thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is convergent q in X ; V in X ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a is_>=_than X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D is_<=_than E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` = b ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `2 <= b `2 ; assume b in X ; assume k <> 1 ; f = Product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `2 = x `2 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , e be set ; let G be _Graph , e be set ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b , c be Element of C ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in X ; let x be element ; let k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = that b = that b = that a = b ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Element of REAL ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume F is non discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , i be Integer ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 in X ; cluster uparrow x -> being being that L is being ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; L~ L~ L~ L~ L~ L~ L~ L~ \subseteq h ; G . y <> 0 ; let X be RealNormSpace , A be Subset of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , A be Subset of V ; assume x in - - M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded & L is upper-bounded ; rng f = Y ; G8 c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `2 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= i-32 ; 1 <= i-32 ; pp c= cos ; 1 <= i-15 ; 1 <= i-15 ; LMP C in L ; 1 in dom f ; let seq , n ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 & b2 >= Z1 ; assume w = 0. V ; assume x in A . i ; g in the carrier of X ; y in dom t ; i in dom g ; assume P [ k ] ; z c= dom ( \HM { 0 } ) ; x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , X be non empty set ; assume P [ n ] ; assume union S is finite independent finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT * ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , f be Function ; b ` c= b9 & b ` c= b9 ; assume not x in INT ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cosec . x > 0 ; assume y in rng S ; let x , y be element ; i2 < i1 & i2 < i2 ; a * h in a * H ; p , q in Y ; redefine func sqrt I -> left ideal ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an1 < n & bn1 < n ; assume A c= dom f ; Re f is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_continuous_in x0 ; assume O is symmetric transitive ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 halts_on s , m = LifeSpan ( P3 , s3 ) ; d , c // a , b ; let t , u be set ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , A be Subset of X ; [ a , b ] in R ; x + w < y + w ; { a , b } is_>=_than c ; let B be Subset of A , C be Subset of B ; let S be non empty ManySortedSign ; let x be variable of f , A , B be Subset of f ; let b be Element of X , c be Element of Y ; R [ x , y ] ; x ` = x & y ` = y ; b \ x = 0. X ; <* d *> in D * ; P [ k + 1 ] ; m in dom ( n |-> 0 ) ; h2 . a = y ; P [ n + 1 ] ; redefine func G * F -> ] ] ; let R be non empty multMagma , a be Element of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co /\ rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `2 ; let M be be be as as as as as mamaid ; let N be non empty \HM K ; let R be RelStr with finite finite -> finite 1 -element number ; let n , k be Nat ; let P , Q be let let Q ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as Int-Location ; assume I does not \HM { + } \cdot a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < ( v + u ) ; x <= c2 . x ; x in F ` & y in F ` ; redefine func S --> T -> o -is \in ; assume t1 <= t2 & t2 <= t2 ; let i , j be even Integer ; assume F1 <> F2 & F2 <> {} ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> A2 & A2 <> C ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & dom g2 = B ; i < len M + 1 ; assume not -infty in rng G ; N c= dom ( f1 + f2 ) ; x in dom ( sec | A ) ; assume [ x , y ] in R ; set d = x / y ; 1 <= len g1 & 1 <= len g2 ; len s2 > 1 & len s2 > 1 ; z in dom ( f1 | X ) ; 1 in dom ( D2 | 1 ) ; p `2 = 0 & p `2 = 0 ; j2 <= width G & j2 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; gcd ( i , i ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be .: \it let Z be non empty /. ; cluster m * n -> square ; let ( k + 1 ) ; i - 1 > m - 1 ; R is transitive & R is transitive implies R is transitive set F = <* u , w *> ; p-2 c= P3 & p`2 c= P3 ; I is_halting_on t , Q ; assume [ S , x ] is thesis ; i <= len ( f2 | i ) ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 | X ) ; assume [ X , p ] in C ; BX c= ( X \/ Y ) ; n2 <= ( 2 * n ) - 1 ; A /\ cP c= A ` ; cluster x -valued -> constant for Function ; let Q be Subset-Family of S , P be Subset of Q ; assume n in dom g2 & n + 1 in dom g2 ; let a be Element of R ; t `2 in dom ( e2 | ( dom e2 ) ) ; N . 1 in rng N ; - z in A \/ B ; let S be K of X , M be Element of S ; i . y in rng i ; REAL c= dom f & f | A is bounded ; f . x in rng f ; mt <= r / 2 ; s2 in r-5 & s2 in r-5 ; let z , z be complex number ; n <= ( N . m ) ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = |[ S , T ]| ; let x be non positive ExtReal ; let m be Element of M ; f in union rng F1 & g in union rng F2 ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , p be Polynomial of K ; let i be Element of NAT ; rng ( F * g ) c= Y dom f c= dom x & dom g c= dom y ; n1 < n1 + 1 & n2 + 1 <= n + 1 ; n1 < n1 + 1 & n2 + 1 <= n + 1 ; cluster [: T , T :] -> \overline ; [ y2 , 2 ] `2 = z ; let m be Element of NAT ; let S be Subset of R ; y in rng ( S29 ) ; b = sup dom f & b = sup dom f ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom ( h2 * h1 ) ; w + 1 = ma ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k2 + 1 <= k2 ; i be Element of NAT ; Support u = Support p & Support u = Support p ; assume X is complete thesis ; assume f = g & p = q ; n1 <= n1 + 1 & n2 + 1 <= n2 + 1 ; let x be Element of REAL ; assume x in rng ( s2 | n ) ; x0 < x0 + 1 & x0 + 1 < r2 ; len ( Carrier ( L ) ) = W ; P c= Seg ( len A ) ; dom q = Seg n & dom q = Seg n ; j <= width ( M @ ) ; let seq1 be real-valued sequence of X ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT ; assume z in being not being not being not being Element of being Element of V ; i be set ; n -' 1 = n-1 - 1 ; len ( n-27 ) = n ; \cal ] c= F ; assume x in X or x = X ; x is midpoint of b , c ; let A , B be non empty set , f be Function of [: A , B :] , C ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q & i in dom q ; let s be Element of E * ; let B1 be Basis of x , B2 be Basis of y ; Carrier ( L3 /\ L2 ) = {} ; L1 /\ LSeg ( L1 , j ) = {} ; assume downarrow x = downarrow y ; assume b , c // b , c ; LIN q , c , c ; x in rng f-129 & x in rng f-129 ; set nnN = n + j ; let D be non empty set , f be FinSequence of D ; let K be right_zeroed non empty addLoopStr , p be Polynomial of K ; assume f `1 = f & h `2 = h ; R1 - R2 is total & R1 - R2 is total ; k in NAT & 1 <= k implies k <= n let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & ( TOP-REAL 2 ) | K1 is open ; assume a , b are_maximal maximal in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster n[ -> nes] ; not u in { ag } ; the carrier of f c= B \/ C ; reconsider z = x as VECTOR of V ; cluster the bounded Str of L -> strict non empty ; r (#) H is n " ; s . intloc 0 = 1 & s . intloc 0 = 2 ; assume that x in C and y in C ; let U0 be strict universal universal MSAlgebra over S , a be Element of U0 ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in : ex y being Element of : x = y & y in { x } ; let x , y be Element of X ; let A , I be \HM { \vert A .| } ; [ y , z ] in [: O , O :] ; ( \subseteq card Macro i ) = 1 & card Macro i = 1 ; rng Sgm ( A ) = A ; q |- \! \! \smallfrown All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b & LIN o , a , b ; p . 2 = Z |^ Y ; ( DD2 ) `2 = {} & ( DD2 ) `2 = {} ; n + 1 + 1 <= len g ; a in [: CQC-WFF ( Al ) , { x } :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f2 + f3 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i -' k + 1 <= S ; cluster associative non empty for multMagma ; x in support ( ( support t ) | ( support t ) ) ; assume a in [: the carrier of G , the carrier of G :] ; i `2 <= len ( y | i ) ; assume p divides b1 + b2 & p divides b2 + b2 ; M . x0 <= upper_bound M1 & M . x0 <= upper_bound M2 ; assume x in W-min ( X ) & y in W-min ( X ) ; j in dom ( z | i ) ; let x be Element of D ( ) ; IC s4 = l1 & IC s4 = l1 ; a = {} or a = { x } ; set uG = Vertices G , uH = Vertices G ; ( seq " ) is non-zero & ( seq " ) is non-zero ; for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; hcn c= h-14 ( p ) ; ]. a , b .[ c= Z ; X1 , X2 are_separated implies X1 union X2 , X2 union X1 are_separated a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 -' 1 = k - 1 ; cluster -> real-valued for Relation ; ex v st C = v + W ; let IT be non zero Nat , x be Element of IT ; assume V is Abelian add-associative right_zeroed right_complementable ; X-21 \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper Subset of B & sup B is upper Subset of B ; let L be non empty reflexive antisymmetric RelStr , X be Subset of L ; R is reflexive & R is transitive implies R is transitive E , g |= the_left_argument_of H implies E , g |= H dom G `2 = a & cod G `2 = b ; ( 1 / 4 ) * ( - 1 ) >= - r ; G . p0 in rng G & G . p0 in rng G ; let x be Element of FF , y be Element of FF ; D [ P-6 , 0 ] ; z in dom ( id B ) & z in dom ( id B ) ; y in the carrier of N & y in the carrier of N ; g in the carrier of H & g in the carrier of G ; rng f\mathbb R c= [: NAT , NAT :] ; j `2 + 1 in dom s1 & j + 1 in dom s2 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL ; f . z1 in dom h & f . z2 in dom h ; P . k1 in rng P & P . k2 in rng P ; M = AM +* {} .= ( A \/ { x } ) ; let p be FinSequence of REAL , n be Nat ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; ( H - a ) / b = b-a ; assume that the distance of V and Q is_v1 , v2 ; let a be Element of op ( V ) ; let s be Element of PL ; let PA be non empty thesis , PA be non empty RelStr ; let n be Nat ; the carrier of g c= B & the carrier of g c= B ; I = halt SCM R & I = halt SCM R ; consider b being element such that b in B ; set BK = BCS ( K , n ) ; l <= ( -> -> id of L . j ; assume x in downarrow [ s , t ] ; x `2 in uparrow t & x `2 in uparrow t ; x in ( JumpParts T ) \/ { {} } ; let h be Morphism of c , a ; Y c= R implies R .: ( the_rank_of Y ) c= R .: Y A2 \/ A3 c= Carrier ( L1 ) \/ Carrier ( L2 ) ; assume LIN o , a , b & LIN o , a , b ; b , c // d1 , e2 ; x1 , x2 in Y & x2 in Y ; dom <* y *> = Seg 1 & dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in [: X , X :] ; for n be Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> strict closed for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 in P & q2 , q1 in P ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] ; let R , Q be ManySortedSet of A ; set d = 1 / ( n + 1 ) ; rng g2 c= dom W & rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b implies R ~ = R let M be non empty Subset of V , a be Element of M ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( id the carrier of R ) ; let b be Element of the carrier of T ; dist ( e , z ) - r-r > r-r ; u1 + v1 in W2 & v1 in W2 + W3 ; assume that the carrier of L misses rng G ; let L be lower-bounded antisymmetric transitive antisymmetric RelStr ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of ( Bool M ) . i ; 0 <= Arg a & Arg a < 2 * PI ; o , a9 // o , y & o , a // o , y ; { v } c= the carrier of l & { v } c= the carrier of l ; let x be bound of A ; assume x in dom ( uncurry f ) & y in dom ( uncurry f ) ; rng F c= ( product f ) * ; assume D2 . k in rng D & D2 . k in rng D2 ; f " . p1 = 0 & f " . p2 = 0 ; set x = the Element of X , y = the Element of Y ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; n be Element of NAT ; assume LIN c , a , e1 & LIN c , a , e1 ; cluster -> increasing for FinSequence of NAT ; reconsider d = c , e = d as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of f ; conv @ S c= conv @ A & conv @ S c= conv @ A ; reconsider B = b as Element of the topology of T ; J , v |= P ! ( l ) ; redefine func J . i -> non empty TopStruct ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y1 , T ; W1 is_\HM { field W1 , field W2 } ; assume x in the carrier of R & y in the carrier of R ; dom n-16 = Seg n & dom n-16 = Seg n ; s4 misses s2 & s4 misses s4 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in an implies [ a , y ] in an assume that I c= J and not I c= K and I c= J ; Im ( lim seq ) = 0 & Im ( lim seq ) = 0 ; ( sin . x ) <> 0 & ( sin . x ) <> 0 ; sin * ( cos * ( sin * ( cos * sin ) ) ) is_differentiable_on Z ; t3 . n = t3 . n .