thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K is being_line ; assume n >= N ; assume n >= N ; assume X is ) ; assume x in I ; q is as by 0 ; assume c in x ; 1-p > 0 ; assume x in Z ; assume x in Z ; 1 <= k} ; assume m <= i ; assume G is finite ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is Assume f is Assume g is one-to-one ; assume A is boundary ; g is_sequence_on G ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Element of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is j ; Q halts_on s ; x in } ; M < m + 1 ; T2 is open ; z in b < a < b ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o f2 f2 f2 f2 and f2 S is <= ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be Z , M be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealLinearSpace , M be Matrix of V , REAL ; P [ 1 ] ; P [ {} ] ; C1 meets C ` ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; anon <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , M be Matrix of V , REAL ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be set ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; Sy is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let UA , A , B ; pp = c & pp = d ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= ( j - 1 ) ; set A = [: \cap :] ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is with_\cdot \cdot \cdot \cdot is non empty ; assume n0 <= m ; T is increasing ; e2 <> e2 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected in union M ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v + dom \vert being set ; - y in I ; let A be non empty set , F be Function of A , REAL ; Px0 = 1 ; assume r in F . k ; assume f is simple ; let A be l -countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IC , I ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; \bf \bf d ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , BOOLEAN ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is \mathclose hhhh; assume f is additive as bb\rm } ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= len f ; f | A is as as as as as continuous Function ; f . x / a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CC in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < b2 ; s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `1 ; let S be * of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , z is_collinear ; R8 in dom f ; let a , b be Real , x be Point of TOP-REAL 2 ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , m be Morphism of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , n be Nat ; s4 . n = N ; set y = ( x `1 ) ^2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; V2 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & f is one-to-one ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars , C = the carrier of C ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= Z1 & xq c= Z1 ; dom f = C1 & rng g c= C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & Im ( seq ) is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , i be Nat ; assume r2 > x0 & x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom ( g2 * f1 ) ; n in dom g1 /\ dom g2 ; k + 1 in dom f ; not the still of { s } is finite ; assume x1 <> x2 & x1 <> x3 ; v3 in V1 & v2 in V2 ; not [ b `1 , b ] in T ; i-35 + 1 = i ; T c= `2 & T c= `2 ; l `1 = 0 & l `2 = 0 ; n be Nat ; t `2 = r `2 & t `1 <= r ; AA is_integrable_on M & AA is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; cC misses cV ; Product ( seq ) is non empty ; e <= f or f <= e ; cluster non empty normal -> normal for Ordinal ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume ( vseq - vseq ) is convergent ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int ( G1 \/ G2 ) <> {} ; z `2 = 0 & z `1 = 0 ; p01 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be be be be be be be be be be be halting of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = K1 & p2 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMis closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) . n ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; cR is stable Subset of R ; set cR = Vertices R , cS = Vertices R , cT = Vertices S , cT = Vertices S , cT = Vertices S , cT = Vertices px0 c= P3 & px0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_equipotent ; assume a in A ( ) . i ; k in dom ( q | i ) ; p is \HM { finite of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for } -valued commutative Ring ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & rng I c= Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & rng F c= dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds S is holds S is non empty ; let f be ManySortedSet of I ; let z be Element of COMPLEX , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; x , y be set ; B-11 c= V1 \/ V2 & B-11 c= V1 ; assume I is_halting_on s , P & I is_halting_on s , P ; UA = [: U , U :] ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | n ) . x <= ( f | n ) . x ; let l be Element of L ; x in dom ( F | S ) ; let i be Element of NAT ; seq1 is COMPLEX & seq2 is COMPLEX implies seq1 - seq2 is COMPLEX assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = { q } + 1 ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for Sublattice of L ; a1 in B . s1 & a2 in B . s1 ; let V be finite { F , G , H be non empty VectSpStr over F ; A * B on B implies A on B f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT * , T = INT * ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f /\ dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in IB ; Q * ( 1 , 3 ) `1 = 0 ; set j = x0 gcd m , k = m gcd n ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - jj > 0 ; I I \HM { = } phi = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( A + B ) ; s1 , s2 be \in X & s1 <= s2 implies s1 <= s2 j1 -' 1 = 0 & j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower and 0 <= r ; p1 `1 = 1 & p2 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 <= len f ; 1 <= i1 -' 1 & i1 <= len f ; i + i2 <= len h & i + i2 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A1 *> = 1 ; set H = h . gg ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h1 ; assume x in X3 /\ X4 ; ||. h .|| < d1 & ||. h .|| < d ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing Nat ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \langle s *> ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive RelStr , x be Element of L ; S-20 is x -basis i -basis of n let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z1 , p ) ; P [ len F ( ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> \ implies for Element of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 & T1 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q29 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of REAL , M ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) ^2 , ( p `2 ) ^2 ; not r in ]. p , q .[ ; let R be FinSequence of REAL , p be FinSequence of REAL ; not SS does not destroy b1 & not I does not destroy b2 ; IC SCM R <> a & IC SCM R = a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & seq is convergent & lim seq = 0 ; let x be FinSequence of NAT , p be FinSequence ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= s . NAT ; H + G = F- ( G-G ) ; Cm1 . x = x2 & Cm2 . x = y2 ; f1 = f .= f2 .= ( f | X ) . f1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d3 , o _|_ o , a3 & d1 , c _|_ d , c ; IC is_reflexive & IC is_reflexive implies C is transitive IO is_antisymmetric implies CO is_antisymmetric & IO is_antisymmetric = CO upper_bound rng H1 = e & upper_bound rng H2 = e ; x = ( a * a9 ) * ( a * b9 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < len f ; rng s c= dom f1 /\ dom f2 ; assume support a misses support b & support b misses support b ; let L be associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed I = I1 +* ( card I + 3 ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* \hbox { \boldmath $ N . N } , \subseteq \rangle -> complete non trivial ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; ( n - 1 ) - 1 > 0 ; assume ( 1 / 2 ) <= t `1 / 1 ; card B = k + 1-1 ; x in union rng ( f | ( len f -' 1 ) ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & not x in { v } ; let G be st G is } -wwgraph ; e , v6 be set ; c . ( i - 1 ) in rng c & c . ( i - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z1 = - z2 ; assume w is_llof S , G ; set f = p |-count t , g = p |-count t , h = p |-count t , n = p |-count t , n = p |-count t , m = p |-count t , n = p |-count t let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IB be Subset-Family of X , C be Subset of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , P be Subset of SCM+FSA ; p is finite & q is FinSequence of the carrier of SCM+FSA ; stop I ( ) c= P-12 & stop I c= Pc ; set ci = fbeing /. i ; w ^ t |- w ^ s ; W1 /\ W = W1 /\ W ` .