thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is z -element ; not x in Y ; z = +infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is let ; assume x in I ; q is ) by 0 ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k} ; assume m <= i ; assume G is finite ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is Assume f is Assume g is Assume f is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - -2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is k1 & n2 is k1 ; Q halts_on s ; x in for \in holds x in for y st y in that y in that y in that x in that y in that y M < m + 1 ; T2 is open ; z in b \mathclose a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PP is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , A be Subset of TOP-REAL n ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o on 4 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subspace of V ; not s in Y |^ 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a\rbrace <= being Real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , A be Subset of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; Sy is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let UA , G , H ; pp = c & pp = d ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in Ball ( x , r ) ; 1 <= j & j <= len f ; set A = \mathclose { as set ; card a [= c ; e in rng f ; cluster B ++ A -> empty ; H is with_no for ; assume n0 <= m ; T is increasing ; e2 <> e2 . e ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M in union M assume not x in REAL ; Im ( f , x ) is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} & m <> 0 ; let x be Element of Y ; let f be ) ] Chain Chain of P ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A / b misses B ; e in v in v `2 ; - y in I ; let A be non empty set , f be Function of A , REAL ; Px0 = 1 ; assume r in F . k ; assume f is simple function in S ; let A be [ \cdot A ] ; rng f c= NAT * ; assume P [ k ] ; ff <> {} ; o be Ordinal ; assume x is sum of f ; assume not v in { 1 } ; let IX , I , J ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , A be Subset of Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} & m <> 0 ; M + N c= M + M ; assume M is \mathclose { hh\overline ; assume f is additive for bbrst } is closed ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= len f ; f | A is non empty implies f | A is non empty f . x - x <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; godo in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & c2 < c2 implies c1 + c2 < c2 s2 is 0 -started & s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 & s4 = s4 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be \ of L ; y " <> 0 & y " <> 0 ; y " <> 0 & y " <> 0 ; 0. V = u-w ; y2 , y , y is_collinear ; R8 in X ; let a , b be Real , x be Point of TOP-REAL 2 ; let a be Object of C ; let x be Vertex of G ; let o be object of C , a be Object of C ; r '&' q = P \lbrack l .] ; let i , j be Nat ; let s be State of A , x be set ; s4 . n = N ; set y = x `1 , z = y `2 ; mi in dom g & mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; V-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng g c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= Z1 & xY c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re seq is convergent & Im seq is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , i be Nat ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 & n + 1 in dom g1 ; k + 1 in dom f ; the still of { s } is finite ; assume that x1 <> x2 and y1 <> y2 ; v3 in Vx0 & v2 in Vx0 ; not [ b `1 , b ] in T ; i-35 + 1 = i ; T c= <> * ( T , X ) ; l `1 = 0 & l `2 = 0 ; let n be Nat ; t `2 = r & t `2 = s ; AA is_integrable_on M & F is integrable ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and vseq is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 or z `2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be be be be be be the ) Instruction of S , k be Nat ; f-24 . x = 1 ; assume z \ x = 0. X ; p4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume that x1 in REAL and x2 in REAL ; p1 = ( K + L ) . p2 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMis closed ; assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; cR is stable Subset of R ; set cR = Vertices R ; px0 c= P3 & px0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; \vert downarrow a .| = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y - x .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( i ) ; k in dom ( q | ( i + 1 ) ) ; p is non empty \HM { finite } ; i - 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 - i2 = 0 ; j2 + 1 <= i2 & j2 + 1 <= len f ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for for for for } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom F = dom G ; let s be Element of NAT , n be Nat ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds S is holds S is with_2 -\subseteq the carrier of S ; let f be ManySortedSet of I ; let z be Element of F_Complex , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= V-15 \/ { x } ; assume I is_halting_on s , P & I is_halting_on s , P ; UA = ( the carrier of ( TOP-REAL 2 ) ) ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | X ) . x <= ( f | X ) . x ; let l be Element of L ; x in dom ( F . 0 ) ; let i be Element of NAT , k be Nat ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued implies seq1 - seq2 is COMPLEX -valued assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in card M ; assume that X in U and Y in U ; let D be non empty set ; set r = { q . ( k + 1 ) } ; y = W . ( 2 * PI ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , A be Subset of X ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite < F , A be Subset of V ; A * B on B , A ; f-3 = NAT --> 0 .= fs1 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " ( P ) is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT , T = X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be ManySortedSet of I ; PI / 2 < Arg z & Arg z < PI / 2 ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in II ; Q * ( 3 , 3 ) = 0 & Q * ( 3 , 1 ) = 0 ; set j = x0 gcd m , m = x0 gcd m ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - jj > 0 ; I \! \mathop { phi } = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / 2 ; s1 , s2 are_card ( X \ { x } ) ; j1 -' 1 = 0 & j2 -' 1 = 1 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime & i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower bounded and 0 <= r ; p1 `1 = 1 & p2 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len G ; 1 <= i1 -' 1 & i1 + 1 <= len G ; i + i2 <= len h & i + 1 <= len h ; x = W-min ( P ) & y = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & width <* A1 *> = 1 ; set H = h . gg ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 ; assume x in ( X /\ 4 ) ; ||. h - c .|| < d1 & ||. h - c .|| < d ; not x in the carrier of f . i ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing - k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \vert s be + t ; Q /\ M c= union ( F | M ) f = b * ( canFS S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , X be Subset of L ; S-20 is x -[ i , x ] ; let r be non positive Real ; M , v |= x \hbox \hbox { = } y ; v + w = 0. ( Z ) ; P [ len F ( ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 8 ; the zero of M = 0 & the carrier of M = { 0 } ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> [#] for Element of ( AllSymbolsOf S ) ; reconsider l1 = l- 1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 implies ( the carrier of T2 ) is SubSpace of T2 Q1 /\ Q19 <> {} & Q1 /\ Q19 <> {} ; let k be Nat ; q " is Element of X & q " is Element of X ; F . t is set & F . t is set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) , ( p `2 ) ; not r in ]. p , q .] ; let R be FinSequence of REAL , x be Element of REAL ; not ( S is not empty or not S is non empty ) ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & seq is convergent & lim seq = 0 ; let x be FinSequence of NAT , n be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s . NAT ; H + G = F- ( G-G ) ; CP1 . x = x2 & CP1 . x = y2 ; f1 = f .= f2 .= f2 * f1 .= f2 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d3 , o _|_ o , a3 implies a3 , a3 _|_ o I is reflexive & I is transitive implies I is transitive IL is antisymmetric implies C is antisymmetric & x in C sup rng H1 = e & sup rng H2 = e ; x = ( a * a9 ) * ( a * b9 ) ; |. p1 .| ^2 >= 1 ^2 - 1 ^2 ; assume j2 -' 1 < 1 & j2 + 1 < width G ; rng s c= dom f1 /\ dom f2 & rng s c= dom f1 ; assume that support a misses support b and support b misses support b ; let L be associative commutative associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , I2 ) = I1 +* I ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty -> NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , N . 1 *> -> complete for non trivial TopSpace ; 1 / ( a " ) = a " .= 1 ; ( q . {} ) `1 = o ; ( - i ) - 1 > 0 ; assume 1 / 2 <= t `1 & t `2 <= 1 ; card B = k + 1-1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } ; let G be finite connected ww_Graph ; e , v9 , v be set ; c . ( i - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty implies f1 /* q is divergent_to-infty set z1 = - z2 , z2 = - z2 , z1 = - z2 , z2 = - z1 ; assume w is_ll_of S , G ; set f = p |-count ( t ) , g = p |-count ( t ) ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , x be Point of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of the carrier of SCM+FSA & q is FinSequence of the carrier of SCM+FSA ; stop I ( ) c= P-12 & stop I ( ) c= P-12 ; set ci = fbeing /. i , fD = f3 ; w ^ t ^ t ^ s ^ w ^ t ^ w ^ t ^ w ^ w ^ t ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ w ^ W1 /\ W = W1 /\ W ` .= W ; f . j is Element of J . j ; let x , y be \rm \vert Subset of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ord x = 1 & x is dom and y is dom and y is dom ; set g2 = lim ( seq ^\ k ) , g1 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L2 . F-21 = 1 ; h \/ R1 = h \/ R1 & R1 = h \/ R2 ; ( ( sin - cos ) `| Z ) . x <> 0 ; ( ( #Z n ) * ( exp_R + f ) ) . x > 0 ; o1 in X-5 /\ O2 & o2 in XO2 /\ O2 ; e , v9 , v be set ; r3 > ( 1 - 2 ) * 0 ; x in P .: ( F -ideal of L ) ; let J be closed non empty Subset of R ; h . p1 = f2 . O & h . p2 = g2 . O ; Index ( p , f ) + 1 <= j ; len ( q | M ) = width M & width ( q | M ) = width M ; the carrier of `1 c= A & the carrier of `1 c= A ; dom f c= union rng ( F | ( n + 1 ) ) ; k + 1 in ( support ( s ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( \HM { the carrier of R } ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X & F is one-to-one ; reconsider w = |. s1 .