thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is onto ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is \bf ) ; assume x in I ; q is ) by 0 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= kr2 ; assume m <= i ; assume G is *> ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is non bounded ; f is q one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - 1 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be set ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , iff n1 is , n2 is , n1 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , Q halts_on s ; x in that for c being element st c in that x in that c in in in in of of of of of S holds M < m + 1 ; T2 is open ; z in b < a < a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of TOP-REAL 2 ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o on 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a\rrangle <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , T ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; ST is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , A , B ; pp = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= ( j - 1 ) ; set A = there k1 , B = k1 , C = k2 ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is non empty ; assume n0 <= m ; T is increasing ; e2 <> e2 . e ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; X0 be set ; c = sup N ; R is connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be ) ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v in v in dom that G . n ; - y in I ; let A be non empty set , f be Function ; Px0 = 1 ; assume r in F . k ; assume f is simple function of S ; let A be non empty countable set ; rng f c= NAT * ; assume P [ k ] ; f <> {} ; o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let II , A ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d3 in X ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , TOP-REAL 2 ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is \ast hh/. ; assume f is /\ for brD is closed ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is Sum continuous ; f . x - a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cj in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < b2 ; s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 , P4 = P3 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `1 ; let S be as as as \ of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w is_collinear ; R8 in X ; let a , b be Real , x be Point of TOP-REAL 2 ; let a be Object of C ; let x be Vertex of G ; let o be Object of C , m be Morphism of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; s be State of A , k be Nat ; s4 . n = N ; set y = x `1 , z = x `2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; V-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng g c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A0 is dense and A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= Z1 & xq c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim ( Im seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = sInt ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , k be Nat ; assume that r2 > x0 and x0 in dom f ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n in dom g2 ; n in dom g1 & n in dom g2 ; k + 1 in dom f ; the still of S is finite ; assume x1 <> x2 & y1 <> y2 ; v3 in Vx0 & v2 in Vx0 ; not [ b `1 , b `2 ] in T ; i-35 + 1 = i ; T c= T & T c= T ; l `1 = 0 & l `2 = 0 ; n be Nat ; t `2 = r & t `2 = s ; AA is_integrable_on M & AA is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; product ( s | i ) is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume c2 = b2 & c2 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume ( for n be Nat holds seq . n is convergent ) ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 or z `2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be halting Instruction of S , k be Nat ; f-24 . x = 1 ; assume z \ x = 0. X ; p4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact & f .: Q is compact ; assume x1 in REAL & x2 in REAL ; p1 = ( K + 1 ) * ( K + 1 ) ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMInt A is closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= ( seq . 0 ) ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; R ( ) is stable Subset of R ; set cR = Vertices R ; pp c= P3 & P3 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_equipotent ; assume a in A ( i ) ; k in dom ( q | k ) ; p is non empty \HM } is finite of S ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 or i2 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for for for for O ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n .= dom J ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F .= dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds holds S is non void let f be ManySortedSet of I ; let z be Element of F_Complex , v be Element of V ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= V-15 \/ { x } assume I is_halting_on s , P ; U2 = U2 & U2 = U2 /\ ( U1 /\ U2 ) ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f . n ) `2 <= ( f . n ) `2 ; let l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = - { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite { 0. F } , W be strict Subspace of V ; A * B on B , A ; f-3 = NAT --> 0 .= f-3 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT , T = X * ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & f /. x0 in dom f ; let B be non-empty ManySortedSet of I , f be Function of B , C ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in IB ; Q * ( 1 , 3 ) `2 = 0 ; set j = x0 gcd m , n = 0 ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I I I I I \! \mathop { \rm \hbox { - } of of S } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( 2 |^ n ) ; s1 , s2 are_) implies s1 , s2 are_) j1 -' 1 = 0 or j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower bounded and 0 <= r ; p1 `1 = 1 & p1 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 <= len f ; 1 <= i1 -' 1 & i1 <= len f ; i + i2 <= len h - 1 ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 2 ; set H = h . g9 , I = g . g9 ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h1 ; assume x in X3 /\ X3 & x in X3 /\ X3 ; ||. h .|| < d1 & ||. h .|| < d1 ; not x in the carrier of f & not x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing Nat ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; P , Q be \vert of s ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , x be Element of L ; S-20 is x -8 -basis i let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z , p ) ; P [ len F ( ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster [#] S -> \ \ \ that for Element of S ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; 3 is SubSpace of T2 & 3 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q29 <> {} ; k be Nat ; q " is Element of X & q is Element of X ; F . t is set of non zero ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) , ( p `2 ) ; not r in ]. p , q .] ; let R be FinSequence of REAL , i be Nat ; ( not a does not destroy b1 ) & not b does not destroy b2 IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * ( seq ^\ k ) = seq ^\ k ; let x be FinSequence of NAT , n be Nat ; f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC Comput ( P , s , n ) ; H + G = F- ( G-G ) ; CC1 . x = x2 & CC2 . x = y2 ; f1 = f .= f2 .= f2 * f1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d3 , o _|_ o , a3 ; IO is reflexive & IO is reflexive implies IO is transitive IO is antisymmetric implies [: O , O :] is antisymmetric sup rng H1 = e & sup rng H2 = e ; x = ( a * a9 ) * ( a * b ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 + 1 < len f ; rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and support b misses support b ; let L be associative commutative distributive non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , I2 ) = I1 +* I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , 0 ] *> -> complete non trivial ; ( 1 - a ) " = a " ; ( q . {} ) `1 = o ; ( - i ) - 1 > 0 ; assume 1 / 2 <= t `1 & t `2 <= 1 ; card B = k + 1-1 ; x in union rng ( f | ( n + 1 ) ) ; assume that x in the carrier of R and y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } ; let G be let G be let ww_Graph ; e , v9 be set , f be Function ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to-infty & ( f2 * f1 ) /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 ; assume w is llas of S , G ; set f = p |-count ( t - p ) ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , f be Function of X , Y ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , k be Nat ; p is FinSequence of SCM+FSA , k be Nat ; stop I ( ) c= P-12 ( a , I ( ) ) ; set ci = fbeing /. i , fj = fs1 /. j ; w ^ t ^ s ^ w ^ w ^ s ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ W1 /\ W = W1 /\ W ` .