thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; thesis ; assume not thesis ; x <> b D c= S let Y ; S ` is convergent q in X ; V in X ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a is_>=_than X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D is_<=_than E ; assume e > 0 ; assume 0 < g ; p in X ; x in X ; Y ` in Y ; assume 0 < g ; not c in Y ; not v in L ; 2 in z `2 ; assume f = g ; N c= b ` ; assume i < k ; assume u = v ; I = J ; B ` ` = b ` ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is onto ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a `2 <= b `2 ; assume b in X ; assume k <> 1 ; f = product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated of squares ; assume m > 0 ; assume A c= B ; X is lower assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; y \not <= x ; A ` in B ` ; assume i = 1 ; let x be element ; x `1 = x `1 ; let X be BCK-algebra ; assume S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph , W be Walk of G ; let G be _Graph , W be Walk of G ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext , a , b be Real ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; thesis ; y be Real ; X c= f . a let y be element ; let x be element ; i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; r2 in dom f ; let x be element ; k1 be Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B ` c= B ` ; set s = - 1 ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real , x be Point of TOP-REAL 2 ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume not F is discrete ; m1 divides m ; B * A <> {} ; a + b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location , I be Program of SCM+FSA ; let l be Nat ; let i be Nat ; let r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; R2 in X ; cluster waybelow x -> in non empty ; X <> { x } ; x in { x } ; q , b // M ; A . i c= Y ; P [ k ] ; 2 to_power x in W ; X [ 0 ] ; P [ 0 ] ; A = A |^ i ; L~ L~ L~ L~ L~ L~ L~ L~ \subseteq ' ; G . y <> 0 ; let X be RealNormSpace , A be Subset of X ; a in X ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace , A be Subset of V ; assume x in - - M ; k < s . a ; not t in { p } ; let Y be set , f be Function of Y , BOOLEAN ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded & L is upper-bounded ; rng f = Y ; ( G . n ) c= L ; assume x in Cl Q ; m in dom P ; i <= len Q ; len F = 3 ; Free p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b `1 = a `1 + 1 ; x `1 = a * y `2 ; rng D c= A ; assume x in K1 ; 1 <= i-32 ; 1 <= i-32 ; p^ c= PI ; 1 <= i-15 ; 1 <= i-15 ; LMP C in L ; 1 in dom f ; let seq , n ; set C = a * B ; x in rng f ; assume f is_continuous_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; s-7 is bounded ; assume I c= P1 ; n in dom I ; let Q ; B c= dom f ; b + p _|_ a ; x in dom g ; F-14 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 >= Z1 + 1 ; assume w = 0. V ; assume x in A . i ; g in the carrier of Assume X ; y in dom t ; i in dom g ; assume P [ k ] ; @ C c= f ; x4 is increasing ; let e2 be element ; - b divides b ; F c= \tau ( F ) ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void ManySortedSign , A be non-empty MSAlgebra over S ; assume P [ n ] ; assume union S is finite independent ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT * ; assume ex_inf_of X , L ; y in rng f ; let s , I be set , A be ManySortedSet of I ; b ` ` c= b9 ` ; assume not x in RAT ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in B-24 ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x & cos is_differentiable_in sin . x ; assume y in rng S ; let x , y be element ; i2 < i1 & i2 < i2 ; a * h in a * H ; p , q in Y ; redefine func sqrt I -> Ideal of L ; q1 in A1 & q2 in A2 ; i + 1 <= 2 + 1 ; A1 c= A2 & A2 c= A1 ; an < n & cn < cn ; assume A c= dom f ; Re ( f ) is_integrable_on M ; let k , m be element ; a , a \equiv b , b ; j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 & g is_differentiable_in x0 ; g is_continuous_in x0 & g is_differentiable_in x0 ; assume O is symmetric transitive ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int V ; let v be VECTOR of V ; P3 halts_on s , P +* I ; d , c // a , b ; let t , u be set ; let X be set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace , A be Subset of X ; [ a , b ] in R ; x + w < y + w ; { a , b } is_>=_than c ; let B be Subset of A , C be Subset of B ; let S be non empty ManySortedSign ; let x be variable of f , A , B be Subset of f ; let b be Element of X , x be Element of X ; R [ x , y ] ; x ` ` = x ` ; b \ x = 0. X ; <* d *> in D * ; P [ k + 1 ] ; m in dom ( mnx ) ; h2 . a = y ; P [ n + 1 ] ; redefine func G * F -> ] ] ; let R be non empty multMagma , A be Subset of R ; let G be _Graph ; let j be Element of I ; a , p // x , p ; assume f | X is lower ; x in rng co /\ rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p `2 ; let M be be be be be id mamaid id ; let N be non empty for \mathop { \rm be Nat } ; let R be RelStr with finite finite finite finite : number ; let n , k be Nat ; let P , Q be be be be be RelStr ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as FinSeq-Location ; assume I does not ^ <* a *> ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < v8 ; x <= c2 . x ; x in F ` & y in F ` ; redefine func S --> T -> ) ; assume t1 <= t2 & t2 <= t1 ; let i , j be even Integer ; assume that F1 <> F2 and F2 <> {} ; c in Intersect ( union R ) ; dom p1 = c & dom p2 = c ; a = 0 or a = 1 ; assume A1 <> [: A2 , A1 :] ; set i1 = i + 1 ; assume a1 = b1 & a2 = b2 ; dom g1 = A & dom g2 = A ; i < len M + 1 ; assume not -infty in rng G ; N c= dom ( f1 + f2 ) ; x in dom ( sec | A ) ; assume [ x , y ] in R ; set d = x / y ; 1 <= len g1 & g1 /. 1 = g1 /. 1 ; len s2 > 1 & len s2 > 1 ; z in dom ( f1 | X ) ; 1 in dom ( D2 | ( len D2 ) ) ; p `2 = 0 & p `2 = 0 ; j2 <= width G & j2 <= width G ; len PI > 1 + 1 ; set n1 = n + 1 ; |. q-35 .| = 1 ; let s be SortSymbol of S ; ( gcd ( i , i ) ) = i ; X1 c= dom f & X2 c= dom f ; h . x in h . a ; let G be non empty thesis , F be Subset of G ; cluster m * n -> square ; let kl be Nat , k be Nat ; i - 1 > m - 1 ; R is transitive implies field R is transitive set F = <* u , w *> ; p-2 c= P3 & p`2 c= P3 ; I is_halting_on t , Q ; assume [ S , x ] is thesis ; i <= len f2 & i <= len f2 ; p is FinSequence of X & q is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom ( f1 | X ) ; assume [ X , p ] in C ; BX c= ( X \/ Z ) ; n2 <= ( 2 * n ) - 1 ; A /\ cP c= A ` ; cluster x -valued for Function ; let Q be Subset-Family of S , P be Subset of Q ; assume n in dom g2 & n + 1 in dom g2 ; let a be Element of R ; t `2 in dom e2 & t `2 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X , A be Subset of S ; i . y in rng i ; REAL c= dom f & dom f c= REAL ; f . x in rng f ; mt <= r / 2 ; s2 in r-5 & s2 in r-5 ; let z , z be complex number ; n <= Nm . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = [' S , T '] ; let x be non positive Real ; let m be Element of M ; f in union rng ( F1 . n ) ; let K be add-associative right_zeroed right_complementable non empty doubleLoopStr , p be Polynomial of K ; let i be Element of NAT , k be Nat ; rng ( F * g ) c= Y dom f c= dom x & dom g c= dom y ; n1 < n1 + 1 & n1 + 1 < n2 ; n1 < n1 + 1 & n1 + 1 < n2 ; cluster 1. T , X , Y :] -> \overline X ; [ y2 , 2 ] = z ; let m be Element of NAT ; let S be Subset of R ; y in rng S29 & y in rng S29 ; b = sup ( dom f ) ; x in Seg ( len q ) ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom ( h2 . n ) ; w + 1 = ma + 1 ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 & k2 + 1 <= k2 ; i be Element of NAT ; Support u = Support p \/ { u } ; assume X is complete for x being Element of X holds x is complete assume f = g & p = q ; n1 <= n1 + 1 & n2 <= n1 + 1 ; let x be Element of REAL , r be Real ; assume x in rng ( s2 | X ) ; x0 < x0 + 1 & x0 < r2 ; len Carrier ( L ) = W ; P c= Seg ( len A ) ; dom q = Seg n & dom q = Seg n ; j <= width ( M @ ) ; let seq1 be real-valued sequence of X , seq be real-valued sequence of X ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT ; assume z in A := being being being being being being being being Element of X ; i be set ; n - 1 = n-1 - 1 ; len n-27 = n & width n-27 = n ; not ] ( Z , c ) c= F assume x in X or x = X ; x is element of b , c ; let A , B be non empty set , f be Function of A , B ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q & dom q = Seg i ; let s be Element of E |^ omega ; let B1 be Basis of x , B2 be Basis of y ; L3 /\ L2 = {} ; L1 /\ LSeg ( p2 , p2 ) = {} ; assume downarrow x = downarrow y ; assume b , c // b , c ; LIN q , c , c ; x in rng f-1of ( f . x ) ; set n*> = n + j ; let D be non empty set , f be FinSequence of D ; let K be right_zeroed non empty addLoopStr , V be Subset of K ; assume f `1 = f & h `2 = h ; R1 - R2 is .| -holds R1 + R2 is total ; k in NAT & 1 <= k ; let a be Element of G ; assume x0 in [. a , b .] ; K1 ` is open & ( TOP-REAL 2 ) | K1 is open ; assume a , b are_maximal in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster n^ -> nefor ; not u in { ag } ; the carrier of f c= B \/ { x } reconsider z = x as VECTOR of V ; cluster the carrier of L -> -> -> be for set ; r (#) H is " (#) ( H ) ; s . intloc 0 = 1 & s . intloc 0 = 2 ; assume that x in C and y in C ; let U0 be strict universal algebra , A be Subset of U0 ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; r-35 in : ( y in : x in { y } ) ; let x , y be Element of X ; let A , I be for X be { of A } ; [ y , z ] in [: O , O :] ; ( \subseteq dom Macro i ) & ( card Macro i ) in dom Macro i ; rng Sgm ( A ) = A ; q |- \! such that q |- r ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o , a , b & LIN o , b , b ; p . 2 = Z |^ Y ; ( MD1 ) `2 = {} & ( MD1 ) `2 = {} ; n + 1 + 1 <= len g ; a in [: NAT , { A } :] ; u in Support ( m *' p ) ; let x , y be Element of G ; let I be Ideal of L ; set g = f1 + f2 , h = f2 + f3 ; a <= max ( a , b ) ; i-1 < len G + 1-1 ; g . 1 = f . i1 ; x `1 , y `2 in A2 ; ( f /* s ) . k < r ; set v = VAL g ; i - k + 1 <= S ; cluster associative for non empty multMagma ; x in ( support ( t ) ) ; assume a in [: G ( ) , G ( ) :] ; i `1 <= len ( y-5 ) ; assume p divides b1 + b2 ; M . x0 <= sup M1 & M . x0 <= sup M2 ; assume x in W-min ( X ) & y in W-min ( X ) ; j in dom ( z | i ) ; let x be Element of D ( ) ; IC s4 = l1 & IC s4 = l2 ; a = {} or a = { x } ; set uG = Vertices G , c = Vertices G ; seq " is non-zero & seq " is non-zero implies seq " is non-zero for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; hcn c= h-14 & hh2 c= h-14 ; ]. a , b .[ c= Z ; X1 , X2 , x3 , x4 , x5 , x5 , x1 , x2 , x3 , x4 , x4 , x4 , x5 , x1 , x2 , x3 , x4 , x4 , x4 , x1 a in Cl ( union F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 - 1 = k - 1 ; cluster -> real-valued for Relation ; ex v st C = v + W ; let IT be non empty addLoopStr , x be Element of IT ; assume V is Abelian add-associative right_zeroed right_complementable ; X-21 \/ Y in \sigma ( L ) ; reconsider x = x as Element of S ; max ( a , b ) = a ; sup B is upper Subset of B & sup B is upper Subset of A ; let L be non empty reflexive antisymmetric RelStr , X be Subset of L ; R is reflexive & R is transitive ; E , g |= ( the_left_argument_of H ) ; dom G `2 /. y = a ; 1 / 4 >= - r / 4 ; G . p0 in rng G & G . p0 in rng G ; let x be Element of FF , y be Element of D ; D [ P-6 , 0 ] ; z in dom ( id B ) /\ dom ( id B ) ; y in the carrier of N & y in the carrier of N ; g in the carrier of H & g in the carrier of G ; rng fbeing Subset of NAT & fset c= NAT ; j `2 + 1 in dom ( s1 . f ) ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL ; f . z1 in dom h & h . z2 in dom h ; P . k1 in rng P & P . k2 in rng P ; M = AM +* {} .= ( A \/ {} ) ; let p be FinSequence of REAL , r be Real ; f . n1 in rng f & f . n2 in rng f ; M . ( F . 0 ) in REAL ; Y - Y = b-a ; assume the distance of V , Q is_{} ; let a be Element of op ( V ) ; let s be Element of PQ ( ) ; let PA be non empty as non empty \rm RelStr ; let n be Nat ; the carrier of g c= B & the carrier of g c= A ; I = halt SCM R & I = halt SCM R ; consider b being element such that b in B ; set BK = BCS ( K , n ) ; l <= v . j ; assume x in downarrow [ s , t ] ; x `2 in uparrow t & x `2 in uparrow t ; x in ( JumpParts T ) \/ { {} } ; let h be Morphism of c , a ; Y c= 1. ( K , the_rank_of Y ) ; A2 \/ A3 c= ( Carrier ( L1 ) ) \/ ( Carrier ( L2 ) ) ; assume LIN o , a , b & LIN o , b , b ; b , c // d1 , e2 ; x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 8 be set ; dom <* y *> = Seg 1 & dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; set l = |. ar s .