thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B in X ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is prime ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; let k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is - 1 ; assume x in I ; q is as as N -valued ; assume c in x ; of p ; assume x in Z ; assume x in Z ; 1 <= k} ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is non bounded ; f is Assume one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be DecoratedTree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - -2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , f be Function of E , E ; let C be category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is j ; Q halts_on s ; x in for for -1 st x in dom -1 holds x in dom -1 M < m + 1 ; T2 is open ; z in b \mathclose a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Point of TOP-REAL n ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o implies o holds o1 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subspace of V ; not s in Y |^ 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `2 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a` <= non non L~ f ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , X be Subset of T , f be Function of X , T ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; Sy is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let UA , A , B , C , D ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj & jj <= len f ; set A = \mathclose { A } ; card a [= c ; e in rng f ; cluster B ++ A -> empty ; H is with_no or H is non empty ; assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M in union M assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} & mm <> {} ; let x be Element of Y ; let f be the C -valued Chain , v be Element of V ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v card dom ( -> set ) ; - y in I ; let A be non empty set , f be Function of A , REAL ; Px0 = 1 ; assume r in F . k ; assume f is simple ; let A be as as as as countable set ; rng f c= NAT * ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IV , IV ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , Y ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y -implies x = y ; assume x in [#] ( f ) ; [ a , c ] in X ; mm <> {} & mm <> {} ; M + N c= M + M ; assume M is \mathclose h hhh/. ; assume f is additive bbr\rm rst ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k1 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= len f ; f | A is non as as as as as as as continuous Function ; f . x - x <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cj in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c1 ; s2 is 0 -started ; IC s = 0 ; s4 = s4 , s4 = s4 , P4 = s4 , P4 = P4 , P4 = P4 , P4 = [ 1 , 1 ] , P4 = [ 1 let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `2 ; let S be as as as of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , y is_collinear ; R8 in X ; let a , b be Real , x be Point of TOP-REAL n ; let a be object of C ; let x be Vertex of G ; let o be object of C , a be object of A ; r '&' q = P \lbrack l .] ; let i , j be Nat ; let s be State of A , v be Element of V ; s4 . n = N ; set y = x `1 , z = y `2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in CX0 ; V-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in Nffffffffffffffffffffffffffff reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng g c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & A is open ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; [: Z , Z :] c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re seq is convergent & Im seq is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , I be Nat ; assume that r2 > x0 and r1 > x0 ; let Y be non empty set , f be Function of Y , X ; 2 * x in dom W ; m in dom ( g2 | n ) ; n in dom g1 & n + 1 in dom g2 ; k + 1 in dom f ; the still of not s in { s } ; assume that x1 <> x2 and x1 <> x3 ; v3 in V0 & v2 in V0 ; not [ b `2 , b `2 ] in T ; i-35 + 1 = i ; T c= * ( X , T ) ; ( l `1 ) ^2 = 0 ; let n be Nat ; t `2 = r `2 & t `2 = s `2 ; Ab is_integrable_on M & Ab is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume c2 = b2 & c1 = c2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume vseq is convergent & vseq is convergent ; IC s3 = 0 & IC s3 = 1 ; k in N or k in K ; F1 \/ F2 c= F \/ F2 ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 or z `2 = 0 ; p11 <> p1 & p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one full full ; A \/ { a } \not c= B ; 0. V = 0. Y .= 0. V ; let I be be be /. \rm halting Instruction of S , s be State of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " Q is compact ; assume x1 in REAL & x2 in REAL ; p1 = K1 & p2 = K1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSM, A is closed assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; cR is stable Subset of R ; set cR = Vertices R , cS = Vertices R ; pp c= P3 & p c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; downarrow a = downarrow b & downarrow b = downarrow a ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; [: a , b :] , [: b , a :] are_equipotent ; assume a in A ( ) . i ; k in dom ( q | k ) ; p is FinSequence of S ; i - 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 or i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict strict let iff ex R being strict let V being strict q ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 & s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n .= Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F & dom F = dom G ; let s be Element of NAT , n be Nat ; let R be ManySortedSet of A ; let n be Element of NAT , x be Element of X ; let S be non empty non void non void non void non empty non void TopStruct ; let f be ManySortedSet of I ; let z be Element of COMPLEX , p be FinSequence of COMPLEX ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= V-15 ( A \/ B ) ; assume I is_halting_on s , P ; UA = U2 & U2 = U2 & U2 = U2 ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f . x ) <= ( f . y ) ; let l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT , k be Nat ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued implies seq1 + seq2 is COMPLEX -valued assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be st D is st of Omega ; set r = - { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for subLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite implies V is non empty A * B on B , A ; f-3 = NAT --> 0 .= f-3 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P2 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT * , T = INT * ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom g ; let B be non-empty ManySortedSet of I , A be non empty ManySortedSet of I ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c ; [ y , x ] in IF ; Q * ( 1 , 3 ) `2 = 0 ; set j = x0 div m , m = x0 div m ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - jj > 0 ; I the I -] phi = 1 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / ( 2 |^ n ) ; s1 , s2 are_/ 2 implies s1 , s2 are_/ 2 j1 -' 1 = 0 & j2 -' 1 = 1 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower and 0 <= r ; p1 `1 = 1 & p1 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len f ; 1 <= i1 -' 1 & i1 + 1 <= len f ; i + i2 <= len h - 1 ; x = W-min ( P ) or x = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 1 ; set H = h . g , I = g . h , J = h . g , K = f . g , L = f . h , L = g . g ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 , h1 = h2 (*) h2 ; assume x in X3 /\ ( X1 union X2 ) ; ||. h .|| < d1 & ||. h .|| < d ; not x in the carrier of f & not x in the carrier of g ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kbeing - k+ l ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be \HM { of s } ; Q /\ M c= union ( F | M ) f = b * ( canFS ( S ) ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , X be Subset of L ; S-20 is x -8 -basis i ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z , p ) ; P [ len F ( ) , F ( ) ] ; assume InsCode ( i ) = 8 & InsCode ( i ) = 7 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> N -element for Element of ( X , X ) * ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of r2 ; T2 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q29 <> {} ; let k be Nat ; q " is Element of X & q " is Element of X ; F . t is set of as set of non zero set ; assume that n <> 0 and n <> 1 ; set ez = EmptyBag n , ez = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root of ( p `2 ) * , ( p `2 ) * ; not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Real ; S7 does not ` & S7 does not destroy b1 ; IC SCM R <> a & IC SCM R <> a ; |. - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT , n be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s ; H + G = F- ( G-G-G ) ; Cx1 . x = x2 & Cx1 . x = y2 ; f1 = f .= f2 .= f2 .= ( f | X ) ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } & { a2 } = { a2 } ; a1 , b1 _|_ b , a ; d2 , o _|_ o , a3 ; II is reflexive & II is transitive implies I is transitive IO is antisymmetric & CO is antisymmetric implies IO is antisymmetric upper_bound rng H1 = e & upper_bound rng H1 = e ; x = ( a * a9 ) * ( a * b9 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < len f ; rng s c= dom f1 & rng s c= dom f2 ; assume that support a misses support b and support b misses support b ; let L be associative commutative distributive non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ff . 1 .= ff . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , 1 ) = I1 , I2 = I2 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r be Real such that r in A ; cluster non empty -> NAT -defined for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , 0 ] *> -> complete non trivial ; ( 1 - a ) * ( a " ) = a ; ( q . {} ) `1 = o ; ( n - 1 ) > 0 ; assume 1 / 2 <= t `1 & t `2 <= 1 ; card B = k + 1-1 ; x in union rng ( f | ( n + 1 ) ) ; assume x in the carrier of R & y in the carrier of R ; d in X ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & not v in V ; let G be *> ; e , v9 , v9 be set ; c . i9 in rng c & c . i9 in rng c ; f2 /* q is divergent_to-infty & ( f2 /* q ) is divergent_to-infty ; set z1 = - z2 , z2 = - z1 , z2 = - z2 , z1 = - z2 , z2 = - z2 , z2 = - z2 ; assume w is_llas of S , G ; set f = p |-count ( t - p ) , g = p |-count ( t - p ) ; let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IX be Subset-Family of X , V be Subset of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of ( the carrier of SCM+FSA ) * ; stop I ( ) c= PGij & stop I ( ) c= PI ( ) ; set ci = fbeing /. i , fi = fi /. i ; w ^ t ^ s ^ w ^ t ^ s ^ t ; W1 /\ W = W1 /\ W ` .