thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c in X ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is rng ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is z ; not x in Y ; z = +infty ; k be Nat ; K ` is being_line ; assume n >= N ; assume n >= N ; assume X is + 1 ; assume x in I ; q is as Nat ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k} ; assume m <= i ; assume G is rng ; assume a divides b ; assume P is closed ; b-a > 0 ; assume q in A ; W is not bounded ; f is Assume assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be DecoratedTree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - -2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , f be Function of E , E ; let C be category ; let x be element ; k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is , iff n1 is , n1 , n2 + 1 is_collinear Q halts_on s ; x in that x in that x in that x in that x in that x in that x in that x in that x in M < m + 1 ; T2 is open ; z in b < a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PM is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , b be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 , r ; let E be Ordinal ; o on o2 ; O <> O2 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be strict Subspace of V ; not s in Y |^ 0 ; rng f is_<=_than w b "/\" e = b ; m = m3 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , W be Subspace of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i `1 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aA2 <= non [ k ] ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial non empty ; dom c = Q P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , f be Function of T , S ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vbeing < n ; S\HM is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U0 , A , B ; pp `1 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \mathbin { x } ; 1 <= jj & jj <= len f ; set A = thesis ; card a [= c ; e in rng f ; cluster B ++ A -> empty ; H has no for f ; assume n0 <= m ; T is increasing ; e2 <> e2 & e2 <> e1 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected implies union M is connected assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= C-26 ; mm <> {} & mm <> {} ; let x be Element of Y ; let f be ) Chain , g be Chain of G ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v in v in dom that x in dom G ; - y in I ; let A be non empty set , f be Function of A , REAL ; Px0 = 1 ; assume r in F . k ; assume f is simple ; let A be w countable set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of squares ; assume not v in { 1 } ; let IB , IB ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; \bf da in dom f ; assume t . 1 in A ; let Y be non empty TopSpace , f be Function of Y , X ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in Omega ( f ) ; [ a , c ] in X ; mm <> {} & mm <> {} ; M + N c= M + M ; assume M is r1 hh) ; assume f is let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 or k1 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= len G ; f | A is continuous ; f . x - a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in sup phi ; Cf in X ; q2 c= C1 & q2 c= C2 ; a2 < c2 & a2 < c1 ; s2 is 0 -started ; IC s = 0 & IC s = 0 ; s4 = s4 , P4 = P3 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T `1 ; let S be as as as of L ; y " <> 0 ; y " <> 0 ; 0. V = u-w ; y2 , y , w is_collinear ; R8 in X ; let a , b be Real , f be Function of REAL , REAL ; let a be Object of C ; let x be Vertex of G ; let o be object of C , m be Morphism of C ; r '&' q = P \lbrack l .] ; let i , j be Nat ; let s be State of A , v be Element of V ; s4 . n = N ; set y = x `1 , z = y `2 ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; V-19 is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in NffffF ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng g c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense & A is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be Object of B ; let A , B be category ; set X = Vars C , Y = Vars C ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x9 c= Z1 & x9 c= Z1 ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent & lim Im ( seq ) = 0 ; assume a1 = b1 & a2 = b2 ; A = sInt A & B = sInt B ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction of S , I be Instruction of S ; assume that r2 > x0 and x0 < r2 ; let Y be non empty set , f be Function of Y , Z ; 2 * x in dom W ; m in dom g2 & m + 1 in dom g2 ; n in dom g1 /\ dom g2 ; k + 1 in dom f ; the still of s in { s } ; assume x1 <> x2 & x1 <> x3 ; v3 in Vx0 & v3 in Vx0 ; not [ b `1 , b `2 ] in T ; ( i + 1 ) + 1 = i ; T c= non empty TopSpace & T c= T ; l `1 = 0 & l `2 = 0 ; let n be Nat ; t `2 = r `2 & t `2 = s `2 ; Ab is_integrable_on M & Ab is_integrable_on M ; set t = Top t ; let A , B be real-membered set ; k <= len G + 1 ; C ( ) misses V ( ) ; product ( s ) is non empty ; e <= f or f <= e ; cluster non empty normal for Ordinal ; assume that c2 = b2 and c1 = c2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that vseq is convergent and lim vseq = 0 ; IC s3 = 0 & IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F \/ F2 ; Int G1 <> {} & Int G2 <> {} ; z `2 = 0 & z `2 = 0 ; p11 <> p1 or p11 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; let T be up-complete non empty reflexive transitive antisymmetric RelStr ; q |^ m >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one ; A \/ { a } \not c= B ; 0. V = 0. Y ; let I be f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT & n + l2 in NAT ; f " P is compact & f " P is compact ; assume x1 in REAL & x2 in REAL ; p1 = ( K + L ) ; M . k = <*> REAL ; phi . 0 in rng phi ; OSM^ A is closed assume z0 <> 0. L & z0 <> 0. L ; n < ( N . k ) ; 0 <= seq . 0 & seq . 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; R ( ) is stable set of R ; set cR = Vertices R ; px0 c= P3 & px0 c= P3 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; \HM { a } = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r , t ) ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x-y - x .|| <= r ; assume that Y c= field Q and Y <> {} ; a ~ , b ~ are_isomorphic ; assume a in A ( i ) ; k in dom ( q | k ) ; p is FinSequence of S ; i -' 1 = i-1 - 1 ; f | A is one-to-one ; assume x in f .: X ( ) ; i2 - i1 = 0 & i2 - i1 = 0 ; j2 + 1 <= i2 & j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for for for \HM { of X } ; |. q .| ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C & E-max C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom J = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + j ; dom S = dom F /\ dom G ; let s be Element of NAT , k be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void non void holds S is - void topological structure ; let f be ManySortedSet of I ; let z be Element of COMPLEX , v be Element of COMPLEX ; u in { ag } ; 2 * n < ( 2 * n ) ; let x , y be set ; B-11 c= V-15 \/ { x } ; assume I is_closed_on s , P & I is_halting_on s , P ; UA = [: U2 , U2 :] ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; ( f . x ) `1 <= ( f . y ) `1 ; let l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT , f be Function ; seq1 is COMPLEX -valued & seq2 is COMPLEX -valued ; assume <* o2 , o *> <> {} ; s . x to_power 0 = 1 ; card K1 in M & card K1 in M ; assume that X in U and Y in U ; let D be thesis in set r = Seg ( k + 1 ) ; y = W . ( 2 * x ) ; assume that dom g = cod f and cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x ++ A is interval ; |. <*> A .| . a = 0 ; cluster strict for SubLattice of L ; a1 in B . s1 & a2 in B . s2 ; let V be finite implies V is non empty A * B on B & B on B ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j .= P1 . j ; assume f " P is closed & f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = INT |^ X ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f & { x0 } c= dom g ; let B be non-empty ManySortedSet of I , f be Function of B , B ; PI / 2 < Arg z ; reconsider z9 = 0 , z9 = 1 as Nat ; LIN a , d , c & LIN a , d , c ; [ y , x ] in If ; Q * ( 3 , 3 ) = 0 ; set j = x0 gcd m , m = x0 gcd m ; assume a in { x , y , c } ; j2 - jj > 0 & j2 - jj > 0 ; I . phi = 1 & I . phi = 2 ; [ y , d ] in F-8 ; let f be Function of X , Y ; set A2 = ( B - C ) / 2 ; s1 , s2 are_card ( X ) ; j1 -' 1 = 0 & j2 -' 1 = 1 ; set m2 = 2 * n + j ; reconsider t = t `1 as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | D-21 ; assume that X is lower and 0 <= r ; p1 `1 = 1 or p1 `2 = - 1 ; a < p3 `1 & p3 `1 < b ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 & i1 + 1 <= len G ; 1 <= i1 -' 1 & i1 + 1 <= len G ; i + i2 <= len h ; x = W-min ( P ) or x = E-max ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 & len <* A2 *> = 1 ; set H = h . gg ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 (*) h1 ; assume x in X3 /\ ( X3 \/ { x1 } ) ; ||. h .|| < d1 & ||. h .|| < d1 ; not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k -' l = kbeing - kl ; <* p , q *> /. 2 = q ; let S be Subset of the carrier of Y ; let P , Q be + T ; Q /\ M c= union ( F | M ) f = b * ( canFS S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr , x , y be Element of L ; S-20 is_be x -8 i -basis ; let r be non positive Real ; M , v |= x \hbox { y } ; v + w = 0. ( Z , p ) ; P [ len F ( ) ] ; assume that InsCode ( i ) = 8 and InsCode ( i ) = 8 ; the zero of M = 0 & the zero of M = 0 ; cluster z * seq -> summable ; let O be Subset of the carrier of C ; ||. f .|| | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> that for Element of ( AllSymbolsOf S ) ; reconsider l1 = l-1 as Nat ; v4 is Vertex of r2 & v4 is Vertex of G ; T2 is SubSpace of T2 & T2 is SubSpace of T2 ; Q1 /\ Q19 <> {} & Q1 /\ Q1 <> {} ; k be Nat ; q " is Element of X & q " is Element of Y ; F . t is set of of of non zero set ; assume that n <> 0 and n <> 1 ; set en = EmptyBag n , en = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root & y is root implies x * y is root not r in ]. p , q .[ ; let R be FinSequence of REAL , a be Element of REAL ; ( not S does not contradiction ) & not S is not empty ; IC SCM R <> a & IC SCM R <> a ; |. p - |[ x , y ]| .| >= r ; 1 * seq = seq & 1 * seq = seq ; let x be FinSequence of NAT , k be Nat ; let f be Function of C , D , g be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= IC s1 ; H + G = Felement ( G-GG ) ; Cs1 . x = x2 & Cs2 . x = y2 ; f1 = f .= f2 .= f1 + f2 ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a3 , a4 ; If is_reflexive implies f is_reflexive & g is_reflexive IB is antisymmetric & IB is antisymmetric implies IB is antisymmetric sup rng H1 = e & sup rng H1 = e ; x = ( a * ( - 1 ) ) * ( - 1 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < 1 & j2 -' 1 < len G ; rng s c= dom f1 /\ dom f2 ; assume that support a misses support b and support b misses support b ; let L be associative well-unital non empty doubleLoopStr , p be Polynomial of L ; s " + 0 < n + 1 ; p . c = ( f " ) . 1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 , I2 ) = I1 +* Directed ( I2 , 1 ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster -> non empty for NAT -defined Function ; let X be non empty directed Subset of S ; let S be non empty full SubRelStr of L ; cluster <* [ ] , N . N *> -> complete non trivial ; ( 1 - a " ) * a = a ; ( q . {} ) `1 = o ; ( n - 1 ) > 0 ; assume 1 / 2 <= t `1 & t `2 <= 1 ; card B = k + 1-1 ; x in union rng ( f | k ) ; assume x in the carrier of R & y in the carrier of R ; d in dom f ; f . 