| ; [ x , x `2 ] in [: X , X :] ; for n be Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster -> strict for Subset of T ; x = h . ( f . z1 ) ; q1 , q2 , q1 is_collinear & q2 , q2 , q2 is_collinear ; dom M1 = Seg n & dom M2 = Seg n ; x = [ x1 , x2 ] ; let R , Q be ManySortedSet of A ; set d = 1 / ( n + 1 ) ; rng g2 c= dom W & rng g2 c= dom ( W + L ) ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Subset of V , V be Subset of M ; let I be Program of SCM+FSA , a be Int-Location ; assume x in rng ( the InternalRel of R ) ; let b be Element of the carrier of the carrier of T ; dist ( e , z ) - r-r > r-r ; u1 + v1 in W2 & v1 in W1 + W2 ; assume the carrier of L misses rng G ; let L be lower-bounded antisymmetric transitive antisymmetric RelStr ; assume [ x , y ] in a9 ; dom ( A * e ) = NAT & dom ( A * e ) = NAT ; let a , b be Vertex of G ; let x be Element of Bool M , i be Element of I ; 0 <= Arg a & Arg a < 2 * PI ; o , a9 // o , y & o , y // o , y ; { v } c= the carrier of l & { v } c= the carrier of l ; let x be bound variable of A ; assume x in dom ( uncurry f ) & y in dom ( uncurry f ) ; rng F c= ( product f ) |^ X assume D2 . k in rng D & D2 . k in rng D2 ; f " . p1 = 0 & f " . p2 = 0 ; set x = the Element of X , y = the Element of Y ; dom Ser ( G ) = NAT & rng Ser ( G ) = NAT ; let n be Element of NAT ; assume LIN c , a , e1 & LIN c , e1 , e2 ; cluster -> ordinal for FinSequence of NAT ; reconsider d = c , e = d as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in the carrier of f & y in the carrier of g ; conv @ @ S c= conv @ A & conv @ S c= conv @ A ; reconsider B = b as Element of the carrier of T ; J , v |= P \lbrack Carrier l , P . l .] ; redefine func J . i -> non empty TopSpace ; ex_sup_of Y1 \/ Y2 , T & ex_sup_of Y2 , T ; W1 is well field W1 & W2 is non empty implies W1 + W2 is non empty assume x in the carrier of R & y in the carrier of R ; dom n-16 = Seg n & dom n-16 = Seg n ; ( the carrier of X ) misses ss2 & ( the carrier of X ) misses ss2 ; assume ( a 'imp' b ) . z = TRUE ; assume that X is open and f = X --> d ; assume [ a , y ] in an implies [ a , y ] in an assume that I c= J and / I c= K and / I c= K ; Im ( lim seq , 0 ) = 0 & Im ( lim seq , 0 ) = 0 ; ( ( sin - cos ) `| Z ) . x <> 0 ; sin is_differentiable_on Z & cos is_differentiable_on Z implies cos is_differentiable_on Z & for x st x in Z holds cos . x <> 0 t3 . n = t3 . n .= s . n ; dom ( ( - 1 ) (#) F ) c= dom F ; W1 . x = W2 . x .= W2 . x ; y in W .vertices() \/ W .vertices() ; ( k + 1 ) <= len ( v | k ) ; x * a \equiv y * a . ( mod m ) ; proj2 .: S c= proj2 .: P & proj2 .: S c= proj2 .: P ; h . p4 = g2 . I .= g . I ; Gij `1 = U /. 1 .= G * ( 1 , k ) `1 ; f . rr1 in rng f & f . rr2 in rng f ; i + 1 + 1-1 <= len - 1 ; rng F = rng ( F . ( len F ) ) ; mode non empty multMagma is well unital associative non empty multMagma ; [ x , y ] in [: A , { a } :] ; x1 . o in L2 . o & x2 . o in L2 . o ; the carrier of ( support m ) c= B ; not [ y , x ] in id X ; 1 + p .. f <= i + len f ; seq ^\ k1 is lower & seq ^\ k1 is lower implies seq ^\ k is lower len ( F . ( i + 1 ) ) = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be Complex , x be Element of REAL ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be an empty Chain \in the carrier of T ; cluster -> directed-sups-preserving for Function of L , L ; f . j1 in K . j1 & f . j2 in K . j2 ; redefine func J => y -> total for I -valued Function ; K c= 2 |^ the carrier of T & K is finite ; F . b1 = F . b2 .= G . b2 ; x1 = x or x1 = y or x1 = z ; attr a <> {} means a / a = 1 ; assume that ca c= b and b in a ; s1 . n in rng s1 & s1 . n in rng s1 ; { o , b2 } on C2 & { o , b2 } on C2 ; LIN o , b , b9 & LIN o , b , b9 ; reconsider m = x as Element of Funcs ( V , C ) ; let f be non constant FinSequence of D ; let FF2 be non empty element , F be non empty set ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in F-8 ; reconsider pp2 = x , pp2 = y as Subset of m ; let A , B , C be Element of R ; redefine attr ex X being strict non empty as strict , normal ; rng c `1 misses rng e`1 & rng e`1 misses rng e`2 ; z is Element of gr { x } & z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume that k >= 2 and P [ k ] ; Z c= dom ( cot * ( ( id Z ) ^ ) ) ; the component of Q c= UBD ( A ) & UBD ( Q ) c= UBD ( A ) ; reconsider E = { i } as finite Subset of I ; g2 in dom ( 1 / ( g - f ) ) ; pred f = u means : R : a * f = a * u ; for n holds P1 [ n ] implies P1 [ n + 1 ] { x . O : x in L } <> {} ; let x be Element of V . s ; let a , b be Nat ; assume that S = S2 and p = p2 and q = p1 ; gcd ( n1 , n2 , n3 ) = 1 & gcd ( n1 , n2 , n3 ) = 1 ; set oZ = ( 2 * PI ) * ( i , j ) ; seq . n < |. r1 .| & seq . n < r2 ; assume that seq is increasing and r < 0 and seq is increasing ; f . ( y1 , x1 ) <= a & f . ( y1 , x2 ) <= b ; ex c being Nat st P [ c ] ; set g = { n to_power 1 where n is Element of NAT : n <= 1 } ; k = a or k = b or k = c ; aa , a{ g , h } , f , g , h , g ; assume Y = { 1 } & s = <* 1 *> ; Is1 . x = f . x .= 0 .= 0 ; W3 .last() = W3 . 1 .= v . 1 .= v . 1 ; cluster trivial -> finite for Walk of G ; reconsider u = u as Element of Bags X ; A in B @ implies A , B are_that A , B are_ x in { [ 2 * n + 3 , k ] } ; 1 >= ( q `1 / |. q .| - cn ) / ( 1 - cn ) ; f1 is_\HM { the Element of L~ f2 : f2 is_One } ; ( f `2 ) ^2 / ( |. q .| ) ^2 <= ( q `2 ) ^2 / ( |. q .| ) ^2 ; h is_the carrier of Cage ( C , n ) ; b `2 <= p `2 & p `2 <= ( p `2 + q `2 ) / 2 ; let f , g be s1 ) Function of X , Y ; S * ( k , k ) <> 0. K ; x in dom max ( - ( f . x ) , r ) ; p2 in Nv & p2 in Nv & p2 in Nv ; len ( the_left_argument_of H ) < len ( H ) & len ( H ) < len ( H ) ; F [ A , F-14 . A ] ; consider Z such that y in Z and Z in X ; attr 1 in C means : Def8 : A c= C |^ A ; assume that r1 <> 0 or r2 <> 0 and r1 <> 0 ; rng q1 c= rng C1 & rng q2 c= rng C2 ; A1 , L , A3 , A3 , A2 , A3 , A3 , A2 be non empty set ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in 4 ( p , SQ ) & a in { p } ; then S is \times l is atomic & P-2 [ S ] ; Cl Int [#] T = [#] T & Int [#] T = [#] T ; f12 | A2 = f2 | A2 & f12 | A2 = f2 | A2 ; 0. M in the carrier of W & 0. M in the carrier of W ; let v , v be Element of M ; reconsider K = union rng K as non empty set ; X \ V c= Y \ V & V c= Y \ Z ; let X be Subset of [: S , T :] ; consider H1 such that H = 'not' H1 ; 1_ 1 c= ( t * ( \HM { the } \HM { e } ) ) ; 0 * a = 0. R .= a * 0 ; A |^ ( 2 , 2 ) = A ^^ A ; set v{ v } = ( v /. n ) `1 ; r = 0. ( REAL-NS n ) & r = 0. ( REAL-NS n ) ; ( f . p4 ) `1 >= 0 & ( f . p4 ) `2 >= 0 ; len W = len ( W | ( W .: ( W .: ( W ) ) ) ; f /* ( s * G ) is divergent_to-infty & f /. ( s * G ) is divergent_to-infty ; consider l being Nat such that m = F . l ; t8 | W8 does not destroy b1 & t8 does not destroy b1 ; reconsider Y1 = X1 , Y2 = X2 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real , p be Point of TOP-REAL 2 ; reconsider i = i - 1 as non zero Element of NAT ; c . x >= id ( L . x ) ; \sigma ( T ) \/ omega ( T ) is Basis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> pair for set ; downarrow a /\ downarrow t is Ideal of T & downarrow t is Ideal of T ; let X be with_NAT non empty set , f be Function of X , NAT ; rng f = ` implies dom ( S , X ) = I let p be Element of B , the carrier' of S ; max ( N1 , 2 ) >= N1 & max ( N2 , 2 ) >= N2 ; 0. X <= b |^ ( m * mm1 ) ; assume that i in I and R1 . i = R ; i = j1 & p1 = q1 & p2 = q2 implies p1 = p2 assume gR in the right of g & gR in the carrier of g ; let A1 , A2 be Point of S , A be Subset of X ; x in h " P /\ [#] T1 & x in h " P /\ [#] T2 ; 1 in Seg 2 & 1 in Seg 3 implies 1 in Seg 3 reconsider X-5 = X , X*> as non empty Subset of Tsuch that X = { m } ; x in ( the Arrows of B ) . i ; cluster E-32 . n -> ( the carrier' of G ) -defined ; n1 <= i2 + len g2 & i2 <= len g2 implies ( ( f | ( i + 1 ) ) /. ( i + 1 ) ) `1 <= ( f | ( i + 1 ) ) `1 ( i + 1 ) + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 & u in the carrier' of G2 ; y = Re y + ( Im y ) * i ; ( / ( - 1 ) ) * ( - 1 ) gcd p = 1 ; x2 is_differentiable_on ]. a , b .[ & ( for x st x in ]. a , b .[ holds x <> a ) implies x2 = a rng M5 c= rng D2 & rng M5 c= rng D2 ; for p being Real st p in Z holds p >= a ( the carrier of X ) = proj1 * ( f . x ) ; ( seq ^\ m ) . k <> 0 & ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; ( p -Path M ) . 2 = d ; A \oplus ( B \ominus C ) = ( A ++ B ) \ominus C h \equiv gg . ( mod P ) , g . ( mod P ) ; reconsider i1 = i-1 - 1 as Element of NAT ; let v1 , v2 be VECTOR of V , v be VECTOR of V ; for V being strict Subspace of V holds V is Subspace of [#] V reconsider i-7 = i , im2 = j as Element of NAT ; dom f c= [: C ( ) , D ( ) :] ; x in ( the carrier of B ) /\ ( A /\ B ) ; len } in Seg ( len f2 ) & len ( f1 ^ f2 ) = len f1 + len f2 ; pp1 c= the topology of T & pp2 c= the topology of T ; ]. r , s .] c= [. r , s .] ; let B2 be Basis of T2 , B be Basis of T2 ; G * ( B * A ) = ( B * o1 ) * A ; assume that p , u , u is_collinear and p , q , v is_collinear ; [ z , z ] in union rng ( F . z ) ; 'not' ( b . x ) 'or' b . x = TRUE ; deffunc F ( set ) = $1 .. S & $1 .. S = $1 .. S ; LIN a1 , a3 , b1 & LIN a2 , a3 , b1 ; f " ( f .: x ) = { x } ; dom w2 = dom r12 & dom r12 = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( ( g2 ) . O ) `2 ) ^2 <= 1 ; p in LSeg ( E . i , F . i ) ; Ix * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; q9 . x in rng ( q | ( Seg n ) ) ; Carrier ( Lxy ) misses Carrier ( Lxy ) ` \/ { x } ; consider c being element such that [ a , c ] in G ; assume Na9 = oin & o8 = oin & o8 = ov ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= ( F |^ Cj ) " { x } ; P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in [. f . j , f . j .] ; attr 0 <= x & x <= 1 & x ^2 <= x ; p `2 - q `2 <> 0. TOP-REAL 2 & p `2 - q `2 <> 0. TOP-REAL 2 ; redefine func \cal a] ( S , T ) -> non empty ; let x be Element of [: S , T :] ; ( the carrier of F ) . ( a , b ) is one-to-one ; |. i .| <= - ( - 2 to_power n ) & |. i .| <= - ( - 2 to_power n ) ; the carrier of I[01] = dom P & the carrier of I[01] = dom ( P | P ) ; } * ( n + 1 ) ! > 0 * } ; S c= ( A1 /\ A2 ) /\ ( A2 /\ A3 ) ; a3 , a4 // b3 , b2 & a3 , a4 // b3 , b3 ; then dom A <> {} & dom A <> {} & rng A c= A ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x Joins X , Y & y is Vertex of G2 implies x = y set v2 = ( v /. ( i + 1 ) ) ; x = r . n .= r4 . n .= r4 . n ; f . s in the carrier of S2 & f . s in the carrier of S2 ; dom g = the carrier of I[01] & rng g = the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: A2 , A2 :] & dom d2 = [: A1 , A2 :] ; 0 < p / ( ||. z .|| + 1 ) ; e . ( m3 + 1 ) <= e . m3 ; B \ominus X \/ B \ominus Y c= B \ominus X /\ Y -infty < Integral ( M , Im ( g | B ) ) ; cluster O := F -> \HM { 0 } for operation of X ; let U1 , U2 be non-empty MSAlgebra over S , A be non-empty MSAlgebra over S ; Proj ( i , n ) * g is_differentiable_on X & Proj ( i , n ) * g is_differentiable_on X ; let x , y , z be Point of X , p be Point of TOP-REAL n ; reconsider px0 = p . x , px0 = q . x as Subset of V ; x in the carrier of Lin ( A ) & y in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA , a be Int-Location ; assume - a is lower Subset of - X & - a is Element of - X ; Int Cl A c= Cl Int Cl ( Cl A ) ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; p2 `2 <= p `2 & p `2 <= p2 `2 or p2 `2 <= p `2 & p `2 <= p2 `2 ; Cl Q ` = [#] ( ( TOP-REAL 2 ) | P ) ; set S = the carrier of T , T = the carrier of T ; set I8 = for f be FinSequence of TOP-REAL n holds for n be Nat holds f . n = n ; len p - n = len ( p - n ) - n ; A is Permutation of Swap ( A , x , y ) ; reconsider n6 = n} , n7 = n7 as Element of NAT ; 1 <= j + 1 & j + 1 <= len ( s . k ) ; let q\subseteq be { q where q is Element of M : q in F } , T = { q where q is Element of M : q in F } ; ( a , b ) in the carrier of S1 & ( a , b ) in the carrier of S2 ; c1 /. n1 = c1 . n1 & c2 /. n1 = c1 . n1 ; let f be FinSequence of TOP-REAL 2 , p be Point of TOP-REAL 2 , r be Real ; y = ( ( f * S9 ) . x ) . x ; consider x being element such that x in be Element of be IC is Element of A ; assume r in ( ( dist ( o ) ) .: P ) ; set i2 = ( n , i ) `1 , h = ( n , i ) `2 ; h2 . ( j + 1 ) in rng h2 & h2 . ( j + 1 ) in rng h2 ; Line ( M29 , k ) . i = M . i ; reconsider m = ( x - 1 ) / 2 as Element of ExtREAL ; let U1 , U2 be strict Subspace of U0 , a be Element of U1 ; set P = Line ( a , d ) ; len p1 < len p2 + 1 & len p2 + 1 <= len p1 + 1 ; let T1 , T2 be Scott Scott topological B of L , x be Element of T ; then x <= y & : x in : x in : y in : x in { y } ; set M = n -finite ( m , n ) ; reconsider i = x1 , j = x2 , k = x3 , l = x4 as Nat ; rng ( ( the_arity_of o ) . n ) c= dom H & ( the_arity_of o ) . n in dom ( H . n ) ; z1 " = z9 " & z2 " = z9 " & z1 = z2 " ; x0 - r / 2 in L /\ dom f & f . x0 = r / 2 ; then w is that rng w /\ L <> {} & ( S /\ L ) . w = {} ; set x-10 = xx ^ <* Z *> , xT = ( xx ^ <* Z *> ) ^ <* Z *> ; len w1 in Seg len w1 & len w1 in Seg len w1 & len w1 in Seg width w1 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of thesis , k be Element of PFuncs ( V , { k } ) ; x . n = ( |. a . n .