= s . n ; dom ( ( dom } F ) | A ) c= dom ( F | A ) ; W1 . x = W2 . x & W2 . x = W3 . x ; y in W .vertices() \/ W .vertices() ; ( k + 1 ) <= len ( v | ( k + 1 ) ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P & proj2 .: S c= proj2 .: P ; h . p4 = g2 . I & h . I = g2 . I ; Gij = ( U /. 1 ) `1 .= G * ( i , 1 ) `1 ; f . rr1 in rng f & rr2 in rng f ; i + 1 + 1-1 <= len f - 1 ; rng F = rng ( F | ( n + 1 ) ) ; mode non empty multMagma is well unital associative associative non empty multMagma ; [ x , y ] in [: A , { a } :] ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of support ( m ) c= B ; not [ y , x ] in id X ; 1 + p .. f <= i + len f ; ( s ^\ k1 ) is lower & ( s ^\ k1 ) is lower ; len ( F | ( len F -' 1 ) ) = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be Complex , a be Element of REAL ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be empty Chain Chain Chain of T ; cluster -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K . j2 ; redefine func J => y -> total for I -valued Function ; K c= 2 -tuples_on the carrier of T ; F . b1 = F . b2 & F . b2 = F . b2 ; x1 = x or x1 = y or x1 = z ; pred a <> {} means : Def8 : ( a / a ) = 1 ; assume that cf a c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o , b , b9 & LIN o , b , c ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non trivial FinSequence of D ; let FF2 be non empty thesis , F be non empty TopSpace ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pp2 = x , pp2 = y as Subset of m ; let A , B , C be Element of R ; redefine attr P is strict non empty as strict normal rng c `1 misses rng ( e `1 ) \/ rng ( e `2 ) ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( cot * ( f1 + f2 ) ) ; the component of Q c= UBD A & the component of Q c= UBD A ; reconsider E = { i } as finite Subset of I ; g2 in dom ( 1 / ( n + 1 ) ) ; pred f = u means : Def8 : a * f = a * u ; for n holds P1 [ ( being non zero Nat ) ] { x . O : x in L } <> {} ; let x be Element of V . s ; let a , b be Nat ; assume that S = S2 and p = p2 and q = p1 ; ( n1 gcd n2 ) = 1 & ( n1 gcd n2 ) = 1 ; set oo = ( 2 * PI ) * ( 1 , j ) ; seq . n < |. r1 .| & seq . n < 0 ; assume that seq is increasing and r < 0 ; f . ( y1 , x1 ) <= a & f . ( y2 , x2 ) <= b ; ex c being Nat st P [ c ] ; set g = { n to_power 1 : n in NAT } ; k = a or k = b or k = c ; a\leq , ag , bh , bh , bh , bh , bh , p ; assume Y = { 1 } & s = <* 1 *> ; Is1 . x = f . x .= 0 .= 0 ; W3 .last() = W3 . 1 & W3 .last() = W3 . 2 ; cluster trivial -> finite finite for R be finite is connected ; reconsider u = u as Element of Bags X ; A in B ^ -> Group implies A , B are_<* A , B *> x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 / |. q .| - cn ) ; f1 is_\HM \HM { the thesis of f2 : f2 in the carrier of P } ; ( f `2 ) ^2 / ( |. q .| ) ^2 <= ( |. q .| ) ^2 ; h is_the carrier of Cage ( C , n ) ; b `2 <= p `2 & p `2 <= ( p `2 + r ) / 2 ; let f , g be s1 is Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom ( max ( f , g ) ) ; p2 in NL . p1 & p2 in NL . p2 ; len ( the_left_argument_of H ) < len ( H ) & len ( H ) < len ( H ) ; F [ A , F-14 F . A ] ; consider Z such that y in Z and Z in X ; pred 1 in C means : Def8 : A c= C |^ A ; assume r1 <> 0 or r2 <> 0 & r1 <> 0 ; rng q1 c= rng C1 & rng q2 c= rng C2 ; A1 , L , A3 , A3 , A2 is_collinear ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in u implies { p , q } \/ { p , r } c= C then S is negative & P-2 [ S ] ; Cl Int [#] T = [#] T & Cl Int [#] T = [#] T ; f12 | A2 = ( f2 | A2 ) | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; let v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V & Y \ V c= Y \ Z ; let X be Subset of [: S , T :] ; consider H1 such that H = 'not' H1 and H1 in X ; 1_ 1 c= ( ( 1 - 1 ) * ( ( ( 1 - 1 ) * ( 1 - 1 ) ) ) ; 0 * a = 0. R .= a * 0 ; A |^ ( 2 , 2 ) = A ^^ A ; set vp2 = ( v /. n ) `1 , vp2 = ( v /. n ) `1 ; r = 0. ( REAL-NS n ) & r = 0. ( REAL-NS n ) ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W -as Element of ( W -as non empty Subset of W ; f /* ( s * G ) is divergent_to-infty & f /. ( s * G ) is divergent_to-infty ; consider l being Nat such that m = F . l ; t8 does not destroy b1 & not t8 does not destroy b1 ; reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i = i , j = j as non zero Element of NAT ; c . x >= id ( L . x ) ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> pair for element ; non empty downarrow a /\ downarrow t is Ideal of T ; let X be non empty set , N be non empty set ; rng f = being Element of implies S is \ let p be Element of B , s be Element of the connectives of S ; max ( N1 , 2 ) >= N1 & max ( N2 , 2 ) >= N2 ; 0. X <= b |^ ( m * mm1 ) ; assume that i in I and Rx0 . i = R ; i = j1 & p1 = q1 & p2 = q2 implies q1 = q2 assume gR in the right of g & gR in the right of g ; let A1 , A2 be Point of S , A be Subset of T ; x in h " P /\ [#] ( T1 | P ) ; 1 in Seg 2 & 1 in Seg 3 implies 1 in Seg 3 reconsider X-5 = X , Ximplies X' = Y as non empty Subset of Tsuch that X\cdot X = Y ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the in of G ) -valued ; n1 <= i2 + len g2 & n2 + len g2 <= len g2 ; ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & u in the carrier' of G2 ; y = Re y + ( Im y ) * i ; ( as ( ( - 1 ) * p ) ) mod p = 1 ; x2 is_differentiable_on ]. a , b .[ & x2 is_differentiable_on ]. a , b .[ ; rng M5 c= rng D2 & len M5 = len D2 ; for p being Real st p in Z holds p >= a ( for x being Element of X holds f . x = proj1 . x ) implies f is continuous ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p |-count M ) . 2 = d ; A ++ ( B \ominus C ) = ( A ++ B ) \ominus C h \equiv gg . ( mod P ) , T -ideal of P ; reconsider i1 = i-1 , i2 = i2 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being strict Subspace of V holds V is Subspace of [#] V reconsider i-7 = i , im2 = j as Element of NAT ; dom f c= [: C ( ) , D ( ) :] ; x in ( the Sorts of B ) . n ; len } in Seg ( len ( f2 | i ) ) ; pp1 c= the topology of T & pp2 c= the topology of T ; ]. r , s .[ c= [. r , s .] ; let B2 be Basis of T2 , a be Element of T2 ; G * ( B * A ) = ( id o1 ) * A ; assume that p , u , u is_collinear and u , v , q is_collinear ; [ z , z ] in union rng ( F | ( X \ { x } ) ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S , L = $1 .. S ; LIN a1 , a3 , b1 & LIN a1 , a3 , b1 & LIN a2 , a3 , b2 ; f " ( f .: x ) = { x } ; dom w2 = dom r12 & dom ( w2 * w1 ) = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 & ( ( g2 ) . I ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; Ip * ( i , j ) = 0. K ; |. f . ( s . m ) -g .| < g1 ; q9 . x in rng ( q | ( n + 1 ) ) ; Carrier Lxy misses Carrier ( Lxy ) \/ ( Carrier ( Lxy ) \/ { p } ) ; consider c being element such that [ a , c ] in G ; assume Na9 = oh & Na9 = oh & Na9 = Nh ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= F-12 |^ ( Cc ) ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . j .] ; pred 0 <= x & x <= 1 & x ^2 <= 1 ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 - q `2 <> 0. TOP-REAL 2 ; redefine func \cal a] ( S , T ) -> non empty ; let x be Element of [: S , T :] ; the Arrows of F . ( a , b ) is one-to-one ; |. i .| <= - ( 2 to_power n ) & |. i .| <= - ( 2 to_power n ) ; the carrier of I[01] = dom P & the carrier of I[01] = { 0 } ; ( n * ( n + 1 ) ) ! > 0 * ! ; S c= ( A1 /\ A2 ) /\ A3 & S /\ A2 c= A2 /\ A3 ; a3 , a4 // b3 , b3 & a3 , a4 // b3 , b3 ; then dom A <> {} & dom A <> {} & dom A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y = [ x , y ] ; set v2 = ( v /. ( i + 1 ) ) ; x = r . n .= r4 . n .= r . n ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g c= the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: [: A2 , A2 :] , [: A1 , A2 :] :] ; 0 < ( p / ( ||. z .|| + 1 ) ) ; e . ( m3 + 1 ) <= e . ( m3 + 1 ) ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y -infty < Integral ( M , Im ( g | B ) ) ; cluster O := F -> \HM \HM { an } -valued for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , a be Element of U1 ; Proj ( i , n ) * g is_differentiable_on X & Proj ( i , n ) * g is_differentiable_on X ; x , y , z be Point of X , p be Point of X ; reconsider px0 = p . x , px0 = p . y as Subset of V ; x in the carrier of Lin ( A ) & y in the carrier of Lin ( B ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume that - a is lower and - a is lower and - a is Element of - a ; Int Cl A c= Cl Int Cl Int Cl A & Cl Int Cl Int Cl A c= Cl Int Cl A ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; p2 `2 <= p `2 & p `2 <= p2 `2 or p2 `2 >= p `2 & p2 `2 <= p `2 ; Cl Q ` = [#] ( ( TOP-REAL 2 ) | Q ) ; set S = the carrier of T , T = the InternalRel of T ; set I8 = for f be FinSequence of TOP-REAL n holds f is one-to-one iff f is one-to-one len p -' n = len ( thesis ) - n .= len p - n ; A is Permutation of Swap ( A , x , y ) ; reconsider n6 = nthat ( n + 1 ) = n7 ; 1 <= j + 1 & j + 1 <= len ( s | k ) ; let q\subseteq , qT be Element of M ; a in the carrier of S1 & b in the carrier of S1 & c in the carrier of S1 ; c1 /. n1 = c1 . n1 & c2 /. n1 = c1 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 ; y = ( ( f * S8 ) * S8 ) . x ; consider x being element such that x in be N -_ set A ; assume r in ( dist ( o ) ) .: P ; set i2 = ( n , h ) `1 , i1 = ( n , h ) `1 , i2 = ( n , h ) `1 , i2 = ( n , h ) `1 , i2 = ( n , h ) `1 , i2 = ( n h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) = M . i .= Line ( M , k ) ; reconsider m = ( x - 1 ) / 2 as Element of ExtREAL ; let U1 , U2 be strict Subspace of U0 , a be Element of U1 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p1 + 1 <= len p2 ; let T1 , T2 be Scott Scott `1 of L , f be Function of T1 , T2 ; then x <= y & ( x in : x in { y } ) ; set M = n -tuples_on ( the carrier of K ) ; reconsider i = x1 , j = x2 , k = x3 as Nat ; rng the_arity_of a9 c= dom H & rng the_arity_of o c= dom H ; z1 " = z9 " & z1 = z2 " & z1 = z2 " ; x0 - r / 2 in L /\ dom f & x0 - r / 2 in dom f ; then w is that rng w /\ ( S \ L ) <> {} ; set x-10 = x-9 ^ <* Z *> ^ xi2 ; len w1 in Seg ( len w1 + len w2 ) ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of thesis , k be Element of thesis ; x . n = ( |. a . n .| ) * ( A . n ) ; p `1 <= Gik `1 & p `1 <= G * ( 1 , 1 ) `1 ; rng ( g | ( L~ g ) ) c= L~ ( g | ( L~ g ) ) ; reconsider k = i-1 * ( i + j ) as Nat ; for n being Nat holds F . n is \HM { -infty } ; reconsider x-10 = x-7 , x-10 = xas VECTOR of M ; dom ( f | X ) = X /\ dom f .= X ; p , a // p , c & b , a // c , c ; reconsider x1 = x , y1 = y , y2 = z as Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ag = p . ag & m . ag = p . ag ; a / ( s . m - 1 ) / ( s . n - 1 ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume that B1 \/ C1 = B2 \/ C2 and C2 \/ C2 = C2 \/ C1 ; X . i = { x1 , x2 } . i .