= ( W1 /\ W2 ) /\ W ; f . j is Element of J . j ; let x , y be Subset of T2 , a be Element of T1 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ord x = 1 & x is dom \circ implies x is dom x set g2 = lim ( seq , - seq ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L2 . F-21 = 0 ; / ( X \/ R1 ) = / ( X /\ R1 ) ( sin . x ) <> 0 & ( sin . x ) <> 0 ; ( #Z n ) . x > 0 & ( #Z n ) . x > 0 ; o1 in X-5 /\ O2 & o2 in XO /\ O2 ; e , v6 be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ) ; let J be closed non empty Subset of R ; h . p1 = f2 . O & h . p2 = g2 . O ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M & width ( q | i ) = width M ; the carrier of CK c= A & the carrier of CK c= A ; dom f c= union rng ( F | ( -10 + 1 ) ) k + 1 in support ( support ( n ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( an an element ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 / m * m + r ) < p ; dom f = dom ( I --> ( f . x ) ) ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal for ExtReal ; then { db } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M , w2 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W1 /\ W3 reconsider y = y as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , x be Element of X ; dist ( x `1 , y ) < ( r / 2 ) ; reconsider mm1 = m - 1 as Element of NAT ; x- x0 < r1 - x0 & r1 < x0 + r2 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * ( idseq q ) " ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 + 1 ) in { x } ; cluster subcondensed -> subopen for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( Gik , Gij ) ; n be Element of NAT , x be Element of X ; reconsider SS = S , SS = S as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , P be s , Q ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , z be element ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt c / sqrt 2 ) / sqrt 2 ; reconsider t7 = T-1 as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( x4 ) /\ Q2 . ( x4 ) /\ Q2 . ( x4 ) ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 .= len W + 2 ; len ( h2 ) in dom ( h2 ) & len ( h2 ) = len h2 ; i + 1 in Seg ( len s2 + 1 ) ; z in dom g1 /\ dom f & z in dom ( f | X ) ; assume that p2 = E-max ( K ) and p2 `2 = - 1 ; len G + 1 <= i1 + 1 ; f1 (#) f2 is_differentiable_in x0 & f1 (#) ( f2 (#) f1 ) is_differentiable_in x0 ; cluster ( seq + s-10 ) - ( seq + sR2 ) -> summable ; assume j in dom ( M1 * ( i , j ) ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* xy *> \mathbb x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) & len q = len G ; s1 = Initialize Initialized s , P1 = P +* I , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of x & y = the carrier of L ; k = 0 & n <> k or k > n ; then X is discrete for X is closed Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being being being being being being being being being being being being being being being being being being Subset of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f .] = f & M \lbrack g .] = g ; ( ( ( L to_power 1 ) ) /. 1 ) = TRUE ; dom g = dom f /\ X .= dom f /\ X ; mode ^ of G is ^ of G , G ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) , F be Function ; F1 . ( a1 , - a1 ) = G1 . ( a1 , - a1 ) ; redefine func Sphere ( a , b , r ) -> compact Subset of TOP-REAL 2 ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( f1 + f2 ) ) ; curry ( F-19 , k ) is additive ; set k2 = card dom B , k1 = card dom C , k2 = card dom D ; set G = ( V ) . s ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of Mf , M be Matrix of REAL ; reconsider s1 = s , s2 = t as Element of S1 ; rng p c= the carrier of L & p . n in rng p ; let d be Subset of the bound of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & I-21 in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i0 = len p1 , i0 = len p2 as Integer ; dom f = the carrier of S & rng g c= the carrier of S ; rng h c= union ( the carrier of J ) & rng h c= the carrier of L ; cluster All ( x , H ) -> .] -valued for element ; d * N1 ^2 > N1 * 1 / ( d * N2 ) ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 | D1 , f = ( f | D2 ) " D2 ; dom ( p | mmA ) = mmA ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot - arccot ) . x & tan . x > 0 ; x in rng ( f /^ n ) /\ rng ( f /^ n ) ; let f , g be FinSequence of D ; cp in the carrier of S1 & cp in the carrier of S2 ; rng f " = dom f & rng f = dom ( f " ) ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 ; assume v in rng ( S | E1 ) & u in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( ( g2 | A ) | A ) ; let q be Point of TOP-REAL 2 , r be Real ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* SS *> is_in the carrier of C-20 & <* D *> is non empty ; i <= len ( G /^ ( len G -' 1 ) ) ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = SL " Q .= SL " Q ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) (#) ( 1 / 2 ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 & I . n = P1 . n ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 3 ; let C1 , C2 be subcategory of C , F be subFunctor of C1 , C2 ; reconsider V1 = V , V2 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ ( a " ) is Subgroup of H |^ a ; let A1 be [ of O , E1 ] , A2 be Element of E ; p2 , r3 , q3 is_collinear & p2 , q3 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } \/ { 0. TOP-REAL 2 } ; p in [#] ( ( ( TOP-REAL 2 ) | B11 ) | B11 ) ; 0 . n < M . ( E8 . n ) ; op ( c ) |^ ( c , d ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> \in -> \in -> 0. -| for Function of L , L ; set i1 = the Nat , i2 = the Nat , n = the Nat , i = the Nat , n = the Nat ; let s be 0 -started State of SCM+FSA , P , s be State of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . len f = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def1 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster -> non empty -> non <= x `2 -> non <= x `2 ; set S = <* Bags n , il *> , S = <* <* l *> *> , T = <* l *> , S = <* l *> , T = <* l *> , T = <* l *> , S = <* l *> , T set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f2 ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 or p `1 = p2 `2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & len <* P *> = 1 ; set N-26 = the O of N , Nw = the Element of N ; len gLet + ( x + 1 ) - 1 <= x ; a on B & b on B & not b on B ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a D _ d [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ( f /^ n ) ; set q2 = N-min L~ Cage ( C , n ) , q2 = W-min L~ Cage ( C , n ) , q2 = E-max L~ Cage ( C , n ) , q2 = E-max L~ Cage ( C , n ) , q2 = E-max set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " V & f " D meets f " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_left_argument_of H ) ; assume t is Element of ( F . X ) . s ; rng f c= the carrier of S2 & f . ( len f ) = f . ( len f ) ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . ( a1 , b1 ) ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( thesis | k ) - 1 as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( UMP C , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { \vert m .| } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pp . i .= pp . i ; let PA , G be a_partition of Y , a be Element of Y ; attr 0 < r & r < 1 implies 1 < ( 1 - r ) / ( 1 - r ) ; rng ( ) ( a , X ) = [#] X & rng ( f | X ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( ( canFS ( s ) ) | ( len s ) ) = card ( s | ( len s ) ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q c= FinMeetCl the topology of Y ; dom fx0 c= dom ( ux0 - f ) ; pred n divides m & m divides n implies n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in \subseteq c= c= the carrier of T & a in the carrier of T ; not y0 in the still of f & not y0 in the carrier of f ; Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = .: ( x , y , z ) ; l1 = m2 & l1 = i2 & l2 = j2 implies l1 = i2 x0 in dom ( u01 ) /\ A01 & x0 in dom ( u01 ) /\ A01 ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 .= R^1 | B01 .= the carrier of TOP-REAL 2 ; f . p4 <= f . p1 , f . p2 , P ; ( ( F . x ) `1 ) ^2 <= ( ( F . x ) `1 ) ^2 ; x `2 = ( W7 ) `2 .= ( W7 ) `2 .= ( W8 ) `2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K & 0 |-> a = <*> the carrier of K ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] ; reconsider s\overline = s\overline ( D ) as ' of D ; ( i - 1 ) <= len ( ' - 1 ) ; [#] S c= [#] ( the TopStruct of T ) & [#] T c= [#] T ; for V being strict RealUnitarySpace holds V in and V is Subspace of the carrier of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K , n be Nat ; - a * ( - b ) = a * b ; for A being Subset of AS holds A // A implies A // C ( for o2 being Element of A holds o2 in <^ o2 , o2 ^> implies o2 = o1 ) then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , N be strict Subgroup of G ; j >= len upper_volume ( g , D1 ) & j <= len upper_volume ( g , D2 ) ; b = Q . ( len Qk - 1 ) + 1 ; f2 * f1 /* s is divergent_to-infty & f2 * f1 /* s is divergent_to-infty ; reconsider h = f * g as Function of [: N , N :] , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of T7 & v |-- E in T7 ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L1 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) .= Initialize ( p +* q ) ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of \langle Ids L , \subseteq \rangle ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( ( P + Q ) ^ <* n *> ) + len ( ( P + Q ) ^ <* n *> ) ; x1 `1 = x2 & y1 `2 = y2 & y1 `2 = y2 & y1 `2 = y2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FT1 ( n ) ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom x1 /\ dom x2 & x1 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " ( dom R ) .= R " ( dom R ) ; n in Seg len ( f /^ ( i -' 1 ) ) & n in dom ( f /^ i ) ; for s be Real st s in R holds s <= s2 implies s <= s2 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym ) ( X ) for X is Subset of ) & X is finite ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) . w & w in F ; curry ( P+* ( P+* ( i , k ) ) # x ) is convergent ; cluster open -> open for Subset of T7 ( n ) ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of [: Sub , U0 :] ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = k ; Reloc ( J , card I ) does not destroy a implies J " ; goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p2 , s3 ) ; IC SCMPDS in dom Initialize ( p +* I ) & IC s2 in dom Initialize ( p +* I ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union Int F ) c= Cl ( Int Cl F ) ; the carrier of X1 union X2 misses ( ( A \/ B ) \/ ( A \/ C ) ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in dom f ; then Y c= { x } or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H ; consider m being element such that m in Intersect ( Fx0 ) and m in dom f ; reconsider A1 = support u1 , A2 = support u2 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a3 <> a4 ; cluster s -carrier V -> $ for string of S , X be set ; LL2 /. n2 = LL2 . n2 .