| ) * ( x . n ) ; p `1 <= Gik `1 & p `1 <= Gik `1 & p `1 <= G * ( 1 , 1 ) `1 ; rng gg c= L~ ( g | ( L~ g ) ) & rng ( g | ( rng g ) ) c= rng ( g | ( rng g ) ) ; reconsider k = i-1 * ( l + j ) as Nat ; for n being Nat holds F . n is \HM { -infty } is \HM { -infty } ; reconsider x-10 = x-7 , xq = xq as VECTOR of M ; dom ( f | X ) = X /\ dom f .= X /\ dom f ; p , a // p , c & b , a // c , c ; reconsider x1 = x , y1 = y , y2 = z as Element of REAL m ; assume i in dom ( a * p ^ q ) ; m . ag = p . ag .= ( m + 1 ) . f ; a / ( s . m - s . n ) / ( s . m - s . n ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume that B1 \/ C1 = B2 \/ C2 and C2 = C2 \/ C1 ; X . i = { x1 , x2 } . i .= ( the carrier of X ) ; r2 in dom ( h1 + h2 ) /\ dom ( h2 + h2 ) ; \mathclose { 0. R } = a & b-0 = b ; FF is_closed_on t2 , Q2 & I is_halting_on t2 , Q2 implies for k being Nat st k <= m holds I is_halting_on t1 , Q set T = the = the topology of non ( X , x0 ) ; Int Cl Int Cl R c= Int Cl R & Int Cl R c= Cl Int Cl R ; consider y being Element of L such that c . y = x ; rng ( F . x ) = { F . x } .= { F . x } ; G-23 \ { c } c= B \/ S \/ S ; f+ 1 is_X , ( X + 1 ) \ { x } ; set RQ = the carrier of P , RQ = the carrier of Q ; assume that n + 1 >= 1 and n + 1 <= len M ; let k2 be Element of NAT , k be Nat ; reconsider pq = u , pq = v as Element of ( then n + 1 ) -tuples_on the carrier of K ; g . x in dom f & x in dom g implies f . x = g . x assume that 1 <= n and n + 1 <= len f1 and f1 /. n = f1 /. ( n + 1 ) ; reconsider T = b * N as Element of carr ( G ) ; len PM <= len P-35 & len PM <= len P-35 implies PM . ( len M , i ) = M . ( i , j ) x " in the carrier of ( A1 \/ A2 ) & x " in the carrier of ( A1 \/ A2 ) ; [ i , j ] in Indices ( A * ( i , j ) ) ; for m being Nat holds Re ( F . m ) is simple function f . x = a . i .= a1 . k ; let f be PartFunc of REAL i , REAL , x be Element of REAL i ; rng f = the carrier of ( ( Carrier A ) . i ) .= { i } ; assume s1 = sqrt ( 2 * p ) - p / 2 ; attr a > 1 & b > 0 & a / b > 1 ; let A , B , C be Subset of IQ , a be Real ; reconsider X0 = X , Y0 = Y , Y0 = Z as RealNormSpace ; let f be PartFunc of REAL , REAL , x be Element of REAL ; r * ( v1 |-- I ) . X < r * 1 ; assume that V is Subspace of X and X is Subspace of V ; let t-3 , t-4 be Relation of A , B ; Q [ e-14 \/ { v-5 } , f . v-5 ] ; g \circlearrowleft W-min L~ z = z implies ( W-min L~ z ) .. z < ( W-min L~ z ) .. z |. |[ x , v ]| - |[ x , y ]| .| = v} ; - f . w = - ( L * w ) .= - ( L * w ) ; z - y <= x iff z <= x + y & y <= z - x ( 7 / p1 ) |^ ( 1 / e ) > 0 ; assume X is BCK-algebra of 0 , 0 , 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 & F . 3 = v1 ; ( f | X ) . x2 = f . x2 .= ( f | X ) . x2 ; ( ( ( - tan ) `| Z ) . x ) in dom ( sec * ( ( id Z ) ^ ) ) ; i2 = ( f /. len ( f | ( i + 1 ) ) ) ; X1 = X2 \/ ( X1 \ X2 ) & X2 = ( X1 \ X2 ) \/ ( X2 \ X1 ) ; [. a , b , 1_ G .] = 1_ G & 1_ G = 1_ G ; let V , W be non empty VectSpStr over F_Complex , f be FinSequence of V ; dom g2 = the carrier of I[01] & rng g2 = the carrier of I[01] & g2 . 0 = p1 ; dom f2 = the carrier of I[01] & rng g2 = the carrier of I[01] & f2 . 0 = p1 ; ( proj2 | X ) .: X = proj2 .: ( proj2 .: X ) ; f . ( x , y ) = h1 . ( x `1 , y `2 ) ; x0 - r < a1 . n & a1 . n < x0 + r ; |. ( f /* s ) . k - GM .| < r ; len Line ( A , i ) = width A & width Line ( A , i ) = width A ; S{ x } |^ n = ( S . g ) |^ n .= S . g ; reconsider f = v + u as Function of X , the carrier of Y ; intloc 0 in dom Initialized p & ( Initialized p ) . 0 in dom DataPart p ; i1 := i2 := i3 does not contradiction & i2 does not destroy b1 implies ( i1 , i2 ) not f . ( i1 + 1 ) in dom ( i2 ) arccos r + arccos r = PI / 2 + 0 .= PI / 2 + 0 ; for x st x in Z holds f2 is_differentiable_in x & ( f2 * f1 ) . x > 0 reconsider q2 = ( q - x ) / ( 1 - x ) as Element of REAL ; ( 0 qua Nat ) + 1 <= i + j1 & i + 1 <= len ( 0 qua Nat ) ; assume f in the carrier of [' X , Omega Y '] ; F . a = H / ( x , y ) . a ; ( ( the carrier of T ) at ( C , u ) ) . x = TRUE ; dist ( ( a * seq ) . n , h ) < r ; 1 in the carrier of [. 0 , 1 .] & 1 in dom ( G | [. 0 , 1 .] ) ; p2 `1 - x1 > - g & p2 `1 - x1 < p2 `1 - g & p2 `1 - x1 < p2 `1 - g ; |. r1 - thesis .| = |. a1 .| * |. thesis .| ; reconsider S-14 L = 8 as Element of Seg 8 & dom SL = Seg 8 ; ( A \/ B ) |^ b c= A |^ b \/ B |^ b D0W .succ ( n ) = D0W .2 + 1 ; i1 = ma + n & i2 = K + n & h . i1 = 0. K ; f . a [= f . ( f . O1 "\/" f . a ) ; pred f = v & g = u , v + u ; I . n = Integral ( M , F . n ) ; chi ( T1 , S ) . s = 1 & chi ( T2 , S ) . s = 1 ; a = VERUM ( A ) or a = VERUM ( A ) or a = VERUM ( A ) ; reconsider k2 = s . b3 , k2 = s . b3 as Element of NAT ; ( Comput ( P , s , 4 ) ) . GBP = 0 ; L~ M1 meets L~ R4 implies ( L~ R ) /\ L~ R4 = { R /. 1 } set h = the continuous Function of X , R , x be Point of X ; set A = { L . ( k . n ) where k is Nat : k <= n } ; for H st H is atomic holds P [ H ] ; set b`1 = S5 ^\ ( ia1 + 1 ) , ba1 = S5 ^\ ( ia1 + 1 ) ; Hom ( a , b ) c= Hom ( a opp , b opp ) ; 1 / ( n + 1 ) < 1 / ( s " ) ; l `1 = [ dom l , cod l ] & l `2 = cod l ; y +* ( i , y /. i ) in dom g & y +* ( i , y ) in dom g ; let p be Element of CQC-WFF ( Al ( ) ) , P [ p ] ; X /\ X1 c= dom ( f1 - f2 ) /\ ( dom ( f1 - f2 ) ) ; p2 in rng ( f /^ ( len p1 -' 1 ) ) & p2 in rng ( f /^ ( len p1 -' 1 ) ) ; 1 <= indx ( D2 , D1 , j1 ) & indx ( D2 , D1 , j1 ) <= len D2 ; assume x in ( ( ( ( ( ( ( ( ( ( ( ( ( ( K ) \/ K0 ) ) ) \/ ( ( ( TOP-REAL 2 ) | D ) ) ) ) ) \/ ( ( TOP-REAL 2 ) | D ) ) ) ) ) ) ; - 1 <= ( ( f2 ) . O ) `2 & ( ( f2 ) . I ) `2 <= 1 ; let f , g be Function of I[01] , TOP-REAL 2 , a , b be Real ; k1 -' k2 = k1 - k2 & k1 -' k2 = k2 - k2 implies k1 = k2 rng seq c= ]. x0 , +infty .[ & ( for n holds seq . n < x0 ) implies seq is convergent & lim seq = x0 g2 in ]. x0 - r , x0 + r .[ & g2 in ]. x0 - r , x0 + r .[ ; sgn ( p `1 , K ) = - ( - 1_ K ) .= - ( - 1_ K ) ; consider u being Nat such that b = p |^ y * u ; ex A being subset of T st a = Sum A ; Cl union ( H ) = union ( ( union H ) \/ ( union H ) ) ; len t = len t1 + len t2 & len t = len t1 + len t2 & width t = width t2 + width t2 ; v-29 = v + w |-- v + ( w |-- ( A , B ) ) ; cv <> DataLoc ( t0 . GBP , 3 ) .= intpos ( 0 + 3 ) ; g . s = sup ( d " { s } ) .= sup ( d " { s } ) ; ( \dot y ) . s = s . ( \dot y ) ; { s : s < t } in REAL implies t = {} or t = {} s ` \ s = s ` \ ( 0. X ) .= ( 0. X ) \ ( 0. X ) ; defpred P [ Nat ] means B + $1 in A implies B . $1 in A ; ( 339 + 1 ) ! = 3339 ! * ( 339 + 1 ) ; U ( succ A ) = 1. T & ( U , A ) is Element of ( the carrier of T ) ; reconsider y = y as Element of ( len y ) -tuples_on the carrier of K ; consider i2 being Integer such that y0 = p * i2 and i2 in dom f ; reconsider p = Y | Seg k as FinSequence of NAT , k be Nat ; set f = ( S , U ) \mathop { z } , g = S S , z = U ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , TOP-REAL n , x be Point of TOP-REAL n , r be Real ; ( ( ( M + i , 'not' A ) . [ n , 'not' A ] ) . 1 <> 1 ; ex r being Real st x = r & a <= r & r <= b ; let R1 , R2 be Element of ( n + 1 ) -tuples_on REAL , x be Element of REAL ; reconsider l = 0. ( { v } ) , r = 0. ( A ) as Linear_Combination of A ; set r = |. e .| + |. n .| + |. w .| + a ; consider y being Element of S such that z <= y and y in X ; a is being being being being being Element of 'not' ( b 'or' c ) = 'not' ( ( a 'or' b ) 'or' c ) ||. ( x9 - gg ) .|| < r2 & ||. ( x9 - gg ) .|| < r ; b9 , a9 // b9 , c9 & b9 , c9 // c9 , c9 implies b9 , c9 // c9 , a9 1 <= k2 -' k1 & k1 + 1 = k2 & k2 + 1 = k2 implies ( k2 + 1 ) <= k2 ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 >= 0 ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 < 0 ; E-max C in right_cell ( Rv , 1 ) & E-max L~ Cage ( C , 1 ) in rng Rv ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( ( lim G ) | D ) ; LIN b , a , c or LIN b , c , a ; p , a // a , b or p , a // b , a ; g . n = a * Sum fs1 .= f . n ; consider f being Subset of X such that e = f and f is strict ; F | ( N2 , S ) = CircleMap * ( F | N2 ) .= ( F | N2 ) | ( N2 , S ) ; q in LSeg ( q , v ) \/ LSeg ( v , p ) ; Ball ( m , r0 ) c= Ball ( m , s ) & Ball ( x , r ) c= Ball ( x , s ) ; the carrier of (0). V = { 0. V } & the carrier of (0). V = { 0. V } ; rng ( ( cos | [. - 1 , 1 .] ) ) = [. - 1 , 1 .] ; assume that Re seq is summable and Im seq is summable and Im seq is summable and Im seq is summable ; ||. ( vseq . n ) - ( vseq . n ) .|| < e / 2 ; set g = O --> 1 ; reconsider t2 = t11 , t2 = 0 as $ 0 as string of S2 , U ; reconsider xd = seq . n , xd = seq . n as sequence of REAL ; assume that C meets C and not E-max C meets L~ go and not E-max C in L~ pion1 and not E-max C in L~ pion1 ; - ( Cl ( 1 - r ) ) < F . n - r . x ; set d1 = thesis , d2 = dist ( x1 , z1 ) , d2 = dist ( x2 , z2 ) , d1 = dist ( y2 , z2 ) ; 2 |^ ( -' 00 -' 1 ) = 2 |^ ( -' 00 ) - 1 .= 2 |^ ( -' 00 ) ; dom vG2 = Seg ( len d6 ) & dom v6 = Seg ( len d6 ) ; set x1 = - k2 + |. k2 .| , x2 = - k2 + |. k2 .| , x3 = - k2 + 1 ; assume for n being Element of X holds 0. <= F . n & F . n <= F . n ; assume that 0 <= T-32 . i and T-32 . ( i + 1 ) <= 1 and T-32 . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A the carrier of ( Carrier ( LT + L2 ) ) c= I2 & the carrier of ( Carrier ( LT + L2 ) ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of the normal normal \hbox { - } over {} ; Z c= dom ( ( - 1 / ( sin * f1 ) ) `| Z ) ; |. 0. TOP-REAL 2 - ( q `1 / |. q .| - cn ) .| < r / 2 - cn ; A \ { A , B } c= A & A in not not L . ( A , succ ( d , B ) ) ; E = dom Carrier ( f ) & ( for x be Element of E holds f . x is_measurable_on E ) implies ( f | E ) is_measurable_on E C / ( A + B ) = C / B * C / A ; the carrier of W2 c= the carrier of V & the carrier of W1 c= the carrier of V ; I . IC ss2 = P . IC ss2 .= P . IC ss2 .= ( P +* I ) . IC s2 ; attr x > 0 means : Def8 : 1 / x = x / ( - 1 ) ; LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = [. p , R .] ; b , c are_connected & - C , - C + - C + D + D + D + E + E + F + J + M + N + E + F + J + M + N + E + F + J + M + N + E + F + J + M + N + assume f = id the carrier of OO & g = id the carrier of OO & h = id the carrier of OO ; consider v such that v <> 0. V and f . v = L * v ; let l be Linear_Combination of {} ( the carrier of V ) , r be Element of V ; reconsider g = f " as Function of U2 , U1 , U2 ; A1 in the carrier of G_ ( k , X ) & A2 in the carrier of G ; |. - x .| = - ( - x ) .= - x .= - x .= - x ; set S = is non empty ; Fib ( n ) * ( 5 * Fib ( n ) -2 ) >= 4 * be Nat ; vM /. ( k + 1 ) = vM . ( k + 1 ) ; 0 mod i = - ( i * ( 0 qua Nat ) ) .= - i * ( 0 qua Nat ) ; Indices M1 = [: Seg n , Seg n :] & Indices M1 = [: Seg n , Seg n :] ; Line ( St , j ) = St . j .= ( j - 1 ) + 1 ; h . ( x1 , y1 ) = [ y1 , x1 ] & h . ( y1 , y2 ) = [ y2 , y1 ] ; |. f .| - Re ( |. f .| * ( card b ) ) is nonnegative ; assume x = ( a1 ^ <* x1 *> ) ^ b1 & y = ( a1 ^ <* x2 *> ) ^ b1 ; MI is_closed_on IExec ( I , P , s ) , P & M is_halting_on s , P ; DataLoc ( t3 . a , 4 ) = intpos ( 0 + 4 ) .= intpos ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x + y & |. y .| = - y ; LIN c , q , b & LIN c , q , c & LIN c , q , b ; f{} . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) .= y1 + ( y2 + z1 ) ; f' . a = f{ a } & v in InputVertices S & [ x , v ] in InputVertices S ; p `1 <= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; set R8 = Cage ( C , n ) \circlearrowleft E8 , E7 = Cage ( C , n ) ; p `1 >= ( E-max C ) `1 & ( E-max C ) `1 <= ( E-max C ) `1 ; consider p such that p = p-20 and s1 < p /. i and p in L~ f ; |. ( f /* ( s * F ) ) . l - GM .| < r ; Segm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , k + 1 + 1 ) = width N .= width N ; f1 /* s1 is convergent & f2 /* s1 is convergent & ( f1 /* s1 ) . n = lim ( ( f1 /* s1 ) /* s1 ) ; f . x1 = x1 & f . y1 = y1 & f . y2 = y2 ; len f <= len f + 1 & len f + 1 <> 0 implies len f + 1 <> 0 dom ( Proj ( i , n ) * s ) = REAL m & rng ( Proj ( i , n ) * s ) = REAL m ; n = k * ( 2 * t ) + ( n mod ( 2 * k ) ) ; dom B = 2 -tuples_on the carrier of V & rng A = the carrier of V ; consider r such that r \not _|_ a and r \not _|_ x and r \not _|_ y ; reconsider B1 = the carrier of Y1 , B2 = the carrier of Y2 as Subset of X ; 1 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 * ( 1 / 2 ) <= 1 ; for L being complete LATTICE for A being non empty Subset of rng \mathbb L holds L , A are_isomorphic implies L is complete [ gi , gj ] in Ii \ Ij implies gi \ gj c= Ii \ Ij set S2 = 1GateCircStr ( x , y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 and for r st r < x0 ex g st r < g & g < x0 & g in dom ( f2 * f1 ) ; reconsider y = ( a ` ) / ( F . ( x , y ) ) as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 & s . 