or b = a + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st p in LSeg ( f , i ) & i <= len f & i <= len f & f /. i = f /. ( i + 1 ) holds Index ( p , f ) <= Index ( p , f ) ( curry curry ( P+* ( k , n + 1 ) ) ) # x = ( ( curry curry ( F+* ( k , n ) ) ) # x ) + ( ( curry curry ( F+* ( k , n + 1 ) ) # x ) ) . x ; z2 = g /. ( len g -' ( n1 + 1 ) + 1 ) .= g . ( i -' ( n2 + 1 ) + 1 ) .= g . ( i -' ( n2 + 1 ) + 1 ) .= g . ( i -' ( n2 + 1 ) + 1 ) .= g . ( i -' ( n2 + 1 ) + 1 ) .= g . ( i + ( n2 + 1 ) + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 & [ f . 0 , f . 3 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of A , B is Subset of B : R in F6 & R in F6 } holds ( Intersect ( F , B ) ) . [ X , B ] = Intersect ( G , B ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and p on N and a on M and c on N and p on M and a on N and c on N and p on M and c on N and p on N and p on M and a on N and c on M and p on N and p on M and a on N and b on N and c on N and p on N and a on M and b on N and c on N and c on N and p on N and p on M and p on N and p on N and p on N and p on M and p on M and p on N and p on M and p on N and p on N and p on M and p on N and p on N and p on N and p on N and p on M and a on M and a on M and a on M assume that T is \hbox { T _ 4 } and F is closed of T and ex F being Subset-Family of T st F is closed & F is finite-ind & ind F <= 0 & ind F <= 0 and ind T <= 0 and ind T <= 0 ; for g1 , g2 st g1 in ]. ( r - g ) / 2 , r + g .[ & |. f . g1 - f . g2 .| <= ( g1 - g ) / 2 holds |. ( f - g ) / 2 .| <= ( f - g ) / 2 ( ( - ( 1 / 2 ) ) * ( z + z2 ) ) = ( ( - ( 1 / 2 ) ) * ( z + z2 ) ) * ( z + w ) .= ( ( - ( 1 / 2 ) ) * ( z + w ) ) * ( z + w ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n + r2 ) |^ n .= <* ( n + 1 ) |^ 0 , ( n + 1 ) |^ ( n + 1 ) , \dots , ( n + 1 ) |^ n , ( n + 1 ) |^ 0 , ( n + 1 ) |^ n , ( n + 1 ) |^ 0 *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & f . ( n + 1 ) = R ( ) . ( n + 1 ) .= f . ( n + 1 ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * F /. i & for i be Nat st i in dom it holds it . i = f /. i * F /. i ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 } \/ { x2 , x3 , x4 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( S , e ) `1 = e & ( S , e ) `2 = e & ( S , e ) `2 = e & ( S , e ) `2 = e & ( S , e ) `2 = e & ( S , e ) `2 = e ) ; consider P being FinSequence of G8 such that p8 = Product P and for i st i in dom P ex t being Element of the carrier of G st P . i = t & t is Element of the carrier of G & t is i , t is Element of the carrier of G & t is i , t is Element of the carrier of G ; for T1 , T2 being non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P = the carrier of T2 & P = the topology of T2 & P = the topology of T1 & Q = the topology of T2 holds P is Basis of T1 & Q is Basis of T2 assume that f is_is_\cal U and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) . u0 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , u0 ) . u0 ; defpred P [ Nat ] means for F , G being FinSequence of bool ( the carrier of V ) , G be Permutation of V st len F = $1 & G = F * s & not G = F * s & not F = G * s & not G = F * s & not G in rng F & not G in rng F & not G in rng F & not G in rng F & not F in rng F ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s `2 & s <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex F-23 be Subset-Family of T st $2 = F-23 & $2 is open & union F\times F-23 is open & union F\times F\times F-23 is Subset-Family of T & union F\times F\times F\times F\times Fmax ( F , G ) = union the topology of