thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is onto ; let q ; m = 1 ; 1 < k ; G is commutative ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in dom f ; assume f is prime ; not x in Y ; z = +infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is non empty ) ; assume x in I ; q is ) by 0 ; assume c in x ; 1-p > 0 ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is commutative ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is Assume f is Assume f is ) ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 + 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , $ n2 is , f ; Q halts_on s ; x in for of for of of S holds x in \in that S ; M < m + 1 ; T2 is open ; z in b < b < a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o >= o1 & o <= o2 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be complex normed space , v be VECTOR of V ; not s in Y to_power 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealLinearSpace , v be VECTOR of V ; P [ 1 ] ; P [ {} ] ; C1 meets C ` ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aor <= is Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial & s is non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , A , B ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= jj & jj <= len f ; set A = L /\ L ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is with_no or H is has \subseteq the carrier of S ; assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper implies H in G i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} & mm <> {} ; let x be Element of Y ; let f be ) of not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v + ( ex v st e in v & v in X ; - y in I ; let A be non empty set , B be set ; P0 = 1 ; assume r in F . k ; assume f is simple function in S ; let A be l -countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IB , C ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , X be Subset of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space of X ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} & mm <> {} ; M + N c= M + M ; assume M is connected hh) ; assume f is additive mab-rst ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & k1 <= len f ; f | A is continuous ; f . x - x <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CH ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < b2 implies a2 < b2 s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 , s4 = s4 , P4 = s4 , P4 = s4 , P4 = i2 , P4 = i1 , P4 = i2 , P4 = i2 , let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be as <> of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y are_\vert & y , z are_\vert ; R8 in dom f ; let a , b be Real , x be Point of TOP-REAL 2 ; let a be Object of C ; let x be Vertex of G ; let o be object of C , a be Object of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , k be Nat ; s4 . n = N ; set y = ( x `1 ) / ( 1 + x `2 ) ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; V1 is non empty & V2 is empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A is dense and A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars , C = Vars ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xY c= Z1 & xY c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim ( seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = ( sInt A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , I be Instruction of S ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom ( g2 * g1 ) ; n in dom g1 & n <= len g2 ; k + 1 in dom f ; the still of not s in { s } ; assume that x1 <> x2 and x2 <> x3 ; v3 in V1 & v2 in V1 & v3 in V2 ; not [ b `1 , b `2 ] in T ; i-35 + 1 = i ; T c= <> and G c= <> G ; l `1 = 0 & l `2 = 0 ; let n be Nat ; t `2 = r & t `2 = s ; AA is_integrable_on M & AA is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; Product seq is non empty ; e <= f or f <= e ; cluster non empty normal for sequence ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume vseq is sequence of sequence ( X ) ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ G ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 & z `2 = 0 ; p11 <> p1 or p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S & ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one full full implies G is onto A \/ { a } c= B ; 0. V = 0. Y & 0. V = 0. V ; let I be halting Instruction of S , s be State of S ; f-24 . x = 1 & f-24 . x = 0 ; assume z \ x = 0. X ; C4 = 2 to_power n & C5 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = K1 & p2 = K1 & p3 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMInt A is closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R ( ) , R ( ) :] is stable ; set cR = Vertices R , cR = Vertices R ; pp c= P3 & IC p c= s2 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b & downarrow b = downarrow a ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r & ||. x - y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( ) ; k in dom ( q | k ) ; p is } is FinSequence of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= len G ; g " * a in N & g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for } : strict for } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & rng I c= Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j - 1 ; dom S = dom F & dom F = dom G ; let s be Element of NAT , k be Nat ; let R be ManySortedSet of A , s be Element of S ; let n be Element of NAT ; let S be non empty non void non void holds S is holds S is non void ; let f be ManySortedSet of I ; let z be Element of F_Complex , v be Element of F_Complex ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= [: V1 , V1 :] ; assume I is_closed_on s , P & I is_halting_on s , P ; U2 = U2 & U2 = U2 implies U2 is open M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; f9 <= ( f . i ) & f . i <= ( f . i ) ; let l be Element of L ; x in dom ( F-17 ) ; let i be Element of NAT , k be Nat ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = ( Seg k ) \ { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod f = cod g ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for Sublattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite finite \mathclose { 0. K } , W be Subspace of V ; A * B on B , A & B on A ; f-3 = NAT --> 0 .= fg ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT , T = INT ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; ( PI / 2 ) * PI < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in IB ; Q * ( 1 , 3 ) = 0 & Q * ( 1 , 3 ) = 0 ; set j = x0 gcd m , i = x0 gcd m ; assume a in { x , y , c } ; j2 - jj > 0 & j - jj > 0 ; I the I \HM { {} } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( B - D ) ; s1 , s2 are_card ( rng s1 ) & s2 , s1 is card ( rng s1 ) ; j1 -' 1 = 0 & j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j & I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower bounded and 0 <= r ; p1 `1 = 1 & p1 `2 = - 1 ; a < p3 `1 & p3 `1 < b & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 <= len f -' 1 ; 1 <= i1 -' 1 & i1 <= len f -' 1 ; i + i2 <= len h & i + i2 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . ( g . O ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 , h2 = h2 (*) h1 , h2 = h2 (*) h1 , h2 = h2 (*) h1 , h2 = h2 (*) h2 , h2 assume x in X3 /\ ( X2 /\ 4 ) ; ||. h .|| < d1 & ||. h .|| < d ; not x in the carrier of support ( f ) ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be succ s ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive RelStr , X be Subset of L ; S-20 is x -Basis i Basis of S ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z , X ) ; P [ len ( F ( ) ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z (#) seq -> summable for sequence of X ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster implies for Element of ( AllSymbolsOf S ) ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 & T1 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q29 <> {} ; let k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of REAL & F . t is set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n , x be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) * ( p `1 ) ; not r in ]. p , q .] ; let R be FinSequence of REAL , x be Element of REAL ; not SS does not destroy b1 & not I does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - ( |[ x , y ]| ) .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT , n be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT & IC s = s . NAT ; H + G = F- ( G-seq ) ; Cx1 . x = x2 & Cy1 . x = y2 ; f1 = f .= f2 .= f2 .= f1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a & b1 <> a ; d3 , o _|_ o , a3 & d3 , o _|_ o , a3 ; IB is reflexive & IB is reflexive implies IB is reflexive IB is_antisymmetric implies C is_antisymmetric & C is_antisymmetric sup rng H1 = e & sup rng H1 = e ; x = ( a * a9 ) * ( a * b ) ; |. p1 .| ^2 >= 1 ^2 & |. p2 .| ^2 >= 1 ; assume that j2 -' 1 < 1 and j2 + 1 < len f ; rng s c= dom f1 & rng s c= dom f2 ; assume that support a misses support b and support b misses support b ; let L be associative commutative distributive non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 .= p . c ; R . n <= R . ( n + 1 ) ; Directed ( I1 , J ) = I1 " ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* \hbox { - } / N , 1 *> -> complete for non trivial TopSpace ; ( 1 / a ) " = a & ( 1 / a ) " = a ; ( q . {} ) `1 = o & ( q . {} ) `2 = {} ; ( n - 1 ) > 0 ; assume ( 1 / 2 ) * t `1 <= 1 ; card B = k + - 1 ; x in union rng ( f | X ) ; assume x in the carrier of R & y in the carrier of S ; d in dom f ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & { v } c= the carrier of G ; let G be let G be let e , v6 be set , v be set ; c . ( i - 1 ) in rng c & c . ( i + 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 , z1 = - z2 , z2 = - z1 , z2 = - z2 , z2 = - z1 , z1 = - z2 , z2 assume w is_llst S , G ; set f = p |-count t , g = p |-count t , h = p |-count t , n = p |-count t , n = p |-count t , m = p |-count t , n = p |-count t let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IB be Subset-Family of X , I be Subset of X ; reconsider p = p , q = q as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , P be Subset of SCM+FSA ; p is FinSequence of ( the carrier of SCM+FSA ) * ; stop I ( ) c= P-12 ( ) ; set ci = f^ ( f /. i ) ; w ^ t ^ s for w ^ s ; W1 /\ W = W1 /\ W ` & W2 /\ W = W2 /\ W ; f . j is Element of J . j ; let x , y be Subset of T2 , t be Element of T ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 implies a = 0 ord x = 1 & x is not positive implies x is not dom a set g2 = lim ( seq ) , g1 = lim ( seq ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . F-21 = 0 ; ( id X \/ R1 ) \/ R1 = id X & ( id X ) * R1 = id X ; ( sin . x ) <> 0 & ( sin . x ) <> 0 ; ( for x st x in Z holds ( ( #Z n ) * ( f1 + f2 ) ) `| Z ) . x > 0 o1 in ( X /\ O2 ) /\ ( X /\ O2 ) ; e , v6 be set , v be set ; r3 > ( 1 / 2 ) * 0 ; x in P .: ( F -Ideal of L ) ; let J be closed Subset of R , left be Ideal of R ; h . p1 = f2 . O & h . O = g2 . O ; Index ( p , f ) + 1 <= j ; len ( q @ ) = width M & width ( q @ ) = width M ; the carrier of CCK c= A & the carrier of CCK c= A ; dom f c= union rng ( F | X ) ; k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x ` , y ] in ( an "\/" R2 ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X & F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| , e = |. s2 .