thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; assume not thesis ; assume not thesis ; i = 1 ; assume not thesis ; x <> b D c= S let Y ; S9 is Cauchy let p , q ; let S , V ; y in N ; x in T ; m < n ; m <= n ; n > 1 ; let r ; t in I ; n <= 4 ; M is finite ; let X ; Y c= Z ; A // M ; let U ; a in D ; q in Y ; let x ; 1 <= l ; 1 <= w ; let G ; y in N ; f = {} ; let x ; x in Z ; let x ; F is one-to-one ; e <> b ; 1 <= n ; f is special ; S misses C t <= 1 ; y divides m ; P divides M ; let Z ; let x ; y c= x ; let X ; let C ; x _|_ p ; o is monotone ; let X ; A = B ; 1 < i ; let x ; let u ; k <> 0 ; let p ; 0 < r ; let n ; let y ; f is onto ; x < 1 ; G c= F ; a is_>=_than X ; T is continuous ; d <= a ; p <= r ; t < s ; p <= t ; t < s ; let r ; D <= E ; e > 0 ; 0 < g ; let D , m , p ; let S , H , x ; Y9 in Y ; 0 < g ; not c in Y ; not v in L ; 2 in z9 ; f = g ; N c= b9 ; assume i < k ; assume u = v ; take D , I ; B9 = b9 ; assume e in F ; assume p > 0 ; assume x in D ; let i be element ; assume F is "onto" ; assume n <> 0 ; let x be element ; set k = z ; assume o = x ; assume b < a ; assume x in A ; a9 <= b9 ; assume b in X ; assume k <> 1 ; f = Product l ; assume H <> F ; assume x in I ; assume p is prime ; assume A in D ; assume 1 in b ; y is generated_from_squares ; assume m > 0 ; assume A c= B ; X is bounded_below assume A <> {} ; assume X <> {} ; assume F <> {} ; assume G is open ; assume f is dilatation ; assume y in W ; not y <= x ; A9 in B9 ; assume i = 1 ; let x be element ; x9 = x99 ; let X be BCI-algebra ; S is non empty ; a in REAL ; let p be set ; let A be set ; let G be _Graph ; let G be _Graph ; let a be Complex ; let x be element ; let x be element ; let C be FormalContext ; let x be element ; let x be element ; let x be element ; n in NAT ; n in NAT ; n in NAT ; not x in T . ( m + n ) ; , y be Real ; X c= f . a let y be element ; let x be element ; let i be Nat ; let x be element ; n in NAT ; let a be element ; m in NAT ; let u be element ; i in NAT ; let g be Function ; Z c= NAT ; l <= ma ; let y be element ; let r1 , r2 ; let x be element ; Integer ; let X be set ; let a be element ; let x be element ; let x be element ; let q be element ; let x be element ; assume f is being_homeomorphism ; let z be element ; a , b // K ; let n be Nat ; let k be Nat ; B9 c= B99 ; set s = f /" g ; n >= 0 + 1 ; k c= k + 1 ; R1 c= R ; k + 1 >= k ; k c= k + 1 ; let j be Nat ; o , a // Y ; R c= Cl G ; Cl B = B ; let j be Nat ; 1 <= j + 1 ; arccot is_differentiable_on Z ; exp_R is_differentiable_in x ; j < i0 ; let j be Nat ; n <= n + 1 ; k = i + m ; assume C meets S ; n <= n + 1 ; let n be Nat ; h1 = {} ; 0 + 1 = 1 ; o <> b3 ; f2 is one-to-one ; support p = {} assume A12 : x in Z ; i <= i + 1 ; r1 <= 1 ; let n be Nat ; a "/\" b <= a ; let n be Nat ; 0 <= r0 ; let e be Real ; not r in G . l c1 = 0 ; a + a = a ; <* 0 *> in e ; t in { t } ; assume not F is discrete ; m1 divides m ; B *^ A <> {} ; a +^ b <> {} ; p * p > p ; let y be ExtReal ; let a be Int-Location ; let l be Nat ; let i be Nat ; let n , A , r ; 1 <= i2 ; a "\/" c = c ; let r be Real ; let i be Nat ; let m be Nat ; x = p2 ; let i be Nat ; y < r + 1 ; rng c c= E Cl R is boundary ; let i be Nat ; registration let R1 , R2 ; cluster wayabove x -> join-closed ; X <> { x } ; x in { x } ; q , b9 // M ; A . i c= Y ; P [ k ] ; bool x in W ; X [ 0 ] ; P [ 0 ] ; A = A ^i ; a - s >= s - s ; G . y <> 0 ; let X be RealNormSpace ; let i , j , l , k , a ; H . 1 = 1 ; f . y = p ; let V be RealUnitarySpace ; assume x in M - M ; k < s . a ; not t in { p } ; let Y be complex-functions-membered set ; M , L are_isomorphic ; a <= g . i ; f . x = b ; f . x = c ; assume L is lower-bounded upper-bounded ; rng f = Y ; GG c= L ; assume x in order_type_of Q ; m in dom P ; i <= len Q ; len F = 3 ; Fixed p = {} ; z in rng p ; lim b = 0 ; len W = 3 ; k in dom p ; k <= len p ; i <= len p ; 1 in dom f ; b9 = a9 + 1 ; x9 = a * y9 ; rng D c= A ; assume x in K1 ; 1 <= ii ; 1 <= ii ; poz c= pio ; 1 <= ii ; 1 <= ii ; LMP C in L ; 1 in dom f ; let seq ; set C = a * B ; x in rng f ; assume f is_Lipschitzian_on X ; I = dom A ; u in dom p ; assume a < x + 1 ; seq0 is bounded ; assume I c= P1 ; n in dom I ; let t be State of SCMPDS , Q ; B c= dom f ; not b + p _|_ a ; x in dom g ; Fn1 is continuous ; dom g = X ; len q = m ; assume A2 is closed ; cluster R \ S -> real-valued ; sup D in S ; x << sup D ; b1 is_>=_than Z1 assume w = 0. V ; assume x in A . i ; g in ComplexBoundedFunctions X ; then y in dom t ; then i in dom g ; assume P [ k ] ; EMF ( C ) c= f xj is increasing ; let e2 be element ; - b divides b ; F c= tau F ; Gseq is non-decreasing ; Gseq is non-decreasing ; assume v in H . m ; assume b in [#] B ; let S be non void Signature ; assume P [ n ] ; union S is affinely-independent finite ; V is Subspace of V ; assume P [ k ] ; rng f c= NAT assume ex_inf_of X , L ; y in rng ( f ) ; let s , I be set ; b99 c= b19 ; assume not x in RAT+ ; A /\ B = { a } ; assume len f > 0 ; assume x in dom f ; b , a // o , c ; B in BBX ; cluster product p -> non empty ; z , x // x , p ; assume x in rng N ; cosec is_differentiable_in x ; assume y in rng S ; let x , y be element ; i2 < i1 ; a * h in a * H ; p in Y & q in Y ; cluster sqrt I -> left-ideal ; q1 in A1 ; i + 1 <= 2 + 1 ; A1 c= A2 ; bn < n ; assume A c= dom f ; Re f is_integrable_on M ; let k , m be element ; a , a @@ b , b j + 1 < k + 1 ; m + 1 <= n1 ; g is_differentiable_in x0 ; g is_continuous_in x0 ; assume O is symmetric & O is transitive ; let x , y be element ; let j0 be Nat ; [ y , x ] in R ; let x , y be element ; assume y in conv A ; x in Int ( V ) ; let v be VECTOR of V ; P3 halts_on s ; d , c // a , b ; let t , u be set ; let X be with_non-empty_element set ; assume k in dom s ; let r be non negative Real ; assume x in F | M ; let Y be Subset of S ; let X be non empty TopSpace ; [ a , b ] in R ; x + w < y + w ; { a , b } is_>=_than c ; let B be Subset of A ; let S be non empty ManySortedSign ; let x be Variable of f ; let b be Element of X ; R [ x , y ] ; x ` = x ; b \ x = 0. X ; <* d *> in 1 -tuples_on D P [ k + 1 ] ; m in dom mn ; h2 . a = y ; P [ n + 1 ] ; cluster G * F -> Contravariant ; let R be non empty multLoopStr ; let G be _Graph , v be Vertex of G ; let j be Element of I ; a , p // x , p9 ; assume f | X is bounded_below ; x in rng co ; let x be Element of B ; let t be Element of D ; assume x in Q .vertices() ; set q = s ^\ k ; let t be VECTOR of X ; let x be Element of A ; assume y in rng p9 ; let M be finite-degree Matroid ; of M ; let R be with_finite_clique# RelStr ; let n , k be Nat ; let P , Q be pcs-Str ; P = Q /\ [#] S ; F . r in { 0 } ; let x be Element of X ; let x be Element of X ; let u be VECTOR of V ; reconsider d = x as FinSeq-Location ; assume I does not refer a ; let n , k be Nat ; let x be Point of T ; f c= f +* g ; assume m < vn ; x <= c2 . x ; x in COMPLEMENT F ; cluster S --> T -> reflexive-yielding ; assume t1 <= t2 ; let i , j be even Integer ; assume F1 <> F2 ; c in Intersect union R ; dom p1 = c ; a = 0 or a = 1 ; assume A1 <> A6 ; set i1 = i + 1 ; assume a1 = b1 ; dom g1 = A ; i < len M + 1 ; assume not -infty in rng G ; N c= dom f1 ; x in dom sec ; assume [ x , y ] in R ; set d = x / y ; 1 <= len g1 ; len s2 > 1 ; z in dom f1 ; 1 in dom D2 ; p `2 = 0 ; j2 <= width G ; len pion1 > 1 + 1 ; set n1 = n + 1 ; |. qx .| = 1 ; let s be SortSymbol of S ; i lcm i = i X1 c= dom f ; h . x in h . a ; let G be IncProjSp ; cluster m * n -> square ; let kk be Nat ; i -' 1 > m ; R is_transitive_in field R ; set F = <* u , w *> ; pIF c= P3 ; I is_halting_on t , Q ; assume [ S , x ] is quantifiable ; i <= len f2 ; p is FinSequence of X ; 1 + 1 in dom g ; Sum R2 = n * r ; cluster f . x -> complex-valued ; x in dom f1 ; assume [ X , p ] in C ; BD c= X3 ; n2 <= 2M ; A /\ cP9 c= A9 cluster x -valued -> constant for Function ; let Q be Subset-Family of S ; n in dom g2 ; Subset of R , a be Element of R ; t9 in dom e2 ; N . 1 in rng N ; - z in A \/ B ; let S be SigmaField of X ; i . y in rng i ; REAL c= dom ( f ) ; f . x in rng f ; mt <= r / 2 ; s2 in rset ; let z , z9 be quaternion number ; n <= Nseq . m ; LIN q , p , s ; f . x = waybelow x /\ B ; set L = ContMaps ( S , T ) ; let x be non real positive ExtReal ; carrier of N , m be Element of M ; f in union rng F1 ; doubleLoopStr ; let i be Element of NAT ; rng ( F * g ) c= Y dom f c= dom x ; n1 < n1 + 1 ; n1 < n1 + 1 ; cluster Tarski-Class X -> Tarski ; [ y2 , 2 ] = z ; let m be Element of NAT ; let R be RelStr , S be Subset of R ; y in rng SN ; b = sup dom f ; x in Seg len q ; reconsider X = D ( ) as set ; [ a , c ] in E1 ; assume n in dom h2 ; w + 1 = ma1 ; j + 1 <= j + 1 + 1 ; k2 + 1 <= k1 ; L , i be Element of NAT ; Support u = Support p ; assume X is_CRS_of m ; assume f = g & p = q ; n1 <= n1 + 1 ; let x be Element of REAL ; assume x in rng s2 ; x0 < x0 + 1 ; len Li = W ; P c= Seg len A ; dom q = Seg n ; j <= width ( M @" ) ; let rf be real-valued FinSubsequence ; let k be Element of NAT ; Integral ( M , P ) < +infty ; let n be Element of NAT ; let z be element ; let I be set , X be ManySortedSet of I , i be set ; n -' 1 = n - 1 ; len nlist1 = n ; InitSegm ( Z , c ) c= F assume x in X or x = X ; Mid b , x , c ; let A , B be non empty set ; set d = dim ( p ) ; let p be FinSequence of L ; Seg i = dom q ; let s be Element of E ^omega ; let B1 be Basis of x ; L3 /\ L2 = {} ; L1 /\ L4 = {} ; assume downarrow x = downarrow y ; assume not b , c // b9 , c9 ; LIN q , c9 , c9 ; x in rng fX ; set nj = n + j ; let DX be non empty set ; let K be right_zeroed non empty addLoopStr ; f9 = f & h9 = h ; R1 - R2 is RestFunc ; k in NAT & 1 <= k ; let G be finite Group , a be Element of G ; x0 in [. a , b .] ; K1 ` is open ; assume a , b realize-max-dist-in C ; let a , b be Element of S ; reconsider d = x as Vertex of G ; x in ( s + f ) .: A ; set a = Integral ( M , f ) ; cluster necessitive for MP-wff ; not u in { bg } ; Carrier ( f ) c= B reconsider z = x as VECTOR of V ; cluster the ComplStr of L -> 1 -element ; r (#) H is_point_conv_on X ; s . intloc 0 = 1 ; assume that x in C and y in C ; let U0 be with_const_op strict Universal_Algebra ; [ x , Bottom T ] is compact ; i + 1 + k in dom p ; F . i is stable Subset of M ; ry in DEDEKIND_CUT y ; let x , y be Element of X ; let A , I be Ideal of X ; [ y , z ] in OK ; LastLoc Macro i = 1 ; rng ( Sgm A ) = A ; q |-| All ( y , q ) ; for n holds X [ n ] ; x in { a } & x in d ; for n holds P [ n ] ; set p = |[ x , y , z ]| ; LIN o9 , a9 , b9 ; p . 2 = Funcs ( Y , Z ) ; D0 `2 = {} ; n + 1 + 1 <= len g ; a in QC-symbols ( Al ) ; u in Support ( m *' p ) ; let x , y be Element of G ; let L be non empty doubleLoopStr , I be Ideal of L ; set g = f1 + f2 ; a <= max ( a , b ) ; i - 1 < len G + 1 - 1 ; g . 1 = f . i1 ; x9 in A2 & y9 in A2 ; ( f /* s ) . k < r ; set v = VAL g , vf = v . TFALSUM ; i -' k + 1 <= S ; cluster associative invertible -> Group-like for non empty multMagma ; x in support pfexp t ; assume a in [: cG , cG :] ; i9 <= len yb2 ; assume p divides b1 +^ b2 ; M0 is_<=_than sup M1 ; assume x in W-most X ; j in dom znpp ; let x be Element of D ( ) ; IC s5 = l1 ; a = {} or a = { x } ; set uG = Vertices G ; seq1 " is non-zero ; for k holds X [ k ] ; for n holds X [ n ] ; F . m in { F . m } ; hy c= hx ; ]. a , b .[ c= Z ; X1 , X2 are_weakly_separated ; a in Cl union ( F \ G ) ; set x1 = [ 0 , 0 ] ; k + 1 -' 1 = k ; cluster natural-valued -> RAT -valued for Relation ; ex v st C = v + W ; let GF be non empty ZeroStr ; assume V is Abelian add-associative right_zeroed right_complementable ; Xx \/ Y in sigma L ; reconsider x9 = x as Element of S ; max ( a , b ) = a ; sup B is UpperBound of B ; let L be non empty reflexive antisymmetric RelStr ; R is_reflexive_in X & R is_transitive_in X ; E , g |= the_right_argument_of H ; dom ( G9 /. y ) = a ; 1 / 4 >= - r ; G . p0 in rng G ; let x be Element of FT ; D [ Px , 0 ] ; z in dom id B ; y in the carrier of N ; g in the carrier of H ; rng fs c= NAT ; j9 + 1 in dom s1 ; let A , B be strict Subgroup of G ; let C be non empty Subset of REAL ; f . z1 in dom h ; P . k1 in rng P ; M = AB +* {} ; let p be FinSequence of REAL ; f . n1 in rng f ; M . ( F . 