= W1 /\ W ; f . j is Element of J . j ; let x , y be Subset of T2 , a be Real ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ord x = 1 & x is positive implies x is positive set g2 = lim ( seq , X ) , g1 = lim ( seq , X ) ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . F-21 = 0 & L1 . F-21 = 1 ; h \/ R1 = h implies h = h ( ( sin * ( f ^ ) ) `| Z ) . x <> 0 ; ( ( #Z n ) * ( #Z n ) ) . x > 0 ; o1 in X-5 /\ O2 & o2 in X-5 /\ O2 ; e , v9 , v9 be set ; r3 > ( 1 / 2 ) * 0 ; x in P .: ( F -ideal of L ) ; let J be closed closed Subset of R ; h . p1 = f2 . O & h . p2 = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M .= width M ; the carrier of CK c= A & the carrier of CK c= A ; dom f c= union rng ( F | ( n + 1 ) ) ; k + 1 in support ( ( support n ) --> x ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( \/ ( R ~ ) ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = g . x2 ; F c= 2 -tuples_on the carrier of X & F c= 2 -tuples_on X reconsider w = |. s1 .| as Real_Sequence of X ; 1 / ( m * m + r ) < p ; dom f = dom IK1 & dom g = dom IK1 ; [#] P-17 = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> R_eal means : Def2 : for ExtReal ; then { d } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M , w2 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u in W1 & v in W2 reconsider y = y as Element of L2 ; N is full SubRelStr of T |^ the carrier of S ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , x be Point of X ; dist ( x `2 , y ) < r / 2 ; reconsider mm1 = m - 1 as Element of NAT ; x0 - x0 < r1 - x0 & r1 - x0 < r1 - x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `2 ) , g2 = p * idseq ( q `2 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 ) in { x } ; cluster subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gij in LSeg ( cos , 1 ) /\ LSeg ( Gik , Gij ) ; let n be Element of NAT , x be Element of X ; reconsider S8 = S , S8 = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 , {} ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x as Element of C ( ) ; let s be 0 -started State of SCMPDS , a be Int_position , k1 be Integer ; let t be 0 -started State of SCMPDS , Q ; b , b , x , y , x , y be element ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N1 >= ( sqrt c ) / sqrt ( 2 * ( 1 / 2 ) ) ; reconsider t7 = T-1 as TopSpace , T7 = T7 as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q2 & z2 in Q . ( y2 ) /\ Q2 ; A |^ 0 = { <%> E } & A |^ 1 = A ; len W2 = len W + 2 .= len W + 1 ; len h2 in dom h2 & len h2 in dom h2 ; i + 1 in Seg ( len s2 ) & i + 1 in Seg ( len s2 ) ; z in dom g1 /\ dom f & z in dom g1 /\ dom f ; assume that p2 = E-max ( K ) and p1 `2 <= 0 ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & lim ( f1 (#) f2 ) = x0 ; cluster seq + s-10 -> summable for sequence of X ; assume j in dom M1 & i in Seg n ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> ^ <* y *> ^ <* x *> ^ <* y *> ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) .= len G ; s1 = Initialize Initialized s , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` is and x ` is Element of x implies x ` is Element of X k = 0 & n <> k or k > n ; then X is discrete for A being Subset of X ; for x st x in L holds x is FinSequence of REAL ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being being being being being being Element of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow x ; M \lbrack f , f .] = f & M \lbrack g , f .] = g ; ( ( ( rng ( n + 1 ) ) /. 1 ) ) = TRUE ; dom g = dom f & dom g = X ; mode : il is ^ st 2 is : len p = 1 ; [ i , j ] in Indices ( M @ ) ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom Subformulae p & f in Subformulae p ; F1 . ( a1 , - a2 ) = G1 . ( a1 , - a2 ) ; redefine func Sphere ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / ( n + 1 ) ) ; curry ( ( F . -19 ) , k ) is additive additive ; set k2 = card dom B , k1 = card dom C , k2 = card dom D , k2 = card dom D , k2 = card dom E , k2 = card dom F , k2 = card dom J , k2 = card dom set G = ( ( X ) * ( X ) ) ; reconsider a = [ x , s ] as ' of G ; let a , b be Element of ML , x be Element of ML ; reconsider s1 = s , s2 = t as Element of S1 . s1 ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the bound of A ; ( x .|. x ) = 0 iff x = 0. W ; I-21 in dom stop I & IY = stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of ( TOP-REAL n ) | P ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng f c= the carrier of T ; rng h c= union ( ( Carrier J ) * ( Carrier J ) ) ; cluster All ( x , H ) -> \cal \widetilde \cal \cal -like ; d * N1 / 2 > N1 * 1 / 2 ; ]. a , b .[ c= [. a , b .] ; set g = f " ( D1 ) , h = f " ( D2 ) ; dom ( p | mm1 ) = mm1 .= dom ( p | mm1 ) ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot * ( arccot ) ) . x ; x in rng ( f /^ n ) & x in rng ( f /^ n ) ; let f , g be FinSequence of D ; cp in the carrier of S1 & cp in the carrier of S2 ; rng f " { 0 } = dom f & rng f = rng g ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G - 1 < width G - 1 ; assume v in rng ( S | E1 ) & v in rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume 0 in rng ( ( g2 | A ) ^ ) ; let q be Point of ( TOP-REAL 2 ) | K1 , r be Real ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is_in the carrier of C-20 & <* S7 *> is non empty ; i <= len G-6 -' 1 & i + 1 <= len G-6 -' 1 ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = SdL " ( Q /\ R ) .= Sd ; ( ( 1 / 2 ) |^ ( n + 1 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , r + 1 .[ /\ dom f ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z as Element of CompactSublatt L , x be Element of L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , A :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 3 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V as Subset of X | B as Subset of X | B ; attr p is valid means : Def2 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and g .: X c= dom f ; H |^ ( a " ) is Subgroup of H & H |^ a is Subgroup of H ; let A1 be $1 ) & ( the be $1 ) on E1 ; p2 , r3 , q2 is_collinear & q2 , r2 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) & p in [#] ( I[01] | B11 ) ; 0 . n < M . ( E8 ) ; op ( c , c ) opp = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) & a2 in dom ( F . s2 ) ; cluster -> N -| for non empty st of L ; set i1 = the Nat , i2 = the carrier of S , i1 = the carrier of S , i2 = the carrier of S , i2 = the carrier of S , i1 = the carrier of S , i2 = the carrier of S let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. len f .= p ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def2 : cos X c= cos Y ; let y be upper Subset of Y , x be Point of X ; cluster x `1 -> as as as as i \rm \rm \rm \rm i -valued ; set S = <* Bags n , il *> , S = <* Bags n , il *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / PI < ( 2 * PI ) / PI ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 or p `1 = p1 `2 ; i + 1 <= len Cage ( C , n ) ; len ( <* P *> @ ) = len P .= len <* P *> ; set N-26 = the non empty Subset of ( the carrier of N ) ; len gLet gLet + ( x + 1 ) - 1 <= x ; a on B & b on B implies not a on B reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a \ d [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len ^2 .= n ; set q2 = N-min L~ Cage ( C , n ) , p1 = f /. len f , p2 = f /. 1 ; set S = MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " V & f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) .= ( the_right_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( F . S ) . X ; rng f c= the carrier of S2 & rng g c= the carrier of S1 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G opp = E \/ { E } .= { E } ; reconsider m = len ( thesis - k ) as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( p , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { i } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = pi1 . i .= pi2 . i ; let PA , PA be a_partition of Y , G be Subset of Y ; pred 0 < r & r < 1 implies 1 < r / r ; rng ( -\mathbin ( a , X ) ) = [#] X ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) .= card ( rng ( s ) ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q c= FinMeetCl the topology of X ; dom fx0 c= dom ( u | X ) & dom fx0 = dom ( u | X ) ; pred n divides m & m divides n means : Def2 : n = m ; reconsider x = x as Point of [: I[01] , I[01] :] ; a in ) & { 2 } in ; not y0 in the carrier of f & not y0 in the carrier of f ; Hom ( ( a [: b , c :] ) , c ) <> {} ; consider k1 such that p " < k1 and k1 < p / 2 ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = | of of x , y , z = ) ; l2 = m2 & l2 = i2 & l2 = j2 implies l2 = 1 x0 in dom ( u01 ) /\ ( dom ( G | A ) ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 , ( TOP-REAL 2 ) | K1 ; I[01] = R^1 | B01 & I[01] = R^1 | B01 ; f . p4 <= f . p1 & f . p2 <= f . p3 ; ( F . x ) `1 <= ( x `1 ) `1 & ( F . x ) `2 <= ( x `2 ) `2 ; x `2 = ( W7 ) `2 .= ( W7 ) `2 .= ( W7 ) `2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) & 0 |-> a = <*> ( the carrier of K ) ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] & P [ succ a ] implies P [ succ a ] ; reconsider sT = sT as * the thesis of D , ( the carrier of S ) * ; ( i - 1 ) <= len ( l - j ) ; [#] S c= [#] the TopStruct of T & [#] T c= [#] the TopStruct of T ; for V being strict RealUnitarySpace for W being Subspace of V holds V in assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K ; - a * - b * a = a * b ; for A being Subset of AS holds A // A implies A // C ( for o2 being object of o2 st o2 in <^ o2 , o2 ^> holds [ o2 , o2 ] in <^ o2 , o2 ^> ) ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len upper_volume ( g , D1 ) & len upper_volume ( g , D1 ) = len g ; b = Q . ( len Qk - 1 + 1 ) ; f2 * f1 /* s is divergent_to-infty & f2 * f1 /* s is convergent ; reconsider h = f * g as Function of [: N1 , N2 :] , G ; assume that a <> 0 and Let ( a , b , c ) >= 0 ; [ t , t ] in the Relation of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T . n ) * ; {} = the carrier of L1 + L2 & the carrier of L1 = the carrier of L1 + L2 ; Directed I is | Initialized Initialized s & Directed I is closed & Directed I is closed ; Initialized p = Initialize ( p +* q ) , p = p +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y ` = Y as Element of <* Ids L , \subseteq \rangle ; "/\" ( ( uparrow p ) \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( ( P + Q ) ^ ( P + Q ) ) ; x1 `1 = x2 & y1 `1 = y2 & x2 `2 = y2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTTT1 ( n ) ; p = |[ p `1 , p `2 ]| .