| as Real_Sequence ; ( 1 / m * m + r ) < p ; dom f = dom ( I --> ( f . x ) ) ; [#] PPPL = [#] ( PPL ) ; cluster - x -> ExtReal for ExtReal ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M , w2 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W2 & v in W3 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x `2 , y ) < ( r / 2 ) ; reconsider mm1 = m , mm2 = n as Element of NAT ; ( x0 - r ) < r1 - x0 & ( x0 - r ) < x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * ( idseq ( q `2 ) ) , g2 = p * ( idseq ( q `2 ) ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower bounded ; D2 . ( ID2 ) in { x } & D2 . ( ID2 ) in { x } ; cluster subcondensed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 , p3 be Point of TOP-REAL 2 ; Gik in LSeg ( PI , 1 ) /\ LSeg ( Gik , Gij ) ; let n be Element of NAT , x be Element of NAT ; reconsider SS = S , SS = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , P be Subset of SCMPDS ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , x , y be element ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N1 >= ( sqrt ( c / sqrt ( 2 * n ) ) ) / ( 2 * n ) ; reconsider tT = T" as TopSpace , TT = TT as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 & z2 in Q ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 & len W2 = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) & i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom f1 /\ dom f2 ; assume that p2 = E-max ( K ) and p2 `2 = E-max ( K ) ; len G + 1 <= i1 + 1 & i1 + 1 <= len G ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = f1 (#) f2 ; cluster seq + ( X - seq ) -> summable for Real_Sequence ; assume that j in dom M1 and i <= len M1 ; let A , B , C be Subset of X , a , b , c be Point of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> ^ <* y *> \geq x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) & len q = len G ; s1 = Initialize ( Initialized s ) , s2 = Initialize ( Initialized s ) , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of L & y ` is Element of L ; k = 0 & n <> k or k > n & k > n ; then X is discrete for X is closed ; for x st x in L holds x is FinSequence of REAL ||. f /. c .|| <= r1 & ||. f /. c .|| <= r ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n , Y ; let N , M be \mathbin { means : for x being Element of L holds x in M ; then z is_>=_than waybelow x & z >= compactbelow y ; M \lbrack f , g .] = f & M \lbrack g , f .] = g ; ( ( ( n + 1 ) to_power 1 ) ) /. 1 = TRUE ; dom g = dom f /\ X & dom h = X ; mode ^ of G is ^ of W , G is : Let : G is : 1 <= k & k <= len G ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) , x be Element of dom ( Subformulae p ) ; F1 . ( a1 , b1 ) = G1 & F1 . ( b1 , b2 ) = G2 ; redefine func Sphere ( a , b , r ) -> compact Subset of TOP-REAL 2 ; let a , b , c , d , e , f be Real ; rng s c= dom ( 1 / ( f . 0 ) ) ; curry curry ( F-19 , k ) is additive & curry curry ( F-19 , k ) is additive ; set k2 = card ( dom B ) , k1 = card ( dom B ) ; set G = ( X , X ) --> ( x , s ) ; reconsider a = [ x , s ] as of G ; let a , b be Element of ML , x be Element of ML ; reconsider s1 = s , s2 = t , s3 = t as Element of ( the carrier of S ) ; rng p c= the carrier of L & p . ( len p ) = p . ( len p ) ; let d be Subset of the bound of A ; ( x .|. x ) = 0 iff x = 0. W I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n , f = the carrier of TOP-REAL n ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng f c= the carrier of T ; rng h c= union ( ( the carrier of J ) --> { x } ) ; cluster All ( x , H ) -> \cal \cal for element ; d * N1 ^2 > N1 * 1 & d * N2 ^2 > N1 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 | D1 , h = f " D2 , f = f " D2 ; dom ( p | mm1 ) = mm1 & dom ( p | mm1 ) = mm1 ; 3 + - 2 <= k + - 2 & k + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot . x ) & tan . x > 0 ; x in rng ( f /^ p ) & y in rng ( f /^ p ) ; let f , g be FinSequence of D , i be Nat ; p ( ) in the carrier of S1 & q ( ) in the carrier of S2 ; rng f " = dom f & rng f = rng f ; ( the Source of G ) . e = v & ( the Source of G ) . e = v ; width G -' 1 < width G & width G -' 1 < width G ; assume v in rng ( S | E1 ) & u in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume that 0 in rng ( g2 | A ) and 0 < r ; let q be Point of TOP-REAL 2 , r , s be Real ; let p be Point of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* SS *> is_\in the carrier of C-20 & <* D *> is_\in the carrier of C-20 ; i <= len ( G * ( i2 -' 1 , k ) ) ; let p be Point of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; x1 in the carrier of [: I[01] , I[01] :] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. j ; g in { g2 : r < g2 & g2 < x0 } ; Q2 = SL " ( Q /\ dom ( P * ) ) ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) is summable ; - p + I c= - p + A & - p + I c= - p + I ; n < LifeSpan ( P1 , s1 ) & I <= LifeSpan ( P1 , s1 ) ; CurInstr ( p1 , s1 ) = i .= CurInstr ( p1 , s2 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z , y = y as Element of CompactSublatt L , x be Element of L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] & [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 4 ; let C1 , C2 be subfunctor of C , a be object of C1 , b be object of C2 ; reconsider V1 = V , V1 = B as Subset of X | B ; attr p is valid means : : : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " is Subgroup of H & H |^ a = H |^ a ; let A1 be p1 of O , E1 , A2 be Element of E ; p2 , r3 , q2 is_collinear & q2 , q3 , p1 is_collinear ; consider x being element such that x in v ^ K and x in A ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & q in [#] ( I[01] | B11 ) ; 0 . ( E . n ) < M . ( Eseq . n ) ; op ( c ) / ( c * d ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & b1 in dom ( F . s2 ) ; cluster -> Nat -\cal ' for non empty as as as > -* ; set i1 = the Nat , i2 = the Nat , i1 = the Nat , i2 = the Nat ; let s be 0 -started State of SCM+FSA , P be Initialize s ; assume y in ( f1 \/ f2 ) .: A & y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; pred X c= Y means : : : for X st X c= Y holds cos X c= cos Y ; let y be upper Subset of Y , x be Element of X ; cluster -> -> -> of x `1 -> -> every \rm \rm \rm \rm \hbox { - } -valued for sequence ; set S = <* Bags n , i<* n *> *> , T = <* <* n *> *> , S = <* n *> , T = <* n *> , S = <* n *> , T = <* n *> , T = <* n *> set T = [. 0 , 1 / 2 .] , S = [. 0 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) & len mid ( f , 1 , 1 ) = 1 ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f2 ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v & ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f & Support ( f *' ) c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp , a , b be Element of G ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 or p `1 = p1 `2 & p `2 = p2 `2 ; i + 1 <= len Cage ( C , n ) ; len ( <* P *> @ ) = len P & len ( <* P *> @ ) = len P ; set N-26 = the \subseteq of the \subseteq of N , Ny = the Element of N ; len g\rrangle + ( x + 1 ) - 1 <= x ; a on B & b on B & not b on B implies not a on B reconsider rr = r * I . v , rr = r * I . v as FinSequence ; consider d such that x = d and a (#) d [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ( n /^ n ) ; set q2 = N-min L~ Cage ( C , n ) , q1 = N-min L~ Cage ( C , n ) , q2 = q2 ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) & MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . q2 ; f " D meets h " V & f " D meets f " V ; reconsider D = E as non empty directed Subset of L1 , D ; H = the_left_argument_of H '&' ( the_left_argument_of H ) & H = the_left_argument_of H ; assume t is Element of ( S , X ) * & t is Element of ( S , Y ) * ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( thesis - k ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( UMP C , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { i } c= Seg m ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pi1 . i & pi2 . i = pi2 . i ; let PA , PA be a_partition of Y , a be Element of Y ; pred 0 < r & r < 1 & 1 < r & r < 1 ; rng ( ) = [#] ( X ) & ( ex x st x in X & x in X ) ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( rng ( s ) ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( ( the topology of X ) /\ the topology of Y ) ; dom ( f . 0 ) c= dom ( u . 0 ) ; pred n divides m & m divides n & n = m ; reconsider x = x , y = y , z = z as Point of [: I[01] , I[01] :] ; a in dom not y0 in the still of f & not ( ex y st y in the carrier of f & not y in the carrier of f ) ; Hom ( ( a ~ ) , c ) <> {} & Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < p " ; consider c , d such that dom f = c \ d and rng f c= d ; [ x , y ] in [: dom g , dom k :] ; set S1 = Let ( x , y , z ) , S2 = L +* S ; l2 = m2 & l1 = i2 & l2 = j2 implies ( ( - l1 ) * ( - l2 ) ) = ( - l2 ) * ( - l2 ) x0 in dom ( u01 ) /\ A & ( u01 ) . x0 in A ; reconsider p = x , q = y , r = z as Point of TOP-REAL 2 ; I[01] = R^1 | B01 & dom ( ( TOP-REAL 2 ) | B01 ) = B01 ; f . p4 <= f . p1 & f . p2 <= f . p3 ; ( ( F . x ) `1 ) ^2 <= ( x `1 ) ^2 + ( F . x ) ^2 ; x `2 = ( Wp ) `2 & ( Wp ) `2 = ( Wp ) `2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume that 1 <= i & i <= len <* a " *> and j <= len <* a *> ; 0 |-> a = <*> ( the carrier of K ) & a = <*> ( the carrier of K ) ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] implies P [ succ a ] ; reconsider s\rbrace = s\rbrace , sor sp2 = sp2 as \mathopen of D ; ( i - 1 ) <= len ( thesis ) - j ; [#] S c= [#] ( T ) & [#] S c= [#] ( T ) ; for V being strict RealUnitarySpace holds V in assume k in dom mid ( f , i , j ) & k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 , p3 be Point of TOP-REAL 2 ; let A , B be Matrix of n1 , K , n , m be Nat ; - a * - b = a * b & - a * b = - a ; for A being Subset of AS holds A // A implies A // C ( for o2 being element st o2 in dom o2 holds o2 . ( o2 , o2 ) = <* o2 , o1 *> ) ; then ||. x .|| = 0 & x = 0. X & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , x be Element of G ; j >= len upper_volume ( g , D1 ) & len upper_volume ( g , D2 ) = len D2 ; b = Q . ( len Qb - 1 + 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 is divergent_to-infty & f2 * f1 is divergent_to-infty ; reconsider h = f * g as Function of ( f * g ) , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of TT & ( v |-- E ) | n is Element of TT ; {} = the carrier of L1 + L2 & the carrier of L1 c= the carrier of L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p = p +* q , q = p +* q , P = Q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 , x be Element of ( the carrier of G ) ; reconsider Y = Y as Element of [: Ids L , Ids L :] ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j be Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( P + ) & len ( P + Q ) <= len ( P + Q ) ; x1 `1 = x2 `1 & x1 `2 = y2 & x2 `2 = y2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of ( FT1 ) . n ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * ( 1_ G ) = h " * g * h .