1 = L . ( F . 1 ) ; the vertices of G = { v } & not v in { x } ; let G be Q be \rm : ] ; e , v9 , x , y be set ; c . ( i9 - 1 ) in rng c ; f2 /* q is divergent_to-infty & f2 /* q is divergent_to-infty ; set z1 = - z2 , z2 = - z1 ; assume w is_llas of S , G ; set f = p |-count t , g = p |-count t , h = p |-count t , p = p |-count t , n = p |-count t , m = p |-count t , n = p |-count t let c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m , y be Element of REAL m ; let IB be Subset-Family of X , IB be Subset-Family of X ; reconsider p = p as Element of NAT ; let v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of SCM+FSA , k be Nat ; stop I ( ) c= P-12 & stop I ( ) c= Pc ; set ci = fci /. i ; w ^ t ^ s ^ t ^ s ^ t ^ t ^ t ^ s ^ t ^ t ^ t ^ t ^ t ^ t ^ t ^ t ^ t ^ t ^ t ^ t ^ W1 /\ W = W1 /\ W ` ; f . j is Element of J . j ; let x , y be Subset of T2 , a be Real ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ord x = 1 & x is positive implies x is positive set g2 = lim ( seq ) , g1 = lim ( seq ) ; 2 * x >= 2 * 1 / 2 ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( FY . k ) = 0 ; / ( X \/ R1 ) = h / ( X \/ R1 ) ; ( ( sin - cos ) `| Z ) . x <> 0 ; ( ( #Z 2 ) * ( f1 + f2 ) ) . x > 0 ; o1 in X-5 /\ ( XO2 /\ O2 ) ; e , v9 , x , y be set ; r3 > ( 1 / 2 ) * 0 ; x in P .: ( F -ideal of L ) ; let J be closed Ideal of R , left ideal non empty Subset of R ; h . p1 = f2 . O & h . p2 = g2 . I ; Index ( p , f ) + 1 <= j ; len ( q | i ) = width M ; the carrier of CK c= A ; dom f c= union rng F-10 & rng F-10 c= union rng F-10 ; k + 1 in ( support n ) \/ ( support n ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in ( ( \HM { x } ) \/ ( the carrier of R ) ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x1 = g . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Real_Sequence ; 1 / ( m * m + r ) < p ; dom f = dom IK1 & dom g = dom IK1 ; [#] ( P-17 ) = [#] ( ( TOP-REAL 2 ) | K1 ) ; cluster - x -> ExtReal & x <= - y ; then { da } c= A & A is closed ; cluster TOP-REAL n -> finite-ind for Subset of TOP-REAL n ; let w1 be Element of M , w2 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 implies u + v in W3 reconsider y = y , z = z as Element of L2 ; N is full SubRelStr of ( T |^ the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X , x be Element of X ; dist ( x `1 , y ) < r / 2 ; reconsider mm = m - 1 as Element of NAT ; x0 - r < r1 - x0 & r1 < r2 - x0 ; reconsider P ` = P ` as strict Subgroup of N ; set g1 = p * ( idseq q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I8 + 1 ) in { x } ; cluster -> subcondensed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; Gij in LSeg ( cos , 1 ) /\ LSeg ( Gik , Gij ) ; let n be Element of NAT , x be Element of X ; reconsider SS = S , SS = T as Subset of T ; dom ( i .--> X ` ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 ) c= { [ {} , {} ] } ; reconsider m = mm as Element of NAT ; reconsider d = x `2 as Element of C ( ) ; let s be 0 -started State of SCMPDS , k be Nat ; let t be 0 -started State of SCMPDS , Q ; b , b , b , x , y is_collinear ; assume that i = n \/ { n } and j = k \/ { k } ; let f be PartFunc of X , Y ; N2 >= ( sqrt c / sqrt 2 ) / 2 ; reconsider [: T , T :] = [: T , T :] as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y2 ) /\ Q . ( y2 ) ; A |^ 0 = { <%> E } & A |^ 1 = A ; len W2 = len W + 2 & len W + 1 = len W ; len h2 in dom h2 & len h2 = len h2 ; i + 1 in Seg len s2 & i + 1 in dom s2 ; z in dom g1 /\ dom f & z in dom g1 ; assume that p2 = E-max ( K ) and p1 `2 >= 0 ; len G + 1 <= i1 + 1 ; f1 (#) f2 is_differentiable_in x0 & f1 (#) ( f2 (#) f1 ) is_differentiable_in x0 ; cluster s-10 + sp -> summable for Real_Sequence ; assume j in dom M1 & i <= len M2 ; let A , B , C be Subset of X ; let x , y , z be Point of X , p be Point of X ; b ^2 - ( 4 * a * c ) >= 0 ; <* x/y *> ^ <* y *> ^ <* y *> ^ <* x *> ^ <* y *> ; a , b in { a , b } ; len p2 is Element of NAT & len p1 = len p2 ; ex x being element st x in dom R & y = R . x ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s , P1 = P +* I ; consider w being Nat such that q = z + w ; x ` is Element of L & x ` is Element of L ; k = 0 & n <> k or k > n ; then X is discrete for A is closed Subset of X ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 & ||. f /. c .|| <= r2 ; c in uparrow p & not c in { p } ; reconsider V = V as Subset of the topology of TOP-REAL n ; let N , M be being being being being being being being 0 Element of L ; then z is_>=_than waybelow x & z is_>=_than compactbelow x ; M \lbrack f , f .] = f & M \lbrack g , f .] = g ; ( ( >= 1 ) to_power ( 1 + 1 ) ) = TRUE ; dom g = dom f .: X .= dom f ; mode ) Walk of G is ^ Assume W is * * -valued ; [ i , j ] in Indices ( M @ ) ; reconsider s = x " , t = y " as Element of H ; let f be Element of dom ( Subformulae p ) ; F1 . ( a1 , - a1 ) = G1 . ( a1 , - a1 ) ; redefine func being Real equals LSeg ( a , b , r ) ; let a , b , c , d be Real ; rng s c= dom ( 1 / 2 ) ; curry ( ( F . -19 ) . k ) is additive ; set k2 = card dom B , k2 = card dom C , k1 = card D , k2 = card C ; set G = ( X ) --> NAT ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of Mf , c be Element of Mf ; reconsider s1 = s , s2 = t as Element of ( the carrier of S ) ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the bound of A ; ( x .|. x = 0 iff x = 0. W ) I-21 in dom stop I & Ik = stop I ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i0 = len p1 , i2 = len p2 as Integer ; dom f = the carrier of S & rng g c= the carrier of S ; rng h c= union ( ( Carrier J ) . i ) ; cluster All ( x , H ) -> carrier of and x in Carrier p ; d * N1 ^2 > N1 * 1 / 2 ; ]. a , b .[ c= [. a , b .] ; set g = f " | D1 , h = f " | D2 ; dom ( p | mm1 ) = mm1 ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in ( arccot - arccot ) . x & tan . x > 0 ; x in rng ( f /^ n ) /\ rng ( f /^ n ) ; let f , g be FinSequence of D ; p ( ) in the carrier of S1 & p ( ) in the carrier of S1 ; rng f " = dom f & rng f = rng g ; ( the Target of G ) . e = v & ( the Target of G ) . e = v ; width G -' 1 < width G -' 1 + 1 ; assume v in rng ( S | E1 ) /\ rng ( S | E1 ) ; assume x is root or x is root or x is root ; assume that 0 in rng ( g2 | A ) and 0 < r ; let q be Point of TOP-REAL 2 , r be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , r be Real ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* SS *> is_the carrier of C-20 & <* N *> is_<* the carrier of C *> ; i <= len Ga -' 1 & j + 1 <= width Ga -' 1 ; let p be Point of TOP-REAL 2 , r be Real ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < r } ; Q2 = SL " Q .= SL " Q ; ( ( 1 / 2 ) to_power ( 1 / 2 ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 + 1 ; CurInstr ( p1 , s1 ) = i .= halt SCM+FSA ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , g be Function of L1 , L2 ; reconsider z = z , t = t as Element of CompactSublatt L ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , [: A , B :] :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 3 ; let C1 , C2 be subFunctor of C , D ; reconsider V1 = V , V2 = V as Subset of X | B ; attr p is valid means : Def3 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g and X c= dom f ; H |^ ( a " ) is Subgroup of H & H |^ a is Subgroup of H ; let A1 be $1 ) & A1 on E1 & A2 on E1 ; p2 , r3 , q2 is_collinear & q2 , r2 , q3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } & not x in { 0. TOP-REAL 2 } ; p in [#] ( ( I[01] | B11 ) | B11 ) ; 0 in M . ( E . n ) ; op ( c ) , op ( c ) are_isomorphic ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) /\ dom ( F . s2 ) ; cluster -> Nat for w w of L ; set i1 = the Nat , i2 = the carrier of S ; let s be 0 -started State of SCM+FSA , I be Program of SCM+FSA ; assume y in ( f1 union f2 ) .: A ; f . len f = f /. len f .= p ; x , f . x '||' f . x , f . y ; pred X c= Y means : Def3 : cos | X c= cos | Y ; let y be upper Subset of Y , x be Element of X ; cluster -> -> as as Element of >= + i + 1 ; set S = <* Bags n , ( Bags n ) , ( Bags n ) *> ; set T = [. 0 , 1 / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; ( 4 * PI ) / 4 < ( 2 * PI ) / 4 ; x2 in dom f1 /\ dom f & x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v & ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z , t be Element of G opp ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 & p `2 = p2 `2 or p `2 = p2 `2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> @ = len P & len <* P *> = 1 ; set N-26 = the non empty Subset of N ; len gLet gLet + ( x + 1 ) - 1 <= x ; a on B & b on B & not a on B ; reconsider r-12 = r * I . v as FinSequence of REAL ; consider d such that x = d and a [= d ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len |^ n ; set q2 = N-min L~ Cage ( C , n ) ; set S = len S1 , T = len S2 , S = len S1 , T = len S2 ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 & Cl ( G . q2 ) c= F . r2 ; f " D meets h " V & f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of ( the carrier of S ) * ; rng f c= the carrier of S2 & rng g c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 & f1 . ( b1 , b2 ) = b2 ; the carrier' of G ` = E \/ { E } ; reconsider m = len thesis - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) , S2 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 & [ i , j ] in Indices M1 ; assume that P c= Seg m and M is \HM { an } ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; p-7 . i = pp1 . i .= pp1 . i ; let PA , G be a_partition of Y , z be Element of Y ; pred 0 < r & r < 1 implies 1 < 1 / r ; rng ( g1 . a , X ) = [#] X .= X ; reconsider x = x , y = y , z = z as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS s ) = card s .= card ( rng s ) ; reconsider x2 = x1 , y2 = x2 as Element of L2 ; Q in FinMeetCl ( the topology of X ) & Q c= the topology of X ; dom fx0 c= dom ( u + v ) & dom fx0 = dom u ; pred n divides m means : Def2 : m divides n & n = m ; reconsider x = x , y = y as Point of [: I[01] , I[01] :] ; a in ; not y0 in the carrier of f & not y0 in the carrier of f ; Hom ( ( a [: b , c :] , c ) , ( a , b ) ) <> {} ; consider k1 such that p " < k1 and k1 < len f ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = a1 +* ( y , z ) , S2 = a2 +* ( z , x ) ; l2 = m2 & l1 = i2 & l2 = j2 implies l1 = i2 x0 in dom ( u01 ) /\ ( dom ( h + c ) ) ; reconsider p = x , q = y as Point of TOP-REAL 2 ; I[01] = R^1 | B01 .= ( TOP-REAL 2 ) | B01 ; f . p4 <= f . f . p1 , f . p2 , P ; ( F `1 ) ^2 <= ( x `1 ) ^2 + ( x `2 ) ^2 ; x `2 = ( W . ( len W ) ) `2 .