0 ) in REAL ; diameter [. a , b .[ = b - a ; assume V , Q is_dst v ; let a be Element of opp V ; let s be Element of PM ; let PO be non empty OrthoRelStr ; let p be polyhedron , k be Integer , n be Nat ; Carrier ( g ) c= B ; I = halt SCM R ; consider b being element such that b in B ; set BK = BCS K ; l <= Sup ( F . j ) ; assume x in downarrow [ s , t ] ; x `2 in uparrow t ; x in DOM JumpParts T ; let h9 be Morphism of c , a ; Y c= Rank the_rank_of Y ; A2 \/ A4 c= L4 ; assume LIN o9 , a9 , b9 ; b , c // d1 , e2 ; x1 in Y & x2 in Y ; dom <* y *> = Seg 1 ; reconsider i = x as Element of NAT ; reconsider s = F . t as termal Element of S ; [ x , x9 ] in [: X , X9 :] ; for n be Nat holds 0 <= x . n [' a , b '] = [. a , b .] ; cluster regular_closed -> closed for Subset of T ; x = h . ( f . z1 ) ; q1 in P & q2 in P ; dom M1 = Seg n ; x = [ x1 , x2 ] ; let R , Q be ManySortedRelation of A ; set d = 1 / ( n + 1 ) ; rng g2 c= dom W ; P . ( [#] Sigma \ B ) <> 0 ; a in field R & a = b ; let M be non empty Affine Subset of V ; let I be Program of SCM+FSA ; assume x in rng CL R ; let b be Element of Closed_Domains_Lattice T ; dist ( e , z ) - r > r - r ; u1 + v1 in W2 ; assume Carrier ( L ) misses rng G ; let L be lower-bounded with_suprema transitive antisymmetric RelStr ; assume [ x , y ] in ab ; dom ( A * e ) = NAT ; let G be _Graph , a , b be Vertex of G ; let x be Element of Bool M ; 0 <= Arg a & Arg a < 2 * PI ; o9 , a19 // o9 , y9 ; { v } c= Carrier l ; let a be free_QC-variable of A , x be bound_QC-variable of A ; assume x in dom uncurry' f ; rng F c= Funcs ( X , product f ) assume D2 . k in rng D ; f " . p1 = 0 ; set x = the Element of X ; dom Ser ( G ) = NAT ; let F be SetSequence of X , n be Element of NAT ; assume LIN c , a , e1 ; cluster -> Cardinal-yielding for FinSequence of NAT ; reconsider d = c as Element of L1 ; ( v2 |-- I ) . X <= 1 ; assume x in Carrier ( f ) ; conv @ S c= conv A ; reconsider B = b as Element of Domains_of T ; J , v |= P ! ll ; redefine func J . i -> non empty TopStruct ; ex_sup_of Y1 \/ Y2 , T ; W1 well_orders field W1 ; assume x in the carrier of R ; dom nf = Seg n ; sb misses sbs9b ; assume ( a 'eqv' b ) . z = TRUE ; assume A1 : X is open & f = X --> d ; assume [ a , y ] in Trace f ; CutLastLoc J c= K ; Im lim ( seq ) = 0 ; sin . x <> 0 ; sin is_differentiable_on Z & cos is_differentiable_on Z ; t6 . n = t3 . n ; dom ( F /" G ) c= dom F ; W1 . x = W2 . x ; y in W .vertices() \/ W .edges() ; kk <= len vs ; x * a , y * a are_congruent_mod m ; proj2 .: S c= proj2 .: P ; h . p4 = g2 . I ; Gij = US /. 1 ; f . rss in rng f ; i + 1 + 1 - 1 <= len f - 1 ; rng F = rng FX ; mode Monoid is well-unital associative non empty multLoopStr ; [ x , y ] in [: A , { a } :] ; x1 . o in L2 . o ; Carrier ( l - m ) c= B ; not [ y , x ] in id X ; 1 + p .. f <= i + len f ; seq1 ^\ k1 is bounded_below ; len Fp = len I ; let l be Linear_Combination of B \/ { v } ; let r1 , r2 be complex number ; Comput ( P , s , n ) = s ; k <= k + 1 & k + 1 <= len p ; reconsider c = {} T as Element of L ; let Y be AntiChain_of_Prefixes of T ; cluster closure for Function of L , L ; f . j1 in K . j1 ; cluster J => y -> total for J -defined Function ; K c= bool the carrier of T F . b1 = F . b2 ; x1 = x or x1 = y ; a <> {} implies a / a = 1 assume that cf a c= b and b in a ; s1 . n in rng s1 ; { o , b2 } on C2 ; LIN o9 , b9 , b19 ; reconsider m = x as Element of Maps V ; let f be circular non trivial FinSequence of D ; let FMT be non empty FMT_Space_Str ; assume that h is being_homeomorphism and y = h . x ; [ f . 1 , w ] in FSG ; reconsider pq = x as Subset of m ; let A , B , C be Element of R ; cluster strict Regular for non empty OrdTrapSpace ; rng c9 misses rng ep z is Element of gr { x } ; not b in dom ( a .--> p1 ) ; assume A6 : k >= 2 & P [ k ] ; Z c= dom cot ; Component_of Q c= UBD A ; reconsider E = { i } as finite Subset of I ; g2 in dom ( f ^ ) ; f = u implies a (#) f = a * u for n holds P1 [ prop n ] { x . O : x in L } <> {} ; let s be SortSymbol of S , x be Element of V . s ; let n be Nat , R be NatRelStr of n , a , b be Nat ; S = S2 & p = p2 ; n1 gcd n2 = 1 ; set om = mult_2 ; seq . n < |. r1 .| ; assume that seq is increasing and r < 0 ; f . ( y1 , x1 ) <= a ; ex c being Nat st P [ c ] ; set g = seq_n^ ( 1 ) ; k = a or k = b or k = c ; ag , bg are_adjacent ; assume Y = { 1 } & s = <* 1 *> ; not x in dom g ; W4 .first() = W3 . 1 ; cluster trivial finite Tree-like for Subgraph of G ; reconsider u9 = u as Element of Bags X ; A in con_class B iff A , B are_conjugated x in { [ 2 * n + 3 , k ] } ; 1 >= q `1 / |. q .| ; f1 is_in_general_position_wrt f2 ; f `2 <= q `2 ; h is_in_the_area_of Cage ( C , n ) ; b `2 <= p `2 ; let f , g be RMembership_Func of X , Y ; S * ( k , k ) <> 0. K ( ) ; x in dom ( max- ( f ) ) ; p2 in Next ( p1 ) ; len the_right_argument_of H < len H ; F [ A , Fn . A ] ; consider Z such that y in Z and Z in X ; 1 in C implies A c= exp ( C , A ) assume r1 <> 0 or r2 <> 0 ; rng q1 c= rng C1 ; A1 , L , A3 are_mutually_different ; y in rng f & y in { x } ; f /. ( i + 1 ) in L~ f ; b in RSub2 ( p , Sub ) ; S is Sub_atomic implies Pro [ S ] Cl Int [#] T = [#] T ; f12 | A2 = f2 ; 0. M in the carrier of W ; let j be Element of N , v , v9 be Element of M ; reconsider K9 = union rng K as non empty set ; X \ V c= Y \ V & Y \ V c= Y \ Z ; let S , T be RelStr , X be Subset of [: S , T :] ; consider H1 such that H = 'not' H1 ; one c= ( numerator t ) *^ denominator r ; 0 * a = 0. R .