thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i , j ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b , c ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is L ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is let I ; assume x in I ; q is as Nat ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k} ; assume m <= i ; assume G is finite ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is non bounded ; f is Assume f is one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be DecoratedTree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= \rm implies k <= \rm implies k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , F be FinSequence of E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , \cdot ; Q halts_on s ; x in for for -1 st x in dom } holds x in 3 ; M < m + 1 ; T2 is open ; z in b lim a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of REAL ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o implies o on o1 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be complex normed space , v be VECTOR of V ; not s in Y |^ 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a` <= non L~ \HM { a } ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T ; the Arrows of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; SNAT is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let UA , A , B ; pp = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj & 1 <= j ; set A = [: NAT , NAT :] ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H is with_no for F is \cdot or F is set assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e2 Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M in union M assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} ; let x be Element of Y ; let f be + being ) Chain Chain of P ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v card dom that e in v ; - y in I ; let A be non empty set , f be Function ; Px0 = 1 ; assume r in F . k ; assume f is simple function of S ; let A be \cdot \ -1 set ; rng f c= NAT ; assume P [ k ] ; ff <> {} ; o be Ordinal ; assume x is sum of non squares ; assume not v in { 1 } ; let IB , C ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} ; M + N c= M + M ; assume M is \mathclose k1 k1 k1 ; assume f is additive for brbeing set ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= len f ; f | A is non as as as continuous ; f . x - b <= 0 ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; CB in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & c2 < c1 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 , P4 = P3 ; let V , C ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be <> <> <> <> the carrier of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w be Element of V ; R8 ; let a , b be Real , x be Point of REAL ; let a be object of C ; let x be Vertex of G ; let o be object of C , a be object of A ; r '&' q = P \lbrack l .] ; let i , j be Nat ; let s be State of A , v be Element of S ; s4 . n = N ; set y = x `1 ; NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; V-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in Nffffffffffffffffffffffffffff reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng g c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars C ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; [: x , Y :] c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re seq is convergent & Im seq is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , I be Element of S ; assume that r2 > x0 and r1 > x0 ; let Y be non empty set , f be Function of Y , Z ; 2 * x in dom W ; m in dom g2 & n + 1 in dom g2 ; n in dom g1 /\ dom g2 ; k + 1 in dom f ; the still of { s } is finite ; assume that x1 <> x2 and y1 <> y2 ; v3 in V0 & v2 in V0 ; not [ b `1 , b ] in T ; i-35 + 1 = i ; T c= <> * ( X , T ) ; l `1 = 0 & l `2 = 0 ; let n be Nat ; t `2 = r & t `2 = s ; AcA is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and vseq is convergent ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 & z `2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one full ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be halting Instruction of S , s be State of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C2 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = K1 & p2 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMM^ A is closed assume z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f `| 1 ; cR is stable Subset of R ; set cR = Vertices R ; pp0 c= P3 & pp0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( ) ; k in dom ( q | i ) ; p is \HM { finite } -valued FinSequence of S ; i -' 1 = i-1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for for let `1 ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n .= dom J ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F /\ dom G ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds S is H -holds S is non void let f be ManySortedSet of I ; let z be Element of F_Complex , v be Element of COMPLEX ; u in { ag } ; 2 * n < 2 * n ; let x , y be set ; B-11 c= V-15 \/ { x } ; assume I is_closed_on s , P ; UA = [: U1 , U2 :] ; M /. 1 = z /. 1 ; x = x22 & x = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f | X ) . x <= ( f | X ) . x ; let l be Element of L ; x in dom ( F . 0 ) ; let i be Element of NAT ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = q - { k + 1 } ; y = W . ( 2 * an ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite < F , v be Vector of V ; A * B on B , A ; fg = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f /\ dom g ; let B be non-empty ManySortedSet of I , A be ManySortedSet of B ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in II ; Q * ( 1 , 3 ) `2 = 0 ; set j = x0 gcd m , m = x0 gcd m ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - jj > 0 ; I the I the string of phi = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( A |^ n ) ; s1 , s2 are_` & s2 , s1 are_` ; j1 -' 1 = 0 & j2 -' 1 = 1 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower bounded and 0 <= r ; p1 `1 = 1 & p1 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len f ; 1 <= i1 -' 1 & i1 + 1 <= len f ; i + i2 <= len h ; x = W-min ( P ) & x = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . gg ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 ; assume x in X3 /\ X3 & x in X3 /\ X3 ; ||. h .|| < d1 & ||. h .|| < d1 ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing - k\leq ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \rm \geq s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive RelStr , x , y be Element of L ; S-20 is x -basis i -basis let r be non positive Real ; M , v |= x \hbox \hbox { = } y ; v + w = 0. ( Z , p ) ; P [ len F ( ) ] ; assume that InsCode ( i ) = 8 and InsCode ( i ) = 8 ; the zero of M = 0 implies M = 0 cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> N \rm implies for Element of S ; reconsider l1 = l- 1 as Nat ; ( for v being Vertex of r2 holds v . v = r2 . v ) implies v is Vertex of r2 T2 is SubSpace of T2 implies the carrier of T1 = the carrier of T2 Q1 /\ Q19 <> {} & Q29 /\ Q29 <> {} ; k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of of of set , M ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root & x `2 = - 1 ; not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Real ; ( not 7 does not destroy b1 ) & not b1 on b2 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s ; H + G = F- ( G-GG ) ; CC1 . x = x2 & CC2 . x = y2 ; f1 = f .= f2 .= f2 * f1 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a1 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 ; IO is reflexive & IO is transitive implies IO is reflexive IO is antisymmetric implies [: O , O :] is antisymmetric sup rng H1 = e & sup rng H2 = e ; x = ( a * a9 ) * ( b * b9 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < len f ; rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and support b misses support a ; let L be associative commutative associative non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , I2 ) = I1 +* Directed ( I2 , 1 ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , ] *> -> complete non trivial ; ( 1 - a ) " = a ; ( q . {} ) `1 = o ; ( n - 1 ) > 0 ; assume 1 / 2 <= t `1 ; card B = k + 1-1 ; x in union rng ( f | ( len f ) ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & not v in V ; let G be st G is : Let w be set ; e , v9 be set , x be element ; c . ( i9 - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z2 , z2 = - z1 ; assume w is llas of S , G ; set f = p |-count ( t ) , g = p |-count ( t ) ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , r be Real ; let IB be Subset-Family of X , x be Point of X ; reconsider p = p , q = q as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM+FSA , the carrier of SCM+FSA ; stop I ( ) c= P-12 ( ) ; set ci = fbeing /. i ; w ^ t ^ s ^ w ^ t ^ w ^ t ^ s ^ t ^ t ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ w ^ W1 /\ W = W1 /\ W ` .= W2 /\ W ; f . j is Element of J . j ; let x , y be \rm \cdot of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ord x = 1 & x is dom p implies x is dom p set g2 = lim ( seq ^\ k ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L2 . F-21 = 1 ; h \/ R1 = h implies R1 = R2 ( sin . x ) ^2 <> 0 & ( sin . x ) ^2 <> 0 ; ( #Z n ) . x > 0 & ( #Z n ) . x > 0 ; o1 in X-5 /\ O2 & o2 in Xor o1 = o2 ; e , v9 be set , x be element ; r3 > ( 1 / 2 ) * 0 ; x in P .: ( F -Ideal ( L ) ) ; let J be closed Ideal of R ; h . p1 = f2 . O & h . p2 = g2 . O ; Index ( p , f ) + 1 <= j ; len ( q | M ) = width M .