= |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h .= h * g ; let p , q be Element of is Element of is is Element of is is Element of is Element of is Element of is Element of is Element of Fin ( V , C ) ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " & ( R qua Function ) " = R " ; n in Seg ( len ( f /^ n ) ) & n in Seg ( len ( f /^ n ) ) ; for s being Real st s in R holds s <= s2 implies ( s <= s1 ) rng s c= dom ( f2 * f1 ) & rng s c= dom ( f2 * f1 ) ; synonym for for for for for for for for for for ( X \ Y ) ; 1. K * 1. K = 1. K & 1. K * 1. K = 1. K ; set S = Segm ( A , P1 , Q1 ) , S = Segm ( P1 , P2 , Q1 ) ; ex w st e = ( w - f ) / ( w - f ) & w in F ; curry ( P+* ( i , k ) , x ) # x is convergent ; cluster open -> open for Subset of T7 ( n ) ; len f1 = 1 .= len f3 .= len f3 .= len f3 .= len f3 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b9 , c9 & b1 , c1 // c , d ; consider p be element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total and f is total ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not ` not ` } not " ; ( goto ( card I + 1 ) ) does not ` not h ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p3 , s3 ) ; IC SCMPDS in dom Initialize p & IC SCMPDS in dom Initialize p & IC SCMPDS in dom p ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of is Element of is is Element of is Element of is Element of is Element of is Element of Fin ( V , C ) ; Cl ( union Int F ) c= Cl ( Int union F ) ; the carrier of X1 union X2 misses ( ( A \/ B ) \/ ( A \/ C ) ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d6 and i in X ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , x ) |= H1 / ( y , x ) ; consider m be element such that m in Intersect ( FF . 0 ) and m in X ; reconsider A1 = support u1 , A2 = support ( v1 + v2 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -carrier ( V ) -> $ string of S , X , Y ; LW2 /. n2 = LW2 . n2 .= LW2 . n2 .= LW2 . n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and ri2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices DD1 & [ k , m ] in Indices DD1 ; 0 <= ( ( 1 / 2 ) |^ ( p / 2 ) ) . p ; ( F . N | E8 ) . x = +infty ; pred X c= Y & Z c= V & X \ V c= Y \ Z ; y `2 * ( z `2 ) * ( y `2 ) <> 0. I ; 1 + card X-18 <= card u & card X-18 <= card X-18 ; set g = z :- ( ( L~ z ) .. z ) , p = z .. z , q = z .. z , r = ( ( L~ z ) .. z ) .. z , s = ( ( L~ z ) .. z ) .. z , t = ( ( then k = 1 implies p . k = <* x , y *> . k ; cluster total -> total for Element of C -\mathopen the carrier of X ; reconsider B = A as non empty Subset of ( TOP-REAL n ) | A ` , C , D be Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN , x be Element of Y ; L1 . i = ( i .--> g ) . i .= g ; Plane ( x1 , x2 , x3 , x4 ) c= P & Plane ( x2 , x3 , x4 , x4 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 ; ( ( ( g2 ) . O ) `1 ) ^2 = - 1 & ( ( ( g2 ) . I ) `2 ) ^2 = 1 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , E = E-bound C , N = E-bound C ; S1 . ( a `2 , e `2 ) = a + e `2 .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) & 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im ( f , x ) ) = dom Im ( f , x ) ; ( that ; set Q = non / ( non I , f , h ) ; cluster -> MSsorted for ManySortedSet of U1 , ( the carrier of S ) * ; attr F = { A } means : Def2 : ex A st F = { A } ; reconsider z9 = \hbox { - } 1 , z9 = - 1 as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f is FinSequence of COMPLEX ; E , j |= All ( x1 , x2 , H ) implies E , j |= H reconsider n1 = n as Morphism of o1 , o2 , o2 , n1 , n2 be Morphism of o1 , o2 ; assume P is idempotent & R is idempotent & P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ ( x \ B2 ) ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set q-19 = ( q , <* s *> ) -is { 1 , 2 , 3 } ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , ( } , R ) --> NAT ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f , C = rng f as Element of Fin NAT ; IncAddr ( i , k ) = <% ( - l ) + k %> ; ( for q being Point of TOP-REAL 2 st q in L~ f holds q `2 <= ( q `2 ) / ( 1 + ( q `2 / q `1 ) ^2 ) ) ; attr R is condensed means : Def2 : for R being Subset of R holds Int R is condensed ; pred 0 <= a & 1 <= b & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( ( d /\ b ) /\ e ) ) /\ f ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 & len C + - 3 >= 9 + - 3 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 ; <* \underbrace ( 0 , \dots , 0 *> , x ) *> in Line ( x , a * x ) ; set yy1 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) & FF2 /. len FF2 = D . 1 ; p . m joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 .= ( f /. ( i1 + 1 ) ) `2 ; W-bound ( X \/ Y ) = W-bound X & W-bound ( X \/ Y ) = W-bound X ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } implies x in dom g f1 /* ( seq ^\ k ) is divergent_to-infty & f2 /* ( seq ^\ k ) is divergent_to-infty ; reconsider u2 = u as VECTOR of P/. ( X , Y ) as VECTOR of P/. ( X , Y ) ; p |-count ( Product Sgm ( X11 ) ) = 0 & p |-count ( p |-count ( p |-count X11 ) ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } /\ { y } = 1. I ; set ii2 = card I + 4 .--> goto 0 , ii2 = goto ( 0 + 1 ) ; x in { x , y } & h . x = {} ( Ty , x ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of A0 ) & len ( the charact of A0 ) = len the charact of A0 ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = G \ ( { v } ) , N8 = G \ ( { v } ) ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; ( the \ _ Q of K , n , r ) is FinSequence of D ; f . k , f . ( mod n ) in rng f ; h " P /\ [#] T1 = f " P & h " P = f " P ; g in dom f2 \ f2 " { 0 } & ( f2 | ( dom f2 ) ) . g in dom ( f2 | ( dom f2 ) ) ; gX /\ dom f1 = g1 " X & gX /\ dom f1 = g2 " X ; consider n be element such that n in NAT and Z = G . n ; set d1 = being non empty thesis , c = dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `2 + 1 / 2 < 1 / 2 + 1 / 2 ; reconsider f1 = f as VECTOR of the carrier of the carrier of X , Y ; attr i <> 0 means : Def2 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( ( g2 ) . i2 ) & 1 <= j2 & j2 <= len ( ( g2 ) . i2 ) ; dom i4 = dom i2 .= Seg ( len i4 ) .= Seg ( len i4 ) .= dom i4 ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of ]. PI / 2 , PI .[ ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x0 as Function of S , IV , IV ; reconsider R1 = x , R2 = y , R1 = z as Relation of L , R ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rn & ( <* 1 *> ^ p ) ^ <* n *> in Rn ; S1 +* S2 = S2 +* S1 & S1 +* S2 = S1 +* S2 & S1 +* S2 = S2 +* S1 ; ( ( ( 1 / 2 ) (#) ( cos * f ) ) `| Z ) . x = f . x ; cluster -> continuous for Function of C , REAL , a be Real ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C8 = 1GateCircStr ( <* z , x *> , f3 ) ; Ea1 . e2 = ( E . e2 ) -T & Ea1 . e2 = ( E . e2 ) -T ; ( ( ( 1 / 2 ) (#) ( ( #Z 2 ) * ( ( #Z 2 ) * ( f1 + f2 ) ) ) `| Z ) = f ; upper_bound A = ( PI * 3 / 2 ) * ( PI / 2 ) & lower_bound A = 0 ; F . ( dom f , - F ) is_transformable_to F . ( cod f , - F ) ; reconsider pbeing = q\rm Point ( TOP-REAL 2 ) , p8 = q8 as Point of Euclid 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & g . W in [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 , p be Point of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) /\ LSeg ( g , i ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , n1 = n as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y implies g <= y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m1 .= m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set B" = f .: the carrier of X1 , Bg = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume that R -Seg ( a ) c= R -Seg ( b ) and R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) implies x = u + v2 x2 |-- y2 iff P [ x2 , y2 ] & P [ y2 , y2 ] ; pred x1 <> x2 means : Def2 : for x , y st |. x1 - x2 .| > 0 holds |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 , p3 - p1 is_collinear and p3 - p1 , p3 - p1 is_collinear ; set q = ( f ^ f ) ^ <* 'not' 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS n , x be Point of REAL-NS 1 , y be Point of REAL-NS 1 , r be Real ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( succ t ) ) = dom ( ( T * ( succ t ) ) | ( dom T ) ) ; consider x being element such that x in wc iff x in c & x in X ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume that the carrier of D1 c= the carrier of D2 and the carrier of D1 c= the carrier of D2 ; reconsider A1 = [. a , b .[ as Subset of R^1 | [. a , b .] ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) , r = q `1 ; n1 - len f + 1 <= len ( - f ) + 1 - len f ; st st . ( q , O1 ) = [ u , v , a , b , b , c ] ; set C-2 = ( ( of of G ) | G ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * 0. V .= 0. V ; consider i be element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & for n be Nat st n in dom Q holds P [ n , Q . n ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 , s4 = P1 , P4 = P2 ; let l be variable of k , Al , A-30 be Subset of D ; reconsider U2 = union G-24 as Subset-Family of [: T , T :] | the carrier of T ; consider r such that r > 0 and Ball ( p `2 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p$ c = <* - vs , 1 , - 1 *> .= <* - 1 , - 1 , - 1 *> ; synonym f is real-valued means : Def2 : rng f c= NAT & for n being Nat holds f . n = f . n ; consider b being element such that b in dom F and a = F . b ; x9 < card X0 + card Y0 & x9 in card X0 & x9 in card X0 + card Y0 ; attr X c= B1 means : Def2 : for B1 , B2 being Subset of X st X c= B1 & X c= B2 holds X c= B1 ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , y , z ) ; pred 1 <= len s means : Def2 : for s being Element of NAT holds ( the _ of s ) * ( s , 0 ) = s ; f-47 c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in \cdot ( p => q ) means : Def2 : q '&' p in \cdot ( p => q ) ; - ( t `1 ) ^2 < ( t `1 ) ^2 & - ( t `2 ) ^2 < ( t `2 ) ^2 ; UA . 1 = U2 /. 1 .= W7 .= W7 .= ( the carrier of U1 ) --> { 1 } ; f .: the carrier of x = the carrier of x & f .: the carrier of x = the carrier of x ; Indices On = [: Seg n , Seg n :] & Indices On = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is H & f is H & f . 0 = F ( f , f . 