thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c ; T c= S ; D c= B ; c ; b ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is dense ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; let k be Nat ; K is being_line ; assume n >= N ; assume n >= N ; assume X is condition ; assume x in I ; q is \upharpoonright ; assume c in x ; p > 0 ; assume x in Z ; assume x in Z ; 1 <= k12 ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; d > 0 ; assume q in A ; W is bounded ; f is Int one-to-one ; assume A is discrete ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is negative ; b `1 <= c `1 ; A meets W ; i `1 <= j `1 ; assume H is universal ; assume x in X ; let X be set ; let T be DecoratedTree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= m-2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] ; let E be set , f be Function of E , F ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] ; let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] ; let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is initial ; Q halts_on s ; x in SCMPDS ; M < m + 1 ; T2 is open ; z in b +^ a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; P3 is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o is_transformable_to o1 ; O <> O ; let r be Real ; let f be FinSequence ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subspace of V ; not s in Y |^ 0 ; rng f <= w ; b "/\" e = b ; m = m2 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; aa <= real ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V ; s is trivial & s is trivial ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , A be Subset of T ; the ObjectMap of F is one-to-one ; sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vs < n ; Smax is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U ; p-25 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in right_open_halfline x ; 1 <= j1 & j1 <= j2 ; set A = \mathclose ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has has has H ; assume n <= m ; T is increasing ; e1 <> e1 ; Z c= dom g ; dom p = X ; H is proper ; i + 1 <= n ; v <> 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X be set ; c = sup N ; R is connected ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in [: A , A :] ; C c= Cmax ( C , m ) ; m1 <> {} ; let x be Element of Y ; let f be \mathclose extended -valued Function , x be set ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v .vertices() ; - y in I ; let A be non empty set , a be Element of A ; P0 = 1 ; assume r in F . k ; assume f is simple ; let A be infinite set ; rng f c= NAT ; assume P [ k ] ; f6 <> {} ; let o be Ordinal ; assume x is sum of sum ; assume not v in { 1 } ; let I1 ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in LSeg ( a , b ) ; assume t . 1 in A ; let Y be non empty TopSpace , a be Point of Y ; assume a in ]. s , t .[ ; let S be non empty RelStr ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f | A ) ; [ a , c ] in X ; m1 <> {} ; M + N c= M + N ; assume M is satisfying_Ahhhh; assume f is with_Gsssssssssssssssssssssssss let x , y ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re ( y ) = 0 ; k1 <= j1 & j1 <= j2 ; f | A is x2 ; f . x <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q ^ q ^ p ^ q ^ r ^ s ^ s ^ q ^ s ^ q ^ s ^ q ^ s ^ q j |^ ( y , y ) divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in phi ; Cs is one-to-one ; q2 c= C1 & q2 c= C2 ; a2 < c2 & c2 < c2 ; s2 is 0 -started ; IC s = 0 ; s3 = s3 ; let V ; let x , y ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be non empty RelStr ; y " <> 0 ; y " <> 0 ; 0. V = uw ; y2 , y , w , y is_collinear ; R8 is open ; let a , b be Real , x be Real ; let a be object of C ; let x be Vertex of G ; let o be Object of C , a be Object of C ; r '&' q = P \lbrack l , P \rbrack ; let i , j ; let s be State of A , a be Element of B ; s3 . n = N ; set y = ( x `1 ) / 2 ; NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in C0 ; V is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that A9 is dense and A9 is dense ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in W-19 ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C , X ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= [: Z , Z :] ; dom f = C1 & dom g = C2 ; assume [ a , y ] in X ; Re ( seq ) is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be instruction of S , s be State of S ; assume r2 > x0 ; let Y be non empty set , a be Element of Y ; 2 * x in dom W ; m in dom ( g2 | A ) ; n in dom ( g1 | A ) ; k + 1 in dom f ; the still not bound in { s } ; assume x1 <> x2 & x2 <> x3 ; v2 in ( V \ { 0 } ) \/ ( V \ { 0 } ) ; not [ b `1 , b `2 ] in T ; -' 1 + 1 = i ; T c= Cn ( T ) ; ( l - 1 ) * ( l - 1 ) = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AA is integrable ; set t = "/\" ( { t } , L ) ; let A , B be real-membered set ; k <= len G + 1 ; ( TOP-REAL 2 ) misses ( TOP-REAL 2 ) ; product ( seq | A ) is non empty ; e <= f or f <= e ; cluster -> non empty for NAT -defined Function ; assume c2 = b2 & c2 = b1 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that v-4 is convergent and lim is convergent ; IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int ( G1 \/ G2 ) <> {} ; ( z `2 ) ^2 = 0 ; p01 <> p1 & p2 <> p3 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of { s } , S ; f . x <= f . y ; let T be complete non empty reflexive antisymmetric RelStr ; q1 / ( m + 1 ) >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one implies is one-to-one & G is one-to-one ; A \/ { a } c= B ; 0. V = 0. ( Y | V ) ; let I be halting Instruction of S , s be State of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be sequence of Sigma ; assume X1 = p .: D ; n + l in NAT ; f " P is compact ; assume x1 in REAL + ( - x2 ) ; p1 = K & p2 = K ; M . k = <*> ( the carrier of V ) ; phi . 0 in rng phi ; MMMA is closed ; assume z <> 0. L ; n < N . k ; 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; set g = f /. 1 ; [: R , S :] is stable ; set R = Vertices R , S = Vertices R ; p0 c= PE & PE c= PE ; x in [. 0 , 1 .] ; f . y in dom F ; let T be Scott TopAugmentation of S ; inf the carrier of S is Element of S ; sup a = sup { b } ; P , C , K , f , g ; assume x in LSeg ( s , r ) ; 2 to_power i < 2 to_power m ; x + z = x + z ; x \ ( a \ x ) = x ; ||. \mathopen { \Vert x .|| } <= r ; assume that Y c= field Q and Y <> {} ; a , b are_: b , a are_isomorphic ; assume a in A . i ; k in dom ( ( q | n ) | ( dom q | n ) ) ; p is FinSequence of S ; i - 1 = i - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 ; j2 + 1 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict strict strict strict for commutative Ring ; |. q .| / |. q .| > 0 ; |. p3 .| = |. p .| ; s2 - s1 > 0 ; assume x in { G * ( -12 , k ) } ; W-min C in C & W-min C in C ; assume x in { G * ( -12 , k ) } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1 <= i + 1 ; dom S = dom F ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non void non empty non void ManySortedSign ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x be Element of COMPLEX ; u in { \hbox { \boldmath $ g g } } ; 2 * n < ( 2 * n ) / ( 2 * n ) ; let x , y ; BW c= [: open , V :] ; assume I is_halting_on s , P ; U = ( U , m ) --> ( U , m ) ; M /. 1 = z /. 1 ; x11 = x22 ( x , y , z ) ; i + 1 < n + 1 ; x in { {} , <* 0 *> } ; f . ( n + 1 ) <= f . ( n + 1 ) ; let l be Element of L ; x in dom ( F . n ) ; let i be Element of NAT ; r8 is ( the carrier of K ) -valued ; assume <* o2 , o2 *> <> {} ; s . x / 0 = 1 ; card ( K . i ) in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = q | { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster strict for non empty Poset ; a1 in B . ( s1 . a ) ; let V be finite VectSp of F , F be FinSequence of V ; A * B on B , A ; f-3 = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j & z2 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; assume q in A \/ ( B \/ C ) ; dom ( F * C ) = o ; set S = ( NAT , X ) --> NAT ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be non-empty ManySortedSet of I ; sqrt ( PI / 2 ) < Arg z ; reconsider z9 = 0 as Nat ; LIN a , d , c ; [ y , x ] in [: I , I :] ; ( Q ) * ( 1 , 3 ) = 0 ; set j = x0 div m , k = x0 mod m ; assume a in { x , y , c } ; j2 - ( j - 1 ) > 0 ; I \! \mathop { + } phi = 1 ; [ y , d ] in ( F /. d ) ; let f be Function of X , Y ; set A2 = sqrt ( B , C ) ; s1 , s2 be Element of L ; j1 -' 1 + 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | ( D , i ) ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ; a < ( p3 `2 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 + 1 - 1 ; 1 <= i1 -' 1 + 1 - 1 ; i + i2 <= len h ; x = W-min ( P ) ; [ x , z ] in X [: Z , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . ( g . x ) ; card b * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 \circ ( h1 . x ) ; assume x in ( 3 /\ 4 ) /\ ( 3 /\ 4 ) ; ||. h .|| < d ; not x in the carrier of f & not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kl ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of Y ; P , Q be subspaces of s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X <= f . ( sup X ) ; let L be non empty transitive RelStr , X be Subset of L ; Sw is x -Gi -to_power i ; let r be non positive Real ; M , v / ( x , y ) |= y ; v + w = 0. ( V , C ) ; P [ len ( F | ( len F ) ) ] ; assume InsCode i = 8 & InsCode i = 8 ; the zero of M = 0 ; cluster z * seq -> summable ; let O be Subset of the carrier' of C ; ||. f .|| " X is continuous ; x2 = g . ( j + 1 ) ; cluster -> ( S , U ) -valued for Element of S ; reconsider l1 = ll as Nat ; v4 is Vertex of r2 & ( the ResultSort of C ) . ( n + 1 ) = v ; T is SubSpace of T2 | ( the carrier of T2 ) ; ( Q /\ Q ) /\ Q <> {} ; let k be Nat ; q " is Element of X ; F . t is set with the non empty ; assume n <> 0 & n <> 1 ; set e1 = EmptyBag n , e2 = EmptyBag n , T = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is root implies ( p . x ) `1 = ( p . x ) `1 not r in ]. p , q .[ ; let R be FinSequence of REAL ; S7 not LIN b1 , b2 , b1 ; IC SCM R <> a ; |. - x , y ] >= r ; 1 * ( seq . n ) = seq . ( n + 1 ) ; let x be FinSequence of NAT ; let f be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT .= s . NAT ; H + G = F- ( GG ) ; Cx . x = x2 . x ; f1 = f .= ( f1 | A ) . ( f . x ) ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u ; { a1 } = { a1 } & { a1 } = { a1 } ; a1 , b1 _|_ b , a ; d1 , o _|_ o , a1 ; I1 is reflexive implies ( for x being Element of C st x in the carrier' of C holds x in the carrier' of C ) & ( x in the carrier' of C ) & ( x in the carrier' of C ) I1 is antisymmetric antisymmetric antisymmetric Relation of C & ( the InternalRel of C ) . ( a , b ) is antisymmetric ; sup ( rng ( H1 | n ) ) = e ; x = a9 * ( a * b ) ; |. p1 .| ^2 >= 1 ; assume j2 - 1 < j - 1 ; rng s c= dom ( f1 * f2 ) ; assume support a misses support b & not a in support b ; let L be unital non empty doubleLoopStr , n be Element of NAT ; s " + 0 < n + 1 ; p . c = ( f . 1 ) . c ; R . n <= R . ( n + 1 ) ; Directed ( I , x0 ) = I +* ( card I + 1 ) ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty for Function ; let X be non empty directed Subset of S ; let S be non empty full RelStr ; cluster <* L1 . N , L2 . N *> -> complete for non trivial TopSpace ; sqrt ( 1 - a ) = a ; ( q . {} ) `1 = o ; n - ( i - 1 ) > 0 ; assume sqrt ( 1 - 2 ) <= t `1 ; card ( B \ C ) = k + 1 ; x in union rng ( f | ( rng f ) ) ; assume x in the carrier of R ; d in C ; f . 1 = L . ( F . 