= ( W . ( len W ) ) `2 ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] and P [ succ a ] & P [ succ a ] ; reconsider s, s, snon = s, snon empty where of D ; ( k - 1 ) <= len thesis - j ; [#] S c= [#] the TopStruct of T & [#] S c= [#] T ; for V being strict RealUnitarySpace holds V in and V in the carrier of W assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; let A , B be square Matrix of n1 , K ; - a * - b = a * b - a ; for A being Subset of AS holds A // A implies A // C ( for o2 being Element of A st o2 in dom o2 holds o2 . o2 = <* o2 , o2 *> ) implies o1 = o2 then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G , a be Element of G ; j >= len ( upper_volume ( g , D1 ) ) + len ( upper_volume ( g , D1 ) ) ; b = Q . ( len Qk - 1 ) ; f2 (#) f1 /* s is divergent_to-infty & lim ( f2 (#) f1 ) = 0 ; reconsider h = f * g as Function of N2 , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T . n ) * ; {} = the carrier of L1 + L2 & {} = the carrier of L1 + L2 ; Directed I is_closed_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized p = Initialize ( p +* q ) , p = p +* q ; reconsider N2 = N1 , N2 = N2 as strict net of R2 ; reconsider Y ` = Y as Element of <* Ids L , \subseteq \rangle ; "/\" ( ( uparrow p ) \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the carrier of S2 & not [ s , 0 ] in the carrier of S2 ; mm in ( B '/\' C ) '/\' D \ { {} } ; n <= len ( ( P + Q ) ^ <* n *> ) ; x1 `1 = x2 `1 & x1 `2 = x3 `2 or x1 `2 = x4 `2 ; InputVertices S = { x1 , x2 } & InputVertices S = { x1 , x2 } ; let x , y be Element of FTT1 ( n ) ; p = |[ p `1 , p `2 ]| & p `2 = |[ p `2 , p `2 ]| ; g * 1_ G = h " * g * h .= h " * g ; let p , q be Element of is Element of PFuncs ( V , C ) ; x0 in dom x1 /\ dom x2 & x0 in dom x1 /\ dom x2 ; ( R qua Function ) " = R " & ( R " ) " = R " ; n in Seg len ( f /^ k ) & n in dom ( f /^ k ) ; for s being Real st s in R holds s <= s2 implies s <= s2 rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for for for for for for for for for for for for for Seg n ; 1_ K * 1. ( K , n ) = 1_ K * 1. ( K , n ) ; set S = Segm ( A , P1 , Q1 ) , T = Segm ( A , P1 , Q1 ) ; ex w st e = ( w - f ) / 2 & w in F ; curry ( ( P+* ( i , k ) ) # x ) is convergent ; cluster open -> open for Subset of ( T | \sigma ) ; len f1 = 1 .= len f3 + 1 .= len f3 + 1 .= len f3 + 1 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub U0 ; b1 , c1 // b9 , c9 & o , c1 // o , c ; consider p be element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume that IC Comput ( F , s , k ) = n and F . IC Comput ( F , s , k ) = 0 ; Reloc ( J , card I ) does not ` not h " ; ( goto ( card I + 1 ) ) does not ` not h ; set m3 = LifeSpan ( p3 , s3 ) , m3 = LifeSpan ( p3 , s3 ) ; IC SCMPDS in dom Initialize p & IC SCMPDS in dom Initialize p ; dom t = the carrier of SCM R & dom t = the carrier of SCM R ; ( E-max L~ f ) .. f = 1 & ( E-max L~ f ) .. f = 1 ; let a , b be Element of thesis of thesis , f , g be Element of V ; Cl ( union Int F ) c= Cl Int Cl ( union F ) ; the carrier of X1 union X2 misses ( ( the carrier of X1 ) \/ the carrier of X2 ) ; assume not LIN a , f . a , g . a , f . b ; consider i being Element of M such that i = d6 and i in M ; then Y c= { x } or Y = {} or Y = { x } ; M , v / ( y , x ) |= H1 / ( y , x ) ; consider m being element such that m in Intersect ( Fx0 ) and m in Y ; reconsider A1 = support u1 , A2 = support u2 as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a5 ; cluster s -\mathop { t } -> string of S ; LW2 /. n2 = LW2 . n2 .= LW2 /. n2 .= LW2 /. n2 ; let P be compact non empty Subset of TOP-REAL 2 , p1 , p2 be Point of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and rp2 in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume that [ k , m ] in Indices DD1 and k + 1 <= len DD1 ; 0 <= ( ( 1 / 2 ) to_power p ) . ( p / 2 ) ; ( F . N ) | E8 . x = +infty ; pred X c= Y & Z c= V implies X \ V c= Y \ Z ; y `2 * ( z `2 ) * ( y `2 ) * ( z `2 ) <> 0. I ; 1 + card X-18 <= card u + card X-18 ; set g = z \circlearrowleft E-max L~ z , 2 = ( E-max L~ z ) .. z ; then k = 1 & p . k = <* x , y *> . k ; cluster total for Element of C -carrier ( X ) ; reconsider B = A as non empty Subset of TOP-REAL n , a be Real ; let a , b , c be Function of Y , BOOLEAN , p be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 ) c= P ; n <= indx ( D2 , D1 , j1 ) + 1 - 1 ; ( ( g2 ) . O ) `1 = - 1 & ( ( g2 ) . I ) `2 = 1 ; j + p .. f - len f <= len f - len f ; set W = W-bound C , S = E-bound C ; S1 . ( a `1 , e `2 ) = a + e `2 .= a `2 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( i (#) Im f ) = dom Im f /\ dom Im f ; ( \mathbb x ) `2 = W . ( a , *' ( a , p ) ) ; set Q = non empty set , g = ( \models g , f , h ) ; cluster -> MS} for ManySortedSet of U1 * ( MS' A ) ; attr F = { A } means : Def3 : F is discrete ; reconsider z9 = \hbox { z } as Element of product \overline G ; rng f c= rng f1 \/ rng f2 & rng f1 c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & g = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 , H ) implies E , j |= H reconsider n1 = n , n2 = m , n1 = n as Morphism of o1 , o2 ; assume P is idempotent & R is idempotent & P ** R = R ** P ; card ( B2 \/ { x } ) = k-1 + 1 ; card ( ( x \ B1 ) /\ ( x \ B2 ) ) = 0 ; g + R in { s : g-r < s & s < g + r } ; set q-112 = ( q , <* s *> ) -\subseteq ( q , <* s *> ) -\subseteq ; for x being element st x in X holds x in rng f1 implies x in X h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , ( } , 1 ) --> 0 ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f , Y = rng f as Element of Fin NAT ; IncAddr ( i , k ) = <% l , k %> + k ; ( for q being Point of TOP-REAL 2 st q in L~ f holds q `2 <= ( q `2 ) * ( 1 + 1 ) `2 ) implies q `2 = ( q `2 ) * ( 1 + 1 ) `2 attr R is condensed means : Def3 : for A being Subset of R st A is condensed holds Cl A is condensed ; pred 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 ; u in ( ( c /\ ( d /\ b ) ) /\ e ) /\ f /\ j ; u in ( ( c /\ ( d /\ e ) ) /\ f ) /\ j ; len C + - 2 >= 9 + - 3 ; x , z , y is_collinear & x , z , x is_collinear implies x = y a |^ ( n1 + 1 ) = a |^ n1 * a .= a |^ n1 * a ; <* \underbrace ( 0 , \dots 0 , 0 *> *> in Line ( x , a * x ) ; set yy1 = <* y , c *> ; FF2 /. 1 in rng Line ( D , 1 ) ; p . m Joins r /. m , r /. ( m + 1 ) , G ; p `2 = ( f /. i1 ) `2 .= ( f /. i1 ) `2 .= ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound ( X \/ Y ) .= W-bound ( X \/ Y ) ; 0 + p `2 <= 2 * r + p `2 + p `2 - p `2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to-infty & ( f1 /* ( seq ^\ k ) ) . n = lim ( f1 /* ( seq ^\ k ) ) ; reconsider u2 = u , v2 = v as VECTOR of P`1 , X ; p |-count ( Product Sgm X11 ) = 0 & p |-count ( Sgm X11 ) = 0 ; len <* x *> < i + 1 & i <= len c + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set ii2 = ( card I + 4 ) .--> goto 0 ; x in { x , y } & h . x = {} ( Tx , y ) ; consider y being Element of F such that y in B and y <= x ` ; len S = len ( the charact of A0 ) & len ( the charact of A0 ) = len the charact of A0 ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set N8 = : G = : G = ( G . e ) `1 ; rng F c= the carrier of gr { a } & F is one-to-one ; Comput ( Q , t , n ) is FinSequence & Q is o implies Q is o \bf f . k , f . ( \mathop { \rm mod n ) ] in rng f ; h " P /\ [#] T1 = f " P /\ [#] T2 .= f " P /\ [#] T1 ; g in dom f2 \ f2 " { 0 } & g in dom f2 \ f2 " { 0 } ; g1X /\ dom f1 = g1 " X /\ dom f1 .= dom g1 ; consider n being element such that n in NAT and Z = G . n ; set d1 = \bf dist ( x1 , y1 ) , d2 = dist ( x2 , y2 ) ; b `2 `2 + 1 / 2 < 1 / 2 + 1 / 2 ; reconsider f1 = f as VECTOR of the carrier of X , Y ; pred i <> 0 means : Def2 : i ^2 mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j2 + 1 in Seg len ( g2 . i2 ) ; dom ( i ) = dom ( i ) .= dom ( i ) .= dom ( i ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 , y1 = x0 , y2 = x0 , y1 = x0 , y2 = x0 ; reconsider R1 = x , R2 = y , R1 = z as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in Rn ; S1 +* S2 = S2 +* ( S1 +* S2 ) .= S2 +* ( S1 +* S2 ) ; ( ( ( 1 / 2 ) (#) ( cos * f1 ) ) `| Z ) = f ; cluster -> continuous for Function of C , REAL , f be Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) , C7 = 1GateCircStr ( <* z , x *> , f3 ) ; Eex e be Element of E8 , T be ( e2 , e ) -carrier of G ; ( ( arctan (#) ln ) `| Z ) = ( ( arctan (#) ln ) `| Z ) ; upper_bound A = PI * 3 / 2 & lower_bound A = 0 ; F . ( dom f , - g ) is_transformable_to F . ( cod f , - g ) ; reconsider pNAT = q`2 , pNAT = q`2 as Point of TOP-REAL 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y0 & g . W in [#] Y0 ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) /\ LSeg ( g , j ) ; rng s c= dom f /\ ]. x0 - r , x0 .[ & rng s c= dom f /\ ]. x0 , x0 + r .[ ; assume x in { idseq 2 , Rev ( idseq 2 ) } ; reconsider n2 = n , m2 = m , m2 = n + 1 as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y implies g <= y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= m1 + m2 .= m1 + m2 .= m1 + m1 + m2 ; assume for n holds H1 . n = G . n -H . n ; set Bf = f .: the carrier of X1 , Bf = f .: the carrier of X2 ; ex d being Element of L st d in D & x << d ; assume that R -Seg ( a ) c= R -Seg ( b ) and R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .[ or t = r or t = s or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- y2 iff P [ x2 , y2 ] & not ( x2 = y2 or x2 = y2 ) ; pred x1 <> x2 means : Def2 : |. x1 - x2 .| > 0 & |. x1 - x2 .| > 0 ; assume that p2 - p1 , p3 - p1 - p3 - p1 , p3 - p1 - p3 is_collinear and p2 - p3 , p3 - p1 - p3 + p1 + p3 - p1 is_collinear ; set q = ( x0 , f ) ^ <* 'not' A *> ; let f be PartFunc of REAL-NS 1 , REAL-NS 1 , g be PartFunc of REAL-NS 1 , REAL-NS 1 , REAL-NS 1 ; ( n mod ( 2 * k ) ) + 1 = n mod k ; dom ( T * ( succ t ) ) = dom ( T * ( succ t ) ) ; consider x being element such that x in wf iff x in c & x in f ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume that the carrier of D1 c= the carrier of D2 and for x being Element of D1 holds x in the carrier of D2 ; reconsider A1 = [. a , b .[ , A2 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = E-max L~ Cage ( C , n ) ; n1 -' len f + 1 <= len ( len ( g | 1 ) ) + 1 ; Seg ( q , O1 ) = [ u , v , a , b , b , c , d ] ; set C-2 = ( ( ( n + 1 ) `1 ) `1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * p .= p ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) & P [ $1 ] ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 , s4 = P1 , P4 = P1 , P4 = P1 , P4 = P2 ; let l be variable of k , A , A1 be Subset of A ; reconsider U2 = union G-24 , GN = union GN as Subset-Family of ( T | A ) ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 , C = the carrier of X2 as Subset of X ; p$ c = <* - vs , 1 , - 1 *> .= <* - vs , - 1 , - 1 *> ; synonym f is real-valued means : Def2 : rng f c= NAT & for x being element st x in NAT holds f . x = f . x ; consider b being element such that b in dom F and a = F . b ; x9 < card X0 + card Y0 & x9 in card Y0 + card Y0 + card Y0 + 1 ; pred X c= B1 means : Def3 : for A st A c= B holds ( X c= succ B1 ) & ( X c= B implies X c= A ) ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x-y , 0 , PI ) ; pred 1 <= len s means : Def3 : for i being Element of NAT st i in dom s holds ( the mapping of s ) . i = s ; fz c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of { 1_ G } = { 1_ G } ; pred p '&' q in \cdot ( p '&' q ) means : Def3 : q '&' p in * ( p '&' q ) ; - ( t `1 ) < ( t `1 ) / 2 & - ( t `2 ) < - ( t `1 ) / 2 ; UA . 1 = U2 /. 1 .= ( W /. 1 ) `1 .= ( W /. 1 ) `1 .= W /. 1 ; f .: the carrier of x = the carrier of x & f .: the carrier of x = the carrier of x ; Indices OO = [: Seg n , Seg n :] & Indices OO = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M @ ; ex f being Element of F-9 st f is_' Aand f . x = F ( f , x ) ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 +* Initialize ( ( intloc 0 ) .