1 ) ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 2 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - ( - ( 1 - r ) ) <> 0. TOP-REAL 2 ; reconsider t = t as Element of INT * ( ( - 1 ) |^ X ) ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) & C /\ A = {} ; f " V in ( the carrier of X ) /\ D ( the carrier of ( the carrier of X ) , ( the carrier of Y ) ) ; x in [#] ( the carrier of A ) /\ A * delta ( F , A ) ; g . x <= h1 . x & h . x <= h1 . x implies h . x <= h1 . x InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = R * ( i , a * Line ( M , i ) ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M3 is being_line ; reconsider a = f4 . ( i0 -' 1 ) as Element of K , i , j ; len B2 = Sum ( Len F1 ^ F2 ) .= len ( ( Len F1 ) ^ ( Len F2 ) ) .= len ( ( Len F2 ) ^ ( Len F2 ) ) ; len ( ( the -' empty FinSequence of n ) * ( i , j ) ) = n & len ( ( the -' empty ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( the \upharpoonright of seq ) . n = upper_bound Y1 & ( the \upharpoonright of seq ) . n = upper_bound ( ( the carrier of X ) --> ( seq . n ) ) ; dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 , y ] = 1 / COMPLEX * v1 .= y * v1 .= y * v1 .= y * v1 ; assume that W is non trivial and W .vertices() c= the carrier of G2 and W is non empty ; C6 /. i1 = G1 * ( i1 , i2 ) & C6 /. i2 = G1 * ( i1 , i2 ) ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng fnon ( a - b ) <= b - a - ( ( q1 `1 / |. q1 .| - cn ) / ( 1 + cn ) ) = 1 ; ( LSeg ( c , m ) \/ ml ) \/ LSeg ( l , k ) c= R ; consider p be element such that p in x and p in L~ f and p in LSeg ( f , i ) ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m , ( Partial_Sums F ) . n ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( N-min Z , p2 ) /\ LSeg ( p2 , p1 ) & p in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) ; set R8 = R .: ]. b , +infty .[ , R8 = R .: ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , db ) .= SubFrom ( da , db ) .= IncAddr ( I , k ) ; seq . m <= ( the Element of ( seq ^\ k ) ) . n & ( the seq of ( seq ^\ k ) ) . m <= ( ( seq ^\ k ) ) . n ; a + b = ( a ` *' b ) ` .= ( a ` *' b ) ` .= ( a ` *' b ) ` ; id ( X /\ Y ) = id X /\ id Y .= id X /\ id Y .= id X ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 as non empty Subset of U0 , U1 , U2 be non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ b ) ) /\ f ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set of R such that card A = ( the carrier of R ) \ A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng ( f |-- p1 ) ; len s1 - 1 > 1-1 & len s2 - 1 > 1-1 & len s2 - 1 > 0 ; ( N-min ( P ) ) `2 = N-bound ( P ) & ( N-min ( P ) ) `2 = N-bound ( P ) ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & LeftComp Cage ( C , k + 1 ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= ( f . a1 ) ` .= ( f . a1 ) ` ; ( seq ^\ k ) . n in ]. - r , x0 .[ & ( seq ^\ k ) . n in ]. x0 , x0 + r .[ ; gg . s0 = g . s0 | G . s0 .= g . s0 ; the InternalRel of S is symmetric & the InternalRel of S is transitive implies the InternalRel of S is transitive deffunc F ( Ordinal , Ordinal ) = phi . ( $1 + 1 ) & phi . ( $1 + 1 ) = phi . ( $1 + 1 ) ; F . s1 . a1 = F . s2 . a1 & F . s2 . a1 = F . a1 ; x `2 = A . o .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & f " P1 c= f " ( Cl P1 ) ; FinMeetCl ( the topology of S ) c= the topology of T & the topology of T c= the topology of T ; synonym o is \bf means : Def2 : o <> \ast & o <> * ; assume that X = Y |^ + and card X <> card Y and X <> {} and Y <> {} ; the { s } <= 1 + ( the { s } ) & ( the { s } ) c= the carrier of ( the carrier of S ) ; LIN a , a1 , d or b , c // b1 , c1 or LIN a , c , d ; e /. 1 = 0 & e . 2 = 1 & e . 3 = 0 ; Ek in SS1 & not Ek in { Nk } & Ek in { Nk } ; set J = ( l , u ) If , K = I " ; set A1 = .| ( ( a , b , c ) --> ( p , q ) ) , A2 = ( a , b , c ) --> ( p , q ) ; set vs = [ <* c , d *> , '&' ] , f4 = [ <* d , c *> , '&' ] , carrier = { 3 , 4 , 5 , 6 } ; x * z `2 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x = g3 . x Int cell ( f , 1 , G ) c= RightComp f \/ RightComp f & RightComp f c= RightComp f \/ RightComp f ; UA is_an_arc_of W-min C , E-max C & E-max C in L~ Cage ( C , n ) implies W-min L~ Cage ( C , n ) in L~ Cage ( C , n ) set f-17 = f @ "/\" g @ ; attr S1 is convergent means : Def2 : S2 is convergent & ( for n holds S1 . n = S2 . n ) ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster be be be be be " reflexive transitive transitive non empty RelStr ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l \lbrack ( a |^ 0 ) .--> x ) = len l .= len ( l |^ 0 ) ; t4 ^ {} is ( {} \/ rng t4 ) -valued FinSequence & t4 ^ {} = {} ; t = <* F . t *> ^ ( C . p ^ ( C . q ) ) .= <* F . t *> ^ ( C . q ) ; set p-2 = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) + ( i + 1 ) ; consider u being Element of L such that u = u ` "/\" ( u ` ) and u in D ` ; len ( ( width ( ( B |-> a ) ) * ( i , j ) ) ) = width ( ( B |-> a ) * ( i , j ) ) ; FM . x in dom ( ( G * ( the_arity_of o ) ) . x ) ; set cH2 = the carrier of H2 , cH1 = the carrier of H1 , cH2 = the carrier of H2 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= ( Comput ( P , s , 6 ) ) . intpos m ; IC Comput ( Q2 , t , k ) = ( l + 1 ) .= ( l + 1 ) ; dom ( ( ( 1 / 2 ) (#) ( sin * f ) ) `| REAL ) = REAL & dom ( ( 1 / 2 ) (#) ( sin * f ) ) = REAL ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* x1 , x2 *> , '&' ] , b5 = [ <* x1 , x2 *> , '&' ] , b6 = [ <* x2 , x3 *> , '&' ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= L ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) & ( ( the Sorts of A ) * ( the_arity_of o ) ) . n = ( ( the Sorts of A ) * ( the_arity_of o ) ) . n ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S , the carrier of T ; consider y be Point of X such that a = y and ||. y - x .|| <= r ; set x3 = t2 . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( s2 , s2 , 2 ) , P4 = P3 ; set pp = stop I ( ) , p1 = p +* I ( ) , p2 = p +* I ( ) , p3 = p +* I ( ) , p4 = p +* I ( ) , p4 = p +* I ( ) , P4 = p +* I ( ) , P4 = p +* I ( ) , P4 = p +* I consider a being Point of D2 such that a in W1 and b = g . a and a in W2 ; { A , B , C , D , E } = { A , B } \/ { C , D , E } let A , B , C , D , E , F , J , M , N , N , M be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 & ( p2 `2 ) ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = n-1 * ( l + 1 ) + ( ( 1 + 1 ) + 1 ) ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) ; the TopStruct of L = , the TopStruct of L = , the TopStruct of L = [: the carrier of L , the carrier of L :] ; consider y being element such that y in dom H1 and x = H1 . y and y in { x } ; ff \ { n } = \mathop { \rm Free } All ( v1 , H ) & ff \ { n } = { n } ; for Y being Subset of X st Y is summable holds Y is iff Y is Sum summable ; 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { + } * } * s ) = len s & len ( the { + } * s ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 * f2 ) c= the carrier of R^1 & rng ( h2 * g2 ) c= the carrier of R^1 & rng ( h2 * g2 ) c= the carrier of R^1 ; j + ( len f ) - len f <= len f + ( len g ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n , REAL-NS n , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= ( C * ( f | X ) ) . x ; power F_Complex . ( z , n ) = 1 .= x |^ n .= x |^ ( n + 1 ) .= x |^ ( n + 1 ) ; t at ( C , s ) = f . ( the connectives of S ) . t .= ( the connectives of S ) . t ; support ( f + g ) c= support f \/ C & support ( f + g ) c= support f \/ support g ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] ; { [ x1 , x2 ] where x1 , x2 is Point of [: X1 , X2 :] : x1 in X & x2 in Y } } c= X h = ( i = j |-- h , id B . i ) .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 * N c= A ; set X = ( ( \lbrace ( q , O1 ) ) `1 , 4 , 5 } ) --> ( ( q , O1 ) `1 , 5 ) ; b . n in { g1 : x0 < g1 & g1 < a1 . n } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) & f /. x0 = lim ( f /* s1 ) ; the lattice of T = the lattice of the topology of Y & the carrier of T = the carrier of Y & the topology of T = the topology of X ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len q1 .= len ( q0 ^ r1 ) + len r1 .= len ( q0 ^ r1 ) + len r1 ; ( 1 / a ) (#) ( ( sec * f1 ) - id Z ) is_differentiable_on Z & ( ( 1 / a ) (#) ( ( sec * f1 ) + id Z ) is_differentiable_on Z ; set K1 = upper integral ( ( lim ( lim ( H , A ) ) || A9 , ( lim ( H , A ) ) ) ; assume e in { ( w1 - w2 ) `1 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d6 = dom F `1 , d6 = dom G `1 as finite set ; LSeg ( f /^ j , q ) = LSeg ( f , j + q .. f ) .= LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , K1 ) : h . N2 = N2 } ; assume that Hom ( d , c ) <> {} and <: f , g :> * f1 = <: f , g :> * f2 ; dom S\cdot = dom S /\ Seg n .= dom L* ( i , j ) .= dom L* ( i , j ) ; x in H |^ a implies ex g st x = g |^ a & g in H & g in H * ( ( 0 , 1 ) --> ( a , 1 ) ) = a ` - ( 0 * n ) .= a ` ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 <= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ g = g @ c dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) & dom ( f1 (#) f2 ) = dom ( f1 (#) f2 ) /\ X ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 .= len f ; dom ( F-11 | [: N1 , S-23 :] ) = dom ( F | [: N1 , S-23 :] ) .= [: N1 , S-23 :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , T ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f opp = id b and f * f = id a and f * g = id b ; ( cos | [. 2 * PI * 0 , PI + ( 2 * PI * 0 ) .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS - 1 & Index ( Gij , LS ) + 1 <= len LS ; t1 , t2 , t3 be Element of ( T , S ) . ( mN ) , s be Element of S ; "/\" ( ( ( Frege ( curry H ) ) . h ) , L ) <= "/\" ( rng ( ( curry G ) . h ) , L ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j ; Q [ [ D . x , 1 ] , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is f of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> BOOLEAN .= ( the carrier of S1 ) --> BOOLEAN .= ( the carrier of S1 ) --> BOOLEAN .= the Sorts of S1 ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = F and for n being Nat st n in NAT holds s . n = G ( n ) ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) & dist ( a , b2 ) <= dist ( a , b ) + dist ( b , c ) ; ( Lower_Seq ( C , n ) ) /. len ( Lower_Seq ( C , n ) ) = Wq .