= h ; let p , q be Element of Let ( V , C ) , a be Element of Let ( V , C ) ; x0 in dom x1 /\ dom x2 & x1 - x0 < x1 - x0 & x1 - x0 < x1 - x0 ; ( R qua Function ) " = R " & ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * i ) ) ) ) ) ) ) ) = R ; n in Seg ( len ( f /^ 1 ) ) & n in Seg ( len f -' 1 ) ; for s being Real st s in R holds s <= s2 implies s <= s2 rng s c= dom ( f2 * f1 ) & rng ( f2 * f1 ) c= dom ( f2 * f1 ) ; synonym ) ( X ) for for ) ( X ) \ { {} } ; ( 1. K ) * ( 1. K ) = 1. K & ( 1. K ) * ( 1. K ) = 1. K ; set S = Segm ( A , P1 , Q1 ) , S = Segm ( A , P1 , Q1 ) , Q = Segm ( A , P1 , Q1 ) , S = Segm ( A , P1 , Q1 ) , S = Segm ( A , P1 , Q1 ) , ex w st e = ( w - f ) & w in F ; curry ( PF , k ) # x is convergent & curry ( PF , k ) # x is convergent ; cluster open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 .= len f3 + len f3 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) , z be Element of S ; b1 , c1 // b9 , c2 & b1 , c1 // c , c1 & b1 , c1 // c , c1 ; consider p being element such that c1 . j = { p } and p in A ; assume f " { 0 } = {} & f is total & f is total ; assume that IC Comput ( F , s , k ) = n and IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a ; ( Macro ( card I + 1 ) ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = LifeSpan ( p3 , s3 ) , P4 = p ; IC SCMPDS in dom Initialize ( p ) & IC SCMPDS in dom Initialize ( p ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 & ( ( E-max L~ f ) .. f ) .. f = ( ( E-max L~ f ) .. f ) .. f ; let a , b be Element of Let ( V , C ) , c be Element of V ; Cl ( union ( Int Cl F ) ) c= Cl ( Int Cl ( Int Cl F ) ) ; the carrier of X1 union X2 misses ( ( the carrier of X1 ) \/ ( the carrier of X2 ) ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = { x } or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H ; consider m being element such that m in Intersect ( FF , B ) and m in Y ; reconsider A1 = support ( u1 ) , A2 = support ( v1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -\bf carrier of S -> ( ) -element for string of S ; LG2 /. n2 = LG2 . n2 & LG2 /. n2 = LG2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 , p3 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rppc= LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , p be Point of TOP-REAL n ; assume that [ k , m ] in Indices DD1 and [ k , m ] in Indices DD1 ; 0 <= ( ( 1 / 2 ) |^ p ) / ( p |^ n ) ; ( F . N ) | E8 . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card X-18 <= card ( u \/ { x } ) + card ( X \/ Y ) ; set g = z :- ( ( L~ z ) .. z ) , M = z .. z , N = len z , S = L~ z , N = L~ z , N = rng z , S = L~ z , N = rng z , N = rng z , S then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -\mathop { X } , D ; reconsider B = A , C = B as non empty Subset of TOP-REAL n , a = b - a ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) & indx ( D2 , D1 , j1 ) <= len D2 ; ( ( g2 ) . O ) `1 = - 1 & ( g2 ) . I = - 1 ; j + p .. f -' len f <= len f - len f + 1 - len f ; set W = W-bound C , E = W-bound C , N = S-bound C , S = S-bound C , N = S-bound C , N = S-bound C , S = S-bound C , N = S-bound C , N = S-bound C , S = S-bound C , N = S-bound S1 . ( a ` , e ) = a + e .= a ` ; 1 in Seg width ( M * ( ColVec2Mx p ) ) & len ( M * ( ColVec2Mx p ) ) = n ; dom ( i (#) Im ( f ) ) = dom Im ( f ) ; ^2 = W . ( a , *' ( a , p ) ) ; set Q = non / ( ) , <= _ ( B , f , h ) ; cluster -> MS[ U1 , U2 :] -> MS[ i , j ] -> MS[ i , j ] ; attr ex A st F = { A } & F is discrete ; reconsider z9 = \hbox { z } , z9 = the Element of product \overline G , z9 = the Element of product G ; rng f c= rng f1 \/ rng f2 & rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 ) implies E , j |= H reconsider n1 = n , n2 = m , n1 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 .= card B2 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies card ( x \ B1 ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set q-19 = ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ( q , <* s *> ) ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , dom ( ) --> NAT ) , mw = max ( B , NAT ) ; t in Seg width ( I ^ ( n , n ) ) & t in Seg n ; reconsider X = dom f , C = C as Element of Fin ( NAT ) ; IncAddr ( i , k ) = <% ( l + k ) . ( x + k ) %> ; S-bound L~ f <= q `2 & q `2 <= N-bound L~ f & q `2 <= N-bound L~ f ; attr R is condensed means : : : for Int R being Subset of R holds Int R is condensed & Int R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 3 >= 0 ; x , z , y is_collinear & x , z , y is_collinear & x , z , y is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a & a |^ n1 = a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 } , x ) in Line ( x , a * x ) ; set yx1 = <* y , c *> , yx2 = <* c *> , yx2 = <* d *> , yx2 = <* c *> , yx2 = <* d *> , yx2 = <* d *> , yx2 = <* c *> , yx2 = <* d *> , FF2 /. 1 in rng Line ( D , 1 ) & FF2 . 1 in rng Line ( D , 1 ) ; p . m Joins r /. m , r /. ( m + 1 ) , G ; p `2 = ( f /. i1 ) `2 & p `2 = ( f /. ( i1 + 1 ) ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u , v2 = v , u2 = w as VECTOR of C`1 , the carrier of X ; p |-count ( Product Sgm X11 ) = 0 & p |-count ( Sgm X11 ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = card I + 4 .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 x in { x , y } & h . x = {} ( Tx , y ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of ( ( the charact of A ) * the charact of B ) ) .= len the charact of ( A * the charact of B ) ; reconsider m = M , i = I , n = N , m = M as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : ( G-15 `1 ) \ { G } ; rng F c= the carrier of gr { a } & F is finite & F is finite implies F is finite implies for K being ) of [: K , n , r :] holds P is R -valued f . k , f . ( thesis ) . ( Let n ) in rng f ; h " P /\ [#] T1 = f " P & h " P /\ [#] T1 = {} ; g in dom f2 \ f2 " { 0 } & f in f2 " { 0 } ; gimplies X /\ dom f1 = g1 " X & X /\ dom f2 = dom f1 ; consider n being element such that n in NAT and Z = G . n ; set d1 = non empty \bf dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( y2 , y2 ) , d1 = dist ( x2 , y2 ) , d2 = dist ( y2 , y2 ) , d2 = b `2 + 1 / 2 < ( 1 - 1 ) / 2 + 1 / 2 ; reconsider f1 = f , f2 = g as VECTOR of the carrier of X , Y ; pred i <> 0 means : : : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg ( len ( g2 . i2 ) ) & 1 <= j2 & j2 <= len ( g2 . i2 ) ; dom ( i + 1 ) = dom ( i + 1 ) .= dom ( i + 1 ) .= dom ( i + 1 ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of ]. PI / 2 , PI / 2 .[ , REAL ; Ball ( u , e ) = Ball ( f . p , e ) & Ball ( u , e ) c= Ball ( u , r ) ; reconsider x1 = x0 , y1 = x1 as Function of S , IS , T ; reconsider R1 = x , R2 = y , R1 = z , R2 = w as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL & p in RL ; S1 +* S2 = S2 +* S2 & S2 +* S2 = S1 +* S2 +* S2 ; ( ( - 1 ) (#) ( cos * ( f1 + f2 ) ) ) is_differentiable_on Z & for x st x in Z holds ( ( - 1 ) (#) ( sin * ( f1 + f2 ) ) ) `| Z ) . x = f . x cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; E\pi . e2 = E8 . e2 & E8 . e2 = E8 . e2 ; ( ( arctan * ( ln * ( f1 + f2 ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 ) / 2 & lower_bound A = 0 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f ) ) is_transformable_to F . ( cod f , - F . ( cod f ) ) ; reconsider pNAT = qNAT , pn2 = qn2 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y1 & g . W in [#] Y1 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) /\ LSeg ( g , i ) ; rng s c= dom f /\ ]. -infty , x0 + r .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq ( 2 ) , Rev ( idseq ( 2 ) ) } ; reconsider n2 = n , m2 = m , n1 = n , n2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y & y <= g ; for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 ) , Bf = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume that R -Seg ( a ) c= R -Seg ( b ) and R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .] or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; pred x1 <> x2 means : : : for x1 , x2 st x1 - x2 > 0 & x1 - x2 < 0 holds |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 - p1 , p3 - p1 - p1 , p3 - p1 - p3 - p1 , p3 - p1 - p3 - p1 is_collinear ; set q = ( U * f ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( succ t ) ) = dom ( T * ( succ t ) ) ; consider x being element such that x in wc iff x in c & x in X ; assume ( F * G ) . ( v . x3 ) = v . ( x4 . x3 ) ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D2 c= the carrier of D1 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) , s = W-bound L~ Cage ( C , n ) , w = W-bound L~ Cage ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( n1 -' len f + 1 <= len ( - 1 ) + 1 - len f + 1 ; set C-2 = ( ( `1 ) `1 ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( ) & $1 <= n implies f . $1 = g . $1 ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 , s4 = P1 , P4 = P1 , P4 = P1 , P4 = P1 , P4 = P2 , P4 = Comput ( P2 , s2 , k + 1 ) , P4 = P2 , P4 = P2 , P4 = Comput ( P3 , let l be and let A be Subset of k , A1 , A2 be Subset of k ; reconsider U2 = union ( G-24 ) , U2 = union ( G-24 ) as Subset-Family of TS ; consider r such that r > 0 and Ball ( p `2 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p$ = <* - c9 , 1 , 1 *> & pcnon empty ; synonym f is real-valued means : \lbrace f , g .[ c= ( dom f ) \ { f } ; consider b being element such that b in dom F and a = F . b ; x10 < card X0 + card Y0 & x10 < card X0 + card X0 & x10 < card X0 + card X0 ; pred X c= B1 means : : : for B1 st X c= B1 holds \mathop { \rm _ _ X } c= B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , 0 , 2 ) ; pred 1 <= len s means : : : for i being Nat holds ( for s being Element of NAT holds s . i = s . i ) ; f(#) f c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G c= the carrier of G ; pred p '&' q in \cdot ( L => p ) means : : : q '&' p in * ( L => p ) ; - ( t `1 ) < ( t `2 ) / ( 1 + t `2 ) ; U2 . 1 = U2 /. 1 .= ( U2 /. 1 ) . 1 .= ( ( U2 . 1 ) * ( U2 . 1 ) ) ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O @ ) = [: Seg n , Seg n :] & dom ( ( n , n ) --> ( n , 1 ) ) = Seg n ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ implies ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is unital & f is <> 0. K & f is invertible ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| Let ( - 1 ) * ( |[ w1 , v1 ]| ) <> 0. TOP-REAL 2 ; reconsider t = t , s = ( t , s ) / ( t , s ) as Element of INT ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) & C c= C ; f " V in ( the topology of X ) /\ D & f " ( the carrier of X ) = D ; x in [#] ( ( the carrier of A ) /\ A ) /\ ( the carrier of B ) ; g . x <= h1 . x & h . x <= h1 . x & h . x <= h . x ; InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = being Matrix of i , a , a * Line ( M , i ) , M = Line ( M , i ) , N = Line ( M , i ) , S = Line ( M , i ) , S = Line ( M , i ) , M = Line ( M , i ) , S = assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len F1 ^ F2 ) & width B2 = len ( Len F1 ^ width F2 ) ; len ( ( the X of n ) --> i ) = n & len ( ( the X of n ) --> i ) = n ; dom max ( - ( f + g ) , f ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( for n holds seq . n = upper_bound Y1 ) implies seq is convergent & lim seq = upper_bound Y1 dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 / y , y ] = 1 / ( 1 * v1 ) * v1 .