thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is onto ; let q ; m = 1 ; 1 < k ; G is rng ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is -> -> prime ; not x in Y ; z = +infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is let Y ; assume x in I ; q is as ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k\Omega ; assume m <= i ; assume G is commutative ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is non bounded ; f is Assume f is Assume g is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be DecoratedTree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - 1 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , F be FinSequence of E ; let C be category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , and n2 is , n1 is , n2 ; Q halts_on s ; x in that } ; M < m + 1 ; T2 is open ; z in b < a < b ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Element of REAL ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o on o1 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , M be Subset of V ; not s in Y |^ 0 ; rng f <= w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealLinearSpace , A be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aA2 <= non zero ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , A be Subset of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U2 , U1 , U2 ; pp = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= jj & 1 <= j ; set A = thesis ; card a [= c ; e in rng f ; cluster B ++ A -> empty ; H is with_no or H is non empty ; assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} & m <> 0 ; let x be Element of Y ; let f be ) Chain Chain of G , n be Element of NAT ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v in v in dom that e in v ; - y in I ; let A be non empty set , f be FinSequence ; Px0 = 1 ; assume r in F . k ; assume f is simple ; let A be w countable set ; rng f c= NAT * ; assume P [ k ] ; f6 <> {} ; o be Ordinal ; assume x is sum of f , o ; assume not v in { 1 } ; let II , I ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d3 in X ; assume t . 1 in A ; let Y be non empty TopStruct , f be Function of Y , Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} & m <> 0 ; M + N c= M + M ; assume M is H is H H H H len h\overline ; assume f is additive for bb\rm st f is closed ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is compact ; f . x - a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cj in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < b2 ; s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 , P4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be <> <> the carrier of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , z is_collinear ; R8 in X ; let a , b be Real , x be Element of REAL ; let a be Object of C ; let x be Vertex of G ; let o be object of C , m be Morphism of o , m ; r '&' q = P \lbrack l .] ; let i , j be Nat ; let s be State of A , n be Nat ; s4 . n = N ; set y = x `1 , z = y `2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; V-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & f is one-to-one ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A0 is dense and A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars , Y = Vars ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xY c= Z1 & xY c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim Im ( seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = sInt ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , k be Nat ; assume that r2 > x0 and x0 in dom f ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom ( g2 | n ) ; n in dom ( g1 | n ) ; k + 1 in dom f ; not the still of S in { s } ; assume that x1 <> x2 and x1 <> x3 ; v3 in Vx0 & v2 in Vx0 ; not [ b `1 , b `2 ] in T ; ( i + 1 ) = i ; T c= T & T c= T ; l `1 = 0 & l `2 = 0 ; let n be Nat ; t `2 = r & t `2 = s ; Athesis : f is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; cC misses cV ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal -> normal for Ordinal ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 & z `2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be the \rm thesis Instruction of S , k be Nat ; f-24 . x = 1 ; assume z \ x = 0. X ; C2 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = ( TOP-REAL 2 ) | K1 ; M . k = <*> ( REAL ) ; phi . 0 in rng phi ; OSMMis closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= ( seq . 0 ) ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; cR is stable Subset of R ; set cR = Vertices R ; px0 c= P3 & px0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott Scott Scott Scott of S ; ex_inf_of the carrier of S , S ; A2 = downarrow b & A2 = downarrow a ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y - x .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( i ) ; k in dom ( q | k ) ; p is non empty \HM } is non empty FinSequence of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 - i2 = 0 ; j2 + 1 <= i2 & j2 + 1 <= len G ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for \HM { \vert } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom F = dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds S is holds S is holds S is holds S is non void let f be ManySortedSet of I ; let z be Element of COMPLEX , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= V-15 \/ { x } assume I is_halting_on s , P & I is_halting_on s , P ; U2 = U2 & U2 = U2 ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | n ) . x <= ( f | n ) . x ; let l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = ( q + 1 ) ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for Sublattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite { F , G } , A be Subset of V ; A * B on B , A ; f-3 = NAT --> 0 .= fs1 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & f | X is continuous ; let B be non-empty ManySortedSet of I , f be Element of B ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in II ; Q * ( 3 , 3 ) = 0 ; set j = x0 gcd m , m = x0 gcd m ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - jj > 0 ; I I I the string of phi = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( 2 |^ n ) ; s1 , s2 are_w & s1 , s2 are_w ; j1 -' 1 = 0 & j2 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower and 0 <= r ; p1 `1 = 1 & p1 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len G ; 1 <= i1 -' 1 & i1 + 1 <= len G ; i + i2 <= len h & i + 1 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 2 ; set H = h . gg , I = h . gg , J = h . I , T = I " ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h1 ; assume x in ( X /\ 4 ) ; ||. h .|| < d1 & ||. h .|| < d1 ; not x in the carrier of f & not x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing Nat ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \geq \HM { s } ; Q /\ M c= union ( F | M ) f = b * ( canFS S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , x be Element of L ; S-20 is x -8 -basis i ; let r be non positive Real ; M , v |= x \hbox \hbox { y } , S ; v + w = 0. ( Z ) ; P [ len F ( ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the Element of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> N -element for Element of S ; reconsider l1 = l- 1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T2 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q29 <> {} ; let k be Nat ; q " is Element of X & q is Element of X ; F . t is set of non zero ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root & y is root implies x `2 = y not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Element of R ; not ( S does not destroy b1 ) & not ( S is not empty ) ; IC SCM R <> a & IC SCM R <> a ; |. ( - |[ x , y ]| ) .| >= r ; 1 * ( s - 1 ) = s - 1 ; let x be FinSequence of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s . NAT ; H + G = F- ( G-G ) ; Cx1 . x = x2 & Cx1 . x = x3 ; f1 = f .= f2 .= ( f | X ) ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a & a1 , c1 _|_ b , a ; d3 , o _|_ o , a3 & d3 , o _|_ a3 , a3 ; II is reflexive & II is reflexive implies I is transitive IO is antisymmetric implies [: the carrier of C , the carrier of C :] is antisymmetric sup rng H1 = e & sup rng H1 = e ; x = ( a * a9 ) * ( a * b ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < width G ; rng s c= dom f1 & rng s c= dom f2 ; assume that support a misses support b and support b misses support a ; let L be associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = f" . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 ) = I1 & Directed ( I1 ) = I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined NAT -defined NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , 0 ] *> -> complete non trivial ; ( 1 - a ) " = a & ( 1 - a ) " = a ; ( q . {} ) `1 = o ; ( n - 1 ) > 0 ; assume 1 / 2 <= t `1 & t `2 <= 1 ; card B = k + 1-1 ; x in union rng ( f-9 | n ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } ; let G be let G be let wwgraph ; e , v9 be set ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z2 , z2 = - z1 , z1 = - z2 , z2 = - z1 ; assume w is_ll_of S , G ; set f = p |-count ( t ) , g = p |-count ( t ) , h = p |-count ( t ) , n = p |-count ( t ) , n = p |-count ( t ) , n let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , Y be Subset of Y ; reconsider p = p , q = q as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , a be Int-Location ; p is FinSequence of ( the carrier of SCM+FSA ) ; stop I ( ) c= PIp ( ) ; set ci = fbeing /. i , fj = f22 /. j ; w ^ t ^ s ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ s ^ t ^ t ^ t ^ s ^ t ^ t ^ s ^ W1 /\ W = W1 /\ W ` ; f . j is Element of J . j ; let x , y be Subset of T2 , a be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ; ord x = 1 & x is and y is dom a implies x * y = a * y set g2 = lim ( seq , n ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . F-21 = 0 ; h \/ R1 = h & R1 = h implies R1 = R2 ( sin . x ) <> 0 & ( sin . x ) <> 0 ; ( ( #Z n ) * ( #Z n ) ) . x > 0 ; o1 in X-5 /\ O2 & o2 in XO2 /\ O2 ; e , v9 be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal ideal ) ; let J be closed non empty Subset of R ; h . p1 = f2 . O & h . p2 = g2 . O ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M .