= width M ; the carrier of `1 c= A & the carrier of L = A ; dom f c= union rng ( F | ( n + 1 ) ) k + 1 in support ( s ) & k + 1 in dom ( s ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( \/ \/ R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n & b mod n = 0 ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X & F is one-to-one ; reconsider w = |. s1 .| as Real_Sequence ; 1 / ( m * m + r ) < p ; dom f = dom IK1 & dom IK1 = dom IK1 ; [#] P-17 = [#] ( K ) & [#] P-2 = [#] ( K ) ; cluster - x -> ExtReal means : Def8 : x <= - y ; then { d1 } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W2 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , x be Element of X ; dist ( x `2 , y ) < r / 2 ; reconsider mm = m , mn = n as Element of NAT ; x- x0 < r1 - x0 & x - x0 < r2 - x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( ID2 . ( k + 1 ) ) in { x } ; cluster subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gik in LSeg ( PI , 1 ) /\ LSeg ( Gik , Gij ) ; n be Element of NAT , x be Element of X ; reconsider SS = S , SS = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x `2 as Element of C ( ) ; let s be 0 -started State of SCMPDS , a be Int-Location ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , z is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; let N1 >= ( sqrt c ) / sqrt 2 & N2 >= 0 ; reconsider t7 = T" as TopSpace , T8 = T8 " ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 & z2 in Q . ( y2 ) /\ Q2 ; A |^ 0 = { <%> E } & A |^ 1 = A ; len W2 = len W + 2 & len W2 = len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 + 1 ) ; z in dom g1 /\ dom f & z in dom g1 /\ dom f ; assume that p2 = E-max ( K ) and p1 `2 = - 1 ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster s-10 + sT -> summable for Real_Sequence ; assume j in dom M1 & i + 1 in dom M1 ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of p ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> ^ <* y *> ^ x ` ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & R . x = y ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` is F of x , L & x ` is Element of L ; k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being being being being being being being being 0 Element of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow y ; M \lbrack f , g .] = f & M [. g , f .] = g ; ( ( >= 1 ) to_power ( 1 + 1 ) ) = TRUE ; dom g = dom f |^ X & rng g c= dom f ; mode : il of G is \HM { w.r.t. } ; [ i , j ] in Indices M & [ i , j ] in Indices M ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom Subformulae p & f . f = F ( f ) ; F1 . ( a1 , - a1 ) = G1 . ( a1 , - a1 ) ; redefine func E ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( n + 1 ) ) ; curry ( ( F . -19 ) , k ) is additive additive ; set k2 = card dom B , k1 = card dom C , k2 = card dom D ; set G = ( the Sorts of X ) * the Arity of S ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of ML , x be Element of ML ; reconsider s1 = s , s2 = t as Element of S1 ; rng p c= the carrier of L & rng q c= the carrier of L ; let d be Subset of the Sorts of A ; ( x .|. x = 0 iff x = 0. W ) I-21 in dom stop I & IY in dom stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y , E = X as Subset of TOP-REAL n ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng g c= the carrier of T ; rng h c= union ( the carrier of J ) & rng h c= union ( the carrier of J ) cluster All ( x , H ) -> \cal \widetilde L~ -like ; d * N1 ^2 > N1 * 1 & d * N2 ^2 > 0 ; ]. a , b .] c= [. a , b .] ; set g = f " | D1 , h = f " | D2 ; dom ( p | mm1 ) = mm1 & dom ( p | mm1 ) = mm1 ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot . x ) & tan . x > 0 ; x in rng ( f /^ n ) /\ rng ( f /^ n ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 & P [ p ] ; rng f " = dom f & rng f = rng g ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G -' 1 ; assume v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( g2 | A ) ; let q be Point of TOP-REAL 2 , r be Real ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_the carrier of C-20 & <* C7 *> is non empty ; i <= len ( G * ( i1 -' 1 , j1 ) ) ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i ; g in { g2 : r < g2 & g2 < r } ; Q2 = SdL " Q .= SdL " Q ; ( ( 1 / 2 ) |^ ( n + 1 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L2 , L1 ; reconsider z = z , t = y as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , f1 :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 3 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V , V2 = V as Subset of X | B ; attr p is valid means : Def8 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g . X = g . X ; H |^ a " is Subgroup of H & H |^ a = H ; let A1 be p1 such that A1 on E1 , E1 & A2 on E1 ; p2 , r3 , q2 is_collinear & q2 , q3 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in the carrier of I[01] ; 0 . 0 < M . ( E8 . n ) ; op ( c , c ) |^ a = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> of *> -* w for F -st L is Let ; set i1 = the Nat , i2 = the Element of NAT ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 union f2 ) .: A ; f . ( len f ) = f /. len f .= f /. 1 ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def8 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster -> -> as as NAT real for Element of NAT ; set S = <* Bags n , ( T /. i ) *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / 2 < ( 2 * PI ) / 2 ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 or p `1 = p1 `2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & len <* P @ *> = 1 ; set N-26 = the non empty Subset of N , NN2 = the carrier of N ; len gLet gLet + ( x + 1 ) - 1 <= x ; a on B & b on B implies not a on B reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n , i ) = len ^2 ; set q2 = N-min L~ Cage ( C , n ) , q2 = W-min L~ Cage ( C , n ) ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . q2 ; f " D meets h " V & g " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( the carrier of S ) * ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G `1 = E \/ { E } & the carrier' of G `2 = E ; reconsider m = len thesis - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( f , n ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { an } and P is { \cdot } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p ; ( p . i ) `1 = ( p . i ) `1 ; let PA , PA be a_partition of Y , PA be Subset of Y ; pred 0 < r & r < 1 implies 1 < r & r < 1 ; rng ( ( \cal E } ) | X ) = [#] X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card s & len ( canFS ( s ) ) = card s ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q c= FinMeetCl the topology of X ; dom ( fx0 ) c= dom ( ux0 ) /\ dom ( fx0 ) ; pred n divides m means : Def8 : m divides n & n = m ; reconsider x = x , y = y , z = z as Point of [: I[01] , I[01] :] ; a in dom ( the in s of R , T2 ) ; not y0 in the carrier of f & not y0 in the carrier of g ; Hom ( ( a [: b , c :] , c ) , ( b * c ) ) <> {} ; consider k1 such that p " < k1 and k1 < len p ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = a1 +* ( x , y , z ) ; l1 = m2 & l1 = i2 & l2 = j2 implies l1 = l2 x0 in dom ( u01 /\ A01 ) & x0 in dom ( u01 /\ A01 ) ; reconsider p = x , q = y , r = z as Point of TOP-REAL 2 ; I[01] = R^1 | B01 & the carrier of I[01] = the carrier of TOP-REAL 2 ; f . p4 <= f . p1 & f . p1 <= f . p2 ; ( F `1 ) ^2 / ( F `2 ) ^2 <= ( x `1 ) ^2 / ( F `2 ) ^2 ; x `2 = ( W7 ) `2 .= ( W8 ) `2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K & 0 |-> a = <*> the carrier of K ; X . i in 2 to_power ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] implies P [ succ a ] ; reconsider sl = s/. i , sl = sl /. i as w of D ; ( i - 1 ) <= len thesis & ( i - 1 ) <= len thesis ; [#] S c= [#] the TopStruct of T & [#] the TopStruct of S = [#] the TopStruct of T ; for V being strict RealUnitarySpace holds V in assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K ; - a * - b = a * b & - a * b = - a ; for A being Subset of AS holds A // A & A // C implies A = C ( for o2 being object of o2 st o2 in <^ o2 , o2 ^> holds o2 = o1 ) implies o1 = o2 then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len ( upper_volume ( g , D1 ) | indx ( D2 , D1 , j ) ) ; b = Q . ( len Qb - 1 + 1 ) ; f2 (#) f1 /* s is divergent_to-infty & f2 (#) f2 /* s is divergent_to-infty ; reconsider h = f * g as Function of N1 , G ; assume that a <> 0 and Let a , b , c be Real ; [ t , t ] in the Relation of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T | n ) ; {} = the carrier of L1 + L2 & the carrier of L1 + L2 = the carrier of L2 ; Directed I is_closed_on Initialized s , P & Directed I is_closed_on Initialized s , P ; Initialized p = Initialize ( p +* q ) .= p +* q +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R1 , R2 ; reconsider Y = Y as Element of <* Ids L , \subseteq *> ; "/\" ( uparrow p \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( P + ) & len ( P + Q ) = len P + len Q ; x1 `1 = x2 & y1 `2 = y2 & x1 `2 = y2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p `2 = |[ p `2 , p `2 ]| ; g * 1_ G = h " * g * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom x1 /\ dom x2 & x1 . x0 = x1 . x0 + x2 . x0 ; ( R qua Function ) " = R " & ( R " ) " = R " ; n in Seg len ( f /^ ( i -' 1 ) ) ; for s being Real st s in R holds s <= s2 implies |. s1 .| <= |. s2 .| rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for for for for the carrier of X , the carrier of X ; 1_ K * 1_ K = 1_ K & 1_ K * 1_ K = 1_ K ; set S = Segm ( A , P1 , Q1 ) , P = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) / 2 & w in F ; curry ( ( P+* ( i , k ) ) # x ) is convergent ; cluster open -> open for Subset of [: T , T :] ; len f1 = 1 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // b9 , c9 ; consider p be element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume that IC Comput ( F , s , k ) = n and F . IC Comput ( F , s , k ) = halt SCM+FSA ; Reloc ( J , card I + 1 ) does not ` not ` ; Macro ( card I + 1 ) does not ` ; set m3 = LifeSpan ( p3 , s3 ) , P4 = Comput ( p3 , s3 , 1 ) ; IC SCMPDS in dom Initialize p & IC Comput ( p , s , k ) in dom I ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of thesis of thesis , f , g be Function ; Cl Int ( union F ) c= Cl Int ( union F ) ; the carrier of X1 union X2 misses ( ( X1 union X2 ) \/ ( ( X1 union X2 ) \/ ( X2 \/ A ) ) ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in D ; then Y c= { x } or Y = { x } ; M , v / ( y , x ) / ( y , x ) |= H ; consider m being element such that m in Intersect ( ( F . 0 ) ) ; reconsider A1 = support u1 , A2 = support u2 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -carrier V -> $ string of S , X , Y be non empty for string of S ; LL2 /. n2 = LL2 . n2 .= LL2 . n2 .= LL2 /. n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume that [ k , m ] in Indices DD1 and D * ( k , m ) = D * ( k , m ) ; 0 <= ( ( 1 / 2 ) |^ p ) / ( 2 |^ n ) ; ( F . N ) | E8 . x = +infty ; pred X c= Y & Z c= V implies X \ V c= Y \ Z ; y `2 * z `2 <> 0. I & y `2 * z `2 = 0. I ; 1 + card X-18 <= card u + card X-18 ; set g = z :- ( ( L~ z ) .. z ) ; then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -\mathopen the carrier of X , the carrier of X ; reconsider B = A , C = B as non empty Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x1 , x2 , x3 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( ( ( g2 ) . O ) `1 ) ^2 = - 1 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , E = E-bound C ; S1 . ( a `2 , e `2 ) = a + e .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im f ) = dom Im ( f ) /\ dom Im ( f ) ; ( ^2 ) . x = W . ( a , *' ( a , p ) ) ; set Q = ( s Q ) \ { g , h } ; cluster -> MSsorted for ManySortedSet of U1 , B be MSelement of U2 ; attr F = { A } means : Def8 : F is discrete ; reconsider z9 = \hbox { - 1 } as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng f1 c= rng f2 \/ rng g2 ; consider x such that x in f .: A and x in f .: C ; f = <*> the carrier of F_Complex & f = <*> the carrier of F_Complex implies f = <*> the carrier of F_Complex E , j |= All ( x1 , x2 , H ) implies E , j |= H reconsider n1 = n , n2 = m , n3 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P (*) R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 & card ( ( x \ B2 ) /\ B2 ) = 1 ; g + R in { s : g-r < s & s < g + r } ; set q-17 = ( q , <* s *> ) : q in dom s & s in dom ( p , q ) ; for x being element st x in X holds x in rng f1 implies x in rng f2 h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , } , } , mw = max ( B , m ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f , C = rng g as Element of Fin NAT ; IncAddr ( i , k ) = <% x , y %> + k ; ( for q being Point of TOP-REAL 2 st q in L~ f holds q `2 <= q `2 ) implies ( f /. q ) `2 <= N-bound L~ f attr R is condensed means : |. : R is condensed & Cl R is condensed ; pred 0 <= a & 1 <= b & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ j ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 2 >= 9 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a & a |^ ( n1 + 1 ) = a ; <* \underbrace ( 0 , \dots , 0 *> , x ) *> in Line ( x , a * x ) ; set yi1 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. len FF2 = D . 1 ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 & p `2 = ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) & W-bound ( X \/ Y ) = W-bound ( X \/ Y ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom ( g " ) f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u , v2 = v as VECTOR of P`1 , V ; p |-count ( Product Sgm X11 ) = 0 implies p |-count ( p |-count X11 ) = 0 len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 , ii2 = goto 2 ; x in { x , y } & h . x = {} ( Tx , y ) ; consider y being Element of F such that y in B and y <= x `2 ; len S = len ( the charact of A0 ) & len the charact of ( B * the charact of A0 ) = len the charact of B ; reconsider m = M , i = I , n = N , m = I as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : : G = : G = ( G . e ) `1 ; rng F c= the carrier of gr { a } & rng F = the carrier of gr { a } ; implies for K being \vert , n , r being Nat holds ( for k being Nat holds k <= n implies K . k is a and r = k ) f . k , f . ( mod n ) in rng f ; h " P /\ [#] T1 = f " P /\ [#] T2 .= f " P /\ [#] T1 ; g in dom f2 \ f2 " { 0 } & f2 . g in dom f2 \ f2 " { 0 } ; g+ X /\ dom f1 = g1 " X & g- X = g2 " X ; consider n being element such that n in NAT and Z = G . n ; set d1 = \bf dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `2 + 1 / 2 < ( 1 - r ) / 2 + r / 2 ; reconsider f1 = f , g1 = g as VECTOR of the carrier of X , Y ; pred i <> 0 means : Def8 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j2 + 1 in Seg ( len g2 ) ; dom ( i ) = dom ( ( i - 1 ) * ( a - b ) ) .= dom ( a - b ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x1 , y2 = x2 as Function of S , IV ; reconsider R1 = x , R2 = y , R1 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rn ; S1 +* S2 = S2 +* S1 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( #Z n ) * ( cos * sin ) ) `| Z = f ; cluster -> [. 0 , 1 .] -valued for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; Ea1 . e2 = E8 . e2 -T & Ea2 . e2 = E8 . e2 -T ; ( ( arctan * ( f1 + f2 ) ) `| Z ) . x = 1 / ( x + a ) ^2 ; upper_bound A = ( PI * 3 / 2 ) * ( PI / 2 ) & lower_bound A = 0 ; F . ( dom f , - f ) is_transformable_to F . ( cod f , - f ) ; reconsider pNAT = q`2 , px1 = q `2 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y & g . W in [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m2 = n - 1 as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y implies g <= y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: the carrier of X1 , B" = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume that R -Seg ( a ) c= R -Seg ( b ) and R -Seg ( b ) c= R -Seg ( a ) ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & P [ y2 ] & P [ y2 ] ; pred x1 <> x2 means : Def8 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 , p2 - p1 is_collinear and p2 - p1 , p3 - p1 is_collinear ; set q = ( f , f ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , g be PartFunc of REAL-NS 1 , REAL-NS n ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( succ t ) ) = dom ( succ t ) .= dom ( T * ( succ t ) ) ; consider x being element such that x in wc iff x in c & x in X ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume that the carrier' of D1 c= the carrier' of D2 and the carrier' of D1 c= the carrier' of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = q .. Cage ( C , n ) ; n1 -' len f + 1 <= len ( - len f + 1 ) - len f + 1 ; st c= c= { [ u , v , a , b ] , [ u , b , b ] } ; set C-2 = ( ( Seg k ) .--> 1 ) . ( k + 1 ) ; Sum ( L * p ) = 0. R * Sum p .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & P [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 +* I ; let l be variable of k , Al , A-30 be Element of D ; reconsider U2 = union G-24 , G-24 = union G-24 as Subset-Family of T-24 ; consider r such that r > 0 and Ball ( p `2 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p2 ; reconsider B = the carrier of X1 , C = the carrier of X2 , D = the carrier of X2 as Subset of X ; p$ p$ = <* - c , 1 *> ^ ( <* - 1 *> ^ ( <* - 1 *> ^ ( - 1 ) ) ) ; synonym f is real-valued means : Def6 : rng f c= NAT & f is one-to-one ; consider b being element such that b in dom F and a = F . b ; ( x < card X0 ) + card Y0 & ( x in card Y0 or x = card X0 ) ; pred X c= B1 means : Defooo) : X c= succ B1 & X c= B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , PI ) ; pred 1 <= len s means : Def21 : for s being Element of NAT holds s . ( 0 + 1 ) = s ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in \cdot ( the carrier of A ) & q '&' p in TAUT ( A ) ; - ( t `1 ) ^2 < ( t `1 ) ^2 & ( t `2 ) ^2 < ( t `2 ) ^2 ; UA . 1 = ( 9 /. 1 ) `1 .= ( 9 /. 1 ) `1 .= ( 9 /. 1 ) `1 ; f .: the carrier of x = the carrier of x & f .: the carrier of x = the carrier of x ; Indices OO = [: Seg n , Seg n :] & Indices OO = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ex x being Element of M st V = { x } ; ex f being Element of F-9 st f is H & f is H & f . 1 = F ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - ( - 1 ) * ( w1 + ( - 1 ) * ( w1 + ( - 1 ) * ( w1 + ( - 1 ) * ( w1 + ( - 1 ) * ( w1 + ( - 1 ) * ( w1 + ( - 1 ) * ( w1 + w2 ) ) reconsider t = t , s = s as Element of INT |^ X ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) & C /\ A = {} ; f " V in the topology of ( X ) /\ D & D = the carrier of ( X ) /\ D ; x in [#] ( the carrier of ( the carrier of A ) ) /\ A & x in [#] ( ( the carrier of A ) ) ; g . x <= h1 . x & h . x <= h1 . x implies h . x <= h1 . x InputVertices S = { xy , yz , zx } \/ { xy , yz , zx } \/ { xy , yz } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = \cdot ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) & len B2 = len Len ( F1 ^ F2 ) + len ( F2 ^ F1 ) ; len ( ( the ` of n ) * ( i , j ) ) = n & len ( ( i , j ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( the Sorts of seq ) . n = upper_bound Y1 & ( the Sorts of seq ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 , y ] = 1 / C * v1 .= y * v1 .= y * v1 ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and W is non trivial ; godo /. i1 = G1 * ( i1 , i2 ) & card C = 1 ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng fnon \lbrace b } <= b - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ NAT ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in Ball x and p in L~ f and x = f . p ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( N-min Z , p2 ) /\ LSeg ( o , p2 ) implies p `1 = p2 `1 set R8 = R / ( 1 - b ) , R8 = R / ( 1 - b ) ; IncAddr ( I , k ) = SubFrom ( da , db ) .