= LL2 . n2 .= LL2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume r-7 in LSeg ( p1 , p2 ) /\ LSeg ( p2 , p3 ) ; let A be non empty compact Subset of TOP-REAL n , f be Function of TOP-REAL n , TOP-REAL n ; assume that [ k , m ] in Indices Dm1 and [ k , m ] in Indices Dm1 ; 0 <= ( ( 1 / 2 ) to_power p ) . p ; ( F . N ) | E8 . x = +infty ; attr X c= Y & Z c= V implies X \ V c= Y \ Z ; y `2 * ( z `2 ) * ( z `1 ) <> 0. I & y `2 * ( z `2 ) <> 0. I ; 1 + card X-18 <= card X-18 + card X-18 ; set g = z \circlearrowleft ( ( L~ z ) .. z ) , 2 = ( ( L~ z ) .. z ) .. z ; then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -O , X be total set ; reconsider B = A as non empty Subset of TOP-REAL n , a be Real ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( ( g2 ) . O ) `1 ) ^2 = ( - 1 ) ^2 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , E = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , N = E-bound C , S = E-bound C , N = E-bound C , N = E-bound C , S = E-bound C , N = E-bound S1 . ( a `1 , e `2 ) = a + e `2 .= a `1 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) & len ( M * ( ColVec2Mx p ) ) = width M ; dom ( i (#) Im ( f ) ) = dom Im ( f ) ; ( ^2 ) . x = W . ( a , *' ( a , p ) ) ; set Q = ( \rm \rm \rm \rm \rm \rm \rm \rm , f ) . ( g . x ) ; cluster -> MS[ for ManySortedSet of U1 , ( the Sorts of U1 ) * ; attr F = { A } means : Def1 : F is discrete ; reconsider z9 = ] , z9 = y as Element of product ( G . i ) ; rng f c= rng f1 \/ rng f2 & f . ( len f ) = f1 . ( len f ) ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f = <*> the carrier of F_Complex ; E , j |= All ( x1 , x2 , x3 , x4 ) ; reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R (*) P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies x in B1 g + R in { s : g-r < s & s < g + r } ; set q-1= ( q , <* s *> ) -O , q-1= ( q , <* s *> ) -O ; for x being element st x in X holds x in rng ( f1 | X ) h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , dom ( R | NAT ) ) ; t in Seg width ( I ^ ( n , n ) ) & t in Seg n ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% x , y %> + k ; ( ( ( q `2 ) - ( q `2 ) ) / ( 1 + ( q `2 ) ) ^2 ) <= ( q `2 ) / ( 1 + ( q `2 ) ^2 ) ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; attr 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 3 >= 0 ; x , z , y is_collinear & x , z , y is_collinear implies x , z , y is_collinear a |^ ( n1 + 1 ) = a |^ n1 * a |^ n1 ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set yy1 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 . len FF2 = 0. K ; p . m Joins r /. m , r /. ( m + 1 ) , G ; p `2 = ( f /. i1 ) `2 .= ( f /. ( i1 + 1 ) ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & E-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) <= 2 * r + ( p `2 ) ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u , v2 = v as VECTOR of P`1 ( X ) ; p |-count ( Product Sgm X11 ) = 0 & p |-count ( Product Sgm X11 ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = x in { x , y } & h . x = {} ( TT . x ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of A0 ) & len ( the charact of B ) = len the charact of B ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : : G = : G `1 = ( G . e ) `1 ; rng F c= the carrier of gr { a } & F . a = the carrier of gr { a } ; ( for K being ( st K in rng F holds n , r ) ) implies for f being ) FinSequence holds P [ f ] f . k , f . ( \mathop { \rm mod n ) * ( m mod n ) are_relative_prime ; h " P /\ [#] T1 = f " P /\ [#] T2 .= f " P /\ [#] T2 ; g in dom f2 \ ( f2 " { 0 } ) /\ ( f2 " { 0 } ) ; g1X /\ dom f1 = g1 " X /\ dom ( f1 " X ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = being thesis , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) , d2 = dist ( y2 , y1 ) ; b `1 + ( 1 / 2 ) < ( 1 / 2 ) + ( 1 / 2 ) ; reconsider f1 = f as VECTOR of the carrier of X , Y ; attr i <> 0 implies i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( ( g2 . i2 ) | ( i -' 1 ) ) ; dom ( i4 * i4 ) = dom ( i * i4 ) .= dom i ; cluster sec | ]. PI / 2 , PI .[ -> one-to-one for Function of REAL , REAL ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = y0 as Function of S , IV ; reconsider R1 = x , R2 = y , R1 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL ; S1 +* S2 = S2 +* S1 +* S2 +* S2 .= S1 +* S2 +* S2 +* S2 .= S1 +* S2 +* S2 +* S2 ; ( ( #Z n ) * ( cos - sin ) ) is_differentiable_on Z & ( ( #Z n ) * ( cos - sin ) ) is_differentiable_on Z ; cluster [. 0 , 1 .] -> [. 0 , 1 .] -valued for Function ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f3 ) ; ES . e2 = E8 . e2 -T . e2 .= E8 . e2 ; ( ( arctan (#) ( ln * f ) ) `| Z ) . x = f . x / ( 1 + x ^2 ) .= f . x / ( 1 + x ^2 ) ; upper_bound A = ( PI * 3 / 2 ) * 2 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f ) ) ) ) ) ) ) ; reconsider pbeing = qbeing Point of TOP-REAL 2 , pbeing Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & g . W in [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) .= LSeg ( f , j ) ; rng s c= dom f /\ ]. -infty , x0 + r .[ & f . ( s . n ) <= 0 ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m1 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y implies g <= f for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: ( the carrier of X1 ) , Bg = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R -Seg ( a ) c= R -Seg ( b ) & R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ x2 , y2 ] ; pred x1 <> x2 means : Def1 : |. x1 - x2 .| > 0 & |. x2 - x1 .| > 0 ; assume that p2 - p1 , p3 - p1 - p2 - p1 , p3 - p1 - p2 is_collinear and p2 - p1 , p3 - p2 - p1 , p3 - p2 - p1 is_collinear ; set q = ( -1 f ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) *> _ _ { k } = n mod k ; dom ( T * ( succ t ) ) = dom ( n succ t ) .= dom ( T * ( succ t ) ) ; consider x being element such that x in wc iff x in c & x in X ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 c= the carrier of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = E-bound L~ Cage ( C , n ) , s = E-bound L~ Cage ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n ) , G = Gauge ( C , n1 -' len f + 1 <= len ( g /^ ( len g -' 1 ) ) + 1 ; Seg \mathbb \mathbb d ( q , O1 ) = [ u , v , a `1 , b ] ; set C-2 = ( ( `1 ) `1 ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( ) . $1 & P [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I , s4 = P1 +* I , s4 = P1 +* I ; let l be variable of k , Al , A-30 be Subset of V ; reconsider U2 = union G-24 , G-24 = union G-24 as Subset-Family of T-24 ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X1 ; p$ L = <* - c9 , 1 *> & p = <* - c9 , 1 *> ; synonym f is real-valued means : Def1 : rng f c= NAT & for x being element st x in NAT holds f . x = f . x ; consider b being element such that b in dom F and a = F . b ; x10 < card X0 + card Y0 & card Y0 + card Y0 < card Y0 + card Y0 ; attr X c= B1 means : Def1 oo) X c= succ B1 & X c= succ B2 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , p2 ) ; attr 1 <= len s means : Def1 : for s being Element of NAT holds ( s . 0 = s . 1 ) & ( s . 1 = s . 2 implies s . 2 = s . 3 ) ; fJ c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in TAUT ( A ) means q '&' p in TAUT ( A ) & q in TAUT ( A ) ; - ( t `1 / t `2 ) < ( t `2 / t `1 ) ^2 ; UA . 1 = ( U /. 1 ) `1 .= ( W /. 1 ) `1 .= ( W /. 1 ) `1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices On = [: Seg n , Seg n :] & Indices O = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ x ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is \cup Awhere f is Element of A-29 : f is unital & f is unital } ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = |[ w1 , v1 ]| ; reconsider t = t as Element of INT * , ( the carrier of X ) --> { 0 } ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) ; f " V in ( the topology of X ) /\ D . ( the carrier of S , the carrier of S ) ; x in [#] ( the carrier of A ) /\ A ( ) & y in [#] ( ( the carrier of B ) /\ A ( ) ) ; g . x <= h1 . x & h . x <= h1 . x & h . y <= 1 ; InputVertices S = { xy , yz , zx , zx , zx , non empty set , f be Function of the carrier of S , BOOLEAN , 5 , 6 , 7 , 8 } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( ( Len F1 ) ^ ( ( Len F2 ) ^ ( Len F2 ) ) .= len ( ( Len F1 ) ^ ( Len F2 ) ) ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom ( max ( f , g ) ) = dom ( f + g ) ; ( the Sorts of Y1 ) . n = upper_bound Y1 & ( the Sorts of Y2 ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 / y , y ] = 1 / ( 1 * v1 ) .= y ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and not e in the carrier' of G2 ; C6 * ( i1 , i2 ) `1 = G1 * ( i1 , i2 ) `1 .= G1 * ( i1 , i2 ) `1 ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\lbrace f\rbrace <= b - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ [: NAT , NAT :] ) \/ [: NAT , NAT :] c= R ; consider p being element such that p in { x } and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m , ( Partial_Sums F ) . n ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D , f . ( y1 , y2 ) -> Element of D ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( N-min Z , NW-corner Z ) /\ LSeg ( NW-corner Z , NW-corner Z ) ; set R8 = R | ]. b , +infty .[ , R8 = R | ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , da ) .