thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; assume not thesis ; assume not thesis ; B ; a <> c T c= S D c= B c ; b in X ; X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is one-to-one ; let q ; m = 1 ; 1 < k ; G is finite ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; m in NAT ; assume f is prime ; not x in Y ; z = +infty ; let k be Nat ; K is being_line ; assume n >= N ; assume n >= N ; assume X is \bf 1 ; assume x in I ; q is decorated by 0 ; assume c in x ; 1-p > 0 ; assume x in Z ; assume x in Z ; 1 <= k12 ; assume m <= i ; assume G is prime ; assume a divides b ; assume P is closed ; O > 0 ; assume q in A ; W is not bounded ; f is IC one-to-one ; assume A is boundary ; g is special ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is negative ; b `2 <= c `2 ; A meets W ; i `2 <= j `2 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set , A be Subset of E ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is terminal ; Q halts_on s ; x in \circ P ; M < m + 1 ; T2 is open ; z in b +^ a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let x be trivial set ; PP is one-to-one ; n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real , x be Real , r be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o on 4 ; O <> O ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be RealUnitarySpace , W be Subspace of V ; not s in Y |^ 0 ; rng f <= w ; b "/\" e = b ; m = m2 ; t in h . D ; P [ 0 ] ; assume z = x * y ; S . n is bounded ; let V be RealUnitarySpace , A , B be Subset of V ; P [ 1 ] ; P [ {} ] ; C1 is component ; H = G . i ; 1 <= i + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; ab <= b-a ; R [ 0 ] ; b in f .: X ; assume q = q2 ; x in [#] V ; f . u = 0 ; assume e1 > 0 ; let V be RealUnitarySpace , W be Subspace of V , A be Subset of V ; s is trivial & s is trivial ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE , A , B be Subset of T ; the object of F is one-to-one ; sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; vA2 < n ; S\rbrack is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let U ; p-25 = c ; j in dom h ; let k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in \lbrace x } ; 1 <= j1 ; set A = <* \rangle ; card a [= c ; e in rng f ; cluster B \oplus A -> empty ; H has no has H ; assume x0 <= m ; T is increasing ; e1 <> e1 ; Z c= dom g ; dom p = X ; H is proper implies H is proper i + 1 <= n ; v <> 0. V ; A c= conv A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is connected & R is connected ; assume not x in REAL ; Im f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in [: A , A :] ; C c= C|[ - 1 , - 1 ]| ; m2 <> {} ; let x be Element of Y ; let f be decorated IC v , t be Element of NAT ; not n in Seg 3 ; assume X in f .: A ; assume that p <= n and p <= m ; assume not u in { v } ; d is Element of A ; A |^ b misses B ; e in v .vertices() ; - y in I ; let A be non empty set , B be set ; P = 1 ; assume r in F . k ; assume f is simple function of S ; let A be countable set ; rng f c= NAT ; assume P [ k ] ; f <> {} ; let o be Ordinal ; assume x is sum of g ; assume not v in { 1 } ; let I1 ; assume that 1 <= j and j < l ; v = - u ; assume s . b > 0 ; d1 in C ; assume t . 1 in A ; let Y be non empty TopSpace , X be non empty TopSpace , Y be non empty TopSpace ; assume a in \mathopen { \uparrow } s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume x , y are_the space ; assume x in [#] ( f | A ) ; [ a , c ] in X ; m1 <> {} ; M + N c= M + N ; assume M is /. hhhhmeet M ; assume f is with_inbA1 ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 & k2 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re y = 0 ; k1 <= j1 & j1 <= j2 ; f | A is unfolded ; f . x < b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a in rng phi ; CQ is open ; q2 c= C1 & q2 c= C2 ; a2 < c2 & not a2 < c2 ; s2 is 0 -started ; IC s = 0 ; 6 = 5 ; let V ; let x , y be element ; let x be Element of T ; assume a in rng F ; x in dom T ` ; let S be Subset-Family of L ; y " <> 0 ; y " <> 0 ; 0. V = uw -xw ; y2 , y are_not zero ; R ; let a , b be Real , x be Real ; let a be object of C ; let x be Vertex of G ; let o be object of C , a be object of C ; r '&' q = P \lbrack l \rbrack ; let i , j be Nat ; let s be State of A , p be FinSequence of NAT ; 4 . n = N ; set y = ( x `1 ) / 2 ; NAT in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in Cx0 ; V is non empty Subset of V ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume \xi in N-22 ; reconsider i = i as Ordinal ; r * v = 0. X ; rng f c= INT & rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume that Ax0 is dense and not 0 in A ; |. f . x .| <= r ; let x be Element of R ; let b be Element of L ; assume x in WO ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be category ; set X = Vars ( C ) ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; x-21 c= Y1 & xY c= Y2 ; dom f = C1 ; assume [ a , y ] in X ; Re ( seq ) is convergent ; assume a1 = b1 & a2 = b2 ; A = sInt ( A ) ; a <= b or b <= a ; n + 1 in dom f ; let F be Program of S , s be State of S ; assume r2 > x0 ; let Y be non empty set , f , g be Function of Y , BOOLEAN ; 2 * x in dom W ; m in dom g2 ; n in dom g1 ; k + 1 in dom f ; the still not bound in { s } ; assume x1 <> x2 ; v2 in ( V \ { 0. V } ) \/ { 0. V } ; not [ b `1 , b `2 ] in T ; i-35 + 1 = i ; T c= a11 ( T ) ; ( l `1 ) ^2 = 0 ; let n be Nat ; ( t `2 ) ^2 = r ; AK is_integrable_on M & f is_integrable_on M ; set t = Bottom t ; let A , B be real-membered set ; k <= len G + 1 ; [: C , D :] misses [: D , D :] ; Product ( seq ) is non empty ; e <= f or f <= e ; cluster -> non empty for NAT -defined Function ; assume c2 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; assume that v-4 is convergent and lim vK = 0 ; IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F ; Int G1 <> {} & Int G1 <> {} ; ( z `2 ) ^2 = 0 ; p01 <> p1 & p1 <> p2 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; sup \mathopen { \downarrow s } in S ; f . x <= f . y ; let T be up-complete non empty reflexive antisymmetric RelStr ; q |^ m >= 1 ; a >= X & b >= Y ; assume <* a , c *> <> {} ; F . c = g . c ; G is one-to-one one-to-one ; A \/ { a } c= B ; 0. V = 0. Y ; let I be Instruction of S , J be Program of S ; f-24 . x = 1 ; assume z \ x = 0. X ; C4 = 2 |^ n ; let B be sequence of Sigma ; assume X1 = p .: D ; n + l in NAT ; f " P is compact ; assume x1 in REAL + ( - 1 ) ; p1 = K & p2 = K or p1 = K ; M . k = <*> REAL ; phi . 0 in rng phi ; MMMit is closed ; assume x0 <> 0. L ; n < N7 . k ; 0 <= ( seq . 0 ) / ( 0 + 1 ) ; - q + p = v ; { v } is Subset of B ; set g = f /. j ; R is stable Relation of R ; set \cal R = Vertices R , S = Vertices R ; p0 c= P4 & C0 c= rng p3 ; x in [. 0 , 1 .] ; f . y in dom F ; let T be Scott Scott Scott TopAugmentation of S ; inf the carrier of S in S ; downarrow a = downarrow b ; P , C , K is_collinear ; assume x in F ( s , r ) ; 2 to_power i < 2 to_power m ; x + z = x + z ; x \ ( a \ x ) = x ; ||. \mathopen { \Vert } x-y .|| <= r ; assume that Y c= field Q and Y <> {} ; a \times b , a are_equipotent ; assume a in A ( ) ; k in dom ( q | i ) ; p is non empty finite for FinSequence of S ; i - 1 = i - 1 ; f | A is one-to-one ; assume x in f .: [: X , Y :] ; i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster -> with_|. -> strict for \Im yielding Function ; |. q .| ^2 > 0 ; |. p3 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gik } ; W-min C in C & W-min C in C ; assume x in { Gik } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n & dom I = Seg n ; assume that k in dom C and k <> i ; 1 + 1-1 <= i + 1-1 ; dom S = dom F ; let s be Element of NAT ; let R be ManySortedSet of A ; let n be Element of NAT ; let S be non empty non void partial with_|. E .| ; let f be ManySortedSet of I ; let z be Element of COMPLEX , x be set ; u in { \hbox { \boldmath $ g $ } } ; 2 * n < ( 2 * n ) / 2 ; x , y are_equipotent ; B-11 c= V & V c= V ; assume I is_closed_on s , P ; U = U ( ) , U = U ( ) , T = U ( ) ; M /. 1 = z /. 1 ; x11 = x22 & x22 = x22 ; i + 1 < n + 1 ; x in { {} , <* 0 *> } ; f . ( f . x ) <= ( f . x ) `1 ; let l be Element of L ; x in dom ( F . j ) ; let i be Element of NAT ; r is ( COMPLEX ) -valued ; assume <* o2 , o *> <> {} ; s . x |^ 0 = 1 ; card ( K . n ) in M & card ( K . n ) in M ; assume that X in U and Y in U ; let D be Subset-Family of Omega ; set r = q + { k + 1 } ; y = W . ( 2 * x ) ; assume dom g = cod f & cod g = cod f ; let X , Y be non empty TopSpace , f , g be Function of X , Y ; x \oplus A is interval ; |. <*> A .| . a = 0 ; cluster sublattice -> strict for complete lattice ; a1 in B . s1 & a2 in B . s1 ; let V be finite VectSp of F , A , B be Subset of V ; A * B on B , A ; f-3 = NAT --> 0 ; A , B be Subset of V ; z1 = P1 . j & z2 . j = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; a , b be Element of L ; assume q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = ( REAL X ) |^ n ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f ; let B be non-empty ManySortedSet of I , A be non-empty ManySortedSet of I ; sqrt ( PI / 2 ) < Arg z ; reconsider z9 = 0 as Nat ; LIN a , d , c ; [ y , x ] in [: I , I :] ; ( Q ) `1 = 0 & ( Q ) `1 = 0 ; set j = x0 div m , n = x0 mod m ; assume a in { x , y , c } ; j2 - ( j - ( j - i ) ) > 0 ; I \! \mathop { \rm \hbox { - } \varphi } = 1 ; [ y , d ] in ( F . y ) `1 ; let f be Function of X , Y ; set A2 = sqrt ( B + C ) ; s1 , s2 are_Element of R ; j1 - 1 + 1 = 0 ; set m2 = 2 * n + j ; reconsider t = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | ( D , j ) ; assume that X is lower and 0 <= r ; ( p1 `1 ) ^2 = 1 ^2 ; a < ( p3 `1 ) ^2 + ( p3 `2 ) ^2 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 + 1 - 1 ; 1 <= i1 -' 1 + 1 - 1 ; i + i2 <= len h ; x = W-min ( P ) ; [ x , z ] in X \times Z ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . ( g2 . i ) ; card b * a = |. a .| * |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 , h1 = h2 ** h1 ; assume x in X0 /\ 4 ; ||. h .|| < d1 * ||. h .|| ; not x in the carrier of f & not x in the carrier of f ; f . y = F ( y ) ; for n holds X [ n ] ; k - l = kA ; <* p , q *> /. 2 = q ; let S be Subset of the lattice of T ; P , Q are_congruent_mod s ; Q /\ M c= union ( F | M ) f = b * ( card S ) ; let a , b be Element of G ; f .: X <= f . sup X ; let L be non empty reflexive transitive RelStr , X be Subset of L , Y be Subset of L ; Sbe is x -to_power i -to_power n ; let r be non positive Real ; M , v |= All ( x , y ) ; v + w = 0. V ; P [ len F ] & P [ F ( ) ] ; assume InsCode ( i ) = 8 ; the carrier of M = 0 & the carrier of M = {} ; cluster z * ( seq . n ) -> summable for Real_Sequence ; let O be Subset of the carrier of C ; ]. f , g .[ | X is continuous ; x2 = g . ( j + 1 ) ; cluster -> Element for Element of AllTermsOf S ; reconsider l1 = lm1 as Nat ; v2 is Vertex of r2 & v2 is Vertex of G ; T3 is SubSpace of T2 ; Q /\ Q <> {} ( ( TOP-REAL 2 ) | Q ) ; let k be Nat ; q " is Element of X ; F ( t ) is set of M ; assume that n <> 0 and n <> 1 ; set e1 = EmptyBag n , e2 = EmptyBag n ; let b be Element of Bags n ; assume for i holds b . i is commutative ; x is Element of ( the Sorts of A ) . s ; not r in ]. p , q .[ ; let R be FinSequence of REAL ; S7 does not empty destroy b1 & b1 is not empty ; IC SCM R <> a & IC R <> a ; |. |[ x , y ]| .| >= r ; 1 * ( seq . n ) = seq . ( n + 1 ) ; let x be FinSequence of NAT ; let f be Function of C , D , g be Function of D , D ; for a holds 0. L + a = a IC s = s . NAT .= ( the Sorts of A ) . NAT ; H + G = FFF ( GG ) ; C1 . x = x2 & C2 . x = y2 ; f1 = f . x .= f2 . x .= f2 . x ; Sum <* p . 0 *> = p . 0 ; assume v + W = v + u + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; a3 , o _|_ o , a3 ; I1 is reflexive transitive & I2 is reflexive implies I1 is reflexive I1 is antisymmetric antisymmetric & ( the InternalRel of C ) /\ the InternalRel of D ; sup rng ( H1 . n ) = e & sup rng H1 = e ; x = ( a9 * b9 ) * ( a * a9 ) ; |. p1 .| ^2 >= 1 ^2 ; assume j2 -' 1 < j2 -' 1 ; rng s c= dom ( f1 + f2 ) /\ dom f1 ; assume support a misses support b & not a in support b ; let L be associative non empty doubleLoopStr , A , B be non empty Subset of L ; s " + 0 < n + 1 ; p . c = ( f . 1 ) `1 ; R . n <= R . ( n + 1 ) ; Directed ( I1 ) = I1 +* I2 ; set f = x + ( y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster -> non empty for Function ; let X be non empty directed Subset of S ; let S be non empty full full SubRelStr of L ; cluster <* L1 . N , L2 . N *> -> complete for non trivial strict trivial non trivial strict non trivial ; sqrt ( 1 + a ) " = a ; ( q . {} ) `1 = o ; n + ( i - 1 ) > 0 ; assume sqrt ( 1 + t ^2 ) <= 1 ^2 ; card B = k + 1 + 1 ; x in union rng ( f | ( rng f ) ) ; assume x in the carrier of R & y in the carrier of S ; d in C ; f . 