= width M ; the carrier of CCK c= A ; dom f c= union rng ( F | X ) ; k + 1 in support ( ( support ( n ) ) | k ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( InnerVertices R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; ( 1 - m ) * m + r < p ; dom f = dom IK1 & dom f = dom IK1 ; [#] ( P-17 ) = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal for ExtReal ; then { da } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for non empty TopSpace ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W2 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of ( T |^ the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x `1 , y ) < r / 2 ; reconsider mm1 = m , mm2 = n as Element of NAT ; x- x0 < r1 - x0 & x0 < r2 - x0 ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * ( idseq ( q `1 ) ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . I8 in { x } & D2 . I8 in { x } ; cluster subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gij in LSeg ( cos , 1 ) /\ LSeg ( Gik , Gij ) ; n be Element of NAT , x be Element of NAT ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } reconsider m = mm - 1 as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , z is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt c ) / ( sqrt 2 ) ; reconsider t9 = T" as TopSpace , T = the TopStruct of T ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 & z2 in Q . ( y2 ) /\ Q2 ; A |^ 0 = { <%> E } & A |^ 0 = { <%> E } ; len W2 = len W + 2 & len W2 = len W + 2 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom g1 /\ dom f ; assume that p2 = E-max ( K ) and p1 <> E-max ( K ) ; len G + 1 <= i1 + 1 & 1 <= i2 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster s-10 + si2 -> summable for Real_Sequence ; assume j in dom ( M1 /. i ) ; let A , B , C be Subset of X ; x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> ^ <* x *> ^ <* y *> ^ <* x *> ; a , b in { a , b } ; len p2 is Element of ( len p1 ) -tuples_on NAT ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of x & y ` is Element of L ; k = 0 & n <> k or k > n & k > n ; then X is discrete for X is closed ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being being being being Element of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M [. f , f .] = f & M [. g , f .] = g ; ( ( ( ( ( n ) to_power 1 ) ) to_power 1 ) ) = TRUE ; dom g = dom f -tuples_on X & dom g = dom f ; mode : of G is \HM { ) } is \HM of G ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a1 ) = G1 . ( a1 , - a1 ) ; redefine func Sphere ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( n + 1 ) ) ; curry curry ' ( F-19 , k ) is additive ; set k2 = card dom B , k1 = card dom C , k2 = card dom D , k2 = card dom D , k2 = card dom D , k2 = card dom D , k2 = card dom D , k2 = card dom set G = ( V , X ) --> { 0 } ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of ML , M be Subset of M ; reconsider s1 = s , s2 = t as Element of ( the carrier of S1 ) ; rng p c= the carrier of L & p . ( len p ) = p . ( len p ) ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W I-21 in dom stop I & IY in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng f c= the carrier of T ; rng h c= union ( the carrier of J ) & h is one-to-one ; cluster All ( x , H ) -> f1 thesis ; d * N1 ^2 > N1 * 1 & d * N2 ^2 > 0 ; ]. a , b .[ c= [. a , b .] ; set g = f " D1 , h = f " D2 ; dom ( p | ( m + 1 ) ) = ( m + 1 ) ; 3 + - 2 <= k + - 2 & k + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot * ( f1 + f2 ) ) . x ; x in rng ( f /^ n ) & y in rng ( f /^ n ) ; let f , g be FinSequence of D ; cp in the carrier of S1 & cp in the carrier of S2 ; rng f " = dom f & rng f = rng g ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G -' 1 ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of ( TOP-REAL 2 ) | K1 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & <* C7 *> is in the carrier of C-20 ; i <= len ( G /^ 1 ) - 1 ; let p be Point of ( TOP-REAL 2 ) | K1 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sthesis " ( Q ) .= ( the InternalRel of S ) " Q ; ( ( 1 / 2 ) (#) ( 1 / 2 ) ) is summable ; - p + I c= - p + A & - p + I c= - p + I ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i .= CurInstr ( p1 , s1 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z , t = y as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 5 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def8 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ a " is Subgroup of H & H |^ a = H |^ a ; let A1 be Element of O , A2 be Element of E1 ; p2 , r3 , q2 is_collinear & q2 , q3 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( ( I[01] | B11 ) | B11 ) ; 0 . ( E ) < M . ( E8 ) ; op ( c ) @ = c & op ( c ) @ = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Nat -`1 for non empty Poset ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , a be Int-Location ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. len f ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def8 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster x `1 -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> Nat for Element of X ; set S = <* Bags n , il *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & len <* P *> @ = len P ; set N-26 = the non empty Subset of N , NN2 = the InternalRel of N ; len g: x + ( x + 1 ) - 1 <= x ; a on B & b on B implies not a on B reconsider r-12 = r * I . v as FinSequence ; consider d such that x = d and a D D and a \rm ) [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ( f /^ n ) ; set q2 = ( N-min C ) .. ( f , 1 ) ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= G . q2 ; f " D meets h " V & f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( the Sorts of Free ( S , X ) ) . s ; rng f c= the carrier of S2 & f is one-to-one implies f is one-to-one consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( a2 , b2 ) = b2 ; the carrier' of G `1 = E \/ { E } ; reconsider m = len ( thesis ) - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { \vert m .| } is { \vert m .| } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = pp1 . i .= pp2 . i ; let PA , PA , G be a_partition of Y , a be Element of Y ; pred 0 < r & r < 1 implies 1 < 1 / r ; rng ( AffineMap ( a , X ) ) = [#] X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s & len ( canFS ( s ) ) = card s ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q c= the topology of X ; dom fx0 c= dom ( u | n ) & dom ( fx0 | n ) c= dom ( u | n ) ; pred n divides m & m divides n implies n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in ) implies o in dom ( the Sorts of T2 ) ; not y0 in the still of f & not y0 in the y of f ; Hom ( ( a , b ) ~ , c ) <> {} ; consider k1 such that p " < k1 and k1 < len p and p . k1 = k1 ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = Let ( x , y , z ) ; l2 = m2 & l1 = i2 & l2 = j2 implies l1 = l2 x0 in dom u01 /\ ( A /\ { 0 } ) ; reconsider p = x , q = y as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 & ( TOP-REAL 2 ) | B01 = ( TOP-REAL 2 ) | B01 ; f . p4 <= f . p1 & f . p2 <= f . p3 ; ( F . ( x `1 ) ) `1 <= ( x `1 ) `1 ; x `2 = ( W7 ) `2 .= ( W7 ) `2 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) .= <* a *> ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] implies P [ succ a ] ; reconsider s\mathclose = snon empty as N -valued Element of D ; ( k - 1 ) <= len ( thesis ) - 1 ; [#] S c= [#] the TopStruct of T & [#] T c= [#] the TopStruct of T ; for V being strict RealUnitarySpace holds V in thesis implies V in thesis assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 , q1 , q2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K ; - a * ( - b ) = a * b & - a * b = b * a ; for A being Subset of AS holds A // A & A // B implies A // B ( for o2 being object of o2 st o2 in dom o2 holds o2 . o2 in <^ o2 , o2 ^> ) ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len ( upper_volume ( g , D1 ) | ( i + 1 ) ) ; b = Q . ( len Qk - 1 ) .= Q . ( len Qk - 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 is divergent_to-infty & f2 * f1 is divergent_to-infty ; reconsider h = f * g as Function of [: N1 , N2 :] , G ; assume that a <> 0 and Let ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T | n ) ; {} = the carrier of L1 + L2 & the carrier of L1 + L2 = the carrier of L1 ; Directed I is non closed & Directed I is closed & Initialized s = Initialized s ; Initialized p = Initialize ( p +* q ) .= Initialize ( p +* q ) ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of <* Ids L , \subseteq *> ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the InternalRel of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( P + ( len P ) ) + len ( P ^ ( len P ) ) ; x1 `1 = x2 & x1 `2 = x3 & x1 `2 = x4 & x1 `2 = x4 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h .= h " * g * h ; let p , q be Element of Let ( V , C ) ; x0 in dom x1 /\ dom x2 & x1 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " & ( R " ) " = R " ; n in Seg len ( f /^ ( i -' 1 ) ) ; for s being Real st s in R holds s <= s2 implies s1 <= s2 rng s c= dom ( f2 * f1 ) & rng s c= dom ( f2 * f1 ) ; synonym ex X being Subset of V st X = 2 & X is finite ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , Q1 , Q1 ) ; ex w st e = ( w - f ) / w & w in F ; curry curry ' ( P+* ( i , k ) ) # x is convergent ; cluster open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 + 1 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a implies J " ; Macro ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p3 , s3 ) ; IC SCMPDS in dom Initialize ( p ) & IC Comput ( p , s , k ) in dom I ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 & ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of Let ( V , C ) ; Cl ( union Int F ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) union X0 ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in M ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , x ) |= H1 / ( y , x ) ; consider m being element such that m in Intersect FF and m in Intersect FF ; reconsider A1 = support u1 , A2 = support u2 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a3 <> a4 ; cluster s -\bf is string of S , X ) -valued for string of S ; LG2 /. n2 = LG2 . n2 .