2 = d2 ; ( min ( g , ( 1 - 1 ) ) (#) f ) . c <= h . c ; set G3 = the \frac of G , v , w be Vertex of G , v be Vertex of G ; reconsider g = f as PartFunc of REAL , REAL-NS n , x be Element of REAL n ; |. s1 . m / p .| / |. p .| < d / p / ( |. p .| + 1 ) ; for x being element st x in ( ( 1 - u ) * t ) holds x in ( ( 1 - u ) * t ) P = the carrier of ( ( TOP-REAL n ) | D ) | P .= ( ( TOP-REAL n ) | D ) | P ; assume that p10 in LSeg ( p1 , p2 ) /\ LSeg ( p2 , p2 ) and p2 in LSeg ( p1 , p2 ) /\ LSeg ( p2 , p2 ) ; ( 0. X \ x ) |^ ( m * ( k + 1 ) ) = 0. X ; let g be Element of Hom ( cod f , \square ) ; 2 * a * b + ( 2 * c * d ) <= 2 * C1 * C2 ; let f , g , h be Point of the carrier of the carrier of X , Y , h be Function of X , Y ; set h = Hom ( a , g (*) f ) ; then idseq ( n ) | Seg m = idseq ( m ) & m <= n & n <= m ; H * ( g " * a ) in the right * ( the right * a ) ; x in dom ( ( - cos * sin ) `| Z ) & ( - cos * sin ) `| Z ) . x = - sin . x / ( cos . x ) ^2 cell ( G , i1 , j2 -' 1 ) misses C & cell ( G , i1 , j2 -' 1 ) misses C ; LE q2 , p4 , P , p1 , p2 & LE q2 , p , P , p1 , p2 implies LE q2 , p , P , p1 , p2 attr B is an component of A means : Def8 : B c= BDD A ; deffunc D ( set , set ) = union rng $2 & union rng $2 = union rng $1 & union rng $2 = union rng $1 ; n + - n < len ( pthesis + - n ) + - n & n + - n < len ( p ^ <* n *> ) ; attr a <> 0. K means for M being Matrix of K holds the_rank_of M = the_rank_of ( a * M ) ; consider j such that j in dom /\ /\ dom /\ I and I = len k + j ; consider x1 such that z in x1 and x1 in ( P . x1 ) and ( P . x1 ) `1 = x ; for n ex r being Element of REAL st X [ n , r ] set CP1 = Comput ( P2 , s2 , i + 1 ) , CP2 = P2 ; set cv = 3 / 4 , c/ ( 2 * PI ) , cv = 3 / 4 , cv = 5 / 4 ; conv @ W c= union ( F .: ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom ( arccot * ( arccot ) ) implies ( arccot * ( arccot ) ) . 1 = - 1 r3 <= s0 + ( r0 - ( |. v2 - v1 .| + 1 ) ) / ( 2 * ( ( v2 - v1 ) + 1 ) ) ; dom ( f * f4 ) = dom f /\ dom f4 .= dom ( f * f4 ) /\ dom ( g * f4 ) ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k .= Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } & rng ( s ^\ k ) c= dom f2 \ { x0 } ; reconsider g9 = gp , gq = gq , gr = gr as Point of TOP-REAL n ; ( T * h . s . x ) = T . ( h . s . x ) ; I . ( L . ( J . x ) ) = ( I * L ) . ( J . x ) ; y in dom ( the mapping of F ) implies commute ( Frege ( Frege ( A . o ) ) ) = dom ( Frege ( A . o ) ) ; for I being non degenerated integral , I being commutative Ideal of R holds the carrier of I is commutative doubleLoopStr set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) , P2 = P +* I ; P1 /. IC s1 = P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 .= P1 . IC s1 ; lim S1 in the carrier of [. a , b .] & lim S1 in the carrier of [. a , b .] ; v . ( l-13 . i ) = ( v *' l+ ( v *' l-13 ) ) . i ; consider n being element such that n in NAT and x = ( sn " ) . n ; consider x being Element of c such that F1 . x <> F2 . x and F2 . x <> 0 ; card ( card ( X , 0 , x1 , x2 , x3 ) ) = { E } & card ( X , 0 , x1 , x2 , x3 } ) = 1 ; j + ( 2 * ( k + 1 ) ) + m1 > j + ( 2 * ( k + 1 ) ) ; { s , t } on A3 & { s , t } on B2 & { s , t } on B2 ; n1 > len crossover ( p2 , p1 , n1 , n2 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 mg . HT ( mg , T ) = 0. L & mg . HT ( mg , T ) = 0. L ; then H1 , H2 are_) & card H1 , ( card H2 ) * card ( H1 , { x } ) * card ( H2 , { x } ) * card ( H1 , { x } ) * card ( H2 , { x } ) = H ; ( N-min L~ ff ) .. ff > 1 & ( N-min L~ ff ) .. ff > 1 & ( N-min L~ ff ) .. ff > 1 ; ]. s , 1 .] = ]. s , 2 .] /\ [. 0 , 1 .] .= [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) & x2 in [#] ( ( TOP-REAL 2 ) | ( L~ g ) ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S , the carrier of T ; DigA ( t-23 , z9 ) is Element of k -tuples_on ( the carrier of K ) ; I V V V V V V V V V V V V V V \mathop { d } = V ( k2 ) & V ( k2 ) = V ( k2 ) ; [: { u } , { u9 } :] = { [ a , u9 ] } \/ { [ a , u9 ] } ; ( w | p ) | ( p | ( w | w ) ) = p ; consider u2 such that u2 in W2 and x = v + u2 and u2 in W2 and u2 in W1 ; for y st y in rng F ex n st y = a |^ n & P [ n , y ] dom ( ( g * ( f . x ) ) | K ) = K & dom ( ( g * ( f . x ) ) | K ) = K ; ex x being element st x in ( ( the Sorts of U0 ) \/ A ) . s ; ex x being element st x in ( ( and OO ) \/ A ) . s ; f . x in the carrier of [. - r , r .] & f . x in [. - r , r .] ; ( the carrier of X1 union X2 ) /\ ( ( the carrier of X1 ) \/ ( the carrier of X2 ) ) <> {} ; L1 /\ LSeg ( p10 , p2 ) c= { p10 } /\ LSeg ( p1 , p2 ) ; ( b + b\cap bs ) in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of GX such that z = y and P [ z ] and z in A ; ( the carrier of ( ( the carrier of ( ( the carrier of X ) ) ) ) ) . ( - x ) <= e ; len ( w ^ w2 ) + 1 = len w + 2 + 1 .= len w + 1 + 1 ; assume q in the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 & q <> 0. TOP-REAL 2 ; f | E-4 ` = g | E-4 ` & g | E-4 ` = g | Ed ` & g | Ed = g | Ed ; reconsider i1 = x1 , i2 = x2 , j2 = x3 , j1 = x4 , j2 = x4 as Element of NAT ; ( a * A * B ) @ = ( a * ( A * B ) ) @ assume ex n0 being Element of NAT st f to_power n0 is + 1 & f . n0 is + 1 ; Seg len ( ( the carrier of G ) --> { 1 } ) = dom ( ( the carrier of G ) --> { 1 } ) ; ( Complement ( ( Complement ( A . m ) ) ) . n ) . x c= ( ( Complement ( A . m ) ) . n ) . x ; f1 . p = p9 & g1 . p = d & g1 . p = d & g2 . p = b ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; ( x | y ) | z = z | ( y | x ) ; ( |. x .| |^ n ) / ( n + 1 ) <= ( r2 |^ n ) / ( n + 1 ) ; Sum ( F ) = Sum f & dom ( F ) = dom g & for x be Element of X holds ( F . x ) . x = F . x ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume that W1 is Subspace of W3 and W2 is Subspace of W3 and W3 is Subspace of W3 and W3 is Subspace of W3 ; ||. t-15 . x .|| = lim ||. ( x - y ) .|| .= ||. ( x - y ) .|| .= ||. x - y .|| ; assume that i in dom D and f | A is lower bounded and g | A is lower bounded and g | A is lower ; ( ( p `2 ) ^2 - 1 ) * ( - ( - ( - ( p `2 / |. p .| - sn ) ) ) ) <= ( - ( - ( p `2 / |. p .| - sn ) ) ) ; g | Sphere ( p , r ) = id Sphere ( p , r ) & g | Sphere ( p , r ) = id Sphere ( p , r ) ; set N8 = N-min L~ Cage ( C , n ) , N8 = N-min L~ Cage ( C , n ) , N8 = \cal L ( Cage ( C , n ) , 1 ) ; for T being non empty TopSpace holds T is countable countable implies the TopStruct of T is countable countable width B |-> 0. K = Line ( B , i ) .= B * ( i , i ) .= B * ( i , j ) ; attr a <> 0 means a <> 0 implies ( A \+\ B ) \ a = ( A \ a ) \+\ ( B \ a ) ; then f is_\mathbin { \frac 2 } 3 , pdiff1 ( f , 1 ) & pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 ; assume that a > 0 and a <> 1 and b > 0 and b <> 1 and c > 0 ; w1 , w2 in Lin { w1 , w2 } & w2 in Lin { w2 , w1 } ; p2 /. IC s = p2 . IC s .= ( IC Comput ( p2 , s2 , k ) ) .= ( card I + card J ) ; ind ( T-10 | b ) = ind b .= ind B - ind ( T-10 | b ) .= ind B - ind ( T-10 | b ) ; [ a , A ] in the carrier of [ the carrier of * ( A , B ) , the carrier of G ( ) ] ; m in ( the Arrows of C ) . ( o1 , o2 ) & ( the Arrows of C ) . ( o1 , o2 ) = ( the Arrows of C ) . ( o1 , o2 ) ; ( ( a , CompF ( PA , G ) ) . z ) . x = FALSE & ( ( a , CompF ( PA , G ) ) . z ) . x = FALSE ; reconsider phi = phi /. 11 , phi = phi /. 22 , phi = phi /. 11 as Element of ( S , U ) * ; len s1 - 1 * ( len s2 - 1 ) + 1 > 0 + 1 * ( len s2 - 1 ) ; delta ( D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the carrier' of [: A , B :] & f22 = [: A , B :] ; the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 & the carrier of ( ( TOP-REAL 2 ) | K1 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z and q . z = x ; [#] V1 = { 0. V1 } .= the carrier of (0). V1 .= the carrier of (0). V1 .= the carrier of V1 ; consider P2 being FinSequence such that rng P2 = M and P2 is one-to-one and P2 is one-to-one and P2 is one-to-one ; assume that x1 in dom ( f | X ) and ||. x1 - x0 .|| < s and s in dom ( f | X ) and ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ^ <* p *> .= h ^ <* p *> ; c /. |[ b , c ]| = c .= |[ |[ a , c ]| , |[ b , c ]| ]| ; reconsider t1 = p1 , t2 = p2 , t1 = p3 , t2 = p2 , t2 = p3 , t1 = p2 , t2 = p3 , t2 = p1 , t1 = p2 , t2 = p3 , t2 = p1 , t2 = p2 , d = p3 , t2 = p3 , d = p1 , t2 = p3 , .: = { p2 , d 1 / 2 in the carrier of [. 1 / 2 , 1 .] & 1 / 2 in the carrier of I[01] ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D .= C * ( p1 `2 ) + D .= C * ( p1 `2 ) + D ; R . b - a + b = 2 * - b .= 2 * - b .= b ; consider \vert 1 - \vert 1 .| such that B = - 1 * ] + ( 1 - \vert 1 .| ) * A ; dom g = dom ( ( the Sorts of A ) * ( a , I ) ) & dom ( ( the Sorts of A ) * ( a , I ) ) = dom ( ( the Sorts of A ) * ( a , I ) ) ; [ P . ( l ) , P . ( l ) ] in ( the carrier of TT ) \/ { [ l . ( l + 1 ) , P . ( l + 1 ) ] } ; set s2 = Initialize s , P2 = P +* I ; reconsider M = mid ( z , i2 , i1 ) , N = L~ z , M = LSeg ( i2 , i1 ) , N = L~ z ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; 1 / ( |[ 0 , 1 ]| ) = 1 & 0 / ( |[ 0 , 1 ]| ) = 0 ; assume x in the left of g or x in the right & y in the right & x in the carrier of g ; consider M being strict Subspace of Aex T being strict Subspace of M st a = M & T is strict Subspace of M ; for x st x in Z holds ( ( #Z n ) + f ) . x <> 0 & ( #Z n ) + f . x <> 0 len W1 + len W2 + m = 1 + len W3 + m .= len W3 + m + 1 .= len W3 + m + 1 ; reconsider h1 = ( vseq . n ) - ( t-16 . n ) as Lipschitzian LinearOperator of X , Y ; ( - ( i mod len ( p + q ) ) + 1 ) in dom ( p + q ) ; assume that s2 is or s1 is_the { of s1 : F in the topology of s2 } and s2 is finite and F in the topology of s2 ; ( ( ( ( q - y ) / 2 ) * ( x - y ) ) * ( x - y ) ) = ( ( x - y ) / 2 ) * ( x - y ) ; for u being element st u in Bags n holds ( p `2 + m ) . u = p . u for B being Subset of u-5 st B in E holds A = B or A misses B or A misses B ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W2 = tree ( p ) \/ ( W1 \/ W2 ) ; x in { X where X is Ideal of L |^ \rm op ( L ) : X in D } ; the carrier of W1 /\ W2 c= the carrier of W1 & the carrier of W1 /\ W2 c= the carrier of W2 & the carrier of W1 /\ W2 c= the carrier of W2 ; ( for a , b being Element of L holds a * ( a + b ) = ( a + b ) * ( a + b ) ( ( X --> f ) . x ) . x = ( X --> dom f ) . x .= ( ( X --> dom f ) . x ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) , y = LSeg ( g , m ) ; p => ( q => r ) => ( p => q ) in TAUT ( A ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set PI = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( ( i - 2 ) |^ ( n -' m ) + 1 ) - 1 + 1 ; ( reproj ( 1 , z0 ) ) . x in dom ( f1 (#) f2 ) /\ dom ( f2 (#) f3 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } and b1 . r = { c2 } ; ex P st a1 on P & a2 on P & b on P & c on P & a , b , P & c , d , P is_collinear ; reconsider gf = g `1 * f `2 , hg = h `2 * g `2 as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` and v1 in V and v1 in V ; n in { i where i is Nat : i < n0 + 1 & i < n0 + 1 } ; ( F * ( i , j ) ) `2 >= ( F * ( m , k ) ) `2 ; assume K1 = { p : p `1 >= cn * |. p .| & p `2 <= 0 & p <> 0. TOP-REAL 2 } ; ConsecutiveSet ( A , succ O1 ) = ( ConsecutiveSet ( A , O1 ) ) .: ( A , O1 ) ; set Is1 = in dom Macro ( a , intloc 0 ) , Is2 = SubFrom ( a , intloc 0 ) , Is2 = SubFrom ( a , intloc 0 ) , Is2 = SubFrom ( a , intloc 0 ) ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & ( the carrier of L1 ) \/ ( the carrier of L2 ) c= the carrier of L2 ; consider xx being Element of GF ( p ) such that xx |^ 2 = a and xx |^ 3 = b ; reconsider eM = e4 , fN = f-5 , fN = f-5 , fN = fN as Element of D ; ex O being set st O in S & C1 c= O & M . O = 0. ; consider n being Nat such that for m being Nat st n <= m holds S . m in U1 and S . n in U2 ; f * g * reproj ( i , x ) is_differentiable_in ( proj ( i , m ) . x ) ; defpred P [ Nat ] means A + succ $1 = succ A & ( A + ) = ( succ A ) + ( succ $1 ) ; the left of - g = the left of g & the carrier of - g = the carrier of g & the carrier of - g = the carrier of g ; reconsider pM = x , pM = y , pM = z , pM = w , pM = y as Point of TOP-REAL 2 ; consider ' being Real such that p4 = y and x <= ' and for x0 being Element of REAL st x0 in dom f & x0 <= x0 holds f . x0 <= f . x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] & X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 & len ( x2 ^ y2 ) = len x2 + len y2 & width ( x2 ^ y2 ) = width ( x2 ^ y2 ) ; for x being element st x in X holds x in the set of positive iff ( for n being Nat holds x . n = ( n - 1 ) * x ) LSeg ( p11 , p2 ) /\ LSeg ( p1 , p2 ) = {} & LSeg ( p1 , p2 ) /\ LSeg ( p2 , p2 ) = {} ; func union ( X ) -> set equals ( the carrier of X ) \/ ( the carrier of X ) & ( the carrier of X ) \/ ( id X ) = ( the carrier of X ) ; len ( { ( C /. ( len C /. 