= ( X * ) . i ; r2 in dom ( h1 + h2 ) & r2 in dom ( h1 + h2 ) ; that \mathclose { 0. R } = a and b-0 = b ; FF is_closed_on t2 , Q2 & FF is_halting_on t2 , Q2 implies thesis set T = the non empty non empty TopSpace , X = the topology of T ; Int Cl Int Cl R c= Int Cl R & Int Cl R c= Cl Int Cl R ; consider y being Element of L such that c . y = x ; rng ( Flen F ) = { Flen F } ; G-23 \ ( { c } ) c= B \/ S ; fbeing Relation of [: X , Y :] , X ; set RQ = the \HM { Point of P , p = the Point of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; let k2 be Element of NAT , k1 be Element of NAT ; reconsider pp = u , pq = v as Element of ( TOP-REAL n ) | ( i + 1 ) ; g . x in dom f & x in dom g implies g . x = f . x assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of carr ( G ) ; len Pt <= len P-35 & len Pt <= len P-35 ; x " in the carrier of A1 & x " in the carrier of A2 ; [ i , j ] in Indices ( A * ( i , j ) ) ; for m be Nat holds Re ( F . m ) is simple function ; f . x = a . i .= a1 . k .= a1 . k ; let f be PartFunc of REAL i , REAL , x be Element of REAL ; rng f = the carrier of ( ( Carrier A ) * ( i , j ) ) ; assume s1 = sqrt ( 2 - p ) - ( p |^ 2 ) ; pred a > 1 & b > 0 & a to_power b > 1 ; let A , B , C be Subset of Ias Subset of Ias Subset of Ias ; reconsider X0 = X , Y0 = Y , Y0 = Z as Real ; let f be PartFunc of REAL , REAL , r be Real ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , tt2 be Relation of n -tuples_on BOOLEAN ; Q [ e-14 \/ { vN } , va1 ] ; g \circlearrowleft W-min L~ z = z implies ( g /. 1 ) .. z < ( g /. len z ) .. z |. |[ x , v ]| - |[ x , y ]| .| = v\vert x - y ; - f . w = - ( L * w ) ; z - y <= x iff z <= x + y & y <= z + x ( 7 / p1 ) to_power ( 1 / e ) > 0 ; assume X is BCK-algebra of 0 , 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v2 ; ( f | X ) . x2 = f . x2 & ( f | X ) . x2 = f . x2 ; ( ( tan | A ) * ( f | A ) ) . x in dom ( sec | A ) ; i2 = ( f /. len f ) & i2 = ( f /. len f ) `1 ; X1 = X2 \/ ( X1 \ X2 ) & X2 = X1 \/ X2 ; [. a , b , 1_ G .] = 1_ G & a * b = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be FinSequence of V ; dom g2 = the carrier of I[01] & rng g2 c= the carrier of I[01] ; dom f2 = the carrier of I[01] & rng f2 c= the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: X .= proj2 .: ( X ) ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & a1 . n < x0 + r ; |. ( f /* s ) . k - GM .| < r ; len Line ( A , i ) = width A & len Line ( A , i ) = width A ; Sthesis / op = ( S . g ) / op .= ( S . g ) / op ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized p & intloc 0 in dom Initialized p ; i1 := i2 := i3 does not destroy b1 & i2 does not destroy b2 implies not ( i1 , i2 ) := i2 does not destroy b2 arccos r + arccos r = PI / 2 + 0 ; for x st x in Z holds f2 is_differentiable_in x & f2 . x > 0 ; reconsider q2 = ( q - x ) / ( q - x ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 & i + 1 <= len ( 0 qua Nat ) ; assume f in the carrier of [' X , Omega Y '] ; F . a = H / ( x , y ) . a ; ( ( TRUE T ) at ( C , u ) ) = TRUE ; dist ( ( a * seq ) . n , h ) < r ; 1 in the carrier of [. 0 , 1 .] & 2 * PI = 1 ; p2 `1 - x1 > - g / 2 & p2 `1 - x1 < p2 `1 - g / 2 ; |. r1 - thesis .| = |. a1 .| * |. thesis .| ; reconsider S-14 L = 8 as Element of ( len S ) -tuples_on ( the carrier of K ) ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W .3 = D0W .3 + 1 ; i1 = ma + n & i2 = 0. ( K , n ) implies i1 = i2 f . a [= f . ( f . O1 "\/" f . a ) ; pred f = v & g = u , h = v + u ; I . n = Integral ( M , F . n ) ; chi ( T1 , ( len T1 ) ) . s = 1 & chi ( T2 , ( len T2 ) ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k2 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ R4 implies ( M1 \/ M2 ) * ( i , j ) = ( M1 + M2 ) * ( i , j ) set h = the continuous Function of X , R , g = the Function of X , R ; set A = { L . ( ( k . n ) `1 ) : not contradiction } ; for H st H is atomic holds P7 [ H ] ; set b' = S5 ^\ ( i + 1 ) , bseq = S5 ^\ ( i + 1 ) ; Hom ( a , b ) c= Hom ( a opp , b opp ) ; 1 / ( n + 1 ) < ( 1 / s ) " ; l `1 = [ dom l , cod l ] & l `2 = [ cod l , cod l ] ; y +* ( i , y /. i ) in dom g & y in dom g ; let p be Element of CQC-WFF ( Al ) , P be Subset of CQC-WFF ( Al ) ; X /\ X1 c= dom ( f1 - f2 ) & X /\ X1 c= dom ( f1 - f2 ) ; p2 in rng ( f /^ ( i + 1 ) ) & p2 in rng ( f /^ i ) ; 1 <= indx ( D2 , D1 , j1 ) & indx ( D2 , D1 , j1 ) + 1 <= len D2 ; assume x in ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( K , K ) ) ) ) | K0 ) ) | K0 ) ) | K0 ) ) | K0 ) ) ) ) ) ; - 1 <= ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( q q ) ) ) ) ) ) ) ) ) . O ) ) ) `2 ) ) ) ) ) ^2 ; let f , g be Function of I[01] , ( TOP-REAL 2 ) | P , p1 , p2 be Point of TOP-REAL 2 ; k1 -' k2 = k1 - k2 & k1 -' k2 = k2 - k2 ; rng ( seq ^\ k ) c= ]. x0 , x0 + r .[ ; g2 in ]. x0 - r , x0 + r .[ & g2 in ]. x0 - r , x0 .[ ; sgn ( p `1 , K ) = - ( 1_ K ) .= - ( 1_ K ) ; consider u being Nat such that b = p |^ y * u ; ex a being thesis or a is thesis or for A being Ordinal st a = Sum A holds a in A Cl ( union Ha ) = union ( ( union rng ( H | a ) ) ) ; len t = len t1 + len t2 & len t = len t1 + len t2 ; v-29 = v + w |-- ( A , w ) + A8 ; cv <> DataLoc ( t0 . GBP , 3 ) & cv <> DataLoc ( s . GBP , 3 ) ; g . s = sup ( d " { s } ) ; ( \dot { y } ) . s = s . ( \dot { y } ) ; { s : s < t } in REAL & t = {} implies t = {} s ` \ s = s ` \ 0. X .= s ` \ ( s ` \ s ) ; defpred P [ Nat ] means B + $1 in A & B + $1 in B ; ( 339 + 1 ) ! = 333335 ! * ( 339 + 1 ) ; 1. ( A , succ A ) = 1. ( A , A ) .= 1. ( A , A ) ; reconsider y = y , z = z as Element of COMPLEX * ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f ; reconsider p = Y | ( Seg k ) as FinSequence of NAT ; set f = ( S , U ) \mathop \mathop { \rm \hbox { - } F } ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , ( TOP-REAL n ) | P , p1 , p2 be Point of TOP-REAL n ; ( ( SAT M ) . [ n + i , 'not' A ] ) <> 1 ; ex r being Real st x = r & a <= r & r <= b ; let R1 , R2 be Element of REAL n , x be Element of REAL n ; reconsider l = 0. ( V ) , r = 0. ( A ) as Linear_Combination of A ; set r = |. e .| + |. n .| + |. w .| + |. s .| + a ; consider y being Element of S such that z <= y and y in X ; a being being being being being Element of 'not' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ||. xy0 - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - ( g - p ) ) ) ) ) ) ) ) ) ) ) ) b9 , a9 // b9 , c9 & b9 , c9 // c9 , a9 & b9 , c9 // c9 , a9 ; 1 <= k2 -' k1 & k1 + 1 = k2 & k2 + 1 = k2 + 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 >= 0 ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 < 0 ; E-max C in cell ( RR , 1 , 1 ) & E-max L~ Cage ( C , 1 ) in rng R ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) | D ) ; LIN b , a , c or LIN b , c , a ; p , a // a , b or p , a // b , a ; g . n = a * Sum fx1 .= f . n ; consider f being Subset of X such that e = f and f is strict ; F | ( N2 , S ) = CircleMap * ( F | ( N2 , S ) ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( m , r0 ) c= Ball ( m , r ) ; the carrier of (0). V = { 0. V } & the carrier of V = { 0. V } ; rng ( cos | [. - 1 , 1 .] ) = [. - 1 , 1 .] ; assume that Re seq is summable and Im seq is summable and Im seq is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 , t2 = 0 as 0 string of S2 , F = the not ( X , D ) --> 1 ; reconsider xd = seq . n , xe = seq . n as sequence of REAL ; assume that C meets L~ pion1 and E-max C in L~ pion1 and E-max C in L~ pion1 and E-max C in L~ pion1 ; - ( Partial_Sums ( 1 / ( n + 1 ) ) . x ) < F . n - ( Partial_Sums ( 1 / ( n + 1 ) ) . x ) ; set d1 = thesis , d2 = dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d1 = dist ( x1 , z2 ) ; 2 |^ ( 2 -' 1 ) = 2 |^ ( 2 |^ 100 ) - 1 ; dom ( v | ( len ( v | k ) ) ) = Seg ( len ( v | k ) ) ; set x1 = - k2 + |. k2 .| , x2 = - k2 + |. k2 .| + |. k1 .| ; assume for n being Element of X holds 0. <= F . n & 0. <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( Carrier ( L1 + L2 ) ) c= I2 & the carrier of ( Carrier ( L1 + L2 ) ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal normal \hbox of {} ; Z c= dom ( ( sin * f1 ) `| Z ) & Z c= dom ( ( sin * f1 ) `| Z ) ; |. 0. TOP-REAL 2 - ( q `1 ) ^2 .| < r / 2 - ( q `1 ) ^2 ; non empty not not not not not not not not not not not thesis & not ( A , t ) in ConsecutiveSet2 ( A , t ) ; E = dom L8 & L8 is_measurable_on E implies ( for x st x in E holds L8 . x = 0 ) C / ( A + B ) = C / B * C / A ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of V ; I . IC ss2 = P . IC ss2 .= ( card I + 2 ) .= ( card I + 2 ) ; pred x > 0 means : Def8 : 1 / x = x to_power ( - 1 ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , q .] ; b , c are_connected & - C , - C + - C + ( - C + - C ) are_connected ; assume that f = id the carrier of OO and g = id the carrier of OO ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( ( the carrier of V ) \ { 0. V } ) ; reconsider g = f " as Function of U2 , U1 , f " ; A1 in the points of G_ ( k , X ) & A2 in the \cap the carrier of G ; |. - x .| = - ( - x ) .= - x .= - x ; set S = ) ( x , y , c ) ; Fib ( n ) * ( 5 * Fib ( n ) - 1 ) >= 4 * contradiction ; vM /. ( k + 1 ) = vM . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - ( i * ( 0 qua Nat ) ) ; Indices M1 = [: Seg n , Seg n :] & len M1 = n & width M1 = n ; Line ( St , j ) = St . j .= St . j ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , y1 ] ; |. f .| - Re ( |. f .| ) * ( card b * h ) is nonnegative ; assume that x = ( a1 ^ <* x1 *> ) ^ b1 and y = ( a1 ^ <* x1 *> ) ^ b1 ; MI is_closed_on IExec ( I , P , s ) , P & MI is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= intpos ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x + y implies |. x .| = - y LIN c , q , b & LIN c , q , c & LIN c , q , b & LIN c , q , c ; f\rbrace . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= x1 + ( y1 + z1 ) ; flim . a = flim . a & v in InputVertices S & not v in InputVertices S ; p `1 <= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; set R8 = Cage ( C , n ) \circlearrowleft E8 , E7 = Cage ( C , n ) ; p `1 >= ( E-max C ) `1 & p `1 >= ( E-max C ) `1 or p `1 >= ( E-max C ) `1 ; consider p such that p = p-20 and s1 < p /. i and p in L~ f ; |. ( f /* ( s * F ) ) . l - GM .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 + 1 ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & lim ( f1 /* s1 ) = lim ( f2 , x0 ) ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 implies f /. len f <> f /. 1 dom ( Proj ( i , n ) * s ) = REAL m & rng ( Proj ( i , n ) * s ) c= REAL m ; n = k * ( 2 * t ) + ( n mod ( 2 * t ) ) ; dom B = 2 -tuples_on the carrier of V & rng B c= the carrier of V ; consider r such that r _|_ a and r \not _|_ x and r _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 in [. 1 / 2 , 1 .] ; for L being complete LATTICE holds \mathbb <* \HM { A } , L *> , L are_isomorphic ; [ gi , gj ] in [: Ii \ Ij , Ij \ Ij :] ; set S2 = 1GateCircStr ( x , y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r st r < x0 ex g st r < g & g < x0 & g < x0 & g in dom ( f2 * f1 ) ; reconsider y = ( a ` ) / ( a ` ) , z = ( a ` ) / ( a ` ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - 1 ) ) * f ) . c <= h . c ; set G3 = the \HM { of G , v } , G2 = the Vertex of G , e = the Element of G ; reconsider g = f as PartFunc of REAL n , REAL-NS n , r be Real ; |. s1 . m / p .| / |. p .| < d / p / p / p ; for x being element st x in ( ( for u being element st u in ( ( x \ y ) \ { x } ) holds x in ( x \ y ) ) P = the carrier of ( TOP-REAL n ) | ( P ` ) .