1 = L . F ; the vertices of G = { v } \/ { v } ; let G be real-weighted connected _Graph ; e , v2 , G , v , w , y is_collinear ; c . ( i1 + 1 ) in rng c ; f2 /* q is divergent to \hbox { - \infty $ } ; set z1 = - ( z2 - z1 ) , z2 = - ( z2 - z2 ) ; assume w is llllof S , G ; set f = p \! \mathop { t } , g = p \! \mathop { t } ; let c be object of C ; assume ex a st P [ a ] ; let x be Element of REAL m m m -tuples_on the carrier of K ; let I1 be Subset-Family of X ; reconsider p = p as Element of NAT ; v , w as Point of X ; let s be State of SCM+FSA , p be Polynomial of SCM+FSA ; p is finite & q is halting implies p is halting stop I c= P +* ( l , n ) ; set ci = f /. i , ci = f /. ( i + 1 ) ; w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ t ^ w ^ W1 /\ W = W1 /\ W2 /\ W2 ; f . j is Element of J . j ; let x , y be Element of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 implies c <> 0 ord x = 1 & x is \sum & x is \sum & x is \sum ; set g2 = lim ( ( lim ( s ) ) (#) ( f1 /* s ) ) ; 2 * x >= 2 * sqrt ( 1 + ( 2 * x ) ^2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , d + c ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( F . ( F . k ) ) = 0 ; R1 \/ R1 = ( R1 + R2 ) \/ ( R2 + R1 ) ; ( ( - sin ) `| Z ) . x <> 0 ; ( ( ( ( exp_R * exp_R ) ) `| Z ) . x ) > 0 ; o1 in [: X , O :] /\ [: O , O :] ; e , v2 , G , v , w , y is_collinear ; s3 > sqrt ( 1 - 0 ) * 0 ; x in P .: ( F " ( F " ( f " ) ) ) ; let J be closed closed closed Subset of R , K be Subset of R ; h . p1 = f2 . O & f2 . O = f2 . O ; Index ( p , f ) + 1 <= j ; len q = width M & width q = width M ; the carrier of Lin K c= A ; dom f c= union rng ( F | X ) ; k + 1 in support ( ( support n ) \ ( support m ) ) ; let X be ManySortedSet of the carrier of S ; [ x `1 , y `2 ] in InnerVertices ( R ) ; i = D1 or i = D2 or i = D1 ; assume a mod n = b mod n ; h . x2 = g . x1 & h . x2 = f . x2 ; F c= 2 -tuples_on the carrier of X ; reconsider w = |. s1 .| as Point of REAL ; sqrt ( 1 / m ) + r < p ; dom f = dom ( I * ( J * F ) ) ; [#] ( ( TOP-REAL 2 ) | P ) = [#] ( ( TOP-REAL 2 ) | P ) ; cluster - x -> real for ExtReal ; then { d } c= A ; cluster [: TOP-REAL n , TOP-REAL n :] -> finite-ind for finite-ind ; let w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W2 & u in W2 implies v + u in W1 + W2 reconsider y = y as Element of L2 ; N is full full full full SubRelStr of T |^ N ; sup { x , y } = c "\/" c ; g . n = n |^ 1 .= n ; h . J = EqClass ( u , J ) ; let seq be summable sequence of X ; dist ( x `1 , y ) < r / 2 ; reconsider mm = m as Element of NAT ; x- x0 < r1 - x0 & r1 - x0 < r1 - x0 ; reconsider P ` = P as strict Subgroup of N ; set g1 = p * idseq ( q `1 ) ; let n , m , k be non zero Nat ; assume that 0 < e and f | A is lower ; D2 . ( I1 . I2 ) in { x } ; cluster -> subcondensed for Subset of T ; let P be compact non empty compact Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; Gik in LSeg ( \pi , 1 ) /\ LSeg ( \pi , 1 ) ; let n be Element of NAT , x be Element of NAT ; reconsider S8 = S as Subset of T ; dom ( i .--> X ) = { i } ; let X be non-empty ManySortedSet of S ; let X be non-empty ManySortedSet of S ; op ( { {} } ) c= { [ {} , {} ] } ; reconsider m = m2 as Element of NAT ; reconsider d = x as Element of COMPLEX ; let s be 0 -started State of SCMPDS , p be Point of SCMPDS ; let t be 0 -started State of SCMPDS ; b , b , x is_collinear & x , y , x is_collinear ; assume that i = n \/ { n } and j = k \/ { n } ; let f be PartFunc of X , Y ; N2 >= sqrt ( c ^2 - sqrt ( c ^2 - 4 ) ) ; reconsider t7 = T " as TopSpace ; set q = h * p ^ <* d *> ; z2 in U . ( y2 /\ Q ) /\ Q . ( y2 /\ Q ) ; A |^ 0 = { <* \rangle *> } ; len W2 = len W + len W2 + len W1 ; len h2 in dom h2 & h2 . 1 = h2 . ( len h2 ) ; i + 1 in Seg ( len s2 ) & i + 1 <= len s2 ; z in dom g1 /\ dom f ; assume p2 = W-min ( K ) & p2 = W-min ( K ) ; len G + 1 <= i1 + 1 ; f1 * f2 /* ( f1 /* ( h + c ) ) is convergent ; cluster ( seq + seq1 ) + ( seq + seq1 ) -> summable ; assume j in dom ( M1 /. i ) ; let A , B , C be Subset of X ; x , y , z is_collinear & x , y , z is_collinear ; b ^2 - ( 4 * a ) * ( 4 * a ) >= 0 ; <* xx *> ^ <* y *> ^ <* y *> ^ x <=' x ; a , b ] in { a , b } ; len p2 is Element of NAT & len p2 = len p1 & len p1 = len p2 ; ex x being element st x in dom R & x in X ; len q = len ( K (#) G ) ; s1 = Initialize ( ( Initialized s ) +* ( k + 1 ) ) ; consider w be Nat such that q = z + w ; x ` ` is ` & x ` ` is ` ; k = 0 & n <> k or k > n ; then X is discrete for X being Subset of X ; for x st x in L holds x is finite ||. f /. c .|| <= r1 & ||. f /. c .|| <= r1 ; c in ]. p , q .[ & not c in { p } ; reconsider V = V as Subset of the carrier of n , the carrier of n ; N , M are_upper \ L ; then z >= waybelow x & z >= f . x ; M [. f , g .] = f & M [. g , h .] = g ; ( ( to_power 1 ) ) /. 1 = TRUE ; dom g = dom f /\ X ; mode \upupharpoons of G , V -> \upupharpoons of G ; [ i , j ] in Indices M & [ i , j ] in Indices M implies M * ( i , j ) = M * ( i , j ) reconsider s = x " as Element of H ; let f be Element of dom ( the Sorts of A ) ; F1 . a1 , F1 . a1 - F2 . a1 - F2 . a1 = G1 . a1 - G1 . a1 ; cluster circle ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( 1 / 2 ) \ ( dom ( f ^ ) " { 0 } ) ; ( curry ( F , w ) ) . k is additive ; set k2 = card ( dom B ) , k1 = card ( dom B ) , k2 = card ( dom B ) ; set G = Sym ( X , Y ) ; reconsider a = [ x , s ] as terminal of G ; let a , b be Element of M , M be Matrix of n , REAL ; reconsider s1 = s as Element of S0 ( S ) ; rng p c= the carrier of L & the carrier of L c= the carrier of L ; let d be Subset of the Sorts of A ; ( x | x ) = 0 iff x = 0. W ; I1 in dom ( stop I ) ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of TOP-REAL n ; reconsider i0 = len p1 - 1 as Integer ; dom f = the carrier of S & rng f = the carrier of T ; rng h c= union ( ( the carrier of J ) * ( the carrier of J ) ) ; cluster All ( x , H ) -> \bf yielding ; d * N1 / ( N1 * N2 ) > N1 * 1 / ( N1 * N2 ) ; ]. a , b .[ c= [. a , b .] ; set g = f " | ( D1 | j1 ) ; dom ( p | [: NAT , NAT :] ) = [: NAT , NAT :] ; 3 + - 2 <= k + - 2 + - 2 ; tan is_differentiable_in ( ( tan * tan ) `| Z ) . x ; x in rng ( f /^ p ) ; let f , g be FinSequence of D ; p in the carrier of S1 & q in the carrier of S1 & p in the carrier of S1 ; rng f " { f " { f . x } = dom f /\ dom f ; ( the Target of G ) . e = v ; width G - 1 < width G - 1 & width G - 1 <= width G ; assume v in rng ( S | E ) ; assume x is root or x is root ; assume 0 in rng ( g2 | A ) ; let q be Point of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 , q be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* S7 *> is Element of the carrier of C-20 ; i <= len ( ( G _ { i2 -' 1 , j2 -' 1 } ) ) + 1 ; let p be Point of TOP-REAL 2 , q be Point of TOP-REAL 2 ; x1 in the carrier of I[01] & x2 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 & g2 < x0 } ; Q = Snnn8 ( Q ) " ; ( ( 1 / 2 ) to_power ( n + 1 ) ) is summable ; - p + I c= - p + - A ; n < LifeSpan ( P1 , s1 ) + 1 ; CurInstr ( p1 , Comput ( p1 , s1 , i ) ) = i ; A /\ Cl { x } \ { x } <> {} ; rng f c= ]. r , s + 1 .[ ; let g be Function of S , V ; let f be Function of L1 , L2 , L2 be Function of L1 , L2 ; reconsider z = z as Element of [: L , L :] ; let f be Function of S , T ; reconsider g = g as Morphism of c opp , b opp ; [ s , I ] in [: S , T :] ; len ( the connectives of C ) = 4 & len ( the connectives of C ) = 4 ; let C1 , C2 be subcategory ; reconsider V1 = V as Subset of X | B ; attr p is valid means : Def6 : All ( x , p ) is valid ; assume that X c= dom f and f .: X c= dom g ; H |^ a " is Subgroup of H ; let A1 be Element of O , A2 be Element of E ; p2 , r2 , p3 is_collinear & q2 , q2 , p3 is_collinear ; consider x being element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | ( ( TOP-REAL 2 ) | B ) | D ) ; 0 . ( M . E ) < M . ( E . F ) ; op ( c , c ) / ( id the carrier of C ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . ( s2 . n ) ) ; cluster -> consistent -> consistent for distributive LATTICE of L ; set i1 = the Element of NAT , i2 = the Element of NAT , j2 = the Element of NAT ; let s be 0 -started State of SCM+FSA ; assume y in ( f1 \/ f2 ) .: A ; f . len f = f /. len f .= f /. len f ; x , f . x '||' f . x , f . y ; attr X c= Y means : Def6 : cos ( X ) c= cos ( Y ) ; let y be upper bound of Y , x , y ; cluster ( x `1 ) / 2 -> non trivial for \mathfrak of S ; set S = <* Bags n , i9 *> ; set T = [. 0 , PI / 2 .] ; 1 in dom mid ( f , 1 , 1 ) ; sqrt ( 4 * PI ) < sqrt ( 2 * PI ) ; x2 in dom ( f1 + f2 ) /\ dom ( f1 + f2 ) ; O c= dom I & { {} } c= dom I ; ( the Target of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x , y be Element of G opp ; h19 . i = f . ( h . i ) ; ( p `1 ) ^2 = ( p `1 ) ^2 .= ( p `2 ) ^2 ; i + 1 <= len Cage ( C , n ) ; len <* P *> ^ <* P *> = len P & len P = len P ; set NNN = the consider of the connectives of N , the Sorts of A ; len g-2 + ( x + 1 ) <= x ; a on B & b on C ; reconsider r-12 = r * I . v as FinSequence of NAT ; consider d such that x = d and a _|_ d ; given u such that u in W and x = v + u ; len f /. n = len ( f /^ n ) ; set q2 = ( N-min C ) .. Cage ( C , n ) ; set S = LSeg ( S1 , S2 ) , T = LSeg ( S1 , S2 ) ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 ; f " ( D ) meets h " ( h " ( V ) ) ; reconsider D = E as non empty directed Subset of L1 ; H = ( H '&' H ) '&' ( H '&' H ) ; assume t is Element of ( \mathfrak F ) . X ; rng f c= the carrier of S2 & rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . a1 , b1 // b1 , c1 ; the carrier of G = E \/ { E } ; reconsider m = len - k as Element of NAT ; set S1 = LSeg ( n , UMP ) , S2 = LSeg ( n , q ) ; [ i , j ] in Indices ( - M1 ) & [ i , j ] in Indices ( - M ) ; assume that P c= Seg m and M is linearly-independent ; for k st m <= k holds z in K . k ; consider a being set such that p in a and a in G ; L1 . p = p * L /. 1 .= p * L /. 1 ; pU . i = pU . i .= pU . i ; let P , Q be Subset of Y ; attr 0 < r & 1 < 1 & r < 1 ; rng \lbrace proj ( a , X ) . i , proj ( X , Y ) . i } = [#] ( ( the Sorts of Y ) . i ) ; reconsider x = x , y = y as Element of K ; consider k such that z = f . k and n <= k ; consider x being element such that x in X \ { p } ; len ( ( ( s ) | ( len s ) ) ) = card ( s ) ; reconsider x2 = x1 as Element of L2 ( ) ; Q in FinMeetCl ( ( the topology of X ) | ( the topology of Y ) ) ; dom ( f | X ) c= dom ( u | X ) & dom ( f | X ) c= dom u /\ X ; pred n divides m & m divides n ; reconsider x = x as Point of I[01] , y = x as Point of I[01] ; a in D2 & D2 in D2 implies a in D2 & b in D2 & a in D2 & b in D2 not x0 in the still of f & not f in the still of f , the carrier' of f ; Hom ( a , b ) <> {} & Hom ( b , c ) <> {} ; consider k1 such that p " < k1 and p " < k1 and p " < k1 ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] & [ x , y ] in [: dom g , dom k :] ; set S1 = \vert \vert \mathopen { \vert } ( x , y , z ) .| ; l = m2 & l = m2 & l = m2 & l = m1 & l = m2 & l = m2 implies l = k x0 in dom ( u | A ) /\ ( dom ( u | A ) \ ( v | A ) ) ; reconsider p = x as Point of TOP-REAL 2 ; I[01] = ( ( 1 - B ) * ( 1 - B ) ) | ( ( 1 - B ) * ( 1 - B ) ) ; f . p3 <= f . ( f . p1 ) ; ( F . x ) `1 <= ( F . x ) `1 & ( F . x ) `1 <= ( F . x ) `1 ; ( x `2 ) ^2 = ( W . ( x `1 ) ) ^2 .= ( W . ( x `2 ) ) ^2 ; for n being Element of NAT holds P [ n ] ; J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> the carrier of K ; X . i in 2 -tuples_on B . i \ B . i ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; then P [ a ] implies P [ succ a ] ; reconsider s\mathclose { -1 } = ( smax ( D , E ) ) . s as terminal of D ; - ( i - 1 ) <= len - j ; [#] S c= [#] ( T | S ) & the TopStruct of T c= the TopStruct of T ; for V being strict RealUnitarySpace holds V in strict Subspace of V implies V in strict Subspace of V assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 , p , q be Point of TOP-REAL 2 ; let A , B be Matrix of K ; - a * ( - b ) = a * b ; for A being Subset of Subset of Subset of Subset ( A ) holds A // A ; id ( o o ) in <* o2 , o1 , o2 *> ; then ||. x .|| = 0 & x = 0. X ; let N1 , N2 be strict normal Subgroup of G ; j >= len ( upper_volume ( g , D1 ) ) + len ( upper_volume ( g , D1 ) ) ; b = Q . ( len Q + 1 ) + 1 ; f2 * ( f1 /* s ) /* ( seq ^\ k ) is divergent_to+infty ; reconsider h = f * g as Function of [: I[01] , I[01] :] , G ; assume that a <> 0 and Polynom ( a , b , c , d ) >= 0 ; [ t , t ] in the InternalRel of A & [ t , t ] in the InternalRel of A ; ( v |-- E ) | n is Element of ( T . n ) -tuples_on the carrier of T ; {} = the carrier of L1 + ( L2 + L2 ) .= the carrier of L1 + ( L2 + L2 ) ; Directed I is_halting_on Initialized s , P & Directed I is_halting_on Initialized s , P ; Initialized ( p +* q ) = Initialize ( ( p +* q ) +* ( q +* ( q +* p ) ) ) ; reconsider N2 = N1 as strict net of N , N2 ; reconsider Y = Y as Element of <* <* \subseteq \rangle , \subseteq \rangle ; \bigsqcap ( p , p \ { p } ) <> p ; consider j being Nat such that i2 = i1 + j and j in dom f ; [ s , 0 ] in the carrier of S2 & [ s , 0 ] in the carrier of S2 ; m in ( B '&' C ) \ D ; n <= len ( ( P . n ) + len ( P . n ) ) + len ( P . n ) ; ( x1 - x2 ) `1 = ( x2 - y2 ) `1 .= ( x2 - y2 ) `1 ; InputVertices S = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 } ; let x , y be Element of FFFA1 : x in F . n ; p = |[ p `1 , p `2 ]| .