1 ) ) , ( C /. ( len C -' 1 ) ) } ) <= len ( C /. ( len C -' 1 ) ) ; attr K is with_a , a , b be Element of K , i be Nat holds v . ( a |^ i ) = i * v . a ; consider o being OperSymbol of S such that t `2 . {} = [ o , the carrier of S ] and t `2 = [ o , the carrier of S ] ; for x st x in X ex y st x c= y & y in X & y is - f . x IC Comput ( P-6 , sd , k ) in dom ( Pd +* I ) & IC Comput ( Pd , sd , k ) in dom I ; attr q < s means : : : r < s & s < q & ]. r , s .] c= ]. p , q .] ; consider c being Element of Class ( f , c ) such that Y = ( F . c ) `1 and [ x , c ] in R ; func the ResultSort of S2 -> Function of the carrier' of S2 , the carrier' of S2 means : Def: for x being Element of the carrier' of S2 holds it . x = id the carrier' of S2 ; set y9 = [ <* y , z *> , f2 ] ; assume x in dom ( ( ( #Z 2 ) * ( arccot ) ) `| Z ) & ( ( #Z 2 ) * ( arccot ) ) `| Z ) . x = ( ( #Z 2 ) * ( arccot ) ) . x ; r-7 in Int cell ( GoB f , i , GoB f ) \ { ( GoB f ) * ( i , j ) } & ri2 in cell ( GoB f , i + 1 , j ) ; q `2 >= ( ( Cage ( C , n ) /. ( i + 1 ) ) `2 ) / ( ( Cage ( C , n ) /. ( i + 1 ) ) `2 ) ; set Y = { a "/\" a ` : a in X } ; i - len f <= len f + len f1 - len f + len f - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 <= len f - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 - len f + 1 ; for n ex x st x in N & x in N1 & h . n = x- ( x0 - x ) set | 0 = ( \mathop { a , I , p , s ) . i , C = p +* I ; p ( k ) . 0 = 1 or p ( k ) . 0 = - 1 & p ( k ) . 0 = 1 & p ( k ) . 1 = - 1 ; u + Sum L-18 in ( U \ { u } ) \/ { u + Sum L-18 } ; consider xx being set such that x in xx and xx in Vd and x = [ xx , xx ] ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( - len p ) .= p . ( - len p ) ; g + h = gg + hg1 & Nat ( g + h , X ) = g + h + h ; L1 is distributive & L2 is distributive implies [: L1 , L2 :] is distributive & [: L1 , L2 :] is distributive & [: L1 , L2 :] is distributive attr x in rng f means : Def8 : y in rng ( f \leftarrow x ) implies f / x , y / x |= f . y ; assume that 1 < p and 1 / p + 1 / q = 1 and 0 <= a and a <= b and 0 <= b ; F* ( f , M ) = rpoly ( 1 , M ) *' t + 1. F_Complex .= 1. F_Complex + 1. F_Complex .= 1. F_Complex ; for X being set , A being Subset of X holds A ` = {} implies A = X & A = {} or A = {} ( ( N-min X ) `1 ) ^2 + ( ( ( N-min X ) `1 ) ^2 ) <= ( ( ( ( N-min X ) `1 ) `1 ) ^2 + ( ( ( N-min X ) `2 ) ^2 ) ) ^2 ; for c being Element of the Sorts of A , a being Element of the free of A holds c <> a implies c <> a s1 . GBP = ( Exec ( i2 , s2 ) ) . GBP .= s2 . GBP .= Exec ( i2 , s2 ) . GBP .= 0 ; for a , b being Real holds |[ a , b ]| in ( y >= 0 ) -plane implies b >= 0 & a <= b for x , y being Element of X holds x ` \ y = ( x \ y ) ` & y = ( x \ y ) ` mode BCK-algebra of i , j , m , n , m , n be Nat , i , j be Element of NAT , j be Nat ; set x2 = |( Re ( y - y ) , Im ( x - y ) )| ; [ y , x ] in dom u5 & u5 . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .[ c= A & upper_bound divset ( D , k ) = upper_bound divset ( D , k ) ; 0 <= delta ( S2 . n ) & |. delta ( S2 . n ) .| < e / 2 implies 0 < e / 2 ( - ( q `1 / |. q .| - cn ) ) ^2 <= ( - ( q `1 / |. q .| - cn ) ) ^2 + ( - ( q `1 / |. q .| - cn ) ) ^2 ; set A = 2 / b-a ; for x , y being set st x in R" holds x , y are_\hbox { - } f . x , f . y -\hbox { - } f . y } deffunc FF2 ( Nat ) = b . $1 * ( M * G ) . $1 & ( M * G ) . $1 = ( M * G ) . $1 ; for s being element holds s in -> element iff s in -> Element of ( -> Element of S ) \/ ( \rm \rm \rm \rm \rm \rm x0 } ) for S being non empty non void non void holds S is connected iff S is connected & S is connected max ( degree ( z `1 ) , degree ( z `2 ) ) >= 0 & degree ( z `2 ) <= degree ( z `1 ) + degree ( z `2 ) ; consider n1 being Nat such that for k holds seq . ( n1 + k ) < r + s and for n holds seq . ( n + k ) < r + s ; Lin ( A /\ B ) is Subspace of Lin ( A ) & Lin ( B ) is Subspace of Lin ( B ) ; set n-15 = n-13 '&' ( M . x qua Element of BOOLEAN ) , nL = M . ( x qua Element of BOOLEAN ) , nL = M . ( x , n ) ; f " V in the topology of X & f " V in D & f " V in D & f " V in the topology of X & f .: V in D ; rng ( ( a the function T ) +* ( 1 , b ) ) c= { a , c , b } ; consider y being connected Walk of G1 such that y `1 = y and dom y `1 = WWthesis & y `2 = WW dom ( 1 / f ) /\ ]. -infty , x0 .[ c= ]. -infty , x0 .[ & ( 1 / f ) | ]. x0 , x0 + r .[ is continuous ; f2 is v of T ( i , j , n , r ) is Element of T ( i , j , n , - r ) ; v ^ ( n-3 |-> 0 ) in Lin ( ( B | c1 ) \/ ( B | c2 ) ) & v ^ ( n-3 |-> 0 ) in Lin ( B ) ; ex a , k1 , k2 st i = a /. k1 & j = b /. k2 & k1 = a /. k2 & k2 = b . k2 ; t . NAT = ( NAT .--> succ i1 ) . NAT .= succ ( 5 .--> succ i1 ) .= succ ( 5 .--> succ i1 ) .= succ 5 ; assume that F is bbfamily and rng p = F and dom p = Seg ( n + 1 ) and for i being Nat st i in Seg ( n + 1 ) holds p . i = F . i ; ( not b , b9 , a is_collinear ) & not LIN a , a9 , c & not LIN a , a9 , b & not LIN b , b9 , c ( L1 , O ) := O c= ( L1 , O ) \& ( L2 , O ) , ( L2 , O ) \& ( L2 , O ) ; consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) and for d being Element of E holds F . d = G ( d ) ; consider a , b such that a * ( /. v ) = b * ( - w ) and 0 < a and a < b ; defpred P [ FinSequence of D ] means |. Sum $1 .| <= Sum |. $1 .| & Sum ( $1 ) <= Sum ( |. $1 .| ) ; u = cos / ( x , y ) . v * x + ( cos / ( x , y ) . v * y ) .= v ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , |. p .| (#) |. p .| , {} ] & P [ p , id ( the Sorts of A ) ] implies P [ p ] consider X being Subset of CQC-WFF ( Al ( ) ) such that X c= Y and X is finite and X is inininand X is ininand X is ininand X is non empty ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f , z ) .| ; 1 < ( ( ( N-min L~ Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h & h <= g } implies ex l st l = { l1 } vol ( ( G . n ) vol ) <= ( Partial_Sums ( ( G . n ) vol ) ) vol ( ( G . n ) vol ) ) ; f . y = x .= x * 1. L .= x * ( power L ) . ( y , 0 ) .= x * ( power L ) . ( y , 0 ) ; NIC ( <% i1 , i2 , j2 %> , k ) = { i1 , succ ( i1 , k ) } .= { succ ( i1 , k ) } .= { succ ( i1 , k ) } ; LSeg ( p10 , p2 ) /\ LSeg ( p1 , p2 ) = { p1 } & LSeg ( p1 , p2 ) /\ LSeg ( p2 , p2 ) = { p2 } ; Product ( ( the carrier of I-15 ) +* ( i , { 1 } ) ) in ( ( the carrier of I-15 ) \/ ( i , { 1 } ) ) ; Following ( s , n ) | ( the carrier of S1 ) = Following ( s1 , n ) .= Following ( s1 , n ) .= Following ( s2 , n ) ; W-bound Qs2 <= q1 `1 & ( for q being Point of TOP-REAL 2 st q in Qs2 holds q `1 <= ( q `1 ) / 2 ) & ( q `1 <= ( q `1 ) / 2 ) f /. i2 <> f /. ( ( len f + len g -' 1 ) -' 1 ) & f /. i2 = f /. ( ( len f + 1 ) -' 1 ) ; M , f / ( x. 3 , a ) / ( x. 4 , a ) / ( x. 4 , a ) / ( x. 4 , a ) / ( x. 4 , a ) |= H ; len ( ( P ^ ) ) in dom ( ( P ^ ) ) & len ( ( P ^ ) ) = len ( P ^ ) + len ( P ^ ) ; A |^ ( n , n ) c= A |^ ( m , n ) & A |^ ( k , l ) c= A |^ ( k , l ) ; ( TOP-REAL n ) \ { q : |. q .| < a } c= { q1 : |. q1 .| >= a } consider n1 being element such that n1 in dom p1 and y1 = p1 . n1 and p1 . n1 = p2 . n1 and p1 . n1 = p2 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds X \not c= Z ; CurInstr ( P3 , Comput ( P3 , s2 , l ) ) <> halt SCM+FSA & CurInstr ( P3 , Comput ( P3 , s2 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 , w be Element of REAL holds ||. v - w .|| = upper_bound rng |. ( ( the carrier of V ) --> { w } ) .| for phi holds phi in X implies ( phi in X & not phi in X & phi in X ) & ( phi in X implies phi in X ) rng ( Sgm dom ( f-6 | dom ( f-9 | dom ( f-9 | dom ( f-9 | dom ( f-9 | dom f-9 | dom f-9 ) ) ) ) ) c= dom f-6 ; ex c being FinSequence of D ( ) st len c = k & ( P [ c ] ) & ( P [ c ] implies P [ c ] ) ; ( the_arity_of ( a , b , c ) ) = <* \mathop ( b , c ) , \mathop ( a , b ) , \mathop ( a , c ) *> ; consider f1 being Function of the carrier of X , REAL such that f1 = |. f .| and f1 is continuous and for x being Point of X holds f1 . x = x ; a1 = b1 & a2 = b2 or a1 = b1 & a2 = b2 & a3 = b3 or a1 = b1 & a3 = b3 & a4 = b2 ; D2 . ( indx ( D2 , D1 , n1 + 1 ) + 1 ) = D1 . ( n1 + 1 ) .= D1 . ( n1 + 1 ) ; f . ( ||. r .|| ) = ||. |[ r , r ]| .|| /. 1 .= <* r *> . 1 .= <* r *> . 1 .= x ; consider n being Nat such that for m being Nat st n <= m holds C-25 . n = C-25 . m and C-25 . m = C-25 . m ; consider d being Real such that for a , b being Real st a in X & b in Y holds a <= d & d <= b ; ||. L /. h .|| - ( K * |. h .| ) + ( K * |. h .| ) - ( K * |. h .| ) <= p0 + ( K * |. h .| ) ; attr F is commutative associative means : Def8 : for b being Element of X holds F -Sum { b } = f . b ; p = - ( - p0 + 0. TOP-REAL 2 ) .= 1 * ( p0 `1 ) + 0. TOP-REAL 2 .= ( - p `1 ) * ( p0 `2 ) .= ( - p `1 ) * ( p0 `2 ) .= ( - p `1 ) * ( p0 `2 ) ; consider z1 such that b `1 , x3 , x3 is_collinear and o , x1 , z1 is_collinear and o , x1 , z1 is_collinear and o <> z1 and o <> z1 ; consider i such that Arg ( Rotate ( s ) ) . q = s + Arg q + ( 2 * PI * i ) and Arg ( Rotate ( s ) ) . i = PI ; consider g such that g is one-to-one and dom g = card ( f . x ) and rng g = f . x and for x st x in dom f holds g . x = F ( x ) ; assume that A = P2 \/ Q2 and P2 <> {} and Q2 <> {} and P2 <> {} and Q2 <> {} and Q2 <> {} and P2 <> {} and Q2 <> {} and P2 <> {} and P2 <> {} ; attr F is associative means : Def8 : F .: ( F .: ( f , g ) , h ) = F .: ( f , F .: ( g , h ) ) ; ex x being Element of NAT st m = x `2 & x `1 in z `1 & x `2 < i or m in { i } ; consider k2 being Nat such that k2 in dom P-2 and l in P-2 . k2 and for k being Nat st k in dom P-2 holds P-2 . k = P-2 . ( k2 + 1 ) ; seq = r (#) seq implies for n holds seq . n = r * seq . n & seq . n = r * seq . n & seq . n = r * seq . n F1 . [ ( id a ) , [ a , a ] ] = [ f * ( ( id a ) , [ a , b ] ) , f * ( id a ) ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 & p in D2 } \/ { p } ; consider z being element such that z in dom ( ( the Sorts of F ) * ( the Arity of S ) ) and ( ( the Sorts of F ) * ( the Arity of S ) ) . z = y ; for x , y being element st x in dom f & y in dom f & f . x = f . y holds x = y cell ( G , i , j ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v and ( T | E1 ) . e = v ; ( F `1 * b1 ) . x = ( Mx2Tran ( J , ' Z , ' ) ) . ( thesis /. j ) .= ( Mx2Tran J ) . ( T /. j ) ; - 1 / ( - ( - 1 ) ) = mm (#) D | n .= mm (#) D .= mm (#) ( - ( 1 / ( - 1 ) ) ) .= Det M ; attr x be set means : Def8 : for x be set st x in dom f /\ dom g holds g . x <= f . x ; len ( f1 . j ) = len f2 /. j .= len ( f2 . j ) .= len ( f2 . j ) .= len ( f2 . j ) .= len ( f2 . j ) ; All ( All ( 'not' a , A , G ) , B , G ) '<' Ex ( 'not' All ( a , B , G ) , A , G ) ; LSeg ( E . k0 , F . k0 ) c= Cl RightComp Cage ( C , k0 + 1 ) & LSeg ( E . k0 , F . k0 ) c= RightComp Cage ( C , k0 + 1 ) ; x \ a |^ m = x \ ( a |^ k * a ) .= ( x \ a ) |^ k * a .= ( x \ a ) |^ k ; k -th ininininininin1 = ( commute ( I-5 . k ) ) . k .= ( commute ( I-5 . k ) ) . ( ( commute ( I-5 . k ) ) . i ) .= ( ( commute ( IU . k ) ) . i ) . i ; for s being State of Aex n being Nat holds Following ( s , n ) . ( 0 + ( n + 2 ) * n + 1 ) is stable for x st x in Z holds f1 . x = a / 2 & ( f1 - f2 ) . x <> 0 & ( f1 - f2 ) . x <> 0 support ( thesis ) \/ support ( ( support ( m ) ) ) c= support ( max ( n , ( support ( m ) ) ) ) \/ support ( ( support ( m ) ) ) ; reconsider t = u as Function of ( the carrier of A ) , ( the carrier of B ) , the carrier' of C ; - ( a * sqrt ( 1 + b ^2 ) ) <= - ( b * sqrt ( 1 + a ^2 ) ) ; phi ( succ b1 ) . a = g . a & phi ( b ) . ( g . a ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) . i ) and i <> j ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 } = { x1 } \/ { x2 , x3 , x4 , x5 , 8 } the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 & the Sorts of U1 /\ ( U1 "\/" U2 ) c= the Sorts of U1 & the Sorts of U1 /\ ( U1 \/ U2 ) c= the Sorts of U2 ; ( - ( 2 * a * ( b - a ) ) ) ^2 + b ^2 - Let ( a , b , c ) ^2 > 0 ; consider W00 such that for z being element holds z in W00 iff z in [: N , N :] & P [ z ] and P [ z ] ; assume ( the Arity of S ) . o = <* a *> & ( the ResultSort of S ) . o = r & ( the ResultSort of S ) . o = <* r *> & ( the ResultSort of S ) . o = r ; Z = dom ( ( exp_R * ( arccot ) ) `| Z ) /\ dom ( ( arccot * ( arccot ) ) `| Z ) .= dom ( ( exp_R * ( arccot ) ) `| Z ) ; sum ( f , SS1 ) is convergent & lim ( \HM { x } ) = integral ( f , SS1 ) & lim ( f , SS2 ) = integral ( f , SS2 ) ; ( X ( ) . ( a9 => g ) ) => ( x9 => ( x9 => x9 ) ) in ( ( the carrier of L ) \ { x } ) \/ ( ( the carrier of L ) \ { x } ) ; len ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n & width ( M2 * M3 ) = n ; attr X1 union X2 means : such that X1 is open SubSpace of X & X2 is open SubSpace of X & X1 is open SubSpace of X & X2 is open SubSpace of X & X2 is open SubSpace of X ; for L being upper-bounded antisymmetric RelStr for X being non empty Subset of L for X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider f-129 = ( F2 . b ) `2 , f-129 = ( F2 . b ) `2 , f-129 = ( F2 . b ) `2 , f-129 = ( F2 . b ) `2 as Function of M , M ; consider w being FinSequence of I such that the InitS of M , the InitS of M -{ s } ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) .