= ( W1 /\ W2 ) /\ W ; f . j is Element of J . j ; let x , y be Element of T , a be Element of S ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is dom x implies x is dom x set g2 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F-21 ) = 0 & L1 . ( F-21 ) = 0 ; / ( X \/ R1 ) = h / ( X \/ R1 ) ( ( sin * cos ) `| Z ) . x <> 0 ; ( ( #Z n ) * ( #Z n ) ) . x > 0 ; o1 in X-5 /\ O2 & o2 in Xor o1 in XO2 /\ O2 ; e , v9 be set , f be Function ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ( I ) ) ; let J be closed ideal of R ; h . p1 = f2 . O & h . I = - 1 ; Index ( p , f ) + 1 <= j ; len ( q | ( len M ) ) = width M ; the carrier of CK c= A & the carrier of CK c= A ; dom f c= union rng ( F | ( n + 1 ) ) ; k + 1 in support ( s ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( an R ) ~ ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 - m ) * m + r < p ; dom f = dom IK1 & dom IK1 = dom IK1 ; [#] ( P-17 ) = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal for ExtReal ; then { db } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M , w2 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W1 /\ W3 reconsider y = y as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n / 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x `1 , y ) < r / 2 ; reconsider mm1 = m - 1 as Element of NAT ; x0 - r < r1 - x0 & r1 < r2 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * ( idseq ( q `1 ) ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 + 1 ) in { x } ; cluster subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gij in LSeg ( PI , 1 ) /\ LSeg ( Gik , Gij ) ; n be Element of NAT , x be Element of NAT ; reconsider S8 = S , S7 = T as Subset of T ; dom ( i .--> X `1 ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y is_collinear & a , b , x is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; f be PartFunc of X , Y ; x0 >= ( sqrt c ) / ( sqrt 2 ) ; reconsider t7 = T-1 as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( 4 , y2 ) /\ Q2 ; A |^ 0 = { <%> E } .= { <%> E } ; len W2 = len W + 2 .= len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom g1 /\ dom f ; assume p2 = E-max ( K ) & p3 = E-max ( K ) ; len G + 1 <= i1 + 1 ; f1 (#) f2 is_differentiable_in x0 & f2 (#) f1 is_differentiable_in x0 implies f1 (#) f2 is_differentiable_in x0 cluster ( s-10 + sX ) . n -> summable ; assume that j in dom M1 and i <= len M1 ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> << x ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize Initialized s , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of L & y is Element of L ; k = 0 & n <> k or k > n ; then X is discrete for Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being being being being being being being being being being being being being being set of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f , g .] = f & M \lbrack g , f .] = g ; ( ( L to_power 1 ) ) /. 1 = TRUE ; dom g = dom f /\ X .= dom f /\ X ; mode ^ of G is ^ of W ; [ i , j ] in Indices ( M @ ) ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a1 ) = G1 * ( a1 , - a1 ) ; redefine func Sphere ( a , b , r ) -> compact Subset of TOP-REAL 2 ; let a , b , c , d be Real ; rng s c= dom ( 1 - ( f2 * f1 ) ) ; curry ( F-19 , k ) is additive ; set k2 = card dom B , k1 = card dom C , k2 = card D , k2 = card D , k2 = card D , ^ = card E , ^ = <* A *> ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of ( M . i ) ; reconsider s1 = s , s2 = t as Element of ( the carrier of S ) ; rng p c= the carrier of L & p . ( len p ) = p . ( len p ) ; let d be Subset of the Sorts of A ; ( x .|. x = 0 iff x = 0. W ) I-21 in dom stop I & Ik in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & dom g = the carrier of S ; rng h c= union ( the carrier of J ) & h is one-to-one ; cluster All ( x , H ) -> thesis -> thesis ; d * N1 / ( 2 * n ) > N1 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 , h = g " D2 ; dom ( p | ( mm1 + 1 ) ) = ( mm1 + 1 ) ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot * ( f1 + f2 ) ) . x ; x in rng ( f /^ n ) & x in rng ( f /^ n ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 ( ) & P [ p ] ; rng f " = dom f & rng f = dom g ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G - 1 ; assume v in rng ( S | E1 ) & u in rng ( S | E1 ) ; assume x is root of g or x is root of h ; assume 0 in rng ( g2 | A ) & 0 < r ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of TOP-REAL 2 , a be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & <* S7 *> is in the carrier of C-20 ; i <= len G -' 1 & j + 1 <= width G ; let p be Point of TOP-REAL 2 , a be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = SJ " ( Q /\ R " ( P /\ Q ) ) ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , Int A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 3 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def1 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " is Subgroup of H & H |^ a = H |^ a ; let A1 be p1 of O , E , A2 be Element of E ; p2 , r3 , q2 is_collinear & p2 , q2 , p1 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( ( TOP-REAL 2 ) | B11 ) ; 0 . ( E . n ) < M . ( E . n ) ; op ( c ) / ( c * a ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster *> -> Nat for Nat -\subseteq the set i1 = the Nat , i2 = the Nat , i1 = the Nat ; let s be 0 -started State of SCM+FSA , k be Nat ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= G * ( i1 , i2 ) ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def1 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster x `1 -> -> -> -> -> -> -> -> -> -> Nat for Element of \leq x `2 ; set S = <* Bags n , ij *> , T = <* <* j *> , <* j *> *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI * PI ) / 2 < ( 2 * PI * PI ) / 2 ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x `1 , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & width <* P *> = width P ; set N-26 = the 5 of N , NN = the Subset of N ; len g- ( x + 1 ) - 1 <= x ; a on B & b on B & not b on B ; reconsider r-12 = r * I . v as FinSequence of NAT ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len - n ; set q2 = N-min L~ Cage ( C , n ) , p1 = p2 /. len p1 , p2 = p3 /. 1 ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . r2 ; f " D meets h " V & f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( the Sorts of Free ( S , X ) ) . s ; rng f c= the carrier of S2 & f . ( len f ) = f . ( len f ) ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G `1 = E \/ { E } ; reconsider m = len thesis - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices ( M1 + M2 ) ; assume that P c= Seg m and M is \HM { of } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pp1 . i .= pp1 . i ; let PA , PA , G be a_partition of Y ; pred 0 < r & r < 1 & 1 < r & r < 1 ; rng ( AffineMap ( a , X ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s .= card ( support ( s ) ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q in FinMeetCl the topology of X ; dom ( f . 0 ) c= dom ( u . 0 ) ; pred n divides m & m divides n implies n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in ; not y0 in the still of f & not y0 in the still of f implies ex x st x in dom f & f . x = x Hom ( ( a , b ) ~ , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = l2 = m2 & l2 = i2 & l2 = j2 implies thesis x0 in dom ( u01 /\ A ) & x0 in dom ( u01 /\ A ) ; reconsider p = x , q = y as Point of TOP-REAL 2 ; I[01] = R^1 | B01 & ( TOP-REAL 2 ) | B01 = ( TOP-REAL 2 ) | B01 ; f . p4 `2 <= f . p1 `2 & f . p1 `2 <= f . p2 `2 ; ( ( F . n ) `1 ) `1 <= ( x `1 ) `1 ; x `2 = ( W7 ) `2 .= ( W7 ) `2 .= ( W7 ) `2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) ; X . i in 2 -tuples_on A . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] implies P [ succ a ] reconsider sT = sT , ss = ss as ' of D ; ( i - 1 ) <= len thesis - j ; [#] S c= [#] the TopStruct of T & [#] T c= the TopStruct of T ; for V being strict RealUnitarySpace holds V in thesis implies V in thesis assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K ; - a * - b = a * b & - a * b = - a * b ; for A being Subset of AS holds A // A & A // B ( for o2 being object of B holds o2 in <^ o2 , o2 ^> ) implies o2 in <^ o2 , o2 ^> then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len upper_volume ( g , D1 ) - 1 ; b = Q . ( len Qc - 1 ) .= Q . ( len Qc - 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 is divergent_to-infty & ( f2 * f1 ) /* s is divergent_to-infty ; reconsider h = f * g as Function of [: N , G :] , G ; assume that a <> 0 and Let a , b , c ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T | n ) | n ; {} = the carrier of L1 + L2 & the carrier of L1 + L2 = the carrier of L1 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) .= Initialize ( p +* q ) ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of ( Ids L ) , X ; "/\" ( uparrow p , { p } \ { p } ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the InternalRel of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( P + ) - len P + 1 .= len ( P ^ ) - len P ; x1 `1 = x2 & x1 `2 = x3 & x1 `2 = x4 ; InputVertices S = { x1 , x2 } .= { x1 , x2 } ; let x , y be Element of FT1 ( n ) ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h .= h " * g ; let p , q be Element of is Element of is Element of is Element of is Element of C ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " * ( R qua Function ) " .= R " * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( R * ( i , n ) ) ) ) ) ) ) ; n in Seg len ( f /^ ( i -' 1 ) ) ; for s be Real st s in R holds s <= s2 implies s1 <= s2 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for for 2 -tuples_on X , 2 -tuples_on X ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) / ( w - f ) & w in F ; curry ( P+* ( x , k ) ) # x is convergent ; cluster open open -> open for Subset of ( \sigma ) | the topology of T ; len f1 = 1 .= len f3 .= len f3 + 1 .= len f3 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c ; consider p be element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = k ; Reloc ( J , card I ) does not destroy a ; goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p3 , s3 ) ; IC SCMPDS in dom Initialize ( p +* I ) & IC Comput ( p +* I , s2 , i ) in dom I ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 ; let a , b be Element of is Element of is Element of is Element of is Element of C ; Cl ( union Int F ) c= Cl ( Int union F ) ; the carrier of X1 union X2 misses ( ( A \/ B ) \/ C ) ; assume ( not LIN a , f . a , g . a ) & not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in I ; then Y c= { x } or Y = { x } or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H ; consider m be element such that m in Intersect ( FF . m ) ; reconsider A1 = support u1 , A2 = support u2 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -carrier V -> .