= W-min L~ Cage ( C , n ) ; q `2 <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 & ( UMP L~ Cage ( C , 1 ) ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= II and A = ]. a , II .] and a <= II ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= m } , Y = { b |^ n where m is Element of NAT : m <= n } ; ( ( ( x * y * z ) \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , zx = [ <* z , x *> , f3 ] , xy = [ <* z , x *> , f3 ] , yz = [ <* x , y *> , f3 ] , yz = [ <* z , x *> , f3 ] , yz = [ <* z , x *> Uv /. len lv = lv . len lv .= lv . len lv .= lv . len lv ; ( ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ) = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( ( S \/ Y ) `2 ) / 2 ) * ( ( S \/ Y ) `2 ) = ( ( S \/ Y ) `2 ) / 2 ; ( seq - seq ) . k = seq . k - seq . k .= seq . k - seq . k .= seq . k - seq . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of the carrier of X is the carrier of X & the carrier of X = the carrier of X & the carrier of X = the carrier of X ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & |. p4 - |[ a , b ]| .| = r ; set ch = chi ( X , A ) , A5 = chi ( X , A ) ; R |^ ( ( 0 * n ) ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ ( n + 1 ) ; ( ( ( curry ( ( F , n ) ) . 0 ) ) . n ) is nonnegative & ( ( curry ( ( F , n ) . 0 ) ) . n ) . x is nonnegative ; f2 = C7 . ( E7 . ( len E7 , len H ) ) .= C7 . ( len H ) ; S1 . b = s1 . b .= s2 . b .= ( the carrier of S1 ) /\ ( the carrier of S2 ) .= ( the carrier of S1 ) /\ ( the carrier of S2 ) ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) & p2 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & o = ( the connectives of S ) . 12 ; set phi = ( l1 , l2 ) implies phi is ( l1 , l2 ) u ) implies phi is ( l2 , l2 ) u u = 1 ; synonym p is is is is is is is or *' for p , q , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T , T Y1 `2 = - 1 & 0. TOP-REAL 2 <> 0. TOP-REAL 2 & ( for p be Point of TOP-REAL 2 st p in Y1 holds p `2 = 1 ) implies Y1 = Y2 defpred X [ Nat , set , set ] means P [ $1 , $2 , $2 ] & $2 = [ $2 , $2 , $2 ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( ( m -' n ) mod ( m -' n ) ) ) = 1. K & Det ( I |^ ( m -' n ) ) = 1. K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a ) < 0 ; Cs . d = C7 . d mod C7 . d .= C7 . d mod C7 . d .= C7 . d mod C7 . d ; attr X1 is dense means : Def2 : X2 is dense & X2 is dense implies X1 meet X2 is dense dense SubSpace SubSpace of X & X1 is dense SubSpace of X ; deffunc FF6 ( Element of E , Element of I ) = $1 * $2 & $2 = ( $1 * $2 ) * ( $2 ) ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set for Y being Subset-Family of X holds the topology of X is Basis of <* X , FinMeetCl Y *> synonym A , B are_separated means : Def2 : Cl A misses B & A misses Cl B ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; ] = { x where x is Element of K : 0 < v . x & v . x = 1 } ; ( ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 + 1 ) - D2 . ( k + k2 + 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & ( <* 1 *> ^ w ) . ( len s ) = <* 1 *> ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = succ ( s , 9 ) .= 5 + 9 .= 5 ; IExec ( W6 , Q , t ) . intpos ( m6 ) = t . intpos ( m6 ) .= t . intpos ( m6 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) & LSeg ( f /^ q , j ) misses LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f , C ) . x = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y ` in Y ` & x in X ` holds y <= x ` ; func |. p \bullet p .| -> variable of A , A equals min ( NBI ( p ) , p , ( p \in NBI ( p ) ) ) ; consider t being Element of S such that x ` , y ` '||' z `1 , t `2 & x , z '||' y `1 , t `2 ; dom x1 = Seg ( len x1 ) & len x1 = len l1 & for i be Nat st i in Seg ( len x1 ) holds x1 . i = ( x1 /. i ) * ( x2 /. i ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f /. x0 .|| = ||. f .|| /. ( s1 . x0 ) ; ( the InternalRel of A ) -Seg ( x ` ) /\ Y = {} \/ {} .= {} \/ {} .= {} ; assume that i in dom p and for j be Nat st j in dom q holds P [ i , j ] and i + 1 in dom p and for j be Nat st j in dom q holds P [ j , p . j ] ; reconsider h = f | X ( ) as Function of X ( ) , rng f ( ) * , Y ( ) * ; u1 in the carrier of W1 & u2 in the carrier of W2 & u1 in the carrier of W1 & u2 in the carrier of W2 implies u1 = u2 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= $1 & f . $1 <= f . $1 ; ^ ( u , a , v ) = s * x + ( - ( s * x ) + y ) .= b ; - ( x-y ) = - x + - y .= - x + y .= - x + y .= - x + y .= - x ; given a being Point of GX such that for x being Point of GX holds a , x , x , a , x r r ; fT = [ [ dom ( @ f2 ) , cod ( @ f2 ) ] , h2 ] , h2 = [ cod ( @ f2 ) , h2 ] ; for k , n being Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ d ) ` & x in A ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) ) ^2 > 0 ; L-13 . k = Ln . ( F . k ) & F . k in dom Ln & F . ( F . k ) = Ln . ( F . k ) ; set i2 = SubFrom ( a , i , - n ) , i1 = a , i2 = - n ; attr B is thesis means : Def2 : Subuniversal ( B , Sz ) = B `1 & S = B `1 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" d in D ; |( exp_R , exp_R )| * |( exp_R , q9 )| * |( exp_R , exp_R )| >= |( exp_R , exp_R )| * |( exp_R , q2 )| ; ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) .= ( - f ) . ( upper_bound A ) ; GG2 * ( len GG2 , k ) `1 = G * ( len G2 , k ) `1 .= G * ( 1 , k ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) * L ) . LM = <* ( proj ( i , n ) ) . LM *> .= <* ( proj ( i , n ) ) . LM *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( the reproj of i , x ) . x ) & f2 + ( ( ( the reproj ( i , x ) ) * reproj ( i , x ) ) . x ) = ( ( the reproj of i , x ) ) . ( ( ( the reproj of i , x ) ) . ( ( ( the reproj of i , x ) . x ) ) ; pred ( for x st x in Z holds ( tan * f ) `| Z ) . x = tan . x * ( cos . ( f . x ) ) ; ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t & ( h . s ) . x = t ; defpred C [ Nat ] means ( ( P . $1 ) is - 1 ) & ( A is n -the carrier of S ) -valued implies A is n -the carrier of S ; consider y being element such that y in dom ( p | i ) and ( q | i ) . y = ( p | i ) . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( Carrier A ) . ( ( index B ) . l ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for c being Element of C st T . ( id c ) = id d holds c = d not ( f , n , p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) } ; f `2 - cp = ( - ( c | ( n , L ) ) ) *' - ( ( c (#) ( f | ( n , L ) ) ) *' .= ( - c ) *' - ( ( f | ( n , L ) ) *' ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . [ r2 , r2 ] in f1 .: W2 & f2 . [ r2 , r2 ] in f1 .: W3 & f2 . [ r2 , r2 ] in f2 .: W3 ; eval ( a | ( n , L ) , x ) = eval ( a | ( n , L ) , x ) .= a ; z = DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset of X : S c= G } , F = { Intersect S where S is Subset of X : S is open } ; consider S19 being Element of D * , d being Element of D * such that S ` = S19 ^ <* d *> and S19 = S19 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 / ( 1 + sn ) ^2 ; (0). V is Linear_Combination of A & Sum ( L ) = 0. V & Sum ( L ) = 0. V implies Sum ( L ) = 0. V let k1 , k2 , k2 , k1 , k2 , k2 , k2 , E , F be FinSequence of the InstructionsF of SCM+FSA , a be element , k1 be Integer , k2 be Integer ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . ( x1 , x2 ) or H1 . ( x1 , x2 ) c= H1 . ( x2 , x3 ) ; consider a being Real such that p = -' ( a * p1 + ( a * p2 ) ) and 0 <= a and a <= 1 ; assume that a <= c & d <= b & [' a , b '] c= dom f and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , ( X -' 1 ) -' 1 , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * b2 /. y .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , ( k + 1 ) ) ) ^2 >= ( log ( 2 , ( k + 1 ) ) ) ^2 ; then p => q in S & not x in the carrier of p & not p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of r-10 ) & dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) ; synonym f is integer means : Def2 : for x being set st x in rng f holds x is Integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 ; l * ( l , 3 ) = ( g . ( 1 , 3 ) + ( k - 3 ) ) * ( e , ( k - 3 ) ) * ( e , ( k - 3 ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= halt SCM+FSA .= CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) ; assume for n be Nat holds ||. seq .|| . n <= Rseq . n & Rseq is summable & Rseq is summable & Rseq is summable & Rseq is summable ; sin . ( non empty ) = sin . r * cos ( ( - cos r ) * sin s ) .= 0 * ( cos ( r ) * sin s ) .= 0 ; set q = |[ g1 . t0 , g2 . t0 , f3 = |[ g2 . t0 , f3 . t0 ]| , f4 = |[ r , s ]| , i1 = r / 2 , i2 = s / 2 , i2 = s / 2 , i1 = r / 2 , i2 = s / 2 ; consider G be sequence of S such that for n being Element of NAT holds G . n in implies G in implies G in implies G in being sequence of S ; consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) & G is open & G is open ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of C ) . s = [ x , s ] ; Z c= dom ( exp_R * ( f + ( ( 3 / 2 ) ) * ( f1 + f2 ) ) ) ; for k be Element of NAT holds seq1 . k = ( ( Im ( f ) ) | ( k -' 1 ) ) . i ; assume - 1 < n ( ) & q `2 > 0 & ( q `1 / |. q .| - cn ) < 0 & ( q `2 / |. q .| - cn ) < 0 ; assume that f is continuous and a < b and a < b and c < d and f . a = c and f . b = d ; consider r being Element of NAT such that sy9 = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and x <> y and y <> z ; assume f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A ) & f +* ( i1 , \xi ) in ( proj ( F , i2 ) ) " ( A ) ; rng ( ( ( Flow M ) ~ | ( the carrier of M ) ) | ( the carrier of M ) ) c= the carrier of M ; assume z in { ( the carrier of G ) --> { t } where t is Element of T : t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 and ||. ( s1 . m - x0 ) .|| < l ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 and ||. t .|| <= 1 ; assume that the carrier of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> ] in dom p and v ^ <* 1 *> in dom p ; consider a being Element of the carrier of X39 , A being Element of the lines of X39 such that not a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p is FinSequence of D & for i be Nat st i in dom p holds p . i in D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & Q [ y , x ] ; L~ f2 = union { LSeg ( p0 , p11 ) , LSeg ( p1 , p11 ) } .= { LSeg ( p1 , p11 ) , LSeg ( p1 , p11 ) } ; i - len h11 + 2 - 1 < i - len h11 + 2 - 1 + 1 + 1 - 1 + 1 ; for n be Element of NAT st n in dom F holds F . n = |. ( nthesis . ( n -' 1 ) ) .