= LG2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices ( D | ( i -' 1 ) ) ; 0 <= ( ( 1 / 2 ) |^ n ) * ( ( 1 / 2 ) |^ n ) ; ( F . N ) | E8 . x = +infty ; pred X c= Y & Z c= V implies X \ V c= Y \ Z ; y `2 * ( z `2 ) * ( y `2 ) <> 0. I ; 1 + card X-18 <= card u & card X-18 <= card u + card X-18 ; set g = z \circlearrowleft ( len z ) , 2 = len z -' ( len z ) ; then k = 1 & p . k = <* x , y *> . k ; cluster -> total for Element of C -\mathopen the carrier of G ; reconsider B = A , C = B as non empty Subset of ( TOP-REAL n ) | A ; let a , b , c be Function of Y , BOOLEAN , p be Element of BOOLEAN ; L1 . i = ( i .--> g ) . i .= g ; Plane ( x1 , x2 , x3 ) c= P & Plane ( x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . I ) `1 = 1 ; j + p .. f -' len f <= len f - len f + 1 ; set W = W-bound C , S = S-bound C , E = E-bound C , N = N-bound C , N = N-bound C , S = N-bound C , N = N-bound C , N = N-bound C , S = N-bound C , N = N-bound C , N = N-bound S1 . ( a `1 , e `2 ) = a + e `2 .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f ) ) = dom ( Im ( f ) ) ; ^2 . ( x `2 ) = W . ( a , *' ( a , p ) ) ; set Q = ( \rm \rm \rm \rm \rm > } ( g , f , h ) ) ; cluster -> MSsorted for ManySortedSet of U1 , B be MSbeing ManySortedSet of U2 ; attr F = { A } means : Def8 : F is discrete ; reconsider z9 = y as Element of product ( G . i ) ; rng f c= rng f1 \/ rng f2 & f is one-to-one implies f ^ <* f . 1 *> is one-to-one consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 ) implies E , j |= H reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = ( k-1 + 1 ) - 1 ; card ( x \ B1 ) /\ B1 = 0 & card ( x \ B2 ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set q\HM = ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , ( } , ( the InternalRel of G ) --> NAT ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom ( f | C ) as Element of Fin NAT ; IncAddr ( i , k ) = <% - l , k %> + k ; S-bound L~ f <= q `2 & q `2 <= N-bound L~ f implies ( f /. 1 ) `2 <= ( f /. len f ) `2 attr R is condensed means : Def8 : Int R is condensed & Cl R is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( d /\ b ) ) /\ e ) /\ f /\ j ; u in ( ( c /\ ( d /\ e ) ) /\ b ) /\ f /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 9 + - 2 ; x , z , y is_collinear & x , z , x is_collinear implies x , y , z is_collinear a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 *> , x ) in Line ( x , a * x ) ; set yx1 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. len FF2 = D . 1 ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 .= ( f /. ( i1 + 1 ) ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( Y \/ X ) = W-bound ( Y \/ X ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u , v2 = v as VECTOR of P`1 , REAL ; p |-count ( Product Sgm ( X11 ) ) = 0 & p |-count ( Product Sgm ( X11 ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ii2 = goto 0 , ix2 = goto 0 , ix2 = goto 2 , ix2 = x in { x , y } & h . x = {} ( TL ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of A0 ) & len ( the charact of A0 ) = len the charact of A0 ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : G is rng F c= the carrier of gr { a } & F is strict Subgroup of gr { a } ; implies ( for n , K holds n , r , n , r is N ) -valued FinSequence ; f . k , f . ( \mathop { \rm mod n ) * n ) in rng f ; h " P /\ [#] ( T1 | P ) = f " P /\ [#] ( T1 | P ) ; g in dom f2 \ f2 " { 0 } & f2 " { 0 } c= dom f2 ; gthesis /\ dom f1 = g1 " X & gr1 /\ dom f2 = g2 " X ; consider n being element such that n in NAT and Z = G . n ; set d1 = thesis , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `2 + 1 / 2 < ( 1 - 1 ) / 2 + ( 1 - 1 ) / 2 ; reconsider f1 = f as VECTOR of the carrier of X , Y ; pred i <> 0 means : Def8 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j2 + 1 in Seg ( len g2 ) ; dom ( i ) = dom ( i ) .= { a } .= { a } ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x1 as Function of S , Id ; reconsider R1 = x , R2 = y , R1 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Ru ; S1 +* S2 = S2 +* S1 +* S2 .= S1 +* S2 +* S2 +* S2 .= S1 +* S2 +* S2 +* S2 ; ( ( #Z n ) * ( cos * sin ) ) is_differentiable_on Z & ( ( #Z n ) * ( cos * sin ) ) `| Z = f ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* x , y *> , f3 ) ; ES . e2 = E8 . e2 -T & ES . e2 = E8 . e2 -T ; ( ( arctan (#) ( ln * f ) ) `| Z ) = f ; upper_bound A = PI * 3 / 2 & lower_bound A = 0 & lower_bound A = 0 ; F . ( dom f , - F . cod f ) = F . ( cod f , - F . cod f ) ; reconsider pNAT = q\HM { p } as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] ( Y | X ) implies g . W in [#] ( Y | X ) let C be compact connected non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. -infty , x0 .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m1 = m , m2 = n + 1 as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y implies g <= x for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 + m2 .= m1 + ( m2 + m2 ) ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: ( the carrier of X1 ) , B" = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R -Seg ( a ) c= R -Seg ( b ) & R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ y2 , y2 ] ; pred x1 <> x2 means : Def8 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 - p2 , p3 - p1 is_collinear and p2 - p1 , p3 - p1 - p1 , p3 - p1 is_collinear ; set q = ( f , f ) ^ <* 'not' 'not' 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , g be PartFunc of REAL n , REAL-NS 1 ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( succ t ) ) = dom ( n succ t ) ; consider x being element such that x in wc and x in c and x in c ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume that the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 and the Sorts of D1 c= the Sorts of D2 ; reconsider A1 = [. a , b .[ as Subset of R^1 | A ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = W-bound L~ Cage ( C , n ) ; n1 -' len f + 1 <= len ( g | ( len g -' 1 ) ) ; -1 ( q , O1 ) = [ u , v , a , b ] `2 ; set C-2 = ( ( n { ) `1 : not contradiction } ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * Sum p ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & $1 in dom Q ( ) ; set s3 = Comput ( P1 , s1 , k ) , P3 = P3 ; let l be variable of k , Al , A-30 be Element of D ; reconsider U2 = union G-24 , G-24 = union G-24 as Subset-Family of ( TOP-REAL 2 ) | D ; consider r such that r > 0 and Ball ( p `2 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p synonym f is real-valued for rng f c= NAT & rng f c= NAT & f is one-to-one ; consider b being element such that b in dom F and a = F . b ; x10 < card X0 + card Y0 & card ( Y0 \/ Y0 ) = card X0 + card Y0 + 1 ; pred X c= B1 means : Defooo) : X c= succ B1 & X c= B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , PI ) ; pred 1 <= len s means : Def8 : for i being Element of NAT holds ( the _ of s ) . ( 0 + 1 ) = s ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in \cdot ( p => q ) & q '&' p in \cdot ( p => q ) ; - ( t `1 ) ^2 < ( ( t `1 ) ^2 + ( t `2 ) ^2 ) ; U2 . 1 = U2 /. 1 .= ( U2 /. 1 ) . 1 .= ( U2 . 1 ) . 1 .= ( U2 . 1 ) . 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices OO = [: Seg n , Seg n :] & Indices OO = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is \cup Ad & f is H & f is H ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 2 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - ( |[ 0 , 0 ]| ) - ( |[ 0 , 0 ]| ) <> 0. TOP-REAL 2 ; reconsider t = t , s = s as Element of ( the carrier of X ) * ; C \/ P c= [#] ( ( GX | ( [#] GX \ A ) ) ) ; f " V in ( the topology of X ) /\ D ( the topology of Y , the topology of Y ) ; x in [#] ( the carrier of A ) /\ A ( ) implies x in the carrier of ( F . n ) g . x <= h1 . x & h . x <= h1 . x implies g . x <= h1 . x InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = thesis , M = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M2 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum ( Len F1 ^ F2 ) .= Sum ( Len F1 ^ ( Len F2 ) ) ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( the \kern1pt n ) * ( i , j ) ) = n ; dom max ( f + g , h ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 , y ] = 1 / ( 1 - M ) * v1 .= y ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and W is non empty ; godo /. i1 = G1 * ( i1 , i2 ) & 1 <= i2 & i2 <= len G ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng fnon \lbrace b } <= b - ( ( q1 `1 ) / |. q1 .| ) = 1 & ( ( q1 `1 ) ) ^2 = ( q1 `1 ) ^2 ; ( LSeg ( c , m ) \/ [: NAT , NAT :] ) \/ [: { l } , { k } :] c= R ; consider p being element such that p in Ball ( x , r ) and p in L~ f and p in L~ f ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( ( N-min Z ) , ( ( N-min Z ) /. 1 ) ) implies p in LSeg ( ( N-min Z ) /. 1 , ( ( N-min Z ) /. 1 ) ) set R8 = R | ]. a , b .[ , R8 = R | ]. a , b .[ ; IncAddr ( I , k ) = SubFrom ( da , da ) .= SubFrom ( da , db ) ; seq . m <= ( the Sorts of A ) . k & ( the Sorts of A ) . m <= ( the Sorts of A ) . k ; a + b = ( a ` *' ) ` + ( a ` *' ) ` .= a ` *' ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U2 \/ U1 , H = U2 \/ U1 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable Subset of R such that card A = ( the carrier of R ) \ A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 1 & len s2 - 1 > 1 ; ( ( N-min P ) `2 ) `2 = N-bound P & ( ( ( N-min P ) `2 ) ) = N-bound P ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= f . a1 ` .= f . a1 ` .= f . a1 ; ( seq ^\ k ) . n in ]. -infty , x0 .[ & ( seq ^\ k ) . n in { x0 } ; gg . s0 = g . s0 | G . s0 .= g . s0 ; the InternalRel of S is non empty & the InternalRel of S is non empty implies the InternalRel of S is non empty deffunc F ( Ordinal , Ordinal ) = phi . ( $2 , $2 ) ; F . s1 . a1 = F . s2 . a1 .= ( F . s2 ) . a1 .= s . a1 ; x `2 = A . o . a .