= y ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and not W is trivial and not W is trivial ; C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) & C6 * ( i1 , i2 ) = G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds inf rng f\rbrace <= b & b <= sup rng f\rbrace ; - ( ( q1 `1 ) / |. q1 .| ) = 1 & ( q1 `2 ) / |. q1 .| = 1 ; ( LSeg ( c , m ) \/ ( REAL \/ { l } ) ) \/ LSeg ( l , k ) c= R ; consider p be element such that p in Ball ( x , r ) and p in L~ f ; Indices ( X @ ) = [: Seg n , Seg n :] & dom ( X @ ) = Seg n ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> ( ) -valued for Element of D ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( N-min L~ Cage ( C , n ) , NW-corner L~ Cage ( C , n ) ) /\ LSeg ( NW-corner , p2 ) ; set R8 = R / 1 , R8 = ]. b , +infty .[ , R8 = ]. b , +infty .[ , R8 = ]. b , +infty .[ , R8 = ]. b , +infty .[ , R8 = ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , da ) .= SubFrom ( da , da ) .= goto ( ( card I + k ) + k ) ; seq . m <= ( the Sorts of ( seq ^\ k ) ) . ( n + k ) ; a + b = ( a ` *' b ) ` & ( a ` *' b ) ` = ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x reconsider H = U1 \/ U2 , U2 = U2 as non empty Subset of U0 , U1 = ( U1 /\ U2 ) /\ U2 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) ) /\ j /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( card the carrier of R ) and card A = card A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( N-min ( P ) ) `2 = N-bound ( P ) & ( N-min ( P ) ) `2 = N-bound ( P ) ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a2 = f . a2 ` ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 .= ( g | G ) . s0 ; the InternalRel of S is non empty & the InternalRel of S is Relation of the carrier of S & the InternalRel of S is non empty ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 + 1 ) & phi . ( $2 ) = phi . ( $2 ) ; F . a1 = F . a2 & F . a2 = F . a1 & F . a2 = F . a2 ; x `2 = A . ( o , a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) \ { x } ) c= the topology of T & FinMeetCl ( ( the topology of S ) \ { x } ) c= the topology of T ; synonym o is \bf means : : : o <> \ast & o <> * & o <> * ; assume that X = Y + Z and card X <> card Y and card Y <> card Z and card X <> card Z ; the *> of s <= 1 + ( the *> of s ) & the { F ( ) . ( s , 1 ) = ( the { F ( ) . ( s , 1 ) ) ; LIN a , a1 , d or b , c // b1 , c1 or a , c // c1 , b1 ; e / 2 . 1 = 0 & e / 2 . 3 = 1 & e / 2 . 3 = 0 ; ES1 in SS1 & not ES1 in { NS1 } & not ES1 in SS2 ; set J = ( l , u ) ] ; set A1 = Let ( a9 , b9 , c , d ) , A2 = [ b9 , c , d ] , A2 = [ a9 , b9 , c , d ] ; set vs = [ <* c , d *> , '&' ] , C = [ <* d , c *> , '&' ] , D = [ <* c , d *> , '&' ] , E = [ <* d , c *> , '&' ] , F = [ <* c , d *> , '&' ] , D = [ <* d , c *> , '&' ] , E = x * z `2 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x <> 0 ; Int cell ( f , 1 , G ) c= RightComp f \/ L~ f & not ( f /. 1 ) in L~ f ; U2 is_an_arc_of W-min C , E-max C & P = W-min C implies P = W-min C or P = W-min C & P = W-min C set f-17 = f @ "/\" @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ attr S1 is convergent means : : : for S2 st S2 is convergent holds S1 - S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a + ( 0 qua Ordinal ) .= a + ( 0 qua Ordinal ) .= a + ( 0 qua Ordinal ) ; cluster -> \in be \in be \in be \in be \in be reflexive transitive transitive non empty reflexive transitive RelStr , F be symmetric non empty strict RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( a - x ) / ( 0 , 1 ) ) ) = len l ; t4 } is ( {} \/ rng t4 ) -valued ( {} , rng t4 ) -valued finite Function ; t = <* F . t *> ^ ( C . p ) ^ ( C . q ) .= ( C . p ) ^ q ; set p-2 = W-min L~ Cage ( C , n ) , p`2 = W-min L~ Cage ( C , n ) , p`2 = W-bound L~ Cage ( C , n ) , p`2 = W-bound L~ Cage ( C , n ) , p`2 = W-bound L~ Cage ( C , n ) , p`2 = W-bound L~ Cage ( C , n ) ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D ` and u in D ; len ( ( width aG ) |-> a ) = width ( aG ) & width ( ( width aG ) |-> a ) = width ( a * ( width A ) ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) & FM . x in dom ( G * the_arity_of o ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H1 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m & Comput ( P , s , 6 ) . intpos m = s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) .= ( l + 1 ) + 1 ; dom ( ( cos * ( sin - cos ) ) `| REAL ) = REAL & dom ( ( cos * ( sin - cos ) ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + ( 1 + ( not m ) ) ) -element for string of S ; set b5 = [ <* a7 , c8 *> , [ <* A1 , cin *> , '&' ] , b6 = [ <* cin , cin *> , '&' ] , b7 = [ <* A1 , cin *> , '&' ] , b8 = [ <* cin , cin *> , '&' ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= Line ( M , i ) ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & ( ( the Sorts of A ) * the_arity_of o ) . n = ( the Sorts of A ) . ( ( the Arity of S ) . o ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y be Point of X such that a = y and ||. x-y - x .|| <= r ; set x3 = t2 . DataLoc ( ( 8 + 2 ) , 2 ) , x2 = s . SBP , x3 = s . SBP , x4 = s . SBP , x4 = s . SBP , 7 = s . SBP , 6 = s . SBP , 7 = s . SBP , 8 = s . SBP , 8 = s . SBP set p-3 = stop I ( ) , pI = stop I ( ) , pI = Initialize s2 , pI = Initialize s2 , pI = Initialize s2 , pI = Initialize s2 , pI = Initialize s2 , pI = Initialize s2 , pI = Initialize s2 , pI = P ( ) , , pI consider a being Point of D2 such that a in W1 and b = g . a and a in W1 ; { A , B , C , D , E } = { A , B } \/ { C , D , E } let A , B , C , D , E , F , J , M , N , M , N , N , M , N , N , M , N , N , M , N , N , N , M , N , N , M , N , N , N , M , N , N , M , N , |. p2 .| ^2 - ( p2 `2 ) ^2 - ( p2 `1 ) ^2 >= 0 & |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( l + 1 ) + ( \setminus { x } ) + 1 ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = , the TopStruct of L , the TopStruct of S = the TopStruct of L , C = the Scott F of S , D = the TopStruct of S ; consider y being element such that y in dom H1 and x = H1 . y and y in ( H1 . x ) ; fv \ { n } = \mathop { \rm Free ( v1 , H ) } & fv \ { n } = Free ( v1 , H ) ; for Y being Subset of X st Y is summable holds Y is summable iff Y is number 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } \rm <* s *> ) = len s & len ( the { - s } ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) & rng ( h2 * f1 ) c= the carrier of ( ( TOP-REAL 2 ) | D ) ; j + ( len f ) - len f <= len f + ( len g ) - len f ; reconsider R1 = R * I , R2 = R * I , R1 = ( id REAL ) * I , R2 = ( id REAL ) * I , R2 = ( id REAL ) * I ; C8 . x = s1 . ( x0 - 1 ) .= C8 . x .= C8 . x ; power ( F_Complex ) . ( z , n ) = 1 .= ( x |^ n ) |^ ( n -' 1 ) .= x |^ n ; t at ( C , s ) = f . ( ( the connectives of S ) . t ) & ( the connectives of S ) . t = s ; support ( f + g ) c= support f \/ support g & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & for i st i in N holds ( ( seq1 | N ) . i ) > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] ; { [ x1 , x2 ] where x1 is Point of [: X1 , X2 :] : x1 in X } is Subset of [: X1 , X2 :] ; h = ( i , j ) |-- h , id B = H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A ; set X = ( ( \lbrace q , O1 } ) `1 ) , Y = ( ( \lbrace q , O1 } ) `2 ) , Z = { ( q , O1 ) `2 } ; b . n in { g1 : x0 < g1 & g1 < a1 . n } & ( for n holds a1 . n < x0 ) ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of Y = the lattice of the lattice of the open of Y & the carrier of X c= the carrier of X & the carrier of Y c= the carrier of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; q2 = len ( q0 ^ r1 ) + len q1 & q1 = ( q0 ^ q1 ) ^ ( q2 ^ q1 ) ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z & ( ( 1 / a ) (#) ( sec * f1 ) ) is_differentiable_on Z ; set K1 = integral ( ( lim ( lim ( H , A ) ) || A1 ) , K1 = integral ( H , A ) || A1 , K1 = integral ( H , A ) || A1 ) , K1 = dom ( H , A ) || A1 ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider da = dom a `1 , db = dom F `1 , db = dom F `1 , db = dom G `1 , db = dom G `1 , db = dom G `1 , db = dom G `1 , db = dom F `1 , db = dom G `1 , db = dom G `1 , db = dom G `1 LSeg ( f /^ q , j ) = LSeg ( f , j ) /\ q .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 and f * f1 = <* f , g *> ; dom Sb = dom S /\ Seg n .= dom Lb .= dom Lb .= Seg n /\ Seg n .= dom ( Lb | Seg n ) ; x in H |^ a implies ex g st x = g |^ a & g in H & a in H * ( ( a , 1 ) * n ) = a `2 - ( 0 * n ) .= a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 >= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ = g @ @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) / p .= p * ( p / p ) .= 1 * p ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f + 1 ; dom F-11 = dom ( F | ( N1 /\ S-23 ) ) .= ( the carrier of S1 ) /\ the carrier of S2 ; dom ( f . t ) * I . t = dom ( f . t ) * g . t ; assume a in ( "\/" ( ( ( T |^ the carrier of S ) ) .: D , S ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f * f `2 = id a and f is one-to-one and f is one-to-one ; ( cos | [. 2 * PI * 0 , PI + ( 2 * PI * 0 ) .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS & Index ( Gij , LS ) <= len LS - Gij .. LS ; let t1 , t2 , t3 be Element of ( T , s ) . ( NAT + 1 ) , t be Element of ( T , s ) . ( NAT + 1 ) ; "/\" ( ( Frege ( curry H ) ) . h , L ) <= "/\" ( ( Frege ( curry G ) ) . h , L ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j & j < len f ; Q [ ( [ D . x , 1 ] ) `1 , F ( [ D . x , 1 ] ) `2 ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is for of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= ( the carrier' of S1 ) --> ( the carrier' of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a , b1 ) <= dist ( a , b2 ) + dist ( b , b1 ) ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) /. len Upper_Seq ( C , n ) = Wq ; q `2 <= ( UMP Upper_Arc C ) `2 & ( UMP C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) /\ LSeg ( f , i ) = {} ; given a being ExtReal such that a <= IB and A = ]. a , IB .] and a <= sup IB ; consider a , b be complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= m & b |^ n in X } , Y = { b |^ n where n is Element of NAT : n <= m } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , zx = [ <* z , x *> , f3 ] , zx = [ <* z , x *> , f3 ] , zx = [ <* x , y *> , f3 ] , zx = [ <* z , x *> , f3 ] , zx = [ <* z , x *> ( l /. len ( l ) ) = ( l . ( len ( l ) ) ) .= ( l . ( len ( l ) ) ) ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) * ( 1 + sn ) < 1 ; ( ( ( S \/ Y ) `2 ) /\ ( ( S \/ Y ) `2 ) ) = ( ( S \/ Y ) `2 ) /\ ( ( S \/ Y ) `2 ) ; ( seq - seq ) . k = seq . k - seq . k & ( seq - seq ) . k = ( seq . k - seq . k ) - ( seq . k ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X0 & the carrier of X = the carrier of X0 & the carrier of X = the carrier of X0 ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A ) , Ah = chi ( X , A ) , Ah = chi ( X , A ) ; R / ( 0 * n ) = I\HM ( X , X ) .= R / ( n * 0 ) .= R / ( n * 0 ) ; ( Partial_Sums ( curry ( F-19 , n ) ) ) . n is nonnegative & ( Partial_Sums ( ( curry ( F-19 , n ) ) ) . n ) is nonnegative ; f2 = CK . ( EK , len ( EK ) ) .