= AddTo ( da , db ) ; seq . m <= ( the Sorts of A ) . k & ( the Sorts of A ) . k <= ( the Sorts of A ) . k ; a + b = ( a ` *' b ` ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( the carrier of R ) \ A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 0 & len s2 - 1 > 0 implies len s2 - 1 <= len s2 - 1 ( N-min P ) `2 = N-bound P & ( N-min P ) `2 = N-bound P ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= f . a1 ` .= ( f | ( a1 ` ) ) . a1 ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ /\ dom f1 \ { x0 } ; gg . s0 = g . s0 | G . s0 .= g . s0 ; the InternalRel of S & the InternalRel of S c= the InternalRel of ( the InternalRel of S ) ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 + 1 ) & phi . ( $2 + 1 ) = phi . ( $2 + 1 ) ; F . s1 . a1 = F . s2 . a1 & F . s1 . a1 = F . s2 . a1 ; x `1 = A . o . a .= Den ( o , A . a ) . a ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= f " ( Cl P1 ) ; FinMeetCl ( ( the topology of S ) \/ { 0 } ) c= the topology of T ; synonym o is \bf means : Def1 : o <> \ast & o <> * ; assume that X c= Y and card X <> card Y and card Y <> card X and card Y = card X ; the *> of s <= 1 + ( the *> of s ) & the { s } c= the carrier of S `1 ; LIN a , a1 , d or b , c // b1 , c1 or b , c // d , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; EE in SE & not EE in { NE } ; set J = ( l , u ) If , K = I " ; set A1 = } , A2 = } , A1 = { cin , cin , cin , cin , cin } ; set vs = [ <* cin , cin *> , '&' ] , f3 = [ <* cin , cin *> , '&' ] , f4 = [ <* cin , cin *> , '&' ] , f4 = [ <* cin , cin *> , '&' ] , f4 = [ <* cin , cin *> , '&' ] , f4 = [ <* cin , cin *> , '&' ] , } ; x * z `1 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x = f . x Int cell ( f , 1 , G ) c= RightComp f \/ L~ f \/ L~ f \/ L~ f \/ L~ f ; UA is_an_arc_of W-min C , E-max C & L~ h c= L~ Cage ( C , n ) \/ L~ Cage ( C , n ) ; set f-17 = f @ "/\" g @ ; attr S1 is convergent means : Def1 : S2 is convergent & ( for n holds S1 . n = S2 . n ) implies S1 is convergent & lim S2 = lim ( S2 ) ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \in be be be be be be be be be be be reflexive transitive non empty RelStr , F be symmetric Function of [: the carrier of M , the carrier of M :] , the carrier of M ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) \/ dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a \rbrack --> x ) = len l & len ( l (#) x ) = len l ; t4 } is ( {} \/ rng t4 ) -valued ( {} , rng t4 ) -valued FinSequence ; t = <* F . t *> ^ ( C . p ^ ( C . q ) ) ; set pp = W-min L~ Cage ( C , n ) , p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = q , s = q , w = q , e = q , w = q , w = q , e = q , w = q , w = q , x = ( k -' ( i + 1 ) ) = ( k - i ) - ( i + 1 ) ; consider u being Element of L such that u = u `1 "/\" D and u in D ` ; len ( ( width aG ) |-> a ) = width aG & width ( ( len aG ) |-> a ) = width aG ; FM . x in dom ( ( G * the_arity_of o ) . x ) & x in dom ( ( G * the_arity_of o ) . x ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) + 1 ; dom ( ( cos * sin ) `| REAL ) = REAL & dom ( ( cos * sin ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 0 ) -element for string of S ; set b5 = [ <* ap , ccp *> , <* ccp *> ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & dom ( ( the Sorts of A ) * the_arity_of o ) = dom the_arity_of o ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t2 . DataLoc ( s4 . SBP , 2 ) , x4 = Comput ( P3 , s3 , 2 ) , P4 = P3 ; set pp = stop I ( ) , p = Initialize s , q = Initialize s , P = P +* I , Q = P +* I , S = P +* I , T = P +* I , T = P +* I , T = P +* I , S = P +* I , T = S +* I , T = S consider a being Point of D2 such that a in W1 and b = g . a and a in W1 ; { A , B , C , D , E } = { A , B , C } \/ { D , E , F , J , M } let A , B , C , D , E , F , J , M , N , N , M be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( ( l - 1 ) + 1 ) + 1 ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = [: the topology of L , the topology of L :] & the TopStruct of L = [: the topology of L , the topology of L :] ; consider y being element such that y in dom H1 and x = H1 . y and y in Y ; ff \ { n } = \mathop { \rm Free ( All ( v1 , H ) , E ) .= Free ( All ( v1 , H ) ) ; for Y be Subset of X st Y is summable holds Y is be summable iff Y is be summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } -1 ) = len s & len ( the { - } -1 ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x = 1 / x rng ( ( h2 * f2 ) | A ) c= the carrier of ( ( TOP-REAL 2 ) | A ) ; j + ( len f ) - len f <= len f + ( len g ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL n , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= C8 . x ; power ( F_Complex ) . ( z , n ) = 1 .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t .= f . ( s , C ) ; support ( f + g ) c= support f \/ C & support ( f + g ) c= C \/ ( C \/ { x } ) ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 is Subset of [: X1 , X2 :] , x2 is Subset of X1 , X2 is Subset of X2 : x1 in X2 } is Subset of X1 ; h = ( i , j ) |-- h .= H . i .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in A & x1 in B ; set X = ( ( d , O1 ) --> ( q , O1 ) ) . ( ( d , O1 ) --> ( q , O1 ) ) ; b . n in { g1 : x0 < g1 & g1 < a1 . n } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the carrier of Y = the carrier of Y & the carrier of Y = the carrier of X & the carrier of X = the carrier of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len ( q1 ^ q2 ) .= len ( q ^ q2 ) + len ( q2 ^ q3 ) ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z ; set K1 = upper ( ( lim ( lim ( H , A ) ) || ( A , B ) ) , ( lim ( H , B ) || ( A , B ) ) ) ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom G as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j ) /\ q .. f .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom Sb = dom S /\ Seg n .= dom ( L | Seg n ) .= dom ( L | Seg n ) .= Seg n /\ Seg n .= dom ( L | Seg n ) ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a & g in H |^ a * ( 0. ( K , n ) ) . ( a , 1 ) = a `1 - ( 0 * n ) `1 .= a `1 ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ g @ f dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X .= dom ( f1 (#) f2 ) /\ X ; 1 = ( p * p ) * p .= p * ( p * p ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 ; dom ( F-11 | [: N1 , S :] ) = dom ( F | [: N1 , S :] ) .= [: N1 , S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , T ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f = id b and f * f = id a and f * f = id b ; ( cos | [. 2 * PI * 0 , PI + ( 2 * PI * 0 ) .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS - LS .. LS + 1 - LS .. LS - 1 ; let t1 , t2 , t3 be Element of ( the carrier of S ) * , s be Element of S ; "/\" ( ( Frege ( curry H ) ) . h , L ) <= "/\" ( ( Frege ( curry G ) ) . h , L ) ; then P [ f . i0 ] & F ( f . i0 + 1 ) < j & j <= len f ; Q [ ( D . x ) `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is let of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S1 ) .= ( the carrier of S1 ) --> ( the carrier of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F . 0 and for n being Nat holds s . n = F ( n ) ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) /. len Lower_Seq ( C , n ) = WW ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= IB and A = ]. a , IB .[ and a <= IB ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : b |^ n = b |^ n } , Y = { b |^ n } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , yz , zx *> , f1 ] , yz = [ <* xy , yz *> , f2 ] , zx = [ <* xy , yz *> , f3 ] , zx = [ <* xy , yz , zx *> , f3 ] , f4 = [ <* xy , yz *> , f3 ] , zx = [ <* xy , yz *> , f3 ] , zx = [ <* Uq /. len ( lq ) = ( lq /. len ( q ) ) . 1 .= q . 1 ; ( ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( S \/ Y ) `2 ) / 2 ) * ( ( S \/ Y ) / 2 ) = ( ( S \/ Y ) / 2 ) * ( ( S \/ Y ) / 2 ) ; ( ( seq - seq ) . k ) . k = ( seq . k - seq . ( k + 1 ) ) . ( seq . k ) ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X = the carrier of X & the carrier of X = the carrier of Y ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A ) , ch = chi ( X , A ) ; R |^ ( 0 * n ) = Imax ( X , X ) .= R |^ n |^ 0 .= R |^ 0 ; ( ( Partial_Sums ( curry ( Fd , n ) ) ) . n ) . x is nonnegative & ( ( ( curry ( Fd , n ) ) . x ) . x = ( ( F . n ) . x ) . x ; f2 = C7 . ( E7 . ( len ( V , len ( V , len ( f | K ) ) ) ) ; S1 . b = s1 . b .= s2 . b .= ( S2 . b ) . b .= ( S2 . b ) . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) .= { p2 } ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) c= Seg n ; assume o = ( the connectives of S ) . 11 & o in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) u , phi = ( l1 , l2 ) u , C = ( l1 , l2 ) u , D = ( l2 , l2 ) u , E = ( l2 , l2 ) u , F = ( l1 , l2 ) u , F = ( l2 , l2 ) u , F = ( l2 , l2 ) u , C = ( l1 , l2 ) u ) , D = ( l2 synonym p is is is is is / for p is / of n , L & p is is / ; Y1 `2 = - 1 & 0. TOP-REAL 2 <> Y1 & Y1 `2 = - 1 & Y1 `2 = - 1 & Y1 `2 = 1 ; defpred X [ Nat , set , set ] means P [ $1 , $2 ] & Q [ $1 , $2 ] ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) ~ = 1. ( K , n -' n ) & Det ( I |^ ( m -' n ) ) = 1. K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; CC . d = CC . da mod CC . db .= CC . da mod CC . db .= CC . da mod CC . db ; attr X1 is dense means : Def1 : X2 is dense dense & X1 /\ X2 is dense dense implies X1 /\ X2 is dense dense SubSpace of X1 ; deffunc F6 ( Element of E , Element of I ) = $1 * $2 & $1 * $2 = ( $1 * $2 ) * ( $1 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ y .