= SubFrom ( da , db ) ; seq . m <= ( the Sorts of seq ) . k & ( the Sorts of seq ) . m <= ( the Sorts of seq ) . k ; a + b = ( a ` *' ) ` & ( a + b ) ` = ( a ` *' ) ` ; id ( X /\ Y ) = id X /\ id Y .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , U2 = U1 \/ U2 , H = U2 \/ U1 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) /\ f ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( the carrier of R ) \ A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 implies len s2 - 1 > 0 ( N-min ( P ) ) `2 = N-bound ( P ) & ( N-min ( P ) ) `2 = N-bound ( P ) ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) \/ LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` & f . a2 = f . a2 ` ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 & gg . s0 = g . s0 ; the InternalRel of S is symmetric implies the InternalRel of S is transitive & the InternalRel of S is transitive deffunc F ( Ordinal , Ordinal ) = phi . $1 & phi . $1 = phi . $1 ; F . s1 . a1 = F . s2 . a1 & F . s2 = F . a1 ; x `2 = A . o .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & f " P1 c= f " P2 ; FinMeetCl ( ( the topology of S ) | D ) c= the topology of T & the topology of ( S | D ) | D = the topology of T ; synonym o is \bf means : U <> o *' & o <> * & o <> * ; assume that X = Y |^ + & card X <> card Y and X <> Y and Y <> {} ; the such that the such of s <= 1 + ( the g1 of s ) * ( the ResultSort of s ) & the {} of s = the carrier of s ; LIN a , a1 , d or b , c // b1 , c1 & LIN a , c , d ; e / 2 . 1 = 0 & e / 2 . 2 = 1 & e / 2 . 3 = 0 ; ES1 in SS1 & not ES1 in { NS1 } & ES2 in SS2 & ES2 in ES2 ; set J = ( l , u ) If ; set A1 = .| ( ( a , b , c ) --> ( p , q ) ) ; set vs = [ <* c , d *> , '&' ] , f3 = [ <* d , c *> , '&' ] , f4 = [ <* c , d *> , '&' ] , I = [ <* d , c *> , '&' ] , J = [ <* c , d *> , '&' ] , I ] ; x * z `1 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = ( g3 . x ) * ( g2 . x ) Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f \/ RightComp f \/ RightComp f ; UA is_an_arc_of W-min C , E-max C & W-min C in L~ Cage ( C , n ) implies W-min L~ Cage ( C , n ) in L~ Cage ( C , n ) set f-17 = f @ "/\" g @ ; attr S1 is convergent means : Def8 : S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \in for let reflexive transitive RelStr , F be reflexive transitive non empty reflexive RelStr , f be Function ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l (#) ( a |^ 0 ) ) = len l & len ( l (#) ( a |^ 0 ) ) = len l ; ( t of {} , rng t4 ) -valued FinSequence , p be ( {} , rng t4 ) -valued FinSequence ; t = <* F . t *> ^ ( C . p ^ q ) .= <* F . t *> ^ q ; set p-2 = W-min L~ Cage ( C , n ) , p`2 = W-min L~ Cage ( C , n ) ; ( k -' 1 ) -' ( i + 1 ) = ( k - 1 ) - ( i + 1 ) ; consider u being Element of L such that u = u ` "/\" D and u in D ` ; len ( ( width E ) |-> a ) = width E & width ( ( width E ) |-> a ) = width E ; ( F . x ) . ( ( G * the_arity_of o ) . x ) in dom ( G * the_arity_of o ) ; set cH2 = the carrier of H2 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= s . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) + 1 .= ( card I + 1 ) ; dom ( ( - cos * sin ) `| REAL ) = REAL & dom ( ( - cos * sin ) `| REAL ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* that x1 , x2 *> , '&' ] , c5 = [ <* x1 , x2 *> , '&' ] , b5 = [ <* x1 , x2 *> , '&' ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= L ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & ( the Sorts of A ) . n = ( the Sorts of A ) . n ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y and ||. x-y .|| <= r ; set x3 = t3 . DataLoc ( ( s . SBP ) , 2 ) , x4 = s . SBP , x4 = s . SBP , x4 = s . SBP , 7 = s . SBP , 8 = s . SBP , 6 = s . SBP , 7 = s . SBP , 8 = s . SBP , 8 = s . SBP set p-3 = stop I ( ) , ps2 = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B } \/ { C , D , E } ; let A , B , C , D , E , F , J , M , N , F , J , M , N , N , M , N , F , N , M ; |. p2 .| ^2 - ( p2 `2 ) ^2 - ( p2 `1 ) ^2 >= 0 & ( p2 `1 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( l + 1 ) + ( 1 + 1 ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 ) ; the TopStruct of L = , the TopStruct of L = , the Scott Scott TopAugmentation of L ; consider y being element such that y in dom H1 and x = H1 . y and y in H1 . x ; fH \ { n } = Free All ( v1 , H ) & fH \ { n } = Free H ; for Y being Subset of X st Y is summable holds Y is summable & Y is \cdot summable implies X \/ Y is summable 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { s } ) = len s & len ( the { s } ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 ; rng ( h2 * f2 ) c= the carrier of R^1 & rng ( h2 * g2 ) c= the carrier of R^1 ; j + - len f <= len f + ( len - len f ) - len f ; reconsider R1 = R * I , R2 = ( R * I ) * ( I * J ) as PartFunc of REAL , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= ( C * ( i , j ) ) . x ; power F_Complex . ( z , n ) = 1 .= x |^ n .= x |^ n ; t at ( C , s ) = f . ( the connectives of S ) . t .= s ; support ( f + g ) c= support f \/ ( support g ) & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] where x1 is Point of X1 , x2 is Point of X2 : x1 in X & x2 in Y } c= X ; h = ( i = j |-- h , id B . i ) .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in A ; set X = ( ( st ( q , O1 ) `1 , 4 ) ) `1 , Y = ( d , O1 ) `2 ; b . n in { g1 : x0 < g1 & g1 < a1 . n & g1 < x0 } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of the topology of Y = the carrier of the topology of Y & the topology of Y = the topology of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len q1 & len q1 + 1 = len ( q0 ^ r1 ) + len q1 ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z & ( ( 1 / a ) (#) ( sec * f1 ) ) `| Z is_differentiable_on Z ; set K1 = integral ( ( lim H ) || A , ( lim H ) || A ) , K1 = ( ( lim H ) || A ) ; assume e in { ( w1 - w2 ) `1 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d8 = dom F `1 , d8 = dom G `1 , d8 = dom G `2 as finite set ; LSeg ( f /^ j , j ) = LSeg ( f , j ) \/ LSeg ( f , j + q .. f ) ; assume that X in { T . N2 , N2 : h . N2 = N2 } and h . N2 = N2 ; assume that Hom ( d , c ) <> {} and <: f , g :> * f1 = <: f , g :> * f2 ; dom S29 = dom S /\ Seg n .= dom L6 .= Seg n /\ Seg n .= dom L6 .= dom L6 ; x in H |^ a implies ex g st x = g |^ a & g in H & g in H * ( ( 0 , 1 ) --> ( a , 1 ) ) = a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ = g @ ; dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom f1 /\ X ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 ; dom ( F | [: N1 , S-23 :] ) = [: F | [: N1 , S-23 :] , F | [: N1 , S-23 :] :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , F ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f `2 * f `2 = id a & f `2 = id b ; ( cos | [. 2 * PI * 0 , PI + 2 * PI .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS - 1 & Index ( Gij , LS ) + 1 <= len LS ; let t1 , t2 , t3 be Element of ( the carrier of S ) * , s be Element of ( the carrier of S ) * ; "/\" ( ( Frege ( curry H ) ) . h , L ) <= "/\" ( ( Frege G ) . h , L ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j ; Q [ ( [ D . x , 1 ] ) `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is for of G . i holds l . i is carrier of G . i the Sorts of A2 = ( the carrier of S2 ) --> BOOLEAN .= ( the carrier of S1 ) --> BOOLEAN .= the Sorts of A1 +* A2 ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F . 0 and rng s = { 1 } ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a1 , b1 ) < r ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) `1 = ( W-min L~ Cage ( C , n ) ) `1 ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP L~ Cage ( C , 1 ) ) `2 <= ( UMP L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= II and A = ]. a , II .] and a <= II ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= m & b |^ n in n } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , f4 = [ <* z , x *> , f3 ] , f4 = [ <* z , x *> , f3 ] ; l /. len l = ( l . len l ) * ( l /. len l ) .= l . len l ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( S \/ Y ) `2 ) / 2 ) * ( ( S + Y ) `2 ) = ( ( S + Y ) `2 ) / 2 ; ( seq - seq ) . k = seq . k - seq . k .= seq . k - seq . k .= seq . k - seq . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X0 = the carrier of X & the carrier of X0 = the carrier of X ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A5 ) , A5 = chi ( X , A5 ) ; R |^ ( 0 * n ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ 0 ; ( Partial_Sums ( ( curry ( F , n ) ) . 0 ) . n is nonnegative & ( ( curry ( F , n ) ) . 0 ) . n is nonnegative ; f2 = C7 . ( E8 . ( V , K ) ) .= C8 . ( V , K ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) & p2 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume that o = ( the connectives of S ) . 11 and the carrier' of S = ( the carrier' of S ) . 11 ; set phi = ( l1 , l2 ) implies phi is ( l1 , l2 ) u u in D ; synonym p is is is is is is is is / for p , T & p is is is is is is is is is is *' ; Y1 `2 = - 1 & 0. TOP-REAL 2 <> Y1 & Y1 `2 <> - 1 & Y1 `1 <= 1 implies Y1 `1 = 1 & Y2 `1 = - 1 defpred X [ Nat , set , set ] means P [ $2 , $2 , $2 ] & P [ $2 , $2 , $2 ] ; consider k being Nat such that for n being Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) * ( m -' n ) = 1_ K & Det ( I |^ ( m -' n ) ) = 1_ K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a * c ) < 0 ; Cs . d = C7 . d mod C7 . d & C8 . d = C8 . d mod C8 . d ; attr X1 is dense means : Defdense : X2 is dense dense & X1 /\ X2 is dense SubSpace of X & X2 /\ X1 is dense SubSpace of X ; deffunc F ( Element of E , Element of I ) = $1 * $2 & $2 = $1 * $2 & $2 = $1 * $2 ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` \ y .