= ( TOP-REAL n ) | ( P ` ) ; assume that p00 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) and p2 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; ( 0. X \ x ) to_power ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , \square ) ; 2 * a * b + ( 2 * c * d ) <= 2 * C1 * C2 + ( 2 * c * d ) ; let f , g , h be Point of the carrier of X , Y be non empty set , g be Function of X , Y ; set h = Hom ( a , g ) , g = Hom ( b , f ) ; then idseq ( n ) | Seg m = idseq ( m ) ^ <* n *> & m <= n ; H * ( g " * a ) in the right * ( g " * a ) ; x in dom ( ( cos * sin ) `| Z ) & ( ( cos * sin ) `| Z ) . x = f . x ; cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 ) misses C ; LE q2 , p4 , P , p1 , p2 & LE q2 , p2 , P , p1 , p2 implies LE q2 , p , P , p1 , p2 attr B is an component of A means : Def8 : B c= BDD A ; deffunc D ( set , set ) = union rng $2 & $2 = union rng $2 ; n + - n < len ( ( p | n ) ^ ( p | n ) ) ; attr a <> 0. K means : Def8 : the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom /\ /\ dom /\ I and I = len k + j ; consider x1 such that z in x1 and x1 in ( P \ { x1 } ) and x2 in ( P \ { x1 } ) ; for n ex r being Element of REAL st X [ n , r ] set Cs1 = Comput ( P2 , s2 , i + 1 ) , Cs2 = Comput ( P2 , s2 , i + 1 ) , Cs2 = Comput ( P2 , s2 , i + 1 ) , CP2 = P2 ; set cv = 3 -tuples_on { a , b , c } , cw = 3 -tuples_on { a , b , c } ; conv @ W c= union ( F .: ( E " W ) ) & conv @ W c= union ( F .: ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( arccot * arccot ) & 1 in [. - 1 , 1 .] ; r3 <= s0 + ( r0 / |. v2 - v1 .| - ( r / 2 ) ) / ( 2 * ( 1 + 1 ) ) ; dom ( f (#) f4 ) = dom f /\ dom f4 .= dom ( f (#) f4 ) ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider gg = gp , gq = gq as Point of ( TOP-REAL n ) | P ; ( T * h . s ) . x = T . ( h . s ) . x ; I . ( L . ( J . x ) ) = ( I * L ) . ( J . x ) ; y in dom being `1 & ( Frege Frege A ) . o = ( Frege Frege A ) . o ; for I being non degenerated integral of I holds the carrier of I is commutative non empty doubleLoopStr set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* I ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S1 in the carrier of [. a , b .] ; v . ( lpp . i ) = ( v *' lpp ) . i .= ( v *' lpp ) . i ; consider n being element such that n in NAT and x = ( sn succ n ) . n ; consider x being Element of c such that F1 . x <> F2 . x and x in F1 . x ; card Funcs ( X , 0 , x1 , x2 ) = { EC } & card Funcs ( X , 0 ) = k ; j + ( 2 * ( k + 1 ) ) + m1 > j + ( 2 * ( k + 2 ) ) ; { s , t } on A3 & { s , t } on B2 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 ) & n2 >= len crossover ( p2 , p1 , n2 ) ; ( for HT ( ( g2 ) , T ) st HT ( ( g2 ) , T ) <> 0. L holds HT ( ( g2 ) , T ) = HT ( ( g2 ) , T ) then H1 , H2 are_<* H1 , H2 *> & card H1 , card H2 are_<> 0 & H1 , H2 are_<* H2 , H1 *> ; ( ( N-min L~ ( f ) ) .. ( f ) ) .. ( ( f ) ) > 1 ; ]. s , 1 .] = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( ( TOP-REAL 2 ) | L~ g ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , f be PartFunc of REAL , the carrier of S ; DigA ( t-23 , z ) is Element of k -tuples_on ( the carrier of k ) ; I is d2\rm `1 & I is k2 & I is k2 -2NAT implies I is k2 [: [: { u } , { u } :] = { [ a , u9 ] } ; ( w | p ) | ( p | ( w | w ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u2 in W2 and u2 in W3 ; for y st y in rng F ex n st y = a |^ n & a |^ n in F dom ( ( g * ( ( g * ( f , C ) ) | K ) ) | K ) = K ; ex x being element st x in ( ( ( U0 ) \/ A ) \/ B ) . s ; ex x being element st x in ( \HM { OO } \/ A ) . s ; f . x in the carrier of [. - r , r .] & f . x = |[ r , r ]| ; ( the carrier of X1 union X2 ) /\ ( ( the carrier of X1 ) \/ ( the carrier of X2 ) ) <> {} ; L1 /\ LSeg ( p00 , p2 ) c= { p10 } & L1 /\ LSeg ( p00 , p2 ) c= { p10 } ; ( b + bs ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of GX such that z = y and P [ z ] and z in A ; ( the [: of ( the carrier of X ) , the carrier of Y :] ) . ( x , y ) <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q `2 = 0 ; f | EK1 ` = g | EK1 ` .= g | EK1 ` .= g | EK1 ` ; reconsider i1 = x1 , i2 = x2 , j1 = x3 , j2 = x4 as Element of NAT ; ( a * A * B ) @ = ( a * ( A * B ) ) @ ; assume ex n0 being Element of NAT st f to_power n0 is min ; Seg len ( ( ( len ( f2 ) ) | ( len ( f2 ) ) ) ) = dom ( ( ( len ( f2 ) ) | ( len ( f2 ) ) ) ) ; ( Complement ( A ) ) . m c= ( ( Complement ( A ) ) . n ) . m ; f1 . p = p9 & g1 . p = d & g1 . p = b & g2 . p = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; ( |. x .| to_power n ) / ( ( r |^ n ) * ( n + 1 ) ) <= ( r2 |^ n ) / ( ( n + 1 ) * ( n + 1 ) ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & rng ( G ) c= dom ( G ) ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W3 and W1 /\ W2 is Subspace of W3 ; ||. t-15 . x .|| = lim ( ||. xbeing .|| ) .= ||. ( ||. x .|| ) . x .|| ; assume that i in dom D and f | A is lower bounded and g | A is lower bounded ; ( ( p `2 ) ^2 - 1 ) * ( ( q `2 ) ^2 ) <= ( ( - ( q `2 ) ) * ( ( q `2 ) ) ^2 ) ; g | Sphere ( p , r ) = id ( Sphere ( p , r ) ) .= id ( Sphere ( p , r ) ) ; set N8 = ( N-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ; for T being non empty TopSpace holds T is countable countable implies the TopStruct of T is countable countable width B |-> 0. K = Line ( B , i ) .= B * ( i , j ) ; pred a <> 0 means : Def8 : ( A \+\ B ) Let a = ( A \+\ a ) \+\ ( B be set ) ; then f is_\mathbin { \frac 2 } 2 , 3 & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and c <> 1 and b > 0 and c > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } ; p2 /. IC s-7 = p2 . IC s-7 .= ( p2 . IC s-7 ) + ( p2 . IC sU ) ; ind ( T-10 | b ) = ind b .= ind B .= ind B - ind ( T-10 | b ) ; [ a , A ] in the \HM { of - ( 2 * ( A + B ) ) : not contradiction } ; m in ( the Arrows of C ) . ( o1 , o2 ) & m in ( the Arrows of C ) . ( o1 , o2 ) ; ( ( a , CompF ( PA , G ) ) . z ) = FALSE & ( a , CompF ( PA , G ) ) . z = FALSE ; reconsider phi = phi /. 11 , phi = phi /. 22 , phi = phi /. 22 as Element of ( S , D ) * ; len s1 - 1 * ( len s2 - 1 ) + 1 > 0 + 1 * ( len s2 - 1 ) ; delta ( D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in [: the carrier' of A , the carrier' of B :] ; the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z and z in { x } ; [#] V1 = { 0. V1 } .= the carrier of (0). V1 .= { 0. V1 } .= { 0. V1 } ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P2 is one-to-one ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ^ <* p *> ^ <* q *> ^ <* p *> ^ <* q *> ^ <* p *> ^ <* q *> ^ <* p *> ^ <* q *> ^ ( len q ) *> ^ ( len q ) ; c /. |[ b , c ]| = c .= c /. |[ a , c ]| .= |[ a , c ]| ; reconsider t1 = p1 , t2 = p2 , t1 = p3 as Term of C , V ; 1 / 2 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 in the carrier of [. 1 / 2 , 1 .] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D .= C * ( p1 `2 ) + D ; R . b - b + a = 2 * PI * b .= 2 * b - b .= b ; consider \cdot ] such that B = ( - 1 ) * x + ( - 1 ) * A and 0 <= \vert 1 .| ; dom g = dom ( ( the Sorts of A ) * a9 ) & dom ( ( the Sorts of A ) * b9 ) = dom a9 ; [ P . ( l6 ) , P . ( l6 ) ] in => ( ( P => ( P => ( Q => ( P => ( P => ( Q => ( P => ( P => Q ) ) ) ) ) ) ) ) ; set s2 = Initialize s , P2 = P +* I ; reconsider M = mid ( z , i2 , i1 ) , N = len z - 1 , M = z - 1 as Element of REAL ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 = 0 & 1 / ( |[ 0 , 1 ]| ) = 0 ; assume x in the left of g or x in the left of g & y in the left of g ; consider M being strict Subspace of Ai2 such that a = M and T is Subspace of M and M is Subgroup of M ; for x st x in Z holds ( ( ( #Z n ) + f ) `| Z ) . x <> 0 len W1 + len W2 + m = 1 + len W3 + m .= len W3 + len W3 + m .= len W3 + 1 ; reconsider h1 = ( vseq . n ) - ( t-16 . n ) as Lipschitzian LinearOperator of X , Y ; ( ( i mod len ( p + q ) ) + 1 ) in dom ( p + q ) ; assume that s2 is_\emptyset and F in the { of s2 : s2 in the rng s2 } ; ( ( ( ( ( ( ( ( ( ( ( ( ( x , y ) , 3 ) ) , 3 ) ) , 1 ) ) , 1 ) ) mod ( n + 1 ) ) ) mod ( n + 1 ) = 1 ; for u being element st u in Bags n holds ( p + m ) . u = p . u + m for B being Subset of u-5 st B in E holds A = B or A misses B or B misses C ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ W1 , W1 = p ^ W2 ; x in { X where X is Ideal of L : X is Ideal of L } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W2 ; ( for a , b being Element of L holds a * ( a + b ) = ( a + b ) * ( a + b ) ( dom ( X --> f ) ) . x = ( X --> dom f ) . x .= f . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; p => ( q => r ) => ( p => q => ( p => r ) ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( i - 2 ) |^ ( n -' m ) ) + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) & ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and b1 . r = c1 . r ; ex P st a1 on P & a2 on P & b on P & c on P & c on P & a , b // P ; reconsider gf = g * f `1 , hg = h * g `2 , hf = h * g `2 as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in V and v1 in W ; n in { i where i is Nat : i < n0 + 1 + 1 & i < n0 + 1 } ; ( F * ( i , j ) ) `2 >= ( F * ( m , k ) ) `2 ; assume K1 = { p : p `1 >= sn * |. p .| >= sn & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ( ConsecutiveSet ( A , O1 ) ) * ( A * O1 ) ) * ( A * O1 ) ; set Ii1 = in dom let AddTo ( a , intloc 0 ) , Ii2 = SubFrom ( a , intloc 0 ) , Ii2 = SubFrom ( a , intloc 0 ) , Ii2 = SubFrom ( a , intloc 0 ) , Ii2 = goto 2 , Ii2 = goto 3 , Ii2 = goto 3 , Ii2 = goto 4 , I5 = goto 0 , I5 = goto 0 , I5 = goto 3 for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & ( the carrier of L1 ) \/ ( the carrier of L2 ) c= the carrier of L1 ; consider x-40 be Element of GF ( p ) such that x-40 |^ 2 = a and x-40 |^ 2 = b ; reconsider e3 = e4 , f4 = f-5 , f5 = f-5 , f6 = f5 as Element of D ; ex O being set st O in S & C1 c= O & M . O = 0. ; consider n be Nat such that for m be Nat st n <= m holds S . m in U1 and S . n in U2 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) . x ) . x0 ; defpred P [ Nat ] means A + succ $1 = succ A + $1 & A in dom ( A + ) ; the left \geq the left of - g & the left dom of g = the left of g implies g = f reconsider pM = x , pM = y , pM = z , pM = w as Point of TOP-REAL 2 ; consider g3 such that g3 = y and x <= g3 and g3 <= x0 and for x st x in dom g2 holds g2 . x = x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 & len ( x2 ^ y2 ) = len x2 + len y2 ; for x being element st x in X holds x in the set of set & y = ( the set of positive ) | ( n + 1 ) ; LSeg ( p11 , p2 ) /\ LSeg ( p1 , p11 ) = {} & LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = {} ; func thesis of thesis , X -> set equals [: [: the carrier of X , the carrier of Y :] , { id X } :] ; len ( ( CR ) /. ( len ( Cg ) ) ) <= len ( Cg ) & len ( ( CR ) /. ( len ( Cg ) ) ) <= len ( Cg ) ; attr K is with_a , b means : Def8 : a <> 0. K & v . ( a |^ i ) = i * v . a ; consider o being OperSymbol of S such that t `2 . {} = [ o , the carrier of S ] and o in rng t ; for x st x in X ex y st x c= y & y in X & y is \rm - 1 } implies f . x = f . y IC Comput ( P-6 , sseq , k ) in dom ( PJ +* I ) & IC Comput ( PJ , sJ , k ) in dom I ; pred q < s means : Def8 : r < s & ]. r , s .[ \not c= ]. p , q .[ ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) `1 and c in { 3 , 4 , 5 } ; func the ResultSort of S2 -> id the carrier' of S2 means : Def8 : for x being Element of the carrier' of S2 holds it . x = ( the ResultSort of S2 ) . x ; set yxy = [ <* y , z *> , f2 ] ; assume x in dom ( ( ( #Z 2 ) * ( arccot ) ) `| Z ) ; r-7 in Int cell ( GoB f , i , GoB f ) \ L~ f & ri2 in cell ( GoB f , i , width GoB f ) \ L~ f ; q `2 >= ( ( Cage ( C , n ) /. ( i + 1 ) ) `2 ) / ( ( Cage ( C , n ) /. ( i + 1 ) ) `2 ) ; set Y = { a "/\" a ` : a in X } ; i -' len f <= len f + len f1 -' len f & len f + 1 <= len f -' len f + 1 ; for n ex x st x in N & x in N1 & h . n = x- ( x0 - r ) set sx0 = ( \mathop { a , I , p , s ) . i , sx0 = ( \mathop { a , I , p , s ) . i , sx0 = ( \mathop { a , I , p , s ) . i , sx0 = ( \mathop { a , I , p , s ) . i , sx0 = ( \mathop { a , I , p , s ) p ( k ) . 