1 ) ; the carrier' of G = { v } \/ { v } ; let G be finite _Graph ; e , v2 , G2 ; c . ( i1 + 1 ) in rng c ; f2 /* q is divergent_to+infty ; set z1 = - ( z1 - z2 ) , z2 = - ( z1 - z2 ) ; assume w is SubGof S , G ; set f = p \! \mathop { t } ; let c be Object of C ; assume that P [ a ] ; let x be Element of REAL m m ; let I1 be Subset-Family of X ; reconsider p = p as Element of NAT ; v , w be Point of X ; let s be State of SCM+FSA , I be Program of SCM+FSA ; p is FinSequence of the InstructionsF of SCM+FSA , the carrier of SCM+FSA ; stop I c= P-12 & I c= P ; set ci = f /. i , ci = f /. ( i + 1 ) ; w ^ t ^ s ^ w ^ t ^ s ^ w ^ t ^ s ^ w ^ t ^ s ^ t ^ w ^ s ^ t ^ w ^ t ^ w ^ s ^ t ^ W1 /\ W = ( W1 /\ W2 ) /\ ( W2 /\ W3 ) ; f . j is Element of J . j ; let x , y be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 ; ord x = 1 & x is \setminus ; set g2 = lim ( s , x0 ) ; 2 * x >= 2 * sqrt ( 1 + ( 2 * x ) ^2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , d + c ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F . k ) = 0 ; ( id X \/ R1 ) \/ R1 = ( id X ) \/ ( id X ) ; ( ( the Sorts of sin ) . x ) . ( ( the Sorts of sin ) . x ) <> 0 ; ( the function of exp ( C , n ) ) . x > 0 ; o1 in [: X , Y :] /\ [: Y , Z :] ; e , v2 , G2 ; r3 > sqrt ( 1 - 0 ) * 0 ; x in P .: ( F " ) ; let J be closed non empty Subset of R ; h . p1 = f2 . O ; Index ( p , f ) + 1 <= j ; len ( q ^ <* x *> ) = width M ; the carrier of Lin K c= A ; dom f c= union rng ( F | ( union rng F ) ) ; k + 1 in Seg ( n + 1 ) ; let X be ManySortedSet of the carrier of S ; [ x `1 `1 , y `2 ] in InnerVertices R ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . ( x1 , x2 ) ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as sequence of REAL ; sqrt ( 1 / m * m + r ) < p ; dom f = dom ( I | ( dom I ) ) ; [#] ( ( ( TOP-REAL n ) | P ) | P ) = [#] ( ( TOP-REAL n ) | P ) ; cluster - x -> real for number ; then { d } c= A ; cluster ( TOP-REAL n ) | A -> finite-ind ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W2 & u in W2 ; reconsider y = y as Element of L2 ; N is full full SubRelStr of T |^ ( the carrier of S ) ; sup { x , y } = c "\/" c ; g . n = n / ( 1 + 1 ) .= n ; h . J = EqClass ( u , J ) ; let seq be sequence of X ; dist ( x `1 , y ) < r / 2 ; reconsider mm = m - 1 as Element of NAT ; x- x0 < ( r1 - x0 ) * ( x0 - x0 ) ; reconsider P = P ` as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) ; let n , m , k be non zero Nat ; assume 0 < e & f | A is lower ; D2 . ( I . ( x , I ) ) in { x } ; cluster -> closed for Subset of T ; let P be compact non empty Subset of TOP-REAL 2 ; G * ( -13 , 1 ) in LSeg ( \pi , 1 ) ; let n be Element of NAT , a be Element of NAT ; reconsider Ss = S as Subset of T ; dom ( i .--> X ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( 1 , {} ) c= { [ {} , {} ] } ; reconsider m = min ( m , n ) as Element of NAT ; reconsider d = x as Element of ( the carrier' of C ) . s ; let s be 0 -started State of SCMPDS , p be Point of SCMPDS ; let t be 0 -started State of SCMPDS ; b , b , x , y , z is_collinear ; assume i = n \/ { n } & j = k \/ { k } ; let f be PartFunc of X , Y ; N >= sqrt ( ( c + d ) / ( 2 * PI ) ) ; reconsider tT = ( T " ) . x as TopStruct ; set q = h * p ^ <* d *> ; z2 in U . ( y2 , z2 ) /\ Q ; A |^ 0 = { <* 0 *> , A } ; len ( W2 + W1 ) = len ( W2 + W1 ) ; len ( h2 ^ h2 ) in dom h2 & len ( h2 ^ h2 ) in dom h2 ; i + 1 in Seg ( len s2 ) & i + 1 in Seg ( len s2 ) ; z in dom ( g1 | A ) /\ dom f ; assume p2 = W-min ( K ) & p2 = W-min ( K ) ; len G + 1 <= i1 + 1 ; f1 (#) f2 is convergent & f2 (#) ( f1 (#) f2 ) is convergent ; cluster ( seq + seq1 ) + ( seq + seq1 ) -> summable ; assume j in dom ( M1 * M2 ) ; let A , B , C be Subset of X ; let x , y , z be Point of X , f be Function of X , Y ; b ^2 - ( 4 * a ) >= 0 ; <* xy *> ^ <* y *> ^ <* y *> ^ <* x *> ^ <* y *> ^ <* y *> ^ <* x *> ^ <* y *> ^ <* y *> ^ <* x *> ^ <* y *> ^ <* y a , b in { a , b } ; len ( p2 | ( len p2 ) ) is Element of NAT ; ex x being element st x in dom R & x = R . x ; len q = len ( K * G ) ; s1 = Initialize ( Initialized s ) .= Exec ( i , s1 ) .= Exec ( i , s1 ) . f ; consider w be Nat such that q = z + w ; x ` ` ` is Element of L ` ; k = 0 & n <> k or k > n ; then X is discrete implies for A being Subset of X holds A is closed ; for x st x in L holds x is FinSequence ; ||. f /. c .|| <= r1 ; c in ]. p , q .] & not c in { p } ; reconsider V = V as Subset of the carrier of n n , 1 ; let N , M be <* non empty set ; then z is_>=_than x & z >= sup x ; M | [. f , g .] = f & M | [. g , g .] = g ; ( ( #Z ( 1 ) ) /. 1 ) /. 1 = TRUE ; dom g = dom f & g = ( f | X ) . x ; mode Walk of G is Walk of G ; [ i , j ] in Indices ( M @ ) ; reconsider s = x " as Element of H ; let f be Element of dom ( - p ) ; F1 . ( a1 , a2 ) = G1 . ( a1 , a2 ) ; cluster AffineMap ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 - s ) ; curry ( F . k , X ) is additive ; set k2 = card ( B \/ C ) , k2 = card ( B \/ C ) ; set G = coprod ( X ) ; reconsider a = [ x , s ] as Object of G ; let a , b be Element of [: M , M :] , M ; reconsider s1 = s as Element of S0 -tuples_on the carrier of S ; rng p c= the carrier of L & rng p c= the carrier of L ; let d be Subset of the bound A ; ( x | x ) = 0 iff x = 0. W ; I1 in dom ( stop I ) & I . ( card I + 1 ) = ( stop I ) . ( card I + 1 ) ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i1 = len ( p1 , p2 ) as Integer ; dom f = the carrier of S & rng f c= the carrier of S ; rng h c= union ( the carrier of J ) ; cluster All ( x , H ) -> proper ; d * ( N1 / 2 ) > ( 1 / 2 ) * ( 1 / 2 ) ; ]. a , b .[ c= [. a , b .] ; set g = f " ( D1 ) , h = f " ( D2 ) ; dom ( p | ( NAT + 1 ) ) = NAT ; 3 + - 2 <= k + - 2 ; the function tan is differentiable in ( ( arctan * arccot ) . x ) ; x in rng ( f /^ ( p .. f ) ) ; let f , g be FinSequence of D ; p in the carrier of S1 & q in the carrier of S2 ; rng ( f " ) = dom f ; ( the Target of G ) . e = v ; width G - 1 < width G - 1 + 1 ; assume v in rng ( S | ( E . k ) ) ; assume x is root or x is root ; assume 0 in rng ( ( g2 | A ) | A ) ; let q be Point of TOP-REAL 2 , p be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , q be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is in the InternalRel of ( the Sorts of C ) . ( len C7 ) ; i <= len ( G | ( i -' 1 ) ) - 1 ; let p be Point of TOP-REAL 2 , q be Point of TOP-REAL 2 ; x1 in the carrier of ( ( TOP-REAL 2 ) | K1 ) ; set p1 = f /. i , p2 = f /. i ; g in { g2 : r < g2 } ; Q = SnK ( Q ) .= ( Q | Q ) " ; ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( ( 1 / 2 ) (#) ( 1 / 2 ) ) ) ) ) is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , s1 ) = i .= i ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r - 1 , r + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 ; reconsider z = z as Element of InclPoset ( L ) ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in S \/ ( the carrier' of A ) ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 4 ; let C1 , C2 be subsignature of C ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def2 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g ; H |^ a " is Subgroup of H ; let A1 be Element of O , A2 be Element of O ; p2 , q2 , q1 , q2 , q2 is_collinear & q2 <> q2 ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } ; p in [#] ( ( ( TOP-REAL 2 ) | B ) | K1 ) ; 0 in ( M . E ) & ( M . E ) `2 < ( M . F ) `2 ; op ( c , c ) / ( a , b ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . n ) ) ) ) ) ) ) ) ) ) cluster \mathclose { \rm \mathclose { \rm c } } -> with_\ast ; set i1 = the Element of NAT , i2 = the Element of NAT , j1 = the Element of NAT ; let s be 0 -started State of SCM+FSA , p be ( 0 , I ) -valued Function ; assume y in ( f1 \/ f2 ) .: A ; f . ( len f ) = f /. ( len f + 1 ) ; x , f . x '||' f . y , f . y ; attr X c= Y means : Def2 : cos ( X ) c= cos ( Y ) ; let y be upper Subset of Y , x be Element of Y ; cluster ( x `1 ) / 2 -> non inm for Nat ; set S = <* Bags n , i *> ; set T = [. 0 , 1 .] ; 1 in dom mid ( f , 1 , 1 ) ; sqrt ( 4 * PI ) < sqrt ( 2 * PI * PI ) ; x2 in dom ( f1 | X ) /\ dom ( f2 | X ) ; O c= dom I & { {} } = { {} } ; ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y , z be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p `2 ) ^2 + ( p `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> = len P & len ( P ^ <* Q *> ) = len P ; set NN = the InternalRel of N , the InternalRel of S ; len gx + ( x + 1 ) <= x ; a on B & b on C ; reconsider r-12 = r * I . v as FinSequence ; consider d such that x = d and a [= d and a [= c ; given u such that u in W and x = v + u ; len f /. ( \downharpoonright n ) = len f - n ; set q2 = W-min ( C ) , q2 = W-min ( C ) , q1 = W-min ( C ) ; set S = variables_in ( S1 , S2 , S1 ) ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . ( r1 , r2 ) ; f " ( D ) meets h " ( V ) ; reconsider D = E as non empty directed Subset of L1 ; H = H '&' ( H '&' H ) ; assume t is Element of ( \mathfrak S ) . ( X . s ) ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 . b2 ; the carrier' of G = E \/ { E } ; reconsider m = len ( p | ( k + 1 ) ) as Element of NAT ; set S1 = LSeg ( n , W-min C ) , S2 = LSeg ( n , W-min C ) ; [ i , j ] in Indices ( M1 @ ) ; assume that P c= Seg m and M is Matrix of n , K ; for k st m <= k holds z in K . k ; consider a be set such that p in a and a in G ; L1 . p = p * ( 1 , 0 ) ; p-7 . i = p-7 . i .= p-7 . i ; let PA , G be a_partition of Y ; attr 0 < r & 1 < 1 & r < 1 ; rng proj ( a , X ) = [#] ( X | A ) ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( canFS ( s ) ) = card ( s ) + 1 ; reconsider x2 = x1 as Element of L ; Q in FinMeetCl ( ( the topology of X ) | ( the topology of X ) ) ; dom ( f | X ) c= dom ( u | X ) ; attr n divides m means : Def2 : m divides n ; reconsider x = x as Point of I[01] | P ; a in \bf trivial ( 2 , T2 ) & b in trivial ( 2 , T2 ) ; not y in the still of f & not y in the carrier' of f ; Hom ( a , b ) <> {} & Hom ( a , b ) <> {} ; consider k1 such that p " < k1 and p " < k1 ; consider c , d such that dom f = c \ d ; [ x , y ] in dom g & [ y , z ] in g ; set S1 = InputVertices S2 ( x , y , z ) ; l = m2 & l = m2 & l = m2 & l = m2 & l = m2 & l = m2 & l = m2 & l = m2 ; x0 in dom ( u | A ) /\ ( ( u | A ) . x0 ) ; reconsider p = x as Point of ( TOP-REAL 2 ) | K1 ; [: I[01] , I[01] :] = [: ( TOP-REAL 2 ) | B , ( TOP-REAL 2 ) | B :] ; f . p3 <= f . p1 & f . p2 <= f . p2 ; ( ( F . n ) . x ) `1 <= ( F . n ) `1 ; ( x `2 ) ^2 = ( ( ( y `2 ) ) ^2 + ( y `2 ) ^2 ) ; for n being Element of NAT holds P [ n ] ; let J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a *> ; 0 |-> a = <*> the carrier of K ; X . i in 2 -tuples_on ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] ; reconsider ss = ( smax ( D , R ) ) . s as terminal of D ; ( - i ) - 1 <= len - j ; [#] S c= [#] ( T | S ) ; for V being strict RealUnitarySpace holds V in (Omega). ( V ) ; assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 ; let A , B be Matrix of n , K ; - a * ( - b ) = a * b ; for A being Subset of ( TOP-REAL 2 ) holds A // A & A // C ; id ( o2 ) in <* o2 , o2 , o1 , o2 *> ; then ||. x .|| = 0 & x = 0. ( X ) ; let N1 , N2 be strict normal Subgroup of G ; j >= len ( g | indx ( g , D1 , j1 ) ) ; b = Q . ( len Q + 1 ) .= Q . ( len Q + 1 ) ; f2 * f1 /* s is divergent of \hbox { $ - \infty $ } , lim ( f1 /* s ) ; reconsider h = f * g as Function of [: N , I :] , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the InternalRel of A & [ s , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( v |-- E ) . n ; {} = the carrier of ( L1 + L2 ) /\ ( L2 + L2 ) ; Directed I is closed & Directed I is closed implies ; Initialized ( p +* q ) = Initialized ( p +* q ) .= Initialized ( p +* q ) ; reconsider N2 = N1 as strict net of ( the carrier of N ) | the carrier of N ; reconsider Y = Y as Element of <* <* 1 *> , \subseteq *> ; "/\" ( { p } , L ) \ { p } <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; not [ s , 0 ] in the InternalRel of S2 & not [ s , 0 ] in the InternalRel of S2 ; m in ( B '&' C ) /\ D \ { {} } ; n <= len ( ( P | ( len P ) ) | ( len P ) ) ; ( x1 - x2 ) `1 = ( x2 - y2 ) `1 .