| -valued for string of S ; LG2 /. n2 = LG2 . n2 .= LG2 . n2 .= LG2 /. n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices DD1 & [ k , m ] in Indices DD2 ; 0 <= ( ( 1 / 2 ) |^ p ) / ( 2 |^ n ) ; ( F . N ) | E8 . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; ( y `2 ) * ( z `2 ) <> 0. I & ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card X-18 <= card u + card ( X \ Y ) ; set g = z \circlearrowleft ( ( L~ z ) .. z ) , 2 = ( ( L~ z ) .. z ) .. z ; then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -^ ( the Sorts of A ) ; reconsider B = A as non empty Subset of TOP-REAL n , a be Real ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( ( g2 . O ) `1 ) ^2 = - 1 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , S = S-bound C , E = E-bound C , N = N-bound C , G = Gauge ( C , n ) , M = Gauge ( C , n ) , N = Gauge ( C , n ) , N = Gauge ( C , S1 . ( a `1 , e `2 ) = a + e .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) ( Im f ) ) = dom ( Im f ) ; z1 . ( x `1 ) = W . ( a , *' ( a , p ) ) ; set Q = ( \rm \rm \rm \rm > } ( g , f , h ) ) ; cluster MS\rbrace -> MSelement for ManySortedSet of U1 , A be ManySortedSet of U2 ; attr F is discrete means : Def1 : ex A st F = { A } ; reconsider z9 = \hbox { - } 1 as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & f . ( len f1 + 1 ) = f1 . ( len f1 + 1 ) ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 ) '&' H ; reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 implies card ( x \ B2 ) = 1 g + R in { s : g-r < s & s < g + r } ; set q-1= ( q , <* s *> ) -) . ( q , <* s *> ) ; for x be element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , dom ( R | NAT ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f /\ C as Element of Fin NAT ; IncAddr ( i , k ) = <% x %> + k .= ( i + k ) + k ; ( S-bound L~ f ) `2 <= ( q `2 ) ^2 & ( q `2 ) ^2 <= ( q `2 ) ^2 ; attr R is condensed means : Def1 : Int R is condensed & Cl R is condensed ; pred 0 <= a & 1 <= b & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( d /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( d /\ e ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 0 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 ) *> in Line ( x , a * x ) ; set yy1 = <* y , c *> ; Fs2 /. 1 in rng Line ( D , 1 ) & Fs2 /. len Fs2 = 0. K ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 .= ( f /. ( i1 + 1 ) ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) .= W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u , u2 = v as VECTOR of P`1 , u = v + w ; p |-count ( Product ( X ) ) = 0 & p |-count ( Product ( X ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = x in { x , y } & h . x = {} ( Tx , y ) ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( ( the charact of ( A ) ) * ) ) ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : \HM { G : G is \cap V c= V } ; rng F c= the carrier of gr { a } & F . ( a , b ) = { a } ; Comput ( P , s , n , r ) is FinSequence of TOP-REAL 2 ; f . k , f . ( \mathop { \rm mod n ) * ( n - 1 ) * ( n - 1 ) * ( n - 1 ) * ( n - 1 ) * ( n - 1 ) * ( n - 1 ) * ( n - 1 ) * ( n - 1 ) * h " P /\ [#] T1 = f " P /\ [#] ( T1 | P ) ; g in dom f2 \ f2 " { 0 } & ( f2 - f2 ) . x in dom f2 ; gthesis /\ X = g1 " X & gX /\ dom f1 = { g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . ( g1 . consider n being element such that n in NAT and Z = G . n ; set d1 = thesis d1 , d2 = ( dist ( x1 , y1 ) ) . ( x , y ) ; b `1 + 1 / 2 < ( 1 - 2 ) / 2 + ( 1 - 2 ) / 2 ; reconsider f1 = f , g1 = g as VECTOR of the carrier of X ; attr i <> 0 implies i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j2 in Seg ( len g2 ) ; dom ( i + 1 ) = dom ( i + 2 ) .= dom ( i + 2 ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of ]. PI / 2 , PI .] , REAL ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x1 as Function of S , Iq , I ; reconsider R1 = x , R2 = y , R1 = z as Relation of L , L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RO ; S1 +* S2 = S2 +* S1 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( #Z n ) * ( cos - sin ) ) is_differentiable_on Z & for x st x in Z holds ( ( #Z n ) * ( cos - sin ) ) `| Z = f ; cluster [. 0 , 1 .] -> [. 0 , 1 .] -valued for Function ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f3 ) ; EE8 . e2 = E8 . e2 -T . e2 .= E8 . e2 ; ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( f1 + f2 ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 / 2 ) * 2 & lower_bound A = 0 ; F . ( dom f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f , - F . ( cod f reconsider pbeing = qbeing Point of TOP-REAL 2 , pq = qq as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 implies g . W in [#] Y0 let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. -infty , x0 + r .[ & f . ( s . n ) = 0 ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m1 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y & y <= g for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: ( the carrier of X1 ) , B" = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R -Seg ( a ) c= R -Seg ( b ) & R -Seg ( b ) c= R -Seg ( a ) ; t in ]. r , s .] or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] or P [ x2 , y2 ] or P [ x2 , y2 ] pred x1 <> x2 means : Def1 : |. x1 - x2 .| > 0 & |. x2 - x1 .| > 0 ; assume that p2 - p1 , p3 - p1 - p2 , p3 - p1 is_collinear and p2 - p1 , p3 - p1 is_collinear ; set q = f ^ <* 'not' A *> ^ <* 'not' A *> ; f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * succ t ) = dom ( n succ t ) .= dom ( n succ t ) ; consider x be element such that x in wc iff x in c & x in X ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D2 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 ; reconsider A1 = [. a , b .[ as Subset of R^1 | A ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = p .. Cage ( C , n ) ; n1 - len f + 1 <= len - len f + 1 - len f + 1 ; Seg -1 ( q , O1 ) = [ u , v , a , b ] ; set C-2 = ( ( `1 ) `1 ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V ; consider i be element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 <= len Q ( ) ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I ; let l be variable of k , Al , A-30 be Nat , P be Subset of l ; reconsider U2 = union G-24 , G-24 = union G-24 as Subset-Family of ( ( TOP-REAL 2 ) | D ) ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p2 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; pand p = <* - vs , 1 / 2 *> ^ ( p | ( n + 1 ) ) ; synonym f is real-valued for rng f c= NAT & rng f c= NAT & f is one-to-one ; consider b being element such that b in dom F and a = F . b ; x10 < card X0 + card Y0 & ( card Y0 ) + 1 <= card ( ( card Y0 ) + 1 ) ; attr X c= B1 means : Def1 : for B st X c= succ B1 holds X c= B & X c= B ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , PI ) ; attr 1 <= len s means : Def1 : for s being in dom s holds ( the Sorts of A ) . ( s . 0 ) = s ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } .= { 1_ G } ; pred p '&' q in \vert ( p '&' q ) '&' ( q '&' p ) ; - ( t `1 ) < ( t `1 ) ^2 & - ( t `2 ) < ( t `2 ) ^2 ; ( U . 1 ) = U2 /. 1 .= ( ( U /. 1 ) ) `1 .= ( ( U /. 1 ) ) `1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices On = [: Seg n , Seg n :] & Indices On = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M / \square ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is H & f is H & f is H & f is H ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - |[ w1 , v1 ]| <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - |[ w1 , v1 ]| = |[ w1 , v1 ]| ; reconsider t = t as Element of ( the carrier of X ) * ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) ; f " V in ( the topology of X ) /\ D ( the carrier of X , the carrier of Y ) ; x in [#] ( the carrier of ( F | A ) ) /\ ( the carrier of ( F | A ) ) ; g . x <= h1 . x & h . x <= h1 . x & h1 . x <= h2 . x ; InputVertices S = { xy , y , z } .= { xy , y , z } \/ { xy , y , z } ; for n be Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i , a * Line ( M , i ) ) ; assume M1 is being_line & M2 is being_line & M3 is being_line & M3 is being_line & M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len F1 ) .= len ( Len F2 ) + len ( Len F2 ) ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( the Sorts of ( X + 1 ) ) . n = upper_bound Y1 + ( X + 1 ) . n ; dom ( p1 ^ p2 ) = dom ( f12 ) .= Seg ( len f12 ) .= dom ( f12 ) ; M . [ 1 / ( n + 1 ) , y ] = 1 / ( n + 1 ) .= y ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and W is non empty ; godo /. i1 = G1 * ( i1 , i2 ) .= G * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng fnon - lower_bound rng f\lbrace b } <= b - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ [: l , k :] ) \/ ( l , k ) c= R ; consider p be element such that p in such and p in LSeg ( x , f /. 1 ) ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is measurable of E , M & Im ( ( Partial_Sums F ) . m ) is measurable ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( N-min Z ) , ( \hbox { - } corner Z ) `2 ) /\ LSeg ( p1 , p2 ) ; set R8 = R | ]. 1 , +infty .[ , R8 = R | ]. 1 , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , db ) .= goto ( card I + k ) ; seq . m <= ( the Sorts of X ) . ( ( the Sorts of X ) . ( m + 1 ) ) ; a + b = ( a ` *' b ` ) ` .= ( a ` *' b ` ) ` .