= 0. X ; for X being non empty set for Y being Subset-Family of X holds the topology of X is Basis of <* X , FinMeetCl Y *> synonym A , B are_separated means : Def1 : Cl A misses B & A misses Cl B & B misses A ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J = { v where x is Element of K : 0 < v . x & v . x < 0 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 & h . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & len w = len b1 + 1 ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 9 ) .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 1 ) = t . intpos ( e + 1 ) .= t . intpos ( e + 1 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( integral ( f , C ) , x , x0 ) = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. L - R /. h .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y ` in Y & x in X ` holds y <= x ` & y <= x ; func |. \bullet p .| -> variable of A means : Def10 : for x being element st x in NBI holds it . x = min ( NBI ( p ) , x ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `2 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len l1 & len y1 = len l1 & len y1 = len l1 & len y1 = len l1 ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X is convergent & lim ( ||. f .|| | X ) = ||. f .|| /. x0 ; ( the InternalRel of A ) -Seg ( x ` ) /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and P [ j , i ] ; reconsider h = f | X ( ) , g = f | X , h = g | X , f | X ( ) as Function ; u1 in the carrier of W1 & u2 in the carrier of W2 & u1 in the carrier of W1 implies u1 + u2 in the carrier of W2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= $1 & f . $1 <= f . $1 ; ^ ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y ) = - x + - y .= - x + y .= - x + y .= - x + y ; given a being Point of GX such that for x being Point of GX holds a , x , x , a , x , y C C C ; fJ = [ [ dom @ f2 , cod f2 ] , h2 ] & fJ = [ cod @ g2 , h2 ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in A ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 ) > 0 ; L-13 . k = L9 . ( F . k ) & F . k in dom L9 & F . k = L9 . k ; set i2 = SubFrom ( a , i , - n ) , i1 = goto - ( n + 1 ) ; attr B is thesis means : Def8 : for S holds S `1 = B `1 & S `2 = C `2 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & d in D } ; |( exp_R , q9 - q9 )| * |( exp_R , exp_R )| + |( exp_R , exp_R )| * |( exp_R , q2 )| >= |( exp_R , exp_R )| + |( exp_R , q2 )| ; ( - f ) . ( sup A ) = ( ( - f ) | A ) . ( sup A ) .= - ( f | A ) . ( sup A ) ; GG2 `1 = ( ( G * ( len G , k ) ) `1 ) `1 .= ( ( G * ( 1 , k ) ) `1 ) `1 ; ( Proj ( i , n ) ) . LM = <* ( proj ( i , n ) ) . LM *> .= ( Proj ( i , n ) ) . LM ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( reproj ( i , x ) . x ) & f2 + ( reproj ( i , x ) . x ) = ( f1 + f2 ) . x ; pred ( for x st x in Z holds ( tan . x ) ^2 = tan . x ) & for x st x in Z holds ( tan * tan ) . x = tan . x ; ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t . x & h1 . t = h2 . t ; defpred C [ Nat ] means ( ( P . $1 ) is D & ( A is D is D empty ) or A is D is D D D D D D D D is non empty ; consider y being element such that y in dom ( p9 . i ) and ( q9 . i ) . y = ( p9 . y ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of product A ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & T . ( id d ) = id d not ( for p , n holds f . p = ( f | n ) ^ <* p *> ) .= f ^ <* p *> ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 - p `2 = ( f | ( n , L ) ) *' - ( f . ( - - p ) ) .= ( f - ( - ( p - g ) ) ) *' ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 `1 , r3 ]| ) in f1 .: W2 & f2 . ( |[ r2 `1 , r3 ]| ) in f1 .: W3 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) , x ) .= a ; z = DigA ( tz , x ) .= DigA ( tz , x ) .= DigA ( tz , x ) .= DigA ( tz , x ) ; set H = { Intersect S where S is Subset-Family of X : S c= G & S is open } , G = { meet S where S is Subset of X : S is open & S is open } ; consider S19 being Element of D * , d being Element of D * such that S `1 = S19 ^ <* d *> and S29 = S29 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 / ( 1 + sn ) ^2 ; (0). V is Linear_Combination of A & Sum ( L ) = 0. V implies Sum ( L ) = 0. V & Sum ( L ) = 0. V let k1 , k2 , k2 , k1 , k2 , k2 , k2 , k2 , k2 , k1 , k2 , k2 , k2 , k2 , k2 be Instruction of SCM+FSA , a be Int-Location , k1 be Int-Location ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and a . j = b . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x2 c= H1 . x1 & H1 . x2 c= H2 . x2 ; consider a being Real such that p = -' ( a * p1 + ( a * p2 ) ) and 0 <= a and a <= 1 ; assume that a <= c & d <= b & [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , 1 , width Gauge ( C , m ) -' 1 , 0 ) is non empty ; Ay in { ( S . i ) `1 where i is Element of NAT : i <= n & not contradiction } ; ( T * b1 ) . y = L * b2 /. y .= ( F /. y ) `1 .= ( F /. y ) `1 .= ( F /. y ) `1 ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 + ( log ( 2 , k + 1 ) ) ^2 ; then that p => q in S and not x in the carrier of p and p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-11 ) & dom ( the InitS of r-11 ) misses dom ( the InitS of r-11 ) ; synonym f is integer means : Def3 : for x being set st x in rng f holds x is Integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + len <* x *> .= len p3 + 1 .= len p1 + 1 ; l `1 = ( g /. 1 , 3 ) `1 + ( k - 1 ) * ( e /. 1 , 3 ) `1 - ( e /. 1 ) * ( e /. 2 , e /. 3 ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) ; assume for n be Nat holds ||. seq .|| . n <= Rseq . n & Rseq is summable & Rseq is summable & Rseq is summable ; sin . ( non empty ) = sin . ( r * cos ( - s ) ) * sin ( s ) .= 0 ; set q = |[ g1 `1 . t0 , g2 `2 . t0 ]| , g1 `2 = |[ g2 `1 . t0 , g2 `2 . t0 ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G in implies for n being Element of NAT holds G . n = F ( n ) ; consider G such that F = G and ex G1 st G1 in SM & G = width G1 & G1 is finite & G is finite ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of C ) . s = ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( exp_R * ( f + ( #Z 2 ) * f1 ) ) /\ dom ( ( #Z 2 ) * f1 ) ; for k be Element of NAT holds seq1 . k = ( ( \HM { Im ( f ) ) . k ) . i & ( Im ( f ) ) . k = 0 assume that - 1 < n ( ) and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and ( q `1 / |. q .| - cn ) < 0 ; assume that f is continuous one-to-one and a < b and c < d and f . a = c and f . b = d and f . c = d ; consider r being Element of NAT such that sE = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and inf { x , y } in the carrier of L ; assume that f +* ( i1 , \xi ) in ( proj ( F , i2 ) " ( A . i1 ) ) " ( ( A . i1 ) " ) and f . i1 = ( proj ( F , i2 ) " ) . ( A . i1 ) ; rng ( ( ( Flow M ) ~ | ( the carrier' of M ) ) c= the carrier' of M & rng ( ( Flow M ) ~ | ( the carrier' of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \/ { t where t is Element of T : t in A } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g & g in dom ( f | X ) ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| & ||. t .|| <= 1 ; assume that the degree of v = 2 and v ^ <* 0 *> in dom p and v ^ <* 1 *> in dom p and p . 1 = v ; consider a being Element of the carrier of X39 , A being Element of the lines of X39 such that not a on A and not a on A ; ( ( - x ) |^ ( k + 1 ) ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p . i is FinSequence of D & for i st i in dom p holds p . i is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ x , y ] ; L~ f2 = union { LSeg ( p0 , p2 ) , LSeg ( p1 , p10 ) } .= { p2 , p1 } \/ { p2 } .= { p2 } \/ { p2 } ; i -' len h11 + 2 - 1 < i - len h11 + 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 ; for n be Element of NAT st n in dom F holds F . n = |. ( nthesis . ( n -' 1 ) ) .| ; for r , s1 , s2 holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & r <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 & G c= z1 } ; let g be .| non-empty element of A |^ X , INT , b be Element of INT |^ X holds ( b |^ X ) |^ b <> 0 min ( g . [ x , y ] , k ) = ( min ( g , k , x , z ) ) . y ; consider q1 being sequence of CL such that for n holds P [ n , q1 . n ] and P [ q1 ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds P [ n , f . n ] ; reconsider B-6 = B /\ Y , OI = O , $ $ Z = Z /\ Y , $ Z = { Z } , X = Z /\ X , Y = { Z } ; consider j being Element of NAT such that x = the b the FinSequence of n and 1 <= j and j <= n and j <= n ; consider x such that z = x and card ( x . O2 ) in card ( x . O1 ) and x in L1 & x in L2 ; ( C * : T4 . ( k , n2 ) ) . 0 = C . ( ( : 4 . ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) . x ) = dom ( X --> f . x ) ; ( ex b being Element of TOP-REAL 2 st b <= ( SpStSeq L~ SpStSeq C ) `2 & ( SpStSeq L~ SpStSeq C ) `2 <= N-bound L~ SpStSeq C ) implies ( SpStSeq L~ SpStSeq C ) `2 <= ( N-bound L~ SpStSeq C ) `2 synonym x , y are_collinear means : Def1 : x = y or ex l being that { x , y } c= l & x in l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y holds x << y iff a << b ; ( 1 / 2 * ( ( - ( x - 0 ) ) * ( AffineMap ( n , 0 ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A2 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * ( g . g2 ) .= f . g1 * ( g . g2 ) ; ( M * ( F . n ) ) . n = M . ( ( canFS ( Omega ) ) . n ) .= M . ( { ( canFS ( Omega ) ) . n } ) ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L1 & the carrier of L1 + L2 c= the carrier of L2 ; pred a , b , c , x , y , c , d , x , y , z , y be Element of o , a , b , c , d , x , y ; ( the PartFunc of s , s ) . n <= ( the PartFunc of s , 1 ) . n * s . ( n + 1 ) & ( the 0. of s ) . ( n + 1 ) = ( the 0. of s ) . n ; pred - 1 <= r & r <= 1 & ( arccot - arccot ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 & p ^ <* n *> in T2 } ; |[ x1 , x2 , x3 , x4 ]| . 