= |[ p `1 , p `2 ]| ; g * 1_ G = h " * g " * g " * h " * h " * h " * h " ; let p , q be Element of PFuncs ( V , C ) ; x0 in dom ( f1 + f2 ) /\ dom ( f1 + f2 ) ; ( R qua Function ) " = R " * ( R * ( R * ( R * S ) ) ) ; n in Seg len ( f /^ n ) .= dom ( f /^ n ) ; for s be Real st s in R holds s <= s2 & s <= s2 ; rng s c= dom ( f2 * f1 ) /\ dom ( f2 * f1 ) ; synonym ( ex r being Element of Fin X st r in ( Seg n ) & r in ( Seg n ) ; 1_ K * 1_ K = 1_ K * 1_ K .= 1_ K * 1_ K ; set S = Segm ( A , A1 , B1 , B2 , B1 , B2 ) ; ex w st e = sqrt ( w ) & w in F & w in G ; curry ( P\rbrack , k ) # x is convergent ; cluster -> open for Subset of [: T , T :] ; len f1 = 1 .= len ( f1 ^ f2 ) .= len f1 + len f2 .= len f1 + len f2 ; sqrt ( i * p ) < sqrt ( 2 * p ) ; let x , y be Element of ( the carrier of U1 ) \/ ( the carrier of U2 ) ; b1 , c1 // b9 , c9 & not o , c1 // b9 , c9 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f " { 0 } = {} ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a ; Macro ( card I + 1 ) does not destroy c ; set m2 = LifeSpan ( p3 , Comput ( p3 , s3 , m1 ) ) , E = P +* I , F = P +* I , M = LifeSpan ( p3 , s3 ) ; IC Comput ( P , s , i ) in dom Initialize ( ( Initialize ( s ) ) . f ) ; dom t = the carrier of ( SCM R ) ; ( ( E-max L~ f ) .. f ) .. f = 1 ; let a , b be Element of PFuncs ( V , C ) ; Cl ( union F ) c= Cl ( union F ) ; the carrier of X1 union X2 misses A1 \/ A2 ; assume not LIN a , f . ( a , f . a ) , g . ( a , g . a ) ; consider i be Element of M such that i = d and i in d ; then Y c= { x } or Y = {} ; M , v / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( y , x ) / ( consider m being element such that m in Intersect ( F . m ) ; reconsider A1 = ( support u1 ) \/ ( support v1 ) as Subset of X ; card ( A \/ B ) = k-1 + ( 2 * 1 ) ; assume that a1 <> a3 and a2 <> a4 and a3 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 and a4 <> a4 cluster s \! \mathop { \rm \hbox { - } \vert V } -> |. S .| -\mathop { \rm \hbox { - } \vert } ; Ln2 /. ( n2 + 1 ) = Lh2 . ( n2 + 1 ) ; let P be compact non empty Subset of TOP-REAL 2 ; assume that r in LSeg ( p1 , p2 ) and r in LSeg ( p1 , p2 ) and p in LSeg ( p2 , p3 ) ; let A be non empty compact Subset of TOP-REAL n , p , q be Point of TOP-REAL n ; assume [ k , m ] in Indices ( ( - D ) * ( i , j ) ) ; 0 <= ( ( 1 / 2 ) |^ p ) * ( ( 1 / 2 ) |^ p ) ; ( F . N ) . x = +infty ; attr X c= Y means : Def6 : Z c= V \ V & X \ V c= Y \ V ; ( y * z ) * ( z * w ) <> 0. I & ( y * z ) * ( z * w ) <> 0. I ; 1 + card ( X \ { w } ) <= card ( u \ { w } ) + card ( X \ { w } ) ; set g = z \circlearrowleft ( L~ z ) , h = z .. z ; then k = 1 implies p . k = <* x , y *> . k ; cluster -> ( C , X ) for Element of C ( ) ; reconsider B = A as non empty Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g . i ; Plane ( x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , n <= indx ( D2 , D1 , j1 ) + 1 ; ( g2 . O ) `1 = ( - 1 ) * ( ( - 1 ) * ( - 1 ) ) `1 ; j + p .. f - len f <= len f - len f ; set W = W-min ( C ) , E = E-bound ( C ) ; S1 . ( a , e ) = a + e .= a + e + e .= a + e ; 1 in Seg width ( M * ( ( p * ( q ) ) ) ) ; dom ( i (#) Im ( f ) ) = dom ( Im ( f ) ) ; CurInstr ( x `1 , x `2 ) = W . ( a , p . ( a , p ) ) ; set Q = |= |= ( g , f ) , h = |= ( g , f ) ; cluster -> stable for ManySortedSet of U1 ; attr F = { A } means : Def1 : F is discrete ; reconsider z9 = One as Element of product G ; rng f c= rng ( f1 ^ f2 ) \/ rng ( f2 ^ ) ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) & f is one-to-one ; E , v / ( x , y ) |= H / ( x , y ) ; reconsider n1 = n as Morphism of o1 , o2 ; assume that P is associative and R is associative and P * R = R * P ; card ( B2 \/ { x } ) = card ( B2 \/ { x } ) ; card ( x \ B1 ) /\ ( x \ B2 ) = 0 ; g + R in { s : g-r < s & s < g } ; set q9 = ( q , <* s *> ) -\hbox { - } , n = ( q , <* s *> ) \hbox { - } ; for x being element st x in X holds x in rng f1 & x in rng f1 ; h2 /. ( i + 1 ) = h2 . ( i + 1 ) ; set \mathbb w = max ( B , min ( B , min ( C , max ( C , max ( C , max ( C , max ( C , l ) ) ) ) ) ) ) ; t in Seg width ( I ^ ( n , n ) ) ; reconsider X = dom f as Element of Fin C ( ) ; IncAddr ( i , k ) = halt SCM+FSA + k .= ( l + k ) + k ; ( ( GoB f ) * ( i , j ) ) `2 <= ( GoB f ) * ( i , j ) `2 ; attr R is condensed means : Def6 : for x being Element of R holds Cl R is condensed & Cl R is condensed ; attr 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 * a ; u in ( ( c /\ ( ( d /\ b ) /\ e ) /\ f ) ) /\ j ; u in ( ( c /\ ( ( d /\ e ) /\ f ) /\ j ) /\ f ) /\ j ) /\ f ; len C + ( - 2 ) >= 9 + ( - 3 ) + ( - 3 ) ; x , y , z is_collinear & x , y , z is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a |^ ( n1 + 1 ) ; <* \underbrace ( 0 , \dots , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , set y1 = <* y , c *> ; F /. 1 in rng Line ( D , 1 ) & F /. 1 in rng Line ( D , 1 ) ; p . m joins r /. m , r /. ( m + 1 ) ; ( p `2 ) ^2 = ( f /. i1 ) `2 .= ( f /. i1 ) `2 ; ( W-min X ) \/ ( W-min X ) = ( W-min X ) \/ ( W-min X ) ; 0 + ( p `2 ) ^2 <= 2 * r + ( p `2 ) ^2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) ^\ k is divergent to \hbox { x0 } ; reconsider u2 = u as VECTOR of \bf Pmin ( X , Y ) ; p \! \mathop { \rm \hbox { - } Sgm ( X ) } = 0 ; len <* x *> < i + 1 + 1 ; assume that I is non empty and { x } /\ { y } = {} ; set i2 = card I + card J + card J + card I + card J + card J + card J + card J + card J + card J + card J + card J + card J + card J + card J + card J + card J + card J + card x in { x , y } & h . x = {} implies h . x = {} ; consider y being Element of F such that y in B and y <= x `1 ; len S = len ( the charact of A ) & len ( the charact of A ) = len ( the charact of A ) ; reconsider m = M , i = N as Element of X ; A . ( j + 1 ) = B . ( j + 1 ) \/ A . j ; set Nmin = : : : : : : : : : \leq ( G . n ) `1 <= ( G . n ) `1 ; rng F c= the carrier of gr ( { a } ) & rng F c= the carrier of gr ( { a } ) ; 4 -1 ( F ( K ) , n , n ) is complex-valued FinSequence ; f . k , f . ( n + 1 ) ] in rng f ; h " ( P /\ [#] ( T | P ) ) /\ [#] ( T | P ) = f " ( f " P ) ; g in dom ( f2 \ ( f2 " { 0 } ) ) \ ( f2 " { 0 } ) " { 0 } ; gX /\ dom ( f1 | X ) = ( g1 | X ) " ( dom ( f1 | X ) ) ; consider n being element such that n in NAT and Z = G . n ; set d1 = \bf \bf L ( x1 , y1 , y2 ) , d2 = dist ( y1 , y2 ) ; b `2 + sqrt ( 1 + ( 1 + ( 1 + 2 ) ) ^2 ) < 1 + ( 1 + ( 1 + 2 ) ) ^2 ; reconsider f1 = f as VECTOR of the carrier of X ; attr i <> 0 implies i |^ ( i + 1 ) mod ( i + 1 ) = 1 ; j2 in Seg len ( g2 . i2 ) & j in Seg len ( g2 . i2 ) ; dom ( i .--> ( 4 * a ) ) = dom ( i .--> ( 4 * a ) ) .= dom ( i .--> ( 4 * a ) ) .= dom ( i .--> a ) .= dom ( i .--> a ) .= dom ( i .--> a ) ; cluster sec | ]. PI / 2 , PI / 2 .[ -> one-to-one for Function of REAL , REAL ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of S , T ; reconsider R1 = x , R2 = y as Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> ^ <* n *> in R ; S1 +* S2 +* ( S1 +* S2 ) = S2 +* ( S2 +* S2 ) ; ( ( ( ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) ) (#) ( ( - 1 ) ) ) ) ) ) ) ) ) ) ) is_differentiable_on cluster -> continuous for Function of C , REAL ; set C7 = 1GateCircStr ( <* z , x *> , f3 ) ; E . ( e1 + ( e2 + T ) ) = E . ( ( e1 + T ) ) -T . ( e1 + T ) ; ( ( ( arctan * ( f + g ) ) `| Z ) ) . x = ( ( arctan * ( f + g ) ) `| Z ) . x ; sup A = \frac 3 * PI / 2 & lower_bound A = 0 ; F ( dom f , - F ( - f ) ) is Functor of F ( - f , - F ( - f ) ) ; reconsider p8 = q as Point of TOP-REAL 2 , q1 , q2 be Point of TOP-REAL 2 ; g . W in [#] ( Y | 0 ) & [#] ( Y | 0 ) c= [#] ( Y | 0 ) ; let C be compact connected non vertical non horizontal Subset of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) /\ LSeg ( f , j ) ; rng s c= dom f /\ ]. - r , x0 .[ & f | ]. - r , x0 .[ is continuous ; assume x in { ( idseq 2 ) . ( ( TOP-REAL 2 ) . x ) } ; reconsider n2 = n , m2 = m as Element of NAT ; for y being ExtReal st y in rng seq holds g <= y & g <= y ; for k st P [ k ] holds P [ k + 1 ] m = m1 + m2 + m2 .= m1 + m2 + m2 + m2 + m2 ; assume for n holds H1 . n = G . n -H . n ; set BX = f .: ( the carrier of X1 ) , BX = f .: ( the carrier of X2 ) ; ex d being Element of L st d in D & x << d ; assume R " ( a " ) c= R " ( a " ) ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v1 ) ; x2 |-- ( y2 , y2 ) iff P [ x2 , y2 ] ; pred x1 <> x2 & |. x1 - x2 .| > 0 & |. x1 - x2 .| < 0 ; assume p2 - p1 , p3 - p1 - p3 - p3 , p1 - p3 - p1 - p3 - p3 - p1 - p3 - p3 - p1 , p2 - p3 - p3 - p3 - p3 , p1 - p3 - p3 - p3 - p1 , p2 - p3 - p3 - p3 - p1 , p2 - p3 - p3 - p1 - p3 - p3 - p3 set q = ( ex f st f ^ <* 'not' A *> ) ^ <* 'not' A *> ; let f be PartFunc of REAL , REAL-NS 1 , REAL-NS n , r be Real ; ( n mod ( 2 * k ) ) ! = n mod k ; dom ( T * ( succ t ) ) = dom dom ( T * ( succ t ) ) ; consider x being element such that x in w and x in c and x in c ; assume ( F * G ) . x3 = v . x3 & ( F * G ) . x3 = v . x3 ; assume the Sorts of ( D1 ) c= the Sorts of ( D2 ) & the Sorts of ( D2 ) c= the Sorts of ( D1 ) ; reconsider A1 = [. a , b .] as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min ( C , n ) , q = Gauge ( C , n ) * ( i , j ) ; n1 - len f + 1 - len g <= len g + len g - 1 ; ConsecutiveDelta ( q , O ) = [ u , v , a ] & Q [ u , v ] ; set C-2 = ( \mathclose { |[ a ]| } ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum p .= 0. V * p . x .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means $1 = ( Q . $1 ) & ( Q . $1 ) = ( Q . $1 ) ; set s3 = Comput ( P1 , s1 , k ) , P1 = Comput ( P1 , s1 , k ) ; let l be k -Al of k , A , B be Element of l ; reconsider U = union ( G . n ) as Subset-Family of ( T . n ) ; consider r such that r > 0 and Ball ( p `1 , r ) c= Q ` ; ( h | ( n + 2 ) ) /. i = p29 . ( p /. i ) ; reconsider B = the carrier of X1 union X2 as Subset of X ; p9 = <* - ( c-16 . 1 ) , - ( c-16 . 1 ) *> ; cluster f -> real-valued for Function of NAT , NAT ; consider b being element such that b in dom F and a = F . b ; x0 < card ( [: X , Y :] | [: X , Y :] ) + card ( [: Y , X :] | [: Y , X :] ) ; attr X c= B1 , B2 , T means : Def6 : for B holds \mathop { \rm BU , B holds B is succ of X ; then w in Ball ( x , r ) & dist ( x , w ) <= r ; angle ( x , y , z ) = angle ( x , y , z ) ; attr 1 <= len s means : Def6 : len s = len s & len s = 0 ; f c= f . ( k + ( n + 1 ) ) ; the carrier of { 1_ G } = { 1_ G } & the carrier of G = { 1_ G } ; pred p '&' q in TAUT ( Al ) & q '&' p in TAUT ( Al ) ; - ( t `2 / t `1 ) < ( - t `1 ) / t `1 ; U . 1 = U /. 1 .= U . ( 1 ) .= U . ( 1 ) .= U . ( 1 ) ; f .: ( the carrier of x ) = the carrier of x & f .: ( the carrier of x ) = the carrier of x ; Indices ( O * ( O , j ) ) = [: Seg n , Seg n :] & [: O , Seg n :] = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; then V in M .: \square ex x being Element of M st V = { x } ; ex f be Element of F st f is invertible & ( A * ) is Matrix of n , K ; [ h . 0 , h . 3 ] in the InternalRel of G & [ h . 0 , h . 3 ] in the InternalRel of G ; s +* ( ( intloc 0 ) .--> 1 ) = a3 +* ( ( intloc 0 ) .--> 1 ) ) ; |[ w1 , v1 ]| + |[ v1 , v2 ]| <> 0. TOP-REAL 2 & |[ v1 , v2 ]| + |[ v2 , v1 ]| = |[ v2 , v2 ]| ; reconsider t = t as Element of ( INT ( X ) ) -tuples_on the carrier of K ; C \/ P c= [#] ( ( [#] ( ( ( ( G \ A ) \ A ) ) \ A ) ) ) ; f " ( V ) in ( ( ( X ) /\ ( ( X , the carrier of V ) ) /\ ( the carrier of V ) ) ) /\ ( X , the carrier of V ) ; x in [#] ( ( the carrier of F ) /\ A ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , yz , yz , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 8 } ; for n being Nat st P [ n ] holds P [ n + 1 ] set R = Line ( M , i ) * Line ( M , i ) ; assume that M1 is being_line and M2 is being_line and M1 is being_line and M2 is being_line ; reconsider a = ( f2 . i0 - 1 ) / ( i - 1 ) as Element of K ; len ( ( ( Len F1 ) ^ ( F ^ F2 ) ) ) = Sum ( ( ( F ^ ( len F1 ) ) ^ ( F ^ F2 ) ) ) ; len ( ( the an of n ) * ( i , j ) ) = n & ( i , j ) * ( i , j ) = n ; dom max ( f + g ) = dom ( f + g ) /\ dom ( h + c ) ; ( the superior of ( Y ) ) . n = ( ( the Sorts of ( Y ) ) . n ) . n .= ( the Sorts of ( Y ) ) . n ; dom ( p1 ^ p2 ) = dom ( f ^ p2 ) /\ dom ( f ^ ) ; M . [ 1 , y ] = 1 * v1 .= ( 1 - 1 ) * v1 .= ( 1 - 1 ) * v2 .= ( 1 - 1 ) * v1 ; assume that W is non trivial and W .last() c= the carrier of G2 and W is closed ; C6 * ( i1 , j1 ) = G * ( i1 , j1 ) .= G * ( i1 , j1 ) ; C8 |- 'not' All ( x , p ) 'or' p ( x , y ) ; for b st b in rng g holds lower_bound rng fb <= b holds lower_bound fb <= b - sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ) = 1 ^2 + ( q `2 / |. q .| - sn ) ^2 ; ( LSeg ( c , m ) \/ LSeg ( l , k ) ) \/ LSeg ( l , k ) c= R ; consider p being element such that p in LSeg x and p in L~ f and x in L~ f ; Indices ( X @ ) = [: Seg n , Seg n :] & [: Seg n , Seg n :] = [: Seg n , Seg n :] ; cluster s => ( q => p ) -> valid for valid ; Im ( ( Partial_Sums F ) . m ) is_measurable_on E ; cluster f . ( x1 , x2 ) -> Element of D ( ) equals f . ( x1 , x2 ) ; consider g being Function such that g = F . t and Q [ t , g . t ] ; p in LSeg ( ( GoB f ) * ( i , j1 ) , ( GoB f ) * ( i , j1 ) ) ; set R8 = R |^ ]. - 1 , + 1 .