| as Real_Sequence of X , REAL ; 1 / ( m * m + r ) < p ; dom f = dom Icn & dom g = dom Icn ; [#] P-17 = [#] ( K-2 ) .= [#] ( TOP-REAL 2 ) ; cluster - x -> ExtReal equals x - x + x ; then { db } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M , w2 be Element of S ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W1 & v in W2 reconsider y = y as Element of L2 ( ) ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n / 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , n be Nat ; dist ( x `1 , y ) < r / 2 ; reconsider mm1 = m - 1 as Element of NAT ; x- x0 < r1 - x0 & x0 < r2 - x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 + 1 ) in { x } ; cluster -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gik in LSeg ( cos , 1 ) /\ LSeg ( Gik , Gij ) ; let n be Element of NAT , x be Element of X ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm - 1 as Element of NAT ; reconsider d = x `2 as Element of C ( ) ; let s be 0 -started State of SCMPDS , a be Int_position , k1 be Integer ; let t be 0 -started State of SCMPDS , Q be ] means t = s ; b , b , x , y , x , y be Element of P ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; x0 >= ( sqrt c ) / ( sqrt 2 ) & ( sqrt c ) / ( 2 * n ) >= 0 ; reconsider t9 = T" as TopSpace , T = T | A ; set q = h * p ^ <* d *> ; z2 in U . ( 4 + 1 ) /\ Q2 & z2 in Q ; A |^ 0 = { <%> E } & A |^ 1 = A ; len W2 = len W + 2 & len W = len W + 2 ; len ( h2 ) in dom ( h2 ) & len ( h2 ) in dom ( h2 ) ; i + 1 in Seg ( len s2 ) & i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & ( g1 + g2 ) . z in dom f ; assume that p2 = E-max ( K ) and p3 = E-max ( K ) ; len G + 1 <= i1 + 1 & i1 + 1 <= len G ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = lim ( f1 , x0 ) ; cluster s-10 + sT -> summable for Real_Sequence ; assume j in dom ( M1 /. i ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of TOP-REAL n ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> ^ <* y *> ^ <* x *> ^ <* y *> ; a , b in { a , b } ; len p2 is Element of NAT & len p2 = len p1 + 1 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize s , P1 = P +* I , P2 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of x & y is Element of L ; k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence of REAL ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being 0 Element of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f , g .] = f & M \lbrack g , f .] = g ; ( ( ( >= 1 ) to_power 1 ) ) /. 1 = TRUE ; dom g = dom f /\ X .= dom f /\ X ; mode : il is \HM { of G , { v } } is \HM { w } ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y " as Element of H ; let f be Element of ( the carrier of Subformulae p ) \ { p } ; F1 . ( a1 , - a1 ) = G1 . ( a1 , - a1 ) ; redefine func Sphere ( a , b , r ) -> compact Subset of TOP-REAL 2 ; let a , b , c , d be Real , p be Point of TOP-REAL 2 ; rng s c= dom ( 1 / ( n + 1 ) ) ; curry ( F-19 . ( k , k ) ) is additive ; set k2 = card ( dom B ) , k1 = card ( dom B ) ; set G = DTConMSA ( X ) ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of ML , M be Matrix of n , K ; reconsider s1 = s , s2 = t as Element of S1 . s ; rng p c= the carrier of L & rng q c= the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x ) = 0 iff x = 0. W I-21 in dom stop I & stop I in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | A ; reconsider i0 = len p1 , i0 = len p2 as Integer ; dom f = the carrier of S & dom g = the carrier of T ; rng h c= union ( the carrier of J . i ) ; cluster All ( x , H ) -> \cal thesis ; d * N1 / 2 > N1 * 1 / 2 ; ]. a , b .] c= [. a , b .] ; set g = f " | D1 , h = f " | D2 ; dom ( p | mm1 ) = mm1 & dom ( p | mm2 ) = mm2 ; 3 + - 2 <= k + - 2 & k + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot . x ) & ( arccot ) . x > 0 ; x in rng ( f /^ n ) implies x in rng ( f /^ n ) let f , g be FinSequence of D ; cp in the carrier of S1 & cp in the carrier of S2 ; rng f " = dom f & rng f = rng f ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 & width G - 1 < width G ; assume v in rng ( S | E1 ) & w in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) & 0 < r ; let q be Point of TOP-REAL 2 , r be Real ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S *> is_the carrier of C-20 & <* S *> is_the carrier of C-20 ; i <= len ( G * ( i -' 1 , j ) ) ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] & x3 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = Sthesis " { x } & Q = Sy " { y } ; ( ( 1 / 2 ) |^ ( n + 1 ) ) is summable ; - p + I c= - p + A & - p + I c= - p + I ; n < LifeSpan ( P1 , s1 ) + 1 & Comput ( P2 , s2 , n ) = Comput ( P2 , s2 , n ) ; CurInstr ( p1 , s1 ) = i .= CurInstr ( p2 , s2 ) ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z , t = y as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 3 ; let C1 , C2 be subV of C , a be Object of C ; reconsider V1 = V , V2 = V as Subset of X | B ; attr p is valid means : Def8 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ ( a " ) is Subgroup of H & H |^ ( a " ) is Subgroup of H ; let A1 be p1 of O , E1 , A2 be Element of E ; p2 , r3 , q3 is_collinear & q2 , r3 , q3 is_collinear implies p2 , r3 , r3 is_collinear consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in the carrier of I[01] ; 0 . 0 < M . E8 . n ; op ( c , c ) |^ a = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> Nat for Nat -\subseteq the carrier of L ; set i1 = the Nat , i2 = the carrier of G ; let s be 0 -started State of SCM+FSA , P be Subset of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def8 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster the carrier of x `1 -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> -> Nat for holds x in { x } ; set S = <* Bags n , il *> , T = <* T *> ; set T = [. 0 , 1 / 2 .] , G = [. 0 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x `1 , y , z `2 , t be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 or p `1 = p1 `2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & width <* P @ *> = 1 ; set N-26 = the non empty Subset of N , NN = the carrier of N ; len g: g: + ( x + 1 ) - 1 <= x ; a on B & b on B & not b on B implies not a on B reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ^2 - n ; set q2 = N-min L~ Cage ( C , n ) , q2 = q2 ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 ; f " D meets h " V & f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( the carrier of S ) * ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f2 . ( a1 , b1 ) = b2 ; the carrier' of G ` = E \/ { E } .= { E } ; reconsider m = len ( thesis - k ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( UMP C , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { i } is } is non empty Subset of TOP-REAL n ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. ( 1 + 1 ) ; p-7 . i = pp1 . i .= pp1 . i ; let PA , PA be a_partition of Y , PA be Subset of Y ; attr 0 < r & r < 1 means : Def8 : 1 < r & r < 1 ; rng the \overline of \mathbin ( a , X ) = [#] X .= X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( rng ( s ) ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & the topology of X = { x } ; dom fx0 c= dom ( ux0 ) & dom ( fx0 ) c= dom ( fx0 ) ; pred n divides m & m divides n means : Def8 : n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in ) implies product the carrier of T2 = { x } \/ { y } not y0 in the carrier of f & not y0 in the carrier of g implies f . y0 in ( the carrier of g ) ; Hom ( ( a ~ ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < len f and f . k1 = f . k1 ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = 3 = m2 & l1 = i2 & l2 = j2 implies ( 1 - 1 ) * ( l1 - 1 ) = l1 x0 in dom ( u01 /\ A01 ) & ( G . x0 ) in dom ( G . x0 ) ; reconsider p = x , q = y as Point of ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 & ( TOP-REAL 2 ) | B01 = ( TOP-REAL 2 ) | B01 ; f . p4 <= f . p1 & f . p2 <= f . p3 ; ( F . x ) `1 <= ( x `1 ) `1 & ( F . x ) `2 <= ( x `2 ) `2 ; x `2 = W7 & x `2 = W8 or x `2 = W7 & x `2 = W8 ; for n being Element of NAT holds P [ n ] implies P [ n + 1 ] let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) & 0. K = 0. K ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] implies P [ succ a ] ; reconsider sT = sT , s/. i as /\ ( the carrier of D ) ; ( - i ) - 1 <= len ( thesis - j ) - 1 ; [#] S c= [#] the TopStruct of T & the TopStruct of T = the TopStruct of T ; for V being strict RealUnitarySpace for W being Subspace of V holds V in the carrier of W implies V is strict Subspace of W assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K ; - a * - b * - b = a * b - b * a ; for A being Subset of AS holds A // A implies A // ( A \/ B ) ( for o2 being object of B st o2 in <^ o2 , o2 ^> holds <^ o2 , o1 ^> <> {} ) ; then ||. x - y .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , x be Element of G ; j >= len ( upper_volume ( g , D1 ) | ( len D2 ) ) ; b = Q . ( len Qc - 1 + 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 /* s is divergent_to-infty & f2 * f1 /* s is divergent_to-infty ; reconsider h = f * g as Function of [: N2 , G :] , G ; assume that a <> 0 and Let ( a , b , c ) >= 0 ; [ t , t ] in the Relation of A & [ t , t ] in the carrier of A ; ( v |-- E ) | n is Element of ( T . n ) ; {} = the carrier of ( L1 + L2 ) & the carrier of ( L1 + L2 ) = {} ; Directed I is Initialized p = Initialize ( p +* q ) , p +* I ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y = Y as Element of ( Ids L ) , the carrier of L ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & [ s , 0 ] in the carrier of S2 ; mm in ( B '&' C ) '/\' D \ { {} } ; n <= len ( P + ( len P + 1 ) ) & n <= len ( P + ( len P + 1 ) ) ; x1 `1 = x2 & y1 `1 = y2 & y1 `2 = y2 & y2 = z2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h .= h " * ( g * h ) ; let p , q be Element of is Element of PFuncs ( V , C ) ; x0 in dom ( x1 | X ) & ( x1 | X ) . x0 = x1 . x0 ; ( R qua Function ) " " = R " & ( R " ) " = R " ; n in Seg len ( f /^ ( i -' 1 ) ) ; for s being Real st s in R holds s <= s2 implies ( s - s1 ) / 2 <= s2 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym ex X being Subset of such that X is finite for X is finite Subset of is finite ; 1. ( K , n ) * 1. ( K , n ) = 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) & w in F ; ( curry ' ( P+* ( i , k ) ) ) # x is convergent ; cluster open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 .= len f2 .= len f3 + 1 .