= a ` ` ; id ( X /\ Y ) = id ( X /\ Y ) /\ id ( Y /\ X ) for x be element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U1 = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( d /\ e ) /\ b ) /\ m ) /\ n ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( card R ) - 1 ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 & len s2 - 1 > 0 ; ( ( N-min P ) `2 = N-bound P ) & ( ( N-min P ) `2 ) = N-bound P ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= f . a1 ` .= ( f | ( a1 ` ) ) . a1 ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 .= gg . s0 ; the InternalRel of S is symmetric implies the InternalRel of S is transitive & the InternalRel of S is transitive deffunc F ( Ordinal , Ordinal ) = phi . ( $1 , $2 ) ; F . s1 . a1 = F . s2 . a1 .= ( F . s2 ) . a1 ; x `2 = A . o . a .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= Cl ( f " P1 ) ; FinMeetCl ( the topology of S ) c= the topology of T & the topology of T c= the topology of T ; synonym o is \bf means : Def1 : o <> \ast & o <> * & o <> * ; assume that X = Y + Y and card X <> card Y and X <> Y and Y <> {} ; the { the } \HM { TOP-REAL 2 } \HM { of ( s + 1 ) * ( ( s + 1 ) * ( s + 1 ) ) ) = { s } ; LIN a , a1 , d or b , c // b1 , c1 or a , c // a1 , c1 ; e / 2 . 1 = 0 & e / 2 . 3 = 1 & e / 2 . 4 = 0 ; EN1 in SN1 & EN1 in { NN1 } & EN1 in SN1 & EN1 in SN2 ; set J = ( l , u ) If ; set A1 = Let cin , A2 = \mathbin { A1 , A2 , A1 } , A2 = \mathbin { A1 , A2 } ; set vs = [ <* cin , d *> , '&' ] , f4 = [ <* cin , d *> , '&' ] , xy = [ <* cin , c *> , '&' ] , } = [ <* cin , d *> , '&' ] , } ; x * z `1 * x " in x * ( z * N ) * x " ; for x be element st x in dom f holds f . x = g3 . x + f . x Int cell ( f , 1 , G ) c= RightComp f \/ L~ f \/ L~ f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min C , E-max C or U2 is_an_arc_of W-min C , W-min C & U2 c= L~ Cage ( C , n ) ; set f-17 = f @ "/\" g @ ; attr S1 is convergent & S2 is convergent & ( for n holds S1 . n = S2 . n ) implies S1 is convergent & lim ( S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> , be be , reflexive transitive transitive for non empty RelStr , F be reflexive transitive reflexive transitive RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , b ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack a |^ 0 , x \rbrack ) = len l .= len ( l |^ 0 ) ; t4 \+\ {} is ( {} \/ rng t4 ) -valued FinSequence of ( {} \/ rng t4 ) * ; t = <* F . t *> ^ ( C . p ) ^ ( C . q ) ; set pp = W-min L~ Cage ( C , n ) , p1 = W-min L~ Cage ( C , n ) , p2 = W-min L~ Cage ( C , n ) , p3 = W-min L~ Cage ( C , n ) , p1 = W-min L~ Cage ( C , n ) , p2 = W-min L~ Cage ( C , n ) , p3 = W-min L~ Cage ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) - ( i + 1 ) ; consider u being Element of L such that u = u `1 and u in D ` and u in D ` ; len ( ( width ( G ) |-> a ) * ( len ( G ) |-> a ) ) = width ( G ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) & FM . x in dom ( G * the_arity_of o ) ; set cH2 = the carrier of H2 , cH1 = the carrier of H1 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) - ( k + 1 ) ; dom ( ( ( - 1 / 2 ) (#) ( ( #Z 2 ) * ( sin - cos ) ) ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* A1 , cin *> , '&' ] , b6 = [ <* cin , *> , '&' ] , b7 = [ <* cin , g2 *> , '&' ] , b8 = [ <* A1 , g2 *> , '&' ] , b7 = [ <* A1 , A2 *> , '&' ] , b8 = [ <* A1 , 8 *> , '&' ] Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= Line ( M @ , Q , Q ) ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y be Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t3 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( P2 , s2 , 1 ) . SBP , x4 = P3 ; set p-3 = stop I ( ) , ps2 = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D } = { A , B } \/ { C , D , E } let A , B , C , D , E , F , J , M , N , N , M , N , N , F , J be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 & ( p2 `2 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( l + 1 ) + ( 1 + 1 ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 + c * w2 ) ; the TopStruct of L = , the TopStruct of L = , the TopStruct of L = [: the topology of L , the topology of L :] ; consider y being element such that y in dom H1 and x = H1 . y and y in Y ; ( f \ { n } ) \ { n } = \mathop { Free All ( v1 , H ) } ; for Y be Subset of X st Y is summable holds Y is not summable & Y is not summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { - } \rm Assume Shift ( s ) ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( - 1 / 2 ) * f is_differentiable_in x rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 ; j + - len f <= len f + ( len g - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , x be Point of REAL-NS n ; C8 . x = s1 . x0 .= ( C . x0 ) * ( C . x0 ) .= C . x0 ; power ( F_Complex ) . ( z , n ) = 1 .= ( x |^ n ) |^ ( z , n ) ; t at ( C , s ) = f . ( the connectives of S ) . t .= ( the connectives of S ) . t ; support ( f + g ) c= support f \/ ( support g ) /\ support ( g + h ) ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 , x2 is Point of [: X1 , X2 :] : x1 in X & x2 in Y } c= X h = ( i , j ) |-- h .= H . i .= H . i .= F . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in N & N c= A ; set X = ( ( \lbrace q , O1 } ) `1 , Y = ( \lbrace q , O1 } ) `2 , Z = { q , O1 } , Y = { q , O1 } , Z = { q , O1 } , Y = { q , O1 } , Z = { q , O1 } , Z = { q , O1 } , Y = { q , O1 } , Z = { q , O1 b . n in { g1 : x0 < g1 & g1 < a1 . n } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of Y = the lattice of the lattice of Y & the topology of Y = the open Subset of Y & the topology of Y = the topology of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len q1 .= len ( q0 ^ r1 ) + len r1 .= len ( q0 ^ r1 ) + len r1 ; ( 1 / a ) (#) ( sec * f1 ) - ( id Z ) (#) ( ( id Z ) * f1 ) is_differentiable_on Z ; set K1 = integral ( ( lim ( H - a ) || ( A /\ B ) ) , ( lim ( H - a ) || ( A /\ B ) ) ) ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom G `2 as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j ) /\ LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K ) : h . ( N2 , K ) = N2 } ; assume that Hom ( d , c ) <> {} and <: f , g :> * f1 = <* f , g *> * f2 ; dom S29 = dom S /\ Seg n .= dom ( Carrier ( L ) ) /\ Seg n .= dom ( Carrier ( L ) ) ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a & g in H |^ a * ( ( - 1 ) |^ n , 1 ) = a `1 - ( 0 * n ) .= a `1 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 ; for c holds f . c <= g . c implies f @ g ^ @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f2 (#) f1 ) ; 1 = ( p * p ) * p .= p * ( p * p ) .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 ; dom ( F-11 | [: N1 , S :] ) = dom ( F | [: N1 , S :] ) .= [: N1 , S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( ( T |^ the carrier of S ) ) , T |^ the carrier of S ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f = id b and f * f = id a and f * f = id b ; ( ( cos | [. 2 * PI * 0 , PI + 2 * PI * 0 + 1 .] ) | [. 0 , PI * 0 + 1 .] is increasing ; Index ( p , co ) <= len LS - Gij .. LS - 1 .= Index ( Gij , LS ) - 1 ; t1 , t2 , t3 be Element of ( T , S ) . s , t be Element of ( T , S ) . s ; "/\" ( ( Frege curry H ) . h , L ) <= "/\" ( ( Frege G ) . h , L ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j & j <= len f ; Q [ ( D . x ) `1 , F . ( D . x ) `2 ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is a \HM { of G . i } ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier' of S2 ) .= the carrier' of S1 ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F . 0 and rng s c= F . 0 ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) `1 = WW ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP L~ Cage ( C , 1 ) ) `2 <= ( UMP L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= IB and A = ]. a , IB .] and a <= IB ; consider a , b be Complex such that z = a & y = b and z + y = a + b ; set X = { b |^ n where b is Element of NAT : b in n & b <= n } , Y = { b } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , xy = [ <* xy , y *> , f2 ] , xy = [ <* y , z *> , f3 ] , xy = [ <* z , x *> , f3 ] , i2 = [ <* x , y *> , f2 ] , _ ] , zx = [ <* z , x *> , f3 ] , xy = [ <* x ( l /. len l ) = ( l . len l ) * ( l /. len l ) .= ( l . len l ) * ( l . len l ) ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( S \/ Y ) `2 ) `2 = ( ( S \/ Y ) `2 ) `2 .= ( ( S \/ Y ) `2 ) `2 ; ( ss1 - ss2 ) . k = ss1 . k - ss2 . k .= ( ss1 - ss2 ) . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of ( the carrier of X ) \ X0 = the carrier of X & the carrier of ( X ) \ X0 = the carrier of X ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A ) , ch = chi ( X , A ) ; R / ( 0 * n ) = I\HM ( X , X ) .= R / ( n , 0 ) ; ( Partial_Sums ( curry ( F-19 , n ) ) . ( n + 1 ) ) is nonnegative ; f2 = C7 . ( E7 . ( len ( V . ( len V ) ) ) ) .= C8 . ( len ( V . ( len V ) ) ) ; S1 . b = s1 . b .= s2 . b .= ( S2 * ( i , j ) ) . b .= ( S2 * ( i , j ) ) . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & o = ( the connectives of S ) . 11 & o <> the carrier' of S ; set phi = ( l1 , l2 ) --> ( l1 , l2 ) , phi = ( l2 , l2 ) --> ( l1 , l2 ) ; synonym p is is is is is is invertible for p is Polynomial of n , L & p is invertible ; Y1 `2 = - 1 & 0. TOP-REAL 2 <> ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( - 1 ) ) ) ; defpred X [ Nat , set , set ] means P [ $1 , $2 ] & P [ $1 , $2 ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I @ ) = ( ( m - n ) * ( m - n ) ) * ( m - n ) .= ( ( m - n ) * ( m - n ) ) * ( m - n ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cj . d = C7 . d mod C7 . d .= C7 . d mod C8 . e .