= ( x2 - y2 ) `1 ; InputVertices S = { x , y , c } & InputVertices S = { x , y , c } ; let x , y be Element of FIA1 ( n ) ; p = |[ ( p `1 ) / ( 1 + ( p `2 ) / ( 1 + ( p `2 ) ) ^2 ) , ( p `2 ) / ( 1 + ( p `2 ) ) ^2 ) ]| ; g * 1_ G = h " * g * h ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( f1 | X ) /\ dom ( f2 | X ) ; ( R qua Function ) " = R " ( dom R ) ; n in Seg ( len ( f /^ n ) ) & n in dom ( f /^ n ) ; for s being Real st s in R holds s <= s2 ; rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym for for Subset of ( TOP-REAL n ) | ( Seg n ) for x being element st x in Seg n holds x in Seg n ; 1_ ( K , n , m ) * ( 0. ( K , n , m ) ) = 0. ( K , n , m ) ; set S = Segm ( A , P1 , Q1 ) , P1 = Segm ( A , P1 , Q1 ) ; ex w st e = sqrt ( w , f ) & w in F ; ( curry ( Pk , k ) ) # x is convergent ; cluster -> open for Subset of T | P ; len f1 = 1 .= len ( f1 ^ f2 ) .= len ( f1 ^ f2 ) .= len ( f1 + f2 ) ; sqrt ( i * p ) < sqrt ( 2 * p ) ; let x , y be Element of ( U1 ) * ; b1 , c1 // b1 , c1 & b1 , c1 // b1 , c2 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f " { 0 } = {} ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I + card J ) not a in dom J ; not ( card I + 1 ) does not destroy c ; set m1 = LifeSpan ( p , s ) , m2 = LifeSpan ( p , s ) , m2 = Comput ( p , s , m1 ) , m2 = Comput ( p , s , m1 ) ; IC Comput ( p , s , k ) in dom Initialize ( p +* I ) ; dom t = the carrier of SCM ( ) & dom t = the carrier of R ( ) ; ( W-min L~ f ) .. f = 1 & ( W-min L~ f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union F ) c= Cl ( union F ) ; the carrier of X1 union X2 misses ( the carrier of X1 ) \/ ( the carrier of X2 ) ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = d and i in dom ( d | i ) ; then Y c= { x } or Y = { x } ; M , v / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( consider m being element such that m in Intersect ( ( F . m ) . x ) ; reconsider A1 = support ( u | A1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a1 <> a4 and a1 <> a4 and a2 <> a4 and a1 <> a4 ; cluster s \! \mathop { \rm \hbox { - } -> ( S , X ) -valued string of S ; L2 /. ( n + 2 ) = L . ( n + 2 ) ; let P be compact non empty Subset of TOP-REAL 2 ; assume that r-7 in LSeg ( p1 , p2 ) and P-7 in LSeg ( p2 , p3 ) ; let A be non empty compact Subset of TOP-REAL n , a be Real ; assume [ k , m ] in Indices ( ( D1 | j1 ) | j1 ) ; 0 <= ( 1 / 2 ) to_power ( p . n ) ; ( F . N ) . x = +infty ; attr X c= Y means : Def2 : Z c= V \ Y ; ( y * ( z * ( y * z ) ) ) * ( ( y * z ) * ( z * x ) ) <> 0. I ; 1 + card ( ( card ( X /\ Y ) ) ) <= card ( u /\ ( X /\ Y ) ) ; set g = z \circlearrowleft ( L~ z ) , h = z /. ( len z + 1 ) ; then p = 1 & p . k = <* x , y *> ; cluster -> ( C , D ) -for Element of D ; reconsider B = A as non empty Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; ( for x1 , x2 , x3 being Element of D holds P [ x1 , x2 , x3 ] ) implies P [ x1 , x2 , x3 ] n <= indx ( D2 , D1 , j1 ) + 1 ; ( g2 . O ) `1 = ( - 1 ) * ( ( g2 . O ) `1 ) `1 ; j + p .. f - ( len f - 1 ) <= len f - ( len f - 1 ) ; set W = W-min ( C ) ; S1 . ( a , e ) = a + e .= a + e ; 1 in Seg width ( M * ( p , q ) ) ; dom ( i * Im ( f ) ) = dom ( Im ( f ) ) ; W . ( x `1 , p ) = W . ( a , p ) ; set Q = |= ( g , f , h ) ; cluster -> \mathclose for Relation of U1 ; attr F = { A } means : Def2 : F is discrete ; reconsider z9 = H as Element of product ( G . i ) ; rng f c= rng ( f1 + f2 ) \/ rng ( f2 + g2 ) ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of C ) & f is one-to-one ; E , j |= All ( x , y , H ) ; reconsider n1 = n as Morphism of o1 , o2 ; assume that P is commutative and R is commutative and P = P * R ; card ( ( B \/ { x } ) \/ { x } ) = k-1 + 1 ; card ( x \ ( x \ ( B \ C ) ) ) = 0 ; g + R in { s : g-r < s + r } ; set q9 = ( q , <* s *> ) := ( <* s *> , <* s *> ) , <* s *> ) := ( s , <* s *> ) ; for x being element st x in X holds x in rng ( f1 | X ) ; h1 /. ( i + 1 ) = h2 . ( i + 1 ) ; set mw = max ( B , Funcs ( B , C ) ) ; t in Seg width ( I ^ ( n , n ) ) & t in dom ( I ^ ( n , n ) ) ; reconsider X = dom f as Element of ( the carrier of V ) -tuples_on the carrier of V ; IncAddr ( i , k ) = halt S + k .= ( i + k ) + k ; ( W-min L~ f ) `2 <= ( q `2 ) / ( |. q .| ) ; attr R is condensed means : Def2 : for x being Element of R st x in R holds Cl ( R . x ) is condensed ; attr 0 <= a & b <= 1 & a * b <= 1 ; u in ( c /\ ( ( d /\ b ) /\ e ) /\ f ) /\ f ; u in ( c /\ ( ( d /\ e ) /\ f ) /\ f ) /\ j ; len C + ( - 2 ) >= 9 + - ( - 2 ) ; x , z , y , z is_collinear & x , y , z is_collinear ; ( a |^ ( n + 1 ) ) * a = ( a |^ ( n + 1 ) ) * a ; <* \underbrace 0 , \dots 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , set y9 = <* y , c *> ; ( F /. 1 ) /. 1 in rng ( Line ( D , 1 ) ) ; p . m joins r /. m , r /. ( m + 1 ) ; ( p `1 ) `2 = ( ( f /. ( i1 + 1 ) ) `2 ) `2 ; W-min ( X \/ Y ) = W-min ( X ) & W-min ( X ) = W-min ( X ) ; 0 + ( p `2 ) <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in { 0 } ; f1 /* ( s ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of Lin ( X ) , \bf 0. ( X ) ; p \! ( Product ( Sgm ( X ) ) ) = 0 ; len <* x *> < i + 1 + 1 ; assume that I is non empty and { x } /\ { y } = { 0. I } ; set i = card ( I + 4 ) + card ( I + 4 ) ; x in { x , y } & h . x = {} & h . y = {} ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of ( A , 0 ) ) .= len ( the charact of ( A , 0 ) ) ; reconsider m = M , i = N , n = n as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . ( j + 1 ) ; set NG = |. ( ( G . n ) `1 ) `1 , PG . ( n + 1 ) `2 ]| ; rng F c= the carrier of gr { a } & rng F c= the carrier of gr { a } ; ( for n holds ( for K , n holds F . ( n , n ) , F . ( n , n ) ) is a complex-valued FinSequence ; f . k , f . ( Radix ( n ) ) in rng f ; h " ( P ) /\ [#] ( ( TOP-REAL 2 ) | P ) = f " ( P ) ; g in dom ( f2 \ ( f " ) ) \ ( f " { 0 } ) ; gX /\ dom ( f1 | X ) = ( g1 | X ) " X ; consider n being element such that n in NAT and Z = G . n ; set d1 = \mathopen ( x1 , y1 , y2 ) , d2 = dist ( y1 , y2 , y1 ) ; b `1 + sqrt ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + 1 ) ) ) ) ^2 ) ) ) < sqrt ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + ( 1 + reconsider f1 = f as VECTOR of the carrier of X ; attr i <> 0 implies i |^ ( i + 1 ) mod ( i + 1 ) = 1 ; j2 in Seg ( ( g2 . ( i2 + 1 ) ) ) & ( g2 . ( i2 + 1 ) ) = ( g2 . ( i2 + 1 ) ) ; dom ( i , ( n + 1 ) --> ( n + 1 ) ) = dom ( i , ( n + 1 ) --> ( n + 1 ) ) .= a ; cluster sec | ]. 0 , PI / 2 .[ -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of [: S , T :] , T ; reconsider R1 = x , R2 = y as Relation of L , the carrier of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> ^ <* n *> in R1 ; S1 +* S2 = S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 +* S2 ( ( ( id Z ) (#) ( ( exp_R + exp_R ) `| Z ) `| Z ) = ( ( exp_R * ( exp_R + exp_R ) `| Z ) `| Z ) ; cluster -> Function for Function of C , REAL ; set Cx = 1GateCircStr ( <* z , x *> , f ) , Cy = 1GateCircStr ( <* x , y *> , f ) ; E . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( f2 . ( ( ( arctan * ( arctan + arccot ) ) `| Z ) `| Z ) = ( ( arctan * ( exp_R + arccot ) ) `| Z ) | A ; lower_bound A = sqrt ( cos * PI ) & lower_bound A = 0 ; F ( dom f , - ( F . a ) ) is transformable to F ( cod f , - ( F . a ) ) ; reconsider p8 = ( q `2 / |. q .| - sn ) / ( 1 + sn ) as Point of TOP-REAL 2 ; g . W in [#] ( Y | W ) & [#] ( Y | W ) c= [#] ( Y | W ) ; let C be compact connected non vertical non horizontal Subset of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , x0 .[ ; assume x in { idseq ( 2 ) , ( idseq ( 2 ) ) . ( ( idseq 2 ) . ( len ( idseq 2 ) ) ) } ; reconsider n2 = n , m2 = m as Element of NAT ; for y being ExtReal st y in rng ( seq | n ) holds g <= y for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 .= m1 + m2 .= m1 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set BX = f .: ( the carrier of X1 ) , pX = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R " ( a , b ) c= R " ( a , b ) ; t in ]. r , s .] or t = r ; z + v2 in W & x = u + ( z + v2 ) ; x2 |-- ( y2 , y2 ) iff P [ x2 , y2 ] ; attr x1 <> x2 means : Def2 : |. x1 - x2 .| > 0 ; assume p2 - p1 , p1 - p2 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , p3 - p1 , p2 - p1 , - p1 , p3 - p1 , p2 - p1 , - p1 set q = ( 'not' f ) ^ <* 'not' A *> ; let f be PartFunc of \langle 1 , 1 , 2 , 3 *> , ||. f /. 1 , f /. 3 .|| ; ( n mod ( 2 * k ) ) = n mod ( 2 * k ) ; dom ( T * succ t ) = dom T .= dom T ; consider x being element such that x in w and x in c ; assume ( F * G ) . ( v , w ) = v . ( ( F * G ) . ( v , w ) ) ; assume the carrier' of ( D1 ) c= the carrier' of ( D2 ) \/ the carrier' of D2 ; reconsider A1 = [. a , b .] as Subset of R^1 | A1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) , q = W-min L~ Cage ( C , n ) ; n1 - len f + 1 + 1 <= len f - 1 + 1 ; ConsecutiveSet ( q , O ) = [ u , v ] ; set C-2 = ( \mathclose { -1 } ) . ( k + 1 ) ; Sum ( L * p ) = 0. ( V * p ) .= 0. ( V * p ) ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = ( $1 + 1 ) * ( $1 + 1 ) ; set s3 = Comput ( P1 , s1 , k + 1 ) , s4 = Comput ( P2 , s2 , k + 1 ) , P4 = Comput ( P2 , s2 , k + 1 ) , P4 = P3 ; let l be variable of k , A , l be Nat ; reconsider U = union ( ( G | n ) | ( G | n ) ) as Subset-Family of T ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 as Subset of X ( ) ; pmax = <* - ( ( - ( c1 + c2 ) ) * ( 1 , 0 ) *> ; synonym f -> real-valued means : Def2 : rng f c= NAT & rng f c= NAT ; consider b being element such that b in dom F and a = F . b ; x0 < card ( X | ( Y | ( X | Y ) ) ) + card ( Y | ( X | Y ) ) ; attr X c= B1 means : Def2 : for x being Element of X holds X . x c= succ ( B1 . x ) ; then w in Cl ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , 0 , PI , PI ) ; attr 1 <= len s means : Def2 : for s being Element of NAT holds ( the _ of s ) . ( s . 0 ) = s . 0 ; fx9 c= f . ( k + n ) ; the carrier of { 1_ G } = { 1_ G } ; attr p '&' q in TAUT ( Al ) means : Def2 : q '&' p in TAUT ( Al ) ; - ( t `2 / |. t .| - sn ) < ( ( t `2 / |. t .| - sn ) ) / ( 1 - sn ) ; U . 1 = U /. 1 .= U /. 1 .= U . 1 .= U . 1 .= U . 1 ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O * ( n , m ) ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] c= Indices ( O * ( n , m ) ) ; for n being Element of NAT holds G . n c= G . ( n + 1 ) then V in M .: { x } ; ex f being Element of ( F . ( len A ) ) st f is \emptyset & ( for i being Element of NAT st i in dom A holds f . i = F ( i ) ) ; [ h . 0 , h . 3 ] in the InternalRel of G ; s +* ( intloc 0 , 1 ) . ( intloc 0 ) = s3 . ( 0 ) .= s . ( 0 + 1 ) ; |[ w1 , v1 ]| + |[ w1 , v1 ]| <> 0. TOP-REAL 2 ; reconsider t = t as Element of ( the carrier of V ) -tuples_on the carrier of V ; C \/ P c= [#] ( ( G | A ) \ A ) ; f " ( V ) in ( ( the carrier of X ) /\ D ) /\ ( the carrier of X ) ; x in [#] ( ( A /\ A ) /\ ( A /\ B ) ; g . x <= h1 . x & h . x <= 1 ; InputVertices S = { x , y , z } & { x , y , z } = { x , y , z } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M2 is being_line and M2 is being_line ; reconsider a = ( f . ( i1 -' 1 ) ) - 1 as Element of K ; len ( ( ( ( F1 ^ F2 ) ^ ( F1 ^ F2 ) ) ^ ( F2 ^ F2 ) ) ) = Sum ( ( F1 ^ F2 ) ^ ( F2 ^ F2 ) ) ; len ( the addF of n , m ) = n & len ( the multF of n , m ) = n ; dom max ( f + g , f ) = dom ( f + g ) ; ( the Sorts of ( seq + 8 ) ) . n = sup ( ( the Sorts of ( seq + 8 ) ) . n ) ; dom ( p1 ^ p2 ) = dom ( p1 ^ p2 ) .= dom ( p1 ^ p2 ) .= dom ( p1 ^ p2 ) ; M . ( [ 1 , y ] , [ y , z ] ) = 1 * ( v . ( y , z ) ) .= y ; assume that W is non trivial and W \cap ( the carrier of G2 ) c= the carrier' of G2 and W \cap ( the carrier of G2 ) c= the carrier' of G2 ; CG * ( i1 , j1 ) `1 = G * ( i1 , j1 ) `1 .= G * ( i2 , j1 ) `1 ; C8 |- 'not' All ( x , p ) 'or' ( 'not' p => q ) ; for b st b in rng g holds lower_bound rng fb <= b implies lower_bound fb <= b - ( ( - ( ( q `1 / |. q .| - sn ) ) / ( 1 + sn ) ) / ( 1 + sn ) ) = 1 ; ( LSeg ( c , m ) \/ ( l , k ) \/ ( l , k ) \/ ( l , k ) \/ ( l , k ) c= R ; consider p being element such that p in LSeg ( x , p ) and p in L~ f and p in L~ f ; Indices X = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid ; Im ( ( Partial_Sums ( F ) ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D ; consider g being Function such that g = F . t and Q [ g , t ] ; p in LSeg ( ( W-min ( C , n ) ) , W-min ( C , n ) ) ; set R8 = R / ]. b , a .