= len f2 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c9 implies b1 = c1 consider p being element such that c1 . j = { p } ; assume f " { 0 } = {} & f is total ; assume IC Comput ( F , s , k ) = n & IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a implies J is not " ; ( Macro ( card I + 1 ) ) does not contradiction & ( I is not contradiction ) ; set m3 = LifeSpan ( p3 , s3 ) , P4 = P +* I , P4 = P +* I ; IC SCMPDS in dom Initialize ( p +* I ) & IC SCMPDS in dom Initialize ( p +* I ) ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( N-min L~ f ) .. f ) .. f = 1 & ( ( N-min L~ f ) .. f ) .. f = 1 ; let a , b be Element of thesis , C be Element of is Element of is Element of is Element of Fin ( V , C ) ; Cl union Int ( union F ) c= Cl Int ( union F ) ; the carrier of ( X1 union X2 ) misses ( ( A \/ B ) \/ ( A \/ C ) ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in X ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , ( y , x ) ) |= H ; consider m being element such that m in Intersect ( FF . m ) and x = ( Intersect FF ) . m ; reconsider A1 = support u1 , A2 = support u2 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s , U ) -> -> -> -> -> -> -> -> -> -> -> -> -> -> k1 for string of S ; LL2 /. n2 = LL2 . n2 .= LL2 . n2 .= LL2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rg2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices DD1 & [ k , m ] in Indices DD2 ; 0 <= ( 1 / 2 ) |^ ( p p ) & ( 1 / 2 ) |^ ( p ) <= 1 ; ( F . N ) | E8 . x = +infty ; attr X c= Y means : Def8 : Z c= V \ Y ; y `2 * z `2 <> 0. I & y `2 * z `2 <> 0. I ; 1 + card X-18 <= card u & card X-18 <= card X-18 + card X-18 ; set g = z \circlearrowleft ( ( L~ z ) .. z ) , 2 = ( ( L~ z ) .. z ) .. z ; then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -\mathop { X } , D ; reconsider B = A , C = B as non empty Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x1 , x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) & indx ( D2 , D1 , j1 ) <= len D2 ; ( ( ( g2 ) . O ) `1 ) ^2 = - 1 & ( ( ( g2 ) . O ) `1 ) ^2 = 1 ; j + p .. f - len f <= len f - len f + 1 - len f ; set W = W-bound C , S = S-bound C , E = E-bound C , N = N-bound C , N = N-bound C ; S1 . ( a `1 , e `2 ) = a + e `2 .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f , x ) ) = dom ( Im ( f , x ) ) ; ( ^2 ) . x = W . ( a , *' ( a , p ) ) ; set Q = ( -> Element of -> Element of ( x , f , h ) ; cluster MSsorted -> non-empty for ManySortedSet of U1 , ( the Sorts of U1 ) ; attr F = { A } means : ex A st F = { A } ; reconsider z9 = \hbox { y where y is Element of product G : y in X } as Subset of product G ; rng f c= rng f1 \/ rng f2 & rng f1 c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 ) implies E , j |= H reconsider n1 = n , n2 = m as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 & card ( ( x \ B1 ) /\ B2 ) = 1 ; g + R in { s : g-r - s < s & s < g + r } ; set q-19 = ( q , <* s *> ) -) , q-18 = ( q , <* s *> ) -) ; for x being element st x in X holds x in rng f1 implies x in rng f2 h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , ( the carrier of R ) --> NAT ) ; t in Seg width ( I ^ ( n , n ) ) & t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom ( f | C ) as Element of Fin NAT ; IncAddr ( i , k ) = <% l . k , l . k %> ; S-bound L~ f <= q `2 & q `2 <= ( q `2 ) / ( |. q .| ) ; attr R is condensed means : |. Int R is condensed & Cl R is condensed & Cl R is condensed ; attr 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 0 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 * a ; <* \underbrace ( 0 , \dots , 0 *> , x ) *> in Line ( x , a * x ) ; set yy1 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. 1 in rng Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 .= ( f /. i1 ) `2 .= ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u , v2 = v as VECTOR of P`1 , REAL ; p |-count ( Product Sgm ( X11 ) ) = 0 & ( p |-count ( X11 ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 , ii2 = goto 0 , ii2 = goto 0 ; x in { x , y } & h . x = {} ( TT ) ; consider y being Element of F such that y in B and y <= x `2 ; len S = len ( the charact of A0 ) & len ( the charact of A0 ) = len the charact of A0 ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = G \ V , G7 = G \ { v } ; rng F c= the carrier of gr { a } & the carrier of gr { a } = the carrier of gr { a } ; Comput ( P , K , n , r ) is in rng the P of [: P , { r } :] ; f . k , f . ( thesis ) . ( mod n ) in rng f ; h " P /\ [#] T1 = f " P /\ [#] T2 .= [#] T2 /\ [#] T2 .= [#] T2 ; g in dom f2 \ f2 " { 0 } & f2 . ( len f2 ) in dom f2 ; gthesis /\ X /\ dom f1 = g1 " X & gX /\ dom f2 = { g1 } ; consider n being element such that n in NAT and Z = G . n ; set d1 = thesis , d2 = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `1 + 1 / 2 < 1 / 2 + ( 1 / 2 ) ; reconsider f1 = f as VECTOR of the carrier of the carrier of X , Y ; attr i <> 0 means : Def8 : i / ( i + 1 ) mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & ( g2 . i2 ) . j2 = ( g2 . i2 ) . j2 ; dom ( i4 * i4 ) = dom i2 .= a .= ( the carrier of G ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of ]. PI / 2 , PI / 2 .[ ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x1 as Function of S , IV , IV ; reconsider R1 = x , R2 = y , R1 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RL ; S1 +* S2 = S2 +* S1 +* S2 .= S1 +* S2 +* S2 .= S1 +* S2 +* S2 ; ( ( #Z n ) * ( cos + sin ) ) is_differentiable_on Z & ( ( #Z n ) * ( cos + sin ) ) `| Z = f ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f2 ) ; E\in . e2 -carrier of ( ( e . e2 ) -T ) & EE . e2 -carrier of ( ( e . e2 ) -T ) ; ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( ln ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 / 2 ) * 2 & lower_bound A = 0 & upper_bound A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F ) ; reconsider pNAT = q`2 , pNAT = p`2 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & g . W in [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. -infty , x0 .[ & f | ]. x0 , x0 + r .[ is convergent ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m2 = n , m2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y & y <= g for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: the carrier of X1 , BX2 = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume R -Seg ( a ) c= R -Seg ( b ) & R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .] or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ y2 , y2 ] or P [ y2 , y2 ] ; pred x1 <> x2 means : 2 <> 0 & for x being Element of REAL st x in dom x1 holds |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 , p2 - p1 is_collinear and p2 - p1 , p3 - p1 , p3 - p1 is_collinear ; set q = ( R ^ f ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS 1 , g be PartFunc of REAL 1 , REAL-NS 1 , REAL n ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( $1 , n ) ) = dom ( n , dom ( n , T . ( n + 1 ) ) ) ; consider x being element such that x in wc iff x in c & x in X ; assume ( F * G ) . v . x3 = v . x4 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 c= the carrier of D2 and the carrier of D2 c= the carrier of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = q , s = q , w = q , e = q , w = s , e = s , w = q , e = s , w = q , w = s , e = s , w = n1 - len f + 1 <= len ( - 1 ) + 1 - len f + 1 ; rng c= rng ( q , O1 ) & rng ( q , O1 ) = { a , v , b } ; set C-2 = ( ( Seg ( k ) ) `1 ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * Sum p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & for n holds P [ n , $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P2 +* I ; let l be variable of k , A , A-30 be Subset of A ; reconsider UA = union G-24 , Gd = union Gd as Subset-Family of Td ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p$ 9 = <* - vs , 1 , 1 *> .= <* - vs , 1 *> ; synonym f is real-valued for rng f c= NAT & rng f c= NAT & f is one-to-one & f is one-to-one ; consider b being element such that b in dom F and a = F . b ; x10 < card ( X0 ) + card ( Y0 ) & ( x in Y0 ) & ( x in Y0 ) implies x in X attr X c= B1 means : Defooo) : for A st A in X holds _ X c= succ ( B1 , A ) ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , PI ) ; attr 1 <= len s means : Def: for s being Element of NAT holds ( s . 0 ) . 1 = s ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in \cdot ( p '&' q ) means : Def8 : q '&' p in \cdot ( p '&' q ) ; - ( t `1 ) ^2 < ( t `1 ) ^2 & ( t `2 ) ^2 < ( t `2 ) ^2 ; ( 9 . 1 ) = ( 9 /. 1 ) .= ( 9 . 1 ) .= ( 9 . 1 ) ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices OX = [: Seg n , Seg n :] & Indices OX = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is H & f is <> 0. ( K , n ) & f is H ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - ( v1 - v2 ) <> 0. TOP-REAL 2 & |[ w1 , v1 - ( v2 - v1 ) ]| in W2 ; reconsider t = t as Element of INT * , ( the carrier of X ) * ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) & A c= [#] GX ; f " V in ( the carrier of X ) /\ D & D = the carrier of ( the carrier of X ) /\ D ; x in [#] ( ( the carrier of A ) /\ A ) implies x in the carrier of ( ( the carrier of F ) /\ A ) g . x <= h1 . x & h . x <= h1 . x & h1 . x <= h2 . x ; InputVertices S = { xy , y , z } \/ { xy , z } .= { xy , y } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = Line ( M , i , a * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line and M2 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) .= len ( ( Len F1 ) ^ ( Len F2 ) ) ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y2 ; dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 / y , y ] = 1 / C * v1 .= y * v1 .= y * v1 ; assume that W is not trivial and W .vertices() c= the carrier' of G2 and W is non empty and not v in W ; godo /. i1 = G1 * ( i1 , i2 ) & card L~ godo = 1 & card L~ godo = 1 ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\rbrace <= b & upper_bound rng f\rbrace <= upper_bound rng f\rbrace - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ ml ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in Ball ( x , r ) and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m , ( Partial_Sums F ) . n ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * * \ { x1 } ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( N-min Z , p2 ) /\ LSeg ( o , \mathop { \rm S \hbox { - } bound } ( Z ) ) ; set R8 = R |^ 1 \/ ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , db ) .= SubFrom ( da , db ) .= IncAddr ( da , db ) ; seq . m <= ( the Sorts of seq ) . k & ( the Sorts of seq ) . m <= ( the Sorts of seq ) . k ; a + b = ( a ` *' b ` ) ` .= ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id ( X /\ Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U1 = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j /\ m ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable set of R such that card A = ( the carrier of R ) \ A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 1-1 & len s2 - 1 > 0 ; ( ( N-min P ) `2 ) ^2 = ( ( N-min P ) `2 ) ^2 & ( ( N-min P ) `2 ) ^2 = ( ( N-min P ) `2 ) ^2 ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` ` = f . a1 ` .