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , FinMeetCl Y *> synonym A , B are_separated means : Def1 : Cl A misses B & A misses Cl B & B misses Cl A & A misses Cl B ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & len ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & v . x < 1 } ; ( ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = ( - 2 ) * r1 + 1 & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . y = ( h . y ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC ( s , 9 ) .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 2 ) = t . intpos ( e + 2 ) .= t . intpos ( e + 2 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x or y <= x ; integral ( integral ( f , C ) , A ) = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y in Y ` & x in X ` holds y <= x ` & y <= x ` ; func |. p \bullet p .| -> variable of A means : Def1 : for x being element holds x in it iff x in ( NBI ( p ) ) . p ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 , z `2 '||' y `2 , t `2 ; dom x1 = Seg len x1 & len y1 = len l1 & for i st i in dom y1 holds x1 . i = l1 . i * l1 . i ; consider y2 being Real such that x2 = y2 and 0 <= y2 & y2 <= 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f | X .|| /* s1 .= ||. f .|| /* s1 .= ||. f .|| /* s1 ; ( the InternalRel of A ) -Seg ( x ` ) /\ Y = {} \/ {} .= {} \/ {} .= {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and p . i = p . j ; reconsider h = f | X ( ) as Function of X ( ) , rng f , Y ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 implies ( ex v st v in W1 & u = v + ( u1 - u2 ) ) & ( v in W2 ) defpred P [ Element of L ] means M <= f . $1 & f . $1 <= f . ( $1 + 1 ) & f . $1 <= f . ( $1 + 1 ) ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y ) = - x + - y .= - x + - y .= - x + y .= - x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_\HM { a } and a , x are_\HM { b } ; fSet = [ [ dom ( @ f2 ) , cod ( @ f2 ) ] , [ cod ( @ f2 ) , cod ( @ f2 ) ] ] ; for k , n be Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( A ` ) |^ d ; consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ) ^2 > 0 ; Carrier ( LS . k ) = Carrier ( F . k ) & F . k in dom ( L . k ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( card I + 2 ) , i2 = goto ( card I + 3 ) ; attr B is thesis means : Def1 : for S being SubSub|. of B holds S is B `1 & S `2 = ( B `1 ) `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & a "/\" d in D } ; |( exp_R , q )| * |( - q , q )| * |( - q , q )| >= |( exp_R , q )| * |( - q , q )| ; ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A ; ( G * ( len G , k ) ) `1 = ( ( G * ( len G , k ) ) `1 ) / ( G * ( len G , k ) ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( reproj ( i , x ) ) . x0 + ( f1 + f2 ) . x ; attr ( for x st x in Z holds ( tan . x ) <> 0 ) & ( tan | Z is continuous implies ( tan | Z ) . x = tan . x ) ; ex t being SortSymbol of S st t = s & h1 . t = h2 . t & for x being set st x in dom h1 holds P [ x , t . x ] ; defpred C [ Nat ] means P8 . $1 is thesis & A8 : A8 : A8 : A8 : A8 : A is thesis & A8 is thesis ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( Carrier A ) . ( index B ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for d being Element of D holds d in c iff d in D n ( ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { ( 1 - 2 ) * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - cp = ( f | ( n , L ) ) *' ( - ( f | ( n , L ) ) ) .= ( f - ( c - g ) ) *' ( - ( f | ( n , L ) ) ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . |[ ( 8 + 1 ) / ( 8 + 1 ) , ( 8 + 1 ) / ( 8 + 1 ) ]| in f1 .: W1 /\ W2 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) ) .= a . x ; z = DigA ( tz , xx ) .= DigA ( tz , xx ) .= DigA ( tz , xx ) .= DigA ( tz , xx ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S c= G } , F = G | ( the carrier of X ) , G = F | ( the carrier of X ) , G = F | ( the carrier of X ) , H = G | ( the carrier of X ) , F = G | ( the carrier of X ) , G = F | ( the carrier of X ) , F = G | consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 / ( 1 + sn ) ^2 ; 0. ( V ) is Linear_Combination of A & Sum ( L ) = 0. ( V ) implies Sum ( L ) = Sum ( L ) let k1 , k2 , k2 , x4 be Instruction of SCM+FSA , a be Int-Location , k1 be Int-Location , k2 be Int-Location , k2 be Nat ; consider j being element such that j in dom a and j in g " { k ' ( i + 1 ) } and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = \rbrace * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & d <= b and [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; A, { i } in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * ( b2 /. y ) .= ( F /. y ) . y .= ( F /. y ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then that p => q in S and not x in the still of p and not x in S and not x in S & not x in S ; dom ( the InitS of r-10 of rM ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is extended integer means : Def1 : for x being set st x in rng f holds x is integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 ; l ( ) = ( g /. 3 ) `1 + ( k ( ) ) `1 - ( k ( ) ) `1 + ( k ( ) ) `1 - ( k ( ) ) / ( k ( ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( ( l , s2 ) .--> ( I , k ) ) . IC SCM+FSA ; assume for n be Nat holds ||. seq .|| . n <= ( seq . n ) * ( seq . n ) & ( seq is summable implies seq is summable ) & ( seq is summable implies seq is summable ) & ( seq is summable implies seq is summable ) sin . ( \vert non .| ) = sin r * cos ( ( cos r ) * sin s ) .= 0 ; set q = |[ g1 `1 . t0 , g2 `2 . t0 ]| , g1 = |[ g2 `1 . t0 , g2 `2 . t0 ]| , g2 = |[ g2 `1 . t0 , g2 `2 . t0 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G . n = implies G . n = S . ( n + 1 ) ; consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) \/ { H } ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & the Sorts of C = ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R (#) ( f + ( #Z 3 ) (#) ( f + ( #Z 3 ) (#) ( f1 + f2 ) ) ) ; for k be Element of NAT holds seq1 . k = ( ( \HM { the carrier of S } ) | ST ) . k assume that - 1 < n ( ) and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and q `2 / |. q .| - cn < 0 ; assume that f is continuous and a < b and a < d and f = g and f = g and f = h and f = k and g = k ; consider r being Element of NAT such that s, r , r is_collinear and r <= q and r <= q and q <= r ; LE f /. ( i + 1 ) , f /. j , L~ f implies f /. 1 = f /. ( len f -' 1 ) assume that x in the carrier of K and y in the carrier of K and ex_inf_of x , L and ex_inf_of y , L and x in the carrier of L ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) " [: A , B :] ) " [: A , B :] ) " [: A , B :] ; rng ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M & rng ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) --> { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / ( 2 * ||. seq .|| + ||. seq .|| ) ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> ] in dom p and v ^ <* 1 *> in dom p and p . ( len p + 1 ) = v . ( len p + 1 ) ; consider a being Element of the carrier of X39 , A being Element of the carrier of X39 such that not a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set for i st i in dom p holds p . i in D & p . i is FinSequence of D implies p is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p00 , p1 ) } .= { LSeg ( p1 , p00 ) , LSeg ( p00 , p2 ) } ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 - 1 + 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( ny . n ) - ( ny . n ) .| ; for r , s1 , s2 holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & s2 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 & G c= z1 } ; let g be element be element of A , INT , X be set , b be Element of INT , f be Function of A , INT , b be Element of X ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CL such that for n holds P [ n , q1 . n ] and P [ q1 ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for x being Element of NAT holds P [ n , x , f . x ] ; reconsider B-6 = B /\ O , OO = O , OO = Z as Subset of B ; consider j being Element of NAT such that x = the ` of n and 1 <= j and j <= n and f . j = f . j ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 and x in L2 . O2 ; ( C * ( _ T4 ( k , n2 ) ) ) . 0 = C . ( ( _ T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = X & rng ( X --> f ) = X ; ( ( ( SpStSeq L~ SpStSeq C ) /. 1 ) `2 <= ( ( SpStSeq C ) /. ( len ( SpStSeq C ) ) ) `2 & ( ( SpStSeq C ) /. ( len ( SpStSeq C ) ) ) `2 <= ( ( ( SpStSeq C ) /. 1 ) `2 ) ; synonym x , y , z is_collinear means : Def1 : x = y or ex l being Subset of S st { x , y } c= l & not ex l being Subset of S st { x , y } c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that k is continuous and for x , y being Element of L , a , b being Element of Image k st a = x & b = y holds x << y iff a << b ; ( 1 / 2 * ( ( ( ( #Z 2 ) * ( ( #Z 2 ) * ( 1 / 2 ) ) ) ) ) * ( ( AffineMap ( 2 , 0 ) ) * ( ( AffineMap ( 2 , 0 ) ) * ( ( AffineMap ( 2 , 0 ) ) * ( ( 0 , 0 ) ) * ( 1 / 2 ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A2 ) . $1 = A2 . $1 & ( the Sorts of A1 ) . $1 = A1 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * ( g . g2 ) .= ( f . g1 ) * ( g . g2 ) ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( { ( canFS Omega ) . n } ) .= M . ( { ( canFS Omega ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 = ( the carrier of L1 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , c , a , b , c , d , x , y , z , x , y , z , y , z , x , y , z , w , x , y , z , x , y , z , w , x , y , z , w , x , y , z , w , x , y , z , w , x , y , z , w , x , z , w , x , y , z , w , z , w , x ( the Sorts of s ) . n <= ( the Sorts of s ) . n * s . ( n + 1 ) & ( the Sorts of s ) . n <= ( the Sorts of s ) . n ; attr - 1 <= r & r <= 1 & ( arccot ) . r = - 1 / ( 1 + r ^2 ) & ( arccot ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & n in T1 } implies ex n being Nat st n in T1 & p = <* n *> ^ <* n *> |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - y2 & |[ y1 , y2 , x4 ]| . 