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= f " ( Cl P1 ) ; FinMeetCl ( the topology of S ) c= the topology of T & the topology of T c= the topology of T ; synonym o is \bf means : Def11 : o <> *' & o <> * & o <> * ; assume that X = Y |^ n and card X <> card Y and X <> Y and Y <> {} ; the { of s : s <= 1 } c= ( the { of s : s <= 1 } ) \/ ( the { F ( s ) : s < 1 } ) LIN a , a1 , d or b , c // b1 , c1 & a , c // a1 , c1 & b , c // b1 , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; EF in SS1 & EF in { NS1 } implies EF in NS2 & EF in SS2 set J = ( l , u ) If , K = ( l , u ) If , L = ( l , u ) If , L = ( l , u ) If , M = ( l , u ) If , N = ( l , u ) If , L = ( l , u ) .: ( I , L ) , L = ( l , u set A1 = Let ( ap , bp , cm , cin , cin ) , A2 = [ <* A1 , cin , cin *> , cin ] ; set xy = [ <* c , d *> , '&' ] , yz = [ <* d , c *> , '&' ] , } = [ <* c , d *> , '&' ] ; x * z `1 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x = g2 . x Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; U2 is_an_arc_of W-min C , E-max C & U2 is_an_arc_of E-max C , E-max C implies L~ ( U2 ) c= L~ ( ( L~ godo ) | L~ ( C | C ) ) set f-17 = f @ "/\" g @ ; attr S1 is convergent & S2 is convergent & lim ( S1 - S2 ) = 0 implies S1 - S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \HM A1 -reflexive transitive transitive non empty reflexive transitive for non empty RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l | [. a , b .] ) = len l & len ( l | [. a , b .] ) = len l ; t4 ^ {} is ( {} \/ rng t4 ) -valued FinSequence ; t = <* F . t *> ^ ( C . p ^ q ) .= <* F . t *> ^ q ; set p-2 = W-min L~ Cage ( C , n ) , p`2 = W-min L~ Cage ( C , n ) , p`2 = E-max L~ Cage ( C , n ) ; ( k -' 1 ) mod ( i + 1 ) = ( k - 1 ) mod ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D ` and u in D ; len ( ( width aG ) |-> a ) = width ( ( width G ) |-> a ) .= width ( ( width G ) |-> a ) ; FM . x in dom ( ( G * the_arity_of o ) . x ) & FM . x in dom ( G * the_arity_of o ) ; set cH2 = the carrier of H2 , cH2 = the InternalRel of H2 ; set cH1 = the carrier of H1 , cH2 = the InternalRel of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( card I + 1 ) + 1 ; dom ( ( cos * sin ) `| REAL ) = REAL & dom ( ( cos * sin ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* A1 , cin *> , and2 ] , b6 = [ <* cin , cin *> , and2 ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * ( Sgm Q ) ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & dom ( ( the Sorts of A ) * the_arity_of o ) = dom the_arity_of o ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t2 . DataLoc ( s2 . SBP , 2 ) , x4 = s2 . SBP , P4 = Comput ( P2 , s2 , 2 ) , P4 = P3 ; set p-3 = stop I ( ) , ps2 = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B } \/ { C , D , E , F , J , M } let A , B , C , D , E , F , J , M , N , F , J be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 & ( p2 `1 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( ( mm + 1 ) + 1 ) + 1 ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = ( the Scott Scott Scott Scott ] of L ) & the TopStruct of L = the TopStruct of L ; consider y being element such that y in dom H1 and x = H1 . y and y in dom H1 and x = H1 . y ; fv \ { n } = Free All ( v1 , H ) & fv \ { n } = Free All ( v1 , H ) ; for Y being Subset of X st Y is summable & Y is not summable holds Y is not summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of } * } ) = len s & len ( the { of G * F ) = len F for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | P ) & rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | P ) ; j + ( len f ) - len f <= len f + ( len f ) - len f + ( len f ) - len f ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL n , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= ( C * ( a , b ) ) . x ; power F_Complex . ( z , n ) = 1 .= x |^ n .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t .= s . ( the connectives of S ) . t ; support ( f + g ) c= support f \/ ( support g ) \/ support ( f + g ) ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N < 2 * Sum ( seq1 | N ) ; for y , p st P [ p ] holds P [ All ( y , p ) ] ; { [ x1 , x2 ] where x1 is Point of X1 , x2 is Point of X2 : x1 in X } is Subset of X ; h = ( i = j = j |-- h , id B . i ) .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in A & x1 in B ; set X = ( ( -1 ( q , O1 ) ) . ( 1 , 4 ) ) `1 , Y = ( ( |. q .| ) . ( 2 , 4 ) ) `1 , Z = ( |. q .| ) . ( 2 , 3 ) , E = ( |. q .| ) . ( 3 , 4 ) , F = ( |. q .| ) . ( 3 , 4 ) , F = ( |. q .| b . n in { g1 : x0 < g1 & g1 < a1 . n } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of Y = the lattice of the lattice of Y & the "/\" of Y = the "/\" of the topology of Y & the topology of Y = the topology of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len q1 & len ( q1 ^ q2 ) = len q1 + len q2 ; ( 1 / a ) (#) ( sec * f1 ) - ( id Z ) (#) ( ( id Z ) * f1 ) is_differentiable_on Z ; set K1 = integral ( ( lim ( H , A ) || A ) , ( lim ( H , A ) || A ) ) ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom G `1 , d7 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d8 = dom G `1 , d7 = dom G `1 , d8 = dom G `1 LSeg ( f /^ j , j ) = LSeg ( f , j ) \/ LSeg ( q , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S29 = dom S /\ Seg n .= dom ( L29 | n ) .= dom ( L29 | n ) .= dom ( L29 | n ) ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a & g in H |^ a * ( ( 0 , 1 ) --> ( a , 1 ) ) = a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ @ = g @ dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 ; dom ( F-11 | [: N1 , S-23 :] ) = dom ( F | [: N1 , S-23 :] ) ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) ) .: D ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f * f `2 = id a and f * f `2 = id b ; ( cos | [. 2 * PI * 0 , PI + ( 2 * PI * 0 ) .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS - 1 & Index ( Gij , LS ) + 1 <= len LS - Gij .. LS ; let t1 , t2 , t3 be Element of ( the Sorts of A ) . s , t2 be Element of ( the Sorts of A ) . s ; j . ( "/\" ( ( Frege curry H ) . h ) ) <= j . ( "/\" ( ( Frege H ) . h ) ) ; then P [ f . i0 ] & F ( f . i0 + 1 ) < j & j < len f ; Q [ ( D . x ) `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is carrier of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the Sorts of A2 ) .= ( the Sorts of A1 ) +* ( the Sorts of A2 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and rng s c= S ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a , b2 ) <= dist ( a , b2 ) + dist ( b , b1 ) ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) `1 = WW ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP L~ Cage ( C , 1 ) ) `2 <= ( UMP L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) /\ LSeg ( f , j ) = {} ; given a being ExtReal such that a <= IA and A = ]. a , IA .[ and a <= IA ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : b |^ n = b } , Y = { b |^ n : b |^ n = b |^ n } ; ( ( x * y * z ) \ x ) \ z \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , f4 = [ <* z , x *> , f3 ] , zx = [ <* x , y *> , f3 ] ; lp /. len lp = lp . len lp .= ( lp ) . len ( ( p | len p ) ) ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( ( ( S \/ Y ) \/ X ) `2 ) ) `2 = ( ( ( S \/ Y ) `2 ) ) `2 ; ( ss1 - ss2 ) . k = ss1 . k - ss2 . k .= ss1 . k - ss2 . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of the carrier of X , X0 = the carrier of X , Y = the carrier of Y , Z = the carrier of Z ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p3 - |[ a , b ]| .| = r ; set ch = chi ( X , A5 ) , c5 = chi ( X , A5 ) ; R |^ ( 0 * n ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ n ; ( ( Partial_Sums curry ( F1 , n ) ) . k ) . n is nonnegative & ( ( Partial_Sums curry ( F1 , n ) ) . k ) . n is nonnegative ; f2 = C7 . ( EE7 , len ( E7 ) ) .= C8 . ( len ( E7 ) ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p11 ) & p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p11 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & rng ( I . t ) c= Seg n ; assume o = ( the connectives of S ) . 11 & o in ( the carrier' of S ) . 11 & o <> ( the connectives of S ) . 12 ; set phi = ( l1 , l2 ) implies ( X , l2 ) --> ( 1 , 1 ) = 1 ; synonym p is is is is is is is invertible for p is Polynomial of L , L ; Y1 `2 = - 1 & 0. ( TOP-REAL 2 ) <> 0. ( TOP-REAL 2 ) & ( for p being Point of TOP-REAL 2 st p in Y1 holds p `2 >= 0 ) implies ( ( TOP-REAL 2 ) | Y1 ) `2 >= 0 defpred X [ Nat , set , set ] means P [ $2 , $2 , $2 ] & $2 = F ( $2 , $2 ) ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det I = ( I |^ ( m -' n ) ) * ( m - n ) .= 1. K .= 0. K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cd . d = C7 . da mod C8 . da .= C7 . da mod C8 . da .= C8 . da mod C8 . da ; attr X1 is dense dense means : Def22 : X2 is dense dense & X1 /\ X2 is dense dense SubSpace of X ; deffunc FF ( Element of E , Element of I ) = $2 * ( $1 * $2 ) & $2 = ( $1 * $2 ) * ( $2 * $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , FinMeetCl Y *> iff X is Basis of Y synonym A , B are_separated means : Def1 : Cl A misses B & A misses Cl B & B misses Cl B ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J = { x where x is Element of K : 0 < x & x < 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * ( a * f ) .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & ( h . x ) `2 = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len B1 & len w = len B2 ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= ( n + 1 ) + n .= ( n + 1 ) + 1 ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= 9 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) ; LSeg ( f /^ i , q ) misses LSeg ( f /^ i , j ) \/ LSeg ( f /^ i , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y ` in Y & x in X & y in Y holds y ` <= x ; func |. p \bullet q .| -> variable of A equals min ( NBI , p ) .= min ( NBI , p ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 , z `2 '||' y `2 , t `2 ; dom x1 = Seg len x1 & len x1 = len x2 & len x2 = len x2 & len x2 = len x2 & len x2 = len x2 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f | X .|| = ||. f .|| | X & ||. f .|| | X = ||. f .