2 - |[ y1 , y2 , x4 ]| . 2 = x2 - y2 & |[ x1 , x2 , x3 , x4 ]| . 2 = x2 - y2 ; attr for m being Nat holds F . m is nonnegative means : Def8 : for n being Nat holds ( Partial_Sums F ) . n is nonnegative & ( Partial_Sums F ) . m <= ( Partial_Sums F ) . n ; len ( ( G . z ) * ( x , y ) ) = len ( ( ( G . ( x , y ) ) * ( y , z ) ) ) .= len ( ( G . ( y , z ) ) * ( y , z ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W3 /\ W3 ; given F being finite Subset of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } & Sum F = k ; 0 = ( - 1 ) * ( - \hbox { - } 1 ) iff 1 = ( ( - 1 ) * ( - \hbox { - } 1 } ) * ( - ( - 1 ) * ( - ( 1 - 0 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> being being being being being non empty w w structure means : Def1 : ( the carrier of \mathop { \rm and } _ 2 ( L ) ) is Boolean & ( the carrier of \mathop { \rm and } _ 3 ( L ) ) is Boolean ; "/\" ( BB , {} ) = Top BB .= the carrier of S .= the carrier of ( S | ( the carrier of B ) ) .= [#] ( ( S | ( the carrier of B ) ) | ( the carrier of B ) ) ; ( r / 2 ) ^2 + ( rbeing Element of REAL ) ^2 + ( rbeing Element of REAL ) ^2 + ( rbeing Element of REAL ) ^2 + ( rbeing Element of REAL ) ^2 ) <= ( r / 2 ) ^2 + ( rbeing Element of REAL ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - b ) * |[ b , c ]| = 0. TOP-REAL 2 ; reconsider p = P * ( exp_R , 1 ) , q = a " * ( ( - a ) |^ n ) , r = a " * ( - a ) * ( - b ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M7 ) ) | n ) . ( len ( ( upper_volume ( g , M7 ) ) | n ) consider y , z being element such that y in the carrier of A and z in the carrier of A & i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 ; for S , T being non empty p2 , d being Function of T , S st T is complete holds d is monotone implies d is monotone & d is monotone [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a + 0. F_Complex , b2 ] in [: the carrier of V , the carrier of V :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( p . n ) ) as Element of NAT ; I <= width GoB ( ( GoB h ) * ( 1 , width GoB h ) + ( GoB h ) * ( 1 , width GoB h ) ) & I <= width GoB ( ( GoB h ) * ( 1 , width GoB h ) + ( GoB h ) * ( 1 , width GoB h ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( f2 * f1 ) /* s ; attr A1 \/ A2 is linearly-independent means : Def8 : A1 : A1 misses A2 & A2 /\ ( A1 \/ A2 ) = (0). ( A1 , A2 ) & ( A1 /\ A2 ) = (0). ( A2 , A1 ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C & s in C } ; dom ( Line ( v , i + 1 ) (#) ( ( a * ( p , m ) ) * ( \square , 1 ) ) ) = dom ( F ^ <* x *> ) ; cluster [ x `1 , 4 ] , [ x `1 , 4 ] , [ x `1 , 4 ] , [ x `1 , 4 ] ] , [ x `1 , 4 ] , [ x , 4 ] ] -> reduces x , y ; E , f |= All ( x1 , x2 ) => ( x2 , x1 ) => ( x1 , x2 ) => ( x1 , x2 ) '&' ( x1 , x2 ) = All ( x1 , x2 ) '&' ( x1 , x2 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . m ) + ( h . m ) - ( h . m ) ; cell ( G , Xs -' 1 , ( Y + 1 ) \ L~ f ) meets ( UBD L~ f ) \/ ( UBD L~ f ) & ( L~ f \/ L~ f ) meets ( UBD L~ f ) \/ ( UBD L~ f ) ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= card I .= card I + card J .= card I + card J + 1 .= card I + 1 .= card I + 1 ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ) ^2 - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y0 = a . x0 and x0 in g " { k } and a . x0 = a . x0 ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ dom ( chi ( A , C ) ) .= C /\ dom ( chi ( A , C ) ) .= C /\ dom ( chi ( A , C ) ) .= C /\ dom ( ( chi ( A , C ) ) | A ) ; d-7 . [ y , z ] = ( ( [ y , z ] `2 - ( [ y , z ] `2 ) ) - ( [ y , z ] `2 - ( [ y , z ] `2 - ( y , z ) `2 ) ) ) * ( y , z ) ; pred for i being Nat holds C . i = A . i /\ B . i means C . i c= A . i /\ B . i ; assume that x0 in dom f and f is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 and ||. f .|| is_continuous_in x0 ; p in Cl A implies for K being Basis of p , Q being Basis of T st Q in K holds A meets Q & A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func the \times <*> of a -> \rm \rm \hbox { - } number means : Def6 : a in it & for b being id of a st b in b holds it . b c= a ; [ a1 , a2 , a3 ] in ( [: the carrier of A , the carrier of A :] \/ [: the carrier of A , the carrier of A :] ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - y .|| < ( e / ( ||. x .|| + ||. y .|| ) ) * ||. x - y .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y & Y in Z } holds z in x & z in Z ; sup compactbelow [ s , t ] = [ sup ( { s } ) , sup ( compactbelow [ s , t ] ) ] .= sup ( compactbelow [ s , t ] ) .= sup ( compactbelow [ s , t ] ) ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Iz and [ f . i , z ] in Iz and [ y , f . i ] in Iz ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = p ^ q consider e19 be Element of the affine of X such that c9 , a9 // b9 , e and a9 <> b9 & b9 <> c9 and c9 <> e and e <> d ; set U2 = I \! \mathop { \vert S .| } , U1 = U U U U = U | n ; |. q3 .| ^2 = ( ( q3 `1 ) ^2 + ( q2 `2 ) ^2 ) * ( ( q3 `1 ) ^2 + ( q2 `2 ) ^2 ) .= |. q .| ^2 + ( q `2 ) ^2 .= |. q .| ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x = y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & dom the charact of U1 = the carrier of U1 ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= X ; for N1 , N1 being Element of ( G . K1 ) holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or q `2 >= - ( q `1 ) ^2 & - ( q `1 ) ^2 <= - ( q `1 ) ^2 or - ( q `1 ) ^2 = - ( q `1 ) ^2 ; pred r1 = fp & r2 = fp & r1 * r2 = fp * ( f1 - f2 ) & r2 * ( f1 - f2 ) = fp * ( f1 - f2 ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( for x be Element of X holds vseq . x = ( ( vseq . m ) * ( vseq . m ) ) . x ) & ( vseq . m ) . x = ( ( vseq . m ) * ( vseq . m ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( c , a , b ) = 0 ; consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 in rng p1 and p1 ^ q1 = p1 ^ q1 and p1 ^ q1 = p2 ^ q1 and p1 ^ q1 = p2 ^ q1 ; 1. ( A , ( r1 , r2 , s1 , s2 ) ) = ( s2 - s1 ) * ( s2 - s1 ) .= ( s2 - s1 ) * ( s2 - s1 ) .= ( s2 - s1 ) * ( s2 - s1 ) ; ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ /\ /\ /\ /\ /\ E-bound ( w ) ) ) & proj2 .: ( A /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ /\ set ( w , f ) ) is non empty ; s , k1 |= H1 '&' H2 iff s |= ( H1 , k1 ) implies s |= ( H1 , k2 ) implies s = H1 & s = H2 & s = H2 len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b1 ) + 1 ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z `1 >= y holds z `1 >= y & z `2 >= x ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( N + N-bound D ) / 2 ]| ) /\ D = { UMP D } /\ D .= { UMP D } ; lim ( ( ( f `| N ) / g ) /* b ) = lim ( ( f `| N ) / ( g `| N ) ) .= lim ( ( f `| N ) / g ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) , pr2 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - Rz .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & x <> a & x in P holds a = b Z c= dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } & Z c= dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + len l & z = ( l ^ <* x *> ) . j & i = len l + 1 & j = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in dom _ N holds r * u + ( 1-r * v ) in e A , Int A , Cl A , Cl ( Int A , Cl ( A , B ) ) , Cl ( Int A , Cl ( A , B ) ) , Cl ( Int A , Cl ( A , B ) ) , Cl ( A , B ) , Cl ( A , B ) ) in F ; - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + w .= - ( v + u ) + w .= - v + u ; Exec ( ( a := b ) , s ) . IC SCM R = ( Exec ( ( a := b ) , s ) ) . IC SCM R .= succ IC s .= IC s .= IC s .= IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x and h . x = ( the carrier of J ) . x ; for S1 , S2 , D being non empty reflexive RelStr , D being non empty directed Subset of S1 , x being Element of S1 , y being Element of S2 holds x is directed & x <= y implies cos . ( x , y ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & for z st z in X holds z = x or z = y or z = y or z = x or z = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) :- W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng Cage ( C , n ) ; for T , T being DecoratedTree , p , q being Element of dom T st p ^ q = q holds ( T , p ) . q = T . q & ( T , p ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster -> commutative means : such : k divides it & n divides it & n divides it & for m being Nat st k divides m & m divides it holds it divides m & it divides m ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " is one-to-one & F " is one-to-one & dom F = the carrier of X2 & rng F = the carrier of X2 & F " is one-to-one & rng F = the carrier of X2 & F " is one-to-one ; consider C being finite Subset of V such that C c= A and card C = \cdot and the carrier of V = Lin ( BM \/ C ) and C = Lin ( BM \/ C ) and C = Lin ( BM \/ C ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) .= angle ( p2 , p3 , p2 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) = - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) ^2 ) .= - 1 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p2 & f . 1 = p3 & f . 1 = p4 ; attr f is partial differentiable of REAL , u0 means : Def8 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is_continuous_in ( 2 , pdiff1 ( f , 3 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) is_continuous_in ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= width G and G * ( t , width G ) `2 >= N-bound L~ f and f /. len f = ( f /. len f ) `2 and f /. len f = ( f /. len f ) `2 ; pred i in dom G means : Def8 : r * ( f * reproj ( i , x ) ) = r * f * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 and c1 = c2 + c2 and c2 = c2 + c1 and c2 = c2 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; Cl ( X ^ Y ) . k = the carrier of X . k2 .