[ ; IncAddr ( I , k ) = AddTo ( d , k ) .= CurInstr ( I , k ) ; seq . m <= ( ( the Sorts of A1 ) . m ) . k & ( the Sorts of A2 ) . k <= ( the Sorts of A1 ) . k ; a + b = ( a ` + b ` ) ` ` ` .= ( a ` + b ` ) ` ; id ( X /\ Y ) = id ( X /\ Y ) /\ id ( X /\ Y ) ; for x being element st x in dom h holds h . x = f . x ; reconsider H = U1 \/ U2 as non empty Subset of U0 ; u in ( ( c /\ ( ( d /\ e ) /\ f ) /\ j ) /\ j ) /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite stable Subset of R such that card A = card ( \alpha ) and card A = card ( \alpha ) ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> & rng <* p1 *> \ rng <* p1 *> c= rng f \ rng <* p1 *> ; len s1 > 0 & len s2 > 0 & len s1 > 0 & len s2 > 0 implies len s1 > 0 & len s2 > 0 & len s2 > 0 ( ( N-min ( P ) ) ) `2 = ( E-max ( P ) ) `2 .= ( E-max ( P ) ) `2 .= ( E-max ( P ) ) `2 .= ( E-max ( P ) ) `2 ; Ball ( e , r ) c= LeftComp ( Cage ( C , n + 1 ) ) ; f . a1 ` ` ` = f . ( a1 ` ` ` ` ` ` ` ` ) ` .= ( f . a1 ` ) ` ` ` ; ( seq ^\ k ) . n in ]. - r , x0 .[ /\ ]. x0 , x0 + r .[ ; gg . x0 = g . ( ( ( f . x0 ) | G ) . x0 ) .= ( g . x0 ) * ( f . x0 ) ; the InternalRel of S is InternalRel of field ( the InternalRel of S ) & the InternalRel of S is reflexive ; deffunc F ( Ordinal , Ordinal ) = phi ( $2 , $1 ) ; F . ( s1 . a1 ) = F . ( s2 . a1 ) .= ( s2 . a1 ) * ( s2 . a1 ) ; x `2 = A ( o ) .= Den ( o , A ( ) ) . a ; Cl ( f " ( P1 /\ P1 ) ) c= f " ( f " ( P1 /\ P1 ) ) ; FinMeetCl ( ( the topology of S ) | ( the topology of T ) ) c= the topology of T & the topology of T c= the topology of T ; synonym o is constructor means : Def6 : o <> {} & o <> {} & o <> {} & o <> {} ; assume that X + Y = Y + ( card X ) and card X <> card Y + card Y ; the g1 of the InitS of s <= 1 + ( the InitS of s ) & the InitS of s = ( the InitS of s ) . ( len s ) ; LIN a , a1 , d or b , c // b1 , c1 & b , c // c1 , c2 ; e . 1 = 0 & e . 2 = 1 & e . 3 = 0 & e . 3 = 0 ; E in SO & not E in { N } & E in { N } ; set J = ( l , u ) \mathop { \rm \hbox { - } ; set A1 = 1GateCircStr ( a9 , b9 , c9 ) , A2 = \vert a9 , c9 .| , C1 = |. b9 .| , C2 = |. b9 .| , C2 = |. b9 .| , C2 = |. a9 .| , C2 = |. b9 .| , C2 = |. b9 .| , C1 = |. b9 .| , C2 = |. b9 .| , C2 = |. b9 .| ; set c9 = [ <* c9 , yz *> , <* cin , dp *> ] , xy = [ <* xy , yz *> , [ bm , cm ] ] , xy = [ <* xy , yz *> , [ xy , yz ] ] ; x * z " * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = f3 . x & f . x = f3 . x ; Int cell ( GoB f , 1 , G ) c= RightComp f \/ RightComp f \/ RightComp f \/ RightComp f ; U is_an_arc_of W-min ( C ) , W-min ( C ) , W-min ( C ) ; set f-17 = f .: @ g , @ f .: @ g ; attr S1 is convergent means : Def6 : S1 is convergent & lim S1 = x0 & for n holds S1 . n = ( lim S1 ) * ( lim S2 ) ; f . ( 0 + 1 ) = ( 0 qua Ordinal ) + a .= a ; cluster reflexive transitive transitive for RelStr , P , Q be reflexive transitive transitive transitive reflexive reflexive transitive transitive transitive transitive reflexive reflexive transitive transitive transitive ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( ( card I + card J + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= z + ( a + y ) ; len ( l (#) ( a |^ 0 ) ) = len l & len ( l |^ 0 ) = len l ; ( t4 ) \setminus {} is ( {} , rng t ) -valued Function of ( rng t ) \ rng t ; t = <* F . t *> ^ ( C . p ^ q ) ; set p-2 = W-min ( C , n ) , pmin = Gauge ( C , n ) * ( i , j ) ; k - ( i + 1 ) = ( k - 1 ) - ( i + 1 ) ; consider u being Element of L such that u = u ` and u in D and u in D ; len ( ( ( width G ) |-> a ) ) |-> ( len G ) ) = width ( ( width G ) --> a ) .= width ( ( width G ) --> a ) ; F . x in dom ( G * ( the_arity_of o ) ) ; set H2 = the carrier of H2 , H = the carrier of H2 , I = the carrier of H2 ; set H1 = the carrier of H1 , H2 = the carrier of H2 , H2 = the carrier of H2 ; ( Comput ( P , s , 6 ) ) . intpos ( m + 6 ) = s . intpos ( m + 6 ) ; IC Comput ( Q , t , k ) + ( l + 1 ) = l + ( l + 1 ) ; dom ( ( ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( cluster <* l *> ^ phi -> ( 1 + 0 ) -element for string of S ; set b5 = [ <* \hbox { \boldmath $ p $ } , 9 *> , and2 ] ; Line ( Segm ( M , P , Q ) , x ) = L * Sgm Q * Sgm Q ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , REAL ; consider y be Point of X such that a = y and ||. \mathopen { \Vert y \mathclose { \Vert } .|| <= r ; set x3 = ( t . SBP ) . DataLoc ( ( s . SBP ) . SBP , 2 ) . DataLoc ( s . SBP ) ) ; set pE = stop I , pE = stop I , pE = stop I , pE = stop I , pE = \cal I ; consider a being Point of D2 such that a in W1 and b = g . a ; { A , B , C , D , E , F , J , M , N , M , N , N , N , N , M , N , N , N , M , N , N , M , N , N , N , M , N , N , N , M , N , N , M , N , let A , B , C , D , E , F , J , M , N , N , M , N , N , N , N , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , M , |. p2 .| ^2 - ( p2 `2 / |. p2 .| - sn ) ^2 >= 0 ; l - 1 + 1 = l * ( l + 1 ) + ( l - 1 ) ; x = v + ( a * w1 + ( b * w2 ) ) + ( c * w2 ) + ( c * w2 ) ; the TopStruct of L = ( ( the topology of L ) | the topology of L ) | ( the topology of L ) ; consider y being element such that y in dom H1 and x = H1 . y and y in H1 . y ; ( f \ { n } ) \ { n } = ( f \ { n } ) \ ( f \ { n } ) ; for Y being Subset of X st Y is summable & Y is summable holds Y is not empty iff Y is not empty 2 * n in { N : 2 * Sum ( p | N ) > N } & N > 0 ; for s being FinSequence holds len ( ( the { F } ) * ( the Arity of S ) ) = len s & ( the ResultSort of S ) * ( the ResultSort of S ) = len s for x st x in Z holds ( exp_R * f ) is_differentiable_in x & ( exp_R * f ) . x > 0 ; rng ( h2 * ( f2 * f1 ) ) c= the carrier of ( TOP-REAL 2 ) | K1 ; j + ( len f - len f ) <= len f + ( len f - len f ) ; reconsider R1 = R * I as PartFunc of REAL , REAL n ; C8 . x = s1 . ( |[ a , d ]| ) .= C8 . ( |[ a , d ]| ) .= C8 . ( |[ a , d ]| ) ; power ( F_Complex , z ) . ( z , n ) = 1 .= x |^ n .= x |^ n ; t -\mathop { > 0 ( C , s ) = f . ( the connectives of S ) . ( t , C ) ; support ( f + g ) c= support f \/ support ( f + g ) /\ support ( f + g ) ; ex N st N = j1 & 2 * Sum ( ( r * ( r * N ) ) ) > N ; for y , p st P [ p ] holds P [ 'not' p ] { [ x1 , x2 ] } is Subset of [: X1 , X2 :] & { x1 , x2 } is Subset of [: X2 , Y2 :] ; h = ( j |-- h ) . ( id B , id B ) .= H . ( id B ) .= H . ( id B ) ; ex x1 be Element of G st x1 = x & x1 * N c= A & x1 * N c= A * N ; set X = ( ConsecutiveDelta ( q , O ) ) . ( ( d , O ) . O ) , O = ( d , O ) . O ) ; b . n in { g1 : x0 - r < g1 & g1 < x0 } ; f /* ( s1 + c ) is convergent & f /. ( lim s1 ) = lim ( f /* s1 ) ; the lattice of lattice Y = the lattice of lattice (# the carrier of Y , the carrier of X #) & the carrier of lattice = the carrier of lattice ; 'not' ( a . x ) '&' b . x 'or' 'not' ( a . x ) = TRUE ; 2 = len ( q ^ <* 0 *> ) + len ( q ^ <* 1 *> ) .= len ( q ^ <* 1 *> ) + len <* 1 *> ; ( ( 1 / a ) (#) ( ( sec * f1 ) - ( ( sec * f1 ) - ( tan * f2 ) ) ) ) `| Z ) = ( ( ( ( tan * f1 ) - ( tan * f2 ) ) ) `| Z ) ; set K = upper upper ( f , A ) , H = integral ( f , H ) , K = integral ( f , H ) , H = integral ( f , H ) , I = integral ( f , H ) ; assume e in { |[ w , w1 ]| : w1 in F & w2 in G & w1 in F & w2 in G } ; reconsider d1 = dom a `2 , d2 = dom F as finite Subset of NAT ; LSeg ( f , j ) .. f -' q = LSeg ( f , j ) + q .. f -' q .. f -' q .. f ; assume X in { T ( N2 , K ) : h . ( N2 , K ) = N ( N2 , K ) } ; assume Hom ( d , c ) <> {} & <* f , g *> * ( f , g ) = <* f , g *> * ( f , h ) ; dom Sit = dom S /\ Seg n .= dom L /\ Seg n .= dom L /\ Seg n .= dom L /\ Seg n .= dom L /\ dom ( L | n ) .= dom L /\ dom ( L | n ) .= dom L /\ dom ( L | n ) .= dom L /\ dom L /\ dom L ; x in H |^ a implies ex g st x = g |^ a & g in H |^ a & g in H |^ a ; a * ( ( n , 1 ) * ( a , 1 ) ) = a * ( 0 , 1 ) .= a * ( 0 , 1 ) .= a * ( 0 , 1 ) ; D2 . j in { r : lower_bound A <= r & r <= upper_bound A } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] & p <> 0. TOP-REAL 2 ; for c holds f . c <= g . c implies f ^ g tolerates f ^ g ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h ^ h dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) /\ X /\ dom ( f2 (#) f1 ) ; 1 = sqrt ( p * p ) .= p * sqrt ( 1 + ( p * q ) ^2 ) .= p * sqrt ( 1 + ( p * q ) ^2 ) ; len g = len f + len <* x *> .= len f + len <* y *> .= len f + len <* y *> ; dom ( F | [: N1 , N2 :] ) = [: N1 , N1 :] & dom ( F | [: N1 , N2 :] ) = [: N1 , N1 :] ; dom ( f . t * I . t ) = dom ( ( f . t ) * ( g . t ) ) ; assume a in ( "\/" ( ( T |^ \alpha ) ) .: D ) .: D ; assume that g is one-to-one and ( the carrier of S ) /\ rng g c= dom g and g . ( g . x ) = g . ( g . x ) ; ( ( x \ y ) \ z ) \ ( ( x \ y ) \ z ) = 0. X ; consider f such that f * f = id ( the carrier of b ) and f * f = id ( the carrier of b ) ; ( ( ( cos * f ) | [. 0 , PI / 2 .] ) ) | [. 0 , PI / 2 .] is increasing ; Index ( p , co ) <= len LS - Index ( Gik , LS ) + 1 - Index ( Gik , LS ) + 1 - Index ( Gik , LS ) + 1 ; t1 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , t2 , t1 , t2 , t2 , ( ( ( ( ( ( ( ( L ) ) ) ) . h ) ) . h ) . h ) . h <= ( ( ( ( the Sorts of ( ( the Sorts of ( L ) ) . h ) ) . h ) ) . h ; then P [ f . i0 , f . x0 ] & F ( f . x0 + f . x0 ) < j ; Q [ ( [ D . x , 1 ] ) `1 , F . ( [ D . x , 1 ] `1 ] ) ] ; consider x being element such that x in dom ( F . s ) and y = ( F . s ) . x ; l . i < r . i & [ l . i , r . i ] is Element of G . i ; the Sorts of A2 = ( the Sorts of A2 ) --> ( the Sorts of A2 ) & the Sorts of ( the Sorts of A2 ) --> ( the Sorts of A1 ) ; consider s being Function such that s is one-to-one and dom s = NAT and rng s c= { 0 } and rng s c= { 1 } ; dist ( y1 , y2 ) <= dist ( y1 , y2 ) + dist ( a , y2 ) ; ( ( ex C , n st C /. len \mathop { \rm Cage ( C , n ) ) ) .. ( ( Cage ( C , n ) ) .. ( Cage ( C , n ) ) ) = len ( ( Cage ( C , n ) ) .. ( Cage ( C , n ) ) ) ; q <= ( ( ( UMP C ) ) . ( len Gauge ( C , n ) ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being Real such that a <= I and A = ]. a , b .] and A = ]. a , b .] ; consider a , b being complex number such that z = a & y = b and z = a + b ; set X = { b where b is Element of NAT : b in X & a < b } ; ( ( x * y ) \ z ) \ ( x \ y ) ) \ ( x \ z ) = 0. X ; set xy = [ <* xy , yz , z *> , \vert yz , a4 ] , \vert a4 - a4 , x5 - a4 , \vert x5 - a4 , \vert x5 - a4 .| , \vert a4 - a4 .| ; Carrier ( l ) /. len l = Carrier ( l ) . len l .= ( f /. len l ) * ( f /. len l ) ; sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ) = 1 ^2 + ( q `2 / |. q .| - sn ) ^2 ; sqrt ( ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) ^2 ) < 1 / ( 1 + sn ) ^2 ; ( ( ( ( TOP-REAL 2 ) | X ) ) | X ) `2 = ( ( ( TOP-REAL 2 ) | X ) ) . p `2 .= ( ( TOP-REAL 2 ) | X ) . p ; ( ( ( s1 - ( s1 - ( lim s1 ) ) ) ) - ( ( lim s1 ) - ( lim s1 ) ) ) ) . k = ( ( s1 - ( lim s1 ) ) ) . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) ; the carrier of X = the carrier of X & the carrier of X = the carrier of Y & the carrier of Y = the carrier of X ; ex p3 st p3 = p3 & |. p3 - p3 .| = r & |. p3 - p3 .| = r ; set h = \raise .4ex \hbox { $ \chi $ } , A , B , C , D ; R |^ ( 0 * n ) = Ireal ( X , n ) .= R |^ n * R |^ n .= R |^ n * R |^ n ; ( Partial_Sums ( ( ( ( ( ( F ) ) . n ) ) ) . m ) ) . n ) . n is nonnegative ; f2 = C7 . ( ( E8 ) . ( V , C ) ) .= ( C8 ) . ( ( V , C ) . ( V , C ) ) ; S1 . b = s1 . b .= S2 . b .= S2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p1 , p2 ) \/ LSeg ( p2 , p3 ) /\ LSeg ( p3 , p2 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = ( the connectives of S ) . 11 & ( the connectives of S ) . 11 in ( the carrier' of S ) . 11 ; set phi = ( l1 , l ) \mathop { \rm X , X = ( l , l ) \mathop { \rm \hbox { - } :] ; synonym p is T means : Def6 : HT ( p , T ) = 1 ; ( Y1 `2 ) ^2 = ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( - 1 ) ) ) & ( - 1 ) * ( ( - 1 ) * ( - 1 ) ) <> 0. TOP-REAL 2 ; defpred X [ Nat , set , set ] means P [ $1 , $2 , set ] means $2 = [ $1 , $2 ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g . n ; Det ( I ^ ( ( m -' n ) ) ) = ( 1_ K ) * ( ( m -' n ) ) .= 1_ K ; sqrt ( ( - b ) ^2 - sqrt ( b ^2 - a ^2 ) ) < 0 ; CQ . d = CQ . ( d , ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( d . ( attr X1 is dense means : Def6 : X1 is dense & X2 is dense & X1 /\ X2 is dense implies X1 meet X2 is dense ; deffunc F ( Element of E , Element of I , Element of I ) = ( $1 * $2 ) * ( $2 + $2 ) ; t ^ <* n *> in { t ^ <* n *> : Q [ i , T ( ) ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y \ x ` .= y \ y ` ; for X being non empty set holds X is Basis of [: X , Y :] iff X is Basis of [: X , Y :] synonym A , B are_equipotent for A , B , C , D , E , F , J , M , N , N , N , N , N , M , N , N , N , M , N , N , M , N , N , M st M , N misses A & N , M misses B & M , N // N & M , N // N implies M , N // N & M , len ( M * p ) = len p & width ( M * p ) = width M & width ( M * p ) = width M & width ( M * p ) = width M ; v2 = { x where x is Element of K : 0 < x & x < 1 } ; ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . d - ( Sgm ( Seg m ) ) . e <> 0 ; lower_bound divset ( D2 , k + indx ( D2 , D1 , k ) + 1 ) = D2 . ( k + 1 ) - indx ( D2 , D1 , k ) + 1 ) ; g . r1 = ( - 2 * r1 + 1 ) * h + ( - 2 * r1 ) * h & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `1 & g . x = ( h . x ) `1 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w ^ w ^ w ^ w ^ w ^ w ^ ( 1 + 1 ) ; [ 1 , {} , <* d1 *> ] in ( ( { [ 0 , {} ] } \/ { {} } ) \/ { {} } ) \/ ( { {} } ) ; IC Exec ( i , s1 ) + n = IC Exec ( i , s1 ) + n .