= CK . ( EK , len ( EK ) ) ; S1 . b = s1 . b .= S2 . ( b ) .= S2 . ( b ) .= S2 . ( b ) .= S2 . ( b ) ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) & p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) c= Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 11 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) implies ( X , l2 ) implies ( X , l2 ) is ( X , l2 ) ) implies X is ( X , l2 ) ) synonym p is invertible for ( p , T ) is invertible & ( p is invertible implies p is invertible ) ; Y1 `2 = - 1 & 0. TOP-REAL 2 = - 1 & 0. TOP-REAL 2 = ( - 1 ) * ( 1 + ( - 1 ) ) & 0. TOP-REAL 2 = ( - 1 ) * ( 1 + ( - 1 ) ) ; defpred X [ Nat , set , set ] means P [ $1 , $2 , , , ] & $2 = [ $1 , $2 , ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g and x0 < x0 + g ; Det ( I @ ) ~ = ( ( m - n ) * ( m - n ) ) @ .= ( 1. K ) * ( m - n ) ; ( - b ) / sqrt ( b ^2 - 4 * a * c ) < 0 ; Cseq . d = Cseq . da mod Cseq . da & Cseq . d = Cseq . da mod Cseq . da ; attr X1 is dense means : : : X1 is dense & X2 is dense & X1 is dense & X2 is dense & X1 is dense & X2 is dense ; deffunc F6 ( Element of E , Element of I ) = $1 * $2 & $2 = ( $1 * $2 ) * ( $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T ( ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ y .= 0. X .= 0. X ; for X being non empty set for Y being Subset-Family of X holds for F being Subset-Family of X holds F is Basis of [: X , Y :] synonym A , B are_separated means : : : for B being Subset of X st B misses A & B misses B holds A misses B ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & len ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & x < 1 } ; ( Sgm ( \bf m ) ) . d - ( Sgm ( \bf m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len A & width A = len B ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC ( s , 9 ) .= ( 5 + 9 ) .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) & LSeg ( f /^ q , j ) misses LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) .= f . ( lower_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y in Y ` & x in X holds y <= x ` & y <= x ` ; func |. p .| -> variable of A means : : : for p being variable of A holds it . p = min ( NBI ( p ) , p ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 '||' y `1 , t `2 ; dom x1 = Seg ( len x1 ) & len x1 = len l1 & for i st i in Seg ( len x1 ) holds x1 . i = ( x1 /. i ) * ( x1 /. i ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f /. s1 .|| = ||. f .|| /. ( s1 . ( s1 . n ) ) - f /. ( s1 . n ) .|| ; ( the InternalRel of A ) ` /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and p . i = q . j ; reconsider h = f | X ( ) , g = f | X ( ) as Function of X ( ) , rng f , Y ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 implies ( for v st v in the carrier of W1 holds ( v in the carrier of W2 ) ) & ( v in the carrier of W1 ) defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . ( $1 + 1 ) & f . ( $1 + 1 ) <= f . ( $1 + 1 ) ; ^ ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b * x + y .= b ; - ( x-y ) = - x + - ( - y ) .= - x + - y .= - x + y .= - ( x + y ) ; given a being Point of GX such that for x being Point of GX holds a , x are_\HM { a } and a , x are_\HM { a } ; fJ = [ [ dom ( @ f2 ) , cod ( @ g2 ) ] , h2 ] .= [ [ cod ( @ g2 ) , cod ( @ g2 ) ] , h2 ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in A ` ; consider u , v being Element of R , a being Element of A such that l /. i = u * a * v and a in I ; ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) > 0 ; L-13 . k = Ln . k & F . k in dom Ln & F . k = Ln . k ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( card I + 1 ) , i2 = goto ( card I + 2 ) , i2 = goto ( card I + 2 ) , i2 = goto ( card I + 2 ) , i1 = goto ( card I + 2 ) , i2 = goto ( card I + 2 ) , i2 = goto ( card I + 2 ) , i2 = goto ( card I + 2 ) , attr B is thesis means : : : for B being set holds B is SubSub\bf & S = B `1 & S = ( B `1 ) `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" ( d "/\" D ) = { a "/\" d where d is Element of N : d in D } ; |( exp_R , q29 )| * |( exp_R , q29 )| >= |( exp_R , q )| * |( exp_R , q )| & |( exp_R , q )| >= |( exp_R , q )| ; ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A .= ( - f ) . sup A ; ( G * ( len G , k ) ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> .= <* ( proj ( i , n ) ) . LM *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( the reproj of i , x ) . ( f1 . x ) ) ; pred ( for x st x in Z holds ( ( tan * ( f1 + f2 ) ) `| Z ) . x = ( tan * ( f1 + f2 ) ) . x ) ; ex t being SortSymbol of S st t = s & h1 . x = h2 . t & ( for x being Element of S holds x in rng h1 ) ; defpred C [ Nat ] means P8 ( ) is $1 -Int & A8 is n -Int implies A is $1 -Int { x } ; consider y being element such that y in dom ( p . i ) and ( q . i ) . y = ( p . i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( support A ) . ( ( index B ) . ( index B ) ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st c in dom T holds d . c = id c N ( f , n , p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p `2 = ( ( c | ( n , L ) ) *' ( - ( f . x ) ) ) *' .= ( - c ) * ( ( - ( f . x ) ) ) ) *' ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 , r3 ]| ) in f1 .: W2 & f2 . ( |[ r2 , r3 ]| ) in f1 .: W2 & f1 . ( |[ r2 , r3 ]| ) in f2 .: W3 ; eval ( a | ( n , L ) , x ) = ( a * ( a | ( n , L ) ) ) . x .= a * ( x , x ) ; z = DigA ( tk , xk ) .= DigA ( tk , xk ) .= DigA ( tk , xk ) .= DigA ( tk , xk ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { meet S where S is Subset-Family of X : S c= G } , F = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset of X : S c= G } , H = { Intersect S where S is Subset of X : S c= G } ; consider S19 being Element of D * , d being Element of D * such that S ` = S19 ^ <* d *> and S = { d } and d in D ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( q `2 / |. q .| - sn ) / ( 1 + sn ) & q `2 / |. q .| - sn <= 1 ; ( for v be Linear_Combination of V st v in A holds Sum ( ( - 1 ) (#) ( - 1 ) ) = 0. V ) & for v be VECTOR of V holds v in A implies v in A let k1 , k2 , k2 , k1 , k2 , k2 , k2 , : 5 , 6 , k2 , k2 , k2 , k2 , 6 , 7 , 8 , 8 , 8 , 9 } = the InstructionsF of SCM+FSA ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and j in { k `2 } ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x2 or H1 . x1 c= H1 . x2 ; consider a being Real such that p = or ( a * p1 + ( a * p2 ) ) * ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & d <= b & [' a , b '] c= dom f and [' a , b '] c= dom g and f . a = g . b ; cell ( Gauge ( C , m ) * ( m , width Gauge ( C , m ) -' 1 , 0 ) is non empty ; Ay in { ( S . i ) `1 where i is Element of NAT : i <= n & not contradiction } ; ( T * b1 ) . y = L * ( b2 /. y ) .= ( F /. y ) * ( b1 /. y ) .= ( F /. y ) * ( b1 /. y ) ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 / ( ( k + 1 ) ^2 ) ; then that p => q in S and not x in the still of p and not p => All ( x , q ) in S ; dom ( the InitS of rp ) misses dom ( the InitS of rp ) & dom ( the InitS of rp ) misses dom ( the InitS of rp ) ; synonym f is extended integer means : \lbrace for x being set st x in rng f holds x is Integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; l = ( g /. ( 1 , 3 ) ) `1 + ( k , 3 ) `1 - ( k , 3 ) `1 + ( e , 3 ) `2 - ( k , 3 ) `2 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= CurInstr ( P2 , s2 ) .= halt SCM+FSA .= halt SCM+FSA ; assume for n be Nat holds ||. seq . n .|| <= Rseq . n & Rseq is summable & ( for n be Nat holds seq . n <= seq . n ) & ( n <= k implies seq is summable ) implies seq is summable & seq is summable & lim seq = 0 ; sin ( \vert non .| ) = sin r * cos ( ( - cos ( r ) ) * sin ( s ) ) .= 0 ; set q = |[ g1 `1 / ( t0 `2 ) , g2 = |[ g2 `1 / ( t0 `1 ) , g3 `2 / ( t0 `2 ) ]| , r = |[ g2 `1 / ( t0 `2 ) , g2 `2 / ( t0 `1 ) ]| ; consider G be sequence of S such that for n being Element of NAT holds G . n in implies G is implies S is implies S is \overline of S ; consider G such that F = G and ex G1 st G1 in SM & G = ( X \/ G1 ) /\ ( X \/ G1 ) ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of C ) . s in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( ( exp_R * f1 ) + ( exp_R * f1 ) ) & Z c= dom ( ( exp_R * f1 ) + ( exp_R * f1 ) ) ; for k be Element of NAT holds seq1 . k = ( sum ( Im ( f ) , S ) ) . k & ( Im ( f ) ) . k = ( Im ( f ) ) . k ; assume that - 1 < n ( ) and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and q `2 < 0 and q `2 < 0 ; assume that f is continuous one-to-one and a < b and f is continuous and f = g and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that s-> sequence of NAT such that s-> sequence of NAT and r <= q and for n being Nat st n <= len s1 holds r <= n ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of x , L and ex_inf_of { x , y } , L and x <= y ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A . i1 ) & f in ( proj ( F , i2 ) ) " ( A . i1 ) ; rng ( ( ( ( ( ( ( ( ( ( ( ( ( the carrier of M ) ) ) ) | ( the carrier of M ) ) ) ) ) \/ ( ( the carrier' of M ) | ( the carrier' of M ) ) ) ) ) ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - ( lim s1 ) .|| < g / 2 ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . ( 1 + 1 ) in dom p ; consider a being Element of the Points of Xas , A being Element of the lines of Xas that a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p is FinSequence of D & for i st i in dom p holds p . i is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p10 , p2 ) } .= { LSeg ( p10 , p2 ) , LSeg ( p10 , p2 ) } .= { p2 } ; i -' len h11 + 2 - 1 < i -' len h11 + 2 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nb . ( n -' 1 ) ) .| ; for r , s1 , s2 , r , s holds r in [. s1 , s2 .] iff r <= s & s <= s2 & r <= s2 & s <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 & G c= { z1 } } ; let g be element , A be element of INT , X be Element of INT , b be Element of INT , c being Element of INT , b being Element of X ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 be sequence of CNS such that for n holds P [ n , q1 . n ] and q1 is convergent and lim q1 = lim q1 ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ B , BO1 = O , Bd = I , Bd = I , Bd = J as Subset of B ; consider j being Element of NAT such that x = the ` finite sequence of n and 1 <= j and j <= n and j <= n and f . j = f . j ; consider x such that z = x and card ( x . O2 ) in card ( L1 . O1 ) and x in L1 . O2 and x in L2 . O1 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( _ of T4 ( k , n2 ) ) . 0 ) .= C . ( ( C * ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = dom ( X --> f ) & dom ( X --> f ) = X ; S-bound L~ SpStSeq C <= ( ( L~ SpStSeq C ) /. ( i + 1 ) ) `2 & ( ( L~ SpStSeq C ) /. ( i + 1 ) ) `2 <= ( ( L~ SpStSeq C ) /. ( i + 1 ) ) `2 ; synonym x , y are_collinear means : : : ex l st x = y or ex l being Subset of S st { x , y } c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y holds x << y and a << b and a << b ; ( 1 / 2 * ( ( ( ( - 1 / 2 ) * ( ( #Z n ) * ( AffineMap ( n , 0 ) ) ) ) ) ) ) is_differentiable_on REAL & ( ( - 1 / 2 ) * ( ( AffineMap ( n , 0 ) ) ) ) `| REAL ) = ( ( - 1 / 2 ) * ( ( #Z n ) * ( ( #Z n ) * ( #Z n ) ) ) ) ; defpred P [ Element of omega ] means ( for n holds ( ( the partial of A1 ) . $1 = A1 . ( n + $1 ) ) & ( for n holds ( ( the partial of A2 ) . ( n + $1 ) ) = A2 . ( n + $1 ) ) ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . ( g1 * 1_ H ) .