= C4 . k .= C4 . k .= C4 . k .= C4 . k .= C4 . k .= C4 . k ; pred M1 = len M2 means : Def8 : len M1 = width M2 & M1 = M2 - M1 & M1 = M2 - M2 & M2 = - M2 + M1 ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom f & f /. y = f /. ( y - x0 ) + g2 & y in dom f } c= N2 ; assume x < ( - b + sqrt ( x0 - a , b ) / ( 2 * a ) ) or x > ( - b - sqrt ( x0 - a , b ) / ( 2 * a ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) & ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st for j being Element of NAT st j in dom f holds i divides f /. j holds i divides Sum f & for j being Element of NAT st j in dom f holds f . j = Sum f assume F = { [ a , b ] where a , b is Subset of X : for c st c in B39 & a c= c & b c= c } & F c= c & c c= d & a c= b & b c= c ; b2 * q2 + ( b3 * q3 ) + - ( ( a1 * q2 ) + ( - ( a2 * q3 ) ) ) = 0. TOP-REAL n + ( ( a1 * q2 ) + ( - ( a2 * q3 ) ) ) .= 0. TOP-REAL n + ( ( a1 * q2 ) + ( - ( a2 * q3 ) ) ) .= 0. TOP-REAL n ; Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & B in F } & F is open & A c= Cl F & B c= Cl F ; attr seq is summable means : Def8 : seq is summable & seq is summable & Partial_Sums ( seq ) . n = Partial_Sums ( seq ) . n & Partial_Sums ( seq ) . n = Partial_Sums ( seq ) . n + Partial_Sums ( seq ) . n ; dom ( ( cn " ) | D ) = ( the carrier of ( TOP-REAL 2 ) | D ) /\ D .= the carrier of ( TOP-REAL 2 ) | D .= the carrier of ( TOP-REAL 2 ) | D .= D ; |[ X , Z ]| is full full SubRelStr of ( Omega Z ) |^ the carrier of X & |[ X , Y ] is full full SubRelStr of ( Omega Z ) |^ the carrier of X & [: X , Y :] is full SubRelStr of ( Omega Z ) |^ the carrier of X ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : Def3 : for p being set st p in P holds the non empty set of m1 <= p & the carrier of m1 <= the carrier of m2 & p is non empty ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and P [ a ] ; synonym IT is multiplicative loop structure means : Defst : : : for a being Element of L1 , b being Element of the carrier of L1 holds ( the multF of L1 ) . ( a , b ) = [ a , b ] ) & the multF of L1 = the multF of L2 & the multF of L1 = the multF of L2 ; sequence ( a , b ) + 1 + sequence ( c , d ) = b + sequence ( c , d ) .= b + d + 1 .= b + d + 1 .= sequence ( a + c , b + d ) ; cluster + ( i1 , i2 ) -> NAT for Element of INT means : Def1 : for i , j being Element of NAT holds it . ( i1 , i2 ) = + ( i1 , i2 ) & it . ( i1 , i2 ) = + ( i2 , i1 ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - s2 * p2 ) ) ) ) * p2 ) = ( - r2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - s2 * p2 ) ) ) * p2 ) ; eval ( ( a | ( n , L ) ) *' , x ) = eval ( ( a | n ) *' , x ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty directed Subset of Omega S , V being open Subset of Omega S st sup D in V & V is open holds V is open and for V being open Subset of Omega S st V in V & V is open holds V meets V ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) -a9 , w ) = ( T11 . k , w ) -a9 and T11 . k = ( T11 . k , w ) -a9 ; 2 * ( a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) ) >= a |^ ( n + 1 ) + ( ( a |^ n ) * b + ( b |^ n ) * a ) + ( ( b |^ n ) * b ) ; M , v2 |= All ( x. 3 , Ex ( x. 0 , All ( x. 4 , H ) ) ) implies M , v / ( x. 0 , All ( x. 4 , H ) ) / ( x. 4 , All ( x. 0 , H ) ) / ( x. 0 , H ) ) |= H assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f /. x0 or for x0 st x0 in l holds f /. x0 - f /. x0 < 0 & f /. x0 < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G1 , W being Walk of G2 st not e in W & W is Walk of G1 & e in W holds W is Walk of G2 not c9 is empty iff ( for y1 , y2 st y1 is not empty & y2 is not empty & y1 is not empty & y2 is not empty & y2 is not empty & not q1 is not empty ) & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q2 is not empty & not q1 is not empty & q2 is not empty & not q2 is not empty ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & i1 + 1 in Seg ( len GoB f ) & i2 + 1 in Seg ( len GoB f ) & 1 in Seg ( len GoB f ) & 1 in Seg ( len GoB f ) & 1 in Seg ( len GoB f ) ; for G1 , G2 , G3 , G3 being strict Subgroup of O , O being stable Subgroup of G1 st G1 is stable & G2 is stable & G1 is stable & G2 is stable & G2 is stable holds G1 * G2 is stable Subgroup of G1 * the carrier of G2 * the carrier of G1 = ( G1 * the Subgroup of G2 * the carrier of G1 ) * the stable Subgroup of G1 UsedIntLoc ( inint f ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , intloc 6 , 6 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 } ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] & Q [ f2 ^ f1 ] & Q [ f1 ^ f2 ] holds Q [ f1 ^ f2 ] ( p `1 ) ^2 / ( sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ) = ( q `1 ) ^2 / ( sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) .= ( q `1 ) ^2 / ( sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x3 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x2 , x3 )| + |( x3 , x4 )| for x st x in dom ( ( F | A ) | A ) holds ( ( F | A ) | A ) . ( - x ) = - ( ( F | A ) . ( - x ) ) for T being non empty TopSpace , P being Subset-Family of T , x being Point of T st P c= the topology of T & for B being Basis of x ex P being Basis of T st B c= P & P is Basis of x & P is Basis of x ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( ( a . x ) 'or' b . x ) 'or' c . x .= TRUE 'or' TRUE .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of Y , Y1 being Subset of X st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of [: S , S1 :] , S1 . i st f = H . i & F . i = f | ( F . i ) holds F . i = f | ( F . i ) for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ( ) , J ) , v ) . w = Valid ( VERUM ( Al ( ) , J ) , v ) . w card D = card D1 + card D1 - card { i , j } .= ( c1 + 1 ) + ( 1 - 1 ) - 1 .= c1 + ( 1 - 1 ) + ( 1 - 1 ) .= 2 * c1 + 1 - 1 .= c1 + ( 1 - 1 ) - 1 .= c1 + ( 1 - 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= succ ( IC s ) .= IC s ; len f /. ( \downharpoonright i1 -' 1 ) -' 1 + 1 = len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k <= a holds k < ( a + b-2 ) or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b-2 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= i lim ( ( curry ( P+* ( i , k + 1 ) ) # x ) = lim ( ( curry ( P+* ( i , k ) ) # x ) + lim ( ( curry ( F+* ( i , k ) ) # x ) ) .= lim ( ( curry ( F+* ( i , k + 1 ) ) # x ) ) ; z2 = g /. ( \downharpoonright n1 -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C & [ f . 0 , f . 2 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of [: A , B :] , R : R in ( F . X ) & R in ( F . X ) & R [ Y ] } holds ( Intersect ( F ) ) . X = Intersect ( G ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= halt SCMPDS .= halt SCMPDS .= halt SCMPDS .= ( CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) ) ; assume that a on M and b on M and c on N and d on N and p on N and a on P and c on P and d on P and a on P and b on P and c on P and d on P and a on P and b on P and c on Q and d on Q and d on Q and a <> b and a <> b and b <> c and a <> c and b <> c ; assume that T is \hbox of 4 , T2 and F is closed and ex F being Subset-Family of T st F is closed , countable & ind F <= 0 & ind F <= 0 & ind F <= 0 & ind F <= 0 ; for g1 , g2 st g1 in ]. r^ - 1 , r .[ & g2 in ]. r1 , r2 .[ holds |. f . g1 - g . g2 .| <= ( g1 - g2 ) / ( |. g1 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - 1 ) * ( |. g2 .| - |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( |. g2 .| - ( cosh /. ( z1 + z2 ) = ( cosh /. z1 ) * ( cosh /. z2 ) + ( ( cosh /. z1 ) * ( cosh /. z2 ) + ( ( cosh /. z2 ) * ( cosh /. z2 ) ) * ( cosh /. z2 ) .= ( ( cosh /. z1 ) * ( cosh /. z2 ) + ( cosh /. z2 ) * ( cosh /. z2 ) ) ; F . i = F /. i .= 0. R + r2 .= b |^ ( n + 1 ) .= <* b |^ ( n + 1 ) , \dots , b |^ ( n + 1 ) *> .= <* ( n + 1 ) |^ ( n + 1 ) , \dots , b |^ ( n + 1 ) *> .= <* ( n + 1 ) |^ ( n + 1 ) , \dots , b *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = RB ( ) . ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def6 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * f /. i & it . i = F /. i * F /. i ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , 7 , 8 , 8 , 7 , 8 } = { x1 , x2 } \/ { x3 , x4 , x5 , 8 } \/ { x4 , x5 , 7 , 8 } .= { x1 , x2 } \/ { x4 , x5 , 8 } \/ { x5 , 8 , 7 , 8 } ; for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( S1 is Element of CQC-WFF ( Al ) & ( S1 is Element of CQC-WFF ( Al ) implies S1 is Element of CQC-WFF ( Al ) ) & ( S1 is Element of CQC-WFF ( Al ) implies S1 is Element of CQC-WFF ( Al ) ) & ( not S1 is Element of CQC-WFF ( Al ) implies S1 is Element of CQC-WFF ( Al ) ) consider P being FinSequence of Gs2 such that p7 = Product P and for i st i in dom P ex t7 being Element of the carrier of G st P . i = t7 & t7 = t & t7 = t & t7 = t & t7 = t ; for T1 , T2 being non empty TopSpace , P being Basis of T1 , P being Basis of T2 st the carrier of T1 = the carrier of T2 & P is Basis of T1 & P is Basis of T2 & P = the topology of T1 & P = the topology of T2 & P = the topology of T1 & P = the topology of T2 holds P = the topology of T1 assume that f is_\mathbin { \lbrack u0 , u0 .] and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 ) = r (#) pdiff1 ( f , 3 ) and partdiff ( f , 3 ) = r (#) pdiff1 ( f , 3 ) , u0 ) ; defpred P [ Nat ] means for F , G being FinSequence of ExtREAL for s being Permutation of ExtREAL , G st len F = $1 & G = F * s & not G = F * s & not F = G * s holds Sum F = Sum G & Sum G = Sum F ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex F-23 be Subset-Family of T st $2 = F-23 & union ( F-23 is open & union ( F-23 ) = $1 & ( for x being Element of T st x in Fholds Fst . x = x ) & ( x in F . x ) & ( x in F . x ) & ( x in F . x ) & ( x in F . x ) & ( x in F . x ) ; for p4 being Point of TOP-REAL 2 st LE p4 , p1 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p4 , p1 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p4 , p1 , P , p2 & LE p2 , p1 , P , p1 , p2 & LE p2 , p1 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p2 & LE p1 , p2 , P , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , p1 , p2 & LE p1 , p2 , P , P , p1 , p2 & LE f in D ( H ) & for g st g . y <> f . y holds x = y & g in D ( ) implies f in D ( ) & g in E ( ) & f . x = f . ( All ( x , H ) ) implies f in D ( ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( 8 - 1 ) / ( 2 * ( 1 + ( p `2 / p `1 ) ) ) ^2 + ( ( 8 - 1 ) / ( 2 * ( 1 + ( p `2 / p `1 ) ) ^2 ) ) & ( 8 - 1 ) * ( 1 + ( p `2 / p `1 ) ^2 ) <= 0 ) ; assume for d7 being Element of NAT st d7 <= max ( d7 , ( n + 1 ) -NAT ) holds s1 . ( ( d + 1 ) -t7 ) = s2 . ( ( d + 1 ) -t7 ) & s2 . ( ( d + 1 ) -t7 ) = s2 . ( ( d + 1 ) -t7 ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st { e } = Sphere ( s , t ) /\ Sphere ( x , r ) & e = Sphere ( s , t ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s holds 0 < s and for x1 , x2 be Point of CNS st x1 in dom f & x2 in dom f & ||. x1 - x2 .