--> 1 ) ; |[ w1 , v1 ]| - b <> 0. TOP-REAL 2 & |[ w1 , v1 ]| - b = 0. TOP-REAL 2 ; reconsider t = t as Element of INT * , ( the carrier of X ) * ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) & C /\ A = {} ( GX | A ) ; f " V in the topology of X /\ D . ( the carrier of C , the carrier of C ) ; x in [#] ( ( the carrier of A ) /\ ( the carrier of B ) ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , y , z } & InputVertices S = { xy , y , z } ; for n be Nat st P [ n ] holds P [ n + 1 ] ; set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M3 is being_line and M3 is being_line and M2 is being_line ; reconsider a = f4 . ( i0 -' 1 ) , b = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) .= len ( Len F1 ^ width F2 ) + len ( Len F2 ) ; len ( ( the FinSequence of n ) * ( i , j ) ) = n & len ( ( the FinSequence of n ) * ( i , j ) ) = n ; dom max ( - ( f + g ) , f + g ) = dom ( f + g ) ; ( the + H ) . n = upper_bound Y1 & ( the + H ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom f12 & dom ( p1 ^ p2 ) = dom f12 ; M . [ 1 , y ] = 1 / ( 1 - y ) * v1 .= y ; assume that W is non trivial and W .vertices() c= the carrier' of G2 and not W is Vertex of G2 ; godo /. i1 = G1 * ( i1 , i2 ) & card L~ godo = 1 & card L~ godo = 1 ; C8 |- 'not' Ex ( x , p ) 'or' p . ( x , y ) ; for b st b in rng g holds lower_bound rng f\lbrace b , b } <= b - ( ( q1 `1 / |. q1 .| - sn ) / ( 1 + sn ) ) = 1 ; ( LSeg ( c , m ) \/ [: l , k :] ) \/ [: l , k :] c= R ; consider p be element such that p in x and p in L~ f and p in L~ f ; Indices ( X @ ) = [: Seg n , Seg 1 :] & Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster s => ( q => p ) => ( q => ( s => p ) ) -> valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E & Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D * ; consider g being Function such that g = F . t and Q [ t , g ] ; p in LSeg ( N-min Z , \mathop { \rm \hbox { - } corner Z } , p1 ) /\ LSeg ( p1 , p2 ) ; set R8 = R .: ]. b , +infty .[ ; IncAddr ( I , k ) = SubFrom ( da , da ) .= SubFrom ( da , db ) ; seq . m <= ( the + seq ) . k & ( the + seq ) . m <= ( the + seq ) . k ; a + b = ( a ` *' b ) ` .= ( a ` *' b ) ` .= a ` ; id ( X /\ Y ) = id ( X /\ id Y ) .= id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 , H = U2 \/ U1 as non empty Subset of U0 ; u in ( c /\ ( ( d /\ e ) /\ b ) ) /\ m /\ j ; consider y being element such that y in Y and P [ y , lower_bound B ] ; consider A being finite stable set of R such that card A = ( the carrier of R ) and card A = card A ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & p2 in rng <* p1 *> ; len s1 - 1 > 1-1 & len s2 - 1 > 0 or len s2 - 1 > 0 ; ( N-min P ) `2 = N-bound P & ( N-min P ) `2 = N-bound P ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) & LeftComp Cage ( C , k + 1 ) c= LeftComp Cage ( C , k + 1 ) ; f . a1 ` = f . a1 ` .= f . a1 ` .= ( f | ( a1 ` ) ) . a1 ; ( seq ^\ k ) . n in ]. -infty , x0 + r .[ /\ dom ( f1 (#) f2 ) ; gg . s0 = g . s0 | G . s0 .= g . s0 ; the InternalRel of S is symmetric & the InternalRel of S is transitive implies the InternalRel of S is transitive deffunc F ( Ordinal , Ordinal ) = phi . $2 & phi . $2 = phi . $2 ; F . s1 . a1 = F . s2 . a1 .= F . a1 .= s . a1 ; x `2 = A . o . a .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) & f " P1 c= f " ( Cl P1 ) ; FinMeetCl ( the topology of S ) c= the topology of T & the topology of S c= the topology of T ; synonym o is \bf means : Def2 : o <> \ast & o <> * & o <> * ; assume that X = Y |^ + and card X <> card Y and X <> Y and Y <> {} ; the such that the { s } <= 1 + ( the { s } ) & s <= 1 + ( the { s } ) ; LIN a , a1 , d or b , c // b1 , c1 or LIN a , c , d ; e /. 1 = 0 & e /. 2 = 1 & e /. 3 = 0 ; Ef in SS1 & not Ef in { Nf } ; set J = ( l , u ) If , K = ( l , u ) If , L = ( l , u ) If , L = ( l , u ) If ; set A1 = Y , A2 = Y , A1 = A1 +* A2 , A2 = A2 +* A1 , A2 = A1 +* A2 ; set vs = [ <* vs , c *> , '&' ] , f3 = [ <* V , m *> , '&' ] , f4 = [ <* c , m *> , '&' ] ; x * z `2 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x & f . x <> g3 . x Int cell ( f , 1 , G ) c= RightComp f \/ L~ f \/ RightComp f \/ RightComp f ; UA is_an_arc_of W-min C , E-max C & \subseteq L~ Cage ( C , n ) /\ L~ Cage ( C , n ) = { E-max C } ; set f-17 = f @ g "/\" g @ @ @ f ; attr S1 is convergent means : Def2 : S2 is convergent & lim ( S1 - S2 ) = 0 ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> \in -> \in -> \in reflexive transitive transitive reflexive transitive reflexive transitive for non empty RelStr , the carrier of L , the carrier of L ; consider d being element such that R reduces b , d and R reduces c , d and R reduces d , c ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) & not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + a + y ; len ( l (#) ( a |^ 0 ) ) = len l & len ( l (#) ( a |^ 0 ) ) = len l ; t4 ^ {} is ( {} \/ rng t4 ) -valued FinSequence ; t = <* F . t *> ^ ( C . p ^ q ) .= <* F . t *> ^ q ; set p-2 = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) , pi = W-min L~ Cage ( C , n ) ; ( k -' ( i + 1 ) ) = ( k - ( i + 1 ) ) - ( i + 1 ) ; consider u being Element of L such that u = u ` ` and u in D ` ; len ( ( width aG ) |-> a ) = width aG & width ( ( width aG ) |-> a ) = width aG ; FM . x in dom ( ( G * the_arity_of o ) . x ) & FM . x = dom ( G * the_arity_of o ) ; set cH2 = the carrier of H2 , cH1 = the carrier of H1 ; set cH1 = the carrier of H1 , cH2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos m = s . intpos m .= ( Comput ( P , s , 6 ) ) . intpos m ; IC Comput ( P3 , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) ; dom ( ( cos * sin ) `| Z ) = REAL & dom ( ( cos * sin ) `| Z ) = dom f ; cluster <* l *> ^ phi -> ( 1 + 1 ) -element for string of S ; set b5 = [ <* that p , { 1 } , f1 ] , b5 = [ <* p , f1 *> , f2 ] ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm Q .= L ; n in dom ( ( the Sorts of A ) * the_arity_of o ) & dom ( ( the Sorts of A ) * the_arity_of o ) = dom the_arity_of o ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y and ||. x-y .|| <= r ; set x3 = being Element of Q . DataLoc ( s2 . SBP , 2 ) , x4 = Comput ( P3 , s3 , 2 ) , x4 = P3 ; set p-3 = stop I ( ) , p-3 = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a and a <= b ; { A , B , C , D , E } = { A , B } \/ { C , D , E } ; let A , B , C , D , E , F , J , M , N , M be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 & |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 ; l -' 1 + 1 = n-1 * ( l + 1 ) + ( mm + 1 ) ; x = v + ( a * w1 + b * w2 ) + ( c * w2 + c * w2 ) ; the TopStruct of L = , the TopStruct of L = [: the topology of L , the topology of L :] ; consider y being element such that y in dom H1 and x = H1 . y and y in H1 . x ; ff \ { n } = ( Free All ( v1 , H ) ) \/ ( Free All ( v1 , H ) ) ; for Y being Subset of X st Y is summable & Y is summable holds Y is iff Y is Sum 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s being FinSequence holds len ( the { + } * } ) = len s & len ( the { + } * s ) = len s for x st x in Z holds exp_R * f is_differentiable_in x & ( exp_R * f ) . x > 0 rng ( h2 (#) f2 ) c= the carrier of ( ( TOP-REAL 2 ) | ( the carrier of TOP-REAL 2 ) ) ; j + ( len f ) <= len f + ( len len g - len f ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n , REAL-NS n , REAL-NS n ; C8 . x = s1 . x0 .= C8 . x .= C8 . x .= ( C * f ) . x ; power ( F_Complex ) . ( z , n ) = 1 .= x |^ n .= x |^ n ; t at at ( C , s ) = f . ( the connectives of S ) . t .= s ; support ( f + g ) c= support f \/ ( C \/ support g ) & support ( f + g ) = support f \/ support g ; ex N st N = j1 & 2 * Sum ( seq1 | N ) > N & N > 0 ; for y , p st P [ p ] holds P [ All ( y , p ) ] ; { [ x1 , x2 ] where x1 is Point of [: X1 , X2 :] : x1 in X } c= [: X1 , X2 :] h = ( i = j |-- h , id B . i ) .= H . i .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A & x1 in N ; set X = ( ( \lbrace q , O1 , L ) `1 , { q , 4 } } ) `1 , Y = { q , p } ; b . n in { g1 : x0 < g1 & g1 < a1 . n & g1 < x0 + r } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) implies f /* s1 is convergent & lim ( f /* s1 ) = lim ( f /* s1 ) the carrier of the lattice of Y = the carrier of the topology of Y & the carrier of Y = the carrier of the topology of Y ; 'not' ( a . x ) '&' b . x 'or' a . x '&' 'not' ( b . x ) = FALSE ; 2 = len ( q0 ^ r1 ) + len q1 .= len ( p ^ q ) + len q1 .= len p + len q ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z ; set K1 = upper_volume ( lim ( H , H ) , x0 ) , K1 = integral ( H , x0 ) , K1 = lim ( H , x0 ) ; assume e in { ( w1 - w2 ) `1 : w1 in F & w2 in G } ; reconsider d7 = dom a `1 , d6 = dom F `1 , d6 = dom G `1 as finite set ; LSeg ( f /^ q , j ) = LSeg ( f , j ) \/ LSeg ( f , j + q .. f ) ; assume X in { T . ( N2 , N2 ) : h . N2 = N2 } ; assume that Hom ( d , c ) <> {} and <* f , g *> * f1 = <* f , g *> * f2 ; dom S\cdot = dom S /\ Seg n .= dom L6 .= Seg n /\ Seg n .= dom L6 .= Seg n /\ Seg n .= dom L6 ; x in H |^ a implies ex g st x = g |^ a & g in H & g in H a * ( 0. ( Z , n ) ) = a `2 - ( 0 * n ) .= a `2 - ( 0 * n ) .= a `2 ; D2 . j in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p `2 >= 0 & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f @ @ g ; dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X & dom ( f1 (#) f2 ) /\ X c= dom f1 /\ dom f2 ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 .= p ; len g = len f + len <* x + y *> .= len f + 1 .= len f + 1 + 1 ; dom F-11 = dom ( F | ( N1 , S-23 ) ) .= [: the carrier of S , the carrier of S :] ; dom ( f . t * I . t ) = dom ( f . t * g . t ) ; assume a in ( "\/" ( ( T |^ the carrier of S ) , T ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g and g is one-to-one ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f `1 = id b and f * f `2 = id a and f * g = id b ; ( cos | [. 2 * PI * 0 , PI + 2 * PI * 0 .] ) is increasing ; Index ( p , co ) <= len LS - Gij .. LS - Gij .. LS + 1 - LS .. LS ; let t1 , t2 , t3 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 , t2 ( the mapping of ( ( curry H ) . h ) ) . h <= ( the mapping of ( ( curry G ) . h ) ) . ( ( ( Frege H ) . h ) . ( ( Frege H ) . h ) ) ; then P [ f . i0 ] & F ( f . ( i0 + 1 ) ) < j ; Q [ ( D . x ) `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is \HM { of G . i , G . i } ; the Sorts of A2 = ( the carrier of S2 ) --> BOOLEAN .= ( the carrier of S1 ) --> TRUE .= the Sorts of A1 ; consider s being Function such that s is one-to-one & dom s = NAT & rng s = F and for n being Nat st n in NAT holds P [ n , s . n ] ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) + dist ( a , b2 ) ; ( Lower_Seq ( C , n ) /. len Lower_Seq ( C , n ) ) /. 1 = ( W /. 1 ) `1 ; q `2 <= ( UMP C ) `2 & ( UMP C ) `2 <= ( UMP C ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= IB and A = ]. a , IB .[ and a <= IB ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : n <= b } , Y = { b |^ n where n is Element of NAT : n <= b } ; ( ( x * y * z \ x ) \ z ) \ ( x * y \ x ) = 0. X ; set xy = [ <* xy , y , z *> , f1 ] , yz = [ <* y , z *> , f2 ] , xy = [ <* z , x *> , f3 ] , yz = [ <* z , x *> , f3 ] ; Ul /. len ll = ll . len ll .= ll /. len ll .= ll /. len ll ; ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 = 1 ; ( ( p `2 / |. p .| - sn ) / ( 1 + sn ) ) ^2 < 1 ; ( ( for x st x in X \/ Y holds x `2 <= ( ( for x st x in X holds x in Y ) ) implies x in Y ( ss1 - ss2 ) . k = ss1 . k - ss2 . k .= ss2 . k - ss2 . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) /\ dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X = the carrier of X implies X is non empty ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r & p4 `2 <= b & p4 `2 <= d ; set ch = chi ( X , A5 ) , A5 = chi ( X , A5 ) ; R |^ ( 0 * n ) = I\HM ( X , X ) .= R |^ n |^ 0 .= R |^ n |^ 0 ; ( ( ( curry ( F-19 , n ) ) . 0 ) . x ) . x is nonnegative ; f2 = C7 . ( E7 , len ( V ) - 1 ) .= C7 . ( len ( V ) - 1 ) ; S1 . b = s1 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b .= s2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p1 ) or p2 in LSeg ( p1 , p2 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & o = ( the connectives of S ) . 12 ; set phi = ( l1 , l2 ) \mathop { l1 } , phi = ( l1 , l2 ) \mathop { l2 } ; synonym p is is is is is / for p , q , T ; Y1 `2 = - 1 & 0. TOP-REAL 2 <> 0. TOP-REAL 2 implies Y1 `2 = - 1 & Y1 `2 = - 1 & Y1 `2 = - 1 defpred X [ Nat , set , set ] means P [ $2 , $2 , $2 ] & $2 = $2 ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det ( I |^ ( m -' n ) ) = 1. ( K , m ) * ( 1. ( K , n ) ) .= 1. ( K , m ) ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / 2 < 0 ; Cd . d = Cd . da mod Cd . db .= Cd . da mod Cd . db ; attr X1 is dense means : Def3 : X2 is dense dense & X1 is dense SubSpace of X & X2 is dense SubSpace of X ; deffunc F6 ( Element of E , Element of I ) = $1 * $2 & $2 = ( $1 * $2 ) * $2 ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set for Y being Subset-Family of X holds for X being Subset-Family of [: X , \mathop { the carrier of Y } :] holds X is Basis of Y synonym A , B are_separated means : Def2 : Cl A misses Cl B & A misses Cl B & B misses Cl A ; len ( M @ ) = len p & width ( M @ ) = width ( M @ ) & width ( M @ ) = width ( M @ ) ; J . v = { x where x is Element of K : 0 < v . x & v . x < 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) .= D2 . ( k + k2 - 1 ) ; g . r1 = - 2 * r1 + 1 & dom h = [. 0 , 1 .] & rng h c= [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w & <* 1 *> ^ s = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , {} , {} ] } \/ S1 ) \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) .= IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = succ IC s .= 5 + 9 .= 5 + 9 .= 5 ; ( IExec ( W6 , Q , t ) ) . intpos ( e + 2 ) = t . intpos ( e + 2 ) ; LSeg ( f /^ q , i ) misses LSeg ( f /^ q , j ) \/ LSeg ( f /^ q , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f , C , f ) = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one & F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( K + 1 * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p4 = [ 2 , 1 ] .--> [ 2 , 0 , 1 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y \not c= d ; for y , x being Element of REAL st y ` in Y ` & x in X ` holds y <= x ` & x <= x ` ; func |. \bullet p .| -> variable of A equals min ( NBI ( p ) , p ) ; consider t being Element of S such that x `1 , y `2 '||' z `1 , t `2 and x `1 , z `2 '||' y `1 , t `2 ; dom x1 = Seg len x1 & len x1 = len l1 & for i st i in Seg len x1 holds x1 /. i = x1 . i * ( x1 /. i ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 < 1 / 2 and y2 <= 1 / 2 ; ||. f | X /* s1 .|| = ||. f .|| | X & ||. f .|| | X is convergent & lim ( ||. f .|| | X ) = ||. f .|| ; ( the InternalRel of A ) -Seg ( x ` ) /\ Y = {} \/ {} .= {} \/ {} .= {} \/ {} .= {} ; assume i in dom p & for j be Nat st j in dom q holds P [ i , j ] & i + 1 in dom p & j + 1 in dom p ; reconsider h = f | X ( ) as Function of X ( ) , rng f ( ) ; u1 in the carrier of W1 & u2 in the carrier of W2 implies ( W1 + W2 ) + ( W2 + W3 ) = W1 + W2 + W3 defpred P [ Element of L ] means M <= f . $1 & f . $1 <= $1 & f . $1 <= f . $1 ; ^ ( u , a , v ) = s * x + ( - ( s * x + y ) ) .= b - s + y .= b ; - ( x-y ) = - x + - y .= - x + y .= - x + y .= - x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_\HM { x } and a , x are_\HM { x } ; fSet = [ [ dom @ f2 , cod @ f2 ] , h2 ] .= [ [ cod @ f2 , cod @ g2 ] , h2 ] ; for k , n be Nat st k <> 0 & k < n & n is prime holds k , n are_relative_prime & k , n are_relative_prime for x being element holds x in A |^ d iff x in ( ( A ` ) |^ f ) ` & x in ( A ` ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; ( - ( p `1 / |. p .| - cn ) ) / ( 1 + cn ) > 0 ; L-13 . k = Lk . ( F . k ) & F . k in dom ( Lk | dom F ) ; set i2 = SubFrom ( a , i , - n ) , i2 = SubFrom ( a , i , - n ) , i1 = i2 ; attr B is thesis means : Def3 : for S being SubSub of B holds S = B `1 & S = B `2 ; a9 "/\" D = { a "/\" d where d is Element of N : d in D } & a "/\" b in D ; |( exp_R , q )| * |( exp_R , q )| * |( exp_R , q )| >= |( exp_R , q )| * |( exp_R , q )| .= |( exp_R , q )| * |( exp_R , q )| ; ( - f ) . ( sup A ) = ( ( - f ) | A ) . sup A .= - ( f | A ) . sup A ; GG2 /. k = ( ( G * ( len G , k ) ) `1 ) `1 .= G * ( len G , k ) `1 .= G * ( 1 , k ) `1 ; ( Proj ( i , n ) * ( L . x ) ) = <* ( proj ( i , n ) ) . ( L . x ) *> ; f1 + f2 (#) reproj ( i , x ) is_differentiable_in ( the reproj of i , x ) . x & f2 + f1 is_differentiable_in x ; pred ( for x st x in Z holds ( tan . x ) <> 0 ) & ( for x st x in Z holds ( tan . x ) <> 0 ) ; ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t . x & t . x = h2 . t ; defpred C [ Nat ] means ( ( P . $1 ) is n -\hbox { x } & ( P . $1 ) is n -\hbox { x } ) ; consider y being element such that y in dom p9 and q9 . i = p9 . y and p . i = p9 . y ; reconsider L = product ( { x1 } +* ( index B , l ) ) as Subset of ( Carrier A ) . ( i + 1 ) ; for c being Element of C ex d being Element of D st T . ( id c ) = id d & for x being Element of C st x in c holds d <= c not ( for f , n , p holds f = ( f | n ) ^ <* p *> ) .= f ^ <* p *> ^ <* p *> ; ( f (#) g ) . x = f . ( g . x ) & ( f (#) h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f `2 `2 - p `2 = ( ( c | n ) *' ( f - g ) ) *' - ( ( c (#) ( f - g ) ) *' ) .= ( ( c (#) ( f - g ) ) *' ) *' - ( ( f - g ) ) *' ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r2 , r2 ]| ) in f1 .: W2 & f2 . ( |[ r2 , r2 ]| ) in f1 .: W3 ; eval ( a | ( n , L ) , x ) = ( a | ( n , L ) ) . x .= a . x ; z = DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) .= DigA ( tk , x9 ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } , G = { Intersect S where S is Subset-Family of X : S c= G } ; consider S19 being Element of D .: j , d being Element of D .: j such that S ` = S19 ^ <* d *> and S = S19 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) / ( 1 + sn ) ) ^2 / ( 1 + sn ) ^2 ; (0). V is Linear_Combination of A & Sum ( (0). V ) = 0. V & Sum ( L ) = 0. V implies Sum ( L ) = Sum ( L ) let k1 , k2 , k1 , k2 , k2 , k2 , k1 , k2 , k2 , k2 , k2 , k2 , k1 , k2 , k2 , k2 , k1 , k2 , k2 , k2 be Instruction of SCM+FSA ; consider j being element such that j in dom a and j in g " { k `2 } and x = a . j and y = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 or H1 . x1 c= H1 . x2 or H1 . x1 c= H1 . x2 ; consider a being Real such that p = -' a * p1 + ( a * p2 ) and 0 <= a and a <= 1 ; assume that a <= c & c <= d & [' a , b '] c= dom f and [' a , b '] c= dom g and [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , i , X ) -' 1 is non empty or cell ( Gauge ( C , m ) , i , 0 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : i in dom S } ; ( T * b1 ) . y = L * b2 /. y .= ( F `1 * b1 ) . y .= ( F `1 * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + 1 ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; then p => q in S & not x in the carrier of p & not p => All ( x , q ) in S ; dom ( the InitS of r-10 ) misses dom ( the InitS of rM ) & dom ( the InitS of rM ) misses dom ( the InitS of rM ) ; synonym f is integer ; assume for a being Element of D holds f . { a } = a & for X being Subset-Family of D holds f . ( f .: X ) = f . union X ; i = len p1 .= len p3 + len <* x *> .= len p3 + 1 .= len p3 + 1 .= len p3 + 1 + 1 .= len p3 + 1 + 1 ; l /. ( 1 , 3 ) = g /. ( g /. 1 , 3 ) + k * ( e /. 3 , e /. 1 ) - e /. 3 + e /. 3 - e /. 3 + e /. 1 ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA .= halt SCM+FSA ; assume for n be Nat holds ||. seq .|| . n <= Rseq . n & Rseq is summable & Rseq is summable & Rseq is summable ; sin . ( n + 1 ) = sin . r * cos . ( - cos . s ) .= 0 * ( sin . s ) .= 0 ; set q = |[ g1 `1 . t0 , g2 `2 . t0 , f3 `2 . t0 ]| , r1 = g1 `1 . t0 , r2 = g2 . t0 ; consider G being sequence of S such that for n being Element of NAT holds G . n in implies G in implies G in implies for n being Element of NAT holds G . n in S ; consider G such that F = G and ex G1 st G1 in SM & G = ( the carrier of G1 ) & G is one-to-one & G is one-to-one ; the root of [ x , s ] in ( the Sorts of Free ( C , X ) ) . s & ( the Sorts of Free ( C , X ) ) . s = s ; Z c= dom ( exp_R * ( f + ( #Z 2 ) * f1 ) ) /\ dom ( exp_R * f1 + exp_R * f1 ) ; for k be Element of NAT holds seq1 . k = ( \HM { Im ( f , S ) . k , S . ( k + 1 ) ) . x assume that - 1 < n ( ) and q `2 > 0 and ( q `1 / |. q .| - cn ) < 0 and ( - 1 ) < 0 ; assume that f is continuous one-to-one and a < b and c < d and f = g and f . a = c and f . b = d ; consider r being Element of NAT such that sLet = Comput ( P1 , s1 , r ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. ( len f ) , f /. ( len f ) , f /. ( len f ) ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L and x <> y and y <> x ; assume that f +* ( i1 , \xi ) . 1 in ( proj ( F , i2 ) ) " ( A . ( i1 + 1 ) ) and f . ( i1 + 1 ) = f " A ; rng ( ( ( Flow M ) ~ | ( the carrier of M ) ) | ( the carrier' of M ) ) c= the carrier' of M ; assume z in { ( the carrier of G ) \ { t } where t is Element of T : t in A } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g / 2 and g in dom ( ||. f .|| ) ; consider t be VECTOR of product G such that mt = ||. D5 . t .|| and ||. t .|| <= 1 ; assume that the degree degree of v = 2 and v ^ <* 0 *> , v ^ <* 1 *> ^ p ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ <* 1 *> ^ q ^ q ; consider a being Element of the carrier of X39 , A being Element of the lines of X39 such that a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D holds p is FinSequence of D & for i st i in dom p holds p . i is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] & P [ y ] ; L~ f2 = union { LSeg ( p0 , p1 ) , LSeg ( p1 , p01 ) } .= { p1 , p2 } \/ { p1 , p01 } ; i -' len h11 + 2 - 1 < i -' len h11 + 2 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( nthesis . ( n -' 1 ) ) .| ; for r , s1 , s2 holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 & s1 <= s2 & r <= s2 & s1 <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 & G c= z2 & G c= z2 } ; let g be .| -:] Function of A , INT , ( INT |^ X ) | b , ( ( 0 , 1 ) --> 1 ) , A ; min ( g . [ x , y ] , k ) . [ y , z ] = ( min ( g , k , x , z ) ) . y ; consider q1 being sequence of CNS such that for n holds P [ n , q1 . n ] and q1 is convergent and lim q1 = lim q1 ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and for n being Element of NAT holds P [ n , f . n ] ; reconsider B-6 = B /\ B , Od = O , sequence = I /\ Z , Subset of B ; consider j being Element of NAT such that x = the b \HM { x where x is FinSequence of NAT : 1 <= j & j <= n } and j = len f ; consider x such that z = x and card ( x . O2 ) in card ( x . O ) and x in L1 . O and x <> O ; ( C * \mathop { \rm T4 } ( k , n2 ) ) . 