| ; for r , s1 , s2 holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & r <= s2 & r <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 } ; let g be T be T S -valued Function of A , INT , INT , b be Element of INT , c be Element of INT ; min ( g . [ x , y ] , k . [ y , z ] ) = ( min ( g , k , x , z ) ) . y ; consider q1 be sequence of CP such that for n holds P [ n , q1 . n ] and q1 is convergent & lim q1 = lim q1 ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds P [ n , f . n ] ; reconsider B-6 = B /\ B , OO = O , Z = I , Z = I as Subset of B ; consider j being Element of NAT such that x = the ` of n and 1 <= j and j <= n and f . j = f . j ; consider x such that z = x and card ( x . O2 ) in card ( x . O ) and x in L1 . O2 and x in L2 ; ( C * ( T * ( k , n2 ) ) ) . 0 = C . ( ( T * ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) . x ) = dom ( X --> f . x ) ; ( ex b being Element of TOP-REAL 2 st b <= ( ( SpStSeq C ) * ( SpStSeq C ) ) `2 & ( for i being Nat st i in dom SpStSeq C holds ( ( SpStSeq C ) * ( SpStSeq C ) ) `2 <= ( ( the carrier of TOP-REAL 2 ) * ( SpStSeq C ) ) `2 ) ; synonym x , y are_collinear means : Def2 : x = y or ex l being Subset of S st { x , y } c= l & l is finite ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L for a , b being Element of Im k st a = x & b = y holds x << y iff a << b ; 1 / ( 2 * ( ( - ( ( #Z ( 2 * ( m - 0 ) ) ) * ( AffineMap ( 2 , 0 ) ) ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the \mathbb of A2 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * ( g . g2 ) .= f . g1 ; ( M * ( F . n ) ) . n = M . ( ( canFS ( Omega ) ) . n ) .= M . { ( ( canFS ( Omega ) ) . n ) } ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , c , x , y , c , y , x , y , c , y ; ( the PartFunc of s , X ) . n <= ( the PartFunc of s , X ) . n * s . ( n + 1 ) ; pred - 1 <= r & r <= 1 means : Def2 : for r st r <= 1 holds ( arccot `| Z ) . r = - 1 / ( 1 + r ^2 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } & ( p ^ <* n *> in T1 ) implies ( p ^ <* n *> in T1 ) & ( p ^ <* n *> in T2 ) |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x3 ]| . 2 = x2 - y2 & |[ x2 , x3 , x4 ]| . 2 = x2 - y2 ; attr F is nonnegative means : Def2 : for m being Nat holds F . m is nonnegative & ( Partial_Sums F ) . m is nonnegative ; len ( ( G . z ) * ( ( G . ( x9 ) ) * ( ( G . ( y9 ) ) * ( y ) ) ) ) = len ( ( G . ( x9 ) ) * ( ( G . ( y9 ) ) * ( y ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W2 /\ W3 ; given F be FinSequence of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } and Sum F = k - 1 ; 0 = ( 1 * 0 ) * ( - 1 ) * ( ( - 1 ) * ( - ( 1 - 0 ) ) * ( ( - ( 0 ) ) * ( - ( 0 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> } -\mathbin 3 -`1 for non empty implies ( ( ( the carrier of L ) --> ( ( the carrier of L ) --> ( D , L ) ) ) is Boolean and ( ( the carrier of L ) --> ( ( the carrier of L ) --> ( D , L ) ) ) is Boolean ; "/\" ( BB , {} ) = Top ( BB ) .= the carrier of S .= "/\" ( [#] ( S , T ) , [#] ( S , T ) ) .= "/\" ( I , T ) ; ( r / 2 ) ^2 + ( r / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * ( 2 * r1 - c ) = 0. TOP-REAL 2 & 2 * r1 - c * ( 2 * r1 - c ) = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( - 1 ) ) * ( ( - ( 1 / ( n + 1 ) ) ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and y = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume ( g , M ) ) | n ) . ( len ( q | n ) ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H2 is Subgroup of H2 ; for S , T being non empty that T is complete & T is complete implies d is monotone & d is monotone & d is monotone & d is monotone [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of F_Complex ) & [ a + 0. F_Complex , b2 ] in [: the carrier of F_Complex , the carrier of F_Complex :] ; reconsider mm = max ( len F1 , len ( p . n ) * ( p . n ) ) as Element of NAT ; I <= width GoB ( ( GoB f ) * ( len GoB f , 1 ) , ( GoB f ) * ( len GoB f , 1 ) ) & I <= width GoB f implies ( GoB f ) * ( len GoB f , 1 ) `1 <= ( GoB f ) * ( 1 , 1 ) `1 f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def2 : A1 is linearly-independent & A2 misses {} & Lin ( A1 /\ A2 ) = (0). V & Lin ( A2 /\ A2 ) = (0). V ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } ; dom ( ( Line ( v , i + 1 ) ) (#) ( ( a * ( L * ( p , m ) ) ) ) ) = dom ( F ^ G ) ; cluster [ ( x `1 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) , ( x `2 ) ) ] -> Morphism of x `1 , ( x `2 ) ; E , f |= All ( All ( x2 , All ( x2 , x2 ) ) , ( x2 \ x1 ) ) => ( ( x2 \ x1 ) '&' ( x2 \ x1 ) ) ; F .: ( ( id X ) . x , g ) = F . ( ( id X ) . x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . m - h . x0 + h . ( h . m ) - h . x0 ; cell ( G , Xs -' 1 , ( Y + 1 ) ) \ ( L~ f ) meets ( UBD L~ f ) & ( L~ f ) meets ( UBD L~ f ) ; IC Comput ( P2 , s2 , 2 ) = IC IExec ( I , P , Initialize s ) .= card I .= card I .= card I .= card I .= card I + 1 .= card I + 1 ; sqrt ( ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) ) ^2 > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k } and y0 = a . x0 and x0 in g " { k } and x0 in g " { k } ; dom ( r1 (#) chi ( A , C ) ) = dom chi ( A , C ) /\ dom chi ( A , C ) .= C /\ dom ( ( A * chi ( A , C ) ) | A ) .= C /\ dom ( ( A * chi ( A , C ) ) | A ) .= C /\ A ; d-7 . [ y , z ] = ( ( [ y , z ] `2 ) `2 - ( ( [ y , z ] `2 ) `2 ) / ( 1 + ( y `2 ) `2 ) ) / ( 1 + ( y `2 ) `2 ) ; attr i being Nat means C . i = A . i /\ B . i means : Def2 : C c= A /\ ( i + 1 ) ; assume that x0 in dom f and f is_continuous_in x0 and f is_continuous_in x0 and for r st r in dom f & r < x0 ex g st r < g & g in dom f & g in dom f & g <> x0 ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & K meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y2 - x .| <= |. y1 - y2 .| func the \times <*> } -> + O -> + number means : Def2 : a in it & for b being l of it st a in b holds it c= b ; [ a1 , a2 , a3 ] in ( [: the carrier of A , the carrier of A :] \/ [: the carrier of A , the carrier of A :] ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & [ a , b ] in the carrier of S1 & [ b , a ] in the InternalRel of S1 ; ||. ( ( vseq . n ) - ( vseq . m ) ) * ( x - y ) .|| < ( e / ( ||. x .|| * ||. ( vseq . m ) .|| ) ) * ||. x - y .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y } holds z in Z & z in Z & z in Z ; sup compactbelow [ s , t ] = [ sup ( ( compactbelow [ s , t ] ) /\ ( compactbelow [ s , t ] ) ) , sup ( ( compactbelow [ s , t ] ) /\ ( compactbelow [ s , t ] ) ) ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in Iy and [ f . i , z ] in Iy and [ y , z ] in Iy ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = p ^ q consider e1 being Element of the affine of X such that c9 , a9 // a9 , e and a9 <> b9 and a , c // a , e and a , b // c , d and a , c // d , e ; set U2 = I \! \mathop { {} } , U2 = I -\hbox { {} } ; |. q3 .| ^2 = ( ( |. q2 .| ) ^2 + ( ( |. q2 .| ) ^2 ) ) ^2 .= |. q .| ^2 + ( ( |. q .| ) ^2 ) .= |. q .| ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x = y dom signature U1 = dom ( the charact of U1 ) & Args ( o , MSAlg U1 ) = dom ( the charact of U1 ) & ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) . ( ( the charact of U1 ) ) ) ) ) ) ) = dom ( the charact of U1 ) ) ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| | X ) .= dom ( ( ||. h .|| | X ) ) /\ X .= dom ( ( ||. h .|| | X ) ) /\ X .= dom ( ( ||. h .|| | X ) ) /\ X .= X ; for N1 , N1 being Element of G8 holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N1 & rng ( h . K1 ) c= N1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or ( q `2 ) ^2 >= - ( q `1 ) ^2 & ( q `2 ) ^2 <= - ( q `2 ) ^2 or ( q `2 ) ^2 >= - ( q `1 ) ^2 ; pred r1 = ff & r2 = ff & r1 * r2 = ff & for r st r * r1 = ff holds r1 = r2 & r2 = ff & r1 = r2 ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( ( vseq . m ) * ( ( vseq . m ) * ( vseq . n ) ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 ; consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 in X ( ) and p1 ^ q1 = p1 ^ q1 and p1 ^ q1 = q1 ^ q1 and q1 in X ( ) and q1 ^ q2 in X ( ) ; ( the carrier of A ) . ( r1 , r2 , s1 , s2 , s2 , t2 ) = ( s2 / gcd ( A , s1 , s2 , t2 ) ) * ( r1 , r2 , s2 , t2 , s2 , t2 ) ; ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ /\ Ball ( w , r ) ) ) & proj2 .: ( A /\ Ball ( w , r ) ) is non empty ; s |= ( k , H1 ) / ( H2 , k ) iff s |= ( H , k ) / ( H2 , k ) & s |= ( H , k ) / ( H2 , k ) implies s |= ( H , k ) len ( s + 1 ) = card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) + 1 .= card ( support b2 ) + 1 .= card ( support b1 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z `1 >= y holds z `1 >= y & z `2 >= x ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D ) / 2 ) / 2 ]| /\ D = { UMP D } ; lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = ( lim ( ( f `| N ) / ( g `| N ) ) ) * ( ( g `| N ) / ( g `| N ) ) ; P [ i , pr1 ( f , pr1 ( f , g ) . i , pr2 ( f , g ) . ( i + 1 ) ] , pr2 ( f , g ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - R-2 .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P holds a = b Z c= dom ( ( ( 1 / 2 ) (#) f ) (#) ( ( #Z 2 ) * f ) ) \ ( ( 1 / 2 ) (#) f ) " { 0 } ) implies f is_differentiable_on Z & for x st x in Z holds ( ( ( 1 / 2 ) (#) f ) `| Z ) . x = ( 1 / 2 ) * ( ( x / 2 ) * ( f . x ) ) ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & z = 1 + len l & i = len l + 1 & j = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in N holds r * u + ( 1-r * v ) in N A , Int A , Cl A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Cl Int A , Cl Int A , Cl Cl Int A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl A , Cl Cl A , Cl A , Cl A , Cl A , Cl A , Cl A , Cl A , Cl A , Cl - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) -uw .= - ( v + u ) -uw .= - ( v + u ) -uw ; Exec ( ( a := b ) , s ) . IC SCM R = ( Exec ( ( a := b ) , s ) ) . NAT .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . ( h . x ) ; for S1 , S2 , D being non empty reflexive RelStr , D being non empty Subset of [: S1 , S2 :] holds cos ( D ) is directed & cos ( D ) is directed & cos ( D ) is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & for z st z in X holds z = x or z = y or z = x & z = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) :- W-min L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) :- W-min L~ Cage ( C , n ) ) ; for T , T being DecoratedTree , p , q being Element of dom T st p ^ q = q holds ( T , p ) with ( T , q ) . ( p , q ) [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster ( k gcd n ) divides ( k gcd n ) means : Def2 : k divides it & for m being Nat st k divides m & n divides m holds it divides m ; dom F " = the carrier of X2 & rng F = the carrier of X1 & F " { x } = the carrier of X2 & F " { x } = { x } & F " { x } = { x } ; consider C being finite Subset of V such that C c= A and card C = n and the carrier of V = Lin ( BM \/ C ) and Lin ( BM ) = Lin ( BM \/ Lin ( C ) ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) .