T & union F\times F\times F = union the topology of T & union F\times F = union the topology of T ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p , p1 , P , p2 & LE p , p1 , P , p1 , p2 & LE p , p1 , P , p2 , p1 , p2 & LE p , p2 , P , p1 , p2 , p2 , p2 , p2 & LE p1 , p2 , P , p1 , p2 , p2 , p2 , p2 , p2 , p2 , p2 , p2 , P , p1 , p2 , p2 & LE p2 , p2 , P , p1 , p2 & LE p2 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 , p1 , f in D ( ) & for g st g in D ( ) & ( for y st y <> x holds g . y = f ( y ) ) holds x in Free ( H ( ) ) & f . y = f ( y ) ) implies f in Free ( H ( ) ) & f . ( x , y ) = f . ( x , y ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( - 1 ) * ( |. 8 .| ) ) / ( 1 + ( |. 8 .| ) ) ^2 ) >= 8 & ( ( - 1 ) * ( |. 8 .| ) ) / ( 1 + ( |. 8 .| ) ^2 ) ) >= 0 ; assume for d7 being Element of NAT st d7 <= d7 holds ( ( ( n + 1 ) -d7 ) . d7 = ( ( n + 1 ) -d7 ) . d7 ) & ( ( n + 1 ) -d7 = ( ( n + 1 ) -d7 ) . d7 ) & ( ( n + 1 ) -d7 = ( n + 1 ) -d8 ) . d7 ; assume that s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of E st { e } = Ball ( x , r ) /\ Sphere ( y , r ) and e = Ball ( x , r ) /\ Sphere ( y , r ) ; given r such that 0 < r and for s st 0 < s holds 0 < s or ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. f /. x1 - f /. x0 .|| < r & |. f /. x0 - f /. x0 .| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( x | x ) | ( x | x ) ) | ( ( x | x ) | p ) .= ( ( x | x ) | p ) | p ; assume that x , x + h / 2 in dom sec and ( for x st x in dom sec holds sec . x = ( 4 * sec . x + h / 2 ) * sin . x ) / ( cos . x + h / 2 ) * sin . x ) ^2 and sin | A is bounded ; assume that i in dom A and len A > 1 and for B st B > 1 & B c= dom A & A . i = B holds ( A * B ) * ( i , j ) = ( A * ( i , j ) ) * ( B * ( i , j ) ) ; for i be non zero Element of NAT st i in Seg n holds ( i divides n or i = n or i = n ) & ( i <> n & i <> n implies h . i = 1. F_Complex ) & ( i divides n implies h . i = 1. F_Complex ) & ( i divides n implies h . i = 1. F_Complex ) ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( ( b1 'or' b2 ) '&' ( c1 'or' c2 ) '&' ( a1 'or' b1 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b1 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b1 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b1 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b1 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( b1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' ( a1 'or' b2 ) '&' assume that for x holds f . x = ( ( cot * cot ) `| Z ) . x and x in dom ( cot * cot ) and for x st x in Z holds ( ( cot * cot ) `| Z ) . x = cos . ( x - x0 ) and ( ( cot * cot ) `| Z ) . x = cos . ( x - x0 ) ; consider R8 , I-8 being Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k being Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. q- f /. x .|| < d holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 } \/ { x5 , x5 } \/ { x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 } \/ { A , x5 , x5 , x5 } \/ { A , x2 } \/ { x5 , x5 , x5 } \/ { x5 , x5 } \/ { x5 , x5 } \/ { A , x2 } \/ { A , x2 } \/ { x5 , x5 } \/ { x5 , x5 } \/ { x5 , x5 } \/ { x5 , x5 } \/ { x5 , x5 } G * ( j , ii ) `2 = G * ( 1 , ii ) `2 .= G * ( 1 , ii ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj ) `2 .= G * ( 1 , jj f1 * p = p .= ( the Arity of S1 ) +* ( the Arity of S2 ) . o .= ( the Arity of S1 ) +* ( the Arity of S2 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> FinSequence of T means : Def1 : q in it iff q in T & for p st p in P holds p in T or ex p st p in P & p in T1 & q = T . p or p in T1 & q in T1 & p in T1 or p in T1 & q in T1 & p in T1 & q in T1 or p in T1 & q in T1 & p in T1 & q in T1 ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= F\circ ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F9 . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F9 . ( p . ( k + 1 -' 1 ) , k + 1 ) .= F9 . ( p . ( k + 1 -' 1 ) , k + 1 ) .= F9 . ( p . ( k + 1 ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & width B = width C & len B = width C & len B > 0 & len A > 0 & len B > 0 & width A = width B & len B > 0 & width B = width C holds A * ( B * C ) = B * ( C * B ) seq . ( k + 1 ) = 0. COMPLEX + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of CQ ) \/ ( the carrier of CQ ) and y in ( the carrier of CQ ) \/ ( the carrier of CQ ) and [ x , y ] in the carrier of CQ and [ x , y ] in the InternalRel of CQ and [ y , x ] in the InternalRel of CQ ; defpred P [ Element of NAT ] means for f st len f = $1 & ( for k st k in dom f holds ( for i st i in dom f holds f . ( f . ( k + 1 ) ) = ( VAL g ) . ( f . ( k + 1 ) ) ) '&' ( ( VAL g ) . ( f . ( k + 1 ) ) ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= sn and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= sn and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= sn and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= sn ; for M being non empty dist , x being Point of M , f being Function of M , M st x = x `1 holds ex x being Point of M st f . x = Ball ( x `1 , 1 / ( 2 |^ n ) ) & for n being Element of NAT holds f . n = Ball ( x `1 , 1 / ( 2 |^ n ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds f1 . x = 1 / ( x + 1 / ( x + 1 ) ) ) & ( f1 - f2 ) `| Z = ( f1 `| Z ) . x - ( f2 `| Z ) . x ) ; defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. f /. $2 - f /. x0 .|| < r & $2 in Y & ||. f /. $2 - f /. x0 .|| < r & ||. f /. $2 - f /. x0 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) ; ( 1 / 2 * n0 + 2 * ( 2 * n0 + 2 * ( 2 * n0 + 1 ) ) ) * ( 2 * n0 + 2 * ( 2 * n0 + 1 ) ) = ( 1 / 2 * ( 2 * n0 + 1 ) ) * ( 2 * n0 + 1 ) .= 1 / 2 * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) .= 1 / 2 * ( 2 * n0 + 1 ) ; defpred P [ Nat ] means for G being non empty finite strict finite RelStr , R being strict symmetric RelStr st G is space & card the carrier of G = $1 & the carrier of R = the carrier of G & the carrier of R = the carrier of R & the InternalRel of R = the InternalRel of R & the InternalRel of R = the InternalRel of R & the InternalRel of R = the InternalRel of R ; not f /. 1 in Ball ( u , r ) & 1 <= m & m <= len ( - 1 ) & not 1 <= m & m <= len ( - 1 ) & LSeg ( f , i ) /\ Ball ( u , r ) <> {} & not m in Ball ( u , r ) & not m in Ball ( - 1 ) & not m in Ball ( - 1 , r ) & not m in Ball ( - 1 , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ( $1 ) ) ) . ( 2 * $1 ) = ( cos ( $1 ) ) . ( 2 * $1 ) & ( Partial_Sums ( cos ( $1 ) ) ) . ( 2 * $1 + 1 ) = ( cos ( $1 ) ) . ( 2 * $1 + 1 ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & x . i = ( the carrier of F ) . i & for i being set st i in dom F holds x . i = ( the carrier of F ) . i & x . i = ( the carrier of F ) . i & x . i = ( the carrier of F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n .= ( x |^ n ) |^ n ; DataPart Comput ( P +* ( a , I ) , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , LifeSpan ( P +* I , s ) + 3 ) ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= dom ( f1 + f2 ) /\ dom ( f2 + f1 ) and for g st g in ]. x0 , x0 + r .[ /\ dom ( f1 + f2 ) and g in ]. x0 , x0 + r .[ /\ dom ( f1 + f2 ) and for g st g in ]. x0 , x0 + r .