0 = C . ( ( \mathop { \rm T4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom ( ( X --> f ) . x ) = dom ( X --> f . x ) ; ( for x being Element of L~ SpStSeq C st x in b holds ( for x being Element of C st x in b holds x <= ( ( L~ SpStSeq C ) * ( i , j ) ) `2 ) implies ( L~ SpStSeq C ) * ( i , j ) `2 <= ( ( L~ SpStSeq C ) * ( i , j ) ) `2 synonym x , y are_collinear means : Def2 : x = y or ex l being that { x , y } c= l & { x , y } c= l ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that ( for k , x being Element of L , a , b being Element of L st a = x & b = y holds x << y iff a << b ) & ( for x , y being Element of L st x in X & y in X holds a << b ) ; ( 1 / 2 * ( ( ( - 1 ) * ( ( #Z n ) * ( AffineMap ( n , 0 ) ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . $1 & ( the partial of A1 ) . $1 = A2 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= 6 + 1 .= 6 + 1 .= 6 ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 * 1_ H .= f . g1 * ( g . g2 ) .= f . g1 * ( g . g2 ) .= f . g1 ; ( M * FK1 ) . n = M . ( FK1 . n ) .= M . { ( ( canFS ( Omega ) ) . n ) } .= M . { ( canFS ( Omega ) ) . n } ; the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) & the carrier of L1 + L2 c= the carrier of L1 \/ the carrier of L2 ; pred a , b , c , x , y , c , d d d of o , o , y , c , d , x , y ; ( the PartFunc of s , X ) . n <= ( the PartFunc of s , X ) . n * s . ( n + 1 ) ; pred - 1 <= r & r <= 1 means : Def3 : for r st r in Z holds arccot . r = - 1 / r + r / r ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } & p ^ <* n *> in T1 ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , x3 , x4 ]| . 2 = x2 - y2 & |[ x1 , x2 , x3 , x4 , x4 ]| . 2 = x2 - y2 ; attr for m be Nat holds F . m is nonnegative & ( Partial_Sums ( F ) ) . m is nonnegative & ( Partial_Sums ( F ) ) . m is nonnegative ; len ( ( G . z ) * ( G . ( x9 ) ) ) = len ( ( G . x9 ) * ( G . ( y9 ) ) ) .= len ( G . ( y9 ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W2 /\ W3 ; given F being finite FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = k ; 0 = 0 * ( - \hbox { - 1 } ) * ( 1 - ( - 1 ) * ( - ( - 1 ) * ( - ( - 1 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster -> } for } -`1 of ( ( the carrier of L ) --> ( ( the carrier of L ) --> ( the carrier of L ) ) , L ; "/\" ( BB , {} ) = Top BB .= the carrier of S .= Top ( S , T ) .= "/\" ( IB , {} ) .= "/\" ( IB , {} ) .= "/\" ( BB , {} ) ; ( r / 2 ) ^2 + ( r\mathopen ( 2 , r ) ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 & ( f `| X ) . x >= r2 2 * r1 - c * |[ a , c ]| - ( 2 * r1 - b ) * |[ b , c ]| = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( - ( - ( K , n , 1 ) ) ) * ( ( - ( K , n , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( upper_volume g , M7 ) * ( len ( D2 , D1 ) ) ) . n consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 and H1 is Subgroup of H2 and H2 is Subgroup of H1 and H1 is Subgroup of H2 ; for S , T being non empty that T is complete and T is complete holds d is directed-sups-preserving iff d is monotone & d is monotone & d is monotone [ a + 0. F_Complex , b2 ] in ( the carrier of F_Complex ) /\ ( the carrier of V ) & [ a + 0. F_Complex , b2 ] in ( the carrier of V ) /\ ( the carrier of V ) ; reconsider mm = max ( len F1 , len ( p . n ) * <* x *> ) as Element of NAT , x be Element of NAT ; I <= width GoB ( ( GoB h ) * ( len GoB h , width GoB h ) , ( GoB h ) * ( len GoB h , width GoB h ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 * f1 ) /* s .= ( ( f2 * f1 ) /* s ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; attr A1 \/ A2 is linearly-independent means : Def2 : A1 misses A2 & for x st x in A1 holds x in A1 & x <> 0. V holds ( x in A1 & x <> 0. V ) ; func A -carrier C -> set equals union { A . s where s is Element of R : s in C } ; dom ( Line ( v , i + 1 ) ) = dom ( F ^ ( a , m ) ) & dom ( Line ( p , i ) ) = dom ( F ^ ( a , m ) ) ; cluster [ x `1 , 4 , x `2 , 4 , 5 ] -> non empty & [ x `1 , 4 , 5 ] `1 = x `1 & [ x `1 , 4 ] `2 = 4 ; E , f |= All ( x1 , All ( x2 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) ) => All ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) '&' ( x1 , x2 ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . x0 + h . m - h . x0 + h . m - h . x0 + h . m - h . x0 ; cell ( G , ( X -' 1 , Y + 1 ) \ ( t + 1 ) ) meets ( UBD L~ f ) & ( for k st k in dom f holds f /. k meets ( L~ f ) \ ( t + 1 ) ) implies ( L~ f ) meets ( L~ f ) IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= ( card I + card J + 3 ) .= ( card I + 3 ) .= ( card I + 3 ) ; sqrt ( ( - ( ( q `1 / |. q .| - cn ) / ( 1 + cn ) ) / ( 1 + cn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g " { k `2 } and y0 = a . x0 and x0 in g " { k } ; dom ( r1 (#) chi ( A , C ) , C ) = dom chi ( A , C ) /\ dom ( chi ( A , C ) , C ) .= C /\ dom ( ( r1 (#) chi ( A , C ) ) , C ) .= C /\ dom ( ( r1 (#) chi ( A , C ) ) , C ) .= C /\ dom ( ( r1 (#) chi ( A , C ) ) , C ) ; d-7 . [ y , z ] = ( ( [ y , z ] `1 ) `2 - ( [ y , z ] `2 ) `2 - ( [ y , z ] `2 ) `2 - ( [ y , z ] `2 - ( [ y , z ] `2 ) `2 ) ; attr for i being Nat holds C . i = A . i /\ B . i & C . i c= A . i /\ B . i ; assume that x0 in dom f and f is_continuous_in x0 and ||. f .|| is_continuous_in x0 and for r st r in dom f & 0 < r ex g st g < r & g in dom f & g in dom f ; p in Cl A implies for K being Basis of p , Q being Subset of T st Q in K holds A meets Q & A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| & |. y1 - y2 .| <= |. y1 - y2 .| func /. ( <*> a ) -> w Ordinal means : Def3 : a in it & for b being l of a st a in b holds it . b c= b ; [ a1 , a2 , a3 ] in ( [: the carrier of A ) /\ ( the carrier of A ) & [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x - y .|| < e / ( ||. x .|| + ||. y .|| ) * ||. x - y .|| ; then for Z being set st Z in { Y where Y is Element of I7 : F c= Y } holds z in Z & z in Z & z in Z ; sup compactbelow [ s , t ] = [ sup ( \pi , t ) , sup ( compactbelow s ) ] .= [ sup ( compactbelow s ) , sup ( compactbelow t ) ] .= [ sup ( compactbelow s ) , t ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in If and [ f . i , z ] in If and [ y , f . i ] in If ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p being FinSequence of D st p ^ q = q & p ^ q = p ^ q consider e19 being Element of the carrier of X such that c9 , a9 // a9 , e39 and a9 <> c9 and a9 <> c9 and a , b // a9 , e and a , c // a9 , b9 ; set U2 = I \! \mathop { x } , U2 = I -\mathop { y } ; |. q3 .| ^2 = ( ( q3 `1 ) ^2 + ( q3 `2 ) ^2 ) + ( ( q3 `2 ) ^2 + ( q3 `1 ) ^2 .= |. q .| ^2 + ( q `2 ) ^2 .= |. q .| ^2 + ( q `2 ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x \/ y & x "/\" y = x /\ y implies x = y dom signature U1 = dom ( the charact of U1 ) & Args ( o , U1 ) = dom ( the charact of U1 ) & Args ( o , U1 ) = dom ( the charact of U1 ) ; dom ( h | X ) = dom h /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) /\ X .= dom ( ||. h .|| ) ; for N1 , N1 being Element of GX holds dom ( h . K1 ) = N & rng ( h . K1 ) = N1 & rng ( h . K1 ) = N1 & rng ( h . K1 ) c= N2 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 ) ^2 < - 1 or q `2 >= - ( q `1 ) ^2 & - ( q `2 ) ^2 <= - ( q `1 ) ^2 or - ( q `1 ) ^2 >= - ( q `1 ) ^2 ; pred r1 = fp & r2 = fp & r1 * r2 = fp * ( r1 + r2 ) & r2 * r1 = fp * ( r1 + r2 ) ; vseq . m is bounded Function of X , the carrier of Y & x9 . m = ( ( vseq . m ) - ( vseq . n ) ) . x & ( vseq . m ) - ( vseq . n ) ) . x = ( ( vseq . m ) - ( vseq . n ) ) . x ; pred a <> b & b <> c & angle ( a , b , c ) = PI & angle ( b , c , a ) = 0 & angle ( c , a , b ) = PI ; consider i , j , r being Nat such that p1 = [ i , r ] and p2 = [ j , s ] and i < j and i < j and r < s ; |. p .| ^2 - ( 2 * |( p , q )| ) ^2 + |. q .| ^2 = |. p .| ^2 + |. q .| ^2 - ( 2 * |( p , q )| ) ^2 ; consider p1 , q1 being Element of X ( ) such that y = p1 ^ q1 and q1 ^ p1 = p1 ^ q1 and p1 ^ q1 = p1 ^ q1 and p1 ^ q1 = q1 ^ q1 and p1 ^ q1 = q1 ^ q2 ; , 1. ( K , r1 , r2 , s2 , s1 , s2 , s2 , s2 , t2 ) = ( s2 - s1 ) * ( s1 - s2 ) + ( s2 - s1 ) * ( s2 - s2 ) ; ( LMP A ) `2 = lower_bound ( proj2 .: A /\ E-bound ( w ) ) & proj2 .: A is non empty & proj2 .: ( A /\ E-bound ( w ) ) is non empty ; s |= ( k , H1 ) \bf ( H , k ) iff s |= ( H , k ) implies s |= ( H , k ) '&' ( H , k ) & s |= ( H , k ) '&' ( H , k ) len s5 + 1 = card ( support b1 ) + 1 .= card ( support b2 ) + card ( support b2 ) .= card ( support b2 ) + card ( support b2 ) .= card ( support b2 ) + card ( support b2 ) .= card ( support b2 ) + card ( support b2 ) ; consider z being Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z `1 >= y holds z `1 >= y and z `2 >= x ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , ( E-bound D + E-bound D ) / 2 ]| ) /\ D = { UMP D } /\ D .= { UMP D } ; lim ( ( ( f `| N ) / g ) /* b ) = lim ( ( f `| N ) / g ) .= lim ( ( f `| N ) / g ) .= lim ( ( f `| N ) / g ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( ( seq . k ) - Rx ) - Rx .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in P & b in P & a <> b holds a = b Z c= dom ( ( #Z 2 ) * f ) /\ ( dom ( ( #Z 2 ) * f ) \ ( ( #Z 2 ) * f ) " { 0 } ) & Z c= dom f /\ ( dom f \ f ) " { 0 } ; ex j be Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j & i = 1 + len l + j & z = x + len l + j & i = len l + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in dom ( r (#) u ) holds r * u + ( 1-r (#) v ) in <* u *> A , Int A , Cl A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Int A , Cl Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl A , Cl Cl - Sum <* v , u , w *> = - ( v + u + w ) .= - ( v + u ) + w .= - ( v + u ) + w .= - v + u + w ; Exec ( a := b , s ) . IC SCM R = ( Exec ( a := b , s ) ) . NAT .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x and h . x = ( the carrier of J ) . x ; for S1 , S2 , D being non empty reflexive RelStr , D being non empty Subset of [: S1 , S2 :] , f being Function of S1 , S2 , g being Function of S2 , S2 st f is directed & g is directed holds g is directed & g is directed card X = 2 implies ex x , y st x in X & y in X & x <> y & x <> y or z = x or z = y or z = x or z = y or z = x or z = x or z = y E-max L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft E-max L~ Cage ( C , n ) ) & E-max L~ Cage ( C , n ) in rng Cage ( C , n ) ; for T , T being DecoratedTree , p , q being Element of dom T st p for q being Element of dom T holds ( T , p ) . q = T . q & ( T , q ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) & f /. k = G * ( i2 + 1 , j2 ) ; cluster -> commutative means : Def2 : k divides it & n divides it & for m being Nat st k divides m & m divides m & m divides n holds it divides m & for k being Nat st k divides m & k divides m holds it divides k ; dom F " = the carrier of X2 & rng F " = the carrier of X1 & F " = the carrier of X2 & F " = F " * F " & F " = F " * F " ; consider C being finite Subset of V such that C c= A and card C = \cdot and the carrier of V = Lin ( B9 \/ C ) and card C = card ( B \/ C ) and card C = card ( B \/ C ) ; V is prime implies for X , Y being Element of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or Y c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) .= angle ( p , p3 , p2 ) ; - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) = - sqrt ( ( - ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) .= - ( - ( - ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p3 & f . 0 = p4 & f . 