2 = x2 - y2 ; attr F . m is nonnegative means : Def1 : F . m is nonnegative & ( Partial_Sums F ) . n is nonnegative implies ( Partial_Sums F ) . m is nonnegative ; len ( ( G . z ) * ( y . z ) ) = len ( ( ( G . ( x , y ) ) * ( y . z ) ) ) .= len ( ( G . ( x , y ) ) * ( y . z ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W1 /\ W3 and v in W2 /\ W3 ; given F being finite Subset of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k ; 0 = ( 1 * 0 ) * u\hbox = ( 1 - ( 1 - 0 ) * ( - 1 ) ) * ( ( - 1 ) * ( - 1 ) * ( - 1 ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> being } -being being being being being being non empty set , ( ( let ( let \rm let L ) | D ) , ( ( \rm w ) | D ) ) is Boolean non empty ; "/\" ( BB , {} ) = Top BB .= Top BB .= Top ( S ) .= "/\" ( I , T ) .= "/\" ( I , T ) .= "/\" ( I , T ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( ( f `| X ) || A ) . x >= r2 2 * r1 - 2 * |[ a , c ]| - ( 2 * r1 - 2 * |[ b , c ]| ) = 0. TOP-REAL 2 - 2 * |[ b , c ]| ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - 1 ) ) * ( ( - 1 ) |^ n ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( lower ( g , M7 , n ) ) | Seg ( n + 1 ) ) . x consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and y in the carrier of A and z in the carrier of A ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is strict Subgroup of H2 ; for S , T being non empty < T , d being Function of T , S st T is complete holds d is monotone & d is monotone & d is monotone implies d is monotone [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of F_Complex ) & [ a + 0. F_Complex , b2 ] in the carrier of V & [ a + 0. F_Complex , b2 ] in the carrier of V ; reconsider mm = max ( len F1 , len ( p . n ) * ( p . n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , 1 ) ) & ( GoB h ) * ( len GoB h , 1 ) `2 <= ( GoB h ) * ( len GoB h , 1 ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 misses A2 & ( for x st x in A1 holds x in A1 holds Lin ( A1 ) /\ Lin ( A2 ) = { 0. V } ) & Lin ( A1 ) /\ Lin ( A2 ) = { 0. V } ; func A -carrier C -> set means : Def1 : union it in { A . s where s is Element of R : s in C & s in C } ; dom ( Line ( v , i + 1 ) ) (#) ( ( Line ( p , m ) ) * ( \square , 1 ) ) = dom ( F ^ G ) ; cluster [ x `1 , 4 ] , [ x `2 , 4 ] , [ x `1 , 4 ] , [ x `1 , 4 ] ] -> to x `2 & [ x `1 , 4 ] , [ x `1 , 4 ] ] = x `2 ; E , All ( x1 , All ( x2 , x2 ) '&' ( x3 , x3 ) '&' ( x4 , x4 ) '&' ( x4 , x4 ) ) |= All ( x4 , x4 ) '&' ( x4 , x4 ) '&' ( x4 , x4 ) '&' ( x4 , x4 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . ( m + 1 ) - h . x0 + h . ( m + 1 ) - h . x0 ; cell ( G , XG -' 1 , ( t + 1 ) + ( t + 1 ) ) \ L~ f meets UBD L~ f \/ UBD L~ f \/ UBD L~ f ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= card I .= card I .= card I + card J .= card I + card J .= card I + card J + card J .= card I + card J + card J + 3 .= card J + card J + 3 ; sqrt ( ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y0 = a . x0 and x0 in { k } and y0 = a . x0 ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ dom ( chi ( A , C ) ) .= dom ( ( r1 (#) chi ( A , C ) ) /\ ( A /\ A ) ) .= dom ( ( r1 (#) chi ( A , C ) ) /\ ( A /\ A ) ) .= dom ( ( r1 (#) chi ( A , C ) ) /\ ( A /\ A ) ) ; d-7 . [ y , z ] = ( ( ( y `1 ) - z `2 ) * ( y `1 ) - z `2 ) * ( y `2 ) - z `2 * ( y `2 ) ; attr i be Nat means C . i = A . i /\ B . i & L~ C c= A /\ B . i ; assume that x0 in dom f and f is_continuous_in x0 and ||. f /. x0 .|| <= ( ||. f .|| ) . x0 and ||. f .|| . x0 = ||. f /. x0 .|| ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q or A misses Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| + |. y2 - y1 .| func Sum ( <*> ) -> Ordinal means : Def1 : a in it & for b being Ordinal st a in b holds it c= b & b is Ordinal & it c= b ; [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( ( vseq . n ) - ( vseq . m ) ) * ( ( vseq . n ) - ( vseq . m ) ) .|| < ( e / ( ||. x .|| + ( vseq . m ) ) ) * ( ||. x .|| + ( vseq . n ) ) ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup [: X , { t } :] , sup [: X , { t } :] :] ] .= [ sup X , sup { t } ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in If and [ f . i , z ] in If and [ y , z ] in If ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p is FinSequence of D & q is FinSequence of D consider e19 being Element of the carrier of X such that c9 , a9 // a9 , e29 and a9 <> b9 and a9 <> b9 and b9 <> c9 and b9 <> c9 ; set U2 = I \! \mathop { \vert S .| } , U2 = I \! \mathop { \vert S .| } , E = { S } , F = I " { {} } , N = I " { {} } , M = I " { {} } , M = I " { {} } , N = I " { {} } , N = I " { {} } , M = I " { {} } , M = I " { {} } , M = I " { {} } , N = I " { {} } , M = I " { {} } , M = I " { {} } , N = I , M = I |. q3 .| ^2 = ( |. q3 .| ) ^2 + ( |. q3 .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom ( signature U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ( - h ) | X ) /\ X .= dom ( ( - h ) | X ) /\ X .= dom ( ( - h ) | X ) /\ X .= dom ( ( - h ) | X ) ; for N1 , N1 being Element of ( G . K1 ) holds dom ( h . K1 ) = N & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) < - 1 or - ( q `2 ) >= - ( q `1 ) & - ( q `2 ) <= 1 or - ( q `1 ) >= - ( q `2 ) & - ( q `1 ) <= 1 ; attr r1 = fp & r2 = fp & r1 * r2 = fp * ( r1 - r2 ) & r2 * ( r1 - r2 ) = fp * ( r2 - r2 ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( ( ( vseq . m ) - ( vseq . n ) ) | X ) . x ; attr a <> b & b <> c & angle ( a , b , c ) = PI implies angle ( b , c , a ) = 0 & angle ( c , a , b ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 = p1 ^ q1 and p1 ^ q1 = p1 ^ q1 and p1 ^ q1 = p2 ^ q2 and p1 ^ q2 = p2 ^ q2 ; ( ( the carrier of [ A , r1 , s1 ] ) --> ( the carrier of A , s1 ) ) = ( ( s2 * s1 ) gcd ( s1 * s2 ) ) .= ( s2 * s1 ) /\ ( s1 * s2 ) .= ( s2 * s1 ) /\ ( s1 * s2 ) ; ( ( LMP A ) `2 = lower_bound ( proj2 .: A /\ /\ ( E-bound A ) ) & proj2 .: A /\ ( proj2 .: A /\ Vertical_Line w ) is non empty ; s , ( ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) \bf ( k , 1 ) ) . ( k , 1 ) ; len ( s + 1 ) = card support b1 + 1 .= card support b2 + 1 .= card support b2 + 1 .= card support b1 + 1 .= len ( s + 1 ) + 1 .= len ( s + 1 ) + 1 .= len ( s + 1 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z in X holds z `1 >= y `1 and z `2 >= y `2 ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D + E-bound D ) / 2 ]| ) /\ D = { UMP D , ( ( UMP D + E-bound D ) / 2 ) / 2 } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = ( lim ( ( f `| N ) / ( g `| N ) ) ) / ( g `| N ) ; P [ i , pr1 ( f ) . i , pr2 ( f ) . ( i + 1 ) , pr2 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k - seq . n ) - ( seq . k ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & b in P & x in P & b in P holds a = b Z c= dom ( ( #Z 2 ) /\ ( dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ) ) /\ ( dom ( ( #Z 2 ) * f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + len l & z = 1 + len l & j = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & u in N & v in N holds r * u + ( 1-r * v ) in N A , Int Cl A , Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Int Cl A , Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) + ( w + w ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= ( Exec ( a := b , s ) ) . IC SCM R .= ( IC s ) .= ( IC s ) ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) /\ ( the carrier of L ) and h . x = ( the carrier of J ) /\ ( the carrier of L ) ; for S1 , S2 , D being non empty reflexive RelStr , D being non empty directed Subset of [: S1 , S2 :] , x being Element of [: S1 , S2 :] holds cos ( x ) is directed & cos ( x ) is directed & cos ( x ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or x = y & not x = y or x = y & not x = y or x = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft E-max L~ Cage ( C , n ) ) ; for T , T being decorated tree , p , q being Element of dom T , q being Element of dom T st p element q in dom T holds ( T -with q , p ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides ( k gcd n ) & n divides ( k gcd n ) & ( k divides ( k gcd n ) implies ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) implies ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) & ( k divides ( k gcd n ) ) implies k divides ( k -' n ) ) dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " { x } = the carrier of X2 & F " { y } = the carrier of X1 & F " { y } = the carrier of X2 ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( B9 \/ C ) and Sum ( B ) = Sum ( B ) and Sum ( B ) = Sum ( B ) ; V is prime implies for X , Y being Element of \langle the topology of T , \subseteq the topology of T , V be Subset of T st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] & P [ v2 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 + ( q `2 / |. q .| - cn ) ^2 ) = - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 + ( q `2 / |. q .| - cn ) ^2 ) .= - 1 ; ex f being Function of I[01] , ( TOP-REAL 2 ) | P st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 1 = p3 & f . 1 = p4 ; attr f is partial differentiable on 2 means : Def1 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is_differentiable_in ( proj ( 2 , 3 ) . u0 ) . x0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( len G , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and f /. 1 = ( GoB f ) * ( t , width G ) `2 and f /. len f = ( GoB f ) * ( t , width G ) `2 ; attr i in dom G means : Def1 : r * ( f * reproj ( i , x ) ) = r * f * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c /. k = c1 + c2 and c /. k = c2 /. k and c /. k = c2 /. k ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < G * ( 1 , 1 ) `2 & G * ( 1 , 1 ) `2 < s1 } ; Cl ( X ^ Y ) . k = the carrier of X . k2 .