= C7 . d mod C8 . e ; attr X1 is dense dense means : Def1 : X1 is dense dense & X2 is dense dense implies X1 /\ X2 is dense dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = $1 * $2 & $2 = ( $1 * $2 ) * ( $2 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , \mathop { \rm FinMeetCl } ( Y ) *> synonym A , B are_separated means : Def1 : Cl ( A misses B ) & A misses Cl ( B /\ C ) ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & v . x = 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len ( B1 ^ w ) ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= ( 0 + 9 ) ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y `1 in Y & x `2 in X holds y `1 <= x `1 & x `2 <= x `2 func |. \bullet p .| -> variable of A equals min ( NBI , p ) .= min ( NBI , p ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len l1 & len x2 = len l2 & len x2 = len l1 & len x2 = len l2 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X is convergent & lim ( ||. f .|| | X ) = 0 ; ( the InternalRel of A ) ~ /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume i in dom p implies for j be Nat st j in dom q holds P [ i , j ] & P [ i , j ] & P [ j , i + 1 ] ; reconsider h = f | X ( ) as Function of X ( ) , rng f ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & u1 in the carrier of W1 & u2 in the carrier of W2 implies u1 + u2 in the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= $1 & f . $1 <= f . $1 ; l . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( - ( - x ) ) = - x + - ( - y ) .= - x + - ( - y ) .= - x + - y ; given a being Point of GX such that for x being Point of GX holds a , x are_H , T and a , x are_H p2 ; fT = [ [ dom ( f2 ) , cod ( f2 ) ] , [ cod ( f2 ) , cod ( f2 ) ] ] ; for k , n be Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( A ` ) |^ d consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; LS . k = LS . ( F . k ) & F . k in dom LS & LS . k = LS . ( F . k ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( n + 1 ) ; attr B is thesis means : Def1 : for S being Subuniversal of A holds ( for B holds S . ( B , S ) = B `1 ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } .= { a "/\" d where a is Element of N : a in D } ; |( exp_R , q29 - ( q - q ) )| * |( - ( q - q ) , - ( q - q ) )| >= 0 ; ( - f ) . ( sup A ) = ( ( - f ) | A ) . ( sup A ) .= ( - f ) . ( sup A ) ; G * ( len G , k ) `1 = G * ( len G , k ) `1 .= G * ( len G , k ) `1 .= G * ( len G , k ) `1 ; ( Proj ( i , n ) * ( L . 3 ) ) . x = <* ( proj ( i , n ) * ( L . 3 ) ) . x *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( the - 1 ) (#) ( f1 + f2 ) ) . x ; pred ( tan . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 ; ex t being SortSymbol of S st t = s & h1 . t = h2 . ( t . x ) & ( h1 . t ) . x = ( h1 . x ) . x ; defpred C [ Nat ] means ( P . $1 ) is non empty & ( A is $1 empty or A is $1 empty ) & ( A is non empty implies A is non empty or A is non empty ) ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( Carrier A ) . ( i + 1 ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & T . ( id c ) = id d not n = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j + 1 ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - cp = ( f | ( n , L ) ) *' - ( f | ( n , L ) ) *' .= ( f - ( - ( f | ( n , L ) ) ) ) *' ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 `1 , r2 `2 ]| ) in f1 .: ( W1 /\ W2 ) & f2 . ( |[ r2 `1 , r2 `2 ]| ) in f2 .: ( W1 /\ W2 ) ; eval ( a | ( n , L ) , x ) = ( a | ( n , L ) ) . x .= a . x ; z = DigA ( tz , x9 ) .= DigA ( tz , x9 ) .= DigA ( tz , x9 ) .= DigA ( tz , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S is finite } , G = { Intersect S where S is Subset-Family of X : S is finite } ; consider S19 being Element of D , d being Element of D , d such that S `1 = S19 ^ <* d *> and S `2 = d ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) & ( q `2 / |. q .| - sn ) <= 1 ; ( for v being VECTOR of V holds ( v in A & v in B implies v in A ) & ( v in B implies v in B ) implies A is Subset of V let k1 , k2 , k , k , l , k , l , k , l , k , l be Instruction of SCM+FSA , a be Int-Location , k1 be Integer , k2 be Integer ; consider j be element such that j in dom a and j in g " { k `2 } and x = a . j and y = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x1 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = a * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & d <= b & [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , 1 , width Gauge ( C , m ) -' 1 , 0 ) is non empty ; A, a in { ( S . i ) `1 where i is Element of NAT : i <= n } ; ( T * b1 ) . y = L * b2 /. y .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then that p => q in S and not x in the still of p and not p => All ( x , q ) in S and p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-11 ) & dom ( the of r-11 ) misses dom ( the of r-11 ) ; synonym f is extended \lbrace x \rbrace for for for x being set st x in rng f holds x is Integer & f is integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; l `1 = ( g . ( 1 , 3 ) ) `1 + ( g . ( 1 , 3 ) ) `1 - ( g . ( 1 , 3 ) ) `1 .= ( g . ( 1 , 3 ) ) `1 - ( g . ( 1 , 3 ) ) `1 ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) ; assume for n be Nat holds ||. seq .|| . n <= ( R . n ) & ( ( R . n ) to_power ( n + 1 ) ) & ( R . n ) to_power ( n + 1 ) <= 1 ; sin . ( K - s ) = sin . r * cos . ( K - s ) .= 0 * sin . s .= 0 ; set q = |[ g1 . t0 , g2 . t0 , f3 . t0 ]| , r = |[ g1 . t0 , g2 . t0 ]| , s = |[ g2 . t0 , g2 . t0 ]| , t = |[ g2 . t0 , g2 . t0 ]| , s = |[ g2 . t0 , t ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G in let S . n ; consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) \/ { H } ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & the root of t = ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( #Z 2 ) * f1 ) ) & Z c= dom ( ( #Z 2 ) * f1 ) ; for k be Element of NAT holds seq1 . k = ( \HM { the } \HM { upper } \HM { sum ( f , S ) } ) . k assume that - 1 < n ( ) and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and q `2 / |. q .| - cn < 0 ; assume that f is continuous one-to-one and a < b and c < d and f . a = g and f . b = c and f . c = d ; consider r being Element of NAT such that s-> Element of NAT such that s-> Nat and r <= q and q <= k and k <= n ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of x , K and inf { x , y } , L ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A . ( i1 + 1 ) ) & f . ( i1 + 1 ) in ( proj ( F , i2 ) ) " ( A . ( i1 + 1 ) ) ; rng ( ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M & ( ( Flow M ) ~ ) | ( the carrier' of M ) c= the carrier' of M ; assume z in { ( the carrier of G ) --> { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / ( 2 |^ n ) ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the or the or of v = 2 and v ^ <* 1 *> in dom p and v ^ <* 1 *> in dom p and p . ( len p + 1 ) = v . ( len p + 1 ) ; consider a being Element of the carrier of X39 , A being Element of the lines of X39 such that a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p is FinSequence of D & for i st i in dom p holds p . i is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p01 , p1 ) } .= { LSeg ( p1 , p10 ) , LSeg ( p1 , p11 ) } ; i - len h11 + 2 - 1 < i - len h11 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 ; for n be Element of NAT st n in dom F holds F . n = |. ( nthesis . ( n -' 1 ) ) . x .| for r , s1 , s2 , s2 holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s2 <= s2 & s1 <= s2 & s2 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 & G c= z1 & G c= z2 & z1 in B1 & G c= z1 & G c= z2 } ; let g be \cap [: A , X :] , ( ( 0 , 1 ) --> 0 ) , ( 0 , 1 ) --> 0 = 0 ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g , k , x , z ) ) . y ; consider q1 being sequence of CH such that for n holds P [ n , q1 . n ] and q1 is convergent and lim q1 = lim q1 ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds P [ n , f . n ] ; reconsider B-6 = B /\ B , O8 = O /\ B , O8 = O /\ ( B /\ C ) as Subset of B ; consider j be Element of NAT such that x = the b the FinSequence of n and 1 <= j and j <= n and n <= len f ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 . O2 and x in L2 . O2 ; ( C * dom ( _ { k , n2 } ) ) . 0 = C . ( ( of T4 ( k , n2 ) ) . 0 ) .= C . ( ( of T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = X & dom ( X --> f ) = X --> dom f ; ( S-bound L~ SpStSeq C ) `2 <= ( ( b - S-bound L~ SpStSeq C ) / 2 ) * ( ( N-bound L~ SpStSeq C ) - ( S-bound L~ SpStSeq C ) / 2 ) ; synonym x , y are_collinear means : Def1 : x = y or ex l being Subset of S st { x , y } c= l & x , y are_collinear ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L , a , b being Element of Im k st a = x & b = y holds a << b iff a << b ; ( 1 / 2 * ( ( - 1 ) * ( ( #Z n ) * ( AffineMap ( n , 0 ) ) ) ) is_differentiable_on REAL ) ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the Sorts of A2 ) . $1 = A2 . $1 & ( the Sorts of A1 ) . $1 = ( the Sorts of A2 ) . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * ( g . g2 ) .= ( f * g ) . x ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( { ( canFS Omega ) . n } ) .= M . ( ( canFS Omega ) . n ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L1 ) \/ ( the carrier of L1 ) ; pred a , b , c , x , y , c , y , x , y , c , x , y , c , x , y , c , x , y , c , x , y , c , x , y , c , x , y , c , x , y , x , y , c , x , y , c , x , y , c , x , y , x , y , c , x , y , x , y , c , x , y , x , y , c , x ( the PartFunc of s , s ) . n <= ( the PartFunc of s , s ) . n * s . ( n + 1 ) ; pred - 1 <= r & r <= 1 & ( ( - 1 ) (#) ( arccot ) ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } or seq in T1 & seq in T2 & seq c= T1 & seq c= T2 ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - |[ y1 , y2 , x3 ]| . 2 - |[ y2 , x2 , x3 ]| . 