|| | X ; ( the InternalRel of A ) -Seg ( x ` ) /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume i in dom p implies for j be Nat st j in dom q holds P [ i , j ] & i + 1 in dom p & j + 1 in dom p & i + 1 in dom p & p . i = p . j ; reconsider h = f | X ( ) as Function of X ( ) , rng f ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & u2 in the carrier of W2 implies ( ex v st v in the carrier of W1 & u = v + w ) defpred P [ Element of L ] means M <= f . $1 & f . $1 <= $1 & f . $1 <= f . $1 ; u . ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y ) = - x + - ( - y ) .= - x + - y .= - x + y .= y + ( - x ) ; given a being Point of GX such that for x being Point of GX holds a , x are_\HM { 0. GX } ; fT = [ [ dom ( @ f2 ) , cod ( @ f2 ) ] , h2 = [ cod ( @ f2 ) , cod ( @ f2 ) ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d implies x in ( ( A ` ) |^ d ) ` & x in ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = L9 . ( F . k ) & F . k in dom ( LH . k ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( card I + 2 ) ; attr B is thesis means : Def8 : for S being Subuniversal of B holds ( for B being non empty Subset of B holds S is B ) & ( B is non empty implies S is non empty ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" b in D ; |( \square , q29 )| * |( q , q19 )| >= |( \square , q )| * |( q , q )| ; ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A ; GG2 `1 = ( ( G * ( len G , k ) ) `1 ) `1 .= ( ( G * ( len G , k ) ) `1 ) `1 .= ( ( G * ( len G , k ) ) `1 ) `1 ; ( Proj ( i , n ) * LM ) . LM = <* ( proj ( i , n ) . LM ) . LM *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( the reproj of i , x ) . x ) & f2 + ( ( the reproj ( i , x ) ) . x ) = f2 . x ; pred ( cos . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 & ( tan . x ) <> 0 ; ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t & ( for x being Element of S holds x in rng h1 iff x <= t ) ; defpred C [ Nat ] means ( P8 . $1 is n -seq of ( n + 1 ) ) & ( A is n -seq of ( n + 1 ) ) is D thesis ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as non of ( the Sorts of A ) . ( card A ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & T . ( id c ) = id d not ( for f , n , p being Element of NAT holds f = ( f | n ) ^ <* p *> ) ^ <* p *> ^ <* p *> ^ <* p *> ^ <* p *> ^ <* p *> ^ <* q *> ^ <* q *> ^ <* p *> ^ <* q *> ^ <* q *> ^ <* p *> ^ <* q *> ^ <* q *> ^ <* p *> ^ <* q *> ^ <* ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) } ; f `2 - cp = ( ( f | ( n , L ) ) *' ) . ( x - - p ) .= ( f - c ) * ( ( f | ( n , L ) ) . ( x - p ) ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . |[ ( r2 `1 ) ^2 , ( r2 `2 ) ^2 ]| in f1 .: ( W1 /\ W2 ) & f2 . |[ ( r2 `1 ) ^2 , ( r2 `2 ) ^2 ]| in f2 .: ( W2 /\ W3 ) ; eval ( a | ( n , L ) , x ) = ( a ) * ( ( a | ( n , L ) ) ) .= a * ( ( a | ( n , L ) ) ) ; z = DigA ( tz , xz ) .= DigA ( tz , xz ) .= DigA ( tz , xz ) .= DigA ( tz , xz ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset-Family of X : S is open } , F = { Intersect S where S is Subset of X : S is open } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S29 = S29 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 & ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 <= 1 ; 0. V is Linear_Combination of A & Sum ( 0. V ) = 0. V implies Sum ( L ) = 0. V & Sum ( L ) = 0. V let k1 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , k2 , 6 , 7 , 8 be Instruction of SCM+FSA , a be Int-Location , k1 be Int-Location , k2 , k2 be Int-Location ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and a . j = b . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 & H1 . x2 c= H1 . x2 & H1 . x1 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a be Real such that p = a * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & c <= d and [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , ( X -' 1 ) -' 1 , 0 ) is non empty ; Ay in { ( S . i ) `1 where i is Element of NAT : i <= n } ; ( T * b1 ) . y = L * ( b2 /. y ) .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then p => q in S & not x in the still of p & p => All ( x , q ) in S & p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-11 ) & dom ( the InitS of r-11 ) misses dom ( the InitS of r-11 ) ; synonym f is extended integer means : Def3 : for x being set st x in rng f holds x is ExtReal ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 + 1 .= len p3 + 1 ; l /. ( 1 , 3 ) = ( g /. 1 ) `1 + ( k + 1 ) * ( k , 3 ) - ( e /. 3 ) * ( k , 3 ) - ( e /. 3 ) * ( k , 3 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= ( halt SCM+FSA ) . IC SCM+FSA .= ( ( card I + 2 ) ) + ( ( card I + 2 ) ) ; assume for n be Nat holds ||. seq .|| . n <= Rseq . n & Rseq is summable & Rseq is summable & Rseq is summable & Rseq is summable ; sin . ( n + 1 ) = sin . ( r * cos ( ( cos r ) * sin ( s ) ) .= 0 ; set q = |[ g1 . t0 , g2 . t0 ]| , g1 = |[ g2 . t0 , g2 . t0 ]| , g2 = |[ g2 . t0 , g2 . t0 ]| ; consider G be sequence of S such that for n being Element of NAT holds G . n in implies G in Wis Wis ( F . n ) ; consider G such that F = G and ex G1 st G1 in SM & G = ( X \/ G1 ) & G1 is open & G is open ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( #Z 3 ) * f1 ) + ( ( #Z 3 ) * f1 ) ; for k be Element of NAT holds seq1 . k = ( ( \HM { Im ( f , S ) ) . k ) . k assume that - 1 < n ( ) and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and ( q `1 / |. q .| - cn ) < 0 ; assume that f is continuous one-to-one and a < b and c < d and f . a = g and f . b = c and f . c = d ; consider r being Element of NAT such that s' = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and inf { x , y } in the carrier of K ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A ) & f . ( i1 + 1 ) in ( proj ( F , i2 ) ) " ( A ) ; rng ( ( ( Flow M ) ~ | ( the carrier of M ) ) | ( the carrier of M ) ) c= the carrier' of M & rng ( ( ( ( ( ( ( ( ( ( ( the carrier of M ) | ( the carrier of M ) ) | ( the carrier' of M ) ) | ( the carrier' of M ) ) ) ) | ( the carrier' of M ) ) ) c= the carrier' of M assume z in { ( the carrier of G ) \/ { t } where t is Element of T : t in the carrier of G } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g & g < x0 + g ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the or degree v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and for i st i in dom p holds p . i = p . ( i + 1 ) ; consider a being Element of the lines of X39 , A being Element of the lines of X39 such that a on A and a on A and a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set for i st i in dom p holds p . i in D & p . i is FinSequence of D implies p is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ x , y ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p00 , p1 ) } .= { LSeg ( p1 , p10 ) , LSeg ( p00 , p1 ) } .= { p2 } ; i -' len h11 + 2 -' 1 < i -' len h11 + 2 + 1 + 1 & i -' len h11 + 2 -' 1 < len h11 + 2 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nthesis . ( n -' 1 ) ) .| ; for r , s1 , s2 being Real holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & r <= s2 & s2 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 } ; let g be .| non-empty S , X be Element of INT * , b be Element of INT * , b be Element of INT * ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x , z ) ) . y ; consider q1 be sequence of CL such that for n holds P [ n , q1 . n ] and q1 is convergent & lim q1 = lim q1 ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds P [ n , f . n ] ; reconsider B-6 = B /\ [: B , { {} } :] , OI = B /\ [: B , { {} } :] , $ I = { {} } , J = { {} } , M = { {} } , N = { {} } , L = { {} } , N = { {} } , L = { {} } , L = { {} } , L = { {} } , L = { {} } , L = { {} } , L = consider j being Element of NAT such that x = the b finite sequence of n and 1 <= j and j <= n and n <= len f ; consider x such that z = x and card ( x . O2 ) in card ( x . O2 ) and x in L1 and x in L2 and x in L2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( of _ ( k , n2 ) ) . 0 ) .= C . ( ( T * ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) | ( X \ { 0 } ) ) = dom ( X --> f ) ; ( S-bound L~ SpStSeq C ) `2 <= ( ( /. ( len SpStSeq C ) ) `2 & ( ( N /. ( len SpStSeq C ) ) `2 <= ( ( N /. ( len SpStSeq C ) ) `2 ) ; synonym x , y , y is_collinear means : Def1 : x = y or ex l being \HM of S st { x , y } c= l & l is \overline of S ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y holds x << y and a << b ; ( 1 / 2 * ( ( #Z n ) * ( ( AffineMap ( n , 0 ) ) * ( AffineMap ( n , 0 ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the Sorts of A2 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= ( f * g ) . x ; ( M * FK1 ) . n = M . ( F( n ) . n ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L1 & L1 + L2 c= the carrier of L1 + L2 ; pred a , b , c , x , y , c , a , b , c , x , y , c , x , y , z , y ; ( the PartFunc of product s ) . n <= ( the PartFunc of product s ) . n * s . ( n + 1 ) & ( the Sorts of s ) . n <= ( the Sorts of s ) . n ; pred - 1 <= r & r <= 1 & ( arccot ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } & len ( p ^ <* n *> ) = len ( p ^ <* n *> ) ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - y2 & |[ x2 , y2 , x3 ]| . 2 = x3 - y2 ; attr F is nonnegative means : Def8 : F . m is nonnegative & ( Partial_Sums F ) . n is nonnegative ; len ( ( G . z ) * ( x , y ) ) = len ( ( ( len G ) * ( x , y ) ) ) + len ( ( G . y ) * ( x , y ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W3 and v in W3 ; given F be finite FinSequence of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } and Sum F = k and Sum F = k ; 0 = ( 1 * 0 ) * ( - 1 ) iff 1 = ( ( ( - 1 ) * ( - 1 ) ) * ( ( - 1 ) * ( - 1 ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> being being being being being Boolean non empty Poset means : Def1 : ( for } of L holds ( ( let t being Element of L ) | ( D , t ) ) is Boolean & ( ( t ) | ( D , t ) ) is Boolean ; "/\" ( BB , {} ) = Top BB .= the carrier of S .= "/\" ( the carrier of S , {} ) .= "/\" ( the carrier of S , {} ) .