= IC Exec ( i , s1 ) + n ; IC Comput ( P , s , 1 ) = IC Comput ( P , s , 1 ) .= 5 + 1 .= 5 + 1 ; ( IExec ( W6 , Q , t ) ) . intpos ( i + 1 ) = t . intpos ( i + 1 ) ; LSeg ( f , i ) misses LSeg ( f , i ) \/ LSeg ( f , j ) \/ LSeg ( f , j ) ; assume for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; \int ( f ' _ \ast ( f ' _ \ast ( h + c ) ) ) .|| = f . ( ( f /* c ) - ( f /* c ) ) . n ; for F , G being one-to-one FinSequence st rng F misses rng G & rng F misses rng G holds F ^ G is one-to-one ||. R /. ( L . h ) - R /. ( K . h ) .|| < e * ( K . h ) + e * ( K . h ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r & q <= r } ; set p3 = |[ 2 , 1 ]| .--> |[ 0 , 1 ]| ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and y c= d and x in d and y in F and x in d ; for y , x being Element of REAL st y in Y & x in Y & y in X & x in Y holds y <= x `1 func |. p ^ |. p .| -> ^ |. p .| -> ^ of A equals : Def6 : ( |. p .| ^ |. p .| ) ^ |. p .| ^ |. p .| ; consider t being Element of S such that x , y '||' z , t and x , y '||' z , t and x , y '||' t , t ; dom x1 = Seg len ( x1 ^ x2 ) & len ( x1 ^ x2 ) = len ( x1 ^ x2 ) & len ( x1 ^ x2 ) = len ( x1 ^ x2 ) ; consider y2 being Real such that x2 = y2 and 0 <= y2 and y2 <= 1 and 0 <= y2 and y2 <= 1 and p `2 <= 1 and p `2 <= ( ( - 1 ) * ( - 1 ) ) `2 ; ||. f /* ( ( f /* ( s1 + s1 ) ) - f /* ( s1 + s2 ) .|| ) = ||. f /* ( s1 + s2 ) .|| ; ( the InternalRel of A ) ` ` /\ ( the InternalRel of A ) ` = {} ( {} ( A ) ) ` .= {} ( A ) ` .= {} ( A ) ` ; assume that i in dom p and for j being Nat st j in dom q holds P [ j , i ] and for j being Nat st j in dom p holds P [ j , i ] ; reconsider h = f | [: X , Y :] as Function of [: X , Y :] , Y ; u1 in the carrier of W1 & u2 in the carrier of W2 & v2 in the carrier of W1 & u in the carrier of W2 & u in the carrier of W2 & v in the carrier of W1 & u in the carrier of W2 implies u1 + u2 in the carrier of W1 & u1 + u2 in the carrier of W2 defpred P [ Element of L ] means M . $1 <= f . $1 & f . $1 <= f . $1 ; T . ( u , a , v ) = s * x + ( - ( s . x ) + ( - ( s . x ) ) ) .= b ; - ( x - y ) = - x + ( - y ) .= - x + ( - x ) .= - x + ( - y ) .= - x + ( - y ) .= - x + ( - y ) .= - x + ( - y ) .= - x + ( - y ) .= - x + ( - y ) ; given a being Point of Gsuch that for x being Point of Gholds a . x = x and a is not empty ; f\sqcup f2 = [ [ dom ( ( f . O ) , cod ( f . O ) ] , [ f . O ] ] , [ f . O , [ f . O ] ] ] , [ f . O ] , [ f . O ] ] ] , [ f . O ] ] ; for k , n being Nat st k <> 0 & k < n & k < n & k <= n holds k |^ n is prime for x being element holds x in A |^ d iff x in ( A ` ) ` & x in ( A ` ) ` consider u , v being Element of R such that l /. i = u * v and l /. i = a * v ; sqrt ( ( sqrt ( ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) > 0 ; L-13 . k = LF . ( F . k ) & F . ( F . k ) in dom ( L * F ) ; set i2 = AddTo ( a , i , n ) , i2 = AddTo ( a , i , n ) ; attr B is consistent means : Def6 : for S holds S ( S , x ) = ( B ( S ) ) . S & S ( S ) . x = ( B ( S ) ) . x ; a9 " D = { a "/\" d where d is Element of N : d in D & d in D } ; | ( ( \square | ( q | q ) ) ) . b - ( ( q | q ) . b ) >= | ( dom ( ( q | q ) | ( q | q ) ) ) . b ; ( - f ) . ( sup A ) = ( - f ) . ( sup A ) .= ( - f ) . ( sup A ) ; ( G * ( len G , j ) ) `1 = ( G * ( len G , j ) ) `1 .= ( G * ( len G , j ) ) `1 .= ( G * ( len G , j ) ) `1 ; ( Proj ( i , n ) ) . L = <* ( proj ( i , n ) ) . L *> . ( <* proj ( i , n ) . L *> ) . ( <* proj ( i , n ) . L *> ) ; f1 + f2 * reproj ( i , x ) is_differentiable_in ( ( f1 + f2 ) * reproj ( i , x ) ) . x ; attr ( ( ( for x st x in Z holds ( ( exp_R * exp_R ) `| Z ) ) `| Z ) . x = ( exp_R * exp_R ) . x + ( exp_R * exp_R ) . x ; ex t being SortSymbol of S st t = s & ( h1 . t ) . x = h2 . x & ( h2 . t ) . x = h2 . x ; defpred C [ Nat ] means ( P . $1 ) is consistent & ( P . $1 ) is consistent ) & ( P . $1 ) is \vert ; consider y being element such that y in dom ( p . i ) and q . i = ( p . i ) . y ; reconsider L = product ( { x1 } ) ^ ( ( index B ) ^ ( index A ) ) as Basis of A ; for c being Element of C holds T . ( id c ) = id ( the carrier of C ) & T . ( id c ) = id ( the carrier of C ) ; LIN f . n , p ^ <* p *> , q ^ <* p *> .= f ^ <* p *> ^ <* q *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { |[ 1 / 2 * ( G * ( i + 1 , j + 1 ) `2 ]| } ; f `2 - p `2 = ( ( c | n ) *' ) . ( - p `2 ) .= ( ( c - n ) *' ) . ( - p `2 ) .= ( ( c - n ) *' ) . ( - p `2 ) .= ( ( - n ) *' ) . ( - p `2 ) .= ( - n ) *' ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . [ ( ( ( ( r - 8 ) / 2 ) * ( ( r - 8 ) / 2 ) ) * ( ( r - 8 ) / 2 ) ) , ( ( r - 8 ) / 2 ) * ( ( r - 8 ) / 2 ) ) , ( ( r - 8 ) / 2 ) * ( ( r - 8 ) / 2 ) ) ] in f1 .: ( ( r - 8 ) / 2 ) ; eval ( a | n , x ) = eval ( a | n , x ) .= a . ( x | n ) .= a . x ; z = DigA ( t9 , x ) .= DigA ( t9 , x ) .= DigA ( t9 , x ) .= DigA ( t9 , x ) ; set H = { Intersect ( S ) where S is Subset-Family of X : S is closed & S is closed } ; consider S19 being Element of D ( ) , d being Element of D ( ) such that S = S19 ^ <* d *> and d in S ( ) and d in S ( ) and d in S ( ) ; assume that x1 in dom f and x2 in dom f and f . x1 = f . x2 and f . x2 = f . x2 ; - 1 <= sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ) ; Carrier ( K ) is Linear_Combination of A & Sum ( K ) = 0. K & Sum ( K ) = 0. K & Sum ( L ) = 0. K ; let k1 , k2 , k1 , k2 , k2 , x4 , x5 , J , M , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , M , N , N , M be Element of NAT ; consider j being element such that j in dom a and j in g " { k } and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x2 or H1 . x2 c= H1 . x2 ; consider a being Real such that p = a * p1 + ( a * p2 ) and 0 <= a and a <= 1 and a <= 1 ; assume that a <= c and d <= b and [ a , b ] c= dom f and [ a , b ] c= dom g and g . a = g . b ; cell ( Gauge ( C , m ) , m -' 1 , width Gauge ( C , m ) -' 1 ) is non empty ; A5 in { ( S . i ) `1 where i is Element of NAT : i in dom ( S . i ) `1 & ( S . i ) `2 <= ( S . i ) `2 } ; ( T * b1 ) . y = L * ( b2 . y ) .= ( F * b2 ) . y .= ( F * b2 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x .| ; ( log ( 2 , k ) ) ^2 + ( log ( 2 , k ) ) ^2 >= ( log ( 2 , k ) ) ^2 ; then that p => q in S and not x in the still of p and not p => q in the still of p ; dom ( the succ of ( r , the InitS of ( r , the InitS of ( r , the InitS of ( r , the InitS of ( r , the InitS of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , the Sorts of ( r , cluster f -> extended real for Function of rng f , REAL ; assume for a being Element of D holds f . { a } = a & f . ( f .: { a } ) = f . ( union X ) ; i = len p1 .= len p1 + len p3 .= len p3 + len p3 .= len p3 + len p3 + len p3 .= len p3 + len p3 + p3 .= len p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p1 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + p3 + F + F + F + F + p3 .= F + p3 ( l /. 3 ) `1 = ( g /. 3 ) `1 + ( g /. 3 ) `1 .= ( g /. 3 ) `1 + ( g /. 3 ) `1 .= ( g /. 3 ) `1 + ( g /. 3 ) `1 .= ( g /. 3 ) `1 + ( g /. 3 ) `1 ; CurInstr ( P2 , Comput ( P2 , s2 , l ) ) = halt SCM+FSA .= halt SCM+FSA .= IC Comput ( P2 , s2 , l ) ; assume for n be Nat holds ||. ( seq . n ) - ( seq . n ) .|| <= ( ||. seq .|| ) . n & ( ||. seq .|| ) . n <= ( ||. seq .|| ) . n ; sin . ( r * PI ) = sin . ( r * PI ) .= sin . ( r * PI ) .= 0 .= 0 ; set q = |[ g1 `1 * ( t `2 - g2 `2 ) , g2 `2 * ( t `2 - g2 `2 ) ]| ; consider G being sequence of S such that for n be Element of NAT holds G . n in W5 ( F . n ) ; consider G such that F = G and ex G1 st G1 in SF1 & G in G1 & F in G1 & G in G1 & G in G1 ; the root of ( x , s ) . s in ( the Sorts of Free ( F , X ) ) . s & ( the Sorts of Free ( F , X ) ) . s = ( the Sorts of Free ( F , X ) ) . s ; Z c= dom ( ( ( exp_R ^ ) (#) ( exp_R + ( exp_R + exp_R ) ) ) ) `| Z ) ; for k be Element of NAT holds ( ( Im ( f ) ) . k ) . k = ( ( Im ( f ) ) . k ) . k assume that - 1 < n and - 1 < n and - 1 < n and n < 1 and - 1 < n and - 1 < n and - 1 < n and n < 1 ; assume that f is continuous and a < b and a < b and f . a = c and f . b = d and f . a = c ; consider r being Element of NAT such that Comput ( P1 , s1 , i ) = Comput ( P1 , s1 , i ) and r <= q and r <= q ; LE f /. ( i + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) , f /. ( j + 1 ) ; assume that x in the carrier of K and y in the carrier of K and inf { x , y } in the carrier of K and x in the carrier of K and y in the carrier of K ; assume f +* ( i1 , \xi ) in ( ( proj ( F , i2 ) * ( i1 , i2 ) ) ) " ( ( proj ( F , i2 ) * ( i1 , i2 ) ) " ) ; rng ( ( Flow M ) | ( the carrier of M ) ) c= the carrier of M & rng ( ( Flow M ) | ( the carrier of M ) ) c= the carrier of M ; assume z in { ( the carrier of G ) \times { t } where t is Element of T : t in X & t in X } ; consider l be Nat such that for m be Nat st l <= m holds ||. ( s1 . m ) - ( lim s1 ) .|| < g ; consider t be VECTOR of product G such that for t be Element of dom ( D . t ) holds ||. t .|| <= ||. ( D . t ) .|| * ||. t .|| ; assume that the carrier of v = 2 and v ^ <* 0 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* 1 *> ^ <* consider a being Element of the Points of X , A such that a on A and not a on A and not a on A and not a on A ; ( - x ) |^ ( k + 1 ) * ( ( - x ) |^ ( k + 1 ) ) " = 1 ; for D being set st for i st i in dom p holds p . i in D . i holds p . i in D . i defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] ; L~ f2 = union { LSeg ( 0 , p2 ) , LSeg ( |[ 0 , 0 ]| , |[ 0 , 0 ]| ) , |[ 0 , 0 ]| } ; i - len h11 + 2 - 1 < i - len h11 + 1 - 1 + 1 - 1 ; for n be Element of NAT st n in dom F holds F . n = |. ( n -' 1 ) .| for r , s1 , s2 holds r in [. s1 , s2 .] iff r in [. s1 , s2 .] & s1 <= s2 & s2 <= 1 & s1 <= 1 & s2 <= 1 & s1 <= 1 & s1 <= 1 & s2 <= 1 & s1 <= 1 & s2 <= 1 & s1 <= 1 & s1 <= 1 & s2 <= 1 } assume v in { G where G is Subset of T2 : G in ( B1 \ B2 ) & G in B1 & G c= B1 } ; let g be Element of A , X , Y be non-empty ManySortedSet of ( the carrier of A ) , f be Function of X , Y ; min ( g . [ x , y ] , k ) . [ x , y ] = ( min ( g . k , g . x ) ) . [ y , z ] ; consider q1 be sequence of Ca such that for n holds P [ n , q1 . n ] ; consider f being Function such that dom f = NAT and for n being Element of NAT holds f . n = F ( n ) and f . n = F ( n ) ; reconsider BO = B /\ O , O = O /\ O as Subset of [: O , O :] ; consider j be Element of NAT such that x = the Element of n and 1 <= j and j <= n and 1 <= n and n <= len f and 1 <= j and j <= len f and 1 <= j and j <= len f and 1 <= j and j <= len f and f /. j = f /. j ; consider x such that z = x and card ( x . O ) in card ( x . O ) and x in ( x . O ) . O and x in ( x . O ) . O ; ( C * ( T4 ) ) . 0 = C . ( ( T4 ) . ( n + n2 ) ) ) .= C . ( ( T4 ) . 0 ) ; dom ( X --> rng f ) = X & dom ( X --> f ) = X & dom ( X --> f ) = X ; ( ( TOP-REAL 2 ) | ( L~ Cage ( C , n ) ) ) `2 <= ( ( GoB Cage ( C , n ) ) * ( i , j ) `2 ) `2 ; synonym x , y are_not collinear means : Def6 : { x , y } = y or { x , y } is \mathopen of x , y ; consider X being element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; assume that Im k is continuous and for x , y being Element of L st x = y & y = x & x <= y holds x << y iff x << y & y \ x <= x & x \ y <= y \ x ; ( ( 1 / 2 ) (#) ( ( cos - ( cos - ( cos - ( sin - ( cos - ( cos - ( cos - ( sin - ( cos - ( cos - ( sin - ( cos - ( sin - ( cos - ( sin - ( cos - ( sin - ( cos - ( sin - ( sin - ( sin - ( sin - ( cos - ( sin - ( cos - ( cos - ( sin - ( cos - ( sin - ( sin - ( cos - ( sin - ( sin - ( cos - ( cos ) ) ) ) ) ) ) defpred P [ Element of omega ] means ( the partial of A1 ) . $1 = A1 . ( $1 ) & ( the partial of A2 ) . $1 = ( the partial of A2 ) . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 2 ) .= 6 + 1 .= 6 + 1 .= 6 + 1 ; f . x = f . ( g1 . ( g1 . ( g2 . ( g2 . x ) ) ) * f . ( g2 . x ) ) .= f . ( g1 . ( g2 . x ) ) * f . ( g2 . x ) .= f . ( g1 . x ) * f . ( g2 . x ) ; ( M * ( F . n ) ) . n = M . ( F . n ) .= M . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( F ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) . n ) .= M . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( F F ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) the carrier of L1 + L2 c= ( the carrier of L1 ) \/ ( the carrier of L2 ) \/ ( the carrier of L2 ) ; pred a , b , c , x , y , z is_collinear means : Def6 : for x , y , z being Element of X holds x , y , z , x , y is_collinear & x , y , z , x , y is_collinear & x , y , z , x is_collinear & x , z , y , z is_collinear ; ( the PartFunc of product G ) . n <= ( the Sorts of product G ) . n * ( the Sorts of A ) . n ; attr - 1 <= r & r <= 1 implies ( ( - 1 ) (#) ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) ) ) ) `| ( [. - 1 , 1 .] ) = ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( ( - 1 ) * ( - 1 ) ) ) ) s in { p ^ <* n *> where n is Nat : p ^ <* n *> in T & p ^ <* n *> in T } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 ]| . 