[ ; IncAddr ( I , k ) = IncAddr ( goto ( d + 1 ) , k ) .= Exec ( goto ( d + 1 ) , k ) ; seq . m <= ( the Sorts of ( s . m ) ) . k ; a + b = ( a + b ) *' ( a *' ) .= ( a *' ) *' ; id ( X /\ Y ) = id ( X /\ Y ) /\ id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U \/ ( U1 \/ U2 ) as non empty Subset of ( TOP-REAL 2 ) | U1 ; u in ( ( ( c /\ ( d /\ e ) ) /\ f ) /\ j ) /\ m /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable set such that card ( A ) = card ( A ) ; p2 in rng ( f |-- ( p1 , p2 , p3 ) ) \ rng <* p1 , p2 *> ; len ( s1 - s2 ) > 0 & len ( s2 - s2 ) > 0 ; ( W-min ( P ) ) `2 = ( W-min ( P ) ) `2 .= ( E-max ( P ) ) `2 ; Ball ( e , r + 1 ) c= LeftComp ( Cage ( C , k + 1 ) ) ; f . a1 ` = f . ( a1 ` + b1 ` ) .= f . ( a1 ` + b1 ) ; ( seq ^\ k ) . n in ]. - \infty , x0 .[ ; ( gg . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s . ( s the InternalRel of S is \rrangle & ( the InternalRel of S ) \/ ( the InternalRel of S ) is non empty ; deffunc F ( Ordinal , set , set ) = phi . ( $2 , $2 ) ; F . ( s1 . a ) = F . ( s1 . a ) .= F . ( s1 . a ) ; x `2 = A . ( o . a ) .= Den ( o , A . a ) ; Cl ( f " ) c= f " ( ( Cl ( P1 \/ P2 ) ) " ) ; FinMeetCl ( ( the topology of S ) | ( the topology of S ) ) c= the topology of T ; synonym o is OperSymbol means : Def2 : o <> * & o <> * ; assume that X = Y + ( card X ) and card X <> card Y + 1 ; the \frac of s <= 1 + ( the \frac of s , s ) * ( the ResultSort of s ) ; LIN a , a1 , d or b , c // a1 , b1 ; e /. 1 = 0 & e . 2 = 1 & e . 3 = 0 ; E in SN & not E in { N } ; set J = ( l , u ) := u ; set A1 = 1GateCircStr ( <* a , b , c *> , and2 ) , cin = \vert a , b , c , d .| ; set c9 = [ <* c , 8 *> , <* d , c *> ] , [ <* d , c *> , and2 ] , [ <* c , 8 *> , and2 ] , [ <* d , c *> , and2 ] , [ <* c , 8 *> , and2 ] *> , [ <* d , 8 *> , and2 ] ; x * z * x " in ( x * N ) * x ; for x being element st x in dom f holds f . x = g2 . x ; Int cell ( GoB f , 1 , len GoB f ) c= RightComp f \/ RightComp f \/ RightComp f \/ L~ f ; U is_an_arc_of W-min C , W-min C & W-min C in L~ Cage ( C , n ) ; set f-17 = f .: @ @ @ ; attr S1 is convergent means : Def2 : for x st x in dom S1 holds S1 . x - S2 . x ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster -> with_with_with_symmetric for non empty RelStr ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( card I + 2 , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + ( a + y ) ; len ( l | A ) = len l .= len l ; t4 is ( {} \/ rng ( t ^ <* n *> ) ) -valued FinSequence ; t = <* F . t *> ^ ( C . p ^ q ) ^ ( C . ( p ^ q ) ) ; set p-2 = W-min ( C , n ) , pmin = W-min ( C , n ) , pmin = W-min ( C , n ) ; ( ( k + 1 ) - ( i + 1 ) ) = ( k + 1 ) - ( k + 1 ) ; consider u being Element of L such that u = u *' ( p *' ) and u in D ; len ( ( width ( ( b |-> a ) |-> ( len b ) ) ) |-> ( len ( b --> a ) ) ) = width ( ( b --> a ) ) ; FF . x in dom ( ( G * the_arity_of o ) ) ; set H2 H2 = the carrier of H2 , H2 = the InternalRel of H2 ; set H1 = the carrier of H1 , H2 = the carrier of H2 , H1 = the InternalRel of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q , t , k ) = ( l + 1 ) + 1 .= ( l + 1 ) + 1 ; dom ( ( ( ( id ( the Sorts of A ) * ( ( the Sorts of A ) * ( ( the Sorts of A ) * ( the Sorts of A ) ) ) ) | ( ( the Sorts of A ) * ( the Arity of B ) ) ) | ( ( the Arity of B ) * ( ( the Arity of B ) * ( ( the Arity of cluster <* l *> ^ phi -> ( 1 + 0 ) string string of S ; set b5 = [ <* [ <* A1 , cin *> , and2 ] , [ <* cin , dp *> , and2 ] , [ <* cin , dp *> , and2 ] , [ <* cin , dp *> , and2 ] , [ cin , c9 ] , [ m , .. ] ] , [ m , width ] ] , [ m , width ] ] *> ; Line ( Segm ( M @ , P , Q ) , x ) = L * Sgm ( Q @ ) ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) ; cluster f1 + f2 -> continuous for PartFunc of the carrier of S , the carrier of S ; consider y be Point of X such that a = y and ||. y .|| <= r ; set xs = ( ( the connectives of S ) . ( \mathop { \rm SBP of S ) , the carrier' of S ) ; set pr = stop ( I , P , s ) ; consider a being Point of D2 such that a in W1 and b = g . a ; { A , B , C , D } = { A , B , C } \/ { D , E } ; let A , B , C , D , E , F , J , M be set ; |. p2 .| ^2 - ( p2 `2 ) ^2 >= 0 ; l - 1 + 1 = l * ( l + 1 ) + ( l - 1 ) ; x = v + ( a * w + ( b * w ) ) + ( c * w ) + ( c * w ) ; the TopStruct of L = k1 ( the TopStruct of L ) & the TopStruct of L = the TopStruct of L ; consider y being element such that y in dom ( H1 . y ) and x = ( H1 . y ) . y ; f \ { n } = card ( ( the Sorts of Free ( v1 , v2 ) ) . n ) ; for Y being Subset of X st Y is not empty holds Y is not not empty implies Y is not empty 2 * n in { N : 2 * Sum ( p | N ) = N } ; for s being FinSequence holds len ( the _ of A ) = len the _ { s } for x st x in Z holds ( exp_R * f ) . x = exp_R . x * x + 1 / ( x + 1 ) rng ( h2 * f2 ) c= the carrier of ( TOP-REAL 2 ) | K1 ; j + ( len f - 1 ) <= len f + ( len f - 1 ) - ( len f - 1 ) ; reconsider R1 = R * I as PartFunc of REAL n , REAL n ; Cx . ( x , a ) = ( Cx . ( a , b ) ) . ( x , a ) .= Cx . ( a , b ) ; power ( F_Complex , z ) = 1 .= ( x |^ ( n + 1 ) ) * ( x |^ ( n + 1 ) ) .= ( x |^ ( n + 1 ) ) * ( x |^ ( n + 1 ) ) ; t in dom ( the connectives of S , X ) . ( ( the connectives of S ) . ( t . {} ) ) ; support ( f + g ) c= support f \/ ( support ( f + g ) ) ; ex N st N = j1 & 2 * Sum ( ( r | N ) | N ) > 0 ; for y , p , q st P [ p ] holds P [ 'not' p ] { [ x1 , x2 ] , [ x2 , y2 ] } is Subset of [: X1 , X2 :] ; h = ( i , j ) |-> ( id B ) . ( id B ) .= H . ( i , j ) .= H . ( i , j ) ; ex x1 being Element of G st x1 = x & x1 * N c= A ; set X = ( ConsecutiveSet ( q , O ) ) . ( ( ConsecutiveSet ( q , O ) ) . ( O , 4 ) ) ; b . n in { g1 : x0 < g1 & g1 < x0 + r } ; f /* ( f1 /* s ) is convergent & f /. ( lim s ) = lim ( f /* s ) ; the lattice of Y = the lattice of ( the lattice of Y ) & the lattice of ( the lattice of X ) = the lattice of ( the lattice of Y ) | ( the carrier of Y ) ; ( 'not' a . x ) '&' b . x = TRUE ; 2 = ( ( ( q ^ <* 0 *> ) ^ ( ( q ^ <* 0 *> ) ^ ( ( q ^ <* 0 *> ) ^ ( ( q ^ <* 0 *> ) ) ) ) ) + len ( ( q ^ <* 0 *> ) ^ ( ( q ^ <* 0 *> ) ) ) ; ( 1 / a ) (#) ( ( sec * f1 ) - id Z ) is_differentiable_on Z ; set K = upper ( lim ( ( lim ( h , A ) ) , lim ( c , A ) ) , lim ( h , A ) ) , lim ( ( h , A ) , lim ( c , A ) ) ) ; assume e in { ( \frac { w where w is Element of : w in F & w in G } ) where w is Element of D : ( for x being Element of D st x in F holds w in G } ; reconsider d1 = dom a `1 , d2 = dom F , d2 = cod F as finite set ; LSeg ( f , j ) -' ( q .. f ) = LSeg ( f , j ) + q .. f ; assume X in { T . ( N , 2 ) : h . ( N , 2 ) = N . ( N , 2 ) } ; assume that Hom ( d , c ) <> {} and <* f , g *> * <* f *> = <* f , g *> ; dom ( Ss ) = dom S /\ Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n .= Seg n ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a ; a * ( ( 0. ( K , n ) ) . ( a , 1 ) ) = a * ( 0 , n ) .= a * ( 0 , n ) .= a * ( 0 , n ) ; D2 . j in { r : lower_bound A <= r & r <= upper_bound A } ; ex p being Point of TOP-REAL 2 st p = x & p `1 <= - 1 & p `2 <= - 1 ; for c holds f . c <= g . c implies f ^ <* a *> ^ g ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h dom ( f1 (#) f2 ) /\ X /\ X c= dom ( f1 (#) f2 ) /\ X ; 1 = sqrt ( p * p ) .= p * sqrt ( p * q ) .= p * sqrt ( q * p ) ; len g = len f + len <* x *> .= len f + len <* y *> .= len f + 1 ; dom ( F | [: ( ( N | ( S1 | S1 ) ) , ( F | S1 ) | S1 ) ) = dom ( F | S1 ) | S1 ) ; dom ( f . t ) = dom ( f . t ) .= dom ( f . t ) ; assume a in ( "\/" ( ( T |^ ( \alpha ) ) ) .: D ) .: ( ( id the carrier of S ) .: D ) ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g ; ( ( x \ y ) \ ( ( x \ z ) \ ( y \ z ) ) ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f such that f * f = id ( b ) and f * f = id ( b ) ; ( ( ( cos | [. 0 , PI / 2 .] ) | [. 0 , PI .] ) | [. 0 , PI .] ) is increasing ; Index ( p , co ) <= len ( co - LS ) - Index ( Gij , co ) ; t1 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 6 , 8 , ( ( ( the _ of L ) * ( the _ of L ) ) . h ) . ( ( the _ of L ) . ( h . ( a , b ) ) ) ) <= ( the _ of L ) . ( ( the _ of L ) . ( a , b ) ) ; then P [ f . ( i1 + 1 ) , F . ( i1 + 1 ) ] ; Q [ ( [ D . ( x , 1 ) , F . ( x , 1 ) ] , [ D . ( x , 1 ) ] , [ D . ( x , 1 ) , F . ( x , 1 ) ] ] ) ; consider x being element such that x in dom ( F . s ) and y = F . s ; l . i < r . i & [ l . i , r . i ] is Element of G . i ; the Sorts of ( ( the Sorts of A2 ) * ( the Arity of S ) ) = ( the Sorts of A2 ) * ( the Arity of S ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s = { 1 } and rng s c= { 1 } ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b ) ; ( for n holds ( proj ( C , n ) /. ( len C ) ) /. ( len C ) = W-min ( C , n ) q <= ( W-min ( C , 1 ) ) `1 & ( W-min ( C , 1 ) ) `2 <= ( W-min ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= I and A = ]. a , b .] and A = ]. a , b .] ; consider a , b be complex number such that z = a + b and z = a + b ; set X = { b / n where b is Element of NAT : not contradiction } ; ( ( x * y ) * z \ ( x * y ) ) \ ( x * z ) = 0. X ; set xxy = [ <* xy , yz , yz *> , [ <* yz , yz *> , and2 ] , [ <* yz , yz *> , [ xy , yz ] , [ xy , yz ] , [ xy , yz ] , [ ] , [ ] , [ ] , [ ] , [ xy , yz ] ] , [ xy , yz ] ] , [ xy , yz ] ] , ( l /. len ( l /. len l ) ) = ( l /. len ( l /. len l ) ) .= ( l /. len l ) ; sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ) = 1 ; sqrt ( ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) < 1 ; ( ( ( ( ( X \/ Y ) \/ Y ) \/ Z ) \/ Z ) \/ ( ( X \/ Y ) \/ Z ) \/ Z ) = ( X \/ Y ) \/ Z ; ( ( seq - s ) - ( seq - s ) ) . k = ( seq - s ) . k + ( - s ) . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , x0 ) ; the carrier of ( the addF of X ) = the carrier of X & the addF of ( X ) = the addF of X ; ex p3 st p3 = p3 & |. p3 - p4 .| = r & |. p3 .| = 1 ; set h = ( \raise .4ex ( X , X ) , ( the Sorts of A ) * ( the Arity of S ) ) . ( ( the Arity of S ) . ( o , X ) ) ; R |^ ( 0 * n ) = I--Element ( X , X ) |^ 0 .= R |^ ( 0 * n ) ; ( Partial_Sums ( ( F ) ) . n ) . n + ( ( ( F . n ) . m ) ) . n is nonnegative ; f2 = C7 ( V , - ( - 1 , - 1 , - 1 ) ) ; S1 . b = ( S2 . b ) . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 12 in ( the carrier' of S ) . 12 ; set phi = ( l , l ) \HM ( l , l ) \HM { + l ( ) \HM { l ( ) } ; synonym p is T T T means : Def2 : HT ( p , T ) = 1 ; ( ( Y1 | ( Y | ( X | ( X | ( X | ( X | ( X | ( X | ( X ) ) ) ) ) ) ) ) ) | ( X | ( X | ( X | ( X | ( X | ( X | ( X | ( X | ( X | ( X | ( X ) ) ) ) ) ) ) ) ) ) | ( X /\ ( X | ( defpred X [ Nat , set , set , set , set , set , set ) = { $2 , $2 } ; consider k be Nat such that for n being Nat st n <= k holds s . n < x0 + g ; Det ( I |^ ( ( m -' n ) -' n ) ) = 1_ ( K , n ) ; sqrt ( b - b ) - sqrt ( b - a ) < 0 ; Cd . d = CC . ( d , e ) .= CC . ( d , e ) .= CC . ( d , e ) ; attr X1 is dense means : Def2 : X1 is dense & X2 is dense implies X1 /\ X2 is dense SubSpace of X ; deffunc F ( Element of E , Element of I ) = ( $1 , $2 ) * ( $1 , $2 ) ; t ^ <* n *> in { t ^ <* i *> where i is Element of NAT : Q [ i , T . i ] } ; ( x \ y ) \ x = ( x \ x ) \ ( y \ x ) .= ( y \ x ) \ ( y \ x ) .= 0. X ; for X being non empty set holds ( for Y being Subset-Family of X holds Y is Basis of <* X , Y *> ) implies ( for Y being Subset-Family of X st Y in F holds Y is Basis of X ) synonym A , B , C , D , E , F , G , N , F , G , G , H , H , G ) for A , B , H , F , G , H , G , H , G , H , F , G , H , G , H , H , G , F , G , H , G , H , H , G , F , G , H , G , len ( ( M @ ) ) = len p & width ( M @ ) = width ( M @ ) ; v = { x where x is Element of K : 0 < v . x } ; ( ( ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e ) ) . e <> 0 ; lower_bound divset ( D2 , k + 1 ) = D2 . ( k + 1 ) - D2 . ( k + 1 ) ; g . r1 = ( 2 * r1 + 1 ) * r1 & dom h = [. 0 , 1 .] & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `1 ; ex w st w in dom ( B ^ <* w *> ) & <* 1 *> ^ s = <* 1 *> ^ s ; [ 1 , {} , <* d1 *> ] in ( { [ 0 , 0 ] } \/ ( { 0 , 0 } ) \/ ( { 0 , 0 } ) \/ { 0 , 0 } ) \/ ( { 0 , 0 } ) \/ { 0 , 0 } ) ; IC Exec ( i , s1 ) + n = IC Exec ( i , s1 ) + n .