= ( f | ( a1 ` ) ) . a1 ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in dom f ; gg . s0 = g . s0 | G . s0 .= g . s0 ; the InternalRel of S is symmetric & the carrier of S is non empty & the carrier of T is non empty ; deffunc F ( Ordinal , Ordinal ) = phi . ( $1 + 1 ) & phi . ( $1 + 1 ) = phi . ( $1 + 1 ) ; F . s1 . a1 = F . s2 . a1 .= F . s2 . a1 .= s . a1 ; x `2 = A . ( o . a ) .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & Cl ( f " P1 ) c= Cl ( f " ( Cl P1 ) ) ; FinMeetCl ( ( the topology of S ) | ( the topology of T ) ) c= the topology of T ; synonym o is \bf for o <> *' o & o <> * & o <> * & o <> * ; assume that X = Y + = Y + 1 and card X <> card Y and card Y <> card X and card X <> card Y ; the { the carrier of s <= 1 + ( the carrier of s ) & the carrier of s = { the carrier of s , the carrier of s } ; LIN a , a1 , d or b , c // b1 , c1 or a , c // a1 , c1 ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; Ex in SS1 & not Ex in { Nx } implies Ex in { Nx } set J = ( l , u ) If , K = I ; set A1 = .| ( ( a , { c } , { d } ) , A2 = { d } , A1 = { c } ; set vs = [ <* c , d *> , '&' ] , f3 = [ <* d , c *> , '&' ] , f4 = [ <* c , d *> , '&' ] ; x * z `1 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = ( g . x ) * ( g . x ) Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ L~ f \/ L~ f \/ L~ f ; ( for n holds n in dom ( W-min C ) implies ( W-min C ) /. n = E-max C ) implies ( W-min C ) /. n = W-min C set f-17 = f @ "/\" ( g @ ) ; attr S1 is convergent means : Def8 : S2 is convergent & lim ( S1 - S2 ) = 0 & ( lim S1 ) - ( lim S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> -> x9 -' for reflexive transitive non empty reflexive transitive RelStr , the carrier of G -symmetric reflexive non empty ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , b ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l | [. a , b .] ) = len l & len ( l | [. a , b .] ) = len l ; ( t4 ^ {} ) is ( {} \/ rng t4 ) -valued FinSequence of D ; t = <* F . t *> ^ ( C . p ^ q ) .= <* F . t *> ^ q ; set p-2 = W-min L~ Cage ( C , n ) , p`2 = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) ( k - ( i + 1 ) ) = ( k - ( i + 1 ) ) - ( i + ( i + 1 ) ) ; consider u being Element of L such that u = u ` and u in D ` ; len ( ( width E ) |-> a ) = width E & width ( ( width E ) |-> a ) = width E ; ( F . x ) . ( ( G * the_arity_of o ) . x ) in dom ( G * the_arity_of o ) ; set cH2 = the carrier of H2 , cH1 = the carrier of H1 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= Comput ( P , s , 6 ) . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( card I + 1 ) ; dom ( ( ( - 1 / 2 ) (#) ( sin * sin ) ) `| REAL ) = REAL & dom ( ( - 1 / 2 ) (#) ( sin * sin ) ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) , ( D , D ) ) Sum phi -> string of S ; set b5 = [ <* that ( ap , { 1 } ) , {} , {} ] , [ <* 1 , 2 *> , {} ] ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= Line ( M , i ) ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( the Sorts of A ) . n in dom ( the Sorts of A ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y being Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t2 . DataLoc ( ( s . SBP ) , 2 ) , x2 = s . SBP , x3 = s . SBP , x4 = s . SBP , x4 = s . SBP , x4 = s . SBP , x4 = s . SBP , 7 = s . SBP , 8 = s . SBP , 8 = s . SBP set p-3 = stop I ( ) , ps2 = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B } \/ { C , D } let A , B , C , D , E , F , J , M , N , M , N , N , M , N , F , M , N , N , M , N , N , M ; |. p2 .| ^2 - ( p2 `2 ) ^2 - ( p2 `1 ) ^2 + ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( l + 1 ) + ( mm - 1 ) ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) ; the TopStruct of L = , the TopStruct of L , the topology of T = the topology of L , the topology of T ; consider y being element such that y in dom H1 and x = H1 . y and y in A ; f9 \ { n } = \mathop { Free All ( v1 , H ) } & f . n = Free All ( v1 , H ) ; for Y being Subset of X st Y is summable & Y is summable holds Y is * summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { of \rm \rm <* s *> } ) = len s & len ( the { s } ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 * f2 ) c= the carrier of ( ( TOP-REAL 2 ) | ( the carrier of TOP-REAL 2 ) ) | K1 ; j + - len f <= len f + ( len - len f ) - len f + ( len f - len f ) ; reconsider R1 = R * I , R2 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= C8 . x .= ( C * ( x , x0 ) ) . x ; power ( F_Complex ) . ( z , n ) = 1 .= x |^ n .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t .= ( the connectives of S ) . t ; support ( f + g ) c= support f \/ ( C /\ support g ) & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N < 2 * Sum ( seq2 | N ) ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 is Point of [: X1 , X2 :] : x1 in X } is Subset of [: X1 , X2 :] h = ( i , j ) |-- h .= ( i , j ) --> id B .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & N c= A & x1 in N ; set X = ( ( rng ( q , O1 ) ) `1 ) , Y = ( { ( d , O1 ) `1 , 4 } ) ; b . n in { g1 : x0 < g1 & g1 < a1 . n } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the carrier of the lattice of Y = the carrier of the open Subset of Y & the carrier of Y = the topology of Y & the topology of Y = the topology of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) '&' 'not' ( b . x ) = FALSE ; ( ( len q0 ) + len r1 ) = len ( q0 ^ r1 ) + len r1 .= len ( q ^ r1 ) + len r1 .= len q + 1 ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z & ( ( 1 / a ) (#) ( sec * f1 ) ) is_differentiable_on Z ; set K1 = upper_volume ( ( lim ( H , H ) || A ) , ( lim ( H , H ) || A ) ) ; assume e in { ( w1 - w2 ) / ( w1 - w2 ) : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d6 = dom F `1 , d6 = dom F `1 , d6 = dom G `1 as finite set ; LSeg ( f /^ j , j ) = LSeg ( f , j ) /\ q .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . ( N2 , K1 ) = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom SM = dom S /\ Seg n .= dom LM .= Seg n /\ Seg n .= Seg n /\ Seg n .= Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H & g in H * ( a , 1 ) = a `2 - ( 0 * n ) .= a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ @ g ^ @ g ; dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 .= p ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f + 1 ; dom ( F-11 | [: N1 , S-23 :] ) = [: dom ( F | [: N1 , S-23 :] ) , dom ( F | [: N1 , S-23 :] ) ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and for x being Element of X holds g . x = f . x ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f `2 * f `2 = id a and f `2 = id b ; ( ( cos | [. 2 * PI * 0 , PI * 0 + 2 * PI * 0 + 2 * PI * 0 + 2 * PI * 0 + 2 * PI * 0 + 2 * PI * 0 ) ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS & Index ( Gij , LS ) <= len LS - Gij .. LS ; let t1 , t2 , t3 be Element of ( the carrier of S ) * , s be Element of ( the carrier of T ) * ; j . ( j . ( ( Frege ( curry H ) . h ) ) ) <= j . ( j . ( ( Frege G ) . h ) ) ; then P [ f . i0 ] & F ( f . i0 + 1 ) < j & j < len f ; Q [ [ D . x , 1 ] , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is for of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> ( the carrier of S2 ) .= ( the carrier of S1 ) --> ( the carrier of S2 ) ; consider s being Function such that s is one-to-one and dom s = NAT & rng s = F . 0 and for n being Nat holds s . n = F ( n ) ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a , b2 ) <= dist ( b2 , a ) + dist ( b2 , a ) ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) /. 1 = W-min L~ Cage ( C , n ) ; q `2 <= ( UMP Upper_Arc C ) `2 & ( UMP C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} & LSeg ( f | i2 , j ) /\ LSeg ( f , j ) = {} ; given a being ExtReal such that a <= IA and A = ]. a , IA .] and a <= IA and a <= IA ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= m & b |^ n in n } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , zx = [ <* z , x *> , f3 ] ; l /. len l = ( l . ( len l ) ) & ( l . ( len l ) ) = ( l . ( len l ) ) ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 - sn ^2 / ( 1 + sn ) ^2 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) * ( 1 + sn ) < 1 ; ( ( ( S \/ Y ) \/ X ) `2 ) `2 = ( ( S \/ Y ) \/ X ) `2 .= ( ( S \/ Y ) \/ X ) `2 ; ( seq - seq ) . k = seq . k - seq . k .= ( seq ^\ k ) . k - seq . k .= ( seq ^\ k ) . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of the carrier of X = the carrier of X & the carrier of X = the carrier of Y implies the carrier of X = the carrier of Y ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A5 ) , A5 = chi ( X , A5 ) ; R |^ ( 0 * n ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ 0 ; ( ( Partial_Sums ( curry ( F-19 , n ) ) ) . n ) is nonnegative & ( ( ( curry ( F-19 , n ) ) . n ) . x is nonnegative ; f2 = C7 . ( E7 , K ) .= C8 . ( E7 , len H ) .= H . ( len H ) ; S1 . b = s1 . b .= s2 . b .= ( S2 . b ) . b .= ( S2 . b ) . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p2 ) or p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 11 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) implies ( X , l2 ) is ( X , l2 ) contradiction ; synonym p is is is is is is is is is is or p = 1 implies p is invertible ; Y1 `2 = - 1 & 0. TOP-REAL 2 <> 0. TOP-REAL 2 & Y1 `2 <> 0. TOP-REAL 2 implies ( Y1 `2 <= - 1 ) & ( Y2 `1 <= ( Y1 `2 <= - 1 ) / ( Y1 `2 ) ) defpred X [ Nat , set , set ] means P [ $1 , $2 , $2 ] & P [ $1 , $2 , $2 ] ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g and g in dom f ; Det ( I |^ ( m -' n ) ) = 1. ( K , m -' n ) & Det ( I |^ ( m -' n ) ) = 1. ( K , m -' n ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / 2 * a < 0 ; godo . d = ( C . da ) mod ( C . db ) .= ( C . da ) mod ( C . db ) .= ( C . da ) mod ( C . db ) ; attr X1 is dense dense means : Def8 : X2 is dense dense & X1 /\ X2 is dense dense & X2 /\ X1 is dense dense implies X1 /\ X2 is dense dense ; deffunc FF ( Element of E , Element of I ) = $1 * $2 & $2 = ( $1 * $2 ) * ( $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X .= y ; for X being non empty set for Y being Subset-Family of X holds X is Basis of <* X , FinMeetCl Y *> & Y is Basis of X synonym A , B are_separated means : Def1 : Cl A misses B & A misses Cl B & B misses Cl A & A misses Cl B ; len ( M . p ) = len p & width ( M . p ) = width M & len ( M . p ) = width M ; J . v = { x where x is Element of K : 0 < v . x & v . x < 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & ( h . x ) `2 = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ w = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= 9 + 9 .