2 ; attr for m be Nat holds F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative implies ( Partial_Sums F ) . n is nonnegative ; len ( ( n , z ) * ( x - y ) ) = len ( ( G . ( x , y ) ) + ( G . ( x , y ) ) ) .= len ( ( G . ( x , y ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W3 /\ W3 and u in W3 /\ W3 and v in W3 /\ W3 ; given F be finite FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and for n be Nat holds F . n = G . n ; 0 = 1 * ( - 1 ) * uon iff 1 = ( ( 1 - ( 1 - ( 1 - 0 ) ) ) * ( ( 1 - 0 ) * ( 1 - 0 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster } is being being } -\mathbin \cal ' s for non empty \rbrace , ( ( let L ) | ( D , D ) ) , ( ( L | D ) | D ) ; "/\" ( B9 , T ) = Top ( B , T ) .= the carrier of S .= the carrier of ( S | ( the carrier of S ) ) .= the carrier of ( S | ( the carrier of S ) ) ; ( r / 2 ) ^2 + ( rbeing Element of NAT ) ^2 / 2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x be element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - 1 ) ) ) ) ) = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( - ( K , n , 1 ) ) ) ) * ( ( - ( K , n , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in downarrow t and x = [ x1 , x2 ] and [ x1 , x2 ] in Indices t and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( upper_volume ( g , M7 ) ) . ( n + 1 ) & q1 . ( n + 1 ) = ( upper_volume ( g , M7 ) ) . ( n + 1 ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and x = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of G and H2 is Subgroup of G and H2 is Subgroup of G ; for S , T , T being non empty p2 , d being Function of T , S st T is complete holds d is monotone iff d is monotone [ a + 0 , i + b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a + 0 , i + b2 ] in [: the carrier of V , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( x |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , 1 ) , ( GoB h ) * ( len GoB h , 1 ) ) & I <= width GoB h implies ( GoB h ) * ( len GoB h , 1 ) `2 <= ( GoB h ) * ( 1 , 1 ) `2 f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def1 : A1 misses A2 & ( for x st x in A1 holds x in A2 holds Lin ( A1 /\ A2 ) = Lin ( A1 /\ A2 ) ) & Lin ( A1 /\ A2 ) = Lin ( A2 /\ A1 ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } where s is Element of R : s in C & s in C } ; dom ( Line ( v , i + 1 ) ) = dom ( ( Line ( ( 1. ( K , m ) ) * ( i , 1 ) ) ) ; cluster [ x `1 , 4 , x `2 ] -> 2 , x `2 , 4 , x `2 ] -> 2 , x `2 , 4 , x `2 ] & [ x `1 , 4 , x `2 ] is Morphism of x `1 , x `2 ; E , f |= All ( x1 , All ( x2 , x2 ) ) => All ( x3 , x2 ) '&' All ( x3 , x3 ) '&' All ( x0 , x3 ) '&' All ( x0 , x2 ) '&' All ( x3 , x3 ) '&' All ( x0 , x3 ) '&' All ( x0 , x3 ) '&' All ( x0 , x4 ) '&' All ( x0 , x3 ) '&' All ( x0 , x3 ) '&' All ( x0 , x3 ) '&' All ( x0 , x3 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . m - h . ( h . m ) - h . ( h . m ) .= ( F - h ) . m ; cell ( G , ( X -' 1 , Y + 1 ) \ L~ f , ( X + 1 ) \ L~ f ) meets UBD L~ f ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= ( card I + card J + 3 ) .= ( card I + 3 ) + ( card J + 3 ) .= ( card I + 3 ) + ( card J + 3 ) .= ( card I + 3 ) + ( card J + 3 ) ; sqrt ( - ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 be element such that x0 in dom a and x0 in g " { k } and y0 = a . ( k ' - 1 ) and a . ( k ' - 1 ) = a . ( k ' - 1 ) ; dom ( r1 (#) chi ( A , A ) ) = dom chi ( A , A ) /\ dom chi ( A , A ) .= dom ( r1 (#) chi ( A , A ) ) /\ dom ( r2 (#) chi ( A , A ) ) .= dom ( r1 (#) chi ( A , A ) ) ; d-7 . [ y , z ] = ( ( ( y `1 ) - ( y `2 ) ) / ( 1 + ( y `2 / ( y `1 ) ) ^2 ) ) * ( y `2 / ( y `2 ) ^2 ) ; attr for i being Nat holds C . i = A . i /\ B . i implies L~ C c= ( A /\ LSeg ( f , i ) ) /\ ( A /\ LSeg ( f , i ) ) ; assume that x0 in dom f and f is_continuous_in x0 and ||. f .|| is_continuous_in x0 and for r st 0 < r ex g st g < r & g in dom f & g in dom f & f /. g <> 0 ; p in Cl A implies for K being Basis of p , Q being Basis of T st Q in K holds A meets Q & K meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y2 - x2 .| <= |. y1 - y2 .| func /. <*> { a } -> w } -\mathop { \rm \hbox { - } being \mathop Ordinal of T means : Def1 : a in it & for b being w Ordinal st b in it holds it . b c= b ; [ a1 , a2 , a3 ] in ( [: the carrier of A , the carrier of A :] \/ [: the carrier of A , the carrier of A :] ) \/ [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the InternalRel of S2 & [ b , a ] in the InternalRel of S2 ; ||. ( ( vseq . n ) - ( vseq . m ) ) * ( ||. x .|| ) < ( e / ( ||. x .|| + ( vseq . m ) ) ) * ( ||. x .|| + ( vseq . m ) ) ; then for Z be set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( { 1 } /\ compactbelow [ s , t ] ) , sup ( compactbelow [ s , t ] ) ] .= [ s , t ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Ij and [ f . i , z ] in Ij and [ y , f . j ] in Ij ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e19 be Element of the carrier of X such that c9 , a9 // a9 , e and a9 <> b9 & a9 <> b9 & a9 <> b9 & a9 <> b9 & a9 <> b9 & a9 <> b9 & a9 <> b9 & a9 <> b9 ; set U2 = I \! \mathop { \vert S .| } , U2 = I \! \mathop { \vert S .| } , E = { S } , N = { S } , U = { S } , E = { S } , N = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS = { S } , SS |. q3 .| ^2 = ( |. q3 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 .= |. q .| ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x = y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & dom the charact of U1 = dom the charact of U1 ; dom ( h | X ) = dom h /\ X .= dom ( ( ||. h .|| ) | X ) .= dom ( ( ||. h .|| ) | X ) .= dom ( ( ||. h .|| ) | X ) .= dom ( ( |. h .| ) | X ) ; for N1 , N1 being Element of ( G . ( K1 + 1 ) ) , ( h . ( K1 + 1 ) ) st N1 = N & rng ( h . ( K1 + 1 ) ) c= N1 holds h . ( K1 + 1 ) = N1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) < - 1 or ( q `2 ) >= - ( q `1 ) & ( q `2 <= - ( q `1 ) or q `2 >= - ( q `2 ) & q `1 <= - ( q `2 ) ; attr r1 = fp & r2 = fp & r1 = fp * ( i , 1 ) & r2 = fp * ( i , 1 ) & s1 = fp * ( i , 1 ) ; ( for m be bounded Function of X , the carrier of Y , x be Element of X , y be Element of Y holds ( x . m ) . x = ( ( seq_id ( ( vseq . m ) , X , Y ) ) . x ) . y ; attr a <> b & b <> c & angle ( a , b , c ) = PI implies angle ( b , c , a ) = 0 & angle ( c , a , b ) = PI consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of ( X ( ) ) * such that y = p1 ^ q1 and p1 ^ q1 = p1 ^ q1 and p1 ^ q1 = q1 ^ q1 and q1 ^ q2 = q2 ^ q2 ; ( ( for r1 , r2 , s1 , s2 being Real st r1 = s2 holds r1 = r2 ) & ( for r2 being Real st r2 = s2 holds r2 <= r2 ) implies for r2 being Real st r2 = s2 holds r2 <= s2 ) ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ from ( w , 1 ) ) ) & proj2 .: ( A /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ LSeg ( w , 1 ) ) is non empty ; s , ( k + 1 ) |= H1 '&' H2 iff s , ( k + 1 ) |= H2 & ( s , ( k + 1 ) ) / ( k + 1 ) |= H2 & ( s , ( k + 1 ) ) / ( k + 1 ) |= H2 len ( s + 1 ) = card support b1 + 1 .= card support b2 + 1 .= card support b2 + 1 .= card support b1 + 1 .= card support b2 + 1 .= ( support b1 ) + ( support b2 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y & z `2 >= x ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D + E-bound D ) / 2 ]| ) /\ D = { UMP D } /\ D .= { UMP D } /\ D .= { UMP D } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = lim ( ( f `| N ) / ( g `| N ) ) .= lim ( ( f `| N ) / ( g `| N ) ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) , pr2 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /* seq ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & a <> b holds a = b Z c= dom ( ( #Z 2 ) * f ) /\ ( dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ) & Z c= dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & i = ( l ^ <* x *> ) . j & i = 1 + len l & j = len l + 1 & j = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in dom ( - 1 ) holds r * u + ( - 1 ) * v in N A , Int A , Cl ( Int A , Cl ( Int A , Cl ( Cl ( Cl ( Cl A ) ) ) ) ) , Cl ( Cl ( Cl ( Cl ( Cl A ) , Cl ( Cl ( Cl A ) , Cl ( Cl A ) ) ) ) ) are_equipotent ; - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + ( u + w ) .= - ( v + u ) + ( w + w ) .= - ( v + u ) + ( w + w ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= succ IC s .= IC s .= IC s .= IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) \ { x } and h . x = ( the support of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty directed Subset of [: S1 , S2 :] holds cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y or x = y & x = y or x = y & y = z or x = z or x = x & y = z ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , T being DecoratedTree , p , q being Element of dom T st p ^ q ^ p = q holds ( T , p ) -tree ( q , p ) = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. ( k + 1 ) = G * ( i2 + 1 , j2 ) ; cluster the gcd of ( k , n ) -> prime means : Def1 : k divides it & for m being Nat st k divides m & n divides m holds it divides m & it divides m ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " = the carrier of X2 & F " = the carrier of X1 & F " = the carrier of X2 & F " = the InternalRel of X1 ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( B9 \/ C ) and Lin ( C \/ B ) = Lin ( B9 \/ C ) ; V is prime implies for X , Y being Element of \langle the topology of T , the topology of T *> st X /\ Y c= V holds X c= Y or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Z = { F ( v1 ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p2 , p3 ) .= angle ( p2 , p3 , p2 ) ; - sqrt ( - ( ( q `1 / |. q .| - cn ) ) ^2 ) = - sqrt ( ( q `1 / |. q .| - cn ) ^2 ) .= - ( - ( q `1 / |. q .| - cn ) ) ^2 .= - ( - ( q `1 / |. q .