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) ; attr M1 = len M2 & width M1 = width M2 & width M1 = width M2 & M1 = M2 - M1 implies M1 = M2 - M2 & M1 = M2 - M2 consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. ( - x0 ) - ( x0 - x0 ) .|| < g2 & g2 in N2 } c= N2 /\ dom ( f | X ) ; assume x < ( - b + sqrt ( o , b , c ) ) / 2 or x > ( - b - sqrt ( o , b , c ) ) / 2 or x > ( - b - sqrt ( o , b , c ) ) / 2 ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & i divides len f holds i divides len f implies i divides len f & i divides len f assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in Bl & a c= c holds b c= c & a c= c & b c= c } ; b2 * q2 + ( b3 * q3 ) + ( - ( a * q3 ) + ( - ( a * q3 ) ) ) * ( ( - ( a * q3 ) + ( a * q3 ) ) * ( ( - ( a * q3 ) + ( a * q3 ) ) * ( ( - ( a * q2 ) + ( a * q3 ) ) * ( ( - ( a * q2 ) + ( a * q3 ) ) * ( ( - ( a * q2 ) ) * ( ( - ( a * q3 ) ) * ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( 1 / ( Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & B in F & Cl B c= Cl F } ; attr seq is summable means : Def1 : seq is summable & seq + seq is summable & Partial_Sums ( seq ) = Partial_Sums ( seq ) + Partial_Sums ( seq ) & Partial_Sums ( seq ) = Partial_Sums ( seq ) + Partial_Sums ( seq ) ; dom ( ( ( ( ( TOP-REAL 2 ) | D ) | D ) | D ) ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) ) /\ D .= D ; |[ X , Z ]| is full full non empty SubRelStr of ( Omega Z ) |^ the carrier of X & |[ X \to Y , Z ]| is full full SubRelStr of ( Omega Z ) |^ the carrier of Y ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 or G * ( 1 , j ) `2 <= G * ( i , j ) `2 ; synonym m1 c= m2 means : Def1 : for p being set st p in P holds the non empty set of p <= m2 & the non empty set of p <= m2 implies ( m1 , m2 ) `1 <= ( m2 , p ) `1 or ( m1 , m2 ) `2 <= ( m2 , p ) `2 ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym R is multiplicative means : Def1 : the carrier of R , the carrier of R -> Relation of the carrier of R , the carrier of R , the carrier of R , the carrier of R #) , the carrier of R , the carrier of R , the carrier of R #) , the carrier of R be Relation of the carrier of R ; L ( a , b , 1 ) + L ( c , d ) = b + L ( c , d ) .= b + d .= b + d .= b + ( c + d ) .= b + ( c + d ) .= b + ( c + d ) ; cluster + ( i , j ) -> natural for Element of INT , i1 , i2 be Element of INT , i2 be Element of INT , i1 , i2 be Element of INT , i2 be Element of INT ; ( ( - s2 ) * p1 + ( s2 * p2 ) - ( s2 * p2 ) * p2 ) = ( ( - r2 ) * p1 + ( r2 * p2 ) * p2 - ( s2 * p2 ) * p2 ) + ( ( - r2 ) * p2 ) * p2 - ( s2 * p2 ) * p2 ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of Omega S , V being open Subset of Omega T st sup D in V holds V is open & V is open and V is open and for V being open Subset of S st V in V holds V is open & V is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q , w ) -succ k ) = ( T-7 . k , w -succ ( q , w ) ) -succ ( ( q , w ) -succ k ) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ ( n + 1 ) + ( b |^ n ) + ( ( a |^ n ) * b |^ ( n + 1 ) ) + ( ( b |^ n ) * a ) + ( ( b |^ n ) * b ) * a ) ; M , v2 / ( x. 3 , m ) / ( x. 4 , n ) / ( x. 0 , m ) / ( x. 4 , n ) / ( x. 0 , m ) / ( x. 4 , n ) / ( x. 4 , m ) / ( x. 0 , n ) / ( x. 4 , m ) ) / ( x. 0 , n ) / ( x. 4 , n ) / ( x. 0 , m ) / ( x. 4 , n ) ) / ( x. 0 , m ) |= ( x. 4 , n ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f ' ( x ) or for x0 st x0 in l holds f ' ( x ) < 0 & f ' ( x ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G1 , e being Vertex of G2 st not e in W and not e in W holds not e in W .vertices() & not e in W implies not e in ( the carrier of G1 ) \ ( the carrier of G2 ) not not not not not lim is empty iff not ( ( not ( ex y being Element of S st y is not empty & not ( y is not empty & not ( y is not empty & not ( y is not empty & not y is not empty ) ) & not ( not y is not empty ) ) & not not not not not ( not y is not empty & not not y is not empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & i1 + 1 in dom GoB f & i2 + 1 in Seg ( len GoB f ) & i1 + 1 in dom GoB f & i2 + 1 in Seg ( len GoB f ) & i1 + 1 in dom GoB f & i2 + 1 in Seg ( len GoB f ) ; for G1 , G2 , G3 being Group , G1 , G2 , G3 being strict Subgroup of O st G1 is stable & G2 is stable & G1 is stable holds G1 is stable Subgroup of G2 & G2 is stable Subgroup of G3 & G2 is stable Subgroup of G3 UsedIntLoc ( int ( f , 3 ) ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , intloc 6 , intloc 5 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 9 } ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] holds Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] ( p `1 ) ^2 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) = ( q `1 ) ^2 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ; for x1 , x2 , x3 being Element of REAL n holds |( x1 - x2 , x3 - x4 )| = |( x1 - x2 , x3 - x4 )| + |( x2 - x3 , x4 )| + |( x3 - x4 )| for x st x in dom ( ( F | A ) | A ) holds ( ( F | A ) | A ) . ( - x ) = ( - ( F | A ) ) . ( - x ) for T being non empty TopStruct , P being Subset-Family of T , x being Point of T , B being Basis of T , P being Basis of x st B c= P & P is Basis of x holds P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x ) 'or' b . x .= TRUE 'or' TRUE .= TRUE .= TRUE .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of [: Y , Y1 :] , Y1 being Subset of [: X , Y1 :] , Y1 being Subset of [: Y , Y1 :] st e = X1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of Sconsider S . i , S1 . i st f = H . i holds F . i = f | ( F . i ) & for i be Nat st i in dom F holds F . i = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ) , J ) . v = Valid ( VERUM ( Al ) , J ) . w card D = card D1 + card D2 - card { i , j } .= ( c1 + 1 ) + ( c2 - 1 ) - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( s .--> succ ( s . 0 ) ) . 0 .= ( s .--> succ 0 ) . 0 .= s . 0 .= s . 0 ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f -' 1 + 1 - 1 + 1 .= len f -' 1 + 1 + 1 .= len f -' 1 + 1 + 1 .= len f -' 1 + 1 + 1 + 1 .= len f -' 1 + 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b holds k < ( a + b ) / ( a + b ) or k = a + b-3 or k = a + b-3 or k = b + b-3 or k = a + b-3 or k = b + b-2 or k = a + b-2 or k = b + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= len f & Index ( p , f ) <= Index ( p , f ) lim ( ( curry ( P+* ( k , n + 1 ) ) # x ) ) = lim ( ( curry ( P+* ( k , n + 1 ) ) ) + ( ( curry ( F+* ( k , n + 1 ) ) # x ) ) ; z2 = g /. ( \downharpoonright n1 -' 1 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) ; [ f . 0 , f . 3 ] in id the carrier of G \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 or [ f . 0 , f . 2 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of [: A , B :] , D is Subset of [: A , B :] st R in F6 & for X being Subset of [: A , B :] holds ( Intersect ( F ) ) . X = Intersect ( G ) . X holds ( Intersect ( F ) ) . X = Intersect ( G ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= halt SCMPDS .= halt SCMPDS .= ( CurInstr ( P1 , s1 ) ) ; assume that a on M and b on M and c on N and d on N and p on N and a on P and a on P and b on Q and a on P and b on Q and c on Q and a <> P and b <> Q and c <> Q and a <> Q and b <> Q and c <> Q and c <> Q and c <> Q and c <> Q ; assume that T is \hbox 4 -\cal T and F is closed and ex F being Subset-Family of T st F is closed & for n being Nat holds F . n is finite-ind & ind F <= 0 and ind T <= 0 and ind T <= 0 ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - r , r + g2 .[ holds |. f . g1 - f . g2 .| <= ( ( g1 - g2 ) / ( r - g2 ) ) / ( r - g2 ) cosh /. ( z1 + z2 ) = ( cosh /. z1 ) * ( cosh /. z2 ) + ( ( ( - ( 1 / 2 ) ) * ( sin /. z2 ) ) * ( sin /. z2 ) + ( ( ( 1 / 2 ) * ( sin /. z2 ) ) * ( sin /. z2 ) ) * ( sin /. z2 ) ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) ^ ( a |^ ( n + 1 ) ) .= <* ( n + 1 ) / a |^ 0 , b |^ ( n + 1 ) ) * b . i , ( n + 1 ) / a |^ ( n + 1 ) *> ; ex y being set , f being Function st y = f . n & dom f = A ( ) & for n holds f . ( n + 1 ) = A ( ) & for n holds f . n = R ( n , f . n ) & y = f . n ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * f /. ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 7 , 8 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 } = { x1 , x2 , x3 , x4 , 7 , 8 } \/ { 7 , 8 } \/ { 8 , 8 , 7 , 8 } ; for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices S ( ) & o . ( x , n ) in InnerVertices S ( ) & o . ( n + 1 ) in InnerVertices S ( ) & x = ( the Sorts of S ( ) ) . n ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , Ul ) = S1 & ( ( S , l ) `1 = ( S , l ) `1 & ( S , l ) `2 = ( S , l ) `1 & ( S , l ) `2 = ( S , l ) `2 & ( S , l ) `1 = ( S , l ) `1 ) & ( S , l ) `2 = ( S , l ) `1 ; consider P being FinSequence of Gs2 such that pp = Product P and for i st i in dom P ex t7 being Element of the carrier of G st P . i = t7 & t . i = t . i & P . i = t . i and P . i = t . i ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , Q being Basis of T2 , P being Subset of T1 , Q being Subset of T2 , f being Function of T1 , T2 st the carrier of T1 = P & f is continuous holds f " Q = P & f " Q = P assume that f is_partial_differentiable_in u0 , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r (#) pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F , G being FinSequence of ExtREAL for s be Permutation of Seg $1 , G be Permutation of Seg $1 st len s = $1 & not G = F * s & not ( ex k be Nat st k in dom F & not k in rng F & not k in rng F ) holds Sum ( F ) = Sum ( F ) ; ex j st 1 <= j & j < width GoB f & ( ( GoB f ) * ( 1 , j ) ) `2 <= s & s <= ( ( GoB f ) * ( 1 , j + 1 ) ) `2 & s <= ( ( GoB