= 9 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 2 ) = t . intpos ( e + 2 ) .= t . intpos ( e + 2 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) .= f . ( lower_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y ` in Y ` & x in X ` holds y <= x ` & x <= y ` func |. o .| -> variable of A means : - p in it & for x being element st x in it holds it . x = min ( NBI ( p ) , x ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len l1 & for i st i in Seg len x1 holds x1 . i = ( l . i ) * ( x1 . i ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f /. s1 .|| = ||. f /. s1 .|| & ||. f /. s1 .|| = ||. f /. s1 .|| ; ( the InternalRel of A ) -Seg ( x ` ) /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume i in dom p implies for j be Nat st j in dom q holds P [ i , j ] & i + 1 in dom p & for j st j in dom q holds P [ j , i ] ; reconsider h = f | X ( ) , g = f | X ( ) , h = g | X ( ) as Function of X ( ) , Y ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 & v in the carrier of W1 implies ( u + v ) + ( v + w ) in the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= $1 & f . $1 <= f . $1 & f . $1 <= f . $1 ; ^ ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y - y ) = - x + - y .= - x + y .= - x + y .= - x + y .= y + x ; given a being Point of GX such that for x being Point of GX holds a , x , x , a , x , y r r ; fT = [ [ dom @ f2 , cod @ g2 ] , [ cod @ g2 , cod h2 ] ] .= [ cod f2 , cod g2 ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime implies k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in ( ( A ` ) |^ d ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; US . k = US . ( F . k ) & F . k in dom ( Carrier ( A , k ) ) ; set i2 = AddTo ( a , i , - n ) , i1 = goto ( card I + 2 ) ; attr B is thesis means : Def8 : for S being non empty Subset of L holds S is B `1 & S is finite & S is finite ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" D = { a "/\" d where d is Element of N : d in D } ; |( exp_R - q9 , q - q9 )| * |( exp_R - q9 , q - q9 )| * |( exp_R - q9 , q - q )| * |( REAL , q - q )| * |( REAL , q - q )| * |( REAL , q )| ( - f ) . sup A = ( ( - f ) | A ) . sup A .= ( ( - f ) | A ) . sup A ; GG2 `1 = ( ( G * ( len G , k ) ) `1 ) `1 .= ( ( G * ( len G , k ) ) `1 ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> .= ( Proj ( i , n ) ) . LM ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( the - 1 ) * reproj ( i , x ) . x0 + ( f2 * reproj ( i , x ) ) . x0 ; attr ( for x st x in Z holds ( ( tan * tan ) `| Z ) . x = tan . x ) & ( ( tan * tan ) `| Z ) . x = tan . x ; ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t . x & ( h . s ) . x = ( h . t ) . x ; defpred C [ Nat ] means ( P . $1 ) is - $1 & ( P . $1 ) is D -seq implies ( P . $1 ) is not empty ) & ( P . $1 is not empty implies P . $1 is not empty ) ; consider y being element such that y in dom ( ( p | i ) | ( i + 1 ) ) and ( ( p | i ) | ( i + 1 ) ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index ( B ) , l ) ) as Subset of ( the carrier of ( A ) ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for d being Element of D holds d . ( id d ) = id d be non empty set , f , p be FinSequence of n -tuples_on REAL , p be Element of ( n -tuples_on REAL ) ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - cp = ( - c ) | ( n , L ) *' - ( - ( - ( - ( - ( p + - L ) ) ) ) ) ; consider r being Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 `1 , r2 `2 ]| ) in f1 .: ( W1 /\ W2 ) & f2 . ( |[ r2 , r2 ]| ) in ( the carrier of TOP-REAL 2 ) ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) , x ) .= a * ( x , x ) ; z = DigA ( tv , x9 ) .= DigA ( tv , x9 ) .= DigA ( tv , x9 ) .= DigA ( tv , x9 ) .= DigA ( tv , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset of X : S is open & S is open } , F = { Intersect S where S is Subset of X : S is open } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S19 = <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 & ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 <= 1 ; (0). V is Linear_Combination of A & Sum ( L ) is Linear_Combination of A & Sum ( L ) = 0. V implies Sum ( L ) = Sum ( L ) let k1 , k2 , k2 , k , k2 , k , 5 , 6 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 be Element of SCM+FSA ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and a . j = x ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 & H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 & H1 . x2 c= H1 . x2 ; consider a being Real such that p = -' * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c & d <= b & [' a , b '] c= dom f and [' a , b '] c= dom g and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , ( X X -' 1 ) -' 1 , 0 ) is non empty ; Ay in { ( S . i ) `1 where i is Element of NAT : not contradiction } & { ( S . i ) `1 where i is Element of NAT : not contradiction } is Subset of NAT ; ( T * b1 ) . y = L * ( b2 /. y ) .= ( F `1 * b1 ) . y .= ( F `1 * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 / ( ( log ( 2 , k + 1 ) ) ^2 ) >= ( log ( 2 , k + 1 ) ) ^2 / ( ( log ( 2 , k + 1 ) ) ^2 ) ; then p => q in S & not x in the carrier of p & p => All ( x , q ) in S & p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; l . ( l , 3 ) = g . ( ( g . ( 1 , 3 ) + ( k , 1 ) ) - ( e - ( g . ( 1 , 3 ) + e ) ) ) .= g . ( ( 1 , 3 ) + e - ( e - ( g . ( 1 , 3 ) + e ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) .= halt SCM+FSA ; assume for n be Nat holds ||. seq .|| . n <= Rseq . n & Rseq is summable & Rseq is summable & lim seq = 0 & Rseq is summable & lim seq = 0 ; sin . ( \vert non .| ) = sin . ( r ) * cos . ( - ( cos . s ) * sin . s ) .= 0 ; set q = |[ g1 `1 . t0 , g2 `2 . t0 , f3 `2 . t0 ]| , f2 = |[ g2 . t0 , f3 . t0 ]| , f3 = |[ g2 . t0 , f3 . t0 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G in implies for n being Element of NAT holds G . n in implies G . n in consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) \/ { H } ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s = s ; Z c= dom ( exp_R * ( f + ( ( #Z 3 ) * f1 ) ) ) /\ dom ( ( #Z 3 ) * f1 ) ; for k be Element of NAT holds seq1 . k = ( ( \HM { Im ( f , S ) ) . k ) . i & ( ( Im ( f , S ) ) . k ) . i = ( ( Im ( f , S ) ) . i ) . i assume - 1 < n ( ) & q `2 > 0 & ( q `1 / |. q .| - cn ) < 0 & ( q `1 / |. q .| - cn ) < 0 ) & ( q `1 / |. q .| - cn ) < 0 ; assume that f is continuous one-to-one and a < b and c < d and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that s-> Nat such that s-> Nat , r , q being Element of NAT st r = Comput ( P1 , s1 , r ) & q <= r ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and ex_inf_of x , y , L and x <= y ; assume f +* ( i1 , \xi /. 1 ) in ( proj ( F , i2 ) " ( A . ( i + 1 ) ) ) " ( ( A . ( i + 1 ) ) \ { i } ) ; rng ( ( ( ( ( ( ( the carrier of M ) ) ~ | ( the carrier of M ) ) ) | ( the carrier of M ) ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \/ { t } where t is Element of T : t in A } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / ( 2 |^ m ) * ||. x0 - x0 .|| ; consider t being VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> in dom p and p . ( len p + 1 ) in dom p and p . ( len p + 1 ) in dom q ; consider a being Element of the carrier of X39 , A being Element of the carrier of X39 such that a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 / ( ( - x ) |^ ( k + 1 ) ) ; for D being set for i st i in dom p holds p . i in D & p . i is FinSequence of D & p . i is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y , x ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p10 , p2 ) } .= { p2 , p1 } \/ { p2 } .= { p2 , p1 } \/ { p2 } ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. nthesis . ( n - 1 ) .| & F . ( n - 1 ) = |. n\frac .| for r , s1 , s2 being Real holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s2 <= s1 & s1 <= s2 & r <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 & G c= z1 } ; let g be non-empty element of A , INT , h be Function of X , INT , b be Element of INT , b be Element of INT ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x ) ) . y ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n ] and q1 is convergent and lim q1 = lim q1 ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds f . n = F ( n ) ; reconsider B-6 = B /\ O , Od = O , Z = Z , Z = { A where A is Subset of B : A is Subset of X : A is open } as Subset of X ; consider j being Element of NAT such that x = the ` of n and j <= n and 1 <= j & j <= n and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O ) and x in L1 and x in L2 ; ( C * _ T4 ( k , n2 ) ) . 0 = C . ( ( _ T4 ( k , n2 ) ) . 0 ) .= C . ( ( _ T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) . x ) = dom ( ( X --> f ) . x ) ; S-bound L~ SpStSeq C <= ( b `2 ) * ( ( SpStSeq L~ SpStSeq C ) `2 ) & ( for i being Nat st i in dom SpStSeq C holds ( ( SpStSeq L~ SpStSeq C ) /. i ) `2 <= ( ( SpStSeq L~ SpStSeq C ) /. i ) `2 synonym x , y are_collinear means : l = x or ex l being for l being for k being Nat st { x , y } c= l holds l is card ( A \ { x , y } ) ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y holds x << y iff a << b ; 1 / 2 * ( ( - ( PI / 2 ) ) * ( AffineMap ( n , 0 ) ) ) is_differentiable_on REAL & ( ( - ( PI / 2 ) ) * ( AffineMap ( n , 0 ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the Sorts of A1 ) . $1 = A1 . $1 & ( the Sorts of A2 ) . $1 = A2 . $1 & ( the Sorts of A1 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= ( f | ( the carrier of H ) ) . x ; ( M * F-4 ) . n = M . ( F-4 . n ) .= M . ( { ( canFS ( Omega ) ) . n } ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L2 & the carrier of L1 + L2 c= the carrier of L2 ; pred a , b , c , x , y , c , x , y , c , y be Element of S , a , b , c , x , y be Element of S ; ( the carrier of s ) . n <= ( the carrier of s ) . n * s . ( n + 1 ) & ( the carrier of s ) . n <= ( the carrier of s ) . n ; attr - 1 <= r & r <= 1 & ( arccot ) . r = - 1 / ( 1 + r ^2 ) & ( arccot ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } implies ex n being Nat st p ^ <* n *> in T1 & p ^ <* n *> in T2 |[ x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 ) ]| = x2 - 4 ; attr F . m is nonnegative means : R : for m being Nat holds ( Partial_Sums F ) . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( G . z ) * ( ( G . x9 ) * ( y , z ) ) ) = len ( ( ( G . x9 ) * ( y , z ) ) * ( y , z ) ) .