1 = p4 ; attr f is_partial u0 means : Def2 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 , 1 ) is_differentiable_in ( proj ( 2 , 3 ) . u0 ) & SVF1 ( 2 , 3 ) . u0 = ( proj ( 2 , 3 ) ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & s < G * ( 1 , 1 ) `2 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 ; assume that f is_sequence_on G and 1 <= t & t <= len G and G * ( t , width G ) `2 >= N-bound L~ f and G * ( t , width G ) `2 >= N-bound L~ f and t <= width G ; pred i in dom G means : Def3 : r * ( f * reproj ( i , x ) ) = r * f * reproj ( i , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 and c1 = c2 + c2 and c1 = c2 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & s1 < G * ( 1 , 1 ) `2 & G * ( 1 , 1 ) `2 < s1 & s1 < G * ( 1 , 1 ) `2 } ; ( X ^ Y ) . k = the carrier of X . k2 .= C4 . k .= C4 . k .= ( C4 ^ C3 ) . k .= ( C4 ^ C3 ) . k .= ( C4 ^ C3 ) . k ; attr M1 = len M2 means : Def2 : len M1 = width M2 & width M1 = width M2 & for i st i in dom M1 holds M1 . i = M1 . i - M2 . i ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. ( y - x0 ) - x0 .|| < g2 & y in N2 } c= N2 and for x be Point of S st x in N holds |. ( x - x0 ) - x0 .| < g2 . x ; assume x < ( - b + sqrt ( a , b , c ) ) / 2 or x > ( - b - sqrt ( a , b , c ) ) / 2 or x > - b ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' G1 ) . i = ( <* 3 *> ^ G1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) + M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st for j being Element of NAT st j in dom f & j <> i holds i divides f /. j holds i divides ( f /. j ) & i divides ( f /. j ) assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in B\mathopen } & a c= c & b c= c holds b c= c ; b2 * q2 + ( b3 * q3 ) + - ( ( a1 * q2 ) + - ( a2 * q3 ) ) = 0. TOP-REAL n + ( ( a1 * q2 ) + - ( a2 * q3 ) ) .= 0. TOP-REAL n + ( ( a1 * q2 ) + - ( a2 * q3 ) ) .= 0. TOP-REAL n + ( a2 * q2 ) ; Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in F & A in Cl B & B in Cl F } ; attr seq is summable means : Def2 : seq is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable & Partial_Sums ( seq ) is summable ; dom ( ( cn " ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) .= the carrier of ( ( TOP-REAL 2 ) | D ) .= D ; |[ X , Z ]| is full full SubRelStr of ( Omega Z ) |^ the carrier of X & |[ X , Y ] is full SubRelStr of ( Omega Z ) |^ the carrier of Y implies X is full SubRelStr of ( Omega Z ) |^ the carrier of Y G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `2 <= G * ( i + 1 , j ) `2 & G * ( 1 , j ) `2 <= G * ( i + 1 , j ) `2 ; synonym m1 c= m2 means : Def2 : for p being set st p in P holds the set of m1 <= p & p is_pw & for n being Nat st n in dom m1 holds m1 . n <= ( m2 . n ) `1 & m1 . n = m2 . n ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } ; mode multiplicative loop structure means : Def3 : the carrier of it = [ ( a , a ) * the multF of S , ( a , b ) * the multF of S ] & the carrier of it = [: the carrier of S , the carrier of S :] ; sequence ( a , b , 1 ) + sequence ( c , d , 1 ) = b + sequence ( c , d , 1 ) .= b + d + c .= sequence ( a + c , b + d ) ; cluster -> + _ { \mathbb Z } means : Def2 : for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = + ( i1 , i2 ) & for i being Element of NAT holds i1 . ( i1 , i2 ) = ( i1 + i2 ) . ( i1 , i2 ) ; ( - s2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - s1 ) ) ) ) ) ) ) = ( - r2 ) * p1 + ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - ( s2 * p2 - eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) ) * eval ( p , x ) .= a * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty Subset of S , V being open Subset of Omega S st V in V & V is open & V c= V & V c= V holds V meets V and V is open and for W being open Subset of S st W in V & W c= V holds W meets V ; assume that 1 <= k & k <= len w + 1 and T-7 . ( ( q11 , w ) -succ k ) = ( T11 . k , w ) -succ ( ( q11 , w ) -succ k ) ; 2 * a |^ ( n + 1 ) + ( 2 * b |^ ( n + 1 ) ) >= a |^ ( n + 1 ) + ( ( a |^ n ) * b + ( b |^ n ) * a + b |^ ( n + 1 ) ) ; M , v2 |= All ( x. 3 , All ( x. 0 , All ( x. 4 , H ) ) '&' ( All ( x. 4 , H ) '&' ( x. 4 , All ( x. 0 , H ) ) ) ) implies M , v2 |= All ( x. 4 , H ) '&' ( x. 0 , All ( x. 4 , H ) ) assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f ' ( x0 ) or for x0 st x0 in l holds f ' ( x0 ) < 0 and for x0 st x0 in l holds f ' ( x0 ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being set st not e in W and not e in W & not e in W & not e in W & e in W & not e in W & e in W & not e in W & e in W holds W is Walk of G2 not vs is not empty iff that not .| is not empty & not is not empty or not q1 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q1 is not empty & not q2 is not empty & not q2 is not empty & not q2 is not empty & not q3 q2 is not empty & not q1 is not empty ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & i1 + 1 in dom GoB f & i2 + 1 in Seg width GoB f & 1 <= i1 & i1 + 1 in dom GoB f & 1 <= i2 & i1 + 1 in dom GoB f & 1 <= i2 & i2 + 1 in Seg width GoB f & 1 <= i2 & i2 + 1 <= len GoB f & 1 <= i2 & i2 + 1 <= len GoB f implies ( GoB f ) * ( i1 , i2 ) = ( GoB f ) * ( i1 + 1 , j2 + 1 , j2 + 1 , j2 + 1 ) & ( GoB f ) * ( i1 + 1 , j2 + 1 , j2 + 1 , j2 + 1 = ( GoB f ) * ( i1 + 1 = j2 + for G1 , G2 , G3 being strict Subgroup of O st G1 is stable & G2 is stable & G2 is stable & G2 is stable & G1 is stable & G2 is stable & G2 is stable & G2 is stable & G2 is stable holds G1 is stable of G2 & G2 is stable of G3 UsedIntLoc ( inint f ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , intloc 4 , intloc 5 , intloc 5 , intloc 6 , intloc 5 , intloc 5 , intloc 6 , intloc 5 } .= UsedIntLoc ( f , s ) \/ UsedIntLoc ( f , s ) ; for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ p ^ <* q *> ] & Q [ q ^ <* p *> ] holds Q [ f1 ^ <* p *> ^ f2 ] ( p `1 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ) ^2 = ( q `1 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ^2 .= ( q `1 / sqrt ( 1 + ( q `1 / q `2 ) ^2 ) ) ^2 ; for x1 , x2 , x3 , x4 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x3 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x3 , x4 )| + |( x2 , x3 )| + |( x3 , x4 )| + |( x3 , x2 )| + |( x3 , x3 )| + |( x3 , x3 )| for x st x in dom ( ( F - G ) | A ) holds ( ( F - G ) | A ) . ( - x ) = - ( ( F - G ) | A ) . x for T being non empty TopStruct , P being Subset-Family of T st P c= the topology of T for x being Point of T , B being Basis of x st B c= P & x in B holds P is Basis of T ( a 'or' b 'imp' c ) . x = 'not' ( ( a 'or' b ) . x ) 'or' c . x .= 'not' ( a . x ) 'or' c . x .= TRUE '&' TRUE .= TRUE .= TRUE .= TRUE ; for e being set st e in [: A , Y1 :] ex X1 being Subset of Y , Y1 being Subset of Y st e = [: X1 , Y1 :] & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of Sfor i be Element of S1 . i , S1 . i st f = H . i holds F . i = f | ( F . i ) & for i be set st i in dom F holds F . i = f | ( F . i ) ; for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al , J ) , J ) . v = Valid ( VERUM ( Al , J ) , J ) . w card D = card D1 + card D2 - card { i , j } .= c1 + 1 - 1 + 1 .= c1 + 1 - 1 + 1 .= c1 + 1 - 1 + 1 .= c1 + 1 - 1 + 1 .= c1 + 1 - 1 + 1 - 1 .= c1 + 1 - 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) ) . 0 .= ( 0 .--> ( s . 0 ) .= ( 0 .--> ( s . 0 ) ) .= ( 0 .--> ( s . 0 ) .= ( 0 .--> 1 ) .= ( 0 .--> 1 ) .= ( 0 .--> 1 ) .= ( 0 .--> 1 ) .= ( 1 len f /. ( len f -' 1 ) -' 1 + 1 = len f /. ( len f -' 1 ) + 1 - 1 + 1 .= len f -' 1 + 1 - 1 + 1 .= len f -' 1 + 1 - 1 + 1 ; for a , b , c being Element of NAT st 1 <= a & a <= b & b <= b holds a <= a + b-2 or a = a + b-2 or b = a + b-2 or a = b + b-2 or a = a + b-2 or b = a + b-2 or a = b for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 st p in LSeg ( f , i ) & p in LSeg ( f , i ) holds Index ( p , f ) <= i & Index ( p , f ) <= len f lim ( ( curry ( P+* ( i , k + 1 ) ) # x ) = lim ( ( curry ( P+* ( i , k ) ) # x ) + lim ( ( curry ( F+* ( i , k + 1 ) ) # x ) ) ; z2 = g /. ( len g -' n1 + 1 ) .= g . ( i -' n2 + 1 + n1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of C6 & [ f . 0 , f . 3 ] in the InternalRel of C6 ; for G being Subset-Family of B st G = { R [ X ] where R is Subset of [: A , B :] : R in F6 & R in F6 } holds ( for X being Subset of A , Y being Subset of B st X in F6 holds R [ X ] ) & ( for X being Subset of A st X in F6 holds R [ X ] ) implies for X being Subset of A , Y being Subset of B st X in F6 holds X c= Y CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= halt SCMPDS .= halt SCMPDS .= halt SCMPDS .= ( CurInstr ( P1 , s2 ) ) .= halt SCMPDS ; assume that a on M and b on M and c on N and d on M and p on P and a on P and c on P and d on P and a on Q and b on Q and a on P and b on Q and a on Q and b on Q and a on Q and b on Q and a on Q and a on Q and b on Q and a on Q and a on Q and b on Q and a on Q and a on Q and b on Q and a on Q and b on Q and b on Q and b on Q and a on Q and b on Q and b on Q and b on Q and b on Q and a on Q and b on Q and b on Q and a on Q and a on Q and a on Q and a on Q and b on Q and b on Q and b on Q and b on Q and c on Q and b on Q assume that T is \hbox { T _ 4 } and ex F being Subset-Family of T st F is closed , countable , T & ( for n st n >= 0 holds F . n <= 0 ) & ( for n st n >= 0 holds F . n <= 0 ) & ( for n st n >= 0 holds F . n <= 0 ) implies T is finite-ind ) ; for g1 , g2 st g1 in ]. r1 - r2 , r .[ & g2 in ]. r1 - r2 , r .[ holds |. f . g1 - f . g2 .| <= ( g1 - g ) / ( |. r1 - r2 .| + |. r2 .| ) & |. f . g2 - f . g2 .| <= ( g1 - g ) / ( |. r1 - r2 .| + |. r2 .| ) cosh /. ( z1 + z2 ) = ( cosh /. z1 ) * ( cosh /. z2 ) + ( ( cosh /. z1 ) * ( cosh /. z2 ) + ( ( cosh /. z1 ) * ( cosh /. z2 ) ) .= ( ( cosh /. z1 ) ) * ( ( cosh /. z2 ) * ( cosh /. z2 ) ) + ( ( cosh /. z1 ) * ( cosh /. z2 ) ) ; F . i = F /. i .= 0. R + r2 .= b |^ ( n + 1 ) .= <* ( n + 1 ) |^ 0 , b |^ ( n + 1 ) , a , b , c *> .= <* ( n + 1 ) |^ ( n + 1 ) , b , c *> .= <* ( n + 1 ) |^ ( n + 1 ) , b , a *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = R ( n , f . n ) & for n holds f . ( n + 1 ) = R ( n , f . n ) ; func f (#) F -> FinSequence of V means : Def3 : len it = len F & for i be Nat st i in dom it holds it . i = F /. i * f /. i ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 } = { x1 , x2 } \/ { x3 , x4 , 8 , 7 , 8 } \/ { 8 } \/ { 7 , 8 } ; for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o . ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ; ex S1 being Element of CQC-WFF ( Al ) st SubP ( P , l , e ) = S1 & ( for k st k in dom S1 holds ( ( k <= l implies S1 . k = e ) ) & ( not k <= l implies S1 . k = e ) & ( not k <= l implies S1 . k = e ) ) ; consider P being FinSequence of Gs2 such that pB = product P and for i st i in dom P ex t7 being Element of the carrier of G st P . i = t7 & t7 is prime & ex t7 being Element of the carrier of G st P . i = t7 & t7 is i & t7 is prime ; for T1 , T2 being non empty TopSpace , P being Basis of T1 , Q being Basis of T2 st the carrier of T1 = the carrier of T2 & P is Basis of T1 & P = the topology of T2 & P = the topology of T2 & P = the topology of T1 & P = the topology of T2 holds P = Q assume that f is_partial_differentiable_in u0 , u0 and r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 and partdiff u0 , 2 and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , u0 ) and partdiff ( r (#) pdiff1 ( f , 3 ) , u0 , 2 ) = r * pdiff1 ( f , u0 , 2 ) ; defpred P [ Nat ] means for F , G being FinSequence of ExtREAL for s being Permutation of Seg $1 , G st len F = $1 & G = F * s & not F = G * s & not F = F * s holds Sum F = Sum G ; ex j st 1 <= j & j < width GoB f & ( ( GoB f ) * ( 1 , j ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 or s < j & j < width GoB f ) & ( GoB f ) * ( 1 , j + 1 ) `2 <= s ) ; defpred U [ set , set ] means ex Fi1 being Subset-Family of T st $1 = Fi1 & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 is open & union Fi1 = union Fi1 & union Fi1 is 8 & union Fi1 is 8 & union Fi1 is discrete ; for p4 being Point of TOP-REAL 2 st LE p4 , p4 , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 holds LE p4 , p , P , p1 , p2 & LE p4 , p , P , p1 , p2 f in set ( E , H ) & for g st g . y <> f . y holds x in g implies g in set ( E , H ) & f in set ( E , H ) implies f in set ( E , H ) & f in set ( E , H ) ex 8 being Point of TOP-REAL 2 st x = 8 & ( ( ( 8 `2 / |. 