= ( IC Exec ( i , s1 ) + n ) ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 1 ) .= 5 + ( card I + 1 ) .= 5 + 1 ; ( IExec ( W6 , Q , t ) ) . intpos ( i + 1 ) = t . intpos ( i + 1 ) ; LSeg ( f , i -' 1 ) misses LSeg ( f , j ) /\ LSeg ( f , j ) ; assume for x , y being Element of L st x in C holds x <= y or x <= y ; integral ( f , X ) = f . ( upper_bound ( C ) ) .= f . ( upper_bound ( C ) ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one ||. R /. h . ( h + c ) .|| < e * ( K + c ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; set p3 = [ 2 , 0 , 1 , 0 ] .--> [ 2 , 0 ] ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d ; for y , x being Element of REAL st y in Y & x in X & y in Y holds x <= y func |. p ^ |. p .| .| -> variable of A , ( the Sorts of A ) . ( p ^ <* p *> ) ; consider t being Element of S such that x `1 , y `2 , z `2 and x , y `2 '||' z `1 , t `2 ; dom ( x1 | ( len x1 ) ) = Seg ( len x1 ) & len ( x1 | ( len x1 ) ) = len ( x1 | ( len x1 ) ) ; consider y2 being Real such that x2 = y2 & 0 <= y2 & y2 <= 1 and 0 <= y2 & y2 <= 1 ; ||. f | X .|| = ||. f /. ( lim s1 ) .|| .= ||. f /. ( lim s1 ) .|| ; ( the InternalRel of A ) ` /\ ( the InternalRel of B ) /\ ( the InternalRel of C ) = {} \/ ( the InternalRel of C ) /\ ( the InternalRel of C ) .= {} ; assume that i in dom p and for j being Nat st j in dom q holds P [ i , j ] and P [ i , j ] ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , the carrier of Y ; u1 in the carrier of W1 & ( the InternalRel of W1 ) /\ the carrier of W2 = the InternalRel of W2 & ( the InternalRel of W1 ) /\ ( the InternalRel of W2 ) = the InternalRel of W2 ; defpred P [ Element of L ] means $1 <= f . $1 & f . $1 <= f . $1 ; T . ( u , a , v ) = s * ( x + ( - x ) * y ) .= b * ( ( s * x ) + ( - x ) * y ) .= b ; - ( - ( R1 + R2 ) ) = - ( x + y ) .= - ( x + y ) + ( y + x ) .= - ( x + y ) + ( y + x ) .= - ( x + y ) ; given a being Point of ( G | A ) such that for x being Point of G holds x in A iff x , a ] in A ; f = [ [ [ dom ( f2 ) , ( cod f2 ) ] , [ cod f2 ] , [ cod f2 ] ] , [ cod f2 , cod f2 ] ] , [ cod f2 ] , [ cod f2 ] ] , [ cod f2 ] ] ; for k , n being Nat holds k < 0 & k < n implies k * ( n + 1 ) is prime for x being element holds x in A |^ d iff x in ( A ` ) |^ d consider u , v being Element of R such that l /. i = u * a ; ( - sqrt ( ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) ^2 ) > 0 ; L-13 . k = LU . ( F . k ) & F . k in rng ( L . k ) ; set i2 = AddTo ( a , i , n ) , i2 = AddTo ( a , i , n ) ; attr B is Al means : Def2 : for S being non empty ManySortedSign holds S . ( S , x ) = ( B . S ) . ( S . x , x ) ; a9 "/\" D = { a "/\" d where d is Element of N : d in D & a "/\" d in D } ; ( ( ( \square | ( len ( q | ( len q ) ) ) ) | ( len ( q | ( len q ) ) ) ) ) | ( len ( q | ( len q ) ) ) ) >= ( ( q | ( len q ) ) ) | ( len q ) ) | ( len q ) ; ( - f ) . ( upper_bound A ) = ( - f ) . ( upper_bound A ) .= ( - f ) . ( upper_bound A ) ; ( G * ( len G , 1 ) ) `1 = ( G * ( len G , 1 ) ) `1 .= ( G * ( len G , 1 ) ) `1 ; ( Proj ( i , n ) * ( L . n ) ) . ( L . n ) = <* proj ( i , n ) . ( L . n ) *> ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( the PartFunc of G , x ) * reproj ( i , x ) ) . ( f1 . ( x - x ) ) ; attr ( ( ( id Z ) . x ) (#) ( ( id Z ) . x ) ) <> 0 ; ex t being Term of S , X st ( h1 . x ) . ( x . s ) = ( h2 . s ) . ( x . s ) ; defpred C [ Nat ] means ( P8 . $1 ) is countable & ( ( n + $1 ) -tuples_on the carrier of S ) is countable & ( n + $1 ) -A\ A ) is countable ; consider y being element such that y in dom ( ( p | i ) | ( Seg n ) ) and ( q | ( Seg n ) ) . y = ( p | ( Seg n ) ) . y ; reconsider L = product ( { x1 } , ( indx ( B ) ) -' l ) as Basis of A ; for c being Element of C holds T . ( id c ) = id ( the carrier' of C ) . ( id c ) diff ( f , n , p ) = ( f | n ) ^ <* p . n *> .= f | n ^ <* p . n *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j ) } ; f `2 = ( c | ( n , L ) ) *' ( g - f ) *' .= ( - ( c | n ) ) *' ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + r ; f1 . ( ( ( ( ( ( ( ( ( ( 8 8 8 8 ) ) ) ) | ( ( 8 8 8 ) | ( ( the carrier of S ) ) | ( the carrier of S ) ) ) | ( the carrier of S ) ) ) ) ) ) in ( ( the carrier of S ) | ( the carrier of S ) ) | ( the carrier of S ) ) ; eval ( a | n , L ) = eval ( a | n , x ) .= ( a | n ) . ( x . x ) .= a . x ; z = ( DigA ( tl , x ) ) . ( ( n + 1 ) + 1 ) .= ( DigA ( tl , x ) ) . ( ( n + 1 ) + 1 ) .= ( DigA ( tl , x ) ) . ( ( n + 1 ) + 1 ) .= ( n + 1 ) + 1 ; set H = { ( Intersect S ) . ( ( Intersect S ) . ( i , j ) ) where S is Subset-Family of X : S is open } ; consider S19 being Element of D .: ( j , d ) , d being Element of D .: ( j , d ) such that S = S19 ^ <* d *> ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 ; - 1 <= sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) ; Sum ( L (#) ( - id V ) ) = 0. ( V , m ) & Sum ( - ( 0. ( V , m ) ) ) = 0. ( V , m ) ; let k1 , k2 , k2 , k2 , k1 , k2 , k2 , k2 be Element of NAT , a , k1 , k2 , k2 be Element of D ; consider j being element such that j in dom a and j in dom a and x = a . j and x = a . j ; H1 . ( x1 , x2 ) c= H1 . ( x2 , y2 ) or H1 . ( x1 , x2 ) c= H1 . ( x2 , y2 ) ; consider a be Real such that p = 1 * ( p1 + p2 ) + ( 0 * ( p1 + p2 ) ) and 0 <= a and a <= 1 ; assume that a <= c and b <= d and [ a , b ] c= [: f , g :] ; cell ( Gauge ( C , m ) , len Gauge ( C , m ) -' 1 , 0 ) is non empty ; AZ in { ( S . i ) `1 where i is Element of NAT : i < n } ; ( T * b1 ) . y = L * ( ( F * b1 ) . y ) .= ( F * b1 ) . y .= ( F * b1 ) . y ; g . ( s , I ) . ( s , I ) = s . ( s , I ) . ( s , I ) & g . ( s , I ) . ( s , I ) = |. s . I . I .| ; ( ( log ( 2 , k + 1 ) ) / ( ( log ( 2 , k + 1 ) ) ) ) to_power ( ( ( log ( 2 , k + 1 ) ) / ( ( log ( 2 , k + 1 ) ) ) ) to_power ( ( ( log ( 2 , k + 1 ) ) ) to_power ( ( ( log ( 2 , k + 1 ) ) ) to_power ( ( k + 1 ) ) ) ) ) ) >= ( ( ( log ( then that p => q in S and not x in the carrier of S and not x in the carrier of S ; dom ( the multF of ( ( the multF of ( ( the InstructionsF of ( ( the Arity of ( ( the connectives of ( ( union ( ( the Arity of n ) ) ) ) ) ) ) ) ) ) ) ) ) misses dom ( the multF of ( ( the connectives of ( ( the connectives of ( n + 1 ) ) ) ) ) ; synonym f is \kern1pt -> \kern1pt means : Def2 : for x being set st x in rng f holds x is integer ; assume for a being Element of D holds f . { a } = a & f .: { a } = f . ( union rng f ) ; i = len ( p1 + p2 ) .= len ( p1 + p2 ) .= len ( p1 + p2 ) + len ( p2 + p3 ) .= len ( p1 + p3 ) + len ( p3 + p3 ) .= len ( p3 + p3 ) + len ( p3 + p3 ) .= len ( p3 + p3 ) ; ( l + 1 ) * ( k + 1 ) = ( g /. ( k + 1 ) ) * ( ( l + 1 ) * ( k + 1 ) ) ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt S .= halt S ; assume for n being Nat holds ||. ( seq . n ) - ( seq . n ) .|| <= ||. ( seq . n ) - ( seq . n ) .|| ; sin ( w ) = sin ( r * ( cos ( w ) ) ) .= sin ( r ) * sin ( s ) .= 0 ; set q = |[ ( g1 `1 ) * ( g2 `2 ) , ( g2 `2 ) * ( g2 `2 ) ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in GGs ( F . n ) ; consider G such that F = G and ex G1 being Element of S st G1 in ( the carrier of G ) & G = ( the InternalRel of G ) . ( len G ) ; the root of [ x , s ] in ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of Free ( C , s ) ) . ( ( the Sorts of Free ( Z c= dom ( ( exp_R * ( exp_R + ( exp_R * f1 ) ) ) ) /\ dom ( ( exp_R * ( exp_R * f1 ) ) ) ; for k being Element of NAT holds ( Im ( f ) ) . k = ( lim ( Im ( f ) ) ) . k assume that - 1 < ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) ) * ( ( - 1 ) * ( ( - assume that f is continuous and a < b and f . a = c and f . b = d ; consider r being Element of NAT such that ( ex s being Element of NAT st s = Comput ( P1 , s1 , 1 ) & r <= s & s <= 1 ) & r <= 1 ; LE f /. ( i + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } in K and inf { x , y } in K ; assume f +* ( i1 , R ) in ( proj ( F , i1 ) * ( i2 , R ) ) " ; rng ( ( Flow M ) | ( the carrier of M ) ) c= the carrier of M ; assume z in { ( the carrier of G ) \times { t } where t is Element of T : not contradiction } ; consider l be Nat such that for m be Nat st l <= m holds ||. ( s1 . m ) - ( lim s1 ) .|| < g ; consider t be VECTOR of product ( G . t ) such that ( ex m being Element of dom ( G . t ) st ( for t being Element of dom ( G . t ) holds ||. t .|| <= 1 ) ; cluster the carrier of v = 2 * card ( { 0 } ) , v ^ <* 1 *> , v ^ <* 1 *> , v ^ <* 1 *> ) -> Element of dom p ; consider a being Element of the points of ( X ) , A being Element of the carrier' of ( X ) such that a on A , B and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) = 1 ; for D being set st i in dom p holds p . i in D & p . i in D & p . i in D ; defpred R [ element , element ] means ex x , y being element st $1 = [ x , y ] & $2 = [ x , y ] ; L~ ( f2 | ( L~ ( f1 | ( L~ ( f1 | ( L~ ( f1 | ( f1 | ( ( f1 | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( L~ f1 ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) | ( ( ( ( ( f2 | ( L~ ( f1 | i - ( len ( h - 2 ) + 1 ) + 2 - ( i - 1 ) + 1 < i - ( len h - 2 + 1 ) + 2 - ( i - 1 ) + 1 ; for n being Element of NAT st n in dom F holds F . n = |. ( n -' 1 ) . ( n -' 1 ) .| ; for r , s1 , s2 , s3 , s3 , s3 , s2 , s3 , s3 , s3 , s3 , s3 , s2 , s3 , s3 , s3 , s2 , s3 , s3 , s2 , s3 , s3 , s2 , s3 , s3 , s2 , s3 , s2 , s3 , s3 , s2 , t2 , s2 , t2 , t2 , s2 , t2 ) is Real ; assume v in { G where G is Subset of ( TOP-REAL 2 ) | B : G * ( i , j ) `1 <= G * ( i , j ) `1 } ; let g be non-empty Function of A , ( the Sorts of A ) * , ( the Sorts of A ) * , ( the Sorts of A ) * ; min ( g . [ x , y ] , k ) . ( [ y , z ] , [ x , z ] ) = ( min ( g . ( y , z ) , [ x , z ] ) , [ y , z ] ) ; consider q1 be sequence of CC such that for n holds P [ n , q1 . n , q1 . ( n + 1 ) ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) ; reconsider BZ = B /\ ( O /\ B ) , CZ = O /\ ( O /\ ( O /\ Z ) as Subset of B ; consider j being Element of NAT such that x = the Element of ( n -tuples_on the carrier of K ) and 1 <= j and j <= n and 1 <= n and j <= n and n <= n ; consider x such that z = x and card ( x . O ) in card ( x . O ) and x . O in ( x . O ) . O ; ( C * ( k , n2 ) ) . 0 = C ( ( k , n2 ) . 0 ) .= C ( ( k , n2 ) . 0 ) ; dom ( X --> f ) = X & dom ( X --> f ) = X & rng ( X --> f ) = dom ( X --> f ) ; ( W-min L~ Cage ( C , n ) ) `2 <= ( E-max L~ Cage ( C , n ) ) `2 & ( W-min L~ Cage ( C , n ) ) `2 <= N-bound L~ Cage ( C , n ) `2 ; synonym x , y , x or { x , y } = l or { x , y } on l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L st x = x & y = y holds x << y iff x << y ; ( 1 / 2 * ( AffineMap ( 0 , 0 ) ) ) (#) ( ( AffineMap ( 0 , 0 , 0 ) ) (#) ( ( AffineMap ( 0 , 0 , 0 ) ) (#) ( ( AffineMap ( 0 , 0 , 0 ) ) (#) ( ( AffineMap ( 0 , 0 , 0 ) ) ) ) ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = ( the partial of A2 ) . $1 & ( the partial of A2 ) . $1 = ( the partial of A2 ) . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 2 ) .= 6 + 1 .= 6 + 1 ; f . x = f . ( g1 . x ) * f . ( g2 . x ) .= f . ( g1 . x ) * f . ( g2 . x ) .= f . ( ( f1 . x ) * f . x ) .= f . ( ( f1 . x ) * f . x ) ; ( M * ( F . n ) ) . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( s ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( F the carrier of ( L1 + L2 ) c= ( the carrier of L2 ) \/ ( the carrier of L2 ) \/ ( the carrier of L1 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , z ) means : Def2 : for a , b , c being Element of o , x , y being Element of o , a being Element of o , b being Element of o , a being Element of o , b st x = a & y , z is_collinear & x , y // b , z ; ( the partial of product s ) . n <= ( the partial of product s ) . ( n + 1 ) ; attr - 1 <= r & ( - 1 ) * ( - 1 ) = ( - 1 ) * ( - 1 ) ; seq in { p ^ <* n *> where n is Nat : p ^ <* n *> in dom ( p ^ <* n *> ) } ; [ x1 , x2 , x3 ] . ( 2 * PI ) = [ x1 , x2 ] . ( 2 * PI ) ; attr F . m is nonnegative means : Def2 : ( Partial_Sums F ) . m is nonnegative ; len ( the addF of G , z ) = len ( ( the multF of G ) . ( ( the _ of G ) . ( ( the Arity of G ) . ( ( the Arity of G ) . ( ( the Arity of G ) . ( o , z ) ) ) ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W /\ ( W1 /\ W2 ) ; given F being FinSequence of NAT such that F = x and dom F = n and rng F c= { 0 , 1 } and Sum F = 0 and Sum F = 1 ; 0 = 1- ( 1- @ ) iff 1 = ( - ( 1- ( 1- @ ) ) * ( 1 - ( - ( 0 ) ) * ( 1 - ( 0 ) ) * ( 1 - ( 0 ) ) * ( 1 - ( 0 ) ) * ( 1 - 0 ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster \mathclose { \rm \mathclose { \rm c } } -> \mathclose { \rm c } & ( for c being Element of L holds ( ( \mathclose { \rm c } ) | ( { c } ) ) . ( { c } ) ) is Boolean & ( ( \mathclose { \rm c } ) | ( { c } ) ) . ( { c } ) is Boolean "/\" ( B , {} ) = "/\" ( ( the carrier of S ) , ( the InternalRel of S ) . ( the InternalRel of S ) ) .= "/\" ( ( the InternalRel of S ) . ( the InternalRel of S ) . ( the InternalRel of S ) . ( the InternalRel of S ) . ( the InternalRel of S ) ) .= "/\" ( ( the InternalRel of S ) . ( the InternalRel of S ) . ( the InternalRel of S ) ) .= "/\" ( ( the InternalRel of S ) . sqrt ( r / 2 + ( r / 2 ) / 2 ) <= sqrt ( r / 2 + ( r / 2 ) / 2 ) ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 2 * ( r1 - c ) - ( 2 * ( a - c ) ) = 0. TOP-REAL 2 ; reconsider p = P * ( \square , 1 ) , q = a " * ( ( the multF of K ) * ( 1- ( n , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow s and x = [ x1 , x2 ] ; for n being Nat st 1 <= n & n <= len ( q1 ^ q2 ) holds q1 . n = ( ( the Sorts of A1 ) . ( n + 1 ) ) . ( n + 1 ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 & H1 = H2 and H2 = H ; for S , T being non empty RelStr , d being Function of S , T holds d is complete implies d is complete & d is complete & d is complete & d is complete & d is complete [ a + 0 , i ] in ( the addF of V ) /\ [: the carrier of V , the carrier of V :] ; reconsider m1 = max ( ( ( p . n ) * ( <* x *> ) ) * ( <* x *> ) ) as Element of NAT ; I <= width ( ( the multF of K ) * ( i , j ) ) & ( the addF of K ) * ( i , j ) = ( ( the multF of K ) * ( i , j ) ) * ( i , j ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) /* ( ( f1 /* s ) ^\ k ) .= ( ( f1 /* s ) /* s ) ^\ k .= ( ( f1 /* s ) /* s ) ^\ k .= ( f1 /* s ) ^\ k ; attr A1 \/ A2 means : Def2 : for A , B being Element of V st A misses B & A misses C & B <> C & C <> D holds A /\ ( B \/ C ) = C /\ D ; func A -\to C -> set equals union { A . s where s is Element of C : s in A & s in C } ; dom ( Line ( v , i + 1 ) (#) ( ( \mathopen ( p , m ) ) (#) ( ( \mathopen ( p , m ) ) (#) ( ( q , m ) (#) ( <* p *> ) ) ) ) ) = dom ( F ^ ( m , n ) ) ; cluster [ ( x `1 ) , ( x `2 ) ] -> LSeg ( x `2 , ( x `2 ) `2 ) -> empty ; E , ( All ( x , y , G ) ) . ( ( All ( x , y , G ) . ( x , y , G ) ) . ( x , y , G ) ) |= All ( x , y , G ) . ( x , y , G ) . ( x , y , G . ( x , y , G ) ) ; F .: ( id X , g ) . x = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) + ( h . m ) , ( h . m ) . x0 + ( h . m ) . x0 ; cell ( G , ( X -' 1 , Y + 1 ) , ( X -' 1 ) \ ( X \/ Y ) \ ( X \/ Y ) \ ( X \/ Y ) ) meets ( the carrier of TOP-REAL 2 ) \ ( X \/ Y ) ; IC Comput ( P2 , s2 , k ) = IC Comput ( P2 , s2 , k ) .= IC Comput ( P2 , s2 , k ) .= IC Comput ( P2 , s2 , k ) .= IC Comput ( P2 , s2 , k ) ; sqrt ( ( - ( ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) ) > 0 ; consider x0 being element such that x0 in dom a and x0 in dom a and g . x0 = a . x0 and g . x0 = a . x0 ; dom ( ( r1 (#) ( A * ( m , C ) ) ) | A ) = dom ( ( A * ( m , C ) ) | A ) .= A /\ C .= C ; d . ( y , z ) = ( ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y | ( y attr i , C . i = A . i /\ B . i means : Def2 : for C being Nat holds it . C = A . i /\ B . i ; assume that x0 in dom f and f is continuous and for x st x in dom f holds f . x = ( f . x ) / ( x + x0 ) ; p in Cl A implies for K being Basis of p st K in K & A c= K holds A meets K for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. ( x1 - x2 ) . x - ( x2 - y2 ) . x .| <= |. ( x1 - x2 ) . x - ( x2 - y2 ) . x .| func <* a *> -> Ordinal means : Def2 : for b being Ordinal st a in it holds it . b = b & for a being Ordinal st a in it holds it . a = a & for b being Ordinal st b in it holds it . b = b ; [ a1 , a2 ] in ( the InternalRel of A ) \/ ( the InternalRel of B ) & [ a1 , a2 ] in ( the InternalRel of B ) \/ ( the InternalRel of C ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( v . n - v . m ) - ( v . n - v . m ) .|| < r / 2 * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I : for x being Element of I st x in Z holds F . x = { x } } ; sup { [ s , t ] where s , t is Element of S : P [ s , t ] } = { [ s , t ] where s is Element of S ( ) , t is Element of S ( ) : P [ s , t ] } ; consider i , j such that i < j and [ y , f . i ] in [: I , I :] and [ i , f . j ] in [: I , I :] ; for D being non empty set , p being FinSequence of D st p c= q & ex q being FinSequence st q c= p & q is FinSequence of D & q is FinSequence of D & p is FinSequence of D & q is FinSequence of D consider e1 being Element of the carrier of X such that not c , e1 // a , b and not a , b // c , d and not c , d // a , b and a , b // c , d ; set U = I \! \mathop { N } , m = I \! \mathop { N } ; |. ( q `1 / |. q .| - sn ) / ( 1 + sn ) .| = ( |. q .| ) / ( 1 + sn ) .= |. q .| / ( 1 + sn ) ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "/\" y = x "\/" y & x "/\" y = x "\/" ( y "/\" ( x "/\" y ) ) dom ( ( the charact of U1 ) * ( the Arity of S ) ) = dom ( the Arity of S ) & ( the Arity of S ) * ( the Arity of S ) = ( the Arity of S ) * ( the Arity of S ) ; dom ( h | X ) = dom h /\ X .= X /\ ( dom ( h | X ) ) .= X /\ dom ( h | X ) .= X /\ X .= X /\ ( dom ( h | X ) ) .= X /\ X ; for N1 , N2 being Element of ( the carrier of G ) , h being Element of G holds ( h . ( h . ( x , y ) ) ) = N & ( h . ( x , y ) ) = ( h . ( x , y ) ) ) & ( h . ( x , y ) ) = ( h . ( x , y ) ) & ( h . ( x , y ) ) = ( h . ( x , y ) ) & ( h . ( x , y ) ) & ( h . ( x , y ) = ( h . ( x , y ) ) . ( x , y ) ) ( ( mod ( u , m ) ) + mod ( v , m ) ) . i = ( mod ( u , m ) ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - sn ) < - ( - ( q `1 / |. q .| - sn ) ) & - ( - ( q `1 / |. q .| - sn ) ) / ( 1 - sn ) <= - ( ( q `1 / |. q .| - sn ) ) / ( 1 - sn ) ; attr r1 = f means : Def2 : for x st x in dom f holds f . x = ( f . x ) * ( f . x ) ; ( for m being bounded Function holds ||. ( seq . m ) - ( seq . m ) .|| = ( ( seq . m ) - ( seq . m ) ) ) . x attr a <> b & b <> c & a , b , c is_collinear & not ex a , b st a , b , c is_collinear & angle ( a , b , c ) = 0 & angle ( a , b , c ) = 0 & angle ( a , b , c , d ) = 0 ; consider i , j , s being Real such that p1 = [ i , j ] and p2 = [ i , j ] and p1 = [ i , j ] and p2 = [ i , j ] ; |. p .| ^2 + ( 2 * ( p , q ) ) ^2 + ( 2 * ( p , q ) ) ^2 + ( 2 * ( p , q ) ) ^2 ) = |. p .| ^2 + ( 2 * ( p , q ) ) ^2 ; consider p1 , q1 , q2 being Element of ( X , p1 ) , q1 , q2 being Element of ( X , p1 ) , q2 being Element of ( X , p2 ) , q1 , q2 be Element of ( X , p1 ) , q2 be Element of X ; <* ( r / ( r1 + r2 ) ) / ( s1 + s2 ) *> = <* ( r / ( s1 + s2 ) ) / ( s1 + s2 ) *> ; ( ( for w being Element of A , v being Element of B st w = inf ( A /\ ( B /\ C ) ) holds ( ( A /\ ( C /\ D ) ) ) . ( w , v ) ) is non empty & ( ( A /\ ( C /\ D ) ) . ( w , v ) ) is not empty ) implies not ( ( A /\ ( C /\ D ) ) . ( w , v ) is not empty & not ( for w being Element of B st w in C ) & ( for w being Element of C ) . ( w , v ) is not empty ) & s , ( H / ( H / ( H / ( H / ( H ) ) ) ) ) / ( H / ( H / ( H / ( H ) ) ) ) ) / ( H / ( H / ( H ) ) ) ) / ( H / ( H / ( H / ( H / ( H ) ) ) ) ) / ( H / ( H . ( H / ( H ) ) ) ) ) ) / ( H / ( H . ( H . ( H / ( H ) ) ) ) ) ) / ( H . ( H . ( H . ( H . ( H . ( H len ( ( b + 1 ) + 1 ) = card ( ( b + 1 ) + 1 ) .= card ( b + 1 ) + 1 .= ( b + 1 ) + 1 .= ( b + 1 ) + 1 .= ( b + 1 ) + 1 .= ( b + 1 ) + 1 ; consider z being Element of L1 such that z is_>=_than x and for x being Element of L1 st x >= y holds z >= x & z >= y ; LSeg ( W-min ( D , |[ a , b ]| ) , |[ b , c ]| ) /\ LSeg ( |[ b , d ]| , |[ b , c ]| ) = { W-min ( D , a ) + |[ b , c ]| } ; lim ( ( f / g ) /* ( h + c ) ) = lim ( ( f / g ) /* ( h + c ) ) .= lim ( ( f / g ) /* ( h + c ) ) ; P [ i , ( pr1 ( f ) ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for n be Nat st n <= m holds ||. ( seq . n ) - ( seq . m ) .|| < r ; for X being set , P being a_partition of X , a being Element of X , b being Element of X st x in P & b in P & a in P & b in P & a in P & b in P & a in P & b in P & a in P & b in P & b in P & a in P & b in P & a in P & b in P & a in P & b in P & a in P & b in P & a in P & b in P & b in P & a in P & b in P & a in P & b in P & a Z c= dom ( ( ( exp_R * f ) `| Z ) /\ ( ( exp_R * f ) `| Z ) \ ( ( exp_R * f ) `| Z ) \ ( exp_R * f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j = ( l ^ <* x *> ) . j & i = ( l + 1 ) + 1 ; for u , v being VECTOR of V , r being Real st 0 < r & for u being VECTOR of V st u in N holds r * u + ( 1 - r ) * ( 1 - r ) in N A , Int A , Int ( A \/ B ) , Int ( A \/ B ) , Int ( A \/ C ) , Int ( B \/ C ) , Int ( A \/ C ) , B ) , Int ( A \/ C ) , B ) , C , D ) ; - Sum <* v , u , w *> = - ( v + u ) .= - ( v + u ) + ( u + u ) .= ( - ( u + u ) + ( - u ) ) + ( - u ) .= ( - ( v + u ) ) + ( - u ) .= ( - ( u + u ) ) + ( - u ) ; ( Exec ( a := b , s ) ) . IC S = ( Exec ( a := b , s ) ) . IC S .= succ IC S .= succ IC S .= succ IC S .= succ IC S ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x = ( the Sorts of J ) . x ; for S1 , S2 being non empty RelStr , D being non empty Subset of S1 , f being Function of S1 , S2 st f is directed & g is directed holds f is directed & g is directed & for x being Element of S1 , y being Element of S2 st x in D & y in D holds f . ( x , y ) is directed & f . ( x , y ) is directed & f . ( y , x ) is directed & f . ( y , x ) is directed & f . ( y , x ) is directed & f . ( y , x ) is directed & f . ( y , x ) is directed card X = 2 implies ex x st x in X & ex y st y in X & not x in X & y in X & not x in X & y in X & not x in X & y in X & not x in X & y in X & not x in X & x = y or x = y ) & not x in X & y in X & y in X & x = y ) & x = y ) & y = y ; W-min ( C , n ) in rng ( W-min ( C , n ) \circlearrowleft W-min ( C , n ) ) ; for T , S being DecoratedTree , T being Element of dom T , p being Element of dom T st p in dom T & q in dom T holds ( T , p ) . ( q , p ) = T . ( p , q ) [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. ( i2 + 1 ) = G * ( i2 + 1 , j2 ) ; cluster ( for Nat , n being Nat holds ( k divides n ) divides ( k |^ n ) & ( k divides n ) & ( k divides n implies ( k divides n ) mod ( k -' n ) ) implies ( k divides n ) mod ( k -' n ) ) ; dom F = the carrier of ( X | A ) & rng F = the carrier of ( X | A ) & rng F = the carrier of ( X | A ) & rng F = the carrier of ( X | A ) ; consider C being finite Subset of V such that C c= A and card C = card C and card C = card C and card C = card C = card C ; V is prime implies for X being Subset of [: the topology of T , the topology of T :] st X /\ Y c= V holds X c= V or X c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y ( ) ; angle ( p1 , p2 , p3 ) = 0 or angle ( p2 , p3 , p4 ) = 0 & angle ( p2 , p3 , p4 , p4 ) = angle ( p2 , p4 , p4 , p4 ) ; - sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) = - ( ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) ) / ( 1 + sn ) .= - ( ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) ) / ( 1 + sn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & rng f = Q & rng f = Q & rng f = Q & rng f = Q & rng f = Q & rng f = Q & rng ( f ) = Q & rng ( f ) = Q & rng ( f ) = Q & rng ( f ) = Q & rng ( f ) = Q & rng ( f ) = Q & rng ( f ) c= Q & rng ( f ) = Q & rng ( f ) c= Q & rng ( f ) = Q & rng ( f ) c= Q & rng ( f ) attr f is partial differentiable of RNS means : Def2 : for x0 st x0 in dom f holds SVF1 ( 2 , f , x0 ) . x0 - f . x0 ; ex r , s st x = |[ r , s ]| & G * ( 1 , 1 ) `1 < r & r < G * ( 1 , 1 ) `1 & G * ( 1 , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 } ; assume that f is FinSequence and 1 <= t and t <= len G and ( G * ( t , width G ) ) `1 <= ( G * ( t , width G ) `1 ; attr i in dom G means : Def2 : r * ( f * reproj ( i , x ) ) = r * diff ( f , x ) ; consider c1 , c2 being bag of o1 + o2 such that ( <* c1 , c2 *> /. k ) /. ( k + 1 ) = <* c1 , c2 *> /. ( k + 1 ) and ( <* b1 , c1 *> /. k ) = <* c1 , c2 *> /. ( k + 1 ) *> ; y0 in { |[ r1 , s1 ]| : r1 < s1 & s1 < 1 } ; Cl ( X ^ Y ) . k = the carrier of X & ( for k being Element of NAT holds ( X . k ) . k = ( X . k ) . k ) * ( X . k ) ; attr len M1 = len M2 means : Def2 : width ( M1 @ ) = width ( M2 @ ) & width ( M2 @ ) = width ( M2 @ ) ; consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 } c= dom f2 & ||. ( y - x0 ) /. ( y - x0 ) .|| < g2 /. ( y - x0 ) ; assume x < sqrt ( - b + c ) + sqrt ( - a * b ) or x > - sqrt ( - a * b ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ ( G1 ^ G2 ) ) . i & ( G1 ^ G2 ) . i = ( <* 3 *> ^ ( G1 ^ G2 ) . i ) & ( G1 ^ G2 ) . i = ( <* 3 *> ^ ( G1 ^ G2 ) ) . i ; for i , j st [ i , j ] in Indices ( ( M1 + M2 ) * ( i , j ) ) & ( M2 + M2 ) * ( i , j ) < ( M2 + M2 ) * ( i , j ) ; for f being FinSequence of NAT , i being Element of NAT st i in dom f & for j being Element of NAT st j in dom f holds f . j = Sum ( f | i ) & f . ( j + 1 ) = Sum ( f | ( j + 1 ) ) ; assume F = { [ a , b ] where a is Element of X : for c being Element of X st c in B holds a c= c } ; b2 * ( q + q2 ) + ( b2 * ( q + q2 ) ) + ( b1 * ( q + q2 ) ) = 0. TOP-REAL n + ( b1 * ( q + q2 ) ) ; Cl { D where D is Subset of T : ex A being Subset of T st D = { D where D is Subset of T : ex a being Point of T st a in A & A c= D & a c= D & b c= D } c= Cl ( F " { a } ) attr seq is summable means : Def2 : for n holds seq . n = Sum ( seq ) + Sum ( seq ) ; dom ( ( TOP-REAL 2 ) | D ) = ( ( TOP-REAL 2 ) | D ) | K1 .= ( ( TOP-REAL 2 ) | K1 ) | K1 .= K1 .= K1 ; [ X \to Z , Z ] is full full full SubRelStr of ( ( X --> Z ) |^ ( X , Z ) , Z ) |^ ( X , Z ) |^ ( X , Z ) |^ ( X , Z ) |^ ( X , Z ) |^ ( X , Z ) |^ ( X , Z ) |^ ( X , Z ) |^ ( X , Z ) is full full SubRelStr of ( ( X --> Z ) |^ ( X , Z ) ) ( G * ( 1 , j ) ) `2 = ( G * ( 1 , j ) ) `2 & ( G * ( 1 , j ) ) `2 <= ( G * ( 1 , j ) ) `2 ; synonym m1 c= ( m1 + m2 ) \ ( m2 + g2 ) for p being Element of ( m1 + m2 ) \ ( m2 + g2 ) & ( m1 + m2 ) \ ( m2 + g2 ) <= ( m1 + m2 ) \ ( m2 + g2 ) ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of B ( ) : P [ b ] } ; cluster multiplicative loop s -> multiplicative for non empty RelStr , s , t be Element of R ; Morphism ( a , b , c ) + Morphism ( c , d , b ) = b + Morphism ( a , b , c ) .= Morphism ( a , b , c ) + Morphism ( c , d , b ) .= Morphism ( a , b , c ) + Morphism ( b , d , c ) .= Morphism ( a , b , c ) + Morphism ( c , d , d ) ; cluster -> ( i + 1 ) -tuples_on ( the carrier of K ) -> ( i , j ) -tuples_on ( the carrier of K ) ; ( ( 2 * p1 + ( 2 * p2 ) + ( 2 * p2 ) ) / ( 2 * p1 + ( 2 * p2 ) / ( 2 * p2 ) ) ) = ( ( 2 * p1 + ( 2 * p2 ) / ( 2 * p2 ) ) ) / ( 2 * p2 ) ; eval ( a | ( n , L ) *' x ) = eval ( a | ( n , L ) *' x ) * eval ( p , x ) .= ( a | ( n , L ) *' x ) * eval ( p , x ) .= ( a | ( n , L ) *' x ) * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for x being Point of S st x in the topology of T holds x in the topology of S and not x in the topology of T ; assume that 1 <= k + 1 and ( ( ( ( q + 1 ) / 2 ) * w ) / ( k + 1 ) ) = ( ( ( q + 1 ) / 2 ) * w ) / ( k + 1 ) ) and ( ( ( q + 1 ) / 2 ) * w ) / ( k + 1 ) = ( ( q + 1 ) / 2 ) / ( k + 1 ) ; 2 * ( a |^ ( n + 1 ) ) + ( 2 * ( b |^ ( n + 1 ) ) + ( 2 * ( b |^ ( n + 1 ) ) + 1 ) ) >= ( 2 * ( a |^ ( n + 1 ) + b |^ ( n + 1 ) ) + ( 2 * ( b |^ n + 1 ) ) + ( 2 * ( b |^ n + 1 ) ) + ( 2 * ( b |^ n ) ) ) ; M , v / ( x. 3 , x ) / ( x. 4 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 4 , x ) / ( x. 4 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 4 , x ) / ( x. 4 , x ) ) / ( x. 4 , x ) / ( x. 0 , x ) ) / ( x. 4 , x ) ) / ( x. 4 , x ) / ( x. 4 , x ) / ( x. 4 , x ) / ( x. 0 , x ) ) / ( x. 4 , x ) / ( x. 4 , x ) / ( x. 0 , x ) / ( x. 4 , x ) / ( x. 4 , x ) assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 - f . x0 ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G2 , x being Vertex of G1 , y being Vertex of G2 st e in dom W & x in W holds W . ( e ) = W . ( e ) & W . ( e ) = W . ( e ) ; ( not ( not ( ex x1 st x1 in the carrier of S ) & not x1 in the carrier of S ) & not ( x1 in the carrier of S ) & not x1 in the carrier of S ) & not ( x1 , x2 ) is not empty & ( x1 , x2 ) is not empty & ( x1 , x2 ) is not empty ) & ( x1 , x2 , x3 is_collinear ) & ( x1 , x2 , x3 is_collinear ) & ( x1 , x2 , x3 is_collinear & x2 , x3 , x4 is_collinear & ( x1 , x2 , x3 is_collinear & x2 , x3 , x4 is_collinear & x2 , x3 , x4 is_collinear & x3 , x3 , x4 is_collinear & x3 , x3 , x4 is_collinear & x3 , x3 , x4 is_collinear & x3 , x4 , x4 is_collinear & x3 , x4 , x4 Indices ( GoB f ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] c= Indices GoB f & [: Seg n , Seg n :] c= Indices GoB f & [: Seg n , Seg n :] c= Indices GoB f implies ( GoB f ) * ( i , j ) = ( GoB f ) * ( i , j ) for G1 , G2 being Group , O being Element of O st G1 is normal & G2 is normal holds the carrier of G1 = the carrier of G2 & the carrier of G1 = the carrier of G2 & the carrier of G2 = the carrier of G1 & the carrier of G2 = the carrier of G2 & the carrier of G1 = the carrier of G2 ( card ( the Sorts of t ) +* ( the Sorts of t ) ) = { ( the Sorts of t ) . ( ( the Sorts of t ) . ( the Sorts of t ) . ( o + 1 ) ) } ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & ( for i being Nat st i in dom f1 holds f1 . i = p . i ) & ( for i being Nat st i in dom f1 holds f1 . i = p . ( i + 1 ) ) holds f1 . ( i + 1 ) = p . ( i + 1 ) sqrt ( ( p `1 / |. p .| - ( p `2 / |. p .| - sn ) ) / ( 1 + sn ) ) ^2 ) = sqrt ( ( p `2 / |. p .| - sn ) ) ^2 ) ; for x1 , x2 , x3 , x4 being Element of REAL n holds |. ( x1 - x2 ) - x3 .| = |. ( x2 - x3 ) - x3 .| for x st x in dom ( ( - ( x | A ) | A ) ) holds ( ( - x | A ) | A ) . x = - ( x | A ) . x for T being non empty TopSpace , P being Subset-Family of T , x being Point of T st P c= the topology of T & P is Basis of T holds P is Basis of T ( a 'or' b ) . x = ( 'not' ( a 'or' b ) . x ) 'or' ( 'not' ( a 'or' b ) . x ) .= ( 'not' ( a 'or' b ) . x ) 'or' ( 'not' ( a '&' b ) . x ) .= ( 'not' ( a '&' b ) . x ) 'or' ( 'not' ( a '&' b ) . x ) .= ( 'not' ( a '&' b ) . x ) 'or' ( 'not' ( a '&' b ) . x ) .= ( 'not' ( a '&' b ) . x 'or' ( 'not' ( a '&' b ) . x 'or' ( 'not' ( a '&' b ) . x ) 'or' ( 'not' ( a '&' b ) . x ) 'or' ( 'not' ( a '&' b ) . x ) 'or' ( 'not' ( a '&' b ) for e being set st e in ( A \/ B ) ex X1 being Subset of X st ( for X1 being Subset of X st X1 = X1 & X2 is open & X1 is open & X1 is open & X2 is open & X1 is open & X2 is open & X1 is open & X2 is open holds ex X1 being Subset of X st X1 = X1 & X1 is open & X2 is open & X1 is open & X2 is open & X1 is open & X1 is open & X2 is open & X2 is open & X1 is open & X2 is open & X1 is open & X2 is open & X1 meets X2 is open & X1 meets X2 is open & X2 is open & X2 is open & X2 is open & X1 meets X2 is open & X2 is open & for i being set st i in the carrier of S for f being Function of ( the carrier of S ) . i , the carrier of S st f = H . i & f is one-to-one holds F . i = f | ( the carrier of S ) . ( i , f . ( i , f . ( i , f . ( i , f . ( i , f . ( i , f . ( i , f . ( i , f ) ) ) ) ) ) for v , w st for y st x <> y holds ( for y st y in y holds ( J . y ) . ( y , w ) = Valid ( v , y , w ) ) . ( y , w ) = Valid ( v , y , w ) card ( D * ( i , j ) ) = card ( ( i + 1 ) * ( i , j ) ) + card ( ( i + 1 ) * ( i , j ) ) .= 2 * ( i + j ) + 1 .= 2 * ( i + j ) + 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s +* ( 0 .--> 1 ) ) . ( IC S ) .= ( s . ( 0 .--> 1 ) ) . ( IC S ) .= ( s . ( IC S ) .= ( s . ( 0 .--> 1 ) . ( IC S ) .= ( s . len f /. ( i1 -' 1 ) + 1 - 1 = len f - ( i1 -' 1 ) + 1 .= len f - ( i1 -' 1 ) + 1 .= ( f /. ( i1 -' 1 ) ) + 1 - 1 .= ( f /. ( i1 -' 1 ) ) + 1 ; for a , b , c being Element of NAT st 1 <= a & 2 <= b & k < a & k < a holds b + c = a + b or k = a + b or k = a + b or k = a + b or k = a + b or k = a + b + c or k = a + b + c or k = a + b ; for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , f being FinSequence of TOP-REAL 2 , i being Element of NAT st i in Seg n & f . i = p . ( i + 1 ) & f . ( i + 1 ) = q . ( i + 1 ) holds f . ( i + 1 ) = p . ( i + 1 ) lim ( ( ( ( P +* ( k + 1 , n ) ) # x ) # x ) ) = lim ( ( ( P +* ( k + 1 , n ) # x ) ) ) + lim ( ( ( P +* ( k + 1 , n ) # x ) # x ) ) ; z2 = g /. ( i -' ( n + 1 ) ) .= g /. ( i -' ( n + 1 ) ) .= g /. ( i -' ( n + 1 ) ) .= g /. ( i + ( n + 1 ) ) .= g /. ( i + ( n + 1 ) ) .= g /. ( i + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) \/ ( the InternalRel of G ) \/ ( the InternalRel of G ) or [ 0 , f ] in the InternalRel of G ; for G being Subset-Family of B st G = { [ X , Y ] where X is Subset of A ( ) , Y is Subset of B ( ) : X [ Y ] } holds ( ( ( ( Intersect F ) | X ) | Y ) . ( X , Y ) ) . ( X , Y ) = ( ( ( ( ( Intersect F ) | Y ) | Y ) | Y ) . ( X , Y ) ) CurInstr ( P1 , Comput ( P1 , s1 , m ) ) = CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) , m ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) , Comput ( P2 , s2 , m ) , Comput ( P2 , s2 , m ) , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) .= CurInstr ( P2 , Comput ( P2 , s2 , m ) .= CurInstr ( P2 , m ) .= CurInstr assume that a on M and b on N and c on N and a on N and b on N and c on N and a on N and b on N and c on N and a on N and b on N and c on N and a on N and b on N and c on N and a <> b and b <> c ; cluster T is \hbox { T T T T , T is \hbox { T T T is closed & T is closed implies for F being Subset-Family of T st F is closed & for T being Subset-Family of T st F is closed & T is closed holds ind F <= 0 & ind F <= 0 holds ind T <= 0 ; for g1 , g2 st g1 in ]. r , s .] & g2 in ]. r , s .] holds |. ( f . g1 ) . g1 - r , s . g2 .| <= ( f . g2 ) . g2 - ( f . g2 ) . g2 ( ( exp_R * ( exp_R + z ) ) + ( ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( exp_R * ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( q q q ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) / ( ( ( ( ( ( ( ( q * ( q * ( q * ( q * ( ( q * ( ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( q * ( F . i = F /. i .= 0. R + ( F /. ( n + 1 ) ) .= <* b *> ^ ( F /. ( n + 1 ) ) .= <* b *> ^ ( F /. ( n + 1 ) ) *> ; ex y being set , f being Function st y = f . n & dom f = NAT & rng f = { 0 , 1 } & rng f c= { 0 , 1 } & rng f c= { 0 , 1 } & rng f c= { 0 , 1 } & rng f c= { 0 , 1 } & rng f c= { 0 , 1 } ; func f * F -> FinSequence of V means : Def2 : for i being Nat st i in dom F holds it . i = F ( i ) * F ( i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 7 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 for n being Nat , x being set for n being Nat st x = h . n & h . n = o ( x , n ) & h . n = o ( x , n ) & h . n = o ( x , n ) & h . n = o ( x , n ) & h . n = o ( x , n ) & h . n = o ( x , n ) ; ex S1 being Element of QC-WFF ( Al ( ) ) st ( for e being Element of Al ( ) ) holds ( for e being Element of D ( ) st e in S ( ) & e in S ( ) & ( for n being Nat st n < 1 holds P [ n , e . n ] ) & P [ n ] holds P [ n ] ) implies P [ n + 1 ] consider P being FinSequence of ( the carrier of G ) such that ( ex i being Element of NAT st P . i = product P & ( ex t being Element of the carrier of G st t = ( the |^ n ) * ( i , t ) ) ; for T1 , T2 being non empty TopSpace , T being Subset-Family of T1 , P being Basis of T2 , T holds the topology of T = the topology of T2 & the topology of T = the TopStruct of T2 & the TopStruct of T = the TopStruct of T2 attr f is partial differentiable means : Def2 : r (#) ( f /* ( h + c ) ) is partially of r , x0 ; defpred P [ Nat ] means for F being FinSequence of ( the carrier of V ) , s being FinSequence of the carrier of V st len F = $1 & for i being Element of NAT st i in dom F ex s being FinSequence of the carrier of V st P [ i , s ] & for i being Element of NAT st i in dom F holds P [ i , s . i ] ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j ) `2 <= ( GoB f ) * ( 1 , j ) `2 <= ( GoB f ) * ( 1 , j ) `2 <= ( GoB f ) * defpred U [ set , set , set , set , set ] means ex F being Subset-Family of T st ( ( for x being Point of T st x in $1 holds F . x = union ( F . $1 , $2 ) ) & ( for x being Point of T st x in $1 holds F . x = union ( F . x , $2 ) ) ; for p2 being Point of TOP-REAL 2 st LE p2 , p3 , P , p1 , p2 , p2 holds LE LE p2 , p3 , P , p1 , p2 & LE p2 , p3 , P , p2 , p1 , p2 & LE p2 , p4 , P , p2 , p1 , p2 , p2 & LE p2 , p4 , P , p1 , p2 , p2 , P & LE p2 , p4 , P , p2 , p1 , p2 , p2 & LE p4 , p4 , P , p2 , p1 , p2 , p2 , p2 , p1 , p2 , P , p1 , p2 , p2 , P , p1 , p2 , P , p1 , p2 , P , p1 , p2 , P , p1 , p2 , p1 , p2 , p1 , p2 , P , p1 , p2 , P , p1 , p2 , P , p1 , p2 , p1 , p2 , p1 , p2 , p1 , p2 , p2 , p1 , P , p1 , p2 , f in Funcs ( E , H ) & for y st y in E holds f . y = f . ( y , x ) implies f . ( y , x ) = f . ( y , x ) ex 8 being Point of TOP-REAL 2 st x = p2 & |. 