|| < s holds |. f /. x1 - f /. x2 .| < r ; ( p | x ) | ( p | ( ( x | x ) | ( x | x ) ) ) = ( ( ( x | x ) | ( x | x ) ) | p ) | ( ( x | x ) | p ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( ( sec * sec ) `| Z ) . x = ( 4 * sin . ( x + h ) * sin . ( x + h ) ) / ( cos . ( x + h ) * sin . ( x + h ) ) ^2 ) and ( sec * sec ) `| Z ) . x = ( 4 * sin . ( x + h ) ) / ( cos . ( x + h ) ; assume that i in dom A and len A > 1 and for B st B > 1 & B c= dom A & A * ( i , j ) = ( A * ( i , j ) ) * ( A * ( i , j ) ) and len A = len ( A * ( i , j ) ) and width A = width ( A * ( i , j ) ) ; for i be non zero Element of NAT st i in Seg n holds ( i divides n or i = n or i = <* 1_ F_Complex *> ) & ( i <> n implies h . i = <* 1_ F_Complex *> ) & ( i <> n implies h . i = 1. F_Complex ) & ( i <> n implies h . i = 1. F_Complex ) ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( a1 'or' b1 ) '&' ( a2 'or' c1 ) ) '&' 'not' ( a2 '&' c1 ) ) '&' 'not' ( ( a1 '&' b1 ) '&' ( a2 '&' c1 ) ) '&' 'not' ( ( a1 '&' b1 ) '&' 'not' ( a2 '&' c1 ) ) '&' 'not' ( a2 '&' c1 ) '&' 'not' ( a1 '&' b1 ) '&' 'not' ( a2 '&' c1 ) '&' 'not' ( a2 '&' c1 ) ; assume that for x holds f . x = ( ( cot * ( sin . x ) ) `| Z ) . x and x - h / ( sin . ( sin . x ) ) ^2 and for x st x in Z holds ( ( ( cot * ( cot * ( sin . x ) ) ) `| Z ) . x = cos . ( x- . x ) / ( sin . ( - h / ( sin . x ) ) ^2 ) ) ; consider R8 , I-8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) and Integral ( M , Im ( F . n ) ) = Integral ( M , Im ( F . n ) ) + Integral ( M , Im ( F . n ) ) ; ex k being Element of NAT st k0 = k & 0 < d & for q being Element of product G st q in X & ||. q- x .|| < d holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| . q = r * partdiff ( f , x , k ) . q x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 7 , 8 } iff x in { x1 , x2 , x3 , x4 , 8 } \/ { x5 , 7 , 8 } & x in { x1 , x2 , x3 , x4 , 8 } \/ { x5 , 8 , 7 , 8 } \/ { x5 , 8 } ; G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 .= G * ( 1 , j + 1 ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> DecoratedTree means : Def1 : q in it iff q in T & for p , r st p in P & r in T holds p ^ r in T1 & p ^ r in T1 & q ^ r in T1 & p ^ r in T1 & p ^ r in T1 ; F /. ( k + 1 ) = F . ( k + 1 ) .= Fholds F . ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) = FJ . ( p . ( k + 1 -' 1 ) , k -' 1 ) .= FJ . ( p . ( k + 1 -' 1 ) , k -' 1 ) ; for A , B , C being Matrix of K st len B = len C & len B = width C & len B = width C & len A > 0 & len B > 0 & len A > 0 & len C > 0 & len A > 0 & len B > 0 & len A > 0 & len C > 0 & len A > 0 & len B > 0 holds A * ( B * A ) = A * BC seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of CQ ) /\ ( the carrier of CQ ) and y in ( the carrier of CQ ) /\ ( the carrier of CQ ) and [ x , y ] in the carrier of CQ and [ x , y ] in the InternalRel of CQ and [ y , x ] in the InternalRel of CQ ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( ( VAL f ) . ( k + 1 ) ) '&' ( VAL g ) . ( ( VAL f ) . ( k + 1 ) ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that sn < 1 and q `1 > 0 and q `2 / |. q .| >= sn and p `1 / |. q .| - cn and p `2 / |. q .| - cn and p `1 / |. q .| - cn and p `1 / |. q .| - cn and p `1 / |. q .| - cn and p `1 / |. q .| - cn and p `2 / |. q .| - cn and p `1 / |. q .| - cn and p `1 / |. q .| = 0 ; for M being non empty TopSpace , x being Point of M , x being Point of M st x = x `1 holds ex f being sequence of B\HM ( M ) st for n being Element of NAT holds f . n = Ball ( x `1 , ( 1 / ( n + 1 ) ) * ( f . n ) ) defpred P [ Element of omega ] means f1 is differentiable Z implies ( f1 + f2 ) (#) ( f1 - f2 ) is_differentiable_on Z & for x st x in Z holds ( f1 - f2 ) `| Z . ( $1 + 1 ) = f1 . ( x - a ) + f2 . ( x - a ) / ( ( x - a ) * ( x - a ) ) ; defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. s1 . $1 - ( f /. $1 ) .|| < r & ||. ( f /. $1 - f /. ( $1 + 1 ) ) .|| < r & ||. ( f /. $1 - f /. ( $1 + 1 ) ) .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) ; ( 1 / 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) = ( ( 1 / 2 * n0 + 2 * n0 ) * ( 2 * n0 + 1 ) ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) .= ( 1 / 2 * n0 + 1 ) * ( 2 * n0 + 1 ) * ( 2 * n0 + 1 ) ; defpred P [ Nat ] means for G being non empty finite strict symmetric RelStr , H being symmetric RelStr st G is \rm free & card the carrier of G = $1 & the carrier of H = the carrier of G & the carrier of H = the carrier of H & the carrier of H = the carrier of H & the carrier of H = the carrier of H & the carrier of H = the carrier of H ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m and m <= len - ( f /. i ) and for i st 1 <= i & i <= len f & LSeg ( f , i ) /\ Ball ( u , r ) <> {} holds not f /. i in Ball ( u , r ) & not f /. i in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( cos * ( ]. - r , r .[ ) ) ) ) . $1 = ( Partial_Sums ( ( cos * ( ]. - r , r .[ ) ) ) ) . ( 2 * $1 ) & ( Partial_Sums ( ( cos * ( ]. - r , r .[ ) ) ) ) . ( 2 * $1 ) = ( Partial_Sums ( ( cos * ( ( - r , r ) ) ) ) . ( 2 * $1 ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & x = ( the carrier of F ) . i & for i being set st i in dom ( the support of F ) holds x . i = ( the Sorts of F ) . i & x . i = ( the Sorts of F ) . i ( x " ) |^ ( n + 1 ) = ( ( x " ) |^ n ) * x " .= ( x |^ ( n + 1 ) ) * x " .= ( x |^ ( n + 1 ) ) * x " .= ( x |^ ( n + 1 ) ) * x " .= ( x |^ ( n + 1 ) ) * x .= ( x |^ ( n + 1 ) ) * x ; DataPart Comput ( P +* ( a , I ) , Initialized s ) = DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 3 ) .= DataPart Comput ( P +* I , Initialize s , LifeSpan ( P +* I , Initialize s ) + 1 ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= ( dom f1 /\ dom f2 ) and for g st g in ]. x0 - r , x0 .[ /\ dom f2 holds f1 . g <= f2 . g & f2 . g <= f2 . g & f2 . g <= f2 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and ( f1 - f2 ) | X is continuous and f2 | X is continuous and ( f1 - f2 ) | X is continuous ; for L being continuous complete LATTICE for l being Element of L st for X being Subset of L holds l = sup X & for x being Element of L st x in X holds x is compact holds for x being Element of L st x in X holds x is compact & x is compact & x is compact holds l is compact Support ( e ) in { Support ( m *' p ) where m is Polynomial of n , L : i = Support ( m *' p ) & ex p being Polynomial of n , L st p in Support ( m *' p ) & p in Support ( m *' q ) & p in Support ( m *' q ) } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f2 /* s1 ) - lim ( f2 /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g `2 & for g being Function of [: \hbox { 0 } , D :] , D st P [ g , p1 , ( len p1 ) qua Nat ] & P [ g , p1 , ( len p1 ) qua Nat ] holds P [ p1 , p2 , g , p1 ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) . j .= ( mid ( f , j , len f -' 1 ) ) /. j .= f /. j ; ( ( p ^ q ) . ( len p + k ) ) = ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) ; len mid ( upper_volume ( D2 , D1 ) , 1 ) + indx ( D2 , D1 , j1 ) = indx ( D2 , D1 , j ) + indx ( D2 , D1 , j ) .= indx ( D2 , D1 , j ) + 1 .= indx ( D2 , D1 , j ) + 1 ; x * y * z = Mz . ( ( y * z ) * z9 ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) * ( x - x0 ) + ( ( proj ( 1 , 1 ) * ( x - x0 ) ) * ( x - x0 ) ) + ( ( proj ( 1 , 1 ) * ( x - x0 ) + ( proj ( 1 , 1 ) * ( x - x0 ) ) * ( x - x0 ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) + ( 0 * 0 ) + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) + ( 0 * 0 ) + ( 0 * 0 ) * 0 + ( 0 * 0 ) * 0 .= ( - 1 ) * 0 + 0 * 0 ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) ; ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X st Y0 is non empty & Y0 c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( union Y1 ) - ( union Y2 ) .| < r ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) ; ( ( r / 2 ) * ( sin . x ) ^2 ) = ( ( r / 2 ) * ( sin . x ) ) ^2 .= ( ( r / 2 ) * ( sin . x ) ) ^2 .= ( ( r / 2 ) * ( sin . x ) ) ^2 .= ( ( r / 2 ) * ( sin . x ) ) ^2 .= ( ( r / 2 ) * ( sin . x ) ) ^2 .= ( r / 2 ) ^2 ; x- ( ( - b ) + sqrt ( x0 - a ) ) / ( 2 * a ) < 0 & x- ( - b ) - sqrt ( x0 - a ) < 0 or - ( ( - b ) + sqrt ( x0 - a ) ) / ( 2 * a ) > 0 & x- ( - b ) + sqrt ( x0 - a ) > 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex_sup_of X , L and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) and not "\/" ( X , L ) in C ; ( ( for j holds B . ( j , i ) = ( j = i = j = j ) |-- id the Sorts of ( B . i , j ) ) , ( j = i implies ( B . i = j = i ) implies ( B . i = j ) ) & ( B . i = j implies B . i = j )