= a * 0 ; A |^ ( 2 , 2 ) = A ^^ A set vn = vs /. n ; r = 0. ( REAL-NS n ) ; ( f . p4 ) `1 >= 0 ; len W = len W .reverse() ; f /* ( s * G ) is divergent_to+infty ; consider l be Nat such that m = F . l ; t16 " ; reconsider Y1 = X1 as SubSpace of X ; consider w such that w in F and not x in w ; let a , b , c , d be Real ; reconsider i9 = i as non zero Element of NAT ; c . x >= ( id L ) . x ; ( sigma T ) \/ omega T is prebasis of T ; for x being element st x in X holds x in Y cluster [ x1 , x2 ] -> pair ; types a /\ downarrow t is Ideal of T ; let X be disjoint_with_NAT non empty set ; rng f = FreeGenSetNSG ( S , X ) let p be Element of B , the bool-sort of S ; max ( N1 , 2 ) >= N1 ; 0. X <= b |^ ( m * mm ) ; assume that i in I and R0 . i = R ; i = j1 & p1 = q1 ; assume gR in the_RightOptions_of g ; let A1 , A2 be POINT of S ; x in h " P /\ [#] T1 ; 1 in Seg 2 & 1 in Seg 3 ; x in X ; x in ( the Arrows of B ) . i cluster ES . n -> the_Edges_of G -defined ; n1 <= i2 + len g2 ; i + 1 + 1 = i + ( 1 + 1 ) ; assume v in the carrier' of G2 ; y = Re ( y ) + Im ( y ) * ; Lege ( - 1 , p ) = 1 ; x2 is_differentiable_on ]. a , b .[ ; rng MD2 c= rng D2 ; for p be Real st p in Z holds p >= a X_axis f = proj1 * f ; ( seq ^\ m ) . k <> 0 ; s . ( G . ( k + 1 ) ) > x0 ; Path_matrix ( p , M ) . 2 = d ; A ++ ( B -- C ) = A ++ B -- C ; h , gg are_congruent_mod P -Ideal ; reconsider i1 = i - 1 as Element of NAT ; let v1 , v2 be VECTOR of V ; for W being Submodule of V holds W is Submodule of (Omega). V reconsider ii = i as Element of NAT ; dom f c= [: C ( ) , D ( ) :] ; x in ( inferior_setsequence B ) . n ; len f2a in Seg len f2 ; pB c= the topology of T ; ]. r , s .] c= [. r , s .] ; let B1 be prebasis of T1 , B2 be prebasis of T2 ; G * ( B * A ) = idm o1 ; assume that are_Prop p , u and are_Prop u , q ; [ z , z ] in union rng FOAR ; ( 'not' b . x 'or' b . x ) = TRUE ; deffunc F ( set ) = $1 .. S ; LIN a1 , a3 , b1 ; f " Im ( f , x ) = { x } ; dom w2 = dom r12 ; assume that 1 <= i and i <= n and j <= n ; ( ( g2 ) . O ) `2 <= 1 ; p in LSeg ( E . i , F . i ) ; ID * ( i , j ) = 0. K ; |. f . ( s . m ) - g .| < g1 ; qf . x in rng qf ; LM misses LM ` ; consider c being element such that [ a , c ] in G ; assume Name op1 = on ; q . ( j + 1 ) = q /. ( j + 1 ) ; rng F c= Funcs ( CA , FS ) P . ( B2 \/ D2 ) <= 0 + 0 ; f . j in Class ( Q , f . j ) ; 0 <= x & x <= 1 implies x ^2 <= x p9 - q9 <> 0. TOP-REAL 2 ; cluster SCMaps ( S , T ) -> non empty ; let S , T be up-complete non empty Poset , x be Element of [: S , T :] ; Morph-Map ( F , a , b ) is one-to-one |. i .| <= - - 2 to_power n ; the carrier of I[01] = dom P ; n ! * ( ( n + 1 ) ! ) > 0 * ( n ! ) ; S c= ( A1 /\ A2 ) /\ A3 ; a3 , a4 // b3 , b4 ; dom A <> {} implies dom A <> {} ; 1 + ( 2 * k + 4 ) = 2 * k + 5 ; x DSJoins X , Y , G2 ; set v2 = vs /. ( i + 1 ) ; x = r . n .= rv . n ; f . s in the carrier of S2 ; dom g = the carrier of I[01] ; p in Upper_Arc ( P ) /\ Lower_Arc ( P ) ; dom d2 = [: A2 , A2 :] ; 0 < p / ( ||. z .|| + 1 ) ; e . ( m0 + 1 ) <= e . m0 ; ( B (-) X ) \/ ( B (-) Y ) c= B (-) ( X /\ Y ) -infty < Integral ( M , Im ( g | B ) ) ; cluster O AND F -> filtering for Operation of X ; let U1 , U2 be non-empty MSAlgebra over S ; ( Proj ( i , n ) * g ) is_differentiable_on X ; let X be RealNormSpace , x , y , z be Point of X ; reconsider px = p . x as Subset of V ; x in the carrier of Lin ( A ) ; let I , J be parahalting Program of SCM+FSA ; assume - a is LowerBound of - X ; Int Cl A c= Cl Int Cl A ; assume for A being Subset of X holds Cl A = A ; assume q in Ball ( |[ x , y ]| , r ) ; p2 `2 <= p `2 ; Cl ( Q ` ) = [#] TS ; set S = the carrier of T , L = the carrier of R^1 ; set IM = im ( f |^ n ) ; len p -' n = len p - n ; A is permutation of Swap ( A , x , y ) ; reconsider ni = n - i as Element of NAT ; 1 <= j + 1 & j + 1 <= len sw ; let qa , qb be State of M ; am in the carrier of S1 ; c1 /. n1 = c1 . n1 ; let f be FinSequence of TOP-REAL 2 ; y = ( fvs * SL ) . x ; consider x be element such that x in Involved A ; assume r in ( ( dist ( o ) ) .: ( P ) ) ; set i1 = n_n_w h , i2 = n_n_e h ; h2 . ( j + 1 ) in rng h2 ; Line ( Mt , k ) = M . i ; reconsider m = x / 2 as Element of ExtREAL ; , U1 , U2 be MSSubAlgebra of U0 ; set P = Line ( a , d ) , Q = Line ( b , c ) ; then len p1 < len p2 + 1 ; let T1 , T2 be correct TopAugmentation of L ; x <=' y implies DEDEKIND_CUT x c= DEDEKIND_CUT y set L = n -BinarySequence ( l ) , M = n -BinarySequence ( m ) ; reconsider i = x1 , j = x2 as Nat ; rng the_arity_of av c= dom H ; z1 " = z19 " ; x0 - r / 2 in L /\ dom f ; w is wff implies rng w /\ LettersOf S <> {} set xz = xx ^ <* Z *> ; len w1 in Seg len w1 ; ( uncurry f ) . ( x , y ) = g . y ; let a be Element of SubstPoset ( V , { k } ) ; x . n = |. a . n .| / Ap ; p `1 <= Gik `1 ; rng godo c= L~ godo ; reconsider k = ( i - 1 ) * lb + j as Nat ; for n be Nat holds F . n is without-infty ; reconsider xxx = xx as Vector of M ; dom ( f | X ) = X /\ dom f ; p , a // p , c & b , a // c , c ; reconsider x1 = x as Element of m -tuples_on REAL ; assume i in dom ( a * ( p ^ q ) ) ; m . bg = p . bg ; a #Q ( s . m - s . n ) <= 1 ; S . ( n + k + 1 ) c= S . ( n + k ) ; assume B1 \/ C1 = B2 \/ C2 ; X . i = { x1 , x2 } . i ; r2 in dom ( h1 + h2 ) ; a - 0. R = a & b - 0. R = b ; FOR is_closed_on t8 , Q8 ; set T = DiscrWithInfin ( X , x0 ) ; Int ( Cl ( Int R ) ) c= Int R ; consider y be Element of L such that c . y = x ; rng Fy = { Fy . x } ; Gk1 .AdjacentSet ( { c } ) c= B \/ S ; fF is Relation of X * , X ; set RP = rep_pt ( P ) ; assume that n + 1 >= 1 and n + 1 <= len M ; let D be non empty set , f be FinSequence of D , k2 be Element of NAT ; reconsider pu = u as Element of FTSL1 n ; g . x in dom f & x in dom g ; assume that 1 <= n and n + 1 <= len f1 ; reconsider T = b * N as Element of G ./. N ; len Pdeb <= len Pdb ; x " in the carrier of A1 ; [ i , j ] in Indices AA ; for m be Nat holds ( Re F ) . m is_simple_func_in S f . x = a . i .= a1 . k ; let f be PartFunc of REAL i , REAL ; rng f = the carrier of Segre_Product A ; assume s1 = 2 -root ( p |^ 2 - r ) ; a > 1 & b > 0 implies a #R b > 1 let A , B , C be LINE of IPS ; reconsider X0 = X , Y0 = Y as RealLinearSpace ; let a , b be Real , f be PartFunc of REAL , REAL ; r * ( ( v1 |-- I ) . X ) < r * 1 ; assume that V is Submodule of X and X is Submodule of V ; let s be State of SCM , tl , tr be bin-term ; Q [ ee \/ {. vv .} ] ; Rotate ( g , W-min L~ z ) = z ; |. |[ x , v ]| - |[ x , y ]| .