8 .| = 1 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= 8 & 8 <= assume for d being Element of NAT st d <= ( ( n + 1 ) -tuples_on NAT ) & ( for t being Element of NAT st t in { ( n + 1 ) -tuples_on NAT ) holds ( n + 1 ) -tuples_on NAT = ( n + 1 ) -tuples_on NAT ) & ( n + 1 ) -tuples_on NAT = ( n + 1 ) -tuples_on NAT ) ; assume that s <> t and s is Point of Closed-Interval-TSpace ( x , r ) and not ex e being Point of TOP-REAL n st e = s & not ex e being Point of TOP-REAL n st e in Ball ( x , r ) & not e in Ball ( x , r ) ; given r such that 0 < r and for s st 0 < s ex x1 , x2 being Point of TOP-REAL 2 st x1 < s & x2 < s & ||. x1 - x2 .|| < s & ||. f /. ( x1 - x2 ) - f /. ( x1 - x2 ) .|| < s ; ( p | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x | ( x for x , h , x st x + h in dom sec holds ( ( ( x + h ) (#) ( 2 * x + h ) ) `| Z ) . x = ( ( 2 * x ) (#) ( 2 * x + h * x ) ) `| Z ) . x + ( ( 2 * x ) (#) ( 2 * x + h * x ) ) ^2 assume that i in dom A and i > 1 and i > 1 and j in dom A and i in dom B and j in dom B and i in dom B and j in dom B and i = j and j in dom B and i in dom B and j in dom B and i in dom B and i = j and j in dom B ; for i being non zero Element of NAT st i in Seg n holds h . i = <* 1_ F_Complex *> & h . i = <* 1_ F_Complex *> & h . i = <* 1_ F_Complex *> & h . i = 1_ F_Complex ; ( ( ( b1 '&' b2 ) '&' ( b2 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( b2 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( b2 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( b1 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( b2 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( b1 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( b1 '&' b2 ) ) ) '&' ( ( b1 '&' b2 ) ) '&' ( ( b2 '&' c2 ) ) '&' ( ( b1 '&' b2 ) '&' ( ( b1 '&' b2 ) '&' ( ( b1 '&' b2 ) '&' ( ( b1 '&' b2 ) ) '&' ( b2 '&' c2 ) ) '&' ( ( b1 '&' c2 ) '&' ( b2 '&' c2 ) ) '&' ( ( b1 '&' c2 ) ) '&' ( ( b2 '&' c2 ) '&' ( ( b1 '&' c2 ) ) '&' ( ( b2 ) ) assume that f . x = ( ( the Sorts of A ) * ( the Arity of S ) ) . ( ( the Arity of S ) . ( ( the Arity of S ) . ( o , x ) ) ) and ( the Arity of S ) . ( o , x ) = ( the Arity of S ) . ( o , x ) ; consider RZ , RZ be Real such that RZ = \int ( F . n , Z ) and ( for i be Nat st i in dom ( F . n ) holds ( I . i ) . i = ( I . i ) . ( n + i ) ; ex k being Element of NAT st ( for q being Element of product G st q in X & 0 < k ex n being Element of NAT st for q being Element of product G st q in X & q in X holds ||. ( f , x ) - ( f /. ( q - x ) ) .|| < r ) & ||. ( f , x ) - ( f /. ( q - x ) ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 6 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , ( G * ( j , i ) ) `2 = ( G * ( 1 , i ) ) `2 .= ( G * ( 1 , i ) ) `2 .= ( G * ( 1 , i ) ) `2 .= ( G * ( 1 , i ) ) `2 ; f1 * p = p .= ( the Arity of S1 ) . ( ( the Arity of S2 ) . ( o , f ) ) .= ( the Arity of S2 ) . ( o , f ) .= ( the Arity of S2 ) . ( o , f ) .= ( the Arity of S2 ) . ( o , f ) .= ( the Arity of S2 ) . ( o , f ) ; func tree ( T , P , T ) -> DecoratedTree means : Def2 : for p , q being Element of T st p in P & q in Q & p in Q & q in Q holds it . p = T . ( p , q ) ; F /. ( k + 1 ) = F . ( k + 1 ) .= F . ( ( p . ( k + 1 ) ) + F /. ( k + 1 ) ) .= F . ( k + 1 ) .= F . ( k + 1 ) + F /. ( k + 1 ) .= F . ( k + 1 ) ; for A , B , C , D , E , F , G being Matrix of K st len A = len B & len B = width C & len B = width C & len A = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C = width C & width B = width C = width C & width B = width C = width C & width B = width C = width C & width B = width C & width B = width C & width B = width C & width B = width C & width B = width C = width C & width B = width C = width C & width B = width C & width B = width C = width C & width B = width C seq . ( k + 1 ) = 0. ( X . ( k + 1 ) ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) ) . ( k + 1 ) .= ( Partial_Sums ( seq ) ) . ( k + 1 ) ; assume that x in ( the InternalRel of C1 ) & y in ( the InternalRel of C2 ) /\ ( the InternalRel of C2 ) and x in ( the InternalRel of C2 ) /\ ( the InternalRel of C2 ) ; defpred P [ Element of NAT ] means for f being Element of NAT st len f = $1 & for k being Element of NAT st k in dom f holds ( ex g being Element of D st g . ( k + 1 ) = ( for f being Element of D st f . ( k + 1 ) = ( for k being Element of D st k < n holds ( for n being Element of NAT holds f . ( k + 1 ) = ( n + 1 ) -tuples_on D ) . ( k + 1 ) ) & ( ( n + 1 ) /. ( k + 1 ) ) = ( n + 1 ) /. ( k + 1 ) /. ( k + 1 ) ) & ( ( n + 1 ) /. ( k + 1 ) ) & ( ( n + 1 ) /. ( k + 1 ) = ( ( n + 1 ) /. ( k + 1 ) ) & ( ( n + 1 ) = ( n + 1 ) /. ( k + assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i , j ) and f /. ( i + 1 ) = G * ( i + 1 , j ) and f /. ( i + 1 ) = G * ( i + 1 , j ) ; assume that s < 1 and ( for q st q in X holds ( q . q ) `1 = ( |. q .| ) * ( |. q .| ) + ( |. q .| ) * ( |. q .| ) ) and ( for q st q in X holds ( |. q .| ) * ( |. q .| ) ) ^2 >= 0 ; for M being non empty dist , x being Point of M , f being Function of M , ( TOP-REAL n ) | ( M , f ) st x = f & ex x being Point of TOP-REAL n st x = f . x & ex n being Element of TOP-REAL n st x = f . n & f . n = ( TOP-REAL n ) . ( x , f . n ) defpred P [ Element of omega ] means ( f1 - f2 ) . $1 = ( f1 - f2 ) . $1 & ( f1 - f2 ) . $1 = ( f1 - f2 ) . $1 ; defpred P1 [ Nat , Element of C , set ] means ( ex c being Element of C st $1 < $2 & $2 in Y & ( ex n being Element of NAT st for x being Element of C st x in Y holds ||. ( f . $1 , f . $1 ) - f /. ( $1 + 1 ) .|| < r ) & ||. ( f . $1 , f . $1 ) - f /. ( $1 + 1 ) .|| < r ) ; ( f ^ mid ( g , 2 , len g ) ) . i = ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g ) ) . i .= ( f ^ mid ( g , 2 , len g , len g , len g ) . i .= ( f ^ mid ( g , 2 , len g ) . ( i + 1 , len g ) . ( i + 1 , len g ) . ( i + 2 ) . ( i + 2 ) . ( i + 2 sqrt ( 1 - ( 2 * n + 1 ) * ( 2 * n + 1 ) ) = ( 2 * n + 1 ) * ( 2 * n + 1 ) .= ( 2 * n + 1 ) * ( 2 * n + 1 ) .= ( 2 * n + 1 ) * ( 2 * n + 1 ) ; defpred P [ Nat ] means ( the InternalRel of G ) . ( $1 + 1 ) = the InternalRel of G & ( the InternalRel of G ) . ( $1 + 1 ) = the InternalRel of G ; assume that f /. 1 in Ball ( u , r ) and 1 <= m and m <= len f and f /. ( 1 + 1 ) = f /. ( 1 + 1 ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( x | $1 ) (#) ( x | $1 ) ) ) . $1 = ( Partial_Sums ( ( x | $1 ) * ( x | $1 ) ) ) . $1 ; for x being Element of product F holds x in ( the Sorts of F ) . i & x in ( the Sorts of F ) . i & ( the Sorts of F ) . i = ( the Sorts of F ) . i & ( the Sorts of F ) . i = ( the Sorts of F ) . i ) . i ; ( x " ) |^ ( n + 1 ) = ( x " ) |^ ( n + 1 ) .= ( x " ) |^ ( n + 1 ) .= ( x " ) |^ ( n + 1 ) .= ( x " ) |^ ( n + 1 ) ; DataPart Comput ( P +* I , LifeSpan ( P +* I , s ) + 3 ) = DataPart Comput ( P +* I , Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) ) .= DataPart Comput ( P +* I , s , LifeSpan ( P +* I , s ) + 3 ) ; given r such that 0 < r and ]. x0 - r , x0 + r .[ c= dom ( f1 | ]. x0 - r , x0 + r .[ ) and for g st g in ]. x0 - r , x0 + r .[ holds f1 . g <= ( f1 | ]. x0 - r , x0 + r .[ ) . g ; assume that X c= dom ( f1 | X ) /\ X and ( f1 | X ) | X is continuous and ( f1 | X ) | X is continuous ; for L being continuous complete LATTICE , X being Subset of L st X = sup ( ( { X } |^ ( L , L ) ) holds X is directed & for x being Element of L st x in X holds x is prime implies X is complete consider i being Element of NAT such that i in dom A and A * ( i , p ) = ( ( m *' p ) *' ( i , p ) ) *' ( i , p ) ; ( f1 - f2 ) /* ( f1 - f2 ) = lim ( ( f1 - f2 ) /* ( f1 /* ( f1 /* ( f2 /* ( f1 /* ( ( f1 + f2 ) /* ( f1 /* ( ( f1 + f2 ) /* ( f1 /* ( ( f1 + f2 ) ) ) ) ) ) ) ) .= ( ( f1 - f2 ) /* ( f1 /* ( ( f1 + f2 ) /* ( f1 /* ( f1 + f2 ) ) ) ) ) ) ; ex p1 being Element of QC-WFF ( Al ( ) ) st F . ( p ( ) ) = g ( p ( ) ) & for p being Element of QC-WFF ( Al ( ) ) st p ( ) = g ( p ( ) ) holds P [ p ( ) ] ; ( mid ( f , i , len f -' 1 ) ) /. ( i + 1 ) = ( mid ( f , i , len f -' 1 ) ) /. ( i + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( i + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( i + 1 ) .= ( mid ( f , i , len f -' 1 ) ) /. ( i + 1 ) ; ( ( p ^ q ) ^ r ) . ( len p + k ) = ( ( p ^ q ) ^ r ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) ; len mid ( ( ( upper_volume ( f , D1 , j1 ) ) + 1 , indx ( f , D1 , j1 ) ) + 1 ) ) + 1 = indx ( f , D1 , j1 ) + 1 ; x * y = ( ( x * y ) * z ) * ( ( y * z ) * ( x * z ) ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) .= ( x * ( y * z ) ) * ( x * z ) ; v . ( <* x , y *> , v ) = ( <* x , y *> , v ) * ( <* y , z *> , v ) + ( ( proj ( 1 , 1 , 0 ) * ( u , z ) ) ) * ( proj ( 1 , 0 , 0 ) ) + ( proj ( 1 , 0 , 0 ) ) * ( ( proj ( 1 , 0 , 0 ) ) ) * ( proj ( 1 , 0 , 0 ) ) ) ; i * i = <* 0 * ( 1 - 0 ) , 0 * ( i - 0 ) *> .= <* 0 *> * ( i - 0 ) + 0 * ( i - 0 ) .= 0 ; Sum ( L * F ) = Sum ( ( L * F ) + ( L * F ) ) .= Sum ( ( L * F ) ) + Sum ( ( L * F ) ) ) .= Sum ( ( L * F ) ) + Sum ( ( L * F ) ) .= Sum ( ( L * F ) ) + Sum ( ( L * F ) ) ) .= Sum ( ( L * F ) ) + Sum ( ( L * F ) ) .= Sum ( ( L * F ) ) + Sum ( ( L * F ) ) + Sum ( ( L * F ) ) .= Sum ( ( L * F ) ) + Sum ( L * F ) ) .= Sum ( ( L * F ) ) + Sum ( ( L * F ) ) .= Sum ( L * F ) .= Sum ( L ) + Sum ( L * F ) .= Sum ( L * F ) .= Sum ( ( ( F ) ) + Sum ( L * F ) + Sum ( L * F ) ) .= Sum ( L * F ) .= Sum ( L * F ) + Sum ( L ) + Sum ( L * F ) .= ex r be Real st 0 < e & for Y be finite Subset of X st Y in the carrier of X ex a being Real st a < r & for Y being Subset of X st Y in the carrier of X & Y c= Y & a <= b holds r <= a & for Y being Subset of X st Y in Y holds Y is finite & Y is finite & for Y being Subset of X st Y in Y holds Y is finite & for Y being Subset of X st Y in Y holds Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is finite & Y is ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i + 1 , j ) = f /. ( k + 1 ) ; ( ( - 1 ) (#) ( ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( 1 - 1 ) ) ) ) ) ) ) ) ) = ( ( - 1 ) (#) ( ( 1 - 1 ) (#) ( 1 - 1 ) ) ) ) * ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( 1 - 1 ) ) ) ) ) .= ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) ) ) ) ) ) * ( ( 1 - 1 ) ) ) .= ( ( 1 - 1 ) ) * ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) ) ) ) * ( ( 1 - 1 ) (#) ( ( 1 - 1 ) (#) ( ( 1 - 1 ) ) ) ( - b + sqrt ( a , b ) + sqrt ( a , b ) ) / 2 > 0 & sqrt ( - a , b ) / 2 < 0 & sqrt ( - b , c ) / 2 < 0 ; assume that inf ( { X } /\ C ) in L and for X st X in C holds X is maximal & for Y st Y in C holds Y in L & Y in L ; ( ( B ) . i , j ) = ( i |-> ( j , i ) ) & ( i --> ( j , i ) ) = ( i |-> ( j , i ) ) & ( i --> ( j , i ) ) = ( i |-> ( j , i ) ) . ( i , j ) ;