= g . ( a |^ 0 ) ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) & f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Carrier L = L & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C1 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C2 & ( the carrier' of C1 ) /\ ( the carrier' of C2 ) c= the carrier' of C2 ; reconsider o-21 = o `2 as Element of TS ( ( the Sorts of A ) . v ) , ( the Sorts of A ) . v ; 1 * x1 + ( 0 * x2 ) + ( 0 * x3 ) = x1 + <* \underbrace ( 0 , 0 ) *> .= x1 + ( 0 * x2 ) .= x1 + ( 0 * x3 ) .= x1 + ( 0 * x2 ) ; Ex " . 1 = ( Ex qua Function ) " . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 .= ( ( E qua Function ) " ) . 1 ; reconsider u1 = the carrier of U1 /\ ( U1 "\/" U2 ) , v1 = the carrier of U1 /\ ( U1 "\/" U2 ) as non empty Subset of U0 ; ( ( x "/\" z ) "\/" ( x "/\" y ) ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" ( x "\/" y ) ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . l1 ) .| < 1 / ( |. M .| + 1 ) ; LSeg ( ( Lower_Seq ( C , n ) ) * ( i , ( n + 1 ) ) , ( ( Lower_Seq ( C , n ) ) * ( i + 1 , j ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x- x0 ) + R /. ( x- x0 ) ; g . c * ( - ( g . c ) * f . c ) + f . c * ( - ( g . c ) * f . c ) <= h . c * ( - ( g . c ) * f . c ) ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) .= f | divset ( D , i ) ; assume that ColVec2Mx f in the set of the carrier of A and ColVec2Mx b in the carrier of ( ( len A ) ) \ ( ( len A ) \ { i } ) and len f = width A and width A = width A ; len ( - M3 ) = len M1 & width ( - M3 ) = width M1 & width ( - M3 ) = width M1 & width ( - M3 ) = width M1 & width ( - M3 ) = width M1 ; for n , i being Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of ( ( the carrier of TOP-REAL n ) \ { i } ) pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 implies pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 attr a <> 0 & b <> 0 & Arg a = Arg b & Arg b = Arg b implies Arg ( - a ) = Arg ( - b ) & Arg ( - b ) = Arg ( - b ) for c being set st not c in [. a , b .] holds not c in Intersection ( the topology of X , a ) & not c in Intersection ( the topology of X , b ) assume that V1 is linearly-independent and V2 is linearly-independent and V is linearly-independent and V1 in V1 and u in V1 and v in V1 and V1 in V2 and V2 c= V1 ; z * x1 + ( 1 - z ) * x2 in M & z * y1 + ( 1 - z ) * y2 in N implies z * y1 + ( 1 - z ) * y2 in M rng ( ( PS1 qua Function ) " * SS2 ) = Seg card dS2 & dom ( PS2 qua Function ) = Seg card dS2 & rng ( PS2 ) = Seg card dS2 ; consider s2 being rational Real_Sequence such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b and for n holds s2 . n <= b . n ; h2 " . n = h2 . n " & 0 < - 1 / ( ( 1 - ( ( 1 - ( ( 1 - ( 2 / ( n + 1 ) ) ) |^ n ) ) ) ) & ( - ( ( 1 - ( ( 1 / ( n + 1 ) ) |^ n ) ) |^ n ) ) |^ n = ( ( 1 - ( 1 / ( n + 1 ) ) |^ n ) ) |^ n ) ( Partial_Sums ( ||. seq1 .|| ) ) . m = ||. seq1 .|| . m .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= ||. ( seq1 . m ) - ( seq2 . m ) .|| .= 0 ; ( Comput ( P1 , s1 , 1 ) ) . b = 0 .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b .= ( Comput ( P2 , s2 , 1 ) ) . b ; - v = ( - 1_ ( G ) ) * v & - w = ( - 1_ ( G ) ) * w & ( - w ) * v = ( - 1_ ( G ) ) * w & ( - w ) * w = ( - 1_ ( G ) ) * w ; sup ( ( k .: D ) .: D ) = sup ( ( k .: D ) .: ( D ) ) .= k . ( sup D ) .= sup ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D . ( D ) ) ) ) ) ) ) ) ) ) ) ) ) ; A |^ ( k , l ) ^^ ( A |^ ( n , l ) ) = ( A |^ ( k , l ) ) ^^ ( A |^ ( k , l ) ) ; for R being add-associative right_zeroed right_complementable non empty addLoopStr , I , J being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = ( p `1 ) ^2 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) .= ( p `1 ) ^2 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ; for a , b being non zero Nat for a , b being Element of NAT st a , b are_relative_prime holds ( for n being Nat holds ( n * b ) . n = ( ( n * a ) + ( n * b ) ) . n ) holds ( n * a ) . n = ( ( n * a ) + ( n * b ) ) . n consider A5 being countable set such that r is Element of CQC-WFF ( Al ) & A5 is ( Al ) -V & ( not ( ex A being Subset of Al st A is open & A is open ) ) & ( A is open ) implies A is ( ( A is open ) ) & A is ( ( A is open ) ) implies A is ( ( A ) ) ` ) ; for X being non empty addLoopStr for M being Subset of X , x , y being Point of X st y in M holds x + y in x + M { [ x1 , x2 ] , [ y1 , y2 ] } c= [: { x1 , y1 } , { y2 } :] \/ [: { x2 , y2 } , { y2 } :] ; h . ( f . O ) = |[ A * ( ( f . O ) `1 ) + B , C * ( ( f . O ) `2 ) + D ]| ; ( Gauge ( C , n ) * ( k , i ) ) in L~ Lower_Seq ( C , n ) /\ L~ Lower_Seq ( C , n ) implies ( Lower_Seq ( C , n ) * ( k , i ) ) `1 = ( Gauge ( C , n ) * ( k , i ) ) `1 cluster m , n are_relative_prime means : such : for p being prime Nat holds it is prime & for n being Nat holds it . ( p |^ n ) = m & p divides n ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L being LATTICE , a , b , c being Element of L st a \ b <= c & b \ a <= c holds a \+\ b <= c consider b being element such that b in dom ( H / ( x , y ) ) and z = ( H / ( x , y ) ) . b and ( H / ( x , y ) ) . b = x ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume ex e being element st e Joins W . 1 , W . 5 , G or e Joins W . 3 , W . 7 , G ; ( ( r (#) f ) | A ) . ( 2 * n ) . x = ( r (#) ( f | A ) ) . ( 2 * n ) . x + ( r (#) ( f | A ) ) . ( x + h ) ; j + 1 = ( len h11 + 2 ) - 1 + 1 .= i + 1 - 1 + 2 .= i + 1 - 1 + 2 .= i + 1 - 1 + 1 .= i + 1 - 1 + 1 ; ( *' ( S *' ) ) . f = *' ( S *' ) . ( ( opp f ) . f ) .= S . ( ( opp f ) . f ) .= S . ( ( *' f ) . f ) ; consider H such that H is one-to-one and rng H = the carrier of L2 and Sum ( L2 * H ) = Sum ( L2 ) and for k st k in dom ( L1 * H ) holds Sum ( L1 ) = Sum ( L2 ) ; attr R is b2 means : Def8 : for p , q st p in R & q <> q holds ex P st P is special & P c= R & P c= R & P c= R ; dom product ( product ( X --> f ) ) = meet ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( ( X --> f ) . ( X --> f ) ) ) ) ) ) ) ) ) ) ) upper_bound ( proj2 .: ( Upper_Arc ( C ) /\ Upper_Arc ( w ) ) ) <= upper_bound ( proj2 .: ( C /\ Vertical_Line ( w ) ) ) & upper_bound ( proj2 .: ( C /\ Vertical_Line ( w ) ) ) <= upper_bound ( proj2 .: ( C /\ [ w , w ] ) ) ; for r be Real st 0 < r ex n be Nat st for m be Nat st n <= m holds |. S . m - pp .| < r i * fN - fN = i * fN - ( i * yN ) .= i * ( fN - ( i * yN ) ) .= i * ( fN - ( i * yN ) ) ; consider f being Function such that dom f = 2 -tuples_on X & for Y being set st Y in 2 -tuples_on X holds f . Y = F ( Y ) ; consider g1 , g2 being element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] and g1 in ( the carrier of X ) and g2 in ( the carrier of Y ) ; func d |-count n -> Nat means : - : d |^ n divides n & it |^ ( n + 1 ) divides n & d |^ ( n + 1 ) divides n & it divides n ; f\in . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . ( 2 * x ) .= ( - P ) . ( x `1 ) .= a ; t = h . D or t = h . B or t = h . C or t = h . E or t = h . F or t = h . J ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( seq . n ) , ( seq . n ) ) < 1 / ( n + 1 ) ; ( ( q `1 ) / |. q .| ) ^2 <= ( ( q `1 ) / |. q .| ) ^2 & ( ( q `2 ) / |. q .| ) ^2 <= ( ( q `1 ) / |. q .| ) ^2 ; h0 . ( i + 1 + 1 ) = h21 . ( i + 1 + 1 - len h11 + 2 - 1 ) .= h11 . ( i + 1 + 1 - len h11 + 2 - 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier of S } such that a = [ o , x2 ] and [ o , x2 ] in the carrier' of S ; for L being RelStr , a , b being Element of L holds a <= { b } iff a <= b & a >= b & a >= b ||. h1 .|| . n = ||. h1 . n .|| .= |. h . n .| .= |. h . n .| .= |. h . n .| .= |. h . n .| .= ||. h . n .|| .= ||. h . n .|| .= ||. h . n .|| ; ( ( - ( #Z n ) ) * ( #Z n ) ) . x = f . x - ( #Z n ) . x .= ( - ( #Z n ) ) . x .= ( - ( #Z n ) ) * ( #Z n ) ) . x ; attr r = F .: ( p , q ) means : : : len r = min ( len p , len q ) & for i being Nat st i in dom r holds r . i = F . ( p . i ) ; ( rM / 2 ) ^2 + ( rM / 2 ) ^2 + ( rM / 2 ) ^2 <= ( r ^2 ) ^2 + ( r ^2 ) ^2 + ( r ^2 ) ^2 ; for i being Nat , M being Matrix of n , K st i in Seg n holds Det M = Sum ( ( the carrier of K ) | ( i , j ) ) then a <> 0. R & a " * ( a * v ) = 1 / a * v & a " * ( a * v ) = 1 / a * v & a * v = 1 / a * v ; p . ( j - 1 ) * ( q *' r ) . ( i + 1 - j ) = Sum ( p . ( j - 1 ) * r3 ) .= Sum ( p ) - Sum ( q ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) * ( h ^\ n ) " ) . $1 & ( ( R /* ( h ^\ n ) ) " ) . $1 = L . ( h . ( h ^\ n ) " ) ; assume that the carrier of H1 = f .: the carrier of H1 and the carrier of H2 = f .: the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H1 = the carrier of H2 and the carrier of H1 = the carrier of H2 ; Args ( o , Free ( S , X ) ) = ( ( the Sorts of Free ( S , X ) ) * the Arity of S ) . o .= ( the Sorts of Free ( S , X ) ) . o ; H1 = n + 1 -H .= n + 1 -H .= n + 1 -H .= n + 1 -H .= n -H .= n -H .= n -H .= n -H .= n -H ; ( O = 0 & O = 0 & O = 1 & O = 1 & O = 1 or O = 1 ) & O = { O , O } & O = { O , O } ; F1 .: ( dom F1 /\ dom F2 ) = F1 .: ( 1 / 2 ) .= F1 .: ( 1 / 2 ) .= { f /. ( n + 2 ) } .= { f /. ( n + 2 ) } ; attr b <> 0 & d <> 0 & b <> d & ( a - b ) / ( d - b ) = ( - ( e - b ) ) / ( d - b ) ; dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D .= ( dom f \/ dom g ) /\ D ; for i be set st i in dom g ex u , v be Element of L st g /. i = u * a & u in A & v in B & u in C g `2 * P `2 * g `2 " = g `2 * ( g `2 * P `2 ) * g `2 .= g `2 * ( g `2 * P `2 ) * ( g `2 * P `2 ) .= g `2 * ( g `2 * P `2 ) ; consider i , s1 such that f . i = s1 and not ( i in dom s1 & f . ( i + 1 ) <> s1 . ( i + 1 ) ) and not ( i in dom s1 & s1 . ( i + 1 ) <> s1 . ( i + 1 ) ) ; h5 | ]. a , b .] = ( g | Z ) | ]. a , b .] .= g | ]. a , b .] .= g | ]. a , b .] .= g | ]. a , b .] ; [ s1 , t1 ] , [ s2 , t2 ] are_connected & [ s2 , t2 ] , [ t2 , t2 ] ] , [ s2 , t2 ] are_connected & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , t2 ] in Indices G & [ s2 , then H is negative means : then H is not negative & H is not negative & H is not negative -g\mathopen \neq H & H is not negative -gOne ; attr f1 is total means : Def8 : 1 / ( f1 + f2 ) is total & ( f1 + f2 ) . c = f1 . c * f2 . c + f2 . c * ( f1 . c ) " ; z1 in W2 -Seg ( z2 ) or z1 = z2 & not z1 in W2 & ( z1 in W2 & z2 in W1 implies z1 in W2 & z2 in W1 & z1 in W2 & z2 in W1 & z1 in W2 ) implies z1 in W2 p = 1 * p .= a " * a * p .= a " * ( b * q ) .= a " * ( b * q ) .= a " * ( b * q ) .= a " * ( b * q ) ; for seq1 be sequence of REAL for K be Real st for n be Nat holds seq1 . n <= K holds upper_bound ( rng seq1 ) <= upper_bound ( rng seq2 ) & upper_bound ( rng seq1 ) <= upper_bound ( rng seq1 ) x0 in x0 or x0 in L~ go \/ L~ pion1 or p in L~ pion1 or p in L~ pion1 & p in L~ pion1 or p in L~ pion1 & p in L~ pion1 or p in L~ pion1 & p in L~ pion1 or p in L~ pion1 & p in L~ pion1 or p in L~ pion1 & p in L~ pion1 & p in L~ pion1 or p in L~ pion1 & p in L~ pion1 ; ||. f . ( g . ( k + 1 ) ) - g . ( g . k ) .|| <= ||. g . 1 - g . 0 .|| * ( K to_power k ) ; assume h = ( ( B .--> B ' +* ( C .--> D ) +* ( E .--> F ) +* ( F .--> J ) ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) +* ( M .--> N ) ) +* ( M .--> N ) +* ( M .--> A ) ; |. ( ( ( ( ( ( H . n ) || A ) || A ) ) . k - ( ( ( ( H . n ) || A ) || A ) . k ) ) .| <= e * ( b-a ) ; ( ( the Sorts of A ) . ( i ) ) . e = [ the ; of v , the carrier of ( the carrier of ( X . i ) ) , the carrier of ( ( the Sorts of A ) . i ) , the carrier of ( ( the Sorts of A ) . i ) ] ; { x1 , x1 , x1 , x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 7 , 8 } = { x1 , x2 , x3 } \/ { x4 , x5 , 7 } .= { x1 } \/ { x2 , x3 } .= { x1 , x2 } \/ { x2 , x3 } ; assume that A = [. 0 , 2 * PI .] and integral ( cos , A ) = 0 and integral ( cos , A ) = 0 and integral ( cos , A ) = 0 and integral ( cos , A ) = 0 ; p `2 is Permutation of dom ( f1 /. i ) & p `2 " = ( ( Sgm Y ) /. i ) " * ( p /. i ) " * ( Sgm X ) /. i ; for x , y st x in A & y in A holds |. 1 / ( f . x ) - 1 / ( f . y ) .| <= 1 * |. f . x - f . y .| p2 `2 = |. q2 .| * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 - sn ) ) .= ( q2 `2 / |. q2 .| - sn ) / ( 1 - sn ) .= ( q2 `2 / |. q2 .