| = v - y ; - f . w = - ( L * w ) ; z -' y <=' x iff z <=' x + y ( 7 / p1 ) to_power ( 1 / e ) > 0 ; assume X is BCI-algebra of 0 , 0 , 0 , 0 ; F . 1 = v1 & F . 2 = v2 ; ( f | X ) . x2 = f . x2 ; tan . x in dom sec ; i2 = fs1 /. len fs1 ; X1 = X2 \/ ( X1 \ X2 ) ; [. a , b , 1_ G .] = 1_ G ; let V , W be non empty VectSpStr over F_Complex ; dom g2 = the carrier of I[01] ; dom f2 = the carrier of I[01] ; ( proj2 | X ) .: X = proj2 .: X ; f . ( x , y ) = h1 . ( x9 , y9 ) ; x0 - r < a1 . n & a1 . n < x0 ; |. ( f /* s ) . k - GR .| < r ; len Line ( A , i ) = width ( A ) ; Sgg opp = ( S . g ) opp ; reconsider f = v + u as Function of X , the carrier of Y ; for p being PartState of SCM+FSA holds intloc 0 in dom Initialized p i1 " ; arcsin r + arccos r = PI / 2 + 0 ; for x st x in Z holds f2 is_differentiable_in x ; reconsider q2 = q / x as Element of REAL ; 0 qua Nat + 1 <= i + j1 ; assume f in the carrier of ContMaps ( X , Omega Y ) ; F . a = H / ( x , y ) . a ; \true T value_at ( C , u ) = TRUE dist ( ( a * seq ) . n , h ) < r ; 1 in the carrier of Closed-Interval-TSpace ( 0 , 1 ) ; p2 `1 - x1 > - g ; |. r1 - p .| = |. a1 .| * |. q - p .| ; reconsider SEG8E8 = 8 as Element of Seg 8 ; ( A \/ B ) ^b c= ( A ^b ) \/ ( B ^b ) D0W .order() = D0W .size() + 1 ; i1 = ma + n & i2 = K2 ; f . a [= f . ( ( f , O1 ) +. a ) ; f = v & g = u implies f + g = v + u I . n = Integral ( M , ( F . n ) | E ) ; chi ( T1 , S ) . s = 1 ; a = VERUM ( A ) or a = FALSUM ( A ) ; reconsider k2 = s . b3 as Element of NAT ; Comput ( P , s , 4 ) . GBP = 0 ; L~ M1 meets L~ RB2 ; set h = the continuous Function of X , R ; set A = { L . ( ksi . n ) : not contradiction } ; for H st H is atomic holds Pf [ ( H ) ] set bnt = Sn2 ^\ ix ; Hom ( a , b ) c= Hom ( a9 , b9 ) ; 1 / ( n + 1 ) < 1 / s " ; l `1 = [ dom l , cod l ] ; y +* ( i , y /. i ) in dom g ; let p be Element of QC-WFF ( Al ( ) ) ; X /\ X1 c= dom ( f1 - f2 ) ; p2 in rng ( f :- p1 ) ; 1 <= indx ( D2 , D1 , j1 ) ; assume x in K2 /\ K3 \/ K4 /\ K5 ; - 1 <= ( ( f2 ) . O ) `2 ; Function of I[01] , TOP-REAL 2 ; k1 -' k2 = k1 - k2 ; rng seq c= right_open_halfline ( x0 ) ; g2 in ]. x0 , x0 + r .[ ; sgn ( p9 , K ) = - 1_ K ; consider u being Nat such that b = ( p |^ y ) * u ; ex A being Cantor-normal-form Ordinal-Sequence st a = Sum^ A Cl ( union HX ) = union ( clf HX ) ; len t = len t1 + len t2 ; vwA = ( v + w ) |-- ( v + Affv ) ; cv <> DataLoc ( t0 . GBP , 3 ) ; g . s = sup ( d " { s } ) ; ( . y ) . s = s . ( ( ^ y ) . s ) ; { s : s < t } in RAT+ iff t = {} s ` \ s = s ` \ 0. X ; defpred P [ Nat ] means B +^ $1 in A ; ( 349 + 1 ) ! = 349 ! * ( 349 + 1 ) ; UNIVERSE succ A = Tarski-Class UNIVERSE A ; reconsider y9 = y as Element of ( len y ) -tuples_on COMPLEX ; consider i2 being Integer such that y0 = p * i2 ; reconsider p = Y | Seg k as FinSequence of NAT ; set f = ( S , U ) -TruthEval z , g = ( I , z ) -TruthEval ; consider Z being set such that lim s in Z and Z in F ; let f be Function of I[01] , TOP-REAL n ; not ( SAT M ) . [ n + i , 'not' A ] = 1 ; ex r be Real st x = r & a <= r & r <= b ; let R1 , R2 be Element of n -tuples_on REAL ; reconsider l = ZeroLC ( V ) as Linear_Combination of A ; |. e .| + |. n .| + |. w .| + |. s .| + a ; consider y being Element of S such that z <= y and y in X ; a 'nor' ( b 'or' c ) = 'not' ( a 'or' b 'or' c ) ||. xy - gvxy0 .|| < r2 ; b19 , a19 // b19 , c19 ; 1 <= k2 -' k1 ( p `2 / |. p .| - sn ) >= 0 ; ( q `2 / |. q .| - sn ) < 0 ; E-max C in right_cell ( RC , 1 ) ; consider e being Element of NAT such that a = 2 * e + 1 ; Re ( ( lim F ) | D ) = Re ( lim G ) ; LIN b , a , c or LIN b , c , a ; p9 , a9 // a9 , b or p9 , a9 // b , a9 ; g . n = a * ( Sum fa ) .= f . n ; consider f being Subset of X such that e = f and f is 1 -element ; F | [: N2 , S :] = CircleMap * Fn ; q in ( LSeg ( q , v ) \/ LSeg ( v , p ) ) ; Ball ( m , r0 ) c= Ball ( m , s ) ; the carrier of (0). V = { 0. V } ; rng cos = [. - 1 , 1 .] assume that Re seq is summable and Im seq is summable ; ||. ( vseq . n ) - tv .|| < e ; set Z = B \ A , O = A /\ B , f = B --> 0 , g = O --> 1 , IT = chi ( A , B ) ; reconsider t2 = t11 as 0 -termal string of S2 ; reconsider xseq = seq as sequence of REAL n ; assume east_halfline E-max C meets L~ go ; - 1. < ( F . n ) . x - f . x ; set d1 = real_dist . ( x1 , z1 ) ; 2 |^ 800 -' 1 = 2 |^ 800 - 1 ; dom vdbrk = Seg len ddbk1 ; set x1 = - k2 + |. k2 .| + 4 ; assume for n being Element of X holds 0. <= F . n ; TT . ( i + 1 ) <= 1 ; for A being Subset of X holds c . ( c . A ) = c . A Carrier ( LI + L2 ) c= I2 ; 'not' Ex ( x , p ) => All ( x , 'not' p ) is valid ; ( f | n ) /. ( k + 1 ) = f /. ( k + 1 ) ; reconsider Z = { [ {} , {} ] } as Element of Normal_forms_on {} ; then A6 : Z c= dom ( sin * f1 ) ; |. ( 0. TOP-REAL 2 ) - qz .| < r ; new_set2 B c= ConsecutiveSet2 ( A , DistEsti ( d ) ) ; E = dom LExtGp & LExtGp is_measurable_on E ; exp ( C , A +^ B ) = exp ( C , B ) *^ exp ( C , A ) the carrier of W2 c= the carrier of V ; I . IC sm = P . IC sm ; x > 0 implies 1 / x = x to_power ( - 1 ) LSeg ( f ^ g , i ) = LSeg ( f , k ) ; consider p being Point of T such that C = Class ( R , p ) ; b , c are_connected & - C , - C are_homotopic ; assume f = ( id the carrier of OAS ) ; consider v such that v <> 0. V and f . v = L * v ; let l be Z_Linear_Combination of {} ( the carrier of V ) ; reconsider g = f " as Function of U2 , U1 ; A1 in the Points of G_ ( k , X ) ; |. - x .| = - ( - x ) .= x ; set S = MajorityIStr ( x , y , c ) , A = MajorityICirc ( x , y , c ) ; Lucas n * ( 5 * Lucas n - 2 ) >= 4 * 18 ; vs1 /. ( k + 1 ) = vs1 . ( k + 1 ) ; 0 mod i = 0 - i * ( 0 qua Nat ) ; Indices M1 = [: Seg n , Seg n :] ; Line ( SEGM , j ) = SEGM . j ; h . ( x1 , y1 ) = [ y1 , x1 ] ; |. f .| - Re ( |. f .| (#) ( b *' (#) h ) ) is nonnegative ; x = a1 ^ <* x1 *> ^ b1 ; Mj is_closed_on IExec ( I , P , s ) , P ; DataLoc ( t4 . a , 4 ) = intpos ( 0 + 4 ) ; x + y < - x + y & |. x .| = - x ; LIN c9 , q , b9 & LIN c9 , q , c9 ; ff . ( 1 , t ) = f . ( 0 , t ) .