= angle ( p3 , p3 , p2 ) ; - sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) = - sqrt ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) .= - ( ( - ( ( q `1 / |. q .| - cn ) ) / ( 1 + cn ) ) ^2 ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 0 = p3 & f . 1 = p4 & f . 1 = p4 & f . 0 = p4 ; attr f is_is_is_is_is_or pdiff1 ( f , 1 ) means : Def2 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is continuous & SVF1 ( 2 , pdiff1 ( f , 3 ) , u0 ) . u0 = ( proj ( 2 , 3 ) ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & r < G * ( 1 , 1 ) `2 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 >= N-bound L~ f and t <= width G ; pred i in dom G means : Def2 : r * ( f * reproj ( i , x ) ) = r * f * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = ( decomp c1 ) /. ( k + 1 ) and c1 /. k = c1 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; ( ( X ^ Y ) . k ) = the carrier of X . k2 .= ( ( C ^ ( len ( C ^ Y ) ) ) . k ) .= ( C ^ ( len ( C ^ Y ) ) ) . k .= ( C ^ ( len ( C ^ Y ) ) ) . k ; attr M1 = len M2 means : Def2 : len M1 = width M2 & for i st i in Seg n holds M1 * ( i , i ) = M1 * ( i , j ) & M1 * ( i , j ) = M2 * ( i , j ) ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 & y in dom ( f | X ) & ( for x be Point of S st x in X holds ||. ( f | X ) /. x - f /. x0 .|| < g2 } c= N2 ; assume x < ( - b + sqrt ( integral ( a , b , c ) ) / ( 2 * a ) ) or x > ( - b - sqrt ( integral ( a , b , c ) ) / ( 2 * a ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) & ( M3 + M2 ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st i in dom f & for j being Element of NAT st j in dom f holds i divides f /. j holds i divides ( f /. j ) assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\mathopen the carrier of X & a c= c holds b c= c } ; b2 * q2 + ( b3 * q3 ) + - ( ( a1 * q2 ) + - ( ( a2 * q3 ) + ( a3 * q3 ) ) = 0. TOP-REAL n + ( ( a2 * q2 ) + ( a3 * q3 ) ) .= 0. TOP-REAL n + ( ( a2 * q2 ) + ( a3 * q3 ) ) ; Cl ( Cl F ) = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & B in F } & Cl ( Cl F ) = Cl ( Cl F ) ; attr seq is summable means : Def2 : seq is summable & seq is summable & Partial_Sums ( seq ) = Partial_Sums ( seq ) + Partial_Sums ( seq ) & Partial_Sums ( seq ) = Partial_Sums ( seq ) + Partial_Sums ( seq ) ; dom ( ( ( cn " ) | D ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; |[ X , Z ]| is full full non empty SubRelStr of ( Omega Z ) |^ the carrier of X & [ X \to Y ] is full full SubRelStr of ( Omega Z ) |^ the carrier of Y ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( 1 , j + 1 ) `2 ; synonym m1 c= m2 means : Def2 : for p being set st p in P holds the carrier of m1 <= ( m2 ) \ ( the carrier of m2 ) & for p being set st p in P holds p is \HM { m2 } ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } and for a , b being Element of A ( ) st P [ a , b ] holds a = b ; synonym IT is multiplicative means : Def2 : the multMagma of in in in the carrier of mamas & the multF of it = [ { a , a } , the multF of it , the multF of it , the multF of it , the multF of it , the multF of it , the multF of it , the multF of it , the multF of it , the multF of it #) ; sequence ( a , b , 1 ) + sequence ( c , d , 1 ) = b + sequence ( c , d , 1 ) .= b + d .= sequence ( a + c , b + d ) ; cluster + ( i , INT ) -> $ Z means : Def2 : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = + ( ( i , INT ) --> ( i1 , i2 ) ) ; ( ( - s2 ) * p1 + ( s2 * p2 ) ) = ( - r2 ) * p1 + ( r2 * p2 ) .= ( ( - r2 ) * p1 + ( r2 * p2 ) ) .= ( ( - r2 ) * p1 ) + ( ( r2 * p2 ) ) ; eval ( ( ( a | ( n , L ) ) *' ) , x ) = eval ( ( a | ( n , L ) ) *' , x ) * eval ( ( p | ( n , L ) ) *' , x ) .= a * eval ( ( p | ( n , L ) ) *' ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty set , V being non empty directed Subset of Omega S , V being open Subset of Omega S st V in V & V is open holds V meets V ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) -succ k ) = ( T11 . ( ( q11 , w ) -succ k ) ) . k and T11 . k = ( T11 . ( ( q11 , w ) -succ k ) ) . k ; 2 * ( a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) ) >= a |^ ( n + 1 ) + ( ( a |^ ( n + 1 ) ) + ( ( b |^ ( n + 1 ) ) * a ) + ( ( b |^ ( n + 1 ) ) * a ) ; M , v2 |= All ( x. 3 , All ( x. 4 , All ( x. 0 , All ( x. 4 , H ) ) ) ) implies M , v2 |= All ( x. 4 , All ( x. 4 , All ( x. 4 , H ) ) ) & M , v2 |= All ( x. 4 , All ( x. 4 , H ) ) assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f ' ( x0 ) or for x0 st x0 in l holds f ' ( x0 ) < 0 & f ' ( x0 ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being Walk of G1 , e being set st not e in W .vertices() & not e in W .vertices() & not e in W .vertices() & not e in W not c is not empty iff ( not ( x0 is not empty & not ( x0 is not empty ) & not ( x0 is not empty ) & not ( x0 is not empty ) & not ( x0 is not empty ) & not ( x0 is not empty ) & not ( x0 is not empty ) & not ( x0 is not empty ) ) ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & [ i1 + 1 , j1 + 1 ] in Indices GoB f & f /. ( 1 + 1 ) = ( GoB f ) * ( i1 + 1 , j1 + 1 ) & f /. ( len GoB f ) = ( GoB f ) * ( i1 + 1 , j1 + 1 ) ; for G1 , G2 , G3 being strict Subgroup of O , O being stable Subgroup of O st G1 is stable & G2 is stable & G1 is stable & G2 is stable & G2 is stable & G2 is stable holds G1 * G2 is stable Subgroup of G2 * the carrier of G3 UsedIntLoc ( inint f ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 4 , intloc 5 , intloc 5 , intloc 5 , intloc 5 , intloc 6 , intloc 5 , x. 6 , there 5 being element st t in UsedIntLoc ( p ) & 5 in UsedIntLoc ( p ) & 5 in UsedIntLoc ( p ) ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ p ^ f1 ] & Q [ q ^ f1 ] & Q [ p ^ f1 ^ f2 ] holds Q [ f1 ^ f2 ^ f1 ] ( p `1 ) ^2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) .= ( q `1 ) ^2 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x3 )| - |( x2 , x3 )| & |( x1 - x2 , x3 )| = |( x1 , x3 )| - |( x2 , x3 )| - |( x3 , x4 )| for x st x in dom ( ( - x ) | A ) holds ( ( - x ) | A ) . ( - x ) = - ( ( - x ) | A ) . ( - x ) for T being non empty TopStruct , P being Subset-Family of T st P c= the topology of T for x being Point of T st B c= P & x in P holds P is Basis of T ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x 'or' b . x ) 'or' c . x .= TRUE '&' TRUE .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & X1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of Sfor i be set st f = H . i for F be Function of [: S , S1 :] , S1 , S2 be Function of [: S , S2 :] , S2 for F be Function of F , S1 , G be Function of F , S2 st F = H . i holds F . i = G . i for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ) , J ) . v = Valid ( VERUM ( Al ) , J ) . w card D = card D1 + card D1 - card { { i , j } } .= ( c1 + 1 ) + ( 1 - 1 ) .= ( c1 + 1 ) + ( 1 - 1 ) .= 2 * c1 + ( 1 - 1 ) .= 2 * c1 + ( 1 - 1 ) .= 2 * c1 + ( 1 - 1 ) ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= ( s .--> ( s . 0 ) ) . 0 .= ( s +* ( s . 0 ) ) . 0 .= ( s +* ( s . 0 ) ) . 0 .= ( s +* ( s . 0 ) ) . 1 ; len f /. ( len f -' 1 ) + 1 = len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 - 1 .= len f -' 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k <= b holds a < ( a + b-2 ) or k = a + b-2 or k = a + b-2 or k = a + b-2 or k = a + b for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) & i <= len f holds Index ( p , f ) <= i & Index ( p , f ) <= i lim ( ( curry ( ( P , k + 1 ) ) # x ) ) = lim ( ( curry ( ( P , k ) ) # x ) + lim ( ( curry ( ( P , k ) ) # x ) ) ) ; z2 = g /. ( \downharpoonright n1 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) .= g . ( i - n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B st G = { [ R , X ] where R is Subset of [: A , B :] : R in F6 } holds ( for X being Subset of A , Y being Subset of B st X in F6 holds ( X = Y ) & ( Y in F ) & ( X c= Y implies Y in G ) ) CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m2 ) ) .= halt SCMPDS .= halt SCMPDS .= halt SCMPDS ; assume that a on M and b on M and c on N and d on N and p on P and a on P and c on Q and d on Q and a on Q and b on Q and a on Q and b on Q and a on Q and b on Q and a on Q and b on Q and a on Q and b on Q and a on Q and b on Q ; assume that T is \hbox { T _ 4 } and F is closed and ex F being Subset-Family of T st F is closed & F is finite-ind & ind F <= 0 & ind F <= 0 & ind F <= 0 ; for g1 , g2 st g1 in ]. r - g2 , r .[ & g2 in ]. r - g2 , r .[ holds |. f . g1 - g .| <= ( g1 - g2 ) / ( |. r - g2 .| + ( |. r - g2 .| ) / ( |. r - g2 .| + ( |. r - g2 .| ) / ( |. r - g2 .| ) ) ( ( ( ( 1 / 2 ) * ( z + z2 ) ) / ( z + z2 ) ) * ( ( ( 1 / 2 ) * ( z + z2 ) ) / ( z + z2 ) ) ) = ( ( ( ( 1 / 2 ) * ( z + z2 ) ) / ( z + z2 ) ) * ( ( ( z + z2 ) / ( z + z2 ) ) ) ; F . i = F /. i .= 0. R + r2 .= b |^ ( n + 1 ) .= <* ( ( n + 1 ) |-> a ) * b , ( n + 1 ) * a , ( n + 1 ) * b *> .