= len ( ( G . x9 ) * ( y , z ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W3 ; given F being finite Subset of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k and Sum F = k ; 0 = 1 * ( - Im ) * ue iff 1 = ( ( - 1 ) * ( - 1 ) ) * ( ( - 1 ) * ( - ( - 1 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> as being for for non empty Poset , ( ( let ( let L ) | D ) ) , ( ( ( \rm _ D ) | D ) ) , ( ( ( and ( ( and _ D ) | D ) ) ) ) is Boolean ; "/\" ( B9 , {} ) = Top ( B9 ) .= the carrier of S .= the carrier of S .= the carrier of ( S | ( the carrier of T ) ) .= the carrier of ( S | ( the carrier of T ) ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - ( 2 * r1 - c ) ) ) ) = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( K , n , 1 ) ) * ( ( - ( K , n , 1 ) ) * ( p , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in < t and x = [ x1 , x2 ] and [ x2 , y2 ] in Indices G and [ x1 , x2 ] in Indices G ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M ) ) | ( n + 1 ) ) . ( len ( ( upper_volume ( g , M ) | ( n + 1 ) ) ) ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and y in the carrier of A ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 and H1 /\ H2 is Subgroup of H2 ; for S , T being non empty Poset , d being Function of T , S st T is complete holds d is monotone implies d is monotone & d is monotone [ a + 0. i , b2 ] in ( the carrier of F_Complex ) & [ a , 0. F_Complex ] in [: the carrier of F_Complex , the carrier of V :] & [ a , 0. F_Complex ] in [: the carrier of V , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( <* x *> |^ n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , width GoB h ) , ( GoB h ) * ( len GoB h , width GoB h ) ) & ( GoB h ) * ( len GoB h , width GoB h ) `2 <= ( GoB h ) * ( 1 , width GoB h ) `2 ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def8 : A1 is linearly-independent & A2 misses A2 & for v being Element of V holds Lin ( A1 /\ A2 ) = Lin ( A2 ) & Lin ( A2 ) = Lin ( A1 ) /\ Lin ( A2 ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } where s is Element of R : s in C & s in C } ; dom ( Line ( v , i + 1 ) (#) ( ( Line ( p , m ) ) * ( \square , 1 ) ) ) = dom ( F ^ <* ( L . m ) * ( i , 1 ) *> ) ; cluster [ x `1 , 4 , x `2 ] , [ x `1 , 4 , x `2 ] , [ x `1 , 4 , x `2 ] , [ x `1 , 4 ] , [ x , 4 ] ] , [ x , 4 ] , [ x , 4 ] ] , [ x , 4 ] ] ; E , { All ( x2 , ( x2 , x1 ) / ( x0 , x1 ) ) } => ( ( x2 , x1 ) / ( x0 , x1 ) ) '&' ( x1 , x2 ) / ( x0 , x1 ) ) |= ( ( x1 , x2 ) / ( x0 , x1 ) ) ; F .: ( ( id X ) , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) + ( h . m ) - ( h . m ) + ( h . m ) ; cell ( G , XX -' 1 , ( Y + 1 ) \ ( t + 1 ) ) \ L~ f meets ( UBD L~ f ) \/ ( UBD L~ f ) \/ ( UBD L~ f ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= card I .= card I + card J .= card I + card J + card J .= card I + card J + card J + 3 .= card I + card J + 3 .= card I + card J + 3 ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) > 0 & ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k `2 } and y0 = a . ( k + 1 ) and y = a . ( k + 1 ) and a . x0 = b . ( k + 1 ) ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ ( A /\ A ) .= C /\ ( A /\ ( A /\ B ) ) .= C /\ ( A /\ ( A /\ B ) ) .= C /\ ( A /\ ( A /\ B ) ) ; d-7 . [ y , z ] = ( ( [ y , z ] `1 - ( y - z ) ) / ( 1 - ( y - z ) ) ) * ( y - z ) .= ( ( y - z ) + ( y - z ) ) / ( 1 - ( y - z ) ) * ( y - z ) ; attr i be Nat means : Def8 : C . i = A . i /\ B . i & L~ C c= ( L~ f ) /\ ( L~ f ) ; assume that x0 in dom f and f is_continuous_in x0 and f is_continuous_in x0 and for r st r in dom f & 0 < r ex g st g < x0 & g in dom f & f /. g <> 0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y2 - x .| <= |. y1 - y2 .| func /. <*> { a } -> w w } means : : : a in it & for b being w Ordinal Ordinal st a in b holds it . b c= b & it . a c= b ; [ a1 , a2 , a3 ] in ( the carrier of A ) \/ ( the carrier of B ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of B :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ b , a ] in the carrier of S2 & [ a , b ] in the carrier of S2 ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - ( vseq . n ) .|| < e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| + e / ( ||. x - y .|| ) ) ) ) ) ) * ( x - y .|| ) ) ) ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( ( compactbelow [ s , t ] ) /\ ( compactbelow [ s , t ] ) ) , sup ( ( compactbelow [ s , t ] ) /\ ( compactbelow [ s , t ] ) ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in IT and [ f . i , z ] in IT and [ f . i , z ] in IT ; for D being non empty set , p , q being FinSequence of D st p c= q ex p being FinSequence of D st p ^ q = q & p ^ q = q ^ p consider e19 being Element of the carrier of X such that c9 , a9 // a9 , e29 and a9 <> b9 and b9 <> c9 and [ e , f ] in [: { e } , { f } :] ; set U2 = I \! \mathop { x } , d = I \! \mathop { x } , e = I \! \mathop { x } , f = I \! \mathop { x } , g = I \! \mathop { x } , d = I \! \mathop { x } , d = I \! \mathop { x } , d = I \! \mathop { x } , d = I \! \mathop { x } , d = I \! \mathop { x } , d = I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( I . ( |. q3 .| ^2 = ( ( q3 `1 ) ^2 + ( q2 `2 ) ^2 ) + ( ( q3 `1 ) ^2 + ( q2 `2 ) ^2 ) .= ( q `1 ) ^2 + ( q `2 ) ^2 .= ( q `1 ) ^2 + ( q `2 ) ^2 ; for T being non empty TopSpace , x , y being Element of <* the topology of T , \subseteq \rangle holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x "/\" y = x /\ y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| | X ) /\ X .= dom ( ||. h .|| | X ) .= dom ( ( ||. h .|| | X ) | X ) .= dom ( ( ||. h .|| | X ) | X ) ; for N1 , K1 being Element of G8 holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) = K1 & rng ( h . K1 ) c= K1 & rng ( h . K1 ) c= K1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or ( q `2 ) ^2 / ( |. q .| ) ^2 & ( q `1 ) ^2 / ( |. q .| ) ^2 <= ( - ( q `1 ) ) ^2 / ( |. q .| ) ^2 ) or ( q `1 ) ^2 / ( |. q .| ) ^2 <= ( - ( q `1 ) ) ^2 / ( |. q .| ) ^2 ; attr r1 = f9 & r2 = f9 & for r being Real st r in dom f9 holds r1 * ( f . r ) = r2 * ( f . r ) & r2 * ( f . r ) = ( f . r ) * ( f . r ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( for x be Point of X , X be Subset of Y holds ( ( vseq . m ) - ( vseq . n ) ) ) . x = ( ( vseq . m ) - ( vseq . n ) ) . x attr a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 implies angle ( c , a , b ) = PI & angle ( b , a , c ) = PI consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s and s < p2 ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and p1 ^ q1 = p2 ^ q2 and p1 ^ q1 = p2 ^ q2 and p1 ^ q1 = p2 ^ q2 and p2 ^ q2 = q2 ^ q1 ; , ( the carrier of A ) . ( r1 , r2 , s1 , s2 , s2 ) = ( s2 - s1 ) * ( s1 - s2 ) .= ( s2 - s1 ) * ( s2 - s2 ) .= ( s2 - s1 ) * ( s2 - s2 ) ; ( ( LMP A ) `2 ) `2 = lower_bound ( proj2 .: ( A /\ /\ /\ /\ /\ /\ Ball ( w , r ) ) ) & ( proj2 .: ( A /\ /\ /\ Ball ( w , r ) ) ) is non empty ; s , k |= H1 , ( k , j ) |= H2 iff s , k |= ( H1 , k ) '&' ( H2 , k ) = ( H1 , k ) '&' ( H2 , k ) len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z `1 >= y & z `2 >= x `2 ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D + E-bound D ) / 2 ]| ) /\ D = { UMP D } \/ { ( ( /\ D ) /\ D ) / 2 } ; lim ( ( ( f `| N ) / g ) /* ( h ^\ N ) - ( f `| N ) /* b ) = lim ( ( f `| N ) / ( g `| N ) - ( f `| N ) /* b ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) , pr2 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( R-2 . k ) .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & a in P & b in P holds a = b Z c= dom ( ( #Z n ) ) /\ ( dom ( ( #Z n ) * f ) \ ( ( #Z n ) * f ) " { 0 } ) & ( ( #Z n ) * f ) " { 0 } c= dom ( ( #Z n ) * f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + len l & z = ( l ^ <* x *> ) . j & i = 1 + len l & j = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & u < 1 & v in Seg N holds r * u + ( 1-r * v ) in N A , Int A , Cl ( A , Cl ( A , B ) ) , Cl ( Int ( A , B ) , Cl ( A , C ) ) , Cl ( Int ( A , B ) , Cl ( A , C ) ) , Cl ( Int ( A , B ) , Cl ( A , C ) ) , Cl ( A , B ) , Cl ( A , C ) ) in / 2 ; - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + w .= - ( v + u ) + w .= - ( v + u ) + w .= - ( v + u ) + w ; ( Exec ( a := b , s ) ) . IC SCM R = ( Exec ( a := b , s ) ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= IC s .= IC s .= IC s .= IC s .= IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) & h . x in ( the carrier of J ) ; for S1 , S2 being non empty reflexive RelStr , D being non empty directed Subset of [: S1 , S2 :] , x being Element of [: S1 , S2 :] holds x is directed & x is directed & x is directed & x is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & for z st z in X holds z = x or z = y or z = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) & W-min L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft W-min L~ Cage ( C , n ) ) ; for T , T being DecoratedTree , p , q being Element of dom T st p in dom T & q in dom T holds ( T -with p , T -with q ) . q = T . q [ i2 + 1 , j2 ] , [ i2 , j2 ] ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) implies ( f /. k ) `1 = G * ( i2 + 1 , j2 ) `1 cluster ( k , n ) gcd ( k , n ) -> natural & n divides it & ( n divides m implies ( n divides m ) & ( n divides m implies ( n divides m ) & ( n divides m ) & ( n divides m ) implies ( n divides m ) & ( n divides m ) & ( n divides m implies n divides m ) ) implies n divides m dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " { x } = the carrier of X2 & F " { x } is one-to-one & F " { x } is one-to-one & F " { x } is one-to-one ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( B9 \/ C ) and C = Lin ( B9 \/ C ) and Lin ( C \/ B ) = Lin ( B9 \/ C ) ; V is prime implies for X , Y being Element of <* the topology of T , \subseteq the topology of T , the topology of T *> st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 ) .= angle ( p2 , p3 , p4 ) .= angle ( p3 , p4 , p2 ) .= angle ( p3 , p4 ) .= angle ( p2 , p4 , p3 ) ; - sqrt ( - ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) = - sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 - cn ) ) ^2 ) .= - sqrt ( ( - ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) ) .= - 1 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 1 = p4 ; attr f is partial differentiable on 3 , REAL means : R : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) . u0 = ( proj ( 2 , 3 ) ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `2 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and LSeg ( G * ( t , width G ) , width G ) c= L~ f and LSeg ( G * ( t , width G ) , width G ) c= L~ f ; attr i in dom G means : R : r * ( f * reproj ( i , x ) ) = r * ( reproj ( i , x ) . i ) & ( f * reproj ( i , x ) ) . x = r * ( reproj ( i , x ) . x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c /. k = c1 + c2 and ( decomp c ) /. k = c1 + c2 and ( decomp c ) /. k = c2 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ( ( X ^ Y ) . k ) = the carrier of X . k2 .