2 - |[ y1 , y2 ]| . 2 - |[ y1 , y2 ]| . 2 - y1 + y2 . 2 , y2 ]| . 2 - y1 + y2 . 2 - y1 . 2 , y2 - y1 + y2 ]| . 2 + y1 . 2 - y2 . 2 + y1 . 2 - y1 . 2 , y2 . 2 + y1 . 2 + y2 . 2 + y1 . 2 + y1 . 2 - y1 attr for m being Nat holds F . m is non-negative means : Def6 : ( F . m ) is nonnegative ; len ( ( ( carr G ) . z ) + ( ( carr G ) . ( y1 , y2 ) ) ) = len ( ( ( carr G ) . y1 ) + ( ( carr G ) . y2 ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 and v in W2 /\ W3 and u in W2 /\ W3 ; given F being FinSequence of NAT such that F = x and dom F = n and dom F = { 0 , 1 } and rng F c= { 0 , 1 } and Sum F = 1 and Sum F = 1 ; 0 = ( 1 - @ ) * cos . uq iff 1 - 0 = ( 1 - @ q ) * ( 1 - 0 ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster non empty strict for RelStr for RelStr of L , ( ( the carrier of L ) --> ( ( the carrier of L ) --> ( the carrier of L ) ) ) , ( the carrier of L ) --> ( ( the carrier of L ) --> ( the carrier of L ) ) ; "/\" ( B , L ) = Bottom S .= Bottom S .= Bottom S .= Bottom S .= Bottom S .= Bottom S .= Bottom S .= Bottom S ; sqrt ( r ^2 + ( r ^2 + ( r ^2 + ( r ^2 + r ^2 ) ) ^2 ) ) <= sqrt ( r ^2 + ( r ^2 + ( r ^2 ) ^2 ) ) ; for x being element st x in A /\ dom ( f `| X ) holds ( f `| X ) . x >= r2 2 * r1 " * |[ a , c ]| - ( 2 * r1 ) * |[ b , c ]| + ( 2 * r1 ) * |[ a , c ]| = 0. TOP-REAL 2 ; reconsider p = P /. ( \square , 1 ) , q = a " * ( ( - 1_ K ) * ( ( - 1_ K ) * ( 1 , 1 ) ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in uparrow s and x2 in uparrow t and x = [ x1 , x2 ] and x in uparrow t and y = [ x1 , x2 ] ; for n being Nat st 1 <= n & n <= len q1 holds q1 . n = ( ( lower ( g , n ) ) . n ) * ( ( lower ( g , n ) ) . x ) consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 & y = H2 & H1 = H2 & H2 = H & H1 = H ; for S , T being non empty RelStr , d being Function of T , S for d being Function of T , S holds d is directed-sups-preserving iff d is directed-sups-preserving & d is directed-sups-preserving & d is directed-sups-preserving [ a + 0 , b ] in ( the carrier of V ) & [ b , a ] in ( the carrier of V ) & [ a , b ] in [: the carrier of V , the carrier of V :] ; reconsider m2 = max ( len ( F . n ) * ( p . n ) ) as Element of NAT ; I <= width GoB ( GoB ( h ) ) & GoB ( h ) * ( i , j ) `2 = ( GoB h ) * ( i , j ) `2 & GoB h = ( GoB h ) * ( i , j ) `2 & GoB h = ( GoB h ) * ( i , j ) `2 ; f2 /* q = ( f2 /* ( f1 /* ( f1 /* s ) ) ) ^\ k .= ( f2 /* ( f1 /* s ) ) ^\ k .= ( f2 /* ( f1 /* s ) ) ^\ k ; attr A1 : A1 \/ A2 is linearly-independent means : Def6 : for A , B being Subset of V holds ( A1 \/ A2 ) /\ ( A1 \/ A2 ) = {} & ( A1 \/ A2 ) /\ ( A1 \/ A2 ) = {} ; func A -| C -> set equals union { A ( ) where A is Element of C ( ) : A ( ) = C ( ) & A ( ) is finite } ; dom ( ( Line ( v , i + 1 ) ) ) = dom ( ( F ^ ) ) ^ ( ( ( ( ( p ^ ) ) ^ ) ) ) ^ ) ) .= dom ( F ^ ) ) ; cluster [ x `1 , x `2 ] -> ( [ x `1 , x `2 ] ) `1 , [ x `2 ] `2 , [ x `2 , x `2 ] `2 ] `1 -> [: x `1 , x `2 `2 :] ; E , All ( x2 , x1 ) |= All ( x2 , x2 ) 'or' All ( x2 , x1 ) '&' All ( x3 , x2 ) '&' All ( x3 , x2 ) '&' All ( x3 , x3 ) '&' All ( x3 , x1 ) '&' All ( x4 , x2 ) '&' All ( x4 , x3 ) '&' All ( x4 , x3 ) '&' All ( x4 , x3 ) '&' All ( x4 , x3 ) '&' All ( x4 , x1 ) '&' All ( x4 , x3 ) '&' All ( x4 , x3 ) '&' All ( x4 , x3 ) '&' All ( x4 , x3 ) F .: ( id X , g . x ) = F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( id X , g . x ) .= F . ( x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . ( x0 + h . m ) - ( h . x0 ) + ( h . x0 ) .= ( h . m ) -f . x0 + ( h . x0 ) ; cell ( G , ( X -' 1 ) -' 1 , Y -' 1 ) \ L~ f ) meets ( L~ f -' 1 ) \ ( L~ f -' 1 ) ; IC Comput ( P2 , s2 , i ) = IC Comput ( P2 , s2 , i ) .= IC Comput ( P2 , s2 , i ) .= IC Comput ( P2 , s2 , i ) .= IC Comput ( P2 , s2 , i ) ; sqrt ( ( ( - ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) > 0 ; consider x0 being element such that x0 in dom a and x0 in g and x0 in g " { x0 } and x0 in dom g and g . x0 = a . x0 and g . x0 = ( f . x0 ) * ( f . x0 ) ; dom ( r1 (#) ( ( - 1 ) (#) ( f | A ) ) ) = dom ( ( - 1 ) (#) ( f | A ) ) .= dom ( ( - 1 ) (#) ( f | A ) ) .= dom ( ( - 1 ) (#) ( f | A ) ) .= A ; d . [ y , z ] = ( [ y , z ] `1 ) * ( [ y , z ] `1 ) - ( y `1 ) * ( y `2 ) + ( y `2 ) * ( y `2 ) - ( y `2 ) * ( y `2 ) ; hence for i being Nat holds C . i = A . i /\ B . i implies -5 . i c= ( A . i ) /\ ( B . i ) assume that x0 in dom f and f is continuous and for x st x in dom f holds f . x - f . x0 = ( f . x ) * ( f . x - f . x0 ) ; p in Cl A implies for K being Basis of T for Q being Basis of T st Q in K & Q is open holds A meets Q for x be Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - y2 .| func <* a *> -> Ordinal of a means : Def1 : for b being Ordinal st a in it holds it . b = a & it . b = b ; [ a1 , a2 ] in ( ( the carrier of A ) \/ ( the carrier of B ) ) \/ ( the carrier of C ) & ( the carrier of A ) \/ ( the carrier of C ) c= ( the carrier of A ) \/ ( the carrier of C ) ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] & x = [ a , b ] ; ||. ( ( vseq . n ) . m - ( vseq . m ) . n ) .|| < \frac { e } * ||. x .|| + ||. x .|| * ||. x .|| ; then for Z being set st Z in { Y where Y is Element of I : F . Y = Z } holds z in Z & z in Z ; sup ( { [ s , t ] } , [ y , t ] ] } = [ sup [: { y } , { t } :] , [ y , t ] ] ] .= [ y , t ] ; consider i , j being Element of NAT such that i < j and [ y , f . i ] in [: I , J :] and [ f . i , f . j ] in [: I , J :] and [ f . i , f . j ] in [: I , J :] ; for D being non empty set , p , q being FinSequence of D st p ^ q = q ^ p & p ^ q = q ^ p holds p ^ q ^ q ^ q ^ p ^ q ^ q consider e1 be Element of the carrier of X such that not LIN c9 , e1 , e1 and not LIN e1 , e1 , e1 and not LIN e1 , e1 , e1 and not LIN e1 , e1 , e1 and not LIN e1 , e1 , e1 and not LIN e1 , e1 , e1 and not LIN e1 , e1 , e1 and not LIN e1 , e1 , e1 ; set U = I \! \mathop { \rm \hbox { - } \rm \hbox { - } cluster } ; |. q2 .| ^2 = ( ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 ) ^2 .= ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 .= ( |. q2 .| ) ^2 + ( |. q2 .| ) ^2 ; for T being non empty TopSpace , x , y being Element of [: the topology of T , the topology of T :] holds x "\/" y = x "\/" y & x "\/" y = x "\/" y dom ( ( the charact of U1 ) * the Arity of U2 ) = dom ( the charact of U2 ) & dom ( the charact of U2 ) = dom the charact of U2 & dom ( the charact of U2 ) = dom the charact of U2 ; dom ( h | X ) = dom h /\ X .= dom ( ( |. h .| ) | X ) .= dom ( |. h .| ) /\ X .= dom ( |. h .| ) /\ X .= dom ( |. h .| ) /\ X .= dom ( |. h .| ) /\ dom ( |. h .| ) .= dom ( |. h .| ) /\ dom ( |. h .| ) .= dom ( |. h .| ) /\ dom ( |. h .| ) ; for N1 , N2 be Element of [: N1 , N2 :] holds ( h . N1 ) . ( N1 , N2 ) = N . ( N1 , N2 ) & ( h . N1 ) . ( N1 , N2 ) = N . ( N1 , N2 ) ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i = ( mod ( u , m ) ) . i + ( mod ( v , m ) ) . i ; - ( q `1 / |. q .| - sn ) / ( 1 + sn ) < - ( q `1 / |. q .| - sn ) / ( 1 + sn ) & - ( q `1 / |. q .| - sn ) / ( 1 + sn ) <= - ( q `2 / |. q .| - sn ) / ( 1 + sn ) ; attr r1 = f . ( f1 . n ) & r1 = f . ( f1 . n ) & r2 = f . ( f1 . n ) ; vseq . m is bounded Function of X , the carrier of Y & ( vseq . m ) . n = ( ( vseq . n ) . m ) * ( ( vseq . n ) . m ) ; attr a <> b & b <> c & a <> c & b <> d & c <> d & a , b , c is_collinear & angle ( a , b , c , d ) = 0 & angle ( a , b , c , d ) = 0 ; consider i , j being Nat such that p1 = [ i , j ] and p = [ i , j ] and p = [ i , j ] and q = [ i , j ] ; |. p .| ^2 - ( 2 * ( p `2 - q `1 ) ^2 ) = |. p .| ^2 + ( |. q .| ) ^2 + ( |. q .| ) ^2 ; consider p1 , q1 being Element of [: X , Y :] such that y = p1 ^ q1 and q1 ^ q2 = p1 ^ q1 and p1 ^ q1 = q1 ^ q2 and q1 ^ q2 = q2 ^ q2 and p1 ^ q1 ^ q2 = q2 ^ q2 ; \bf 2 ( r1 , r2 , s1 , s2 , s1 , s2 , s2 , s2 , s1 , s2 , s2 ) = sqrt ( ( s2 - s1 ) * ( s2 - s2 ) ) * ( s2 - s1 ) ) .= ( s2 - s1 ) * ( s2 - s2 ) ; ( ( ( TOP-REAL 2 ) | ( A ) ) | ( ( ( TOP-REAL 2 ) | ( A ) ) | ( ( A ) | ( ( A ) ) | ( ( A ) ) | ( ( A ) ) | ( ( A ) ) ) ) ) ) ) is empty ; s , H |= H1 '&' H2 iff s |= H1 '&' H2 iff s |= H1 '&' H2 & s |= H1 '&' H2 iff s |= H1 '&' H2 & s |= H1 '&' H2 ) len ( ( ( support b1 ) + 1 ) + 1 ) = card ( support b1 ) + ( ( support b1 ) + ( support b1 ) + ( support b2 ) ) .= card ( support b1 ) + ( support b1 ) + ( support b1 ) .= ( support b1 ) + ( support b1 ) + ( support b1 ) .= ( support b1 ) \/ ( support b1 ) \/ ( support b1 ) .= ( support b1 ) \/ ( support b1 ) .= ( support b1 ) \/ ( support b1 ) \/ ( support b1 ) .= ( support b1 ) \/ ( support b1 ) \/ ( support b1 ) \/ ( support b1 ) \/ consider z be Element of L1 such that z >= x and z >= y and for z being Element of L1 st z >= x & z >= y holds z >= y ; LSeg ( ( ( UMP D ) + ( |[ ( ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( TOP-REAL 2 ) ) / 2 ) - ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( ( TOP-REAL 2 ) + ( TOP-REAL 2 ) ) / 2 ) ) ) ) ) ) /\ LSeg ( ( ( ( TOP-REAL 2 ) - ( ( TOP-REAL 2 ) - ( ( TOP-REAL 2 ) ) / 2 ) - ( ( ( TOP-REAL 2 ) ) / 2 lim ( ( ( f `| N ) /* ( g `| N ) /* b ) - ( f `| N ) /* a ) ) = ( ( ( f `| N ) /* b ) /* a .= ( ( f `| N ) /* b ) - ( ( f `| N ) /* a ) ; P [ i , pr1 ( f ) . i , pr1 ( f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq . k ) - ( lim seq ) .|| < r for X being set , P being a_partition of X , x being set st x in P & x in P & y in P & x in P & P . x = a holds a = b Z c= dom ( ( ( ( ( ( ( ( ( exp_R * f ) ) ) - ( exp_R * f ) ) - ( exp_R * ( exp_R * f ) ) ) ) ) - ( ( exp_R * ( exp_R * f ) - ( exp_R * f ) ) ) ) ) ) ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & i < len l implies z = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j & z = ( l ^ <* x *> ) . j for u , v being VECTOR of V , r being Real st 0 < r & u < 1 holds r * u + ( 1 - r ) * v in N A , Int A are_equipotent implies Int A , Int A are_equipotent & Int A , Int A are_equipotent & Int A , Int A ` ` are_equipotent & Int A , Int A ` ` ` ` ` misses Int A ` & Int A , Int A ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` is open & Int A ` = ( Int A ) ` & Int A ` is open & Int A ` is open & A ` is open & A ` is open & A ` is open & A ` is open & A ` is open & A ` is open & A ` is open & A ` is open & A ` - Sum <* v , u , w *> = - ( v + u ) .= ( - ( v + u ) ) + ( - ( v + u ) ) .= ( - ( v + u ) ) + ( - ( v + u ) ) .= ( - ( v + u ) ) + ( - ( v + u ) ) .= ( - ( v + u ) ) + ( - ( v + u ) ) .= ( - ( v + u ) ) + ( - ( v + u ) .= ( - ( v + u ) .= ( - ( v + u ) .= ( - ( v + u ) ; ( Exec ( a := b , s ) ) . IC SCM = ( Exec ( a , s ) ) . IC SCM R .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( the carrier of J ) . x ; for S1 , S2 being non empty RelStr for D being non empty Subset of S1 for D holds [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S2 :] is directed & [: S1 , S1 :] is directed & [: S1 , S2 :] is directed & [: S1 , S1 :] is directed & card X = 2 implies ex x st x in X & ex y st x in X & y in X & x in Y & y in Y & x in Y & y in X & x in Y ; W-min L~ Cage ( C , n ) in rng ( Cage ( C , n ) \circlearrowleft Cage ( C , n ) \circlearrowleft p ) ; for T , T , p , q being Element of dom T holds ( T -tree p ) . q = T . ( q ^ p ) [ i2 + 1 , j2 ] in Indices G & [ i2 + 1 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) ; cluster k |^ n -> natural for Nat , m , n be Element of NAT , k be Element of NAT st k divides m & k divides n & k divides m holds k divides m * n & k divides m * n implies k divides m dom F " = the carrier of X1 & rng F = the carrier of X2 & rng F " = the carrier of X1 & rng F " = the carrier of X2 & rng F " = the carrier of X2 & rng F = the carrier of X1 & rng F = the carrier of X2 & rng F is closed ; consider C being finite Subset of V such that C c= A and card C = m and the carrier of V c= the carrier of W and the carrier of W c= the carrier of W and the carrier of W c= the carrier of W ; V is prime iff for X , Y being Subset of [: the topology of T , the topology of T :] st X /\ Y c= V & X c= V holds X is open & Y is open & Y is open & X is open & Y is open & Y is open & X is open & Y is open & Y is open & X is open & Y is open & Y is open ; set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { F ( v1 ) where v1 is Element of A ( ) : P [ v1 ] } ; angle ( p1 , p3 , p2 , p3 , p4 , p1 , p2 , p1 , p2 , p3 ) = 0 .= angle ( p2 , p3 , p1 , p2 ) .= angle ( p2 , p3 , p2 , p1 , p2 ) ; - sqrt ( ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) / ( 1 + sn ) ) ^2 ) = ( - ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) .= ( - ( q `2 / |. q .| ) / ( 1 + sn ) .= ( ( q `2 / |. q .| ) / ( 1 + sn ) ) / ( 1 + sn ) ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p2 & f . 