| - sn ) / ( 1 - sn ) ; for f be PartFunc of the carrier of CNS , REAL st dom f is compact & f is_continuous_on dom f & f is_continuous_on dom f & f is_continuous_on dom f holds rng ( f | X ) is compact & rng ( f | X ) c= dom f assume for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A ) ) . x = TRUE ; consider FF such that dom FF = n1 and for k be Nat st k in n1 holds Q [ k , FF . k ] and for k be Nat st k in n1 holds Q [ k , FF . k ] holds Q [ k , FF . k ] ; ex u , u1 st u <> u1 & u , u1 / ( 2 , v ) / ( 2 , v1 ) / ( 2 , v1 ) / ( 2 , v1 ) / ( 2 , v1 ) = ( u + u1 ) / ( 2 , v1 ) & u , u1 / ( 2 , v1 ) / ( 2 , v1 ) / ( 2 , v2 ) = ( u + u1 ) / ( 2 , v1 ) for G being Group , A , B being non empty Subset of G , N being normal Subgroup of G holds ( N ` A ) * ( N ` B ) = N ` A * ( N ` B ) for s be Real st s in dom F holds F . s = integral ( R / ( f - g ) ) - Integral ( M , ( f + g ) / ( f - g ) / ( f - g ) ) . x width AutMt ( f1 , b1 , b2 ) = len b2 .= width b2 .= width ( ( f2 , b1 , b2 ) * ( i , j ) ) .= width ( ( f2 , b1 , b2 ) * ( i , j ) ) ; f | ]. - PI / 2 , PI / 2 .[ = f & dom f " ]. - PI / 2 , PI / 2 .[ = ]. - 1 , 1 .[ & for x st x in ]. - 1 , 1 .[ holds f . x = 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / 2 * x + 1 / assume that X is closed w.r.t. ex a st a in X & a c= X and y in a |^ ( n + 1 ) and { x } \/ { y } in a ; Z = dom ( ( ( #Z 2 ) * ( arctan ) ) `| Z ) /\ dom ( ( #Z 2 ) * ( arctan ) + ( #Z 2 ) * ( arctan ) ) .= dom ( ( #Z 2 ) * ( arctan ) + ( #Z 2 ) * ( arctan ) ) ; func TAUT ( V ) -> Subset of V means : - l . 1 = { l . k : 1 <= k & k <= len l & l . k in V } ; for L being non empty TopSpace , N being net of L , M being net of N , c being Point of L st c is Point of M & M is in the carrier of N holds c is Point of M for s being Element of NAT holds ( ( ( ( id C\mathop ) . v ) + ( ( id C\mathop { C\mathop . v } ) + ( C\mathop { C\mathop { v } ) ) ) . s ) . s = ( ( ( ( id C\mathop { v } ) + ( C\mathop { C\mathop { v } ) ) + ( C\mathop { v } ) ) . s ) . s then z /. 1 = N-min L~ z & ( N-min L~ z ) .. z < ( N-min L~ z ) .. z & ( N-min L~ z ) .. z < ( ( N-min L~ z ) .. z ) .. z ; len ( p ^ <* ( 0 qua Real ) *> ) = len p + len <* ( 0 qua Real ) *> .= len p + 1 .= len p + 1 .= len <* ( 0 qua Real ) *> .= len p + 1 ; assume that Z c= dom ( - ( ln * f ) ) and for x st x in Z holds f . x = x & f . x > 0 and for x st x in Z holds f . x > - 1 & f . x < 1 ; for R being add-associative right_zeroed right_complementable right complementable non empty doubleLoopStr , I being Subset of R , J being Subset of R , I being Ideal of R , J being Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f being Function of [: B1 , B2 :] , B12 such that for x being Element of B1 , y being Element of B2 holds f . x = F ( x ) and f . y = F ( y ) ; dom ( x2 + y2 ) = Seg len x .= Seg len ( x2 + z2 ) .= Seg len ( x2 + z2 ) .= Seg len ( x + y ) .= dom ( x + y ) .= dom ( x + y ) ; for S being Functor of C , B for c being Object of C holds card S . ( id c ) = id ( ( Obj S ) . ( id c ) ) & ( Obj S ) . ( id c ) = id ( ( Obj S ) . ( id c ) ) ex a st a = a2 & a in dom f9 /\ f5 & for x st x in dom f9 holds \rrangle in \rrangle & \rrangle in \mathop { \rm seq } ( a , b ) & card { a } = card { a } a in Free ( ( H2 / ( x. 4 , x. k ) ) '&' ( H2 / ( x. 4 , x. k ) ) ) & ( ( H1 / ( x. 4 , x. k ) ) '&' ( H2 / ( x. 4 , x. k ) ) ) '&' ( H2 / ( x. 4 , x. k ) ) ) in Free ( x. 4 , x. k ) ; for C1 , C2 being is ] & f is stable Function of C1 , C2 for g being Function of C2 , C2 st ( for x being set st x in C1 holds f . x = g . x ) holds f = g ( W-min ( L~ go \/ L~ pion1 ) ) `1 = W-bound ( L~ go \/ L~ pion1 ) & ( W-min ( L~ go \/ L~ pion1 ) ) `1 = W-bound ( L~ go \/ L~ pion1 ) & ( W-min ( L~ go \/ L~ pion1 ) ) `1 = W-bound ( L~ go \/ L~ pion1 ) & ( W-min ( L~ go \/ L~ pion1 ) ) `1 = W-bound ( L~ go \/ L~ pion1 ) ; assume that u = <* x0 , y0 , z0 *> and f is_Assume u is_\/ pdiff1 ( f , 1 ) and SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) is_differentiable_in z0 and SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) is_differentiable_in z0 ; then ( t . {} ) `1 in Vars & ex x being Element of Vars st x = ( t . {} ) `1 & t . {} = x & ( t . {} ) `2 = s & ( t . {} ) `2 = s ; Valid ( p '&' p , J ) . v = Valid ( p , J ) . v '&' Valid ( p , J ) . v .= Valid ( p , J ) . v '&' Valid ( q , J ) . v .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T st a = f . x & b = f . y holds a >= b ; func Class R -> Subset-Family of R means : R : for A being Subset of R holds A in it iff ex a being Element of R st A = Class ( a , a ) & for A being Subset of R st A in Class ( R , a ) holds it . A = a ; defpred P [ Nat ] means ( ( ( \HM { the } \HM { vertices } ) \/ ( \HM { the } \HM { vertices } \HM { of G ) ) \ { v } ) c= G } implies ( ( the non empty Subset of G ) \ { v } ) is non empty assume that dim ( W1 ) = 0 and dim ( U1 ) = 0 and for v being Element of V st v in W1 holds ( v in W1 & ( v in W2 implies v in W1 ) & ( v in W2 ) ) & ( v in W1 implies v in W2 ) & ( v in W1 implies v in W2 ) & ( v in W2 implies v in W1 ) ) ; mamas ( m ) . t = ( m . t ) `1 .= [ [ m . t , the carrier of C ] `1 , the carrier of C ] `1 .= [ m . t , the carrier of C ] `2 .= m ; d11 = ( x9 ^ d22 ) . ( y9 , d22 ) .= f . ( y9 , d22 ) .= f . ( y9 , d22 ) .= ( f | ( i + 1 ) ) . d22 .= ( f | ( i + 1 ) ) . d22 .= ( f | ( i + 1 ) ) . d22 .= ( f | ( i + 1 ) ) . d22 ; consider g such that x = g and dom g = dom fx0 and for x being element st x in dom fx0 holds g . x in fx0 and g . x in fx0 ; x + 0. F_Complex |^ ( len x ) = x + len x |-> 0. F_Complex .= ( x + len x ) |-> 0. F_Complex .= ( x + len x |-> 0. F_Complex ) .= x ` .= x ` ; ( k -' kk + 1 ) in dom ( f | ( ( k -' 1 ) -' 1 ) ) & ( f | ( ( k -' 1 ) -' 1 ) ) . ( k -' 1 ) = ( f | ( k -' 1 ) ) . ( k -' 1 ) ; assume that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and P = { p1 , p2 } and P = { p2 , p1 } and P /\ P2 = { p1 , p2 } and P /\ P2 = { p2 , p1 } and P /\ P2 = { p2 , p1 } and P /\ P2 = { p2 , p1 } and P /\ P2 = { p2 , p1 } and P /\ P2 = { p2 , p1 } ; reconsider a1 = a , b1 = b , b1 = b , c1 = p `1 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `1 , c2 = p `2 , c2 = p `2 , c2 = p `2 , c1 = p `2 , c2 = p `2 , c2 = p `2 , c2 = p `2 , _ { p `1 , c1 } } ; reconsider being ttb1f = G1 . ( t . b ) * F1 . f as Morphism of ( G1 * F1 ) . a , ( G1 * F2 ) . b * F2 . b ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 ) ) .= LSeg ( f , i + i1 -' 1 ) ; Integral ( M , P . m ) | dom ( P . n -P . m ) <= Integral ( M , P . n -P . m ) | dom ( P . n -P . m ) ; assume that dom f1 = dom f2 and for x , y being element st [ x , y ] in dom f1 & [ y , x ] in dom f2 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( ( G * ( i , 1 ) `1 ) - ( G * ( i + 1 , 1 ) `1 ) , ( G * ( i + 1 , 1 ) `2 - ( G * ( i + 1 , 1 ) `2 ) ) / 2 ) ; for G being Group , H being Subgroup of G , a being Element of H st a = b holds for i being Integer , b being Integer st a |^ i = b holds for i being Integer holds a |^ i = b |^ i consider B being Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p9 where p9 is Point of TOP-REAL 2 : P [ p9 ] } , K1 = { p where p is Point of TOP-REAL 2 : P [ p ] } , K1 = { p where p is Point of TOP-REAL 2 : P [ p ] } , K1 = { p : p `2 <= 0 } , K1 = { p : p <> 0. TOP-REAL 2 } ; ( ( N-bound C ) - ( S-bound C ) ) / ( 2 |^ m ) <= ( ( N-bound C ) - ( S-bound C ) ) / ( 2 |^ m ) & ( ( S-bound C ) - ( S-bound C ) ) / ( 2 |^ m + 1 ) <= ( ( N-bound C ) - ( S-bound C ) ) / ( 2 |^ m + 1 ) ; for x be Element of X , n be Nat st x in E holds |. Re ( F . n ) .| . x <= P . x & |. Im ( F . n ) .| . x <= P . x len @ ( @ ( @ p ) ) = len @ ( @ p ) + len <* [ 2 , 0 ] *> .= len @ ( @ p ) + len @ ( @ q ) .= len @ ( @ p ) + 1 ; v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 , m2 ) / ( x. 4 , m2 ) / ( x. 0 ) = m3 ; consider r being Element of M such that M , v2 / ( x. 3 , m ) / ( x. 4 , m ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) / ( x. 4 , n ) ; func w1 \ w2 -> Element of Union ( G , R6 ) means : such that for w1 being Element of Union ( G , R6 ) holds it . ( w1 , w2 ) = ( ( ( ( the - Kin G ) | ( i , w ) ) | ( i , w ) ) ) . ( w1 , w2 ) ; s2 . b2 = ( Exec ( n2 , s1 ) ) . b2 .= s1 . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s2 . b2 .= Exec ( n2 , s2 ) . b2 .= s2 . b2 .= s . b2 ; for n , k be Nat holds 0 <= ( Partial_Sums |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . ( n + k ) & Partial_Sums ( |. seq .| ) . n <= Partial_Sums ( |. seq .| ) . ( n + k ) set F = S \! \mathop { {} } ; ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) >= ( Partial_Sums ( seq ) ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) + Partial_Sums ( seq ) . ( K + 1 ) ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x- x0 ) + R . ( x- x0 ) ; func closed -> closed Subset of TOP-REAL 2 equals ( the carrier of rectangle ( a , b , c , d ) ) \/ ( the carrier of rectangle ( a , b , c , d ) ) \/ ( the carrier of rectangle ( a , b , c , d ) ) ; a * b ^2 + ( a * c ^2 + b * a ^2 ) + ( b * c ^2 + c * a ^2 ) + ( c * a ^2 + b * c ^2 ) >= 6 * a * b * c * c * a * b * c ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m2 ) / ( x2 , m1 ) / ( x2 , m1 ) ; + ( Q ^ <* x *> , M ) = ( + ( Q , M ) +* ( ( L , M ) --> ( ( L , M ) --> FALSE ) ) +* ( ( card { x } --> FALSE ) --> FALSE ) ) .= ( ( ( L , M ) --> FALSE ) +* ( ( L , M ) --> FALSE ) ) +* ( ( L , M ) --> FALSE ) ) ; Sum ( F ) = r |^ n1 * Sum ( C-13 ) .= C ( n1 ) .= C ( n1 ) .= C ( n1 ) .= C ( n1 ) .= C ( n1 ) .= C ( n1 ) .= C ( n1 ) .= C ( n1 ) ; ( GoB f ) * ( len GoB f , 2 ) `1 = ( GoB f ) * ( len GoB f , 1 ) `1 & ( GoB f ) * ( len GoB f , 1 ) `2 = ( GoB f ) * ( 1 , 1 ) `2 ; defpred X [ Element of NAT ] means ( Partial_Sums s ) . $1 = ( a * ( $1 + 1 ) ) * ( $1 + 1 ) + b * ( $1 + 1 ) * ( $1 + 1 ) * ( $1 + 1 ) ) + b * ( $1 + 1 ) * ( $1 + 1 ) ; ( the_arity_of g ) . x = ( the Arity of S ) . g .= ( [ ( the Arity of S ) . g , ( the Arity of S ) . g ] ) `1 .= ( the Arity of S ) . g .= ( the Arity of S ) . g .= ( the Arity of S ) . g ; ( [: X , Y :] |^ Z ) tolerates [: X , Y :] & card ( ( X , Y ) |^ Z ) = card [: X , Y :] & card ( ( X , Y ) |^ Z ) = card ( X , Z ) for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . ( n + 1 ) holds b = N . ( s . n ) \ G . s ; E , f |= All ( x. 2 , ( x. 2 ) / ( x. 0 , ( x. 2 ) ) ) '&' ( x. 2 , ( x. 1 ) / ( x. 2 , ( x. 1 ) ) ) '&' ( x. 2 , ( x. 1 ) / ( x. 0 , ( x. 1 ) ) ) ) ; ex R2 being 1-sorted st R2 = ( p | n-11 ) . i & ( the carrier of p | n-11 ) . i = the carrier of R2 & ( the carrier of p | n-11 ) . i = the carrier of R2 . i & ( the carrier of p | n-11 ) . i = the carrier of R2 . i ; [. a , b + 1 / ( k + 1 ) .[ is Element of the carrier of the carrier of X & ( the partial of f ) . ( k + 1 ) is Element of the carrier of X & ( the partial of f ) . ( k + 1 ) is Element of the carrier of X & ( the carrier of f ) . ( k + 1 ) is Element of the carrier of X ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 := ( s . a ) , Comput ( P , s , 2 ) ) .= Exec ( a3 := ( s . a ) , Comput ( P , s , 2 ) ) ; card ( h1 ) . k = power ( F_Complex ) . ( - 1_ F_Complex , k ) * Sum u .= ( ( - 1. F_Complex ) * ( - 1_ F_Complex ) ) * u .= ( ( - 1. F_Complex ) * ( - 1_ F_Complex ) ) * u .= ( ( - ( 1. F_Complex ) ) * u ) . k ; ( f / g ) /. c = f /. c * ( g /. c ) " .= f /. c * ( 1 / g ) /. c .= ( f (#) ( 1 / g ) ) /. c .= ( f (#) ( 1 / g ) ) /. c ; len ( C - the carrier of ( ( len C ) - 1 ) ) = len ( C - the carrier of ( ( len C ) - 1 ) ) .= len ( C - the carrier of ( ( len C ) - 1 ) ) .= len ( C - the carrier of ( ( len C ) - 1 ) ) .= len ( C - the carrier of ( ( len C ) - 1 ) ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom f /\ X .= dom ( f | X ) /\ X .= dom ( ( r (#) f ) | X ) .= dom ( ( r (#) f ) | X ) .= dom ( ( r (#) f ) | X ) ; defpred P [ Nat ] means for n holds 2 * Fib ( n + $1 ) = Fib ( n ) * Fib ( n + $1 ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) + ( 5 * Fib ( n + $1 ) ) * Fib ( n + $1 ) ; consider f being Function of INT , INT such that f = f `1 and f is onto and for n being Nat st n < k + 1 holds f " { f . n } = { n } and f " { f . n } = { n } ; consider vs being Function of S , BOOLEAN such that vs = chi ( A \/ B , S ) and ( for A being Element of S holds E . ( A \/ B ) = Prob . A ) and ( E . ( A \/ B ) ) = Prob . ( A \/ B ) and ( E . ( A \/ B ) ) = Prob . ( A \/ B ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , L ( ) ) and Q [ y ] ; assume that A c= Z and Z = dom f and f = ( ( #Z 2 ) * ( ( #Z 2 ) * ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ) ) / ( ( #Z 2 ) * ( f1 + #Z 2 ) ) and for x st x in Z holds ( ( #Z 2 ) * ( f1 + #Z 2 ) ) / ( ( #Z 2 ) * ( f1 + #Z 2 ) ) ^2 ) = f . x ; ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( 1 , j2 ) ) `2 ; dom Shift ( Seq q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q1 & len Seq q2 = len Seq q2 & len Seq q2 = len Seq q2 } .= dom Seq q2 \/ dom Seq q2 \/ dom Seq q2 .