= "/\" ( the carrier of S , {} ) ; ( r / 2 ) ^2 + ( rbeing Element of REAL ) ^2 + ( rbeing Element of REAL ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - c ) ) ) ) = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - ( - 1 / - 1 ) ) ) ) ) ) ) ) ) ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in ( uparrow s ) and x2 in ( uparrow t ) and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M ) ) | n ) . ( len ( ( upper_volume ( g , M ) ) | n ) ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 ; for S , T being non empty * , d being Function of T , S st T is complete holds d is monotone iff d is monotone & d is monotone [ a + 0. F_Complex , b2 + 0. F_Complex ] in ( the carrier of F_Complex ) \ ( the carrier of F_Complex ) & [ a + 0. F_Complex , b2 + 0. F_Complex ] in ( the carrier of F_Complex ) \ ( the carrier of V ) ; reconsider mm = max ( len F1 , len ( p . n ) * <* x *> ) as Element of NAT ; I <= width GoB ( ( GoB f ) * ( len GoB f , width GoB f ) , ( GoB f ) * ( len GoB f , width GoB f ) ) & I <= width GoB f implies ( GoB f ) * ( len GoB f , width GoB f ) `2 <= ( GoB f ) * ( 1 , width GoB f ) `2 f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def8 : A1 misses A2 & A2 /\ A1 = {} & A2 /\ A2 = {} & A2 /\ A1 = {} & A2 /\ A2 = {} ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } ; dom ( Line ( v , i + 1 ) ) = dom ( ( Line ( ( F ^ <* p *> ) , 1 ) ) ) .= dom ( F ^ <* p *> ) ; cluster [ x `1 , 4 ] , x `2 , x `2 ] -> non empty & [ x `1 , 4 ] in [: { x } , { x } :] & [ x `1 , 4 ] in { x } ; E , f |= All ( x1 , ( x2 being element ) if x1 in ( x2 \ ( x2 \ x3 ) ) => ( x1 \ x0 ) ) & x1 in ( x2 \ ( x2 \ x3 ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . m - h . x0 .= ( F . x0 - h . m ) + ( F . x0 - h . m ) ; cell ( G , XX -' 1 , ( Y + 1 ) \ L~ f ) meets ( UBD L~ f ) \/ ( UBD L~ f ) \/ ( UBD L~ f ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= card I + ( card I + 2 ) .= card I + ( card I + 2 ) .= card I + ( card I + 2 ) .= card I + ( card I + 2 ) ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 & ( ( - ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k ' } and y0 = a . x0 and x0 in { k ' } and y = a . x0 ; dom ( r1 (#) chi ( A , A ) , C ) = dom chi ( A , A ) /\ dom ( chi ( A , A ) , C ) .= C /\ dom ( ( r1 (#) chi ( A , A ) ) | C ) .= C /\ ( ( r1 (#) chi ( A , A ) ) | C ) .= C /\ ( ( r1 (#) chi ( A , A ) ) | C ) .= C ; d-7 . [ y , z ] = ( ( y `1 ) `1 - ( y `2 ) ) ^2 + ( ( y `2 ) `2 ) ^2 .= ( ( y `1 ) - ( y `2 ) ) ^2 ; attr for i being Nat holds C . i = A . i /\ B . i implies L~ C c= L~ ( A /\ L~ C ) ; assume that x0 in dom f and f is_continuous_in x0 and ||. f .|| is_continuous_in x0 and for r st 0 < r ex g st g < r & g < x0 & g in dom f & g in dom f & g in dom f ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q & Q meets K for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func 4 -\times <*> -> w w Ordinal means : Def6 : a in it & for b being w Ordinal st a in b holds it c= b & it c= b ; [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of A ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. ( vseq . n ) - ( vseq . m ) .|| < ( e / ( ||. x .|| + e / ( n + 1 ) ) ) * ||. ( vseq . n ) - ( vseq . m ) .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z } holds z in x & z in x & z in x ; sup compactbelow [ s , t ] = [ sup ( ( compactbelow s ) . ( s , t ) ) , sup ( ( compactbelow s ) . ( s , t ) ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in II and [ f . i , z ] in II and [ y , z ] in II and [ y , z ] in II ; for D being non empty set , p , q being FinSequence of D st p c= q ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e19 being Element of the affine I of X such that c9 , a9 // a9 , e29 and a9 <> b9 and a9 <> c9 and a9 <> b9 and c9 <> a9 and a9 , b9 // c9 , c9 and c9 , e // c9 , a9 and a9 , b9 // c9 , a9 and c9 , e // c9 , a9 and c9 , e // c9 , a9 ; set U2 = I \! \mathop { {} } , U2 = I \! \mathop { {} } , E = { {} } , F = S S , N = S S , F = S S , F = S S , N = S S , F = S S , F = S S , D = S S , F = S S , F = S S , F = S S , F = S , F = S , D = S , D = S , F = S , F = S , F = S , D = S , F = S S , F = S , F = S S , D = S , F = |. q2 .| ^2 = ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q2 .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 .= |. q .| ^2 + ( |. q .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x "\/" y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & dom ( the charact of U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) ; for N1 , K1 being Element of G8 holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or ( q `2 ) ^2 >= - ( q `1 ) ^2 & ( q `1 ) ^2 >= - ( q `2 ) ^2 & ( q `1 ) ^2 >= - ( q `1 ) ^2 ; pred r1 = fC & r2 = fC & r1 * r2 = fC & r2 * r2 = fC & r1 * r2 = fC & r2 * r2 = fC ; vseq . m is bounded Function of X , the carrier of Y & xSubset . m = ( ( for x be Element of X holds vseq . x = ( vseq . m ) * ( x - x0 ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI implies angle ( b , c , a ) = 0 & angle ( c , a , b ) = 0 ; consider i , j being Nat , r being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 ^ q1 = p1 ^ q1 and p1 ^ q1 = q1 ^ q1 and q1 ^ q2 = q1 ^ q2 and q1 ^ q2 = q2 ^ q2 ; , _ 2 ( A1 , r2 , s1 , s2 , s2 , s3 ) = ( s2 gcd gcd ( A1 , r2 , s2 , s3 ) ) * ( s1 , s2 , s3 ) ; ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ /\ Vertical_Line ( w ) ) ) & ( proj2 .: ( A /\ Vertical_Line ( w ) ) ) is non empty or proj2 .: ( A /\ Vertical_Line ( w ) ) is non empty ; s |= ( k , H1 ) \bf ( not H = H1 '&' H2 iff s |= ( H , k ) implies s |= ( H , k ) '&' ( H , k ) ) len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y & z `2 >= x `2 ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( N-bound D + E-bound D ) / 2 ]| /\ D = { UMP D } lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = lim ( ( f `| N ) / ( g `| N ) ) .= lim ( ( f `| N ) / ( g `| N ) ) ; P [ i , pr1 ( f ) . i , pr2 ( f ) . ( i + 1 ) ] & pr2 ( f ) . ( i + 1 ) = pr2 ( f ) . ( i + 1 ) ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R /. ( k + 1 ) ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & x <> b holds a = b Z c= dom ( ( #Z 2 ) * f ) /\ ( dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ) & Z c= dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & z = 1 + len l & i = len l + 1 & j + 1 = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in N holds r * u + ( 1-r * v ) in N A , Cl Int A , Cl Int A , Cl Int Cl A , Cl Int Cl Int Cl A , Cl Cl Int Cl Cl Int Cl Int Cl A , Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl - Sum <* v , u , w *> = - ( v + u + u ) .= - ( v + u ) + - u .= ( - v ) + ( u + w ) .= ( - v ) + ( u + w ) ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . NAT .= Exec ( ( a := b ) , s ) . NAT .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the Sorts of J ) . x and h . x in ( the Sorts of J ) . x ; for S1 , S2 being non empty reflexive RelStr , D being non empty directed Subset of S1 , D being non empty Subset of S2 holds cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or ex z st z in X & z = x & z = y or z = x & z = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft E-max L~ Cage ( C , n ) ) ; for T , T being DecoratedTree , p , q being Element of dom T st p ^ q ^ r holds ( T , p ) ^ r = T . q & ( T , p ) ^ r = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster the gcd of ( k , n ) -> prime & k divides it & n divides m & ( for m being Nat st k divides m & n divides m holds ( m divides k implies ( m divides k ) ) & ( m divides k implies ( m divides k ) ) & ( m divides k ) & ( m divides k implies m divides k ) & ( m divides k ) & ( m divides k ) & ( m divides k ) implies m divides k ) ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " { 0 } = the carrier of X2 & F " { 0 } = { 0 } & F " { 0 } = { 0 } & F " { 0 } = { 0 , 1 } ; consider C be finite Subset of V such that C c= A and card C = n and the VectSpStr of V = Lin ( B9 \/ C ) and card C = n and card C = n and card C = n and card C = n ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V & X c= Y holds X c= Y or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Z = { F ( v1 ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) .= angle ( p3 , p4 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 ) = - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 ) .= - sqrt ( ( - ( q `1 / |. q .| - cn ) ) ^2 ) .= - ( ( q `1 / |. q .| - cn ) ) ^2 ) .= - ( - ( q `1 / |. q .| - cn ) ) ; ex f being Function of I[01] , ( TOP-REAL 2 ) | P st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 ; attr f is_PartFunc of REAL 2 , pdiff1 ( f , 1 ) , u0 means : Def8 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is_continuous_in u0 & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) . u0 = ( proj ( 2 , 3 ) . u0 ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `2 & G * ( 1 , width G ) `2 < s & s < G * ( 1 , width G ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N and G * ( t , width G ) `2 >= N and N >= S and S = L~ f and S = L~ f and N = L~ f and S = LSeg ( S , width G ) and N = L~ f and S = LSeg ( S , N ) and S = LSeg ( S /. ( t + 1 ) , width G ) ; pred i in dom G means : Def8 : r (#) ( f * reproj ( i , x ) ) = r (#) ( reproj ( i , x ) ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c /. k = c1 + c2 and c /. k = c2 + c1 and c1 /. k = c2 /. k and c1 /. k = c2 /. k ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 } & u in { G * ( 1 , 1 ) `2 : G * ( 1 , 1 ) `2 < s1 } ; Cl ( X ^ Y ) . k = the carrier of X . k2 .= C4 . ( k1 + 1 ) .= C4 . ( k1 + 1 ) .= C4 . ( k2 + 1 ) .= C4 . ( k2 + 1 ) ; attr M1 = len M2 & width M1 = width M2 & M1 = M2 - M1 & M2 = M2 - M1 & M2 = M2 - M1 & M2 = - M2 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. ( y - x0 ) - g2 .|| < g2 & y in dom ( ( f | X ) /* seq ) & g2 in dom ( ( f | X ) /* seq ) & g2 in dom ( ( f | X ) /* seq ) ; assume x < ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) / ( 2 * a ) or x > ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & for j being Element of NAT st j in dom f & j <> i holds i divides j holds i divides Sum f & for j being Element of NAT st j in dom f & j <> i holds f . j divides Sum f assume F = { [ a , b ] where a , b is Element of X : for c being set st c in B39 & a c= c & b c= c } & F c= c & c c= a & a c= b & b c= c & c c= a & b c= c & c c= a & a c= b & b c= c & a c= c & b c= c & a c= c & b c= c & a c= c & b c= c & F = F ; b2 * q2 + ( b3 * q3 ) + - ( ( a * q2 ) + ( - ( a * q2 ) ) ) + - ( ( a * q2 ) + ( a * q2 ) ) = 0. TOP-REAL n + ( a * q2 ) .