1 = p3 ; attr f is partial differentiable of RNS means : Def6 : SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is PartFunc of u0 , REAL ; ex r , s st x = |[ r , s ]| & ( G * ( len G , 1 ) , 1 ) `2 < s & s < G * ( 1 , 1 ) `2 & s < G * ( 1 , 1 ) `2 ; assume that f is elements which is elements which and 1 <= len G and 1 <= t and t <= width G and G * ( t , t ) `2 <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t <= N * ( t , t ) `2 and t attr i in dom G means : Def6 : r * ( f * reproj ( i , x ) ) . i = r * ( f * reproj ( i , x ) ) . x ; consider c1 , c2 being bag of o1 such that ( O + c ) /. k = <* c1 + c2 *> and ( O + c ) /. k = <* c1 + c2 *> /. k and c = c1 + c2 /. k ; x0 in { |[ r1 , s1 ]| : r1 < s1 & s1 < 1 } & LSeg ( G * ( 1 , 1 ) , G * ( 1 , 1 ) ) = { |[ r1 , s1 ]| : G * ( 1 , 1 ) `2 < G * ( 1 , 1 ) `2 } ; Cl X ^ Y . ( k2 + 1 ) = the carrier of X . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) .= ( C . ( k2 + 1 ) ) . ( k2 + 1 ) .= ( C . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ) . ( k2 + 1 ) .= ( C . ( k2 + 1 ) ; attr len M1 = len M1 & width M1 = width M1 & width M1 = width M1 & width M1 = width M1 & width M1 = width M1 & width M1 = width M1 & width M1 = width M1 implies M1 + M2 is Matrix of n , K consider g2 be Real such that 0 < g2 and for y be Point of S st y in { y where y is Point of T : ||. y - x0 .|| < g2 & ||. y - x0 .|| < g2 & g2 /. y - x0 < g2 /. x0 } c= N2 ; assume x < sqrt ( ( - a ) * sqrt ( ( a + b ) * sqrt ( a + b ) ) ) or x > sqrt ( ( - a ) * sqrt ( a + b ) ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ H1 ^ H2 ) . i & ( H1 ^ H2 ) . i = ( <* 3 *> ^ H1 ) . i & ( H1 ^ H2 ) . i = ( H1 ^ H2 ) . i ; for i , j st [ i , j ] in Indices ( M + M1 ) holds ( M + M2 ) * ( i , j ) < M * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st for j being Element of NAT st j in dom f holds f /. j divides f /. ( j + 1 ) & i divides j holds f /. j divides f /. ( j + 1 ) assume F = { [ a , b ] where a , b is Element of X : for c being Element of X st c in B & c in B holds a c= b } ; b2 * ( q + ( - ( q `2 / |. q .| - sn ) ) * ( q `2 / |. q .| - sn ) ) + ( - ( q `2 / |. q .| - sn ) ) * ( q `2 / |. q .| - sn ) ) = 0. TOP-REAL n + ( ( q `2 / |. q .| - sn ) * ( q `2 / |. q .| - sn ) ) ; Cl ( F \ { D where D is Subset of T : D is closed & ex B being Subset of T st B = Cl ( B ) & D is closed & B is closed & A /\ D = Cl ( B \ { D } ) } ; attr seq is summable means : Def6 : for n holds seq . n = ( Partial_Sums seq ) . n + ( Partial_Sums seq ) . n ) & Partial_Sums ( seq ) . n = ( Partial_Sums seq ) . n + ( Partial_Sums seq ) . n = ( Partial_Sums seq ) . n + ( Partial_Sums seq ) . n ; dom ( ( ( ( TOP-REAL 2 ) | D ) | K1 ) ) = ( ( ( TOP-REAL 2 ) | K1 ) ) | K1 .= ( ( ( TOP-REAL 2 ) | K1 ) ) /\ K1 .= ( ( ( TOP-REAL 2 ) | K1 ) ) /\ K1 .= ( ( ( TOP-REAL 2 ) | K1 ) ) /\ K1 .= ( ( TOP-REAL 2 ) | K1 ) | K1 .= ( ( TOP-REAL 2 ) | K1 ) | K1 .= ( ( TOP-REAL 2 ) | K1 ) | K1 .= ( ( TOP-REAL 2 ) | K1 .= ( ( TOP-REAL 2 ) | K1 ) | K1 ) | K1 .= ( ( ( 2 ) | K1 ) | K1 ) | K1 .= ( ( TOP-REAL 2 ) | K1 ) | [ X \to Z ] is full full full full full full full full of ( X |^ Z ) |^ the carrier of Z , the carrier of Z :] & [ X |^ Z , Y |^ ( X ) |^ ( X ) |^ ( Y ) ] is full full full full full non empty Subset of Z ; ( G * ( 1 , j ) `2 ) `2 = ( G * ( 1 , j ) `2 ) `2 & ( G * ( 1 , j ) `2 <= ( G * ( 1 , j ) `2 ) `2 ; cluster m1 c= m2 -> m2 for set of P , p , q be Element of P , m , n be Element of NAT st p in P & q in the carrier of ( P , m ) holds the non empty set of ( P , m ) c= the carrier of ( P , n ) consider a being Element of B ( ) such that x = F ( a ) and a in { G ( ) where b is Element of B ( ) : P [ b ] } and P [ a ] ; cluster multiplicative loop over R for multiplicative non empty multMagma , s , t , s be Element of R , a , b be Element of the carrier of R , s be Element of it : s is Element of it & a is Element of it iff s is Element of it & a is Element of it & b is Element of it iff the carrier of it = the carrier of it & a is Element of it & b is Element of it & it is Element of it iff the carrier of it = the carrier of it = the carrier of it & the carrier of it = the carrier of it & the carrier of it = the carrier of it & the carrier of it = the carrier of it = the carrier of it & the carrier of it = the carrier of it = the carrier \HM { \HM { \HM { a } \HM { b } \HM { c } } + 1 = b + c .= b + d .= b + d .= b + d .= b + d .= b + d .= b + d + d .= b + d + d .= b + c + d + d .= b + d + d .= b + d + d .= b + d + d + d .= b + c + d + d .= b + d + d + d .= b + d + d + d .= b + d + d + d .= b + d + d + d + d + d .= b + c + d + d + d + d .= b + c + d + d + d .= b + d + d + d + cluster -> add-associative for Element of INT , i , j , k be Element of INT holds ( ( i , j ) --> ( k , j ) ) . ( i , j ) = ( i , j ) --> ( k , j ) . ( i , j ) ( ( ( 2 * p1 + 1 ) * p2 + ( 2 * p1 ) * p2 ) ) / ( 2 * p1 + ( 2 * p2 ) * p2 ) = ( ( 2 * p1 + ( 2 * p2 ) ) / ( 2 * p1 ) ) ; eval ( ( a | n ) *' , x ) = eval ( a | n , x ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( p , x ) .= a * eval ( p , x ) * eval ( p , x ) .= a * eval ( p , x ) ; assume that the TopStruct of S = the TopStruct of T and for D being non empty TopSpace st D is open & D is open holds for V being Subset of S st V is open & V is open & V is open & V is open holds V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open & V is open ; assume that 1 <= k + 1 <= len w + 1 + ( ( q `2 ) /. ( k + 1 ) ) and T /. ( k + 1 ) = ( T /. ( k + 1 ) ) . ( k + 1 ) ; 2 * ( n + 1 ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * ( n + 1 ) ) + ( 2 * M , v / ( x. 3 , 4 ) / ( x. 0 , 4 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 ) / ( x. 4 , x. 0 , x. 0 ) / ( x. 4 , x. 0 ) / assume that f is_differentiable_on l and for x0 st x0 in l holds 0 < f . x0 - r & for x0 st x0 in dom f & x0 < x0 holds f . x0 < f . x0 - r ; for G1 being _Graph , W being Walk of G1 , e being Vertex of G2 holds not e in W iff W is walk of G & e is walk of G & W is closed & W is closed c22 is not empty iff XOR2 is not empty & not empty iff not empty is not empty & not empty is not empty & not empty is not empty & not empty & not empty is not empty & not empty is not empty & not empty is not empty & not empty is not empty & not empty & not empty & not empty is not empty & not empty is not empty & not empty is not empty & not empty & not empty is not empty & not empty & not empty is not empty & not empty is not empty & not empty & not empty is not empty & not empty is not empty & not empty & not empty is not empty & not empty is not empty & not empty & not empty & not empty & not empty is not empty & not empty & not empty & not empty & Indices GoB ( f ) = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: dom GoB f , Seg width GoB f :] & [: dom GoB f , Seg width GoB f :] = [: dom GoB f , Seg width GoB f :] ; for G1 , G2 , G1 , G2 , H being strict Subgroup of O holds G1 is Subgroup of G2 & G1 is Subgroup of G1 & G2 is Subgroup of G2 iff G1 is Subgroup of G2 & G2 is Subgroup of G2 & G1 is Subgroup of G2 & G2 is Subgroup of G2 & G1 is Subgroup of G2 & G2 is Subgroup of G2 & G1 is Subgroup of G2 & G2 is Subgroup of G2 UsedIntLoc ( ( the Sorts of t ) +* ( ( the Sorts of t ) +* ( ( the Sorts of t ) +* ( ( the Sorts of t ) +* ( ( the Sorts of t ) +* ( ( the Sorts of t ) +* ( ( the Sorts of t ) ) ) ) ) ) ) ) ) ) = ( the Sorts of t ) +* ( ( the Sorts of t ) +* ( ( the Sorts of t ) ) ) ; for f1 , f2 being FinSequence of F st f1 ^ f2 is p -element & ( for n being Element of NAT holds f1 ^ f2 is p ^ <* n *> ) & ( for n being Element of NAT holds f1 . n = ( f1 ^ f2 ) . ( n + 1 ) holds f1 . ( n + 1 ) = f2 . ( n + 1 ) sqrt ( ( p `1 / |. p .| - sn ) / ( 1 + sn ) ) ^2 ) = sqrt ( ( q `1 / |. q .| - sn ) / ( 1 + sn ) ) ^2 ; for x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , v2 , x5 , x5 , x5 , x5 , x5 , x5 , v2 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 6 , x5 , x5 , 6 , x5 , 8 , 8 , 8 , 8 , 8 , 8 , 8 , 6 , 8 , 8 , 8 , 8 , 6 , 8 , 8 , 6 , 8 , 8 , 8 , 6 , 8 , 8 , 6 , 6 , 8 , 8 , 6 , 6 , 8 , 8 , 8 , 8 , 6 , 8 , 8 , 8 , 8 , 6 , 8 , 8 , 8 , 8 , 6 , 6 , 8 for x st x in dom ( cos | A ) holds ( cos | A ) . x = ( cos | A ) . x for T being non empty TopSpace , P being Basis of T , B being Basis of T for P being Basis of T st P c= the topology of T & P is Basis of T holds P is Basis of T ( a 'or' b ) . x = 'not' ( a 'or' b ) . x 'or' ( 'not' a 'or' b ) . x .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE 'or' TRUE .= TRUE .= TRUE ; for e being set st e in A8 ex X1 being Subset of X st e = X1 & ex Y1 being Subset of X st Y1 = Y1 & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y1 is open & Y2 is open & Y1 is open & Y1 is open & Y1 is open & Y2 for i being set st i in the carrier of S for f being Function of [: ( the carrier of S1 ) , ( the carrier of S2 ) | ( the carrier of S2 ) :] , ( the carrier of S1 ) | ( the carrier of S2 ) st F = f | ( the carrier of S1 ) holds F . i = f | ( the carrier of S2 ) ; for v , w st for x st x <> y holds w . ( y . x ) = v . ( y . x ) & J . ( y . x ) = v . ( y . x ) ; card ( D \ ( D1 + D2 ) ) = card ( ( D1 + D2 ) + ( D1 + D2 ) ) + ( D1 + D2 ) ) .= 2 * ( D1 + D2 ) + ( D1 + D2 ) .= 2 * ( D1 + D2 ) + ( D1 + D2 ) + ( D2 + ) .= 2 * ( D1 + D2 ) + ( D2 + ) .= 2 * ( D1 + D2 ) + ( D2 + ) .= 2 * ( D1 + D2 ) + ( D2 + D2 ) .= 2 * ( D1 + D2 ) + ( D2 + k2 ) + ( D2 + k2 ) + ( D2 + k2 ) .= 2 * ( D1 + D2 ) + ( D2 + k2 ) .= 2 * ( D1 + D2 ) IC Exec ( i , s ) = ( s +* ( 0 .--> ( s . 0 ) ) ) . ( 0 + 1 ) .= ( ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( ( s +* ( 0 .--> ( s . 0 ) ) ) ) . 0 .= ( ( s +* ( 0 .--> ( s . 0 ) ) ) . 0 .= ( ( s +* ( 0 .--> ( s . 0 ) ) ) ) . 0 .= ( ( ( s . 0 ) ) . 0 .= ( ( s . 0 ) ) . 0 .= ( ( s . 0 ) ) . 0 .= ( ( s . 0 ) ) . 0 .= ( ( s . 0 ) ) . 0 .= ( ( s . len f /. ( i1 -' 1 + 1 ) + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 = ( len f -' i1 + 1 ) + 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 .= ( len f -' i1 + 1 ) + 1 - 1 + 1 - 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 + 1 - 1 + 1 + 1 - 1 + 1 - 1 - 1 + 1 - 1 + 1 - 1 + 1 - 1 + 1 - for a , b being Element of NAT st 1 <= a & a <= b & b <= a holds a + b < a + b or a + b < b + c for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 holds p in LSeg ( f , p ) iff ex f being Function of TOP-REAL 2 st f . ( p , f . p ) = f . ( p , f . p ) & Index ( p , f . p ) = 1 lim ( ( ( ( curry ( F ) ) # . k ) + ( ( curry ( F ) # x ) ) # x ) ) ) = lim ( ( ( ( ( curry F ) # x ) # x ) ) ) + ( ( ( ( ( curry F ) # x ) # x ) ) . n ) ; z2 = g /. ( i -' n1 + 1 ) .= g /. ( i -' n1 + 1 ) .= g /. ( i -' n1 + 1 + 1 ) .= g /. ( i -' n1 + 1 ) .= g /. ( i -' n1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + ( ( i -' 1 + 1 + 1 + 1 + ( i -' 1 + ( i -' n1 + ( i -' n1 + ( i -' n1 + ( i -' n1 [ f . 0 , f . 3 ] in id ( the InternalRel of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of G & [ f . 0 , f . 3 ] in the InternalRel of G ; for G being Subset-Family of B holds G = { [ X , Y ] where X is Subset of A ( ) : ( ( union F ) | X ) . ( X , Y ) = ( Intersect F ) . ( X , Y ) & ( Intersect F ) . ( X , Y ) = ( Intersect F ) . ( X , Y ) ; CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) = CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) .= CurInstr ( P1 , Comput ( P1 , s1 , m1 ) ) ; assume that a on M and b on N and c on N and a on M and b on N and not on M on N and not on M and not on N and not on M and not on M on N and not on M and not on N and not on M on M and not on M and not on N and M on M and not on M and not on M and not on N and not on M on N and not on M and not on N and ( on N & not on M on N and ( on M on N & not on M & ( on M on N & not on N & ( on M & not on M on N & not on N on N & ( on M & ( on M & not on M on N & ( on M & not on M on N & not on M on N & not on N & not on M on N & not on N on N assume that T is \hbox { T _ 4 } and ex F being Subset-Family of T st F is closed & for n being Nat holds F is finite-ind & F is finite-ind & F is finite-ind & F is finite-ind & F is finite-ind & F is finite-ind ; for g1 , g2 st g1 in ]. r1 - r , r2 .[ & g2 in ]. r1 - r , r2 + r .[ holds |. ( f - g ) . g1 - ( f - g ) . g2 .| <= ( ( f - g ) / ( r1 - r ) ) . g2 ( \HM { the } \HM { function } \HM { sin } ) + ( \HM { the } \HM { function } \HM { sin } ) = ( \HM { the } \HM { function } \HM { sin } ) + ( \HM { the } \HM { function } \HM { sin } ) .= ( \HM { the } \HM { function } \HM { sin } ) + ( ( \HM { the } \HM { function } \HM { sin } ) ) ) ; F . i = F /. i .= F /. i + r . ( n + 1 ) .= <* b *> ^ <* n *> .= <* b *> ^ <* n *> .= <* n + 1 *> ^ <* n + 1 *> .= <* n + 1 *> ^ <* n + 1 *> ; ex y being set , f being Function st y = f . n & dom f = NAT & f . 0 = A & for n being Nat holds f . ( n + 1 ) = f . ( n + 1 ) & f . ( n + 1 ) = f . ( n + 1 ) ; func f * F -> FinSequence of V means : Def1 : len it = len F & for i be Nat st i in dom F holds it . ( F . i ) = F . ( F . i ) * F . ( F . i ) ; { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , x5 , 8 } = { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , 8 } \/ { x5 , 8 , 8 , 8 , 8 } .