0 = 1 or p ( k ) . 0 = - 1 & p ( k ) . 0 = 1 or p ( k ) . 0 = 1 ; u + Sum L-18 in ( U \ { u } ) \/ { u + Sum L-18 } ; consider xset being set such that x in xset and xset in Vset and x8 = [ x, x8 ] ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( ( len p ) - len p ) ; g + h = gg + hh & A1 + h = g + h & A2 + h = g + h ; L1 is distributive & L2 is distributive implies [: L1 , L2 :] is distributive & [: L1 , L2 :] is distributive & [: L1 , L2 :] is distributive pred x in rng f & y in rng ( f | x ) implies f \leftarrow x = f \mathclose { y } ; assume that 1 < p and 1 / p + 1 / q = 1 and 0 <= a and 0 <= b and a <= b ; F* ( f , M ) = rpoly ( 1 , M ) *' + t *' .= ( 0. F_Complex ) *' + t *' ; for X being set , A being Subset of X holds A ` = {} implies A = X & A = {} or A = {} ( ( N-min X ) `1 ) ^2 + ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ^2 <= ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 1 ) for c being Element of the Sorts of A , a being Element of the free of A holds c <> a implies c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= Exec ( i2 , s2 ) . GBP .= 0 ; for a , b being Real holds |[ a , b ]| in ( y >= 0 ) & b >= 0 implies b >= 0 & a >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y \ x = y ` \ x ; mode BCK-algebra of i , j , m , n , m , n be BCK-algebra of i , j , m , n , m be Element of NAT ; set x2 = |( Re ( y - Im y ) , Im ( y - Im y ) )| ; [ y , x ] in dom u5 & u5 . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .[ c= A & upper_bound divset ( D , k ) = upper_bound A ; 0 <= delta ( S2 ) . n & |. delta ( S2 ) . n .| < ( e / 2 ) * ( ( n + 1 ) * ( n + 1 ) ) ; ( - ( q `1 / |. q .| - cn ) ) ^2 <= ( - ( q `1 / |. q .| - cn ) ) ^2 ; set A = 2 / b-a ; for x , y being set st x in R" holds x , y are_\hbox { $ \subseteq $ } -let x , y deffunc FF2 ( Nat ) = b . $1 * ( M * G ) . $1 & ( M * G ) . $1 = ( M * G ) . $1 ; for s being element holds s in ( -> element ) iff s in ( -> Element of \rm means : Def8 : s in ( { f } \/ { g } ) ) ; for S being non empty non void non void holds S is H -holds S is thesis iff S is connected max ( degree ( z `1 ) , degree ( z `2 ) ) >= 0 & max ( degree ( z `1 ) , degree ( z `2 ) ) >= 0 ; consider n1 be Nat such that for k holds seq . ( n1 + k ) < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B /\ A ) is Subspace of Lin ( B ) ; set n-15 = n-13 '&' ( M . x qua Element of BOOLEAN ) , n-15 = M . ( n + 1 ) ; f " V in ' ( X ) & f " V in D & f " V in D & f " V in D & f .: V in D ; rng ( ( a is :] ) +* ( 1 , b ) ) c= { a , c , b } ; consider y being WWR being Wof G1 such that y `1 = y and dom y `1 = WWWWR ; dom ( 1 / ( f . x0 ) ) /\ ]. -infty , x0 .[ c= ]. -infty , x0 .[ & ( 1 / ( f . x0 ) ) * ( f . x0 ) < 0 ; as Morphism of i , j , n , r be Element of non zero Element of NAT ; v ^ ( n-3 |-> 0 ) in Lin ( ( B | c1 ) ^ ( B | c2 ) ) ; ex a , k1 , k2 st i = a := k1 & i = b := k2 & i = c := k2 & i = c := k2 ; t . NAT = ( NAT .--> succ i1 ) . NAT .= succ ( i1 + 1 ) .= succ ( i1 + 1 ) .= ( i1 + 1 ) + 1 ; assume that F is bbSubset-Family and rng p = F and dom p = Seg ( n + 1 ) and rng p c= Seg ( n + 1 ) ; ( not b , b9 // b , a & not LIN a , a9 , c & not LIN a , a9 , b & not LIN b , a9 , c ) & not LIN a , a9 , c ( L1 := ( L2 , O ) ) \& O c= ( L1 \& O ) => ( L2 \& O ) consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) and for d being Element of E holds F . d = G ( d ) ; consider a , b such that a * ( 0. V ) = b * ( - w ) and 0 < a and 0 < b ; defpred P [ FinSequence of D ] means |. Sum ( $1 ) .| <= Sum ( |. $1 .| ) & Sum ( |. $1 .| ) <= Sum ( |. $1 .| ) ; u = cos / sin . ( x , y ) * x + ( cos / cos . ( x , y ) * y ) .= cos . ( x , y ) * y ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , |. p .| ^ <* p *> , {} ] implies P [ p , id the Sorts of A ] consider X being Subset of CQC-WFF ( Al ) such that X c= Y and X is finite and X is ininininand X is inin; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( ( E-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & l1 <= g } ; vol ( ( G . n ) vol ) <= ( ( G . n ) vol ) * vol ( ( G . n ) vol ) ; f . y = x .= x * ( 1_ L ) .= x * ( power L ) . ( y , 0 ) .= x * ( 1. L ) ; NIC ( <% i1 , i2 , j2 %> , k ) = { i1 , succ ( i1 , i2 ) } .= { i1 , succ ( i1 , i2 ) } ; LSeg ( p00 , p2 ) /\ LSeg ( p1 , p11 ) = { p1 } & LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 } ; Product ( ( the Sorts of I-15 ) +* ( i , { 1 } ) ) in ( the Sorts of I-15 ) . ( i + 1 ) ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) .= Following ( s1 , n ) ; W-bound ( QA2 ) <= q1 `1 & q1 `1 <= E-bound ( QA2 ) & ( for i st i in dom ( QA2 ) holds ( ( Q ) . i ) `1 <= ( ( Q ) . i ) `1 f /. i2 <> f /. ( len f + 1 -' 1 ) & f /. ( len f + 1 -' 1 ) <> f /. ( len f + 1 -' 1 ) ; M , f / ( x. 3 , a ) / ( x. 4 , a ) / ( x. 0 , a ) |= H / ( x. 4 , a ) ; len ( ( P ^ ( P ^ ) ) | ( len P + 1 ) ) in dom ( ( P ^ ( P ^ ) ) | ( len P + 1 ) ) ; A |^ ( n , n ) c= A |^ ( m , n ) & A |^ ( k , l ) c= A |^ ( k , l ) implies A = B REAL n \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X \not c= Z ; CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s3 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. ( ( id the carrier of l1 ) | v ) .| for phi holds phi in X implies ( phi in X & phi in X & phi in X ) & ( phi in X implies phi in X ) rng ( ( Sgm dom f-6 ) | ( dom f-9 ) ) c= dom ( ( Sgm dom fE ) | ( dom f-9 ) ) ; ex c being FinSequence of D ( ) st len c = k & ( P [ c ] ) & ( P [ c ] implies P [ c ] ) ; the_arity_of ( \in Hom ( a , b , c ) ) = <* Hom ( b , c ) , Hom ( a , b ) *> ; consider f1 be Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and f1 is continuous ; a1 = b1 & a2 = b2 or a1 = b1 & a2 = b2 & a3 = b3 or a1 = b3 & a3 = b3 & a2 = b2 ; D2 . indx ( D2 , D1 , n1 + 1 ) = D1 . ( n1 + 1 ) .= D2 . ( n1 + 1 ) ; f . ( ||. r .|| ) = ||. |[ r .|| , r ]| .|| /. 1 .= <* r *> . 1 .= <* r *> . 1 .= x ; consider n be Nat such that for m be Nat st n <= m holds C-25 . n = C-25 . m and C-25 . n = C-25 . n ; consider d be Real such that for a , b be Real st a in X & b in Y holds a <= d & d <= b ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative associative means : Def8 : for b being Element of X holds F -Sum { b } = f . b ; p = - ( - p0 + 0. TOP-REAL 2 ) + 0. TOP-REAL 2 .= 1 * p0 + 0. TOP-REAL 2 .= ( 1 - p ) * p0 + 0. TOP-REAL 2 .= ( 1 - p ) * p0 + 0. TOP-REAL 2 .= ( 1 - p ) * p0 + p * p0 ; consider z1 such that b , x3 , x3 is_collinear and o , x1 , x1 is_collinear and o , x2 , x3 is_collinear and o , x1 , x2 is_collinear ; consider i such that Arg ( Rotate ( s ) ) . q = s + Arg q + ( 2 * PI * i ) ; consider g such that g is one-to-one and dom g = card ( f . x ) and rng g = f . x and rng g = { x } ; assume that A = P2 \/ Q2 and P2 <> {} and Q2 <> {} and Q2 <> {} and Q2 <> {} and Q2 <> {} and Q2 <> {} and Q2 <> {} and Q2 <> {} ; attr F is associative means : Def8 : F .: ( F .: ( f , g ) , h ) = F .: ( f , F .: ( g , h ) ) ; ex x being Element of NAT st m = x & x `1 in z & x `2 < i or m in { i } & m in { i } ; consider k2 being Nat such that k2 in dom P-2 and l in P-2 . k2 and ( P`1 . k2 ) `1 = ( P`1 . k2 ) `1 ; seq = r (#) seq implies for n holds seq . n = r * seq . n & seq is convergent & lim seq = r * seq . n F1 . [ ( id a ) , ( id a ) ] = [ f * ( id a ) , f * ( id a ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & x in D2 } ; consider z being element such that z in dom ( ( dom F ) | ( dom F ) ) and ( ( dom F ) | ( dom F ) ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y cell ( G , i , 1 ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and ( T | E1 ) . e = v ; ( F `1 * b1 ) . x = ( Mx2Tran ( J , ' of n , ' ) ) . ( thesis , thesis ) .= ( Mx2Tran J ) . ( thesis , thesis ) ; - 1 / ( n + 1 ) = mm (#) D | n .= mm (#) D .= ( - m ) (#) ( - m ) .= ( - m ) (#) ( - m ) .= ( - m ) (#) ( - m ) ; pred for x being set st x in dom f /\ dom g holds g . x <= f . x & - ( f | A ) is nonnegative ; len ( f1 . j ) = len f2 /. j .= len ( f2 . j ) .= len ( f2 . j ) .= len ( f2 . j ) ; All ( All ( 'not' a , A , G ) , B , G ) '<' Ex ( 'not' All ( 'not' a , B , G ) , A , G ) ; LSeg ( E . k0 , F . k0 ) c= Cl RightComp Cage ( C , k0 + 1 ) & LSeg ( E , k + 1 ) c= RightComp Cage ( C , k0 + 1 ) ; x \ a |^ m = x \ ( ( a |^ k ) * a ) .= ( x \ ( a |^ k ) ) \ a ; k -inth ininininininininC = ( commute ( I ) ) . k .= ( commute ( I ) ) . k .= ( ( commute I ) . k ) . i ; for s being State of A^ ( s , n ) holds Following ( s , n ) . 0 + ( n + 2 * n ) . 1 is stable ; for x st x in Z holds f1 . x = a ^2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 ; support ( thesis ) \/ support ( ( support ( s ) ) \ support ( m ) ) c= support ( ( support ( s ) ) \ support ( m ) ) \/ support ( ( support ( s ) ) \ support ( m ) ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier' of B ) * the Arity of S , ( the carrier' of B ) * the Arity of S ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + a ^2 ) ) ; phi /. ( succ b1 ) = g . a & phi /. ( b . a ) = f . ( g . a ) & phi . ( a . a ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) . i ) and i <> j ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 } \/ { x2 } the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 & the Sorts of U1 "\/" U2 c= the Sorts of U2 & the Sorts of U1 c= the Sorts of U2 ; ( - ( 2 * a * ( b / 2 ) ) + b / 2 ) ^2 - delta ( a , b , c ) ^2 > 0 ; consider W00 such that for z being element holds z in W00 iff z in [: N , N :] & P [ z ] and not ( ex z being element st z in N & z in N & z <> 0. N ) ; assume ( the Arity of S ) . o = <* a *> & ( the ResultSort of S ) . o = r & ( the ResultSort of S ) . o = <* r *> ; Z = dom ( ( exp_R (#) ( arccot + arccot ) ) `| Z ) & f1 + ( ( arccot (#) ( arccot + arccot ) ) `| Z ) = dom ( ( exp_R (#) ( arccot + arccot ) ) `| Z ) ; integral ( f , SS1 ) is convergent & lim ( \HM { 0 } , SS2 ) = integral ( f , SS1 ) ; ( X ( ) ) => ( ( f => g ) => ( x_ ( X ( ) ) ) ) in is ) & ( X ( ) => ( x_ ( X ( ) ) ) in len ( M2 * M3 ) = n & width ( M3 ~ * M2 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n ; attr X1 union X2 is open SubSpace of X means : Def8 : X1 , X2 are_separated & X1 , X2 are_separated & X2 , X1 are_separated & X1 , X2 are_separated & X2 , X2 are_separated ; for L being upper-bounded antisymmetric RelStr for X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-129 = F1 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) , f-129 = F2 . ( b `2 ) ; consider w being FinSequence of I such that the InitS of M is_\HM { w } \HM { \frac s } { s } ^ w \HM { 1 } } and w in q ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= 1_ H ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & z in rng f ; ex L being Subset of X st Carrier ( L ) = L & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 ; reconsider oY = o `1 , oY = o `2 , oY = o `1 , oY = o `2 `1 , oY = o `2 `1 , oY = o `2 `1 , oY = o `2 `1 , oY = o `2 `2 ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + <* \underbrace ( 0 , \dots , 0 ) *> .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x3 ) .= x1 + ( 0 * x2 ) ; EL " . 1 = ( EL qua Function ) " . 1 .= ( ( 1 - 2 ) * ( ( 1 - 2 ) * ( 1 - 2 ) ) ) " . 1 .= ( 1 - 2 ) * ( ( 1 - 2 ) * ( 1 - 2 ) ) " .= ( 1 - 2 ) * ( 1 - 2 ) ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , u2 = the carrier of U0 , u1 = the carrier of U0 as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" ( x "\/" y ) ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . l1 ) .| < ( 1 / |. M .