= 0. TOP-REAL n + ( a * q2 ) ; Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & B in F } & F is closed & F is closed & Cl B = Cl B ; attr seq is summable & seq is summable implies Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable ; dom ( ( ( ( ( ( ( ( TOP-REAL 2 ) | D ) | D ) | D ) | D ) | D ) ) = ( the carrier of ( ( TOP-REAL 2 ) | D ) | D ) .= D ; |[ X , Z ]| is full full non empty SubRelStr of ( Omega Y ) |^ the carrier of X & |[ X , Y ] is full SubRelStr of ( Omega Y ) |^ the carrier of X implies X is full SubRelStr of ( Omega Y ) |^ the carrier of X G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 ; synonym m1 c= m2 means : Def3 : for p being set st p in P holds the non empty \HM { m1 + 1 } <= ( m1 + m2 ) * p & m1 <= ( m1 + m2 ) * p ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym the multMagma of R is \vert means : Def8 : the multMagma of R is multiplicative & the multF of R is associative & the multF of R is associative & the multF of R is associative & the multF of R is associative & the multF of R is associative ; sequence ( a , b ) + 1 + sequence ( c , d ) = b + sequence ( c , d ) .= b + d + 1 .= b + d + 1 .= n + 1 + 1 .= n + 1 + 1 ; cluster + ( i1 , i2 ) -> in INT & for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = + ( i1 , i2 ) + ( i2 , i2 ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 ) ) ) * p2 = ( ( - r2 ) * p1 + ( s2 * p2 - ( s2 * p2 ) ) ) * p2 .= ( ( - s2 ) * p1 + ( s2 * p2 ) ) * p2 - ( s2 * p2 ) * p2 ; eval ( ( a | ( n , L ) ) *' , x ) = eval ( a | ( n , L ) , x ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of Omega S , V being open Subset of Omega S st V in V & V is open & V is open holds V is open and for W being Subset of S st W in V & W is open holds W is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) -) . k = ( T11 . ( ( q11 , w ) -) . k ) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ ( n + 1 ) + ( ( b |^ n ) * b + ( ( b |^ n ) * a ) + ( ( b |^ n ) * b ) + ( ( b |^ n ) * a ) + ( ( b |^ n ) * b ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , H ) '&' ( x. 4 , All ( x. 0 , H ) '&' ( x. 4 , H ) ) ) ) implies M , v |= All ( x. 4 , All ( x. 0 , H ) '&' ( x. 0 , H ) '&' ( x. 4 , H ) ) assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f ' ( x0 ) or for x0 st x0 in l holds f ' ( x0 ) < 0 and for x0 st x0 in l holds f ' ( x0 ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , W being Walk of G1 , e being set st e in W & e in W holds W is Walk of G2 & e in W implies W is Walk of G2 not c is non empty iff not ( that not .| is non empty & not ( not x1 is non empty or not y1 is non empty ) & not ( x1 is non empty or not y1 is non empty ) & not ( x1 is non empty or y1 is non empty ) & not ( y1 is non empty or not y2 is non empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j1 ) in [: Seg ( len GoB f ) , Seg ( width GoB f ) :] & ( GoB f ) * ( i2 + 1 , j1 ) in [: Seg ( len GoB f ) , Seg ( width GoB f ) :] & ( GoB f ) * ( i2 + 1 , j1 ) in [: Seg ( len GoB f ) , Seg ( width GoB f ) :] ; for G1 , G2 , G3 being Group , G1 , G2 being stable Subgroup of O st G1 is stable & G2 is stable & G1 is stable & G2 is stable & G2 is stable holds G1 * G2 is stable Subgroup of G2 * the stable of G2 * the stable Subgroup of G1 * the non empty Subgroup of G2 * the non empty Subgroup of G1 * the non empty Subgroup of G2 * the non empty multMagma of G2 * the non empty multMagma of G1 * the non empty multMagma of G2 * the non empty multMagma of G1 , G2 * the non empty multMagma of G1 , G2 * the non empty multMagma of G2 * the non empty multMagma of G2 , G2 * the non empty multMagma of G2 * the non empty multMagma of G2 * the non empty Subgroup of G1 , G2 * the non empty multMagma UsedIntLoc ( inint ( f , 1 ) ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , 6 , 7 , 8 , 8 , 8 , 8 , 8 , 9 } \/ UsedIntLoc ( i .--> ( intloc 0 ) , intloc 4 ) .= { intloc 0 , intloc 5 , 6 , 7 , 8 } \/ UsedIntLoc i \/ UsedIntLoc i ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ^ f2 ] & Q [ f1 ^ f2 ] & Q [ f1 ^ f2 ^ f2 ] holds Q [ f1 ^ f2 ^ f2 ^ f2 ] ( p `1 ) ^2 / ( sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ) ^2 = ( q `1 ) ^2 / ( sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ^2 .= ( q `1 ) ^2 / ( sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x4 )| = |( x1 , x3 - x4 )| + |( x2 , x3 - x4 )| for x st x in dom ( ( F | A ) | A ) holds ( ( ( F | A ) | A ) . ( - x ) = - ( ( F | A ) | A ) . x for T being non empty TopStruct , P being Subset-Family of T st P c= the topology of T for x being Point of T ex B being Basis of x st B c= P & B is Basis of x & B is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x 'or' b . x ) 'or' c . x .= TRUE 'or' ( a 'or' b ) . x .= TRUE ; for e being set st e in [: A , B :] ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & X1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of Su . i , S1 . i st f = H . i & F . i = f | ( the carrier of S1 ) . i holds F . i = f | ( the carrier of S1 ) . i for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ( ) , J ( ) , J ( ) ) , J ( ) . w ) = Valid ( VERUM ( Al ( ) , J ( ) , J ( ) ) , J ( ) . w ) card D = card D1 + card D2 - card { i , j } .= ( c1 + 1 ) - ( i + 1 ) + ( 1 + 1 ) - ( i + 1 ) .= ( c1 + 1 ) + ( i + 1 ) - ( i + 1 ) .= 2 * ( c1 + 1 ) - ( i + 1 ) + ( i + 1 ) - ( i + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( 0 + 1 ) ) ) . 0 .= ( 0 .--> succ ( 0 + 1 ) ) . 0 .= ( 0 .--> succ ( 0 + 1 ) ) . 0 .= succ IC Exec ( i .--> succ ( 0 + 1 ) ) .= succ IC Exec ( i .--> 0 , s ) .= succ IC s ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f -' 1 + 1 - 1 + 1 .= len f -' 1 + 1 - 1 + 1 .= len f -' 1 + 1 + 1 .= len f -' 1 + 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & a <= b & k <= a holds k < ( a + b-2 ) or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) & i in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= len f lim ( curry curry ' ( I , k + 1 ) ) # x = lim ( ( curry curry ' ( I , k ) ) # x ) + lim ( ( curry ( I , k ) ) # x ) ; z2 = g /. ( len g -' n1 + 1 ) .= g . ( i -' n2 + 1 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g /. ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in ( the InternalRel of G ) \/ ( the InternalRel of G ) \/ ( the InternalRel of G ) ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of [: A , B :] : R in FF } holds ( for X being Subset of A , Y being Subset of B st X in FF holds ( Intersect ( R ) ) . X = Intersect ( G ) ) & ( Intersect ( R ) ) . X = Intersect ( G ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and a on N and c on N and d on M and a on M and b on N and c on N and a on M and b on N and c on N and a on M and b on N and a on M and a on M and b on N and a on M and a on N and b on N and a on M and a on N and b on N and a on M and b on N and b on N and b on N and a on M and b on N and b on N and b on N and b on N and a on M and b on N and b on M and a on M and a on M and b on N and a on M and a on N and a on N and c on N and c on N and c on N and c on N assume that T is \hbox of 4 , T2 and F is closed and ex F being Subset-Family of T st F is closed & F is finite-ind & ind F <= 0 & ind F <= 0 & ind F <= 0 ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - g2 , r .[ holds |. ( f - g ) . g1 - ( f - g ) . g2 .| <= ( ( g1 - g ) / ( r - g2 ) ) * ( r - g2 ) ( ( cosh ( z1 ) ) * ( z2 + z2 ) ) = ( ( cosh ( z1 ) ) * ( z2 + z1 ) ) .= ( ( ( cosh ( z1 ) ) * ( z2 + z1 ) ) * ( z2 + z1 ) ) .= ( ( ( ( cosh ( z1 ) ) * ( z2 + z1 ) ) * ( z2 + z1 ) ) * ( z2 + z1 ) ) * ( z2 + z1 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) * ( i + 1 ) .= <* ( n + 1 ) * a , ( n + 1 ) * b , ( n + 1 ) * a *> .= <* ( n + 1 ) * a , ( n + 1 ) * b *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = RB ( ) . ( n , f . n ) & for n holds f . ( n + 1 ) = RB ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def6 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * f /. ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices S ( ) & o . ( x , n ) in InnerVertices S ( ) & o . ( x , n ) in InnerVertices S ( ) & o . ( x , n ) in InnerVertices S ( ) ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l-30 , e ) = S1 & ( for x being Element of CQC-WFF ( Al ) holds ( x , e ) `1 is Element of CQC-WFF ( Al ) implies ( x , e ) `1 is Element of CQC-WFF ( Al ) & ( x , e ) `1 = ( x , e ) `1 consider P being FinSequence of G_ 2 such that p[#] = product P and for i st i in dom P ex t7 being Element of the carrier of k st P . i = t7 & t7 is Permutation & t7 is Permutation & t7 = t . i & t7 = t . i & t7 = t . i ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P is Basis of T2 & P is Basis of T1 & P is Basis of T2 holds P is Basis of T1 & P is Basis of T2 & P is Basis of T1 & P is Basis of T2 & P is Basis of T2 & P is Basis of T1 assume that f is_differentiable on u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * partdiff 1 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * partdiff 1 ; defpred P [ Nat ] means for F , G being FinSequence of ExtREAL for s being Permutation of ExtREAL st len F = $1 & G = F * s & not ( ex k being Element of NAT st len F = $1 & k = len G ) holds Sum F = Sum G & for k being Element of NAT st k in dom F & k in dom F holds Sum F = Sum G ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex Fa1 be Subset-Family of T st $2 = Fa1 & union Fa1 is open & union Fa1 is open Subset-Family of T & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is open & union Fa1 is \leq ; for pp being Point of TOP-REAL 2 st LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p , p2 , P , p1 , p2 holds LE p , p2 , P , p1 , p2 & LE p , p1 , P , p1 , p2 & LE p , p2 , P , p1 , p2 f in D ( ) & for g st g in D ( ) & x <> y holds g in D ( ) implies f in D ( ) & g in D ( ) implies f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) & f in D ( ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( ( ( ( ( ( ( p `2 / |. p .