= { x1 , x2 , x3 , x4 } \/ { x4 , x5 , 8 } ; for n being Nat for x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & h . ( n + 1 ) = o ( x , n ) & h . ( n + 1 ) = o ( x , n ) ; ex S1 be Element of k ( ) st ( [ P ( ) , e ( ) ] ) & ( [ S ( ) , e ( ) ] ) `1 = [ S ( ) , e ( ) ] ; consider P being FinSequence of ( the carrier of G ) * such that P = Product P and for t being Element of the carrier of G st t in P ex t1 being Element of the carrier of G st P . t = t1 & t . t = t2 & t1 . t = t2 ; for T1 , T2 being non empty TopSpace , T1 , T2 being Basis of T2 for P being Basis of T2 , Q being Subset of T2 , P being Subset of T2 , Q being Subset of T2 st P = the topology of T2 & Q is Basis of T2 & P is Basis of T2 & Q is Basis of T2 & P is Basis of T2 holds P is Basis of T2 assume that f is partial differentiable of partial u0 , CNS and r (#) ( pdiff1 ( f , 3 ) ) is_partial_differentiable_in u0 , i and r (#) ( pdiff1 ( f , 3 ) ) = r (#) pdiff1 ( f , 3 ) ; defpred P [ Nat ] means for F being FinSequence of bool ( the carrier of V ) , G being FinSequence of bool ( the carrier of V ) st len F = $1 & for s being Permutation of V holds Sum ( F ) = Sum ( G ) * ( F * s ) ; ex j st 1 <= j & j < width GoB ( f ) & ( GoB f ) * ( 1 , j ) `2 <= s & ( GoB f ) * ( 1 , j + 1 ) `2 <= s & s `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 & s `2 <= ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex F being Subset-Family of T st ( F = ( F . $1 ) \ F . $1 ) & ( F . $1 ) \ F . $1 = F . $1 & ( F . $1 ) \ F . $1 = F . $1 \ F . $1 ) & ( F . $1 ) \ F . $1 = F . $1 \ F . $1 ; for p2 being Point of TOP-REAL 2 st LE p2 , p3 , p1 , p2 & LE p2 , p3 , p1 , p2 & LE p2 , p3 , p2 & LE p3 , p1 , p2 & LE p2 , p3 , p1 , p2 & LE p3 , p1 , p2 & LE p2 , p3 , p2 , p1 , p2 & LE p3 , p1 , p2 & LE p2 , p3 , p2 & LE p3 , p1 , p2 , p2 & LE p3 , p1 , p2 , p2 & LE p2 , p1 , p2 , p2 , p1 , p2 & LE p2 , p1 , p2 , p2 , p1 , p2 & LE p2 , p1 , p2 , p2 , p2 , p1 , p2 & LE p3 , p1 , p2 , p1 , p1 , p2 , p1 , p2 & LE p2 , p1 , p2 & LE p2 , p1 , p2 , p1 , p2 , p1 , p2 , p1 , p2 , p1 , p2 , p1 , p2 , p1 f in St ( E , H ) & for y st y <> f . y holds g . y = f . y iff for y st y in dom ( f . y ) holds y in Free ( H , H ) & f . y = f . y ) implies f . y = f . y ex p2 being Point of TOP-REAL 2 st x = p2 & ( for p st p in 8 & p <> 0. TOP-REAL 2 holds ( |. p .| ) . p = ( |. p .| ) . p & ( |. p .| ) . p = ( |. p .| ) . p & ( |. p .| ) . p = ( |. p .| ) . p ; assume for d being Element of NAT st d <= ( n + 1 ) -NAT & ( n + 1 ) -NAT <= ( n + 1 ) -NAT & ( n + 1 ) -NAT <= ( n + 1 ) -NAT & ( n + 1 ) -NAT <= ( n + 1 ) -NAT ; assume that s <> t and s is Point of Closed-Interval-TSpace ( x , r ) and s is Point of Closed-Interval-TSpace ( x , r ) and not ex e being Point of Ball ( x , r ) st e in Ball ( x , r ) & not ex e being Point of Ball ( x , r ) st e in Ball ( x , r ) & e in Ball ( x , r ) & e in Ball ( x , r ) ; given r such that 0 < r and for s st 0 < s ex x1 st x1 < s & |. x1 - x0 .| < s & |. f /. x1 - f /. x0 .| < r ; ( p | x ) | ( ( x | x ) | ( ( x | x ) | ( x | x ) ) ) = ( ( ( x | x ) | ( x | x ) ) ) | ( ( x | x ) ) | ( ( x | x ) | ( x | x ) ) ; assume that x + h in dom ( ( ( \HM { the } \HM { function } \HM { cos } ) (#) ( ( \HM { the } \HM { function } \HM { cos } ) + ( \HM { the } \HM { function } \HM { sin } ) ) ) ) ) and ( ( ( \HM { the } \HM { function } ) (#) ( ( \HM { the } \HM { function } \HM { cos } ) ) `| Z ) = ( ( ( \HM { the } \HM { function } ) * ( ( \HM { the } \HM { function } ) ) ) ) `| Z ) ) . x = ( ( ( \HM { the } ) ) . x ) . x ) . x ) . x ) / ( ( \HM { the } ) . x ) . x + ( ( ( \HM { the } \HM { ( \HM { the } ) . x ) ^2 + ( ( \HM { the } \HM { ( } ) . x assume that i in dom A and len A > 1 and len A > 1 and width A > 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and width A = 1 and A is Matrix of n , m ; for i being non zero Element of NAT st i in Seg n holds ( i divides n ) & ( i divides n implies h . i = ( n |^ n ) * h . i ) & ( i divides n ) * h . i = ( n |^ n ) * h . i ( ( b1 => b2 ) '&' ( b2 => c ) ) '&' ( ( b1 => b2 ) '&' ( b2 => c ) ) '&' ( ( b1 => b2 ) '&' ( b2 '&' c ) ) '&' ( ( b1 => b2 ) '&' ( b2 '&' c ) ) '&' ( ( b1 '&' b2 ) '&' ( b2 '&' c ) ) '&' ( ( b1 '&' b2 ) '&' ( ( b1 '&' b2 ) '&' ( b2 '&' c ) ) '&' ( ( b1 '&' b2 ) '&' ( b2 '&' c ) ) '&' ( ( b1 '&' c ) '&' ( b2 '&' c ) ) '&' ( ( b2 '&' c ) ) '&' ( ( b2 '&' c ) '&' ( b2 '&' c ) ) '&' ( b2 '&' c ) ) '&' ( b2 '&' c ) ) '&' ( ( b2 '&' c ) '&' ( b2 '&' c ) '&' ( ( b2 '&' c ) '&' ( ( b2 '&' c ) '&' ( ( b2 '&' c ) '&' ( ( b2 ) '&' assume that for x holds f . x = ( ( - 1 ) (#) ( ( - 1 ) (#) ( - 1 ) ) ) . x and for x st x in dom ( ( - 1 ) (#) ( - 1 ) ) holds ( ( - 1 ) (#) ( - 1 ) ) . x = ( - 1 ) * ( - 1 ) ; consider Rd be Real such that Rd = Integral ( F , ( F . n ) ) and Integral ( M , ( F . n ) ) = Integral ( M , ( F . n ) ) and Integral ( M , ( F . n ) ) = Integral ( M , ( F . n ) ) ; ex k be Element of NAT st x0 = k & 0 < d & for q be Element of product G st q in X & ||. q-f . q .|| < r holds ||. partdiff ( f , q , k ) - partdiff ( f , x ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x5 , x5 , x5 , x5 , x5 , 8 , 8 , 8 , 6 , 8 , 8 , 6 } or x in { x1 , x2 , x3 , x4 } & x in { x1 , x2 , x4 } & x in { x1 , x2 , x3 , x4 } ; ( G * ( j , i ) ) `2 = ( G * ( j , i ) ) `2 .= ( G * ( j , i ) ) `2 .= ( G * ( j , i ) ) `2 .= ( G * ( j , i ) ) `2 .= ( G * ( j , i ) ) `2 .= ( G * ( j , i ) ) `2 .= ( G * ( j , i ) ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= ( G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= G * ( j , i ) `2 .= f1 * p = p . o .= ( the Arity of S1 ) . o .= ( the Arity of S2 ) . o .= ( the Arity of S2 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S1 ) . o .= ( the Arity of S2 ) . o .= ( the Arity of S2 ) . o ; func [: T , P , T :] -> FinSequence of T means : Def1 : for p , q st p in P & q in P & p in T & q in T & p in T & q in T & p in T & q in T & p in T & q in T & p in T & q in T & p in T } ; F /. ( k + 1 ) = F . ( p . k + F /. ( k + 1 ) ) .= F . ( p . ( k + 1 ) ) .= F . ( p . ( k + 1 ) ) .= F . ( p . ( k + 1 ) ) .= F . ( p . ( k + 1 ) ; for A , B , C being Matrix of n , K st len B = len C & len A = len C & width A = width C & width B = width C & width A = width C & width B = width C & width B = width C & width B = width C holds A * ( BC ) = A * ( BC ) seq . ( k + 1 ) = ( 0. X ) + ( ( seq . k ) + ( seq . k ) ) .= ( ( seq . k ) + ( seq . k ) ) + ( seq . k ) .= ( ( seq . k ) + ( seq . k ) ) + ( seq . k ) .= ( ( seq . k ) + ( seq . k ) ) + ( seq . k ) ; assume that x in ( the carrier of C1 ) & y in ( the carrier of C2 ) & x in the carrier of C2 & y in the carrier of C2 & x in the carrier of C2 & y in the carrier of C2 ; defpred P [ Element of NAT ] means for f st len f = $1 & f . ( $1 + 1 ) = ( ( for k st k < $1 holds f . k = ( ( ( g . k ) ) . ( f . ( $1 + 1 ) ) ) ) ) * ( ( ( ( g . k ) . ( f . ( $1 + 1 ) ) ) ) ) ; assume that 1 <= k and k + 1 <= len f and f /. k = G * ( i , j ) and [ k + 1 , j ] in Indices GoB f and f /. k = G * ( i , j ) and f /. k = G * ( i + 1 , j ) ; assume that s < 1 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) ^2 > 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) ^2 >= 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) ^2 >= 0 and ( q `2 / |. q .| - sn ) / ( 1 + sn ) ^2 ) >= 0 ; for M being non empty dist , x being Point of M holds x = x & ex f being Function of M , TOP-REAL n st for n being Element of NAT holds f . n = Ball ( x , f . n ) & f . n = Ball ( x , f . n ) defpred P [ Element of omega ] means ( f1 - f2 ) . $1 - ( f1 . $1 ) / ( ( f1 - f2 ) . $1 ) / ( ( f1 - f2 ) . $1 ) & ( f1 - f2 ) . $1 ) / ( ( f1 - f2 ) . $1 ) = ( f1 - f2 ) / ( ( f1 - f2 ) . $1 ) ; defpred P1 [ Nat ] means ( for r be Point of C st r in Y & r < $1 & $1 < ( f . $1 ) `2 holds ||. ( f . $1 ) `2 - ( f . $1 ) `2 .|| < r & ||. ( f . $1 ) `2 - ( f . $1 ) `2 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = ( g ^ mid ( g , 2 , len g ) ) . i .= g . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) .= g . ( i + 1 ) ; sqrt ( 1 - ( n + 2 ) * ( n + 1 ) ) = ( sqrt ( 1 - ( n + 2 ) * ( n + 1 ) ) ) * ( sqrt ( 1 - ( n + 2 ) * ( n + 1 ) ) ) .= 1 * sqrt ( 1 - ( n + 2 ) * ( n + 1 ) ) .= 1 * sqrt ( 1 - ( n + 2 ) * ( n + 1 ) ) ; defpred P [ Nat ] means for G being finite Group , F being ( set , set ) , f being Function of [: the carrier of G , the carrier of G :] , the carrier of G holds the carrier of G = the carrier of F & the carrier of G = the carrier of G & the carrier of G = the carrier of G ; assume that f /. 1 in Ball ( u , r ) and not 1 <= m and m <= len f and not f /. ( m + 1 ) in LSeg ( f /. ( m + 1 ) , f /. ( m + 1 ) ) and not f /. ( m + 1 ) in LSeg ( f /. ( m + 1 ) , f /. ( m + 1 ) ) ; defpred P [ Element of NAT ] means ( Partial_Sums ( ( ( ( ( ( ( x ) ) ) ) (#) ( ( x - r ) (#) ( ( x - r ) (#) ( ( x - r ) ) (#) ( ( x - r ) ) ) ) ) ) ) . $1 = ( ( ( x - r ) (#) ( ( x - r ) (#) ( x - r ) ) ) ) . $1 ; for x being Element of product F holds x is FinSequence of product F & x in dom ( the Sorts of F ) iff x in dom ( the Sorts of F ) & x in dom ( the Sorts of F ) & for i being set st i in dom ( the Sorts of F ) holds x in ( the Sorts of F ) . i ( x " ) |^ ( n + 1 ) = ( x " ) |^ n * x " .= ( x " ) |^ n * x " .= ( x " ) |^ n .= x |^ n * x |^ n .= x |^ n * x |^ n .= x |^ n * x |^ n .= x |^ n * x |^ n ; DataPart ( ( Comput ( P +* I , s , LifeSpan ( P +* I , s ) ) ) ) . ( ( Initialized s ) . ( k + 1 ) ) = DataPart Comput ( P +* I , s , k ) . ( k + 1 ) .= DataPart Comput ( P +* I , s , k ) . ( k + 1 ) ; given r such that 0 < r and ]. x0 - r , x0 .[ c= dom ( f1 + f2 ) /\ dom ( f1 + f2 ) and for g st g in dom ( f1 + f2 ) /\ dom ( f1 + f2 ) holds ( f1 + f2 ) . g <= ( f1 + f2 ) . g ; assume that X c= dom ( f1 + f2 ) /\ dom ( f2 + f3 ) and ( f1 + f2 ) | dom ( f1 + f2 ) is continuous and ( f1 + f2 ) | dom ( f1 + f2 ) is continuous ; for L being continuous complete LATTICE for X being Subset of L for l being Element of L st l in X holds x in X & for X being Subset of L st l in X holds x is prime & for X being Subset of L st l in X holds x is prime & x is prime holds x is prime Support ( A *' p ) = { m *' p where m is Element of NAT : A *' p = { m *' p : ex n being Element of NAT st n in dom p & p . n = p . ( m *' p ) } ; ( f1 - f2 ) /* ( f1 /* ( f1 /* ( h + c ) ) ) = ( f1 /* ( h + c ) ) /* ( h + c ) .= ( f1 /* ( h + c ) ) /* ( h + c ) .= ( f1 /* ( h + c ) ) - ( f2 /* ( h + c ) ) ; ex p1 being ( Al ( ) ) ( ) = g . ( p ( ) ) & F ( p ( ) ) = f ( p ( ) ) & for g being Function of Al ( ) , D ( ) st P [ g ] holds P [ g ( ) ] ; ( mid ( f , i , len f -' 1 ) ) /. j = ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j .= ( mid ( f , i , len f -' 1 ) ) /. j ; ( ( p ^ q ) ^ r ) . k = ( ( p ^ q ) . k ) . ( len p + k ) .= ( ( p ^ q ) . k ) . ( len p + k ) .= ( p ^ q ) . ( len p + k ) .= ( p ^ q ) . k ; len ( ( upper_volume ( f , indx ( D2 , D1 , j1 ) ) ) + 1 ) - indx ( D2 , D1 , j1 ) + 1 ) = len ( ( indx ( D2 , D1 , j1 ) ) + 1 ) - indx ( D2 , D1 , j1 ) + 1 ) ; x * y = ( M * ( x * y ) ) * ( ( M * y ) * z ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) ) .= x * ( M * ( y * z ) .= x * ( M * ( y * z ) .= x * ( M * ( y * z ) ) * x * ( M * ( M * ( y * z ) .= x * ( M * ( M * ( M * ( y * z ) ) .= x * ( M * ( y * z ) .= x * ( M * ( M * ( y * z ) ) .= x * ( M * ( y * ( y v . <* x , y *> = ( <* x0 , y0 *> ) . i * ( <* x0 , y0 *> . i ) * ( ( proj ( i , y ) . x ) ) + ( ( proj ( i , y ) . y ) ) * ( ( proj ( i , y ) . x ) ) * ( ( proj ( i , y ) . y ) ) ) ; i * i = <* 0 * ( 1 - 0 ) + ( 1 - 0 ) * ( 1 - 0 ) + ( 1 - 0 ) * ( 1 - 0 ) .= <* 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 Sum ( L (#) F ) = Sum ( L (#) F ) + Sum ( F (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) F ) .= Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) F ) .= Sum ( L (#) F ) .= Sum ( L (#) F ) + Sum ( L (#) F ) .= Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) G ) .= Sum ( L (#) F ) + Sum ( L (#) F ) + Sum ( L (#) F ) .= Sum ( ex r be Real st for Y be Subset of X , Y be Subset of REAL st Y is open & Y c= Y & for Y be Subset of X st Y is open & Y is open & Y is open & Y is open holds r <= Y ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) ; ( ( ( r / 2 ) * ( ( 1 - r ) / 2 ) ) / 2 ) * ( ( 1 - r ) / 2 ) ) = ( ( 1 - r ) / 2 ) * ( ( 1 - r ) / 2 ) .= ( 1 - r ) / 2 * ( ( 1 - r ) / 2 ) .= ( 1 - r ) / 2 * ( 1 - r ) .= ( 1 - r ) / 2 * ( 1 - r ) .= ( 1 - r ) / 2 * ( 1 - r ) .= ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) .= ( 1 - r ) .= ( 1 - r ) / 2 * ( 1 - r ) .= ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) / 2 * ( 1 - r ) .= ( 1 - r ) / 2 * ( 1 - r ) / 2 * x- ( ( - a ) * sqrt ( ( - a ) * sqrt ( 2 * a ) + ( - a ) * sqrt ( 2 * a ) ) ) > 0 & - sqrt ( 2 * a ) < 0 or - sqrt ( 2 * a ) < 0 ; assume that inf \mathopen { \uparrow } X /\ C and for X holds inf X in X /\ C and inf X in X /\ C and inf X in C /\ ( X /\ C ) and inf X in C /\ ( X /\ C ) and not inf X in C /\ ( X /\ C ) ; ( ( B ) . j ) . i = ( j |-> ( i , j ) ) . i & ( j --> ( i , j ) ) . i = ( j |-> ( i , j ) ) . i & ( j --> ( i , j ) ) . i = j |-> ( i , j ) . i ;