= f . ( g1 * 1_ H ) .= f . ( g1 * g2 ) .= f . ( g1 * g2 ) ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( { ( canFS Omega ) . n } ) .= M . ( { ( canFS Omega ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 c= the carrier of L1 & the carrier of L1 + L2 c= the carrier of L2 ; pred a , b , c , x , y , x , y , z , y be element means : : : a , b , c , x , y , z , x , y , z ; ( for n be Nat holds s . n <= ( ( the PartFunc of X ) * s ) . ( n + 1 ) ) * ( s . ( n + 1 ) ) ; pred - 1 <= r & r <= 1 & ( arccot - 1 ) * ( arccot - 1 ) = - 1 / r & ( arccot - 1 ) * ( arccot - 1 ) = - 1 / r ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & n in dom T } implies T in T1 & T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T . ( T |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = x2 - y2 & |[ x2 , y2 , x3 , x4 ]| . 3 = x2 - y2 ; attr for m be Nat holds F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative implies ( Partial_Sums F ) . m is nonnegative ; len ( ( G . z ) * ( z - x ) ) = len ( ( ( G . ( x - y ) ) + ( G . ( y - z ) ) ) ) .= len ( G . ( x - y ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 and u in W2 and v in W3 ; given F be finite Subset of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } and Sum F = k and for k be Nat st k in n holds F . k = k ; 0 = ( 1 * 0 ) * TOP-REAL uq iff 1 = ( ( 1 - ( 1 - 0 ) ) * ( 1 - 0 ) ) * ( ( 1 - 0 ) * ( 1 - 0 ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> being being non empty implies iff iff for non empty \rbrace , \hbox { $ ( { w } , { w } ) , ( { w } , { w } ) } is Boolean Boolean "/\" ( BB , {} ) = Top BB .= Top BB .= "/\" ( BB , [#] S ) .= "/\" ( BB , [#] S ) .= "/\" ( BB , [#] S ) .= "/\" ( BB , [#] S ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - c * |[ b , c ]| ) = 0. TOP-REAL 2 - ( 2 * r1 - c * |[ b , c ]| ) ; reconsider p = P * ( 1 , 1 ) , q = a " * ( ( - ( - 1 ) ) |^ n ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in < t and x = [ x1 , x2 ] and [ x2 , y2 ] in dom f and [ x1 , x2 ] in dom f ; for n being Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) & ( for k be Nat st k in dom ( g | M7 ) ) holds q1 . k = ( ( g | M7 ) ) . ( n + 1 ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 , H2 |^ ( x , y ) -> Subgroup of G and H2 , H1 |^ ( x , y ) -> Subgroup of G ; for S , T being non empty < T , d being Function of T , S st T is complete holds d is directed-sups-preserving & d is monotone & d is monotone [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) ; reconsider mm = max ( ( len F1 ) * ( p . n ) * ( x |^ n ) ) , mn = max ( ( len F1 ) * ( p . n ) * ( x |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( 1 , width GoB h ) , ( GoB h ) * ( 1 , width GoB h ) ) & ( GoB ( ( GoB h ) * ( 1 , width GoB h ) ) ) `2 <= ( GoB ( ( GoB h ) * ( 1 , width GoB h ) ) ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; pred A1 \/ A2 is linearly-independent means : : : A1 : A1 misses A2 & ( for x st x in A1 holds Lin ( A1 \/ A2 ) /\ Lin ( A2 ) = Lin ( A1 \/ A2 ) ) & Lin ( A1 \/ A2 ) = Lin ( A2 \/ A1 ) ; func A -carrier C -> set means : : : for s being Element of R holds s in union { A . s where s is Element of R : s in C } ; dom ( Line ( v , i + 1 ) (#) ( ( -> Matrix of m , n ) * ( Line ( p , i ) ) ) ) = dom ( F ^ ( Line ( p , i ) ) ) ; cluster [ x , 4 ] -> non empty & [ x , 4 ] in [: { x } , { x } :] & [ x , 4 ] in [: { x } , { x } :] & [ x , 4 ] in [: { x } , { x } :] ; E |= All ( x1 , All ( x2 , x2 ) ) => ( ( x2 'in' x1 ) '&' ( x1 => x2 ) ) => ( ( x1 '&' x2 ) '&' ( x1 '&' x2 ) ) => ( x1 '&' x2 ) '&' ( x1 '&' x2 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g ) .= F . ( x , g ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) - ( h . m ) + ( h . m ) - ( h . m ) ; cell ( G , Xs -' 1 , ( Y + 1 ) \ ( t + 1 ) ) \ L~ f meets ( ( L~ f ) \ ( t + 1 ) ) \ ( t + 1 ) ; IC Comput ( P2 , s2 , 2 ) = IC Comput ( P2 , s2 , 2 ) .= ( card I + 2 ) .= card I + ( card J + 2 ) .= card I + ( card J + 2 ) .= card I + ( card J + 2 ) .= card I + ( card J + 2 ) .= card I + card J + 2 .= card J + card J + 1 ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y0 = a . x0 and x0 in { x } and y = a . x0 ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ dom chi ( A , C ) .= dom chi ( A , C ) /\ dom ( chi ( A , C ) ) .= dom ( r1 (#) chi ( A , C ) ) .= dom ( r1 (#) chi ( A , C ) ) .= dom ( r1 (#) chi ( A , C ) ) ; d-7 . [ y , z ] = ( ( ( y - z ) `2 ) - ( ( y - z ) `2 ) ) * ( ( y - z ) `2 ) .= ( ( y - z ) `2 ) * ( ( y - z ) `2 ) ; pred for i being Nat holds C . i = A . i /\ B . i means : : : for C being Nat holds C . i c= C . ( i + 1 ) /\ C . ( i + 1 ) ; assume that x0 in dom f and f is_continuous_in x0 and ||. f /. x0 - f /. x0 .|| < r and ||. f /. x0 - f /. x0 .|| < r ; p in Cl A implies for K being Basis of p , Q being Basis of T st Q in K holds A meets Q & A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y2 - x .| <= |. y1 - y2 .| func Sum ( <*> a ) -> Ordinal means : : : a in it & for b being Ordinal st a in it holds it . b c= b ; [ a1 , a2 , a3 ] in ( ( the carrier of A ) /\ ( the carrier of B ) ) & [ a1 , a2 , a3 ] in ( the carrier of A ) /\ ( the carrier of B ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the InternalRel of S2 ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - x0 .|| < ( e * ||. x - x0 .|| ) * ||. x - x0 .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( ( compactbelow [ s , t ] ) /\ ( compactbelow [ s , t ] ) ) , sup ( ( compactbelow [ s , t ] ) /\ ( compactbelow [ s , t ] ) ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in IB and [ f . i , f . j ] in IB and [ f . i , f . j ] in IB ; for D being non empty set , p , q being FinSequence of D st p c= q ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e39 being Element of the affine of X such that c9 , a9 // a9 , e39 and a9 <> c9 and c9 <> e and a , b // a9 , b9 and a , c // a9 , c9 and a , b // a9 , b9 and a , c // a9 , c9 and a , b // a9 , c9 and a , b // a9 , b9 ; set U2 = I \! \mathop { \vert S .| , SS = { R } , SS = { R } , E = { R } , F = { R } , SS = { R } , C = { R } , SS = { R } , C = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS = { R } , SS |. q3 .| ^2 = ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 + ( |. q2 .| ) ^2 .= |. q2 .| ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x /\ y & x "/\" y = x /\ y implies x = y dom signature ( U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & dom ( the charact of U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| | X ) .= dom ( ||. h .|| | X ) .= dom ( ( ||. h .|| | X ) ) .= dom ( ( |. h .| | X ) ) .= X ; for N1 , N1 , N2 being Element of ( the carrier of G ) * , ( h . K1 ) st N1 = N & rng ( h . K1 ) c= N1 holds rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or q `2 / |. q .| * ( 1 + ( q `2 / q `1 ) ^2 ) >= - ( q `2 / |. q .| * ( 1 + ( q `2 / q `1 ) ^2 ) ) & - ( q `2 / q `1 ) ^2 <= - ( q `2 / |. q .| * ( 1 + ( q `2 / q `1 ) ^2 ) ) ; pred r1 = ff means : : : for r2 st r2 = ff holds r1 * ( f - g ) = ( f - g ) * ( f - g ) ; vseq . m is bounded Function of X , the carrier of Y & xA . m = ( A1 . m ) * ( ( ( vseq . m ) * ( vseq . m ) ) ) & ( ( vseq . m ) * ( vseq . m ) ) . x = ( ( vseq . m ) * ( vseq . m ) ) . x ; pred a <> b & b <> c & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 implies angle ( b , c , a ) = 0 & angle ( a , c , b ) = 0 ; consider i , j , r being Nat such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < j and j <= len f ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of [: X ( ) , Y ( ) :] such that y = p1 ^ q1 and q1 in X ( ) and p1 ^ q1 = p1 ^ q1 and q1 in Y ( ) and q1 in X ( ) and q1 in Y ( ) and q2 in Y ( ) and q1 in X ( ) and q2 in Y ( ) ; ( for r1 , r2 , s1 , s2 , s2 being Element of A holds ( s1 + s2 ) * ( r1 + r2 ) = ( s2 * ( s1 + s2 ) ) * ( r2 + s2 ) ) * ( r1 * ( s1 + s2 ) ) ( ( LMP A ) `2 = lower_bound ( proj2 .: A /\ /\ Vertical_Line w ) & proj2 .: A /\ Vertical_Line w is non empty & proj2 .: A /\ Vertical_Line w is non empty & proj2 .: A /\ Vertical_Line w is non empty ; s |= ( H , k1 ) \bf ( H1 , k2 ) iff s |= for H being strict Subgroup of X holds s |= ( H1 , k2 ) implies s |= H & s |= ( H , k ) implies s |= H len ( s ) + 1 = card ( support b1 ) + 1 .= card ( support b2 ) + card ( support b1 ) .= card ( support b1 ) + card ( support b1 ) .= card ( support b1 ) + card ( support b1 ) .= card ( support b1 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y `1 and z `2 >= x `2 ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( W-bound D + ( W-bound D ) / 2 ) ]| ) /\ D = { UMP D } \/ { UMP D } .= { UMP D } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = lim ( ( f `| N ) / ( g `| N ) ) .= lim ( ( f `| N ) / ( g `| N ) ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) , pr1 ( f ) . ( i + 1 ) ] & pr1 ( f ) . ( i + 1 ) = pr1 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /* ( seq ^\ k ) ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & x in P & a in P holds a = b Z c= dom ( ( - 1 / ( n + 1 ) ) (#) ( ( #Z ( n + 1 ) ) * f ) ) \ ( ( #Z ( n + 1 ) ) * f ) " { 0 } ) implies Z c= dom ( ( - 1 / ( n + 1 ) ) (#) ( ( #Z ( n + 1 ) ) * f ) ) ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + len l & z = 1 + len l & j = len l + 1 & z = l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 holds r * u + ( 1-r * v ) in = - ( 1-r ( V ) ) A , Int A , Cl ( Int A ) , Cl ( Int A ) , Cl ( Int A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A ) ` , Cl ( Int Cl A ) ` , Cl ( Int Cl A ) ` , Cl ( Int Cl A ) , Cl ( Int Cl A ) , Cl ( Int Cl A , Cl ( Int Cl A ) , Cl - Sum <* v , u , w *> = - ( v + u + u ) .= - ( v + u ) -uw .= - ( v + u ) -uw .= - ( v + u ) -uw ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= Exec ( ( a := b ) , s ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . ( f . x ) and h . x in I ; for S1 , S2 being non empty reflexive RelStr , D being non empty directed Subset of S1 , D being non empty Subset of S2 , x being Element of S1 , y being Element of S2 , z being Element of S2 st x in S1 & y in D & z in D holds x "/\" y is directed & x "/\" z is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or x = y & x = y or x = y & y = z or x = z & y = z E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) :- W-min L~ Cage ( C , n ) ) & W-min L~ Cage ( C , n ) in rng ( Cage ( C , n ) :- W-min L~ Cage ( C , n ) ) ; for T , T being tree , p , q being Element of dom T , p being Element of dom T st p element , q in dom T holds ( T -with tree ( p , T ) ) . q = T . ( q , p ) [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. ( k + 1 ) = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides ( k gcd n ) & ( k divides m ) & ( k divides m implies ( k divides m ) & ( k divides n ) & ( k divides m ) & ( k divides n implies k divides m ) ) & ( k divides n implies k divides m ) ) ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " = the carrier of X2 & F " = the carrier of X2 & F " = the carrier of X1 & F " = the carrier of X2 ; consider C be finite Subset of V such that C c= A and card C = n and the \HM of V = Lin ( BM \/ C ) and Lin ( BM \/ B ) = Lin ( BM \/ B ) and Lin ( BM \/ B ) = Lin ( BM \/ B ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) , v2 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v2 ] } , Z = { F ( v2 ) where v2 is Element of B ( ) : P [ v2 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 = - sqrt ( ( q `1 / |. q .