| - cn ) ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 1 = p3 & f . len f = p4 ; attr f is partial differentiable on 2 , u0 means : Def1 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) . ( z - x0 ) = ( proj ( 2 , 3 ) ) . ( z - x0 ) ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , width G ) `2 < s & s < G * ( 1 , width G ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 >= N-bound L~ f ; pred i in dom G means : Def1 : r * ( f * reproj ( i , x ) ) = r * ( reproj ( i , x ) ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c /. k = c1 + c2 and c1 /. k = c2 /. k and c2 /. k = c2 /. k ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . k2 .= C4 . ( k + 1 ) .= C4 . ( k + 1 ) .= C4 . ( k + 1 ) .= C4 . ( k + 1 ) ; attr M1 = len M2 means : Def1 : len M1 = width M2 & width M1 = width M2 & for i st i in dom M1 holds M1 * ( i , j ) = M1 * ( i , j ) ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom ( f | X ) & ||. y - x0 .|| < g2 } c= N2 & ( for y be Point of S st y in X holds ||. ( f | X ) /. y - ( f | X ) /. x0 .|| < g2 ; assume x < ( - b + sqrt ( o , b , c ) ) / ( 2 * a ) or x > ( - b - sqrt ( o , b , c ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices M3 holds ( M3 + M1 ) * ( i , j ) < ( M3 + M1 ) * ( i , j ) + ( M3 + M1 ) * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st for j being Element of NAT st j in dom f holds i divides f /. j & i <= j holds i divides len f & f /. ( j + 1 ) = f /. ( j + 1 ) assume F = { [ a , b ] where a , b is Subset of X : for c be set st c in B39 & a c= c & b c= c & c c= a & a c= b } ; b2 * q2 + ( b3 * q3 ) + - ( a3 * q2 ) + ( - ( a3 * q2 ) ) = 0. TOP-REAL n + ( - ( a3 * q2 ) ) .= 0. TOP-REAL n + ( - ( a3 * q2 ) ) .= 0. TOP-REAL n ; Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & B in F & B is open & Cl B is open & Cl B is open & Cl B is open & Cl B is open & Cl B is open } ; attr seq is summable means : Def1 : seq is summable & seq is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable ; dom ( ( ( cn ) | D ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; |[ X , Z ]| is full full non empty SubRelStr of ( ( [#] Z ) |^ the carrier of Z ) & |[ X , Y ] is full SubRelStr of ( ( the carrier of Y ) |^ the carrier of Z ) ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 or G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 ; synonym m1 c= m2 means : Def1 : for p be set st p in P holds the set of m1 <= p & the the } \HM { m2 <= m2 & the } of m1 <= ( m2 + 1 ) * ( m1 + 1 ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym ex L being non empty multMagma st the carrier of L is multiplicative (# carrier of L , a #) & the multF of L = [ a , a ] & the multF of L = [ a , a ] & the multF of L = [ a , a ] & the multF of L = [ a , a ] ; sequence ( a , b , 1 ) + and and and sequence ( c , d , 1 ) = b + and sequence ( c , d , 1 ) = b + d .= the carrier of TOP-REAL 2 ; cluster + ( i , j ) -> in INT means : Def1 : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = + ( i1 , i2 ) & it . ( i1 , i2 ) = + ( i1 , i2 ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - 1 ) ) ) ) ) ) ) ) ) = ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - s2 * p2 eval ( ( a | ( n , L ) ) *' , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of S , V being open Subset of T st V in V & V is open & V is open holds V is open & V is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) -succ k ) = ( ( T11 . k , w ) -succ ( ( q11 , w ) -succ k ) ) . k and T11 . ( ( q11 , w ) -succ k ) = ( ( T11 . k , w ) -succ ( ( q11 , w ) -succ k ) ) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ ( n + 1 ) + ( b |^ ( n + 1 ) ) + ( a |^ ( n + 1 ) ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , H ) ) '&' ( All ( x. 4 , H ) '&' ( x. 4 , H ) ) ) ; assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 and for x0 st x0 in l holds f . x0 - f . x0 < 0 and for x1 st x1 in l holds f . x1 - f . x0 < f . x1 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G1 , e being set st not e in W & ( e in W & ( e in W & e in W & ( e in W & e in W & e in W & ( e in W & e in W & e in W & e in W & ( e in W & e in W & e in W ) ) holds G1 is _Graph not vs is not empty iff ( not ( ( ex x1 , x2 st x1 is not empty & not x1 is not empty & not x1 is not empty & not x1 is not empty & not x2 is not empty ) & not x1 is not empty & not x1 is not empty & not x2 is not empty ) & not x1 is not empty & not x2 is not empty & not x1 is not empty ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & [ i1 + 1 , j1 + 1 ] in Indices GoB f & f /. ( i1 + 1 ) = ( GoB f ) * ( i1 + 1 , j1 + 1 ) & f /. ( i1 + 1 ) = ( GoB f ) * ( i1 + 1 , j1 + 1 ) ; for G1 , G2 , G3 being Group , O being stable Subgroup of G st G1 is stable & G2 is stable & G2 is stable & G2 is stable & G1 is stable holds G1 * G2 is stable Subgroup of G2 * the carrier of G2 * the carrier of G2 * the carrier of G2 = ( the carrier of G2 ) * the carrier of G2 UsedIntLoc ( in4 ( f ) ) = { intloc 0 , 1 , 2 , ( intloc 3 ) , ( intloc 4 ( f ) ) , ( intloc 4 ( f ) ) , ( intloc 4 ( f ) ) , ( intloc 4 ( f ) ) , ( intloc 4 ( f ) ) , ( intloc 4 ( f ) ) , ( intloc 4 ( f ) ) } ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ] holds Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ^ f2 ] ( p `1 ) ^2 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) = ( q `1 ) ^2 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x3 )| = |( x1 - x2 , x3 - x3 )| + |( x1 - x2 , x3 - x4 )| + |( x2 , x3 - x4 )| for x st x in dom ( ( ( ( ( ( F - G ) | A ) | A ) ) | A ) holds ( ( ( F - G ) | A ) | A ) . x = - ( ( ( F - G ) | A ) | A ) . x for T being non empty TopSpace , P being Subset-Family of T , x being Point of T st P c= the topology of T for B being Basis of x ex P being Basis of T st B c= P & P is Basis of x & P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x 'or' b . x ) 'or' c . x .= TRUE 'or' ( a . x 'or' b . x ) .= TRUE ; for e be set st e in [: A , B :] ex X1 be Subset of [: X , Y :] , Y1 be Subset of [: Y , Y :] st e = [: X1 , Y1 :] & X1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of [: S . i , S1 . i :] , S1 . i st f = H . i holds F . i = f | ( F . i ) & F . i = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ( ) ) , J ) . v = Valid ( VERUM ( Al ( ) ) , J ) . w card D = card D1 + card D2 - card { i , j } .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + 1 - 1 .= c1 + ( 1 - 1 ) * c2 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 ; len f /. ( \downharpoonright i1 -' 1 + 1 ) = len f /. ( \downharpoonright i1 -' 1 ) - 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 .= len f -' 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & a <= b & k < b holds a <= a + b-2 or a = a + b-2 or b = b + b-2 or a = a + b-2 or b = - b for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) & i <= len f & p in LSeg ( f , i ) holds Index ( p , f ) <= i lim ( curry ( ( curry ( ( P , k + 1 ) ) # x ) ) = lim ( curry ( ( curry ( ( P , k ) ) # x ) ) + lim ( ( curry ( ( P , k + 1 ) ) # x ) ) ) ; z2 = g /. ( \downharpoonright n1 ) . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= ( g | ( i -' n2 + 1 ) ) . ( i - n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in ( the InternalRel of C6 ) \/ ( the InternalRel of C6 ) \/ ( the InternalRel of C6 ) \/ ( the InternalRel of C6 ) ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of [: A , B :] , Y : R in F } holds ( for X being Subset of [: A , B :] st X in F holds ( for Y being Subset of A holds Y in G iff Y in F ) & Y is open holds ( Intersect ( F ) ) . Y = Intersect ( G ) . Y CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and a <> b and c <> d and p <> d and a <> b and p <> d and a <> b and p <> d and a <> b and p <> d and a <> b and a <> d and p <> d and a <> b and a <> b and p <> d ; assume that T is \hbox { 4 } -non empty and T is closed and ex F be Subset-Family of T , n be Nat st F is closed of T , n & F is finite-ind of T , n & ind F <= 0 & ind F <= n ; for g1 , g2 st g1 in ]. r1 - r2 , r .[ & g2 in ]. r1 - r2 , r .[ holds |. f . g1 - f . g2 .| <= ( g1 - g2 ) / ( |. r1 - r2 .| + |. r2 .| ) ( ( - ( - 1 / 2 ) ) * ( z + z2 ) ) = ( - ( - 1 / 2 ) ) * ( z + z2 ) .= ( - ( - 1 / 2 ) ) * ( z + z2 ) .= ( - ( - 1 / 2 ) ) * ( z + z2 ) .= ( - ( - 1 / 2 ) ) * ( z + z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) * ( a |^ 0 ) .= <* ( n + 1 ) / ( n + 1 ) , \dots , ( n + 1 ) / ( n + 1 ) , \dots , ( n + 1 ) ! , ( n + 1 ) ! , ( n + 1 ) ! , a + 1 ) ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * f /. ( F /. i ) * F /. ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 } \/ { x3 } \/ { x4 , x5 , x5 , x5 } for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ( ) ) st SubP ( P , l , e ) = S1 & ( S , l ( ) ) `1 is Element of CQC-WFF ( Al ( ) ) & ( S , l ( ) ) `1 is Element of CQC-WFF ( Al ( ) ) & ( S , l ( ) ) `1 is Element of CQC-WFF ( Al ( ) ) ; consider P being FinSequence of Gs2 such that pj = product P and for i st i in dom P ex t being Element of the carrier of K st P . i = t & t is i in dom t & t . i = ( t . i ) * ( t . i ) ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P is Basis of T1 & P is Basis of T2 holds P is Basis of T1 & P is Basis of T2 & P is Basis of T1 & P is Basis of T2 assume that f is_\cal 2 2 , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , 3 ) . u0 ; defpred P [ Nat ] means for F , G be FinSequence of ExtREAL for s be Permutation of ( Seg $1 ) , G be Permutation of ( Seg $1 ) , k be Nat st len F = $1 & not ( F . k ) = ( F . ( k + 1 ) ) * ( G . k ) ) & ( F . k ) * ( G . k ) = ( F . k ) * ( G . k ) ; ex j st 1 <= j & j < width GoB f & ( ( GoB f ) * ( 1 , j ) ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 or s <= j & j + 1 <= width GoB f & ( GoB f ) * ( 1 , j + 1 ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex F-23 be Subset-Family of T st $1 = F-23 & union F, union F-23 be Subset-Family of T st $1 is open & union F- $1 is open & union FT is non empty & union Fp1 is non empty & union Fp1 is non empty & union Fp1 is non empty & union Fp1 is non empty & union Fp1 is non empty & union Fp1 is non empty ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 holds LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 f in D ( ) & for g st for y st g . y <> f . y holds x in D ( ) & g in D ( ) implies f in D ( ) & f . x = g . ( All ( x , H ) ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( ( ( ( ( ( p `2 / |. p .