= ( ( C ^ Y ) . k ) . ( ( C ^ Y ) . k ) .= ( ( C ^ Y ) . k ) . ( ( C ^ Y ) . k ) .= ( C ^ Y ) . ( ( C ^ Y ) . k ) ; attr M1 = len M2 means : Def8 : len M1 = width M2 & for i st i in dom M1 holds M1 . i = M2 . i - M2 . i & M1 . i = M2 . i ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom f & f /. y = ( f | N ) /. ( y - x0 ) ) & ( f | N ) /. ( y - x0 ) = ( f | N ) /. ( y - x0 ) ; assume x < ( - b + sqrt ( x0 , b , c ) ) / 2 * a or x > ( - b - sqrt ( x0 , b , c ) ) / 2 * a ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) & M2 * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT , j being Element of NAT st j in dom f & i <= j holds i divides f /. j & ( i divides j implies f /. j = f /. j ) & ( i divides j implies f /. i = f /. j ) assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B39 & a c= c & b c= c } holds b in { c where c is set : c in B & a c= c } ; b2 * q2 + ( b3 * q3 ) + - ( ( a * q2 ) + ( - ( a * q2 ) ) * ( q2 + q3 ) ) = 0. TOP-REAL n & - ( ( a * q2 ) + ( - ( a * q2 ) ) * ( q2 + q3 ) ) = 0. TOP-REAL n ; Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & B in Cl F } & Cl F = Cl D ; attr seq is summable means : _ : seq is summable & seq is summable & ( for n holds seq . n = Sum ( seq ) ) & ( for n holds seq . n = Sum ( seq ) ) & ( for n holds seq . n = Sum ( seq ) ) & ( for n holds seq . n = Sum ( seq ) ) implies seq is summable & Sum ( seq ) = Sum ( seq ) ) ; dom ( ( ( cn " ) | D ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) | D .= ( ( TOP-REAL 2 ) | D ) | D .= ( ( TOP-REAL 2 ) | D ) ; |[ X , Z ]| is full full non empty SubRelStr of ( Omega Z ) |^ the carrier of Z & |[ X , Y ] is full full SubRelStr of ( Omega Z ) |^ the carrier of Z implies X is full non empty G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i , j ) `2 ; synonym m1 c= m2 means : Def3 : for p being set st p in P holds the carrier of m1 <= p & the carrier of m2 <= the carrier of m2 & the carrier of m1 <= the carrier of m2 & the carrier of m1 = the carrier of m2 & the carrier of m1 = the carrier of m2 & the carrier of m1 = the carrier of m2 ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and for b being Element of A ( ) holds P [ b ] ; synonym the multMagma of R is reflexive & multiplicative seq is associative means : : : for a being Element of R holds [ a , the multF of R ] in { [ a , the multF of R ] where a is Element of R , a is Element of R : a in the carrier of R } ; sequence ( a , b , 1 ) + sequence ( c , d , 1 ) = b + sequence ( c , d , 1 ) .= b + d .= b + d + c .= \mathop { + ( a , c , d ) } ; cluster + ( i , j ) -> in INT means : R : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = + ( i , j ) & ( i , j ) in dom ( i , j ) implies ( i , j ) = i ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 ) ) ) * p2 = ( - r2 ) * p1 + ( ( s2 - ( s2 * p2 - ( s2 * p2 ) ) ) * p2 ) .= ( ( - s2 ) * p1 ) + ( ( s2 - ( s2 * p2 ) ) ) * p2 ) ; eval ( ( a | ( n , L ) ) *' , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of Omega S , V being open Subset of Omega S , V being open Subset of Omega T st V in V & V is open & V is open & V is open & V is open holds V is open & V is open ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q , w ) -{ w } ) = ( T11 . ( q , w ) ) -) . k and T11 . ( ( q , w ) -) = ( T11 . ( q , w ) ) -) . k ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ ( n + 1 ) + ( ( a |^ n ) * b + ( b |^ n ) * a ) + ( ( a |^ n ) * b + ( b |^ n ) * a ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , H ) ) ) implies M , v / ( x. 4 , All ( x. 0 , H ) ) / ( x. 4 , ( x. 0 ) / ( x. 4 , ( x. 0 ) ) / ( x. 0 , H ) ) |= H assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f ' ( x0 ) or for x0 st x0 in l holds f ' ( x0 ) - f ' ( x0 ) < 0 and for x1 st x1 in l holds f ' ( x1 ) - f ' ( x0 ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G1 , e being set st not e in W & not e in W & ( W is Walk of G2 & e in W & v in W & W is Walk of G2 ) holds W is Walk of G1 not vs is not empty iff ( for y st y is not empty & y is not empty holds not y is not empty ) & not ( y is not empty or not y is not empty ) & not ( y is not empty or not y is not empty ) & not ( y is not empty or not y is not empty ) & not y is not empty ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & ( GoB f ) * ( i1 + 1 , j + 1 ) in Indices GoB f & ( GoB f ) * ( i1 + 1 , j + 1 ) in Indices GoB f ) implies ( GoB f ) * ( i1 + 1 , j + 1 ) in cell ( GoB f , i1 + 1 , j + 1 ) for G1 , G2 , G3 , G3 being strict Subgroup of O , O being stable Subgroup of G2 , G2 being stable Subgroup of G1 , G2 being stable Subgroup of G2 , G2 being stable Subgroup of G2 , G2 being stable Subgroup of G2 st G1 is stable & G2 is stable & G2 is stable holds G1 is stable Subgroup of G2 UsedIntLoc ( in4 ( f ) ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 4 , intloc 4 , intloc 5 , intloc 5 , intloc 6 , intloc 5 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 } for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] & Q [ f2 ^ f1 ] holds Q [ f1 ^ f2 ^ f2 ] ( p `1 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 - x4 )| = |( x1 - x2 , x3 - x4 )| & |( x1 - x2 , x3 - x4 )| = |( x1 - x2 , x3 - x4 )| & |( x1 - x2 , x3 - x4 )| = |( x1 - x2 , x3 - x4 )| for x st x in dom ( ( - x ) | A ) holds ( ( - x ) | A ) . ( - x ) = - ( ( - x ) | A ) . ( - x ) for T being non empty TopSpace , P being Subset-Family of T , x being Point of T st P c= the topology of T for B being Basis of x ex P being Basis of T st B c= P & P is Basis of x & P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x 'or' b . x ) 'or' c . x .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of Su . i , S1 . i st f = H . i & F . i = f | ( F . i ) holds F . i = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ( ) , J ) , J ) . v = Valid ( VERUM ( Al ( ) , J ) , J ) . w card D = card D1 + card D2 - card { i , j } .= ( c1 + 1 ) - ( i + 1 ) + ( 1 - 1 ) .= ( c1 + 1 ) - ( i + 1 ) + ( 1 - 1 ) .= 2 * c1 + ( i + 1 ) - ( i + 1 ) .= 2 * c1 + ( i + 1 ) - ( i + 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= succ IC s .= succ IC s .= succ IC s .= IC s ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f /. ( \downharpoonright i1 -' 1 + 1 ) - 1 + 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 + 1 .= len f -' 1 + 1 - 1 .= len f - 1 + 1 - 1 + 1 .= len f - 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & a <= b & k <= a holds k < ( a + b-2 ) or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = b + b-2 or k = a + b-2 or k = a + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Nat st p in LSeg ( f , i ) & i <= len f & p in LSeg ( f , i ) holds Index ( p , f ) <= i lim ( ( curry ( PT , k + 1 ) ) # x ) = lim ( ( curry ( PT , k + 1 ) ) # x ) + lim ( ( curry ( PT , k + 1 ) ) # x ) .= lim ( ( curry ( FT , k + 1 ) ) # x ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 & [ f . 0 , f . 3 ] in the InternalRel of C6 ; for G being Subset-Family of B for R being Subset of [: A , B :] st G = { R [ X ] where R is Subset of A , Y is Subset of B : R in FF & Y in F } holds ( Intersect ( G ) ) . [ X , Y ] = Intersect ( G ) . [ X , Y ] CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P2 , s2 , m2 ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m2 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on M and a on M and c on N and p on M and a on M and c on N and p on M and a on M and p on M and a on M and c on N and p on N and a on M and c on N and p on N and a on M and a on M and b on N and a on M and c on N and a on N and a on M and b on N and b on N and b on N and a on N and b on N and b on N and b on N and b on N and c on N and c on N and b on N and c on N and a on M and b on N and a on N and c on N and c on N and c on M and c on M and c on N and c on M assume that T is \hbox { T _ 4 } and T is as as as as non empty set and ex F be Subset-Family of T st F is closed & F is finite-ind & ind F <= 0 & ind T <= n & ind T <= n & ind T <= n & ind T <= n ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - g2 , r .[ holds |. f . g1 - f . g2 .| <= ( g1 - g ) / ( |. r - g2 .| + ( |. r - g2 .| + |. g - g2 .| ) / ( |. r - g2 .| ) ( ( - ( z - z1 ) ) / ( z - z2 ) ) = ( ( - ( z - z1 ) ) / ( z - z2 ) ) * ( ( - ( z - z1 ) ) / ( z - z2 ) ) .= ( ( - ( z - z1 ) ) / ( z - z2 ) ) * ( z - z2 ) ; F . i = F /. i .= 0. R + r2 .= ( b |^ n ) * ( a |^ ( n + 1 ) ) .= <* ( n + 1 ) |^ ( n + 1 ) , \dots , ( n + 1 ) |^ ( n + 1 ) , \dots , ( n + 1 ) |^ ( n + 1 ) , \dots , ( n + 1 ) |^ ( n + 1 ) , \dots , ( n + 1 ) |^ ( n + 1 ) *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = Rf . ( n , f . n ) & for n holds f . ( n + 1 ) = Rf . ( n + 1 ) & y = Rf . n ; func f (#) F -> FinSequence of V means : Def6 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 7 , 8 , 8 , 7 , 8 } = { x1 , x2 , x3 } \/ { x4 , 8 , 7 , 8 } \/ { x5 , 8 , 7 , 8 } \/ { x5 , 8 , 7 , 8 } \/ { 6 } for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of CQC-WFF ( Al ( ) ) st SubP ( P , l , e ) = S1 & ( for e being Element of CQC-WFF ( Al ( ) ) holds ( S . e ) `1 is Element of CQC-WFF ( Al ( ) ) iff ( S . e ) `1 = e ) & ( S . e ) `1 = e ) & ( S . e ) `1 = e & ( S . e ) `1 = e ) & ( S . e = e ) `1 ; consider P being FinSequence of G_ 2 such that pbeing = product P and for i st i in dom P ex t9 being Element of the carrier of K st P . i = t9 & ( ex t9 being Element of the carrier of K st P . i = t9 ) & ( ex t9 being Element of K st P . i = t9 ) & ( ex t9 being Element of K st t . i = t9 ) & ( t . i = t9 ) ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T2 being Basis of T2 st the carrier of T1 = the carrier of T2 & P is Basis of T2 & P is Basis of T1 & P is Basis of T2 & P is Basis of T2 & P is Basis of T2 holds P is Basis of T1 & P is Basis of T2 assume that f is_\/ pdiff1 ( f , 3 ) and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , 3 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F , G being FinSequence of ExtREAL for s being Permutation of REAL for G being Permutation of Seg $1 st len F = $1 & G = F * s & not G = F * s holds Sum ( F ) = Sum ( G ) & Sum ( G ) = Sum ( F ) * Sum ( G ) ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 defpred U [ set , set ] means ex FF be Subset-Family of T st $1 = FF & F is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open & union FF is open ) ; for pp being Point of TOP-REAL 2 st LE p4 , p , P , p1 , p2 & LE p , p , P , p1 , p2 & LE p , p , P , p1 , p2 & LE p , p , P , p1 , p2 & LE p , p , P , p1 , p2 & LE p , p , P , p1 , p2 holds LE p , p1 , P , p2 f in \mathop { E } ( H ) & for g st g . y <> f . y holds x in E implies g in \mathop { E } implies f in \mathop { All ( x , H ) } & g in \mathop { All ( x , H ) } ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( ( ( ( ( ( ( ( ( p `2 ) ) ) | D ) ) | D ) ) ) & ( ( ( ( ( ( p `2 ) | D ) ) | D ) ) | D ) ) & ( ( ( ( ( ( p `2 ) | D ) ) | D ) ) | D ) ) is continuous ; assume for d7 being Element of NAT st d7 <= max ( d7 , t ) holds s1 . ( ( d - t7 ) / ( ( d - t7 ) + ( d - t7 ) ) / ( ( d - d7 ) + ( d - d7 ) ) / ( ( d - d7 ) + ( d - d7 ) ) ) <= s2 ; assume that s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of E st { e } = Sphere ( s , t ) /\ Sphere ( x , r ) and e in Sphere ( s , t ) and e in Sphere ( x , r ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s holds 0 < s and for x1 , x2 being Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s & |. f /. x1 - f /. x2 .