= dom Seq q2 \/ dom Seq q2 \/ dom Seq q2 \/ dom Seq q2 ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 and G2 <= G2 and f is Morphism of G1 , G2 and g is Morphism of G2 , G3 and for x being Element of G1 , y being Element of G2 st x in G1 & y in G2 holds f . x = G1 * ( x , y ) ; func - f -> PartFunc of C , V means : - it = dom f & for c st c in dom it holds it /. c = - f /. c & for c st c in dom it holds it /. c = - f /. c + f /. c ; consider phi such that phi is increasing and for a st phi . a = a & {} <> a for v holds union ( L , v ) = a and for v holds union ( L , v ) = v and union ( L , v ) = v and L . a , v |= H ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = ( i - n ) / ( i + 1 ) and for i1 being Nat , i2 being Integer st ( i1 <> 0 & i2 <> 0 or [ i1 , i2 ] in Indices G ) holds n <= i2 & i2 <= n ; assume that not 0 in Z and Z c= dom ( ( arccot * ( 1 / 2 ) ) ) and for x st x in Z holds ( ( 1 / 2 ) (#) ( ( arccot * ( 1 / 2 ) ) ) `| Z ) . x > - 1 & ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) * ( 1 / 2 ) ) ) `| Z ) . x ; cell ( G1 , i1 -' 1 , ( 2 |^ m -' 1 ) ) \ ( ( Y -' 1 ) * ( ( Y -' 1 ) + ( Y -' 1 ) ) ) c= BDD L~ f & ( ( Y -' 1 ) + ( Y -' 1 ) ) \ ( ( Y -' 1 ) + ( Y -' 1 ) ) \ ( ( Y -' 1 ) + ( Y -' 1 ) ) ) c= BDD L~ f ex Q1 being open Subset of X st s = Q1 & ex Q being Subset-Family of [: Y , X :] st Q c= F & Q is finite & [#] ( Y | Q ) = union Q & [#] ( Y | Q ) = union Q & [#] ( Y | Q ) = union Q & [#] ( Y | Q ) = union Q ; gcd ( A-27 , ( the carrier of A ) , s1 , s2 , s2 , Amp ) = 1. R & gcd ( A-27 , ( the carrier of A ) , s2 , s2 , Amp ) = 1. R & gcd ( A-27 , ( the carrier of A ) , s2 , Amp ) = 1. R ; R8 = ( ( j , ( j + 1 ) ) ) . ( m2 + 1 ) .= ( ( j + 1 ) + 1 ) . ( m2 + 1 ) .= ( ( j + 1 ) + 1 ) . ( m2 + 1 ) .= [ 3 , ( j + 1 ) + 1 ] .= [ 3 , ( j + 1 ) + 1 ] ; CurInstr ( P-6 , Comput ( P-6 , s2 , m1 + m3 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= halt SCMPDS .= halt SCMPDS .= halt SCMPDS ; P1 /\ P2 = ( { p1 } \/ LSeg ( p1 , p2 ) /\ LSeg ( p11 , p2 ) ) \/ ( LSeg ( p2 , p2 ) /\ LSeg ( p2 , p2 ) ) \/ ( LSeg ( p2 , p2 ) /\ LSeg ( p2 , p2 ) ) \/ { p2 } ) .= { p2 } \/ { p2 } \/ { p2 } ; func the still of f -> Subset of the Sorts of Al means : - ex a , b st a in it & b in it & a in the carrier of f & p in the carrier of f & a in the carrier of f & b in the carrier of f & p in the carrier of f & a in the carrier of f & b in the carrier of f ; for a , b being Element of F_Complex for f being Polynomial of F_Complex st |. a .| > |. b .| for a being Polynomial of F_Complex st a >= 1 & f is \cap L~ f holds a * ( - b ) is \/ { f . ( - b ) } is \/ { f . ( - b ) } defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g . ( $1 + 1 ) & 1 <= j & j <= width G & j <= width G & G * ( i , j ) = G * ( i , j ) holds j < i ; assume that C1 , C2 are_`2 and for f being State of C1 , g being State of C2 , s1 , s2 being State of C2 st s1 = s2 & s2 = s2 holds s1 is stable iff for f being Function of C1 , C2 st f = s2 holds s2 is stable iff f is stable & f is stable & f is stable & f is stable & f is stable & f is stable & f is stable & f is stable ; ( ||. f .|| | X ) . c = ||. f .|| . c .= ||. f /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) /. c .|| ; |. q .| ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 & 0 + ( q `1 ) ^2 < ( q `1 ) ^2 + ( q `2 ) ^2 & 0 + ( q `2 ) ^2 < ( q `1 ) ^2 + ( q `2 ) ^2 + ( q `2 ) ^2 ; for F being Subset-Family of [: T , T :] st F is open & not {} in F & for A , B being Subset of [: T , T :] st A in F & B in F & A <> B & B <> {} holds card F = card ( A \/ B ) & card F = card ( A \/ B ) assume that len F >= 1 and len F = k + 1 and len F = len G and for k st k in dom F holds H . k = g . k and for k st k in dom F holds H . k = g . k * G . k and for k st k in dom F holds H . k = g . k * F . k ; i |^ ( ( mod n ) - i |^ s ) = i |^ ( s + k ) - i |^ s .= i |^ ( s + k ) - i |^ s .= i |^ ( s + k ) - i |^ s .= i |^ ( s + k ) - i |^ s * 1 .= i |^ ( s + k ) - i |^ s * 1 ; consider q being oriented oriented Chain of G such that r = q and q <> {} and ( F . ( q . 1 ) = v1 ) and ( F . ( q . len q ) = v2 ) & ( F . ( q . 1 ) = v2 ) & ( F . ( len q ) = v2 ) & ( F . ( len q ) = v2 ) ; defpred P [ Element of NAT ] means $1 <= len ( I ) implies ( ( g ) ^ ( I , Z ) ) . $1 = ( ( ( g , Z ) ^ ( I , Z ) ) . ( len ( G , Z ) ) ) . ( len ( G , Z ) + $1 ) ; for A , B being square Matrix of n , REAL for x being Element of REAL n holds len ( A * B ) = len A & width ( A * B ) = width B & width ( A * B ) = width A & width ( A * B ) = width B & width ( A * B ) = width A consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a & s . i = b & a in I & b in J & s . i in J ; func |( x , y )| -> Element of COMPLEX equals |( ( Re x ) , ( Re y ) )| - ( ( Re y ) * |( x , y )| ) + ( ( Im y ) * |( x , y )| ) + ( ( Im y ) * |( x , y )| ) ; consider g9 being FinSequence of F such that for x being Element of NAT st x0 in A & ( for y be Element of NAT st y in A holds g . y = A . ( x , y ) ) & ( for y be Element of NAT st y in A holds g . y = F . ( y , x ) ) & ( for y be Element of NAT st y in A holds g . y = F ( y ) ) holds < g9 ; then n1 >= len p1 & n2 >= len p1 implies crossover ( p1 , p2 , n1 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n2 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n3 , n2 , n3 , n3 , ( q `1 * a ) ^2 <= ( q `1 ) ^2 & - ( q `1 ) * a <= ( q `1 ) ^2 & ( q `1 ) ^2 + ( q `2 ) ^2 * a <= ( q `1 ) ^2 & ( q `1 ) ^2 + ( q `2 ) ^2 <= ( q `1 ) ^2 + ( q `2 ) ^2 ; ( F . ( len pp ) ) . ( len pp ) = ( F . ( p . ( len pp ) ) ) . ( len pp + 1 ) .= ( F . ( len pp + 1 ) ) . ( len pp + 1 ) .= ( F . ( len pp + 1 ) ) . ( len pp + 1 ) .= ( F . ( len pp + 1 ) ) . ( len pp + 1 ) .= ( F . ( len pp + 1 ) ) . ( len pp + 1 ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( <* a := intloc 0 *> ^ ( ( intloc 0 ) --> 1 ) ) ^ ( ( intloc 0 ) --> 1 ) ^ <* halt SCM+FSA *> ^ ( ( intloc 0 ) --> 1 ) ^ <* halt SCM+FSA *> ) ; consider B9 being Subset of B1 , y9 being Function of B1 , B2 such that [: B1 , B2 :] is finite and D1 = \frac ( 0 , B ) . ( y , y1 ) and for x being set st x in B1 holds [ x , y ] in the carrier of B1 and [ y , x ] in the carrier of B2 ; v2 . b2 = ( ( curry F2 ) * ( ( curry F2 ) * ( ( the > id B ) . b2 ) ) ) . b2 .= ( ( ( curry F2 ) * ( ( ( ( ( ( ( ( the carrier of B ) ) * ( ( ( the carrier of B ) * ( ( the carrier of A ) * ( the carrier of B ) ) ) ) ) ) ) ) ) . b2 .= F2 . b2 ; dom IExec ( I-35 , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) ; ex d-32 be Real st d-32 > 0 & for h be Real st h <> 0 & |. h .| < d-32 & |. h .| < ( L + R1 ) * ( ( L + R1 ) * ( h + R1 ) ) & |. h .| " * ( ( L + R1 ) * ( h + R1 ) ) < e / ( ( L + R1 ) * ( h + R1 ) ) LSeg ( G * ( len G , 1 ) + |[ - 1 , 0 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 0 ) \/ { G * ( len G , 1 ) + |[ 1 , 0 ]| } ; LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + i1 -' 1 ) ) .= LSeg ( h , i + i1 -' 1 ) .= LSeg ( h , i + i1 -' 1 ) .= LSeg ( h , i + i1 -' 1 ) .= LSeg ( h , i + i1 -' 1 ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , q , P , p1 , p2 & LE p2 , q , P , p1 , p2 & LE q , p1 , P , p1 , p2 & LE q , p1 , P , p1 , p2 & LE q , p1 , P , p1 , p2 } ; ( ( - x ) .|. y ) = ( - ( 1 / ( ( - x ) * y ) ) ) * ( x .|. y ) .= ( - ( 1 / ( ( - x ) * y ) ) ) * ( x .|. y ) .= ( ( - ( 1 / ( ( - x ) * y ) ) * y ) ) * ( x .|. y ) .= ( ( - ( - 1 / ( - x ) ) ) * y ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( p `2 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) .= ( p `2 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ) * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ; ( ( U - W ) * ( *> - p ) ) * ( *> - p ) = ( ( U - W ) * ( W - p ) ) * ( ( W - p ) * ( W - p ) ) ) .= ( ( U - W ) * ( W - p ) ) * ( ( W - p ) * ( W - p ) ) .= ( W - p ) * ( W - p ) ) * ( W - p ) ; func Shift ( f , h ) -> PartFunc of REAL , REAL means : - : dom it = - h & for x st x in - h holds it . x = ( - h ) . x & for x st x in dom it holds it . x = ( - h ) . x + ( - h . x ) * ( - h . x ) ; assume that 1 <= k and k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i + 1 , j ) and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) ; assume that not y in Free H and x in Free H and ( not x in Free H ) and ( not x in Free H & y in Free H ) and ( not x in Free H & y in Free H ) and ( x in Free H ) or x in Free H ) and ( x in Free H ) and ( x in Free H ) or x in Free H ) ; defpred P11 [ Element of NAT , Element of NAT ] means ( P [ $1 ] implies ( not P [ $1 ] ) & ( not P [ $1 ] ) & ( not P [ $1 ] implies $2 = p |^ $1 ) & ( not P [ $1 ] ) & ( not P [ $1 ] implies $2 = p |^ $1 ) & ( not P [ $1 ] ) & ( not P [ $1 ] implies $2 = p |^ $1 ) ) ; func \sigma ( C ) -> non empty Subset-Family of X means : - C in it iff for A being Subset of X holds A in it iff for W being Subset of X , Z being Subset of X st W c= A \ A & Z in it holds C . W <= C . Z + C . Z ; [#] ( ( dist ( P ) ) .: Q ) = ( dist ( P ) ) .: Q & lower_bound ( ( dist ( P ) ) .: Q ) = ( lower_bound ( ( dist ( P ) ) .: Q ) ) & lower_bound ( ( dist ( P ) ) .: Q ) = lower_bound ( ( dist ( P ) ) .: Q ) ; rng ( F | ( [: S , S :] ) ) = {} or rng ( F | ( [: S , T :] ) ) = { 1 } or rng ( F | ( [: S , T :] ) ) = { 2 } or rng ( F | ( [: S , T :] ) ) = { 1 } ; ( f " ( rng f ) ) . i = f . i " . ( ( f . i ) " . ( f . i ) ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . ( f . i ) .= ( f . i ) " . ( f . i ) ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and for C being Subset of TOP-REAL 2 st C = { p1 , p2 } & C = { p2 } holds P1 \/ P2 = { p1 , p2 } and P2 is closed and P2 is closed and C = { p1 , p2 } ; f . p2 = |[ ( p2 `1 ) ^2 / ( 1 + ( p2 `2 / p2 `1 ) ^2 ) , ( p2 `2 ) ^2 / ( 1 + ( p2 `2 / p2 `1 ) ^2 ) ]| .= |[ ( p2 `1 ) ^2 / ( 1 + ( p2 `2 / p2 `1 ) ^2 ) , ( p2 `2 ) ^2 / ( 1 + ( p2 `2 / p2 `1 ) ^2 ) ]| ; ( ( -\mathbin { a , X ) ) " . x = ( ( --st ( a , X ) qua Function ) " ) . x .= ( ( - a ) qua Function ) . x .= ( - a ) . x + ( - a ) . x .= ( - a ) . x + ( - a ) . x .= ( - a ) . x .= ( - a ) . x + ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= ( - a ) . x .= for T being non empty normal TopSpace , A , B being closed Subset of T , r being Real st A <> {} & A misses B for p being Point of T , r being Point of T , s being Point of ( in > G ) , r being Point of ( ( in > G ) ) . p , s being Point of ( ( in > G ) ) . p ) holds ( ( in > G ) . p ) for i , j st i + 1 in dom F for G1 , G2 being strict normal Subgroup of G st G1 = F . i & G2 = F . j & G2 = F . ( i + 1 ) & for k being Nat st k in dom G1 holds G1 . k is strict Subgroup of G1 . k & G2 is strict Subgroup of G2 . k holds G1 is strict Subgroup of G1 for x st x in Z holds ( ( ( #Z 2 ) * ( arctan - arccot ) ) `| Z ) . x = ( ( 2 * x ) / ( 1 + x ^2 ) ) * ( arctan - arccot ) . x / ( 1 + x ^2 ) synonym f is_right continuous means : \rm : x0 in dom ( f /* a ) & for a st a in dom f & for n st n in dom f & n <= m holds f /. n - f /. x0 in dom ( f | ]. x0 , x0 + r .[ ) & for n st n <= m holds f /. n - f /. x0 in { 0 } ; then ( X1 , X2 ) is closed & ( Y1 misses Y2 or ex Y2 being non empty SubSpace of X st Y1 is open & Y2 is open & ( Y2 is closed or Y1 is closed ) & ( Y2 is closed ) & ( Y1 is closed implies Y2 is closed ) & ( Y1 is closed implies Y2 is closed ) & ( Y2 is closed implies Y2 is closed ) & ( Y1 is closed implies Y2 is closed ) ) ; ex N being Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds ( SVF1 ( 1 , f , u ) . x - SVF1 ( 1 , f , u ) . x0 ) = L . ( x- ( 1 , f , u ) . x - SVF1 ( 1 , f , u ) . x0 ) + R . ( x - x0 ) ( p2 `1 ) ^2 * sqrt ( 1 + ( p3 `1 / p3 `2 ) ^2 ) >= ( ( p3 `1 ) ^2 * ( p3 `1 ) ^2 + ( p3 `2 ) ^2 * ( p3 `2 ) ^2 ) ) * sqrt ( 1 + ( p3 `1 ) ^2 ) ; ( ( 1 / t1 ) (#) ( ||. f1 .|| ) ) . x = ( ( 1 / t1 ) * ( ||. g1 .|| ) ) . x & ( ( 1 / t2 ) (#) ( ||. f1 .|| ) ) . x = ( ( 1 / t ) * ( ||. g1 .|| ) ) . x & ( ( 1 / t ) (#) ( ||. g1 .|| ) ) . x = ( ( 1 / t ) * ( ||. g1 .|| ) ) . x ; assume for x holds f . x = ( ( - sin * ( x + h ) ) (#) ( cos * ( x + h ) ) ) . ( x + h ) & x + h in dom ( ( - sin * ( x + h ) ) (#) ( cos * ( x + h ) ) ) & ( ( - sin * ( x + h ) ) (#) ( cos * ( x + h ) ) ) ) . x = ( 1 / ( sin * ( x + h ) ) * ( x + h ) ) / ( x + h ) ) / ( x + h ) ) ^2 / ( x + h ) ) ^2 ; consider X-23 being Subset of Y , Y1 being Subset of X such that t = [: X-22 , Y1 :] and Y1 is open and ex Y1 being Subset of Y st Y1 = Y1 /\ Y1 & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open ; card S . n = card { [: d , Y :] + ( a * d ) + b where d is Element of GF ( p ) , Y is Element of GF ( p ) : [ d , Y ] in R } .= { d , Y } .= { d , Y } \/ { b } .= { d , Y } \/ { b } .= { d , b } ; ( W-bound D - W-bound D ) * ( i1 - W-bound D ) / 2 * ( i - 2 ) * ( i - 2 ) = ( W-bound D - W-bound D ) * ( i - 2 ) * ( i - 2 ) .= ( W-bound D - W-bound D ) * ( i - 2 ) * ( i - 2 ) .= ( W-bound D - 2 ) * ( i - 2 ) * ( i - 2 ) ;