= a ; x + ( y + z ) = x1 + ( y1 + z1 ) ; ffs . a = ( fffs ) . a p `1 <= ( E-max C ) `1 ; set RotEma = Rotate ( Cage ( C , n ) , Ema ) ; p `1 >= ( E-max C ) `1 ; consider p such that p = pe and s1 < p /. i ; |. ( f /* ( s * F ) ) . l - GR .| < r ; EqSegm ( M , p , q ) = Segm ( M , p , q ) ; len Line ( N , ( k + 1 + 1 ) ) = width N ; f1 /* s1 is convergent & f2 /* s1 is convergent ; f . x1 = x1 & f . y1 = y1 ; len f <= len f + 1 & len f + 1 <> 0 ; dom ( Proj ( i , n ) * s ) = REAL m ; n = k * ( 2 * t ) + ( n mod ( 2 * k ) ) ; dom B = ( bool the carrier of V ) \ { {} } ; consider r such that not r _|_ a and not r _|_ x and not r _|_ y ; reconsider B1 = the carrier of Y1 as Subset of X ; 1 in the carrier of Closed-Interval-TSpace ( 1 / 2 , 1 ) ; for L being complete Lattice holds ConceptLattice ( Context ( L ) ) , L are_isomorphic [ gi , gj ] in IR \ IR ~ ; set S1 = 2GatesCircStr ( x , y , c , 'xor' ) , S2 = MajorityStr ( x , y , c ) ; assume that f1 is_differentiable_in x0 and f2 is_differentiable_in x0 ; reconsider y = a ` /\/ FB as Element of L ; dom s = { 1 , 2 , 3 } & s . 1 = d1 ; min ( g , 1_minus f ) . c <= h . c ; set G3 = the removeVertex of G , v ; reconsider g = f as PartFunc of REAL , REAL-NS n ; |. ( s1 . m ) #Q p .| < d #Q p ; for x being element holds x in QClass. u implies x in QClass. t P = the carrier of ( Euclid n ) | PP ; assume p10 in LSeg ( p1 , p2 ) /\ L4 ; ( 0. X , x ) to_power ( m * ( k + 1 ) ) = 0. X ; let C be Category , f be ( Morphism of C ) , g be Element of ( cod f ) Hom ; 2 * a * b + 2 * c * d <= 2 * C1 * C2 ; let f , g , h be Point of C_NormSpace_of_BoundedFunctions ( X , Y ) ; set h = hom ( a , g (*) f ) , h2 = hom ( a , g ) , h1 = hom ( a , f ) ; idseq n | Seg m = idseq m implies m <= n H * ( g " * a ) in Right_Cosets H ; x in dom ( cos / sin ) ; cell ( G , i1 , j2 -' 1 ) misses C ; LE q2 , p6 , P , p1 , p2 ; for A being Subset of TOP-REAL n , B being Subset of TOP-REAL n st B is_inside_component_of A holds B c= BDD A deffunc D ( set , Sequence ) = union rng $2 ; n + ( - n ) < len pn + ( - n ) ; a <> 0. K implies the_rank_of M = the_rank_of ( a * M ) consider j such that j in dom b19m and I = len b1m + j ; consider x1 such that z in x1 and x1 in PB ; for n ex r being Element of REAL st X [ n , r ] set Cs2i1 = Comput ( P2 , s2 , i + 1 ) ; set cv = 3 -rdRWNotIn { a , b , c } ; conv @ W c= union ( F .: ( E " W ) ) ; 1 in [. - 1 , 1 .] /\ dom arccot ; r3 <= s0 + r0 / |. v2 - v1 .| ; dom ( f <##> f4 ) = dom f /\ dom f4 ; dom ( f (#) G ) = dom ( l (#) F ) /\ Seg k ; rng ( s ^\ k ) c= dom f1 \ { x0 } ; reconsider gpp = gp as Point of TOP-REAL n1 ; ( T * ( h . s9 ) ) . x = T . ( h . s9 . x ) ; I . ( L . ( J . x ) ) = ( I * L ) . ( J . x ) ; y in dom ( Commute Frege ( A ?. o ) ) ; for I being non degenerated domRing-like commutative Ring holds the_Field_of_Quotients ( I ) is commutative non empty doubleLoopStr set s2 = s +* Initialize ( ( intloc 0 ) .--> 1 ) ; P1 /. IC s1 = P1 . IC s1 ; lim S1 in the carrier of Closed-Interval-MSpace ( a , b ) ; v . ( lx . i ) = ( v *' lx ) . i ; consider n being element such that n in NAT and x = ss1 . n ; consider x being Element of c such that F1 . x <> F2 . x ; Choose ( X , 0 , x1 , x2 ) = { Empty } ; j + 2 * kk + m1 > j + 2 * kk ; { s , salpha } on A3 & { s , salpha } on B3 ; n1 > len crossover ( p2 , p1 , n1 ) ; mg1 . ( HT ( mg2 , T ) ) = 0. L ; H1 , H2 are_conjugated implies carr H1 , carr H2 are_conjugated ( N-max L~ ff ) .. ff > 1 ; ]. s , 1 .] = ]. s , 2 .[ /\ [. 0 , 1 .] ; x1 in [#] ( ( TOP-REAL 2 ) | L~ g ) ; let f1 , f2 be continuous PartFunc of REAL , the carrier of S ; DigA ( tz , zz ) is Element of k -SD ; I P42address = db & I P44const = k2 ; [: uG , { uG } :] = { [ a , uG ] } ; for p , w holds ( w | p ) | ( p | ( w | w ) ) = p consider u2 such that u2 in W2 and x = v + u2 ; for y st y in rng F holds ex n st y = a |^ n dom ( ( g * singleton PFuncs ( V , C ) ) | K ) = K ; ex x be element st x in ( Constants ( U0 ) (\/) A ) . s ; ex x be element st x in ( OSConstants ( OU0 ) (\/) A ) . s ; f . x in the carrier of Closed-Interval-TSpace ( - r , r ) ; ( the carrier of ( X1 union X2 ) ) /\ A0 <> {} ; L1 /\ LSeg ( p10 , p2 ) c= { p00 } ; ( b + ( b - s ) ) / 2 in { r : a < r & r < b } ; ex_sup_of { x , y } , L & x "\/" y = sup { x , y } ; for x being element st x in X ex u being element st P [ x , u ] consider z being Point of GG such that z = y and P [ z ] ; ( the normF of Complex_linfty_Space ) . ( u - v ) <= e ; len ( w ^ w2 ) + 1 = ( len w + 2 ) + 1 ; assume q in the carrier of ( TOP-REAL 2 ) | K1 ; f | EQ ` = g | EQ ` ; reconsider i1 = x1 , i2 = x2 as Element of NAT ; ( ( a * A ) * B ) @ = ( a * ( A * B ) ) @ ; assume ex n0 be Element of NAT st iter ( f , n0 ) is contraction ; Seg len FlattenSeq f2 = dom FlattenSeq f2 ; ( Complement ASeq ) . m c= ( Complement ASeq ) . n ; f1 . p = pp9 & g1 . pp9 = d ; FinS ( F , Y ) = FinS ( F , dom ( F | Y ) ) ; for x , y , z being Element of L holds ( x | y ) | z = z | ( y | x ) |. x .| |^ n / ( n ! ) <= r2 |^ n / ( n ! ) Sum ( Fp ) = Sum ( f ) & dom Fp = dom g ; assume for x , y being set st x in Y & y in Y holds x /\ y in Y ; assume W1 is Submodule of W3 & W2 is Submodule of W3 ; ||. tseq . x .|| = lim ||. xseq .|| ; assume that i in dom D and f | A is bounded_below and g | A is bounded_below ; ( ( p `2 ) - d ) / ( c - d ) <= ( c - d ) / ( c - d ) ; g | Sphere ( p , r ) = id Sphere ( p , r ) ; set Nma = N-max L~ Cage ( C , n ) ; for T being non empty TopSpace holds T is first-countable iff the TopStruct of T is first-countable width B |-> 0. K = Line ( B , i ) .= B9 . i ; a <> 0 implies ( A \+\ B ) /// a = ( A /// a ) \+\ ( B /// a ) f is_hpartial_differentiable`13_in u implies pdiff1 ( f , 1 ) is_partial_differentiable_in u , 3 assume that a > 0 and a <> 1 and b > 0 and b <> 1 and c > 0 ; w1 in Lin { w1 , w2 } & w2 in Lin { w1 , w2 } p2 /. IC sk2 = p2 . IC sk2 ; ind ( Tab | b ) = ind b .