| < r holds |. f /. x1 - f /. x2 .| < r / 2 ; ( p | x ) | ( p | ( ( x | x ) | ( x | x ) ) ) = ( ( ( x | x ) | ( x | x ) ) | ( ( x | x ) | p ) ) | ( ( ( x | x ) | p ) ) ) ; assume that x , x + h / 2 in dom sec and ( for x st x in dom sec holds sin . x = ( 4 * ( sin . x + h / 2 ) ) * sin . x + cos . ( x + h / 2 ) * sin . x ) ^2 and sin | A is continuous ; assume that i in dom A and len A > 1 and for B being non empty Subset of the carrier of K st B c= A & B c= the carrier of ( len A ) & A = ( len A ) \ { i } holds A is non empty or A is non empty or A is non empty & A is non empty or A is non empty or A is non empty or A is non empty & A is non empty or A is non empty & A is non empty & B is non empty & A is non empty & A is non empty or A is non empty & A is non empty & A is non empty or A is non empty & A is non empty or A is non empty & A is non empty & A is non empty & A is non empty & A is non empty or A is non empty or A is non empty or A is non empty or A is non empty or B is non empty or A is non empty or for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i <> 0. F_Complex & for i be Element of NAT st i in Seg n holds h . i = <* 1. F_Complex , 1. F_Complex *> & h . i = 1. F_Complex & h . i = 1. F_Complex \ { h . i } ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( a1 'or' b1 ) '&' ( b1 'or' c1 ) ) '&' ( ( a1 'or' b1 ) '&' ( b1 'or' c1 ) ) '&' ( ( b1 'or' c1 ) '&' ( b1 'or' c1 ) '&' 'not' ( b2 '&' c2 ) ) '&' 'not' ( a1 '&' b1 ) '&' 'not' ( b1 '&' c1 ) '&' 'not' ( b1 '&' c1 ) '&' 'not' ( b2 '&' c2 ) ) '&' 'not' ( b1 '&' b2 ) assume that for x holds f . x = ( ( cot * ( ( cot * ( f - h ) ) ) ) `| Z ) . x and for x st x in Z holds ( ( ( cot * ( ( f - h ) / ( 2 * ( f - h ) ) ) ) `| Z ) . x = sin . ( x- / ( 2 * ( f - h ) ) ) ^2 ) ) ; consider R8 , I-8 being Real such that R8 = Integral ( M , Re ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ) ; ex k being Element of NAT st k0 = k & 0 < d & for q being Element of product G st q in X & ||. q- 1 .|| < d holds ||. partdiff ( f , q , k ) . q - partdiff ( f , x , k ) . p .|| < r x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 } ; G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . ( ( the Arity of S2 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S2 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S2 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( ( the Arity of S1 ) . ( ( the func tree ( T , P , T1 ) -> DecoratedTree means : : : q in it iff q in T & for p st p in P holds p in T & q in T1 or ex r st p in P & r in T1 & p = r ^ q ; F /. ( k + 1 ) = F . ( k + 1 - 1 ) .= Fq . ( k + 1 - 1 ) .= Fq . ( k + 1 - 1 ) .= Fq . ( k + 1 - 1 ) .= Fq . ( k + 1 - 1 ) .= Fq . ( k + 1 - 1 ) .= Fq . ( k + 1 - 1 ) .= Fq . ( k + 1 ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width C & len A > 0 & len B > 0 & len C > 0 & len A > 0 & len B > 0 & len A > 0 & width B > 0 & width A > 0 & width B = 0 holds A * ( B * C ) = B * ( B * C ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of CQ ) and y in ( the carrier of CQ ) and [ x , y ] in ( the carrier of CQ ) and [ y , x ] in ( the carrier of CQ ) and [ y , x ] in the carrier of CQ and [ y , x ] in the carrier of CQ ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) & ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) & ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G and f /. k = G * ( i , j ) and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that cn < 1 and ( q `1 / |. q .| - cn ) > 0 and ( q `2 / |. q .| - cn ) >= 0 or ( p `1 / |. q .| - cn ) >= 0 & ( p `1 / |. q .| - cn ) <= ( q `1 / |. q .| - cn ) and ( p `2 / |. p .| - cn ) <= ( q `1 / |. q .| - cn ) ; for M being non empty TopSpace , x being Point of M , f being Point of M st x = x `1 holds ex f being sequence of M st for n being Element of NAT holds f . n = Ball ( x `1 , ( 1 - r ) * ( n + 1 ) ) & f . n = Ball ( x `1 , ( 1 - r ) * ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & ( for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = ( f1 . x ) - ( f2 . x ) ) / ( ( f1 . x ) ^2 ) & ( ( f1 - f2 ) `| Z ) . x = ( f1 . x ) - ( f2 . x ) ) / ( ( f1 . x ) ^2 ) ; defpred P1 [ Nat , Point of CNS ] means $1 in Y & ||. $2 - $1 .|| < r & ||. ( f /. $1 ) - ( f /. ( $1 + 1 ) ) .|| < r & ||. ( f /. $1 ) - ( f /. ( $1 + 1 ) ) .|| < r & ||. ( f /. $1 ) - ( f /. ( $1 + 1 ) ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= ( mid ( g , 2 , len g ) ) . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) ; ( 1 / 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) = ( 1 / 2 * n0 + 2 * n0 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) .= ( 1 / 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) .= ( 1 / 2 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) ; defpred P [ Nat ] means for G being non empty strict finite symmetric RelStr for H being strict symmetric RelStr st G is space for x being Element of G st x is space & the carrier of G in H & the carrier of G in H holds the carrier of G = { the carrier of H } & the carrier of G in H & the carrier of G in H holds x in the carrier of H ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m & m <= len - ( f /. i ) and for i st 1 <= i & i <= len f & LSeg ( f , i ) /\ Ball ( u , r ) <> {} holds not f /. i in Ball ( u , r ) and not f /. i in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( cos * ( ( cos - r ) / ( $1 + 1 ) ) ) ) ) . ( 2 * ( ( cos - r ) / ( $1 + 1 ) ) ) = ( Partial_Sums ( ( cos * ( ( cos - r ) / ( $1 + 1 ) ) ) ) ) . ( 2 * ( ( cos - r ) / ( $1 + 1 ) ) ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & for i being set st i in dom ( the Sorts of F ) holds x . i = ( ( the Sorts of F ) * ( the Arity of S ) ) . i ) & for i being set st i in dom ( the Sorts of F ) holds x . i = ( ( the Sorts of F ) * ( the Arity of S ) ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) |^ n ) * x " .= ( x |^ n ) " * x .= ( x |^ n ) " * x .= ( x |^ n ) " * x .= ( x |^ n ) " * x .= ( x |^ n ) " * x .= ( x |^ n ) " * x .= ( x |^ n ) " * x ; DataPart Comput ( P +* ( I , P +* I , Initialized s ) , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialized s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialized s ) ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= ( dom f1 /\ dom f2 ) and for g st g in ]. x0 - r , x0 .[ holds f1 . g <= f1 . g & for g st g in ]. x0 - r , x0 .[ holds f1 . g <= f2 . g & f2 . g <= f1 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and for r st r in X /\ dom ( f1 + f2 ) & r in X /\ dom ( f1 + f2 ) holds ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous & ( f1 + f2 ) | X is continuous ) ; for L being continuous complete LATTICE for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is compact & for x being Element of L st x in X holds x is compact & x is compact & for l being Element of L st l in ( waybelow l ) holds l . l is compact Support e8 in { Support ( m *' p ) where m is Polynomial of n , L : ex i being Element of NAT , p being Polynomial of n , L st i in Support ( m *' p ) & p . i = ( m *' p ) . i & p . i = ( m *' q ) . i } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of CQC-WFF ( Al ( ) ) st p1 = g `1 & for p being Function of [: CQC-WFF ( Al ( ) ) , D ( ) :] , D ( ) st P [ p , ( len p ) qua Nat ] holds P [ p , p1 , p . ( len p ) ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , i , len f -' 1 ) ) /. j ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k ) . ( len p + k ) .= ( ( p ^ r ) . ( len p + k ) .= ( ( p ^ r ) . ( k + k ) . ( k + k ) . ( k + k ) .= ( ( p ^ r ) . ( k + k ) . ( k + k ) .= ( ( p ^ r ) . ( k + k ) .= ( ( p ^ r ) . ( k + k ) .= ( ( p ^ r ) . ( k + k ) len mid ( upper_volume ( f , D2 ) , indx ( D2 , D1 , j1 ) + 1 ) = indx ( D2 , D1 , j1 ) + ( indx ( D2 , D1 , j ) + 1 ) - ( indx ( D2 , D1 , j ) + 1 ) .= indx ( D2 , D1 , j ) - ( indx ( D2 , D1 , j ) + 1 ) + 1 ; x * y * z = MQ . ( ( y * z ) , z9 ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) . i * x = partdiff ( v , ( x - x0 ) ) . ( x - x0 ) + ( proj ( 1 , 1 ) . ( x - x0 ) ) + ( proj ( 1 , 1 ) . ( x - x0 ) ) . ( x - x0 ) + ( proj ( 1 , 1 ) . ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 1 ) - ( 0 * 0 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) + 0 * ( - 1 ) , 0 * ( - 1 ) + 0 * ( - 1 ) , 0 * ( - 1 ) , 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 * ( - 1 ) + 0 * ( - 1 ) + ( - 1 * ( - 1 ) + 0 * ( - 1 ) + ( - 1 ) + 0 * ( - 1 ) + 0 * ( - 1 ) + 0 * Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) + Sum ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) + Sum ( L (#) F1 ) + Sum ( L (#) F1 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( ( L (#) F2 ) .= Sum ( L (#) F2 ) + Sum ( ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X st Y0 is non empty & for Y1 be finite Subset of X st Y0 is non empty & Y1 c= Y & card ( Y1 ) = card Y1 & card ( Y1 ) = card Y1 & card ( Y1 ) = card Y1 & card ( Y1 ) = card Y1 ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) ; ( ( - cos ) / ( sin . x ) ^2 ) = ( - sin . x ) ^2 / ( cos . x ) ^2 .= ( - sin . x ) ^2 / ( cos . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 / ( cos . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 / ( cos . x ) ^2 .= ( - 1 ) * ( sin . x ) ^2 / ( cos . x ) ^2 ; ( - b + sqrt ( x0 - b , c ) / ( 2 * a ) ) / ( 2 * a ) < 0 & ( - b + sqrt ( x0 , b ) / ( 2 * a ) ) / ( 2 * a ) < 0 or ( - b + sqrt ( x0 , c ) / ( 2 * a ) ) / ( 2 * a ) < 0 assume that ex_inf_of uparrow "\/" ( X , C ) , L and ex_sup_of X , L and ex_sup_of X , L and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) and for x being Element of L st x in ( uparrow ( X , L ) ) holds x < "\/" ( X , L ) ; ( ( the Sorts of B ) . j ) . ( j , i ) = ( j = j ) |-- ( id the Sorts of B , ( j , j ) ) & ( j = j implies ( j = i implies j = i ) ) & ( j = i implies j = i ) implies j = i )