| + 1 ) ; LSeg ( ( Lower_Seq ( C , n ) ) /. ( i + 1 ) , ( Lower_Seq ( C , n ) ) /. ( i + 1 ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- x0 ) + R /. ( x- x0 ) ; g . c * ( - ( g . c ) * f . c ) + f . c <= h . c * ( ( - ( g . c ) ) * f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) ; assume that ( ColVec2Mx f ) in the set of K and ( ColVec2Mx f ) . ( len ( ColVec2Mx b ) ) = width A and ( ColVec2Mx f ) . ( len ( ColVec2Mx b ) ) = width A ; len ( - M3 ) = len M1 & width ( - M3 ) = width M1 & width ( - M3 ) = width M1 & width ( - M3 ) = width M1 & width ( - M3 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( ( TOP-REAL n ) | ( the carrier of thesis ) ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 implies pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 pred a <> 0 & b <> 0 & Arg a = Arg b & Arg ( - a ) = Arg ( - b ) & Arg ( - a ) = Arg ( - b ) ; for c being set st not c in [. a , b .] holds not c in Intersection ( the non empty set of set , the topology of T ) & not c in Intersection ( the topology of T , the topology of T ) assume that V1 is linearly-independent and V2 is linearly-independent and V2 = { v + u : v in V1 & u in V2 } and V1 is open and V2 is open and V1 is open and V2 is open and p in V1 ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N implies z * y1 + ( 1 - z ) * y2 in M rng ( ( PS1 qua Function ) " * SS2 ) = Seg ( card ( ( card ( dom ( PS2 ) " ) ) ) ) .= Seg ( card ( dom ( PS2 ) " ) ) ; consider s2 being rational number such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b and s2 . n <= b ; h2 " . n = h2 . n " & 0 < - 1 & 0 < - 1 & 1 < ( - 1 ) / ( n + 1 ) & ( - 1 ) < 1 ; ( Partial_Sums ( ||. seq1 .|| ) ) . m = ||. seq1 .|| . m .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= Comput ( P2 , s2 , 1 ) . b ; - v = ( - 1_ Gv ) * v & - w = ( - 1_ Gv ) * w & ( - w ) * v = ( - 1_ Gv ) * w & ( - w ) * v = ( - 1_ Gv ) * w ; sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: D ) .= k . ( sup D ) .= sup ( ( k .: D ) .: D ) ; A |^ ( k , l ) ^^ ( A |^ ( n , l ) ) = ( A |^ ( k , l ) ) ^^ ( A |^ ( k , l ) ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( p `1 ) ^2 + sqrt ( 1 + ( p `2 / p `1 ) ^2 ) .= ( p `1 ) ^2 + ( p `2 ) ^2 ; for a , b being non zero Nat st a , b are_relative_prime holds ( a * b ) gcd ( a * b ) = ( ( a * b ) gcd ( a * b ) ) consider A5 being countable ( Al ) such that r is Element of CQC-WFF ( Al ) & A5 is ( Al ) `1 & A5 is ( Al ) `1 & A5 is ( Al ) `1 & not contradiction ; for X being non empty addLoopStr , M being Subset of X , x , y being Point of X st y in M holds x + y in x + M { [ x1 , x2 ] , [ y1 , y2 ] } c= [: { x1 , y1 } , { y2 } :] & { x1 , x2 } in [: { x1 } , { x2 } :] ; h . ( f . O ) = |[ A * ( ( f . O ) `1 ) + B , C * ( ( f . O ) `2 ) + D ]| ; ( Gauge ( C , n ) * ( k , i ) ) in L~ Upper_Seq ( C , n ) /\ L~ Upper_Seq ( C , n ) & ( Gauge ( C , n ) * ( k , i ) ) `2 = ( Gauge ( C , n ) * ( k , i ) ) `2 ; cluster m , n are_relative_prime means : Def8 : for p being prime Nat holds it is ( m mod p ) & ( p divides n implies p divides n ) & ( p divides n & p divides n implies p divides n ) ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ a <= c holds a \+\ b <= c & a \+\ c <= c consider b being element such that b in dom ( H / ( x , y ) ) and z = ( H / ( x , y ) ) . b and b in { x } ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G or e Joins W . 3 , W . 7 , G ; ( H H H H H H H H H H ) . ( 2 * n ) . x = ( H H H H ) . ( 2 * n ) . x + ( H . n ) . x ; j + 1 = ( len h11 + 2 ) - 1 + 1 .= i + 1 - 1 + 2 .= i + 1 - 1 + 1 .= i + 1 - 1 + 1 .= i + 1 - 1 ; *' ( S *' ) . f = S *' . ( opp f ) .= S . ( opp f ) .= S . ( opp f ) .= S . ( opp f ) .= S . ( opp f ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L1 ) and Sum ( L1 ) = Sum ( L2 ) ; attr R is b2 means : Def8 : p in R & p <> q implies ex P st P is special arc p & P c= R & P c= R & P c= R ; dom product ( product ( X --> f ) ) = meet ( dom ( X --> f ) ) .= meet ( ( X --> dom f ) . 0 ) .= meet ( ( X --> dom f ) . 0 ) .= dom f ; upper_bound ( proj2 .: ( Upper_Arc C /\ Upper_Arc C ) ) <= upper_bound ( proj2 .: ( C /\ Vertical_Line w ) ) & upper_bound ( proj2 .: ( C /\ Vertical_Line w ) ) <= upper_bound ( proj2 .: ( C /\ [ w , e ] ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - pp .| < r i * fN - fN = i * fN - ( i * ( - y ) ) .= i * ( fN - ( i * ( - y ) ) ) .= i * ( fN - ( i * ( - y ) ) ) ; consider f being Function such that dom f = 2 -tuples_on X & for Y being set st Y in 2 -tuples_on X holds f . Y = F ( Y ) and for Y being set st Y in 2 -tuples_on X holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g1 in union C and g2 in C and g2 in D ; func d |-count n -> Nat means : Def7 : d |^ n divides n & d |^ ( n + 1 ) divides n & d |^ ( n + 1 ) divides n & d divides n ; f\in . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . ( 2 * x ) .= ( - P ) . ( 2 * x ) .= a ; t = h . D or t = h . B or t = h . C or t = h . E or t = h . F or t = h . J or t = M . M ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( n + 1 ) ; ( q `1 ) ^2 / ( |. q .| ) ^2 <= ( ( q `1 ) ^2 / ( |. q .| ) ^2 & ( q `2 ) ^2 / ( |. q .| ) ^2 <= ( ( q `1 ) ^2 / ( |. q .| ) ^2 ) ; h0 . ( i + 1 + 1 ) = h21 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) .= h21 . ( i + 1 + 1 -' len h11 + 2 -' 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier' of S } such that a = [ o , x2 ] and o in { the carrier' of S } ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & a >= b & b >= a ||. h1 .|| . n = ||. h1 . n .|| .= |. h .| . n .= ||. h .|| . n .= ||. h .|| . n .= ||. h .|| . n ; ( ( ( - 1 ) (#) ( #Z n ) ) `| Z ) . x = f . x - ( #Z n ) . x .= ( ( - 1 ) (#) ( #Z n ) ) . x .= ( ( - 1 ) (#) ( #Z n ) ) . x ; pred r = F .: ( p , q ) means : Def8 : len r = min ( len p , len q ) ; ( rmin / 2 ) ^2 + ( rmax / 2 ) ^2 <= ( r ^2 + ( r ^2 ) ) ^2 + ( r ^2 + ( r ^2 ) ) ^2 ; for i being Nat , M being Matrix of n , K st i in Seg n holds Det M = Sum ( ( thesis ) * ( i , j ) ) then a <> 0. R & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v & a " * ( a * v ) = 1 * v ; p . ( j -' 1 ) * ( q *' r ) . ( i + 1 -' j ) = Sum ( p . ( j -' 1 ) * r3 ) .= Sum ( p . ( j -' 1 ) * r3 ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) " ) . $1 & ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) " ) . $1 = L . ( h . n ) ; assume that the carrier of H1 = f .: ( the carrier of H1 ) and the carrier of H2 = f .: ( the carrier of H1 ) and the InternalRel of H1 = f .: ( the carrier of H2 ) and the InternalRel of H1 = f .: ( the carrier of H2 ) and the InternalRel of H1 = f .: ( the carrier of H2 ) ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * ( the Arity of S ) ) . o .= ( the Sorts of Free ( S , X ) ) . o ; H1 = n + 1 & H2 = |. 2 to_power ( n + 1 ) + h .| .= n + 1 & H1 = n + 1 & H2 = n + 1 implies H1 = H2 ( O = 0 & O = 0 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 & O = 1 or O = 1 ) implies O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O = 1 or O F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( dom F1 /\ dom F2 ) .= { f /. ( n + 1 ) } .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } ; attr b <> 0 & d <> 0 & b <> d & ( a - b ) / ( b - c ) = ( - ( e / d ) ) / ( b - b\bf ) ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= D ; for i be set st i in dom g ex u , v be Element of L , a be Element of B st g /. i = u * a * v & u in A & v in B g `2 * P `2 * g `2 = g `2 * ( g `2 * P `2 ) * g `2 .= g `2 * ( g `2 * P `2 ) * ( g `2 * P `2 ) .= g `2 * ( g `2 * P `2 ) * ( g `2 * P `2 ) ; consider i , s1 such that f . i = s1 and not ( ex i st i in dom s1 & i <> s1 & i <> s1 ) & ( not i in dom s1 & s1 . i <> s1 . s1 ) ; h5 | ]. a , b .[ = ( g | Z ) | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ t2 , t2 ] are_connected & [ s2 , t2 ] , [ t2 , t2 ] are_connected & [ s2 , t2 ] , [ t2 , t2 ] are_connected & [ s2 , t2 ] , [ t2 , t2 ] are_connected ; then H is negative & H is not negative & H is not conjunctive & H is not negative implies H is not g-gOne & H is not non empty ; attr f1 is total means : Def8 : 1 / ( f1 - f2 ) is total & ( f1 - f2 ) . c = f1 . c * f2 . c " & ( f1 - f2 ) . c = f1 . c * f2 . c " ; z1 in W2 -Seg ( z2 ) or z1 = z2 & not z1 in W2 & not z1 in W2 & not z2 in W2 & not z1 in W2 & not z2 in W1 & not z2 in W2 & not z1 in W2 & not z2 in W1 & not z1 in W2 & not z2 in W1 & not z2 in W2 & not z1 in W1 & not z2 in W2 & not z1 in W2 & not z1 in W2 p = 1 * p .= a " * a * p .= a " * ( b * q ) .= a " * ( b * q ) .= a " * ( b * q ) .= a " * ( b * q ) ; for seq1 be Real_Sequence for K be Real st for n be Nat holds seq1 . n <= K holds upper_bound rng seq1 <= upper_bound ( seq ) & upper_bound rng seq1 <= upper_bound ( seq ) x0 in C or C meets L~ go \/ L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C meets L~ pion1 or C c= L~ pion1 or C c= L~ pion1 \/ L~ pion1 \/ L~ pion1 ; ||. f . ( g . ( k + 1 ) ) - g . ( g . k ) .|| <= ||. g . 1 - g . 0 .|| * ( K to_power k ) ; assume h = ( ( B .--> B ' +* ( C .--> D ' ) +* ( E .--> F ) +* ( F .--> J ) +* ( J .--> M ' ) ) +* ( A .--> N ) +* ( A .--> N ) +* ( A .--> M ' ) +* ( A .--> N ) ; |. ( ( ( ex H be || A ) || A ) . k - ( ( ( ( ( ( k - 1 ) * ( k - 1 ) ) ) | A ) . n ) ) .| <= e * ( ( ( k - 1 ) * ( k - 1 ) ) ) ; ( ( { x1 , x1 , x1 , x1 , x1 , x1 , x1 , x1 , x1 , x1 , x1 , x1 , x2 , x3 , x4 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } \/ { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } assume that A = [. 0 , 2 * PI .] and integral ( ( #Z n ) * sin , A ) = 0 and integral ( ( #Z n ) * sin , A ) = 0 ; p `2 is Permutation of dom f1 & p `2 " = ( ( Sgm Y ) " ) * ( p " ) & p `2 = ( ( Sgm Y ) " ) * ( p " ) ; for x , y st x in A & y in A holds |. 1 / ( f . x - 1 ) .| <= 1 * |. f . x - 1 .| p2 `2 = |. q2 .| * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) - sn * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) ^2 ) .= |. q2 .| * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 + sn ) ) ^2 ; for f be PartFunc of the carrier of CNS , REAL st dom f is compact & f is_continuous_on dom f & f is_continuous_on dom f & f is_continuous_on dom f holds rng f is compact assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A ) ) . x = TRUE ; consider F3 such that dom F3 = n1 and for k be Nat st k in n1 holds Q [ k , F3 . k ] and Q [ k , F3 . k ] ; ex u , u1 st u <> u1 & u , u1 / ( u , v1 ) / ( v , v1 ) / ( u , u1 ) / ( v , v1 ) / ( u , u1 ) = ( u , u1 ) / ( v , v1 ) / ( v , v1 ) ; for G being Group , A , B being non empty Subset of G , N being normal Subgroup of G holds ( N ` A ) * ( N ` B ) = N ` A * N for s be Real st s in dom F holds F . s = integral ( R to_power 0 ) - integral ( ( R to_power k ) (#) ( e to_power k ) , ( f to_power k ) (#) ( e to_power k ) ) width AutMt ( f1 , b1 , b2 ) = len b2 .= width ( ( a * b1 ) * ( b1 * b2 ) ) .= width ( ( a * b1 ) * ( b1 * b2 ) ) .= width ( ( a * b1 ) * ( b1 * b2 ) ) ; f | ]. - PI / 2 , PI / 2 .[ = f & dom f " ]. - PI / 2 , PI / 2 .[ = ]. - 1 , 1 .[ implies f | ]. PI / 2 , PI / 2 .[ is continuous assume that X is closed w.r.t. being set and a in X and a c= X and y in { { [ n , x ] } \/ { y : x in X } \/ { x } in a } ; Z = dom ( ( ( #Z 2 ) * ( arctan + arccot ) ) `| Z ) /\ dom ( ( ( #Z 2 ) * ( arctan + arccot ) ) `| Z ) & Z = dom ( ( #Z 2 ) * ( arctan + arccot ) ) ; func <* V ( ) *> -> Subset of V means : Def1 : 1 <= k & k <= len l & l . k in V & l . k in V ; for L being non empty TopSpace , N being net of L , M being net of N , c being Point of L st c is Point of N & M is net of N holds c is inf of M for s being Element of NAT holds ( ( ( ( ( ( ( ( ( ( ( C\mathop ( C\mathop ( C\mathop ( C\mathop ( Ct ) ) ) ) ) + 1 ) ) | ( C\mathop { 0 } ) ) ) ) | ( C\mathop { 0 } ) ) . s = ( ( ( ( ( C\mathop { 0 } ) ) | ( C\mathop { 0 } ) ) ) | ( C\mathop { 0 } ) ) . s then z /. 