= ind B ; [ a , A ] in the Inc of IncProjSp_of ( AS ) ; m in ( the Arrows of AllRetr C ) . ( o1 , o2 ) ; B_SUP ( a , CompF ( PA , G ) ) . z = FALSE ; reconsider phi111 = phi11 , phi222 = phi22 as Element of Phim ; ( len s1 - 1 ) * ( len s2 - 1 ) + 1 > 0 + 1 ; delta ( D ) * ( f . ( upper_bound A ) - f . ( lower_bound A ) ) < r ; [ f21 , f22 ] in the carrier' of [: A , B :] ; the carrier of ( TOP-REAL 2 ) | K1 = K1 ; consider z being element such that z in dom g2 and p = g2 . z ; [#] V1 = { 0. V1 } .= the carrier of (0). V1 ; consider P2 be FinSequence such that rng P2 = M and P2 is one-to-one ; ||. x1 - x0 .|| < s ; h1 = f ^ ( <* p3 *> ^ <* p *> ) .= h ; ( b , c ) (#) = c .= ( a , c ) (#) ; reconsider t1 = p1 , t2 = p2 as Term of C , V ; 1 / 2 in the carrier of Closed-Interval-TSpace ( 1 / 2 , 1 ) ; ex W being Subset of X st p in W & W is open & h .: W c= V ; ( h . p1 ) `2 = C * ( p1 `2 ) + D ; R . b - a = 2 * a - a - b .= ( 2 - 1 ) * a - b .= a - b ; consider lambda such that B = ( 1 - lambda ) * C + lambda * A & 0 <= lambda & lambda <= 1 ; dom g = dom ( ( the Sorts of A ) * ar ) ; [ P . len1 , P . len2 ] in ==>.-relation ( TS ) ; s2 = Initialize s , s3 = Initialize s , P2 = P +* pI , P3 = P +* pIF , s4 = Comput ( P3 , s3 , 1 ) , P4 = P3 ; reconsider M = mid ( z , i2 , i1 ) as S-Sequence_in_R2 ; y in product ( ( Carrier J ) +* ( V , { 1 } ) ) ; ( 0 , 1 ) (#) = 1 & (#) ( 0 , 1 ) = 0 ; assume x in the_LeftOptions_of g or x in the_RightOptions_of g ; consider M being strict MSSubAlgebra of AG such that a = M and T is MSSubAlgebra of M ; for x st x in Z holds ( exp_R + f ) . x <> 0 ; len W1 + len W2 + m = 1 + len W3 + m ; reconsider h1 = vseq . n - tv as Lipschitzian LinearOperator of X , Y ; ( i - j mod len ( p + q ) ) + 1 in dom ( p + q ) ; assume that s2 is_next_of s1 and F in the LTLold of s2 ; ALGO_EXGCD ( x , y ) `3_3 = x gcd y ; for u being element st u in Bags n holds ( p9 + m ) . u = p . u for B being Subset of uMG st B in E holds A = B or A misses B ex a being Point of X st a in A & A /\ Cl { y } = { a } ; set W1 = elementary_tree ( len p + 1 ) , W2 = tree ( p ) \/ W1 , W = W2 with-replacement ( <* len p *> , T ) ; x in { X where X is Ideal of L opp : not contradiction } ; the carrier of W1 /\ W2 c= the carrier of W1 ; in1 ( a , b ) * ( id a ) = in1 ( a , b ) ; ( doms ( X --> f ) ) . x = ( X --> dom f ) . x ; set x = the Element of LSeg ( g , n ) /\ LSeg ( g , m ) ; ( p => ( q => r ) ) => ( ( p => q ) => ( p => r ) ) in HP_TAUT ; set pio = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; set pio = LSeg ( G * ( i1 , j ) , G * ( i1 , k ) ) ; - 1 + 1 <= ( i - 2 ) / 2 |^ ( n -' m ) + 1 ; reproj ( 1 , z0 ) . x in dom ( f1 (#) f2 ) ; assume that b1 . r = { c1 } and b2 . r = { c2 } ; ex P st a1 on P & a2 on P & b on P ; reconsider gf = g9 * f9 , hg = h9 * g9 as strict Element of X ; consider v1 being Element of T such that Q = ( downarrow v1 ) ` ; n in { i where i is Nat : i < n0 + 1 } ; F * ( i , j ) `2 >= F * ( m , k ) `2 ; assume K1 = { p : p `1 >= ( sn ) * ( |. p .| ) } ; ConsecutiveSet ( A , succ O1 ) = new_set ConsecutiveSet ( A , O1 ) ; set IB = I " ; for i be Nat st 1 < i & i < len z holds z /. i <> z /. 1 ; X c= [: the carrier of L1 , the carrier of L2 :] ; consider xa being Element of GF ( p ) such that xa |^ 2 = a ; reconsider eee = ee , fff = ff as Element of D ; ex O being set st O in S & C1 c= O & M . O = 0. consider n being Nat such that for m being Nat st n <= m holds S . m in U1 ; ( f (#) g ) * reproj ( i , x ) is_differentiable_in proj ( i , m ) . x ; defpred P [ Nat ] means A +^ succ $1 = succ A +^ $1 ; the_LeftOptions_of - ( - g ) = the_LeftOptions_of g ; reconsider pw1 = x , pw2 = y as Point of TOP-REAL 2 ; consider g4 such that g4 = y and x <= g4 and g4 <= x0 ; for n being Element of NAT ex r being Element of REAL st X [ n , r ] len ( x2 ^ y2 ) = len x2 + len y2 ; for x being element st x in X holds x in NatDivisors n0 LSeg ( p01 , p2 ) /\ LSeg ( p1 , p11 ) = {} ; func FlatCoh X -> set equals CohSp id X ; len ovlpart ( CR /^ 1 , CR ) <= len CR ; K is having_valuation & a <> 0. K implies v . ( a |^ i ) = i * v . a consider o being OperSymbol of S such that t9 . {} = [ o , the carrier of S ] ; for x st x in X ex y st x c= y & y in X & y is_a_fixpoint_of f IC Comput ( PP , ss , k ) in dom sIJ ; q < s & r < s implies not ]. r , s .] c= ]. p , q .] consider c being Element of Class =_ f such that Y = ( F . c ) `1_3 ; the ResultSort of S2 = id the carrier' of S2 ; set xy = [ <* x , y *> , f1 ] , yz = [ <* y , z *> , f2 ] , zx = [ <* z , x *> , f3 ] ; assume x in dom ( ( exp_R * arccot ) `| Z ) ; rl in left_cell ( f , i , GoB f ) \ L~ f ; q `2 >= ( Cage ( C , n ) /. ( i + 1 ) ) `2 ; set Y = { a "/\" a9 : a9 in X } , b = "\/" ( X , C ) , c = "\/" ( Y , C ) , Z = { b9 : a "/\" b9 [= c } ; i -' len f <= len f + len f1 -' len f ; for n ex x st x in N & x in N1 & h . n = x - x0 set si = StepWhile=0 ( a , I , p , s ) . i , psi = p +* while=0 ( a , I ) ; cp ( k ) . 0 = 1 or cp ( k ) . 0 = - 1 u + Sum ( LLxX ) in ( U \ { u } ) \/ { u + Sum ( LLxX ) } ; consider xU being set such that x in xU and xU in VV ; ( p ^ ( q | k ) ) . m = ( q | k ) . ( m - len p ) ; g + h = gg + hh & modetrans ( g + h , X , X ) = g + h ; L1 is D_Lattice & L2 is D_Lattice iff [: L1 , L2 :] is D_Lattice x in rng f & y in rng ( f -| x ) implies f -| x -| y = f -| y assume that 1 < p and 1 / p + 1 / q = 1 and 0 <= a and 0 <= b ; F* ( f , rho ) = rpoly ( 1 , rho ) *' t + 0_. ( F_Complex ) ; for X being set , A being Subset of X holds A ` = {} iff A = X ( N-min X ) `1 <= ( NE-corner X ) `1 ; for c being Element of fixed_QC-variables ( A ) for a being Element of free_QC-variables ( A ) holds c <> a s1 . GBP = Exec ( i2 , s2 ) . GBP .= 0 ; for a , b being Real holds |[ a , b ]| in y>=0-plane iff b >= 0 for x , y being Element of X holds x ` \ y = ( x \ y ) ` ; for X being BCK-algebra of i , j , m , n holds X is BCK-algebra of i , j , j , n set x1 = |( Re y , Re x )| , x2 = |( Re y , Im x )| , y1 = |( Im y , Re x )| , y2 = |( Im y , Im x )| ; [ y , x ] in dom ucf & ucf . ( y , x ) = g . y ; ]. lower_bound divset ( D , k ) , upper_bound divset ( D , k ) .[ c= A ; 0 <= delta ( S2 . n ) & |. delta ( S2 . n ) .