| - sn ) ) / |. p .| ) / |. p .| ) ) * ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) <= ( ( ( ( ( ( p `2 / |. p .| - sn ) / |. p .| ) * ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) ) ^2 ; assume for d7 being Element of NAT st d7 <= d7 holds s1 . ( d7 ) = ( ( n , u ) := t7 ) . ( d7 ) & s1 . ( d7 ) = ( ( n , u ) --> t7 ) . ( d7 ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of E st { e } = Sphere ( s , t ) /\ Sphere ( x , r ) and e in Sphere ( s , t ) and e <> s ; given r such that 0 < r and for s holds 0 < s implies ( for x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s holds |. f /. x1 - f /. x0 .| < r ) & |. f /. x1 - f /. x0 .| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | x ) | ( ( x | x ) | x ) ) | ( ( ( x | x ) | x ) | p ) ; assume that x , x + h in dom sec and ( for h st h in dom sec holds ( ( sin * sec ) `| REAL ) . x = ( 4 * sin ( x + h ) + cos ( x ) ) / ( sin ( x ) + cos ( x ) ) ^2 and ( sin ( x ) + cos ( x ) ) ^2 = ( 4 * sin ( x ) ) ^2 + ( cos ( x ) ) ^2 ; assume that i in dom A and len A > 1 and B c= the set of \HM { i , j } and A c= the set of \HM { i , j } and B = ( the \HM { i , j } ) ^ <* i , j *> ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i = <* 1. F_Complex *> & ( i <> n & i <> n & i <> n & i <> n implies h . i = ( 1. F_Complex \ { 0. F_Complex } ) . i ) ( ( b1 'imp' b2 ) '&' ( c1 'or' c2 ) '&' ( ( a1 'or' b1 'or' c1 ) '&' ( a1 'or' a2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a1 'or' a2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a1 'or' a2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a1 'or' a2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a1 'or' a2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a1 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' b2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a2 'or' a2 ) '&' 'not' ( a1 'or' a2 ) '&' 'not' ( a1 'or' b2 ) '&' 'not' ( a1 'or' b2 ) '&' 'not' ( a1 'or' b2 ) '&' 'not' ( a1 'or' a2 assume that for x holds f . x = ( ( cot * ( ( cot * ( ( cot * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h * ( h consider R8 , I-8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I8 = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. q-r - partdiff ( f , q , k ) .|| < r holds ||. partdiff ( f , x , k ) - partdiff ( f , x , k ) .|| < r x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } iff x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 } G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> DecoratedTree means : Def1 : q in it iff q in T & for p st p in P holds p in T & q in T or ex p , r st p in P & r in T & p ^ r in T1 & r ^ p in T1 & p ^ r in T1 & r ^ r in T1 ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= F{} ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F{} ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F{} ( p . k , k + 1 -' 1 ) .= F{} ( p . k , k ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width C & len C > 0 & len A > 0 & len B > 0 & len C > 0 & len C > 0 & len C > 0 & len A > 0 & len B > 0 & len C > 0 & len A > 0 & len B > 0 & len C > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len B > 0 & len C > 0 & len A > 0 & len C > 0 & len A > 0 & len A > 0 & len A > 0 & len A > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len B > 0 & len seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of CQ ) and y in ( the carrier of CQ ) and z in ( the carrier of CQ ) and x in ( the carrier of CQ ) and y in ( the carrier of CQ ) and z = [ x , y ] ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( ( VAL g ) . ( k + 1 ) ) '&' ( ( VAL g ) . ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and ( q `2 / |. q .| - sn ) >= 0 and ( p `2 / |. q .| - sn ) >= 0 and ( p `2 / |. p .| - sn ) >= 0 and ( p `2 / |. p .| - sn ) >= 0 and ( p `2 / |. p .| - sn ) >= 0 and ( p `2 / |. p .| - sn ) >= 0 ; for M being non empty metric , x being Point of M , f being Point of M st x = x `1 holds ex f being sequence of M st for n being Element of NAT holds f . n = Ball ( x `1 , ( 1 - 1 ) * ( n + 1 ) ) & f is sequence of M defpred P [ Element of omega ] means f1 is differentiable of Z & f2 is differentiable of Z & ( for x st x in Z holds ( f1 - f2 ) . x = ( f1 . x ) - ( f2 . x ) ) & ( f1 - f2 ) . $1 = ( f1 . x ) - ( f2 . x ) ; defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. $2 - x0 .|| < r & $2 in Y & ||. $2 - x0 .|| < r & $2 in Y & ||. $2 - x0 .|| < r & $2 in Y & ||. $2 - x0 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) ; ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) = ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) .= ( 1 - 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) .= 1 * ( 2 * n0 + 2 * n0 ) ; defpred P [ Nat ] means for G being non empty finite strict non empty RelStr , G being strict non empty RelStr st G is space & card G = $1 & ( for i being Element of NAT st i in dom G holds G . i = G . i ) holds ( for i being Element of NAT st i in dom G holds G . i = G . i ) & ( for i being Element of NAT st i in dom G holds G . i = G . i ) implies ex j being Nat st j in dom G & G . i = G . i ) & ( i in dom G & G . i = G . i ) & ( i in dom G & G . i = G . i ) & ( for j being Element of NAT st i in dom G & G . i = G . i = G . i & ( for j being Element of NAT st i in dom G . j & j in dom G & i in dom G & j in dom G & j in dom G & j in dom G assume that not f /. 1 in Ball ( u , r ) and 1 <= m & m <= len f and LSeg ( f , i ) /\ Ball ( u , r ) <> {} and LSeg ( f , i ) /\ Ball ( u , r ) <> {} and not f /. ( i + 1 ) in Ball ( u , r ) and not f /. ( i + 1 ) in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos * ( $1 , r ) ) ) . ( 2 * $1 + 1 ) = ( Partial_Sums ( cos * ( $1 , r ) ) ) . ( 2 * $1 + 1 ) * ( ( cos * ( $1 , r ) ) . ( 2 * $1 + 1 ) ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & x in dom ( the Sorts of F ) & for i being set st i in dom x holds x . i = ( the Sorts of F ) . i & for i being set st i in dom x holds x . i = ( the Sorts of F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x .= ( x * ( x |^ n ) ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " .= ( x |^ n ) " ; DataPart Comput ( P +* ( a , I ) , Initialized s ) = DataPart Comput ( P +* I , Initialized s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialized s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= dom f1 /\ dom f2 and for g st g in ]. x0 , x0 + r .[ holds f1 . g <= f1 . g & for g st g in ]. x0 , x0 + r .[ holds f1 . g <= f2 . g & f2 . g <= f2 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 | X is continuous & f2 | X is continuous ) and ( f1 | X is continuous & f2 | X is continuous & ( f1 | X is continuous & f2 | X is continuous ) implies ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & f2 | X is continuous & ( f1 + f2 ) | X is continuous & f2 | X is continuous & f2 | X is continuous & f2 | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 is continuous & ( f1 + f2 is continuous & ( f1 + f2 is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is Element of L & for x being Element of L st x in X holds x is an Subset of L holds x is an Subset of L implies x is an Subset of L Support ( e ) in { Support ( m *' p ) where m is Polynomial of n , L : ex p being Polynomial of n , L st p in Support ( m *' p ) & p in Support ( m *' p ) } & p in Support ( m *' p ) & p in Support ( m *' p ) & q in Support ( m *' p ) & q in Support ( m *' p ) ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g & for p being Function of CQC-WFF ( Al ) , D st P [ p ] holds P [ p , ( len p ) qua Element of D ] & P [ p , ( len p ) qua Element of D ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) /. j ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ r ) ^ r ) . ( len p + k ) .= ( ( p ^ r ) ^ r ) . k .= ( ( p ^ r ) ^ r ) . k .= ( p ^ r ) . k ; len mid ( upper_volume ( D2 , D1 ) , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) + ( indx ( D2 , D1 , j ) + 1 ) - ( indx ( D2 , D1 , j1 ) + 1 ) + ( indx ( D2 , D1 , j1 ) + 1 ) ; x * y * z = Mz . ( ( y * z ) * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * ( y * z ) ) .= ( x * ( y * z ) ) * ( x * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) ) * ( ( x - x0 ) + ( ( proj ( 1 , 1 ) ) * ( x - x0 ) ) + ( ( proj ( 1 , 1 ) ) * ( x - x0 ) ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) * ( - 1 ) , 0 * ( - 1 ) * ( - 1 ) , 0 * ( - 1 ) * ( - 1 ) *> .= <* - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 * ( - 1 , 0 , 0 * ( - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 * ( - 1 , 0 , 0 , 0 , 0 * ( - 1 , Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F1 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F1 ) ^ ( L (#) F2 ) ) ) ) ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F1 ) ) .= Sum ( L (#) F1 ) ) + Sum ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( ( F1 ) ) ) ) .= Sum ( ( L (#) F2 ) ) ) .= Sum ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L (#) F2 ) ^ ( ( L ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X st Y0 is non empty & Y c= Y & for Y1 be finite Subset of X st Y1 is non empty & Y1 c= Y & Y c= X holds |. ( - lower_bound ( Y1 , Y ) ) .| < r / 2 ; ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j ) = f /. ( k + 2 ) ; ( ( 1 / 2 ) (#) ( cos * sin ) ) . x = ( ( 1 / 2 ) * ( sin * sin ) ) . x .= ( ( 1 / 2 ) * ( sin * sin ) ) . x .= ( ( 1 / 2 ) * ( sin * sin ) ) . x .= ( ( 1 / 2 ) * ( sin * sin ) ) . x .= ( ( 1 / 2 ) * ( sin * sin ) ) . x ; x- ( ( - b ) + sqrt ( delta ( a , b , c ) ) / 2 ) < 0 & ( - b ) - sqrt ( delta ( a , b , c ) ) / 2 < 0 or ( - b ) / 2 < 0 & ( - b ) / 2 < 0 or ( - b ) / 2 < 0 & ( - b ) / 2 < 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex_sup_of X , L and C is maximal and "\/" ( ( subrelstr X ) /\ C ) = "/\" ( ( uparrow X ) /\ ( ( uparrow X ) /\ C ) , L ) and not "\/" ( ( uparrow X ) /\ C ) in C ; ( for j being Element of Oed B holds ( j = i implies j = i ) implies ( j = i implies j = i ) & ( j = i implies j = i ) & ( j = i implies j = i ) & ( j = i implies j = i ) & ( j = i implies j = i ) implies j = i )