= <* ( ( n + 1 ) --> a ) * b , ( n + 1 ) * b *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & y in A ( ) ; func f (#) F -> FinSequence of V means : Def2 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 } = { x1 , x2 } \/ { x3 , x4 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 } for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) & o . ( x , n ) in InnerVertices S ( x , n ) ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( S1 is Element of CQC-WFF ( Al ) & ( for k being Nat st k in dom S1 holds S1 . k = F ( k ) ) & ( not S1 . k = G ( k ) ) & ( not S1 . k = H ( k ) ) ; consider P be FinSequence of GW2 such that pI = product P and for i st i in dom P ex t7 being Element of the carrier of K st P . i = t7 & t7 = t & t7 = t & t7 = t ; for T1 , T2 being strict non empty TopSpace , P being Basis of T1 , T2 st the carrier of T1 = the carrier of T2 & P is Basis of T1 & P is Basis of T2 & P is Basis of T1 & P = the topology of T2 & P = the topology of T1 & P = the topology of T2 & P = the topology of T1 & P = the topology of T2 holds P is closed assume that f is_PartFunc of REAL , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , u0 ) & partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , u0 ) ; defpred P [ Nat ] means for F , G be FinSequence of ExtREAL for s be Permutation of ExtREAL , G be Permutation of Seg $1 st len F = $1 & not G = F * s & not F = G * s holds Sum F = Sum G & Sum G = Sum F ; ex j st 1 <= j & j < width GoB f & ( ( GoB f ) * ( 1 , j ) `2 <= s & s <= ( GoB f ) * ( 1 , j + 1 ) `2 or s <= ( GoB f ) * ( 1 , j + 1 ) `2 & ( GoB f ) * ( 1 , j + 1 ) `2 <= s ) ; defpred U [ set , set ] means ex Fi1 being Subset-Family of T st $1 = Fi1 & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 = union Fi1 & union Fi1 = union Fi1 & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 holds LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 f in set ( E , H ) & ( for g st g . y <> f . y holds x = y ) implies g in rng ( ( the carrier of E ) --> { x } ) & f in rng ( ( the carrier of E ) --> { y } ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( - 1 ) * ( ( ( ( ( ( ( ( ( ( TOP-REAL 2 ) ) ) | D ) ) ) / 2 ) ) ) ) ) & ( ( ( ( ( ( ( ( ( ( ( ( ( ( TOP-REAL 2 ) ) * ( ( ( ( ( ( ( ( ( TOP-REAL 2 ) ) | D ) ) ) / 2 ) ) / 2 ) ) ) ) ) ) ) ) ) ) ) ) ^2 <= 1 & ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( TOP-REAL 2 ) ) | D ) | D ) | D ) | D ) | D ) | D ) ) | D ) | D ) | D ) | D ) | D ) | D ) | D ) | D ) ) ) ) ) ) ) assume for d7 being Element of NAT st d7 <= d7 holds s1 . ( ( d - 1 ) / ( d - 1 ) ) = s2 . ( ( d - 1 ) / ( d - 1 ) ) & s2 . ( ( d - 1 ) / ( d - 1 ) ) = s2 . ( ( d - 1 ) / ( d - 1 ) ) ; assume that s <> t and s is Point of Sphere ( x , r ) and s is not Point of Sphere ( x , r ) and ex e being Point of Sphere ( x , r ) st { e } = Sphere ( s , t ) /\ Sphere ( x , r ) & r = t ; given r such that 0 < r and for s st 0 < s holds for s holds 0 < s or ex x1 be Point of CNS st x1 in dom f & ||. f /. x1 - f /. x0 .|| < s & |. f /. x0 - f /. x0 .| < r ; ( p | x ) | ( p | ( ( x | x ) | ( x | x ) ) ) = ( ( ( x | x ) | ( x | x ) ) | p ) | ( ( ( x | x ) | ( x | x ) ) | p ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( ( sec * ( ( 1 / 2 ) * ( 1 + h ) ) ) `| Z ) . x = ( 4 * ( ( 2 * x ) + h ) ) * ( cos . ( ( 1 / 2 ) * ( 1 + h ) ) ^2 ) ; assume that i in dom A and len A > 1 and for i , j st i in dom A & j in dom B & i <> j holds ( A * ( i , j ) ) * ( i , j ) = ( A * ( i , j ) ) * ( i , j ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex *> or i = <* 1. F_Complex *> & for i be Element of NAT st i divides n holds h . i = <* 1. F_Complex *> & h . i = 1. F_Complex & h . i = 1. F_Complex ( ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) ) '&' ( ( a1 'or' b1 ) '&' ( b1 'or' c1 ) ) '&' 'not' ( ( a2 'or' c1 ) '&' ( c1 '&' c2 ) ) ) '&' 'not' ( ( a1 '&' b1 ) '&' ( a2 '&' c1 ) ) '&' 'not' ( ( a1 '&' b1 ) '&' 'not' ( a2 '&' c1 ) ) '&' 'not' ( ( a1 '&' b1 ) '&' 'not' ( a2 '&' c1 ) ) ) ; assume that for x holds f . x = ( ( cot * ( cot ) ) `| Z ) . x and x - h / ( 2 * ( sin . ( f . x ) ) ^2 ) and for x st x in Z holds ( ( ( cot * ( cot ) ) `| Z ) . x = cos . ( x- h / ( 2 * ( sin . x ) ) ^2 ) ; consider R8 , I-8 be Real such that R8 = Integral ( M , Re ( F . n ) ) and I-8 = Integral ( M , Im ( F . n ) ) and Integral ( M , F . n ) = R + ( I * i ) and I = dom ( I * i ) and I = dom ( I * i ) ; ex k be Element of NAT st k0 = k & 0 < d & for q be Element of product G st q in X & ||. qLet ( f , q ) - partdiff ( f , x , k ) .|| < r holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 } iff x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } \/ { x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 7 } G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . o ) .= ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( the Arity of S1 ) . ( ( ( the Arity of S1 ) . ( ( the func tree ( T , P , T1 ) -> DecoratedTree means : : : : q in T iff q in T & for p , r st p in P holds p ^ r in T & r in T1 & p ^ r in T & p ^ r in T1 or p ^ r in T1 & r ^ r in T1 ; F /. ( k + 1 ) = F . ( k + 1 ) .= F{} ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F{} ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= F{} ( p . k , k + 1 -' 1 ) .= F{} ( p . k , k + 1 -' 1 ) ; for A , B , C being Matrix of K st len B = len C & len B = width C & len B = width A & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 holds A * ( B * A ) = A * B- B * ( B * A ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of Cy ) /\ ( the carrier of Cy ) and y in ( the carrier of Cy ) /\ ( the carrier of Cy ) and [ x , y ] in [: the carrier of Cy , the carrier of Cy :] and [ x , y ] in [: the carrier of Cy , the carrier of Cy :] ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) & ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) ; assume that cn < 1 and q `1 > 0 and ( q `2 / |. q .| - cn ) / ( 1 + cn ) and p = ( cn ) / ( 1 + cn ) and q = ( cn ) / ( 1 + cn ) and q = ( cn ) / ( 1 + cn ) and q = ( cn ) / ( 1 + cn ) and q = ( cn ) / ( 1 + cn ) ; for M being non empty TopSpace , x being Point of M , f being Point of M st x = x ` holds ex x being Point of M st for n being Element of NAT holds f . n = Ball ( x , 1 / ( n + 1 ) ) & f . x = Ball ( x , 1 / ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds ( ( f1 - f2 ) `| Z ) . x = f1 . x - f2 . x / ( ( f1 . x ) ^2 ) & ( ( f1 - f2 ) `| Z ) . x = ( f1 . x - f2 . x ) / ( ( f1 . x ) ^2 ) ; defpred P1 [ Nat , Point of CNS ] means $1 in Y & ||. ( f . $1 ) - ( f . $1 ) .|| < r / ( 1 + ( 1 + $1 ) ) & ||. ( f . $1 ) - ( f . $1 ) .|| < r / ( 1 + ( 1 + $1 ) ) ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . i .= g . ( i - len f + 1 ) .= g . ( i - len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) ; ( 1 / ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * n0 ) = ( ( 1 / ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * n0 ) .= ( 1 / ( 2 * n0 + 1 ) ) * ( 2 * n0 + 1 ) .= ( 1 / ( 2 * n0 + 1 ) ) * ( 2 * n0 ) ; defpred P [ Nat ] means for G being non empty strict non empty finite RelStr st G is as as non empty RelStr & card the carrier of G = $1 & the carrier of G in the carrier of G & the carrier of G in the carrier of G & the carrier of G in the carrier of G & the carrier of G in the carrier of G ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m & m <= len f and for i st 1 <= i & i <= len f & LSeg ( f , i ) /\ Ball ( u , r ) <> {} & not f /. i in Ball ( u , r ) holds f /. i in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos * ( ( ]. - r , r .[ ) * ( ( #Z n ) * ( x , r ) ) ) ) . ( 2 * $1 ) = ( Partial_Sums ( cos * ( ( #Z n ) * ( x , r ) ) ) ) . ( 2 * $1 ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & for i being set st i in dom F holds x . i in ( ( the carrier of F ) * ( i , x ) ) & for i be set st i in dom F holds x . i in ( ( the carrier of F ) * ( i , x ) ) ( x " ) |^ ( n + 1 ) = ( ( x " ) * x ) * x " .= ( ( x * x ) |^ n ) * ( x |^ ( n + 1 ) ) .= ( ( x * x ) |^ n ) * ( x |^ ( n + 1 ) ) .= ( ( x * x ) |^ n ) * ( x |^ ( n + 1 ) ) .= ( ( x |^ ( n + 1 ) ) |^ ( n + 1 ) ) ; DataPart Comput ( P +* ( ( intloc 0 ) .--> 1 ) , Initialized s ) = DataPart Comput ( P +* I , ( ( intloc 0 ) .--> 1 ) , ( ( intloc 0 ) .--> 1 ) +* I , Initialized s ) , ( ( Initialized s ) +* I ) , ( ( ( Initialized s ) +* I ) +* I ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= ( dom f1 /\ dom f2 ) & for g st g in ]. x0 , x0 + r .[ /\ dom ( f2 | ]. x0 , x0 + r .[ ) holds f1 . g <= f . g & f2 . g <= f . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( for r st r in X /\ dom f2 holds f1 . r = r * ( r - ( 1 / 2 ) ) & ( f1 | X is continuous & f2 | X is continuous ) & ( f1 | X is continuous implies f2 | X is continuous ) ; for L being continuous complete LATTICE st for l being Element of L st l = sup X ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is an & for l being Element of L st l in X holds l is prime & l is compact & l is compact holds l is compact Support ( e *' p ) in { Support ( m *' p ) where m is Polynomial of n , L : ex i being Element of NAT st i in Support ( m *' p ) & ( p *' q ) . i = p . i & ( p *' q ) . i = p . i & ( p *' q ) . i = p . i ; ( f1 - f2 ) /. ( lim s1 ) = lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) .= lim ( ( f1 /* s1 ) - ( f2 /* s1 ) ) ; ex p1 being Element of CQC-WFF ( Al ) st F . p1 = g `2 & for g being Function of [ p , ( len p1 ) qua Nat , p1 ] st P [ g , p1 , ( len p1 ) qua Nat ] & p1 = g & p1 = f . ( len p1 ) holds p1 = p2 ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , j , len f -' 1 ) ) /. j ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( ( p ^ q ) . ( len p + k ) ) . ( len p + k ) .= ( p ^ q ) . k ; len mid ( upper_volume ( f , D2 ) , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j1 ) ) = indx ( D2 , D1 , j1 ) - ( indx ( D2 , D1 , j1 ) + 1 ) .= indx ( D2 , D1 , j1 ) - ( indx ( D2 , D1 , j1 ) + 1 ) ; x * y * z = ( x * y ) * ( y * z ) .= ( x * y ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) .= ( x * ( y * z ) ) * ( y * z ) ; v . <* x , y *> + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - y ) ) * ( ( y - x0 ) * ( ( y - x0 ) + ( ( y - x0 ) * ( ( y - x0 ) ) * ( ( y - x0 ) ) ) ) + ( proj ( 1 , 1 ) * ( ( y - x0 ) + ( y - x0 ) * ( ( y - x0 ) ) ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 , 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 * 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( Sum ( L (#) F2 ) ) + Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) ( L (#) F2 ) .= Sum ( L (#) ( Sum ( L (#) F2 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( ex r be Real st for e be Real st 0 < e ex Y be finite Subset of X st Y is non empty & Y c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( ( the carrier of X ) + Y ) . Y1 - ( ( the carrier of X ) + Y ) . Y1 .| < r ; ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) ; ( ( - cos ) . x ) ^2 = ( ( r ^2 - 1 ) * ( ( r / ( 2 * r ) ) ^2 ) ) ^2 .= ( ( r ^2 - 1 ) ) ^2 * ( ( r / ( 2 * r ) ) ^2 ) .= ( ( r ^2 - 1 ) ) ^2 .= ( ( r ^2 - 1 ) ) ^2 ; ( - b + sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) < 0 & ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) / ( 2 * a ) < 0 or ( - b - sqrt ( delta ( a , b , c ) ) / ( 2 * a ) ) / ( 2 * a ) > 0 ; assume that ex_inf_of uparrow "\/" ( X , L ) , L and ex_sup_of X , L and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) and "\/" ( X , L ) = "/\" ( ( uparrow "\/" ( X , L ) ) , L ) and not "\/" ( X , L ) in C ; ( ( ( the Sorts of O ) . i ) . ( j , i ) = ( j = i |-- ( ( i , j ) ) ** id ( ( the Sorts of B ) . i ) ) ) & ( j = i |-- ( ( i , j ) ) ** id ( ( ( the Sorts of B ) . i ) , ( i , j ) ) ) = ( j , j ) ** id ( ( ( the Sorts of B ) . i ) ) ;