1 = ( N-min L~ z ) .. z & ( N-min L~ z ) .. z < ( ( N-min L~ z ) .. z ) .. z & ( ( N-min L~ z ) .. z ) .. z < ( ( N-min L~ z ) .. z ) .. z ; len ( p ^ <* ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) *> .= len p + 1 .= len p + 1 .= len p + 1 ; assume that Z c= dom ( - ( ln * f ) ) and for x st x in Z holds f . x = x and f . x > 0 and f . x > 0 ; for R being right_zeroed right_zeroed right right_zeroed right_complementable non empty doubleLoopStr , I being Subset of R , J being Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f being Function of [: B1 , B2 :] , B12 such that for x being Element of [: B1 , B2 :] holds f . x = F ( x ) and f is Function of B1 , B2 ; dom ( x2 + y2 ) = Seg len x .= Seg len ( x2 + z2 ) .= dom ( x (#) ( y | ( i -' 1 ) ) ) .= dom ( x (#) ( y | ( i -' 1 ) ) ) .= Seg ( len ( x | ( i -' 1 ) ) ) ; for S being Functor of C , B for c being Object of C holds S . ( id c ) = id ( ( Obj S ) . c ) & S . ( id c ) = id ( ( Obj S ) . c ) ex a st a = a2 & a in f6 /\ f5 & for a st a in f6 /\ f6 holds holds holds holds \cal ( f6 , a ) = or { a , a } in \rm \rm ^2 a in Free ( H2 / ( x. 4 , x. 0 ) ) '&' H2 / ( x. 4 , x. 0 ) & a in Free H2 & a in Free H2 implies ( ( ( x. 4 , x. 0 ) '&' ( x. 4 , x. 0 ) ) '&' ( ( x. 4 , x. 0 ) '&' ( x. 0 , x. 0 ) ) ) ; for C1 , C2 being v1 , C2 being Function of C1 , C2 st `1 = ( i , len g ) `1 & ( for f being Function of C1 , C2 st f in C2 holds f = g ) holds f = g ( W-min L~ go \/ L~ pion1 ) `1 = W-bound L~ go \/ ( L~ pion1 \/ L~ pion1 ) .= W-bound L~ pion1 \/ ( L~ pion1 \/ L~ co ) .= W-bound L~ pion1 \/ ( L~ pion1 \/ L~ co ) .= W-bound L~ pion1 \/ ( L~ pion1 \/ L~ co ) .= W-bound L~ pion1 \/ ( L~ pion1 \/ L~ co ) ; assume that u = <* x0 , y0 , z0 *> and f is_is_is_is_is_is_is_is_or SVF1 for u , 3 and SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) . z0 = z0 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & t . {} = x & ( x in Vars & x in Vars ) & ( x in Vars & x in Vars & x = [ x , s ] ) ; Valid ( p '&' q , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v '&' Valid ( q , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b & b >= 0 ; func Class R -> Subset-Family of R means : Def6 : for A being Subset of R holds A in it iff ex a being Element of R st A = Class a & a in Class ( R , a ) ; defpred P [ Nat ] means ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( G ) ) ) ) ) ) ) ) ) ) . $1 ) ) ) . $1 ) ) ) ) . $1 ) `1 c= G assume that dim W1 = 0 and dim W1 = 0 and dim W2 = 0 and ( for i st i in dom W1 holds W1 . i = 0. ( U1 ) ) and ( for i st i in dom W1 holds W1 . i = 0. ( U1 ) ) & ( i in dom W1 implies W1 . i = 0. ( U1 ) ) ; mamas ( m ) . t = ( m . t ) `1 .= ( [ m . t , the carrier of C ] ) `1 .= [ m . t , the carrier of C ] `1 .= m . t ; d11 = x11 ^ d22 .= f . ( y22 , d22 ) .= f . ( y22 , d22 ) .= ( f | ( len f -' 1 ) ) ^ ( f | ( len f -' 1 ) ) .= ( f | ( len f -' 1 ) ) ^ ( f | ( len f -' 1 ) ) .= ( f | ( len f -' 1 ) ) ^ ( f | ( len f -' 1 ) ) ; consider g such that x = g and dom g = dom fx0 and for x being element st x in dom fx0 holds g . x in fx0 and g . x in fx0 ; x + 0. F_Complex = x + len x |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= x *' + ( x *' ) .= x *' ; ( k -' ( k + 1 ) ) + 1 in dom ( f | ( k -' ( k + 1 ) ) | ( k -' ( k + 1 ) ) ) & ( f | ( k + 1 ) ) /. ( k + 1 ) = ( f | ( k + 1 ) ) . ( k + 1 ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 = P1 \/ P2 and P1 = P1 \/ P2 and P2 = P1 \/ P2 and P1 = P1 \/ P2 and P2 = P2 \/ P2 and P1 = P1 \/ P2 and P2 = P2 \/ P2 and P2 = P1 \/ P2 and P2 = P2 \/ P2 and P2 = P1 \/ P2 and P2 = P2 \/ P2 and P2 = P1 \/ P2 and P2 = P2 \/ P2 and P2 = P1 \/ P2 and P2 = P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 \/ P2 and P2 = P2 reconsider a1 = a , b1 = b , c1 = c , c1 = p , c1 = p , c2 = p , c2 = q , c1 = r , c2 = s , c2 = r , c1 = s , c2 = r , c2 = s , c1 = s , c2 = r , c2 = s , c1 = s , c2 = r , c2 = s , c2 = s , c1 = s , c2 = r , c2 = s , c1 = s , c2 = s , c1 = s , c2 = r , c2 = s , c2 = s , c2 = s , c1 = s , c1 = s , c2 = r , c2 = r , c2 = r , c1 = r = r , c2 = s , c1 = s , c2 = s , reconsider set set _ ttb1f = G1 . ( t * b ) , F1 = G1 . ( t * b ) , F2 = G2 . ( t * b ) , F2 = G2 . ( t * b ) , F2 = G2 . ( t * b ) , F2 = G2 . ( t * b ) ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 ) ) .= LSeg ( f , i + i1 -' 1 ) ; Integral ( M , P . m ) | dom ( P . n -| ( dom P . m ) ) <= Integral ( M , P . n ) | dom ( P . m -| ( dom P . m ) ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ y , x ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( - G * ( i , 1 ) ) `1 , ( G * ( i + 1 , 1 ) ) `1 ) ; for G being Group , H being Subgroup of G , a being Element of G st a = b holds for i being Integer st i in H holds a |^ i = b |^ i & a |^ i = b |^ i consider B be Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p where p is Point of TOP-REAL 2 : P [ p ] } , K1 = { p where p is Point of TOP-REAL 2 : P [ p ] } , K1 = { p : p `2 >= 0 & p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p <> 0. TOP-REAL 2 } , K1 = { p : p ( ( N-bound C - S-bound C ) / 2 ) * ( ( S-bound C - S-bound C ) / 2 ) <= ( ( N-bound C - S-bound C ) / 2 ) * ( ( S-bound C - S-bound C ) / 2 ) * ( ( S-bound C - S-bound C ) / 2 ) ; for x be Element of X , n be Nat st x in E holds |. Re ( F . n ) .| . x <= P . x & |. Im ( F . n ) .| . x <= P . x len @ ( @ ( @ p ^ @ q ) ) = len ( @ p ^ @ q ) + len <* [ 2 , 0 ] *> .= len ( @ p ^ @ q ) + len ( @ p ^ @ q ) .= len ( @ p ^ @ q ) + len ( @ p ^ @ q ) ; v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m3 ) / ( x. 4 , m3 ) / ( x. 0 , m3 ) / ( x. 4 , m3 ) = m3 / ( x. 0 , m3 ) / ( x. 4 , m3 ) / ( x. 0 , m3 ) / ( x. 4 , m3 ) ; consider r be Element of M such that M , v2 / ( x. 3 , m ) / ( x. 4 , n ) / ( x. 0 , m ) / ( x. 4 , n ) / ( x. 4 , n ) |= H2 iff ( ( ( x. 4 , n ) / ( x. 4 , n ) ) / ( x. 0 , m ) ) / ( x. 4 , n ) / ( x. 4 , n ) ) / ( x. 4 , n ) |= r ; func w1 \ w2 -> Element of Union ( G , R6 ) means : DefREAL : for w1 , w2 being Element of Union ( G , R6 ) holds it . ( w1 , w2 ) = ( ( ( ( ( ( ( ( ( ( G . i ) \ R ) | ( i -' 1 ) ) | ( i -' 1 ) ) ) | ( i -' 1 ) ) ) . w1 ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= s1 . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s2 . b2 .= s . b2 .= s . b2 .= s . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums ( |. seq .| ) ) . ( n + k ) - ( Partial_Sums ( |. seq .| ) ) . n + ( Partial_Sums ( |. seq .| ) ) . ( n + k ) set F = S \! \mathop { {} } ; ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) >= ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x- ( x - x0 ) ) + R . ( x- ( x - x0 ) ) ; func the closed \HM { closed L of \HM { a , b , c , d } -> Subset of \HM { the } \HM { closed } , P , Q : P [ a , b , c ] } , R = the closed } ; a * b ^2 + ( a * c ^2 + b * c ^2 ) + ( b * c ^2 + c * a ^2 ) >= 6 * a * a * b * c + ( c * a ^2 + c * a ^2 ) ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x1 , m1 ) / ( x2 , m1 ) = v / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) / ( x2 , m1 ) ; N = ( Q ^ <* x *> , M ) +* ( ( Q ^ <* x *> , M ^ <* y *> ) +* ( ( ( Q ^ <* x *> ^ <* y *> ) ^ <* TRUE *> ) ) ) .= ( Q ^ <* x *> ^ <* y *> ^ <* TRUE *> ) ; Sum ( F ) = r |^ ( n1 + 1 ) * Sum ( Cv ) .= C ( n1 ) * ( C . n1 ) .= Cv . n1 * ( C . n1 ) .= ( C ^\ n1 ) . n1 * ( C ^\ n1 ) .= ( C ^\ n1 ) . n1 * ( C ^\ n1 ) . n1 ; ( GoB f ) * ( len GoB f , 2 ) `1 = ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 .= ( GoB f ) * ( len GoB f , 1 ) `1 ; defpred X [ Element of NAT ] means ( Partial_Sums ( s ) ) . $1 = ( a * ( $1 + 1 ) ) * ( ( $1 + 1 ) * ( $1 + 1 ) ) + b * ( ( $1 + 1 ) * ( $1 + 1 ) ) ; the_arity_of g = ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g ; ( X , Y ) |^ Z tolerates X |^ Z & card ( ( X , Y ) |^ Z ) = card ( X |^ Z ) & card ( ( X , Y ) |^ Z ) = card ( X |^ Z ) ; for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . ( n + 1 ) holds b = N . ( s . ( n + 1 ) \ G . s ) ; E , f |= All ( x. 2 , ( x. 2 ) .--> ( x. 0 , ( x. 2 ) .--> ( x. 1 , ( x. 2 ) --> ( x. 2 , x. 1 ) ) ) '&' ( x. 2 , ( x. 2 ) --> ( x. 0 , ( x. 2 ) --> ( x. 1 , ( x. 2 ) --> ( x. 2 , x. 1 ) ) ) ) ; ex R2 being 1-sorted st R2 = ( p | ( n-11 ) ) . i & ( ( p | ( n-11 ) ) . i = ( p | ( n-11 ) ) . i ) & ( p | ( n-11 ) ) . i = ( p | ( n-11 ) ) . i ; [. a , b + 1 / ( k + 1 ) .[ is Element of the non empty set & ( the partial of L~ f ) . k is Element of the non empty set & ( the partial of L~ f ) . k is Element of the carrier of G & ( the non empty set of f ) . k is Element of the carrier of G ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 := a2 , Comput ( P , s , 2 ) ) .= Exec ( a3 := a2 , Comput ( P , s , 2 ) ) ; card h1 = power ( F_Complex ) . k .= ( power ( F_Complex ) ) . ( ( - 1_ F_Complex ) * u ) .= ( ( - 1_ F_Complex ) * u ) * Sum ( ( - 1_ F_Complex ) * u ) .= ( ( - 1_ F_Complex ) * u ) * Sum ( ( - 1_ F_Complex ) * u ) .= ( ( - 1_ F_Complex ) * u ) * ( ( - 1_ F_Complex ) * u ) ; ( f / g ) /. c = f /. c * ( g /. c ) " .= f /. c * ( ( 1 - g ) * ( ( 1 - g ) * ( 1 - g ) ) ) .= ( f / g ) /. c ; len Cv - len ( ( the { of ( ( the carrier of ( ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of C ) ) ) ) ) ) ) ) ) ) ) ) ) = len Cv - len ( ( the { the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of ( the carrier of dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom f /\ X .= dom ( r (#) f ) /\ X .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) .= dom ( r (#) ( f | X ) ) ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n + $1 ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) ; consider f being Function of INT , INT such that f = f `1 and f is onto and ( n < k implies f " { f . n } = { n } ) & ( n < k implies f " { n } = { n } ) ; consider c9 be Function of S , BOOLEAN such that c9 = chi ( A \/ B , S ) and ( for A st A in S holds E . A = Prob . A ) & ( for A st A in S holds E . A = Prob . A ) & ( for A st A in S holds E . A = Prob . A ) & E . A = Prob . A ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , L ( ) ) and Q [ y ] ; assume that A c= Z and f = ( ( #Z 2 ) * ( sin + cos ) ) / ( sin + cos ) / ( sin + cos ) and Z c= dom f and f | A is continuous ; ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 + 1 ) ) `2 ; dom Shift ( Seq q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 } .= { len Seq q1 where j is Nat : len Seq q1 + 1 <= len Seq q1 } .= { len Seq q1 where q1 is FinSequence of NAT : len Seq q1 = len Seq q1 } ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 and G2 <= G2 and f is Morphism of G2 , G3 and g is Morphism of G2 , G3 and f is Morphism of G1 , G2 and g is Morphism of G2 , G3 and g is Morphism of G2 , G3 and g is Morphism of G2 , G3 ; func - f -> PartFunc of C , V means : Def5 : dom it = dom f & for c st c in dom it holds it /. c = - f /. c & for c st c in dom it holds it /. c = - f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a for v st v in ( union L ) | [. v , v .] holds L . a |= ( union L ) | [. v , v .] ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - n ) / ( n + 1 ) and for i1 , i2 being Nat st n1 <> 0 & i2 <> 0 & n < len p & n < len p holds sqrt ( n + 1 ) <= ( i - n ) / ( n + 1 ) ; assume that not 0 in Z and Z c= dom ( ( arccot * ( 1 / 2 ) ) (#) ( ( arccot * ( 1 / 2 ) ) (#) ( ( #Z 2 ) * ( 1 / 2 ) ) ) and for x st x in Z holds ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( 1 / 2 ) ) (#) ( ( #Z 2 ) * ( 1 / 2 ) ) `| Z ) . x = - 1 ; cell ( G1 , i1 -' 1 , 2 |^ ( m -' 1 ) ) \ ( ( Y -' 1 ) * ( ( Y -' 1 ) , ( Y -' 1 ) + ( Y -' 1 ) ) \ ( ( Y -' 1 ) * ( ( Y -' 1 ) + ( Y -' 1 ) ) ) c= BDD L~ f1 ; ex Q1 being open Subset of [: X , Y :] st s = Q1 & ex F8 being Subset-Family of Y st F8 c= F & F8 is finite & ( for x being Point of Y , Q1 being Subset of Y st x in F1 & Q = F2 holds ( x in Q1 & Q = union F8 ) & ( x in Q1 & Q = union Q1 ) & ( x in Q1 ) & ( x in Q1 ) & ( x in Q1 implies x in Q1 ) & ( x in Q1 implies x in Q1 ) & ( x in Q1 implies x in Q1 implies x in Q1 ) & ( x in Q1 ) & ( x in Q1 implies x in Q1 ) & ( x in Q1 implies ex y in Q1 ) & ( y in Q1 ) & ( y in Q1 implies ex Q1 being Subset of [: Q1 in gcd ( A-27 , ( ( the carrier of R ) , s1 , s2 ) , ( the InternalRel of R ) , s2 , s1 ) = 1 & gcd ( ( the InternalRel of R ) , ( ( the InternalRel of R ) , s1 , s2 ) , s2 ) = 1 ; R8 = ( ( j , ( ( j + 1 ) ) ) . ( m2 + 1 ) ) . ( m2 + 1 ) .