[ /\ dom ( f1 + f2 ) holds f1 . g <= f2 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Subset of L & for x being Element of L st x in X holds x is directed & x is complete & x is complete & x is complete & x is complete holds x = sup ( waybelow l /\ waybelow ( x , L ) ) Support e8 in { m *' p where m is Nat : i in dom ( m *' p ) & ex i being Nat st i in dom ( m *' p ) & ex p being Polynomial of n , L st p in Support ( m *' p ) & i <= len ( m *' p ) & p . i = ( m *' p ) . i ; ( f1 - f2 ) /* s1 = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 - f2 ) /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g `1 & for g being Function of [: CQC-WFF ( Al ) , D ( ) :] , D ( ) st P [ g , ( len F ) --> 1 ] holds P [ g , ( len F ) --> 1 ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. ( len f -' 1 ) *> ) /. j = ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) . j ; ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len q + k ) ) . ( len q + k ) .= ( p ^ q ) . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) + ( q . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len p + k ) .= ( p . ( len len mid ( upper_volume ( D2 , D1 ) , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j ) ) = indx ( D2 , D1 , j1 ) - indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 + 1 .= indx ( D2 , D1 , j1 ) + 1 ; x * y * z = MQ . ( x * y , z ) .= x * ( y * z ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= x * ( y * z ) .= x * ( y * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) . i = partdiff ( v , ( x - x0 ) * ( x - x0 ) + ( y - x0 ) * ( x - x0 ) + ( y - x0 ) * ( x - x0 ) + ( y - x0 ) * ( x - x0 ) ) + ( proj ( 1 , 1 ) * ( x - x0 ) + ( y - x0 ) * ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 0 ) - ( 0 * 0 ) + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 * 1 , 0 * 1 * 1 , 0 * 1 , 0 * 1 , 0 * 1 + 0 * 1 * 1 * 1 + 0 * 1 + 0 * 1 + 0 * 1 + 0 * 1 + 0 * 1 * 1 + 0 * 1 * 1 + 0 * 1 + 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( L (#) ( L (#) ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) ( L (#) ( L (#) ( L (#) F2 ) ) .= Sum ( L (#) ( L (#) F2 ) ) .= Sum ( L (#) ( L (#) ( L (#) F2 ) ) + Sum ( F1 ^ F2 ) + Sum ( F1 ^ F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) ( L (#) F2 ) + Sum ( L (#) F2 ) ) + Sum ( L (#) ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) ex r be Real st for e be Real st 0 < e ex Y be finite Subset of X st 0 < e & Y is non empty & for Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y holds |. ( - lower_bound ( Y1 ) ) . e - lower_bound ( Y1 ) ) .| < r ; ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) ; ( cos ( x ) ) ^2 = ( - sin ( x ) ) ^2 + ( sin ( x ) ) ^2 .= ( - sin ( x ) ) ^2 + ( cos ( x ) ) ^2 .= ( - sin ( x ) ) ^2 + ( cos ( x ) ) ^2 .= ( - sin ( x ) ) ^2 + ( cos ( x ) ) ^2 .= ( - sin ( x ) ) ^2 + ( cos ( x ) ) ^2 .= ( - cos ( x ) ) ^2 ; ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 & ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 or ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 ; assume that ex_inf_of uparrow X /\ C , L and ex_sup_of X /\ C , L and ex_sup_of ( uparrow X /\ C ) , L and "\/" ( uparrow X , L ) = "/\" ( uparrow "\/" ( uparrow X /\ L ) , L ) and not "\/" ( uparrow X , L ) = "/\" ( uparrow "\/" ( uparrow X /\ L ) , L ) and "\/" ( uparrow X , L ) = "/\" ( uparrow "\/" ( uparrow X /\ L ) , L ) ; ( ( for j holds j in the Sorts of U1 ) . ( j , i ) = ( j |-- ( B , i ) ) ** id ( the Sorts of U1 , j ) ) & ( j = i |-- ( B , i ) ) ** id ( the Sorts of U1 , j ) ) = ( j |-- ( B , i ) ) ** id ( the Sorts of U1 , j ) )