| - cn ) ) ^2 .= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 .= - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 1 = p3 & f . 0 = p4 & f . 1 = p4 & f . 1 = p4 ; pred f is_PartFunc of REAL , u0 means : : : for u0 st SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is_differentiable_in u0 holds SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is_differentiable_in u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and f /. len f = ( GoB f ) * ( t , width G ) and f /. 1 = ( GoB f ) * ( t , width G ) and f /. len f = ( GoB f ) * ( t , width G ) ; pred i in dom G means : : : for r holds r (#) ( f * reproj ( i , x ) ) = r (#) ( reproj ( i , x ) ) & r (#) ( f * reproj ( i , x ) ) = r (#) reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c /. k = ( decomp c1 ) /. ( k + 1 ) and ( decomp c ) /. ( k + 1 ) = ( decomp c1 ) /. ( k + 1 ) ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . k2 .= C4 . ( k1 + 1 ) .= C4 . ( k1 + 1 ) .= C4 . ( k1 + 1 ) .= C4 . ( k1 + 1 ) ; pred len M1 = len M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & width M1 = width M2 & len M2 = width M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. ( - x0 ) * ( y - x0 ) .|| < g2 & y in N2 } c= N2 & N c= { x0 } ; assume x < ( - b ) + sqrt ( delta ( a , b , c ) ) * ( 2 * a ) or x > - b & x < - sqrt ( a , b , c ) * ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) & ( M3 + M2 ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st j in dom f & i <= j holds i divides f /. j & i divides len f & j <= len f holds i divides f /. j assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\mathopen the carrier of X & a c= c holds a c= c } & b c= c ; b2 * q2 + ( b3 * q3 ) + ( b3 * q3 ) + ( - ( a1 * q2 ) ) * q2 = 0. TOP-REAL n + ( ( a1 * q2 ) * q3 ) .= 0. TOP-REAL n + ( ( a1 * q2 ) * q3 ) .= 0. TOP-REAL n + ( ( a1 * q2 ) * q3 ) .= 0. TOP-REAL n ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & Cl B c= Cl Cl B } & Cl ( Cl B ) c= Cl Cl B ; attr seq is summable means : : : for m be Nat holds seq is summable & seq is summable & ( seq is summable implies seq is summable ) & ( seq is summable implies seq is summable ) & ( seq is summable implies seq is summable ) & ( seq is summable & seq is summable implies seq is summable ) & ( seq is summable implies seq is summable ) & ( seq is summable & seq is summable ) & seq is summable & seq is summable ) implies seq is summable & seq is summable & seq is summable & seq is summable & ( seq is summable & seq is summable & seq is summable & seq is summable & seq is summable & seq is summable & seq is summable & seq is summable & ( seq is dom ( ( ( cn - cn ) | D ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; X [ X , Z ] is full full non empty SubRelStr of ( ( [#] Z ) |^ the carrier of Z ) & X [ X , Z ] implies X , Z let Y be full SubRelStr of ( ( the carrier of Z ) --> the carrier of Z ) G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : : : for p being set st p in P holds the } \HM { m1 + 1 where m1 is Nat : m1 in dom ( m2 , p ) & m2 in P & p in P & m2 in P } c= the carrier of ( m2 , p ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and a in A ( ) & P [ b ] ; synonym cluster multiplicative loop s -> such that the multiplicative loop mas of M means : : : for a being Element of M holds it . a = [ a , the multF of M ] where a is Element of the carrier of M : a in the carrier of M } ; sequence ( a , b ) + 1 + sequence ( c , d ) = b + ( c , d ) .= b + ( c , d ) .= b + ( c + d ) .= o + ( c + d ) .= o + ( c + d ) .= o + ( c + d ) .= o + ( c + d ) .= o + ( ( a + b ) + d ) ; cluster + ( i1 , i2 ) -> natural for Element of INT , i1 , i2 be Element of INT , i1 , i2 be Element of NAT , i2 be Element of INT , i1 , i2 be Element of NAT st i1 = i2 & i2 = i2 holds i1 = i2 & i2 = i2 & i1 = i2 & i2 = i2 implies i1 = i2 ( ( s2 * p1 ) + ( s2 * p2 ) - ( s2 * p2 ) ) = ( ( r2 * p1 ) + ( s2 * p2 ) ) - ( ( s2 * p1 ) + ( s2 * p2 ) ) .= ( ( s2 * p1 ) + ( s2 * p2 ) ) - ( ( s2 * p1 ) + ( s2 * p2 ) ) ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being open Subset of S st V in V & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V c= V & V is open & V is open & V is open & V is open & V c= V & V is open & V c= V & V is open & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V c= V & V assume that 1 <= k & k <= len w + 1 and TU . ( ( q11 , w ) -succ k ) = ( TU . ( ( q11 , w ) -succ k ) ) . k and TU . ( ( q11 , w ) -succ k ) = ( TU . ( ( q11 , w ) -succ k ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ n + ( b |^ n ) + ( a |^ n ) + ( b |^ n ) + ( a |^ n ) + ( b |^ n ) + ( a |^ n ) + ( b |^ n ) + ( a |^ n ) + ( b |^ n ) ) ; M , v2 / ( x. 3 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) / ( x. 0 , m ) / ( x. 4 , m ) ) |= H ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 & for x1 st x1 in l holds f . x1 - f . x0 < f . x0 & f . x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , W being Walk of G , e being set st e in W holds not e in W \rm the Walk of G & e in W implies e in the carrier' of G not not not not ( ex x1 , x2 st x1 is not empty & x2 is not empty & not ( x1 is not empty & not x2 is not empty & not x1 is not empty & not x2 is not empty ) & not ( x1 is not empty & not x2 is not empty & not x2 is not empty ) ) & not ( x1 is not empty & not x2 is not empty & not x2 is not empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( for i st i in dom GoB f holds ( GoB f ) * ( i , 1 ) in Indices GoB f ) & ( GoB f ) * ( i + 1 , 1 ) in Indices GoB f ) implies ( GoB f ) * ( i + 1 , 1 ) in Indices GoB f for G1 , G2 , G3 being Group , O being stable Subgroup of G st G1 is stable & G2 is stable & G is stable holds ( G is stable iff G is stable ) & ( G is stable ) & ( G is stable implies G is stable ) UsedIntLoc ( inint f ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 3 , intloc 4 , intloc 5 , intloc 5 , intloc 6 , intloc 5 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 9 } \/ UsedIntLoc ( <* 7 , 8 , 8 , 7 , 8 , 8 , 8 , 9 } ) ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] holds Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] & Q [ f1 ^ f2 ] ( p `1 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x4 )| = |( x1 - x2 , x3 - x3 )| & |( x1 - x2 , x3 - x4 )| = |( x1 , x3 )| - |( x2 , x3 )| + |( x3 , x3 )| for x st x in dom ( ( F | A ) | A ) holds ( ( ( ( F | A ) ) | A ) . ( - x ) ) = - ( ( F | A ) | A ) . x for T being non empty TopSpace , P being Subset-Family of T , x being Point of T , B being Basis of T st P c= the topology of T for B being Basis of x st B c= P & B c= P holds x in B ( a 'or' b 'imp' c ) . x = ( 'not' ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x 'or' b . x ) 'or' c . x .= TRUE 'or' TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of [: X , Y :] , Y1 being Subset of [: Y , X :] st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 c= Y1 & Y1 c= Y1 & Y1 c= Y1 & Y1 c= Y1 & Y1 c= Y2 for i be set st i in the carrier of S for f be Function of Sconsider S . i , S1 . i st f = H . i holds F . i = f | ( F . i ) & F . i = f | ( F . i ) ; for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ) , J ) . v = Valid ( VERUM ( Al ) , J ) . w card D = card D1 + card D2 - card { i , j } .= ( c1 + 1 ) - ( i + 1 ) + ( c2 - 1 ) .= ( c1 + 1 ) - ( c1 + 1 ) + ( c2 - 1 ) .= ( 2 * c1 + 1 ) - ( c2 + 1 ) .= ( 2 * c1 + 1 ) - ( c2 + 1 ) .= 2 * c1 + ( c2 + 1 ) - ( c2 + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= s . 0 .= s . 0 ; len f /. ( ( i1 -' 1 ) + 1 ) -' 1 + 1 = len f -' ( i1 -' 1 ) + 1 + 1 .= len f -' ( i1 -' 1 ) + 1 + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f -' ( i1 -' 1 ) + 1 .= len f - ( i1 -' 1 ) + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k < a holds k <= a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= i & Index ( p , f ) <= len f lim ( curry ( ( ( curry ( ( P , k ) + 1 ) ) # x ) ) ) = lim ( ( curry ( ( P , k ) + 1 ) ) # x ) + lim ( ( curry ( ( P , k ) + 1 ) ) # x ) ) ; z2 = g /. ( i -' n1 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 & [ f . 0 , f . 3 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of [: A , B :] : R in F6 & for X being Subset of [: A , B :] holds ( for Y being Subset of [: A , B :] st X in F6 holds X c= Y ) holds ( for Y being Subset of A holds Y in F ) implies Y c= X CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , s1 ) .= CurInstr ( P1 , s1 ) .= CurInstr ( P1 , s1 ) .= CurInstr ( P1 , s1 ) ; assume that a on M and b on M and c on N and d on M and p on N and a on M and a on M and c on N and a on M and b on N and a on M and a on M and b on N and a on M and c on N and a on M and a on N and b on M and a on N and b on N and a on M and a on N and b on N and a on M and a on N and b on M and b on N and a on M and b on N and b on N and a on N and a on M and b on N and b on N and a on N and b on N and a on M and b on N and a on M and b on N and a on N and b on N and a on N and c on N and c on N and c on N and c on N assume that T is \hbox 4 -Z and ex F be Subset-Family of T , F be Subset-Family of T st F is closed & F is finite-ind & ind F <= 0 & ind F <= 0 & ind F <= 0 & ind F <= 0 & ind F <= 0 ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - r , r .[ holds |. f . g1 - f . g2 .| <= ( g1 - f . g2 ) / ( |. r - g .| + r ) ( ( - 1 / 2 ) * ( z + z2 ) ) = ( - ( - 1 / 2 ) * ( z + z2 ) ) * ( z + z2 ) .= ( - ( - 1 / 2 ) * ( z + z2 ) ) * ( z + w ) .= ( - ( - 1 / 2 ) * ( z + w ) ) * ( z + w ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) * r2 .= ( b |^ n ) |^ ( n + 1 ) .= <* ( n + 1 ) -tuples_on ( n + 1 ) , \dots , ( n + 1 ) -tuples_on ( n + 1 ) , \dots , ( n + 1 ) -tuples_on ( n + 1 ) ) ; ex y being set , f being Function st y = f . n & dom f = A ( ) & for n holds f . ( n + 1 ) = R ( ) . ( f . n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n , f . n ) ; func f (#) F -> FinSequence of V means : : : for i be Nat st i in dom it holds it . i = F /. i * F /. i & for i be Nat st i in dom it holds it . i = F /. i * F /. ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 } \/ { x5 , 7 , 8 } for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `2 = ( S , e ) `2 & ( S , e ) `2 = ( S , e ) `2 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `2 = ( S , e ) `1 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `1 = ( S , e ) `1 & ( S , e ) `1 & ( S , e ) consider P being FinSequence of GL2 such that pon = Product P and for i st i in dom P ex t7 being Element of the carrier of G st P . i = t7 & t . i = P . i & P . ( t . i ) = P . ( t . i ) ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P = the topology of T2 & P = the topology of T1 & P = the topology of T2 holds P = Q assume that f is_is_is_or u0 in dom pdiff1 ( f , 3 ) and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , u0 , 3 ) and partdiff ( r (#) pdiff1 ( f , u0 , 3 ) , u0 , 3 ) = r (#) pdiff1 ( f , u0 , 3 ) ; defpred P [ Nat ] means for F , G being FinSequence of bool REAL , G be Permutation of bool ( dom F ) st len G = $1 & G = F * s & not F = G * s holds Sum ( F ) = Sum ( G ) & Sum ( F ) = Sum ( G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s * ( 1 , j + 1 ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 & s * ( 1 , j + 1 ) `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex F-23 be Subset-Family of T st $2 = F-23 & union F-23 is open & union F\times ( F . $1 ) = union ( F\times ( F . $1 ) ) & union F\times ( F . $1 ) c= union ( F\times ( F . $1 ) ) & union ( F\times ( F . $1 ) ) c= union ( F\times ( F . $1 ) ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p , P , p1 , p2 holds LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p1 , p , P , p1 , p2 , p2 , p2 , p2 & LE p2 , p1 , P , p1 , p2 , p2 , p2 , p2 , p2 , p2 , p2 , p3 , p2 , p3 , p3 , p3 , p2 & LE p4 , p1 , p2 & LE p4 , p1 , P , p1 , p2 , p3 , p3 , p3 , p1 , p3 , p3 , p3 , p3 , p3 , p1 , p3 , C & LE p1 f in D ( ) & for g st g in D ( ) & x = f . y holds g in D ( ) implies f in D ( ) & for f st f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) implies f in D ( ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( - 1 ) * ( |. 8 .| ) ) / ( 1 + ( |. 8 .| ) ) ) ^2 >= 8 & ( ( - 1 ) * ( |. 8 .| ) ) / ( 1 + ( |. 8 .| ) ) ^2 ) >= 0 ) & ( ( - 1 ) * ( |. 8 .| ) ) ^2 >= 0 ; assume for d7 being Element of NAT st d7 <= max ( n7 , ( n7 ) -d7 ) holds s1 . ( ( d7 ) -s7 ) = s2 . ( ( d7 ) -s7 ) & s2 . ( ( d7 ) -s7 ) = s2 . ( ( d7 ) -s7 ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of Sphere ( x , r ) st e = Sphere ( s , r ) /\ Sphere ( x , r ) and e = Sphere ( e , r ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s st 0 < s ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. f /. x1 - f /. x0 .| < r & |. f /. x0 - f /. x0 .| < r ; ( p | x ) | ( p | ( ( x | x ) | x ) ) = ( ( ( x | x ) | x ) | p ) | ( ( ( x | x ) | x ) | p ) .= ( ( ( x | x ) | x ) ) | p ) | p ; assume that x , x + h / 2 in dom sec and ( for x st x in dom sec holds sec . x = ( 4 * ( sec . x + h / 2 ) ) * sin . x + ( sin . x ) ^2 and sin . x = ( 4 * ( sin . x + cos . x ) ) * sin . x + ( sin . x ) ^2 and sin . x = ( 4 * ( sin . x + cos . x ) ^2 ; assume that i in dom A and len A > 1 and B c= the carrier of \HM { i , j } and A c= the carrier of \HM { i , j } and B c= the carrier of G and A c= the carrier of G and B c= the carrier of G and A c= the carrier of G and B c= the carrier of G and A c= the carrier of G and B c= the carrier of G ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i divides n & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex & i <> 0. F_Complex holds h . i = 1. F_Complex ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( b1 'or' c1 ) '&' ( c1 '&' c2 ) '&' ( c1 '&' c2 ) ) '&' ( ( b1 'or' c1 ) '&' ( c1 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c1 '&' c2 ) '&' 'not' ( c1 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' ( c1 '&' c2 ) '&' 'not' ( c2 '&' ( c1 '&' c2 ) '&' ( c1 '&' c2 ) '&' ( c1 assume for x holds f . x = ( ( cot * ( cot - cot ) ) `| Z ) . x & x in dom ( ( cot * ( cot - cot ) ) `| Z ) & for x st x in Z holds ( ( ( ( - cot * ( cot - cot ) ) `| Z ) . x ) = cos . ( x- ( x ) ) / ( sin . x ) ^2 ) ) & ( ( - cot * ( cot - cot ) ) ^2 = 0 & ( - cot * ( cot - cot ) ) . x = - cos . ( cot ( x ) ) ^2 = - sin ( x ) ^2 - sin . x ) ^2 = - cos . ( cot ( x ) ^2 - sin . ( cot . ( cot . x ) ^2 - cos . ( cot . ( cot ) & ( - cot . ( cot ) & ( - cot . ( cot . ( cot . ( cot ) ) = - cos consider Rd , I-8 be Real such that Rd = Integral ( M , Re ( F . n ) ) and Id = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. qthesis - partdiff ( f , x , k ) .|| < r holds ||. partdiff ( f , x , k ) - partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 } iff x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 7 , 7 , 7 , 8 } G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 f1 * p = p .= ( ( the Arity of S1 ) * ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . ( ( the Arity of S2 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) ) . ( ( the Arity of func tree ( T , P , T1 ) -> DecoratedTree means : : : for q st q in it holds p ^ q in T or ex p , q st p in P & q in T & p ^ q in T & p ^ q in T & p ^ q in T & q ^ p in T ; F /. ( k + 1 ) = F . ( k + 1 ) .= Fimplies ( p . ( k + 1 -' 1 ) ) + 1 = Fimplies p . ( k + 1 -' 1 ) = F^2 + ( p . ( k + 1 -' 1 ) ) .= F^2 + ( p . ( k + 1 -' 1 ) ) .= F^2 + ( p . ( k + 1 -' 1 ) ) .= ( p . k ) + 1 ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width C & len A = width B & len B = len A & len C = width B & width B = width C & len B = len B & width B = width C & width B = width C & len B = len B & width B = width C & width B = width C holds B * C = C * ( B , C , B ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of Cq ) /\ ( the carrier of Cq ) and y in ( the carrier of Cq ) /\ ( the carrier of Cq ) and [ x , y ] in the carrier of Cq and [ y , z ] in the InternalRel of Cq ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 or ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 & ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= 0 ) ; for M being non empty dist , x being Point of M , f being Point of M , x being Point of M st x = x ` holds ex f being sequence of TopSpaceMetr ( M ) st f is sequence of ( M ) & for n being Element of NAT holds f . n = Ball ( x , r ) defpred P [ Element of omega ] means $1 is differentiable of omega & ( f1 is_differentiable_on Z implies f1 - f2 is_differentiable_on Z & for x st x in Z holds ( f1 - f2 ) . x = f1 . x - ( f2 . x ) ) & ( f1 - f2 ) is_differentiable_on Z implies f1 - f2 is_differentiable_on Z & for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = ( ( f1 - f2 ) `| Z ) . x - ( f2 . x ) defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. s1 . $1 - ( lim s1 ) .|| < r & ||. ( f /. $1 ) - ( f /. ( $1 + 1 ) ) .|| < r & ||. ( f /. $1 ) - ( f /. ( $1 + 1 ) ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) ; ( 1 / ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * ( n0 + 1 ) ) = ( 1 / ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + ( n0 + 1 ) ) * ( 2 * n0 + ( n0 + 1 ) ) * ( 2 * n0 + ( n0 + 1 ) ) * ( 2 * n0 + 1 ) ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 ) * ( 2 * n0 ) = ( ( 2 * n0 ) * ( 2 * n0 ) * ( 2 * n0 ) * ( 2 * n0 ) * ( 2 * n0 ) * ( 2 * n0 ) * ( 2 * n0 defpred P [ Nat ] means for G being non empty strict finite symmetric RelStr , H being strict symmetric RelStr st G is non empty for G being strict strict strict strict symmetric RelStr st G = ( the carrier of G ) \/ the carrier of H holds the RelStr of G = ( the RelStr of G ) \/ the InternalRel of H ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len ( f ) and for i st 1 <= i & i <= len ( f ) & ( f /. i ) <> {} & ( f /. i ) <> {} & ( f /. ( len f ) ) <> {} & ( f /. ( len f ) ) <> {} & ( f /. ( len f ) <> {} ) & ( f /. ( len f ) <> {} & ( f /. ( len f ) <> {} & ( f /. ( len f ) <> {} & f /. ( len f ) <> {} & f /. ( len f ) <> {} & f /. ( len f ) <> {} & ( f /. ( len f ) <> {} & ( f /. ( len f ) <> {} & ( f /. ( len f ) & ( f /. ( len f ) & ( f /. ( len f ) & ( f /. ( len f ) & ( f /. ( len f ) & ( f /. ( len f ) defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) ) . $1 = ( Partial_Sums ( cos ) ) . ( 2 * $1 ) & ( Partial_Sums ( cos ) ) . ( 2 * $1 ) = ( Partial_Sums ( cos ) ) . ( 2 * $1 ) ) * ( ( cos ) ) . ( 2 * $1 ) ; for x being Element of product F holds x is FinSequence of G & ( for i being set st i in dom F holds x . i = I ) & for i being set st i in dom F holds x . i = ( F . i ) . x ) & ( for i being set st i in dom F holds F . i = ( F . i ) . x ) ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n * x .= ( x |^ n ) |^ n ; DataPart Comput ( P +* ( I , s ) , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= ( dom f1 /\ dom f2 ) and for g st g in ]. x0 - r , x0 .[ holds f1 . g <= f2 . g & f2 . g <= ( f1 . g ) / ( g . g ) and for r st r in ]. x0 - r , x0 .[ holds f1 . r <= f2 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 | X is continuous & f2 | X is continuous or f1 | X is continuous & f2 | X is continuous & f2 | X is continuous & ( f1 | X is continuous & f2 | X is continuous & not f1 | X is continuous ) & not f2 | X is continuous & not f2 | X is continuous & not f2 | X is continuous ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is prime & for x being Element of L st x in X holds x is prime & x is prime & x is prime & x is prime & x is prime Support ( e *' A ) in { Support ( m *' p ) where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' p ) & p in Support ( m *' p ) } & p in Support ( m *' q ) } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - ( f2 /* s1 ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g . p1 & for g being Function of V ( ) , D ( ) st P [ g , ( len p1 ) qua Function ] holds P [ g , f . ( len p1 ) ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) . j .= f /. j ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( k + 1 ) ; len mid ( D2 , D1 , indx ( D2 , D1 , j ) + 1 ) = indx ( D2 , D1 , j ) + ( indx ( D2 , D1 , j ) + 1 ) .= indx ( D2 , D1 , j ) + 1 .= indx ( D2 , D1 , j ) + 1 .= indx ( D2 , D1 , j ) + 1 ; x * y * z = Mz * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) ; v . ( <* x , y *> ) - ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) ) * ( ( x - x0 ) * ( x - x0 ) + ( proj ( 1 , 1 ) * ( x - x0 ) ) ) + ( proj ( 1 , 1 ) * ( x - x0 ) ) * ( ( x - x0 ) * ( x - x0 ) + ( y - x0 ) * ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) * ( 0 - 1 ) * 0 , 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) ; ex r be Real st for e be Real st 0 < e ex Y1 be finite Subset of X st Y1 is non empty & Y c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( - r ) * ( Y1 ) - ( r * ( Y1 ) ) .| < r * ( Y1 ) ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i + 2 ) = f /. ( k + 2 ) ) implies ( GoB f ) * ( i , j ) = f /. ( k + 2 ) ( ( - cos ) / ( 1 - r ) ) * ( 1 / ( 1 - r ) ) = ( - 1 ) * ( 1 / ( 1 - r ) ) .= ( - 1 ) * ( 1 / ( 1 - r ) ) .= ( - 1 ) * ( 1 / ( 1 - r ) ) .= ( - 1 ) * ( 1 / ( 1 - r ) ) .= ( - 1 ) * ( 1 / ( 1 - r ) ) .= ( - 1 ) * ( 1 / ( 1 - r ) ) .= ( - 1 ) * ( 1 / ( 1 - r ) .= ( - 1 ) * ( 1 / ( 1 - r ) ) * ( 1 - r ) .= ( - 1 ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 - r ) * ( 1 / ( 1 - r ) .= ( 1 - r ) * ( 1 - r ) .= ( 1 - r ) * ( 1 / r ) .= ( 1 / r ) * ( 1 / r ) .= ( 1 - r ) * ( 1 - r ) ( - b ) + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) < 0 & ( - b ) * sqrt ( delta ( a , b , c ) ) < 0 or ( - b ) * sqrt ( delta ( a , b , c ) ) < 0 ) implies ( - b ) * sqrt ( - a , c ) ) / ( 2 * a ) < 0 assume that ex_inf_of uparrow "\/" ( X /\ C ) , L and ex_sup_of X , L and ex_sup_of X , L and "\/" ( X , L ) = "/\" ( uparrow "\/" ( X /\ C ) , L ) and for X st X in X holds "\/" ( X , L ) = "/\" ( uparrow "\/" ( X , L ) , L ) and for X st X in X holds "\/" ( X , L ) = "/\" ( X , L ) ; ( for j holds ( j = i implies j = j ) implies ( j = j implies i = j ) ) & ( j = i implies j = i implies j = j ) & ( j = i implies j = j ) & ( j = i implies j = i ) & ( j = j implies j = i implies j = j ) )