= ( ( j + 1 ) + ( ( j + 1 ) + 1 ) ) . ( m2 + 1 ) .= [ 3 , ( ( j + 1 ) + 1 ) . ( m2 + 1 ) ] .= [ 3 , ( ( j + 1 ) + 1 ) . ( m2 + 1 ) ] ; CurInstr ( P-6 , Comput ( Pmeans , m1 + 1 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= halt ( SCMPDS , s3 ) .= halt SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) ) /\ ( LSeg ( p1 , p2 ) \/ LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ) .= { p1 } \/ ( { p2 } \/ { p2 } ) /\ ( LSeg ( p1 , p2 ) \/ { p2 } ) ; func not the still of f -> Subset of the Sorts of Al means : Def5 : a in it iff ex i , p st i in dom f & p = f . i & a in dom f & p in dom f & for i st i in dom f & i <> p holds it . i = f . i ; for a , b being Element of F_Complex for f being Polynomial of F_Complex st |. a .| > 1 & f is non zero holds f is non or a * ( - b ) is non or f is non or f is non ] defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g . ( $1 + 1 ) & 1 <= j & j + 1 <= width G & j + 1 <= width G holds LSeg ( G * ( i , j ) , G * ( i , j ) ) = LSeg ( G * ( i , j ) , G * ( i , j ) ) ; assume that C1 , C2 are_`2 and for f being State of C1 , g being State of C2 , s1 , s2 being State of C1 st s1 = s2 holds s1 is stable iff for f being State of C1 , s2 being State of C2 st s2 = s2 holds s1 is stable & s2 is stable & s1 is stable & s2 is stable & s1 is stable & s2 is stable ; ( ||. f .|| | X ) . c = ||. f .|| /. c .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| ; |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 & 0 + ( q `1 ) ^2 < ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of [: T , T :] st F is open & not {} in F & for A , B being Subset of [: T , T :] st A in F & B in F & A <> B & B <> {} & B <> {} & B <> {} & B <> {} & B <> {} holds card F = card B & card F = card B & card F = card B & card F = card A & card F = card B = card B assume that len F >= 1 and len F = k + 1 and len F = len G and for k st k in dom F holds H . k = g . ( F . k , G . k ) and for k st k in dom F & k <> 1 & k <> 1 holds H . k = g . ( F . k , G . k ) ; i |^ ( ( \mathop { \rm mod n ) |^ n ) - i |^ s = i |^ ( ( s + k ) - i |^ s ) .= i |^ ( ( s + k ) - i |^ s ) .= i |^ ( ( s + k ) - i |^ s ) .= i |^ ( ( s + k ) - i |^ s ) ; consider q being oriented oriented Chain of G such that r = q and q <> {} and ( F . ( q . 1 ) = v1 ) & ( for i st i in dom F holds F . ( q . len q ) = v2 ) & ( for i st i in dom q holds q . i = ( p . i ) `1 ) & ( for i st i in dom p holds p . i = ( p . i ) `1 ) ; defpred P [ Element of NAT ] means $1 <= len I implies ( ( g = g , Z ^ I ) . ( len I ) ) . ( $1 + 1 ) = ( ( ( g , Z ^ I ) . ( len I ) ) . ( len I + 1 ) ) . ( len I + 1 ) ; for A , B being square Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width A & width ( A * B ) = width B & width ( A * B ) = width A & width ( A * B ) = width B consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a in I & b in J & s . i = b * a ; func |( x , y )| -> Element of COMPLEX equals |( Re ( x , y ) , ( Re ( x ) ) * ( ( Re ( x ) ) * ( ( Re ( x ) ) * ( ( Re ( x ) ) * ( ( Re ( x ) ) * ( ( Im x ) * ( ( Im x ) * ( ( Im x ) * ( ( Im x ) * ( Im x ) ) ) ) ) ) ; consider g0 be FinSequence of FH such that h0 is continuous and rng h0 c= A & for i be Nat st i in dom h0 & i in dom g2 & g2 . 1 = x1 & g2 . i = x2 holds g2 . ( len g2 ) = x1 & g2 . ( len g2 ) = x2 & len g2 = len g2 ; then n1 >= len p1 & n2 >= len p1 implies crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , p1 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , q `1 * a <= q `1 & - q `1 * a <= q `1 & - q `1 * a <= q `1 * a or q `1 * a >= q `1 & q `1 * a >= q `1 & q `1 * a >= q `1 & q `1 * a >= q `1 * a & q `1 * a >= q `1 * a & q `1 * a >= q `1 * a & q `1 * a >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 >= q `1 * a & q `1 >= q `1 >= q `1 >= q `1 >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 * a & q `1 >= q `1 * a & q Fv . ( len pp ) = Fv . ( p . ( len pp ) ) .= vv . ( len p + 1 ) .= vv . ( len p + 1 ) .= vv . ( len p + 1 ) .= vv . ( len p + 1 ) .= vv . ( len p + 1 ) .= vv . ( len p + 1 ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( <* a := intloc 0 *> ^ ( k1 --> SubFrom ( a , intloc 0 ) ) ) ^ <* a := intloc 0 *> ^ ( k1 --> SubFrom ( a , intloc 0 ) ) ^ <* a := intloc 0 *> ^ <* a *> ^ <* a *> ^ ( k1 --> intloc 0 ) *> ) ; consider B8 being Subset of B1 , y8 being Function of B1 , B2 such that B8 is finite and D8 = the carrier of ( A1 \/ B1 ) and D8 = the InternalRel of ( A1 \/ B1 ) and D8 = the InternalRel of ( A1 \/ B1 ) and B8 = the InternalRel of ( A1 \/ B1 ) and B8 = the InternalRel of ( A1 \/ B1 ) ; v2 . b2 = ( curry ( F2 , g ) * ( ( curry Map ( F2 , g ) ) . b2 ) . ( ( ( curry Map ( F2 , g ) ) . b2 ) ) .= ( ( curry Map ( F2 , g ) ) . b2 ) . ( ( ( curry Map ( F2 , g ) ) . b2 ) . b2 ) .= ( ( curry Map ( F2 , g ) ) . b2 ) . b2 .= ( ( curry Map ( F2 , g ) ) . b2 .= ( ( ( F2 , g ) * ( ( ( F2 id B ) . b2 ) . b2 ) . b2 ) . b2 .= ( ( F2 id B ) . b2 ) . b2 ) . b2 .= ( ( ( F2 , g ) * ( ( ( ( id B ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 ) . b2 dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) .= dom IExec ( I , P , Initialize s ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < d-32 & h <> 0 holds |. h .| " * ||. ( R2 + R1 ) /. h .|| < e / ( ( R2 + R1 ) /. h ) * ||. ( R2 + R1 ) /. h .|| ; LSeg ( G * ( len G , 1 ) + |[ 1 , 0 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 0 ) \/ { G * ( len G , 1 ) } LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 ) ) .= LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 ) ) .= LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 ) ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , q , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 } ; ( ( - x ) .|. y ) = ( - 1 ) * ( ( - 1 ) * ( x .|. y ) ) .= ( - 1 ) * ( ( - 1 ) * ( x .|. y ) ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) .= ( - 1 ) * ( x .|. y ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( p `2 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) .= ( p `2 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ; ( ( U + W ) * ( W7 ) ) * ( ( W7 ) * ( p ) ) = ( ( ( U + W ) * ( p ) ) * ( ( p ) ) ) * ( ( p ) ) .= ( ( ( U + W ) * ( p ) ) * ( p ) ) * ( ( p ) ) .= ( ( U + W ) * ( p ) ) * ( p ) ; func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def8 : dom it = [: { x } , dom h :] & for x st x in [: { x } , dom h :] holds it . x = ( f + h ) . x + ( h + h ) . x ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i , j ) ; assume that not y in Free H and x in Free H and ( not x in Free H ) and ( x in Free H ) \/ { y } and ( x in Free H ) \/ { y } and ( x in Free H ) \/ { y } and ( x in Free H ) \/ { y } ; defpred P11 [ Element of NAT , Element of NAT ] means ( P [ $1 , $2 ] ) & ( for k being Element of NAT st k in dom p holds $2 = p |^ k ) & ( $1 = p |^ k implies $2 = p |^ k ) & ( not $1 = p |^ k implies $2 = p |^ ( k -' 1 ) ) & ( not $1 = p |^ ( k -' 1 ) ) & ( not $1 = p |^ ( k -' 1 ) ) ; func \sigma ( C ) -> non empty Subset-Family of X means : Def8 : for A being Subset of X holds A in it iff for W being Subset of X st W c= A & W c= A & W c= A & W c= A holds C . W <= C . ( W \/ A ) ; [#] ( ( dist ( P ) ) .: Q ) = ( dist ( P ) ) .: Q & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( Q ) ) .: Q ) ; rng ( F | ( S S ) ) = {} or rng ( F | ( S S ) ) = { 1 } or rng ( F | ( S S ) ) = { 1 } or rng ( F | ( S S ) ) = { 2 } or rng ( F | ( S S ) ) = { 1 } ; ( f " ( rng f ) ) . i = f . i " ( ( rng f ) . i ) .= ( f " ( rng f ) ) . i .= ( f " ( rng f ) ) . i .= ( f " ( rng f ) ) . i .= ( f " ( rng f ) ) . i .= ( f " ( rng f ) ) . i .= ( f " ( rng f ) ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P1 = { p1 , p2 } and P2 = { p2 , p1 } and P2 = { p1 , p2 } and P1 = { p2 , p1 } and P2 = { p2 , p1 } and P2 = { p1 , p2 } ; f . p2 = |[ ( p2 `1 ) ^2 + sqrt ( 1 + ( p2 `2 / p2 `1 ) ^2 ) , ( p2 `2 ) ^2 + ( p2 `2 ) ^2 / ( p2 `2 ) ^2 + ( p2 `2 ) ^2 / ( p2 `1 ) ^2 ) ]| ; ( ( AffineMap ( a , X ) ) " ) . x = ( ( ( AffineMap ( a , X ) qua Function ) " ) . x ) " .= ( ( ( AffineMap ( a , X ) ) " ) . x ) " .= ( ( ( TOP-REAL n ) | ( a , X ) ) . x ) " .= ( ( TOP-REAL n ) | ( a , X ) ) . x .= ( ( TOP-REAL n ) | a ) . x .= ( ( ( TOP-REAL n ) | a ) . x ) . x ; for T being non empty normal TopSpace , A , B being closed Subset of T st A <> {} & A misses B for p being Point of T , r being Element of ( dom G ) , r being Element of ( dom G ) , p being Point of ( dom G ) , r being Element of ( dom G ) , r being Element of ( dom G ) st r in dom ( ( Q ) . r ) & p in ( ( Q ) . r ) & r in ( ( ( dom ( Q ) ) . r ex s being Point of ( dom ( ( Q ) . s ) . s & p in ( ( dom ( ( Q ) . s & ( ( ( ( Q ) ) . s & ( ( Q ) ) . s & ( ( ( ( ( ( Q ) ) . s ) . s ) . s ) . s ) . s ) . s in ( ( ( len G ) . s being Point of ( ( ( dom G ) . s ) . s st s in ( ( dom G ) . s ) . s & ( for r being Point of ( ( ( dom G ) . s for i , j st i + 1 in dom F for G1 , G2 being strict Subgroup of G st G1 = F . i & G2 = F . ( i + 1 ) & G2 is strict Subgroup of G1 & G1 is strict Subgroup of G2 & G2 is Subgroup of G1 & G2 is Subgroup of G1 & G2 is Subgroup of G2 holds G1 is strict Subgroup of G2 for x st x in Z holds ( ( ( #Z 2 ) * ( arctan - arccot ) ) `| Z ) . x = ( ( ( #Z 2 ) * ( arctan - arccot ) ) `| Z ) . x / ( ( ( #Z 2 ) * ( arctan - arccot ) ) . x ) synonym f is_right continuous means : Def8 : x0 in dom ( f /* a ) & for x0 st x0 in dom f & x0 in dom f & x0 in dom f & x0 in dom f & f . x0 = lim ( f , x0 ) holds ( f /* a ) . x0 = lim ( ( f /* a ) /* a ) ; then X1 , X2 are_separated & ( X1 union X2 ) is SubSpace of X & ( X1 meet X2 ) is SubSpace of X1 & ( X1 union X2 ) is SubSpace of X2 & ( X1 union X2 ) is SubSpace of X1 & ( X1 union X2 ) is SubSpace of X2 & ( X1 union X2 ) is SubSpace of X2 implies X1 union X2 is SubSpace of X2 & X2 union X1 is SubSpace of X1 & X1 union X2 is SubSpace of X2 ; ex N be Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds ( SVF1 ( 1 , f , u ) . x - SVF1 ( 1 , f , u ) . x0 ) = L . ( x- ( 1 , f , u ) . x ) + R . ( x - x0 ) ( p2 `1 ) ^2 * sqrt ( 1 + ( p3 `1 / p3 `2 ) ^2 ) >= ( ( p2 `1 ) ^2 * sqrt ( 1 + ( p3 `1 / p3 `2 ) ^2 ) ) ^2 * ( ( p2 `1 ) ^2 + ( p2 `2 ) ^2 ) ; ( ( 1 / t1 ) (#) ( ||. f1 .|| ) ) . x = ( ( 1 / t1 ) (#) ( ||. g1 .|| ) ) . x & ( ( 1 / t ) (#) ( ||. g1 .|| ) ) . x = ( ( 1 / t ) (#) ( ||. g1 .|| ) ) . x ; assume that for x holds f . x = ( ( sin + cos ) (#) ( cos + sin ) ) . x and x in dom ( ( sin + cos ) (#) ( sin + cos ) ) and for x st x in dom ( ( sin + cos ) (#) ( sin + cos ) ) holds ( ( sin + cos ) (#) ( sin + cos ) ) . x = ( ( sin + cos ) (#) ( sin + cos ) ) . x ; consider X-23 be Subset of Y , X-22 be Subset of X such that X-22 is open and X-22 is open and for Y1 being Subset of Y st Y1 = X-23 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open ; card S . n = card { [: d , Y :] + ( a * d ) + b where d is Element of GF ( p ) : [ d , Y ] in Indices GF ( p ) & [ d , Y ] in Indices GF ( p ) & [ d , Y ] in Indices GF ( p ) } .= { 1 , 2 , 3 } ; ( W-bound D - W-bound D ) * ( ( W-bound D - W-bound D ) / ( m + 2 ) ) = ( W-bound D - W-bound D ) * ( ( W-bound D - W-bound D ) / ( m + 2 ) ) .= ( W-bound D - W-bound D ) * ( ( W-bound D - W-bound D ) / ( m + 2 ) ) .= ( W-bound D - W-bound D ) / ( m + 2 ) ;