8 .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) <= sn & ( ( 8 + sn ) / ( 1 + sn ) ) / ( 1 + sn ) <= 0 & ( ( 8 + sn ) / ( 1 + sn ) ) / ( 1 + sn ) <= 0 ) ; assume for d7 being Element of NAT st d7 <= ( ( ( ( ( ( ( ( ( ( ( ( ( 1 1 , 1 ) , 1 ) \ t ) } , 1 ) --> 1 ) ^ <* 1 *> ) ^ ( t , ( ( 1 , 1 ) \ t ) ) , ( ( 1 , 1 ) \ t ) ) ) holds s1 . d = s2 . d ; assume that s <> t and s is Point of Sphere ( x , r ) and s is Point of Sphere ( x , r ) and ex e being Point of E st { e } = Sphere ( s , t ) /\ Sphere ( x , r ) and e = Sphere ( s , t ) /\ Sphere ( x , r ) ; given r such that 0 < r and for s holds 0 < s or ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & |. f /. x1 - f /. x0 .| < r & |. f /. x1 - f /. x0 .| < r ; ( p | x ) | ( p | ( x | x ) ) = ( ( ( x | x ) | x ) | p ) | ( ( ( x | x ) | x ) | p ) ; assume that x , x + h in dom sec and ( for x st x in dom sec holds ( h . x = 4 * sin . x + h . x ) / ( sin . x ) ^2 and ( h . x ) ^2 / ( cos . x ) ^2 = ( 4 * sin . x + h . x ) / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 and for x st x in dom sec holds ( h . x = 4 * sin . x = 4 * sin . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( sin . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / ( cos . x ) ^2 / assume that i in dom A and len A > 1 and B c= the set of \HM { i , j } and A c= the set of \HM { i , j } and B = ( i , j ) |-> ( i , j ) and ( i = j implies A = B ) and ( i = j implies A = B ) ; for i be non zero Element of NAT st i in Seg n holds i divides n or i = <* 1. F_Complex , n *> & ( i <> n implies h . i = <* 1_ F_Complex , n *> ) & ( i <> n implies h . i = - 1_ F_Complex ) & ( i <> n implies h . i = - 1_ F_Complex implies h . i = - 1_ F_Complex ) ( ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( a1 'or' b1 'or' c1 ) '&' ( a2 'or' b2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( b2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' ( a2 '&' c2 ) '&' 'not' assume that for x holds f . x = ( ( cot * ( sin + cos ) ) / ( sin . x ) ^2 and x , h / ( sin . x ) ^2 / ( sin . x ) ^2 and for x st x in Z holds ( ( ( cot * ( sin + cos ) ) / ( sin . x ) ^2 ) = cos . ( x- ) ; consider Rd , I-8 be Real such that Rd = Integral ( M , F . n ) and I-8 = Integral ( M , F . n ) and Integral ( M , F . n ) = Integral ( M , F . n ) + Integral ( M , F . n ) and Integral ( M , F . n ) = Rd + ( I . n ) * i ; ex k be Element of NAT st k = k & 0 < d & for q be Element of product G st q in X & ||. qLet ( f , q , k ) - partdiff ( f , x , k ) .|| < r holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , 7 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 7 , 8 } iff x in { x1 , x2 , x3 , x4 , 8 , 8 , 7 , 8 } \/ { 8 , 8 , 7 , 8 } G * ( j , i ) `2 = G * ( 1 , i ) `2 .= G * ( 1 , i ) `2 .= G * ( 1 , j ) `2 .= G * ( 1 , j ) `2 .= p `2 .= G * ( 1 , j ) `2 .= p `2 .= G * ( 1 , j ) `2 .= p `2 .= p `2 .= p `2 .= p `2 .= p `2 .= p `2 .= p `2 .= p `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* ( the Arity of S2 ) ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o ; func tree ( T , P , T1 ) -> DecoratedTree means : Def3 : q in it iff q in T & for p , q st p in P & q in T holds p ^ q in T1 or ex r , s st r in P & s in T & p ^ r = p ^ r ; F /. ( k + 1 ) = F . ( k + 1 -' 1 ) .= Fq . ( k + 1 -' 1 ) .= Fq . ( k + 1 -' 1 ) .= Fq . ( k + 1 -' 1 ) .= Fq . k .= Fq . k .= Fq . k ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width C & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 & len A > 0 & len B > 0 holds A * ( B * C ) = A * B- B * ( B * C ) seq . ( k + 1 ) = 0. F_Complex + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) + seq . ( k + 1 ) ; assume that x in ( the carrier of Cy ) /\ ( the carrier of Cy ) and y in ( the carrier of Cy ) /\ ( the carrier of Cy ) and [ x , y ] in the InternalRel of Cy and [ x , y ] in the InternalRel of Cy and [ x , y ] in the InternalRel of Cy ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . ( k + 1 ) = ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) '&' ( VAL g ) . ( k + 1 ) ; assume that 1 <= k and k + 1 <= len f and f is_sequence_on G and [ i , j ] in Indices G and f /. k = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i , j ) and f /. ( k + 1 ) = G * ( i + 1 , j ) ; assume that cn < 1 and q `1 > 0 and q `2 / |. q .| >= sn and p = ( sn and q `2 / |. q .| >= sn and p = ( sn and q `2 / |. q .| ) and p = ( sn ) / |. q .| and p = ( sn ) / |. q .| and q = ( sn ) / |. q .| and p = ( sn ) / |. q .| ; for M being non empty TopSpace , x being Point of M , f being Point of M st x = x `1 holds ex f being sequence of B`2 st for n being Element of NAT holds f . n = Ball ( x `1 , 1 / ( n + 1 ) ) & f . 0 = Ball ( x `1 , 1 / ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on Z & f2 is_differentiable_on Z & for x st x in Z holds ( f1 - f2 ) . x = f1 . x - f2 . x / ( f1 . x ) ^2 / ( f1 . x ) ^2 / ( f1 . x ) ^2 / ( f1 . x ) ^2 / ( f1 . x ) ^2 / ( f1 . x ) ^2 / ( f1 . x ) ^2 / ( f1 . x ) ^2 ; defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. s1 . $1 - ( f /. $2 ) .|| < r & ||. f /. $1 - ( f /. ( $1 + 1 ) ) - ( f /. ( $1 + 1 ) ) .|| < r / 2 ; ( f ^ mid ( g , 2 , len g ) ) . i = ( mid ( g , 2 , len g ) ) . ( i - len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) .= g . ( i -' len f + 1 ) ; ( 1 / 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) = ( ( 1 / 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) ) * ( 2 * n0 + 2 * n0 + 2 * n0 ) .= ( 1 / 2 * n0 + 2 * n0 + 2 * n0 ) * ( 2 * n0 + 2 * n0 ) .= 1 * ( 2 * n0 + 2 * n0 ) ; defpred P [ Nat ] means for G being non empty strict finite symmetric RelStr st G is as free for S being non empty RelStr st S is as non empty & the carrier of G = { the carrier of G } & the carrier of G = { the carrier of G } holds the RelStr of G = the RelStr of G ; assume that not f /. 1 in Ball ( u , r ) and 1 <= m & m <= len f and for i st 1 <= i & i <= len f & LSeg ( f , i ) /\ Ball ( u , r ) <> {} and not f /. i in Ball ( u , r ) and not m <= i & i <= len f holds not f /. i in Ball ( u , r ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( cos ) . $1 ) . ( x - r ) = ( Partial_Sums ( cos ) . ( x - r ) ) . ( x - r ) + ( ( cos ) . ( x - r ) ) * ( x - r ) ; for x being Element of product F holds x is FinSequence of G & dom x = I & x = ( the carrier of F ) & for i being set st i in dom F holds x . i in ( the carrier of F ) & for i being set st i in dom F holds x . i in ( the carrier of F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " .= ( x * x ) " ; DataPart Comput ( P +* ( a , I ) , Initialized s , LifeSpan ( P +* I , s ) + 3 ) = DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= ( dom f1 /\ dom f2 ) and for g st g in ]. x0 , x0 + r .[ /\ dom f1 and g <= x0 and for g st g in ]. x0 , x0 + r .[ /\ dom f1 holds f1 . g <= f1 . g & f1 . g <= f1 . g ; assume that X c= dom f1 /\ dom f2 and f1 | X is continuous and f2 | X is continuous and ( for r st r in X /\ dom f2 holds f1 + f2 | X is continuous & ( for r st r in X /\ dom f2 holds f1 . r = r ) and ( for r st r in X /\ dom f2 holds f1 . r = r ) implies f1 + f2 is continuous & ( for r st r in X /\ dom f2 holds f1 + f2 | X is continuous & f1 + f2 is continuous & ( for r st r in X & r in X & r < r ex r ex r ex r st r in X & r <= r ) & ( r - f2 ) implies f1 + f2 is continuous & ( r - f2 ) implies f1 + f2 is continuous & ( r - f2 ) implies f1 + f2 is continuous & ( r - f2 ) & ( r - f2 | X is continuous & ( r < r implies f1 + f2 is continuous & ( r - f2 ) | X is continuous & ( r - f2 ) | X is continuous & for L being continuous complete LATTICE st for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is an & for x being Element of L st x in X holds x is an & x is an & x is an & x is Element of L holds x = "\/" ( waybelow l , L ) Support e8 in { Support ( m *' p ) where m is Polynomial of n , L : m in dom ( m *' p ) & ex i being Element of NAT st i in dom ( m *' p ) & ( m /. i ) = p . i & ( m /. i ) = p . i & ( m /. i ) = p . i ) ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f2 /* s1 ) - lim ( f2 /* s1 ) ; ex p1 being Element of CQC-WFF ( Al ) st p1 = g . p1 & for g being Function of [: V , ( len p1 ) , D ( ) :] , D ( ) st P [ g , p1 , ( len p1 ) + 1 ] holds P [ p1 , ( len p1 ) + 1 ] ; ( mid ( f , i , len f -' 1 ) ^ <* f /. j *> ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= f /. ( j + i -' 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) . k ) ^ r . ( len p + k ) .= ( ( p ^ q ) . k ) ^ r . ( len p + k ) .= ( p ^ r ) . k .= ( p ^ r ) . k .= ( p ^ r ) . k .= p . k ; len mid ( upper_volume ( f , D2 ) , indx ( D2 , D1 , j1 ) + 1 , indx ( D2 , D1 , j1 ) ) = indx ( D2 , D1 , j1 ) + ( indx ( D2 , D1 , j1 ) + 1 ) - ( indx ( D2 , D1 , j1 ) + 1 ) ; x * y * z = ( x * y ) * ( z * w ) .= ( x9 * y9 ) * ( y9 * z9 ) .= x9 * ( y9 * z9 ) .= x9 * ( y9 * z9 ) .= x9 * ( y9 * z9 ) .= x9 * ( y9 * z9 ) .= x9 * ( y9 * z9 ) .= x9 * ( y9 * z9 ) .= x9 * y9 ; v . <* x , y *> + ( <* x0 , y0 *> ) * i = partdiff ( v , ( x - x0 ) * i ) + partdiff ( u , ( x - x0 ) * i ) + ( proj ( 1 , 1 ) * i ) + proj ( 1 , 1 ) * ( ( x - x0 ) * ( ( x - x0 ) * i ) + proj ( 1 , 1 ) * ( ( x - x0 ) * i ) ; i * i = <* 0 * ( - 1 ) - ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) + 0 * 0 + ( 0 * 0 ) - ( 0 * 0 ) , 0 * 0 + ( 0 * 0 ) - 0 * 0 + 0 * 0 + 0 * 0 + 0 * 0 .= <* - 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) ; ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X st Y0 is non empty & Y0 c= Y & for Y1 be finite Subset of X st Y1 c= Y & Y1 c= Y holds |. ( union Y1 ) - ( lower_bound Y1 ) .| < r ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) ; ( ( - cos ) . x ) ^2 = ( ( r ^2 - 1 ) * ( sin . x ) ^2 + ( - 1 ) * ( sin . x ) ^2 .= ( ( r ^2 - 1 ) * ( sin . x ) ) ^2 + ( ( r ^2 - 1 ) * ( sin . x ) ^2 ) .= ( r ^2 - 1 ) * ( cos . x ) ^2 .= ( r ^2 - 1 ) * ( cos . x ) ^2 ; x- ( b + sqrt ( a , b , c ) / 2 * a ) < 0 & - ( b - sqrt ( a , b , c ) / 2 * a ) / 2 < 0 or - ( b - sqrt ( a , b , c ) / 2 * a ) / 2 > 0 & - ( - ( a , b , c ) / 2 * a ) / 2 > 0 ; assume that ex_inf_of uparrow X /\ C and ex_sup_of X , L and ex_sup_of X , L and "\/" ( ( subrelstr X ) /\ C , L ) = "/\" ( ( subrelstr X ) /\ C , L ) and not "\/" ( ( subrelstr X ) /\ C , L ) = "/\" ( ( subrelstr X ) /\ C , L ) and not "\/" ( ( subrelstr X ) /\ C , L ) = "/\" ( ( uparrow X ) /\ C , L ) ; ( for j being Element of OL ) . ( j , i ) = ( j |-- id the carrier of B ) . ( i , j ) .= ( i |-- id B ) . ( i , j ) .= ( i |-- id B ) . ( i , j ) .= ( i |-- id B ) . ( i , j ) .= ( i |-> id B ) . ( i , j ) ;