| - sn ) ) / |. p .| - sn ) ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) <= 8 & 8 <= 1 & 8 <= 1 ; assume for d7 being Element of NAT st d7 <= ( max ( d7 , t7 ) ) holds s1 . ( ( ( t - 1 ) / ( ( t - 1 ) |^ ( n + 1 ) ) ) ) & s2 . ( ( t - 1 ) / ( ( t - 1 ) |^ ( n + 1 ) ) ) = s2 . ( ( t - 1 ) |^ ( n + 1 ) ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st { e } = Sphere ( x , r ) /\ Sphere ( x , r ) and t is Point of E ; given r such that 0 < r and for s holds 0 < s and for x1 holds 0 < s or ex x1 be Point of CNS st x1 in dom f & |. x1 - x0 .| < s & |. x1 - x0 .| < r & |. x1 - x0 .| < s & |. x1 - x0 .| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | x ) | ( x | x ) ) | ( p | x ) .= ( ( ( x | x ) | x ) | ( x | x ) ) | ( p | x ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds sec . x = ( 4 * sin . x + h . h ) / ( cos . x ) ^2 and sin . x = - sin . x * cos . x + cos . h / ( cos . x ) ^2 and cos . x = - sin . x / ( sin . x ) ^2 / ( sin . x ) ^2 and cos . x <> 0 ; assume that i in dom A and len A > 1 and B > 1 and ( for i st i in dom A holds A . i in the set of \HM { i , j } & B . i = ( A * ( i , j ) ) * ( i , j ) ) and ( A * ( i , j ) ) * ( i , j ) = ( A * ( i , j ) ) * ( i , j ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i = <* 1. F_Complex *> & ( i <> n implies i divides n & i <> n & i <> n implies h . i = thesis ) ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( a1 'or' b1 'or' c1 '&' c2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a1 '&' c1 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c1 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c1 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a1 '&' c2 ) '&' 'not' ( a1 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a1 assume that for x holds f . x = ( ( cot * sin ) `| Z ) . x and for x st x in Z holds ( ( ( cot * sin ) `| Z ) . x = cos . ( sin . x ) / ( sin . x ) ^2 ) and for x st x in Z holds ( ( ( cot * sin ) `| Z ) . x = cos . ( cot . x ) / ( sin . x ) ^2 ) ; consider R8 , I-8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I-8 = Integral ( M , Im ( F . n ) ) and Integral ( M , I8 ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. q- f /. x .|| < r holds ||. partdiff ( f , x , k ) - partdiff ( f , x , k ) .|| . q = r * ||. partdiff ( f , x , k ) .|| . q x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } iff x in { x1 , x2 , x3 , x4 , x4 , x5 , x5 , x5 } G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 , T1 ) -> DecoratedTree means : Def1 : q in it iff q in P & for p st p in P holds p in P & q in P or ex r st r in P & r = p ^ r & r in P & p ^ r in T & r in P & r in T ; F /. ( k + 1 ) = F . ( k + 1 - 1 ) .= Fthesis ( p . ( k + 1 -' 1 ) ) * ( F /. ( k + 1 -' 1 ) ) .= F^2 * ( F /. ( k + 1 -' 1 ) ) .= F^2 * ( F /. ( k + 1 -' 1 ) ) .= F^2 * ( F /. ( k + 1 -' 1 ) ) ; for A , B , C being Matrix of K st len B = len C & len C = width A & len B = width C & len C > 0 & len A > 0 & len B > 0 & len C > 0 & len C > 0 & len B > 0 & len C > 0 & len B > 0 & len C > 0 & len B > 0 holds A * ( convergent C ) = B * ( BC ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the carrier of Cq ) \/ ( the carrier of Cq ) and y in ( the carrier of Cq ) \/ ( the carrier of Cq ) and z in ( the carrier of Cq ) \/ ( the carrier of Cq ) and x in ( the carrier of Cq ) \/ ( the carrier of Cq ) ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) >= 0 and ( p `2 / |. q .| - sn ) >= 0 or ( p `2 / |. q .| - sn ) >= 0 & ( p `2 / |. p .| - sn ) >= 0 & ( p `2 / |. p .| - sn ) >= 0 ; for M being non empty - M , x being Point of M , f being Point of M st x = x `1 holds ex x being Point of M st for n being Element of NAT holds f . n = Ball ( x `1 , 1 / ( n + 1 ) ) & f . x = Ball ( x `1 , 1 / ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds f1 . x = 1 / ( x + a ) ) & ( for x st x in Z holds f1 . x = - 1 / ( x + a ) ) & ( for x st x in Z holds f1 . x = - 1 / ( x + a ) ) & ( for x st x in Z holds f2 . x = - 1 / ( x + a ) ^2 ; defpred P1 [ Nat , Point of CNS ] means $1 in Y & ||. s1 . $1 - ( f /. ( $1 + 1 ) ) .|| < r & ||. ( f /. $1 - f /. ( $1 + 1 ) ) - ( f /. ( $1 + 1 ) ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= f . ( i - len f + 1 ) ; ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * ( n0 + 2 * ( n0 + 1 ) ) ) = ( 1 - 2 * ( n0 + 1 ) ) * ( ( n0 + 1 ) * ( n0 + 1 ) ) .= ( 1 - 2 * ( n0 + 1 ) ) * ( n0 + 1 ) .= ( 1 - 2 * ( n0 + 1 ) ) * ( n0 + 1 ) ; defpred P [ Nat ] means for G being non empty strict finite RelStr , H being strict finite RelStr st G is for n being Nat st n in $1 & n in $1 holds the carrier of G in ( the carrier of G ) & the carrier of H = ( the carrier of G ) \/ ( the carrier of H ) & the InternalRel of H = ( the InternalRel of G ) \/ the InternalRel of H ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and for i st 1 <= i & i <= len f & LSeg ( f , i ) /\ Ball ( u , r ) <> {} and not f /. i in Ball ( u , r ) and not f /. ( m + 1 ) in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) . $1 ) . ( 2 * $1 ) = ( Partial_Sums ( cos ) . $1 ) . ( 2 * $1 ) & ( Partial_Sums ( cos ) . $1 ) . ( 2 * $1 ) = ( Partial_Sums ( cos ) . $1 ) . ( 2 * $1 ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & x in dom ( the support of F ) & for i be set st i in dom x holds x . i = ( the support of F ) . i & x . i = ( the support of F ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) |^ n ) * x " .= ( x |^ n ) " .= ( x |^ n ) * x .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) |^ n .= ( x |^ n ) |^ n ; DataPart Comput ( P +* ( a , I ) , Initialized s , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialized s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialized s ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom f1 /\ dom f2 and for g st g in ]. x0 - r , x0 .[ holds f1 . g <= f1 . g & f1 . g <= f2 . g & for g st g in ]. x0 - r , x0 .[ holds f1 . g <= f2 . g & f2 . g <= ( f1 - f2 ) . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and f2 | X is continuous and for r st r in X holds f1 . r = r * ( ( 1 - r ) (#) ( f2 | X ) ) . ( r / ( r + 1 ) ) and for r st r in X /\ dom ( ( 1 - r ) (#) ( f2 | X ) ) . r holds f1 . r = r * ( r / ( r / ( r + 1 ) ) ; for L be continuous complete LATTICE for l be Element of L ex X be Subset of L st l = sup X & for x be Element of L st x in X holds x is an Subset of L holds for x be Element of L st x in X holds x is an Subset of L holds x is an Subset of L Support ( e *' p ) in { Support ( m *' p ) where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' p ) & p in Support ( m *' p ) } & p is Polynomial of n , L & p is Polynomial of n , L ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of CQC-WFF ( Al ( ) ) st F . p1 = g . p1 & for g being Function of [: CQC-WFF ( Al ( ) ) , D ( ) :] st P [ g , p1 , g ] holds P [ g , p1 , g ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. ( j + 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( j + 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len q + k ) .= ( ( p ^ q ) . ( len q + k ) ) . ( len q + k ) .= ( p ^ q ) . ( len q + k ) ; len mid ( upper_volume ( D2 , D1 ) , 1 ) + 1 - indx ( D2 , D1 , j ) = indx ( D2 , D1 , j ) - indx ( D2 , D1 , j ) + 1 .= indx ( D2 , D1 , j ) - indx ( D2 , D1 , j ) + 1 ; x * y * z = ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) ; v . <* x , y *> - ( <* x0 , y0 *> ) . i * x = partdiff ( v , ( x - x0 ) ) * x + ( ( x - x0 ) * y ) + ( ( x - x0 ) * y ) .= partdiff ( u , ( x - x0 ) * y ) + ( ( x - x0 ) * y ) ; i * i = <* 0 * ( 1 - 0 ) - ( 0 * 0 ) , 0 * ( 1 - 0 ) , 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) , 0 * ( 1 - 0 ) , 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) , 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) , 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) , 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 * ( 1 - 0 ) + 0 * ( 1 - 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 - 0 ) + 0 * ( 1 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) ; ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X , Y be finite Subset of REAL st Y0 is non empty & Y c= Y & for Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y holds |. ( - lower_bound ( X , Y ) ) .| < r / 2 ; ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 2 ) = f /. ( k + 1 ) ; ( ( - cos ) . x ) ^2 = ( ( r / ( 1 + x ^2 ) ) * ( cos . x ) ) ^2 .= ( ( r / ( 1 + x ^2 ) ) * ( cos . x ) ) ^2 .= ( r / ( 1 + x ^2 ) ) * ( cos . x ) ^2 .= ( r / ( 1 + x ^2 ) ) * ( cos . x ) ^2 .= ( r / ( 1 + x ^2 ) ) ^2 ; ( - ( - b - sqrt ( a , b - c ) ) / ( 2 * a ) ) < 0 & ( - b - sqrt ( a , b - c ) ) / ( 2 * a ) < 0 or - ( - b - sqrt ( a , b - c ) ) / ( 2 * a ) < 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex_sup_of X , L and ex_sup_of X , L and "\/" ( X , L ) = "/\" ( ( uparrow X ) /\ ( ( uparrow X ) /\ ( uparrow X ) ) , L and not "\/" ( X , L ) ) in C and not "\/" ( X , L ) in C ; ( for j holds ( j = i = j or i = j ) implies ( j = i or j = i ) & ( j = i implies j = j or j = i ) & ( j = i implies j = i implies j = i ) & ( j = i implies j = i implies j = i ) & j = i implies j = i or j = i )