f ) * ( 1 , j + 1 ) ) `2 & s <= ( ( GoB f ) * ( 1 , j + 1 ) ) `2 ; defpred U [ set , set ] means ex F-23 be Subset-Family of T st $1 = F-23 & $2 is open Subset of T & union F-23 is open & union F-23 is open & ( union F-23 is open & union F-23 is open & union F-23 c= $1 ) & ( not U c= F & not U c= F & not U is open & not U c= F & not U c= F . $1 ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 holds LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 holds LE p4 , p , P , p1 , p2 , p2 , p2 & LE p2 , p , p2 , p2 & LE p2 , p , p2 , p2 , p2 , p2 , p2 & LE p2 , p , p2 , p2 & LE p2 , p , p2 & LE p2 , p , P , p1 , p2 , p2 & LE p1 , p1 , P , p1 , p3 , p3 , p3 , p3 , p3 , p3 , p3 , p3 , p3 , p3 f in set ( E , H ) & for g st g <> f . y holds x = g . y implies x in D & f in D implies g in E & f in E & f . x = All ( All ( x , H ) , E ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( - 1 ) * ( 8 - 1 ) ) / ( 1 + ( - ( sn ) ) ^2 ) >= 8 & ( - ( sn ) ) / ( 1 + ( sn ) ) ^2 ) >= 0 ) & ( ( sn ) * ( ( sn ) / ( 1 + ( sn ) ) ^2 ) >= 0 ; assume for d7 being Element of NAT st d7 <= ( len ( n7 ) ) holds s1 . ( d7 ) = ( ( d . ( d7 ) ) | ( d7 ) ) . ( d7 ) & s1 . ( d7 ) = ( d . ( d7 ) ) . ( d7 ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of Sphere ( x , r ) st { e } = Sphere ( s , r ) /\ Sphere ( x , r ) and e in Sphere ( s , r ) and e <> s ; given r such that 0 < r and for s holds 0 < s or ex x1 be Point of RNS st x1 in dom f & ||. x1 - x0 .|| < s & |. x1 - x0 .| < s & |. x1 - x0 .| < r & |. x1 - x0 .| < s ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | ( x | x ) ) | p ) | ( p | ( x | x ) ) .= ( ( ( x | x ) | p ) | p ) | ( p | ( x | x ) ) ; assume that x , x + h in dom sec and ( for h st h in dom sec holds ( ( sec * sec ) `| Z ) . x = ( 4 * ( sin . x + h / ( cos . x ) ) * sin . x ) / ( cos . x ) ^2 and for x st x in Z holds ( ( ( 2 * sin * sec ) `| Z ) . x ) ^2 = 1 ; assume that i in dom A and len A > 1 and B c= the carrier of A and B c= the carrier of A and A is 0. of ( ( len A ) |-> 0. K ) and A is 0. ( ( len A ) |-> 0. K ) and A is 0. ( ( len A ) |-> 0. K ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex , n *> & ( i <> 0. F_Complex implies h . i = <* 1. F_Complex , n *> or h . i = 1. F_Complex L ) & ( i <> 0. F_Complex implies h . i = 1. F_Complex implies h . i = 1. F_Complex \ n ) ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( c2 'imp' c2 ) '&' ( c1 'imp' c2 ) '&' ( c2 'imp' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c1 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c1 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' ( ( c1 '&' c2 ) '&' 'not' ( c2 '&' c2 ) '&' assume that f . x = ( ( - 1 ) (#) ( sin * ( f . x ) ) ) . x0 and x in dom ( ( - 1 ) (#) ( sin * ( f . x ) ) ) and x0 in dom ( ( - 1 ) (#) ( ( - 1 ) (#) ( f * ( f . x ) ) ) ) and ( ( - 1 ) (#) ( ( - 1 ) (#) ( f * ( f . x ) ) ) ) . x0 = - cos . x0 ; consider R8 , I-8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I-8 = Integral ( M , Im ( F . n ) ) and Integral ( M , I8 ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. q-r - f /. ( x - q ) .|| < r holds ||. partdiff ( f , x , k ) - partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 } iff x in { x1 , x2 , x3 , x4 , x5 , 7 , 8 } \/ { 7 , 8 } \/ { 8 , 7 } G * ( j , ( i + 1 ) ) `2 = G * ( 1 , ( i + 1 ) ) `2 .= G * ( 1 , ( j + 1 ) ) `2 .= G * ( 1 , ( j + 1 ) ) `2 .= G * ( 1 , ( j + 1 ) ) `2 .= G * ( 1 , ( j + 1 ) ) `2 .= G * ( 1 , ( j + 1 ) ) `2 .= G * ( 1 , ( j + 1 ) `2 ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> DecoratedTree means : Def1 : q in it iff q in P & for p , q st p in P holds p ^ q in P or ex p , q st p in P & q in P & q in P & p ^ q in T & q ^ p in T & q ^ q in T ; F /. ( k + 1 ) = F . ( k + 1 ) .= F{} ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F{} ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F{} ( p . k , k + 1 -' 1 ) .= F{} ( p . k , k ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width A & len C > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len A = len B holds A * ( ( B * C ) * ( B * C ) ) = A * BC seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of Cq ) /\ ( the carrier of Cq ) and y in ( the carrier of Cq ) /\ ( the carrier of Cq ) and [ x , y ] in the carrier of Cq and [ y , x ] in the InternalRel of Cq and [ x , y ] in the InternalRel of Cq ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( ( VAL g ) . ( k + 1 ) ) '&' ( ( VAL g ) . ( k + 1 ) ) = ( ( VAL g ) . ( k + 1 ) ) '&' ( ( VAL g ) . ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) >= sn and - sn <= sn and sn <= 1 and sn <= 1 and sn <= 1 and sn >= 0 and sn = { q : q `2 <= 1 & q `2 <= 1 } ; for M being non empty dist , x being Point of M , f being Point of M , x being Point of M st x = x `1 holds ex f being Function of M , M st for n being Element of NAT holds f . n = Ball ( x `1 , ( 1 / n ) * ( 1 / n ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = f1 . x - f2 . x ) & ( ( f1 - f2 ) `| Z ) . x = ( f1 . x ) / ( f2 . x ) ; defpred P1 [ Nat , Point of CNS ] means $1 in Y & ||. s1 . $1 - s1 . ( $1 + 1 ) .|| < r & ||. s1 . $1 - s1 . ( $1 + 1 ) .|| < r & r < ( 1 - r ) * ( $1 + 1 ) ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) ; ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) = ( ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) .= ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) .= 1 * ( 2 * n0 + 2 * n0 ) ; defpred P [ Nat ] means for G being non empty strict finite RelStr , G being strict symmetric RelStr st G is \rm free & card G = $1 & the carrier of G = the carrier of G & the carrier of G = { the carrier of G } holds the InternalRel of G = { the carrier of G } & the InternalRel of G = { the carrier of G } ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len ( f | ( i -' 1 ) ) and not LSeg ( f | ( i -' 1 ) , r ) /\ Ball ( u , r ) <> {} and not m <= len ( f | ( i -' 1 ) ) and not m <= len ( f | ( i -' 1 ) ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) . $1 = ( Partial_Sums ( cos ) . ( 2 * $1 ) ) . ( 2 * $1 + 1 ) ) . ( 2 * $1 + 1 ) = ( Partial_Sums ( cos ) . ( 2 * $1 + 1 ) ) . ( 2 * $1 + 1 ) ; for x being Element of product F holds x is FinSequence of G & x in I & x in dom ( the Sorts of F ) & for i being set st i in dom F holds x . i = ( the Sorts of F ) . i & for i being set st i in dom F holds x . i = ( the Sorts of F ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) |^ n ) * x " .= ( x " ) |^ n * x " .= ( x |^ n ) |^ n * x " .= ( x |^ n ) |^ n * x " .= ( x |^ n ) |^ n * x " .= ( x |^ n ) |^ n * x " .= ( x |^ n ) |^ n ; DataPart Comput ( P +* ( I , Initialized s ) , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialized s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 + r .[ c= dom f1 /\ dom f2 and for g st g in ]. x0 - r , x0 + r .[ /\ dom f1 holds f1 . g <= f1 . g and for g st g in ]. x0 - r , x0 + r .[ /\ dom f1 and g <= f1 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is compact & for X being Subset of L st x in X holds x is complete & x is complete & for x being Element of L st x in X holds x is complete holds x is complete Support ( e *' p ) in { Support ( m *' p ) where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' q ) & p in Support ( m *' q ) & p in Support ( m *' q ) } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) . ( lim s1 ) .= lim ( f1 /* s1 ) - ( f2 /* s1 ) . ( lim s1 ) .= lim ( f2 /* s1 ) - ( f2 /* s1 ) . ( lim s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p = g . p1 & for g being Function of [: D , D :] , [: D , E :] st P [ g , ( len ( p1 qua Function ) ) , ( len ( p1 `2 ) ) ] holds P [ g , ( len ( p1 `2 ) ) , ( len ( p1 `2 ) ) ] ; ( mid ( f , i , len f -' 1 ) ) ^ <* f /. j *> /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) /. j .= f /. ( j + 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( p ^ q ) . k ; len mid ( f , D2 ) + 1 = indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j1 ) + 1 .= indx ( D2 , D1 , j ) + 1 .= indx ( D2 , D1 , j1 ) + 1 + 1 ; x * y * z = Mz * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * y ) * ( x * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) * i ) + ( partdiff ( u , ( x - x0 ) * i ) * ( x - x0 ) ) + ( partdiff ( u , ( x - x0 ) * i ) * ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 1 ) - ( 0 * 0 ) + ( 0 * 0 ) - ( 0 * 0 ) + ( 0 * 0 ) * ( - 1 ) .= <* - 1 , 0 , 0 , 0 *> .= <* - 1 , 0 , 0 , 0 , 0 , 0 , 0 *> .= <* - 1 , 0 , 0 , 0 , 0 *> ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) ; ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X st Y0 is non empty & for Y0 be finite Subset of X st Y0 c= Y & Y0 c= Y holds |. ( - lower_bound ( X , Y ) ) . x - ( - lower_bound ( X , Y ) ) . y .| < r ; ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 2 ) = f /. ( k + 2 ) ; ( ( r / 2 ) (#) ( cos - sin ) ) . x = ( ( r / 2 ) (#) ( sin - cos ) ) . x .= ( ( r / 2 ) (#) ( cos - cos ) ) . x .= ( ( r / 2 ) (#) ( cos - sin ) ) . x .= ( ( r / 2 ) (#) ( cos - cos ) ) . x .= ( ( r / 2 ) (#) ( cos - sin ) ) . x ; ( - ( b - a ) ) + sqrt ( delta ( a , b , c ) ) / 2 * a < 0 & ( - ( b - a ) ) / 2 * a < 0 or ( - ( b - a ) ) / 2 * a < 0 or ( - ( b - a ) ) / 2 * a < 0 ; assume that ex_inf_of uparrow "\/" ( X /\ C , L ) and ex_sup_of X , L and ex_sup_of X , L and "\/" ( X , L ) = "/\" ( uparrow "\/" ( X , L ) , L ) and "\/" ( X , L ) = "\/" ( X , L ) and for x being Element of L holds x in X implies x < "\/" ( uparrow x , L ) ; ( for j holds ( j = i = j implies j = i = j ) & ( j = i implies j = i implies j = i ) & ( j = i implies j = i implies j = i ) & ( j = i implies j = i implies j = i ) & ( j = i implies j = i implies j = i ) & ( j = i implies j = i implies j = i ) implies j = i )