| < e / 2 ; ( - q `1 ) ^2 <= ( - q `2 ) ^2 ; set A = 2 / ( b - a ) , B = - ( b + a ) / ( b - a ) , C = 2 / ( d - c ) , D = - ( d + c ) / ( d - c ) ; for x , y being set st x in RTs & y in RTs holds x , y are_c=-comparable deffunc Fy ( Nat ) = b . $1 * ( M * G ) . $1 ; for s being element holds s in SIGMA ( f 'or' g ) iff s in SIGMA ( f ) \/ SIGMA ( g ) for S being non empty non void identifying_close_blocks without_isolated_points TopStruct holds S is strongly_connected implies S is connected max ( degree ( z `1 ) , degree ( z `2 ) ) >= 0 ; consider n1 be Nat such that for k holds seq . ( n1 + k ) < r + s ; Lin ( A /\ B ) is Submodule of Lin ( A ) & Lin ( A /\ B ) is Submodule of Lin ( B ) ; set ng = nbg '&' ( M . x qua Element of n -tuples_on BOOLEAN ) ; f " V in PO X & f " V in D(alpha,p) ( X ) ; rng ( ( a followed_by c ) +* ( 1 , b ) ) c= { a , c , b } ; consider y9 being WSubgraph of G1 such that y9 = y and dom y9 = WGraphSelectors ; dom ( f ^ ) /\ left_open_halfline ( x0 ) c= left_open_halfline ( x0 ) ; Rotation ( i , j , n , r ) is_reverse_of Rotation ( i , j , n , - r ) ; v ^ ( nc |-> 0 ) in Lin rng ( Bn | c1 ) ; ex a , k1 , k2 st i = ( a , k1 ) := k2 ; t . NAT = ( NAT .--> succ i1 ) . NAT .= succ i5 ; assume that F is being_ball-family and rng p = F and dom p = Seg ( n + 1 ) ; not LIN b9 , b19 , a9 & not LIN a9 , a19 , c9 ( L1 OR L2 ) \& O c= ( L1 \& O ) AND ( L2 \& O ) consider F being ManySortedSet of E such that for d being Element of E holds F . d = F ( d ) ; consider a , b such that a * ( v - u ) = b * ( y - w ) and 0 < a & 0 < b ; defpred P [ FinSequence of D ] means |. Sum $1 .| <= Sum |. $1 .| ; u = pr1 ( x , y , v ) * x + pr2 ( x , y , v ) * y .= v ; dist ( ( seq . n ) + x , g + x ) <= dist ( ( seq . n ) , g ) + 0 ; P [ p , index p , {}. bound_QC-variables ( A ) , id bound_QC-variables ( A ) ] consider X being Subset of CQC-WFF ( Al ) such that X c= Y & X is finite & X is Inconsistent ; |. b .| * |. eval ( f , z ) .| >= |. b .| * |. eval ( f *' , z ) .| ; 1 < ( S-max L~ Cage ( C , n ) ) .. Cage ( C , n ) ; l in { l1 where l1 is Real : g <= l1 & l1 <= h } ; SUM ( ( G . n ) vol ) <= SUM ( ( G0 . n ) vol ) ; f . y = x .= x * 1_ L .= x * ( power L ) . ( y , 0 ) ; NIC ( a =0_goto i1 , il ) = { i1 , succ il } LSeg ( p10 , p2 ) /\ LSeg ( p1 , p11 ) = { p1 } ; product ( ( Carrier IS ) +* ( i9 , { 1 } ) ) in ZZ ; Following ( s , n ) | the carrier of S1 = Following ( s1 , n ) ; W-bound Qa <= q1 `1 & q1 `1 <= E-bound Qa ; f /. i2 <> f /. ( S_Drop ( ( i1 + len g ) -' 1 , f ) ) ; M , f / ( x. 3 , a ) / ( x. 4 , a9 ) |= H ; len ( PR ^ PR1 ) in dom ( PR ^ PR1 ) ; A |^ mn c= A |^ ( m , n ) & A |^ kl c= A |^ ( k , l ) ; ( REAL n ) \ { q : ( |. q .| ) < a } c= { q1 : ( |. q1 .| ) >= a } consider n1 be element such that n1 in dom p1 & y1 = p1 . n1 ; consider X being set such that X in Q and for Z being set st Z in Q & Z <> X holds not X c= Z ; CurInstr ( P3 , Comput ( P3 , s2 , l ) ) <> halt SCM+FSA ; for v be VECTOR of l1 holds ||. v .|| = upper_bound rng |. seq_id v .| ; for phi holds ( phi in X implies not xnot phi in X ) & ( ( not phi in X ) implies xnot phi in X ) rng ( ( Sgm dom fss ) | dom fss1 ) c= dom fss ; ex c being FinSequence of D ( ) st len c = k ( ) & P [ c ] & a = c ; the_arity_of compsym ( a , b , c ) = <* homsym ( b , c ) , homsym ( a , b ) *> ; consider f1 being Function of the carrier of X , REAL such that f1 = |. f .| & f1 is continuous ; a1 = b1 & a2 = b2 or a1 = b2 & a2 = b1 ; D2 . indx ( D2 , D1 , n1 + 1 ) = D1 . ( n1 + 1 ) ; f . ( |[ r ]| ) = |[ r ]| /. 1 .= <* r *> . 1 .= x ; consider n being Nat such that for m being Nat st n <= m holds CS . n = CS . m ; consider d being Real such that for a , b being Real st a in X & b in Y holds a <= d & d <= b ; ||. L /. h .|| - K * |. h .| + K * |. h .| <= p0 + K * |. h .| ; F is commutative & F is associative implies for b being Element of X holds F $$ ( {. b .} , f ) = f . b p = ( 1 - 0 ) * p0 + 0. TOP-REAL 2 .= 1 * p0 .= p0 ; consider z1 such that b9 , x3 , z1 is_collinear and o , x1 , z1 is_collinear ; consider i such that Arg ( ( Rotate ( s ) ) . q ) = s + ( Arg q ) + 2 * PI * i ; consider g such that g is one-to-one and dom g = card ( f . x ) and rng g = f . x ; assume that A = P2 \/ Q2 and P2 <> {} and Q2 <> {} and P2 misses Q2 ; F is associative implies F .: ( F .: ( f , g ) , h ) = F .: ( f , F .: ( g , h ) ) ex x9 be Element of NAT st ( m = x9 & x9 in z & x9 < i or m in { i } ) ; consider k2 be Nat such that k2 in dom Pk and l in Pk . k2 ; seq1 = r (#) seq2 iff for n holds seq1 . n = r * seq2 . n F1 . [ idm a , [ a , a ] ] = [ f * idm a , [ a , b ] ] ; { p } "\/" D2 = { p "\/" y where y is Element of L : y in D2 } ; consider z being element such that z in dom doms F and ( doms F ) . z = y ; for x , y being element holds x in dom f & y in dom f & f . x = f . y implies x = y ; v_strip ( G , i ) = { |[ r , s ]| : r <= G * ( 0 + 1 , 1 ) `1 } ; consider e being element such that e in dom ( T | E1 ) and ( T | E1 ) . e = v ; ( F9 * b1 ) . x = Mx2Tran ( JB , b19m , b29m ) . ( b19m /. j ) ; - 1. F_Real = mm "**" ( D | n ) .= mm "**" D .= Det M ; ( for x be set st x in dom f /\ dom g holds g . x <= f . x ) implies f - g is nonnegative len ( f1 . j ) = len ( f2 /. j ) .= len ( f2 . j ) ; All ( All ( 'not' a , A , G ) , B , G ) '<' Ex ( 'not' All ( a , B , G ) , A , G ) LSeg ( E . k0 , F . k0 ) c= Cl RightComp Cage ( C , k0 + 1 ) ; x \ ( a |^ m ) = x \ ( ( a |^ k ) * a ) .= ( x \ ( a |^ k ) ) \ a ; k -th_InputValues InpFs = ( commute InpFs ) . k .= iv ; for s being State of An holds Following ( s , n ( 0 ) + n ( 2 ) * n ( 1 ) ) is stable ; for x st x in Z holds f1 . x = a ^2 & ( f1 - f2 ) . x <> 0 ; support pfexp n \/ support pfexp m c= support max ( pfexp n , pfexp m ) reconsider t = u as Function of [: the carrier of A , the carrier of B :] , the carrier' of C ; - ( a * sqrt ( 1 + ( b ) ^2 ) ) <= - ( b * sqrt ( 1 + ( a ) ^2 ) ) ; ( succ b1 ) -Veblen a = g . a & b1 -Veblen ( g . a ) = f . ( g . a ) ; assume that i in dom ( F ^ <* p *> ) and j in dom ( ( F ^ <* p *> ) . i ) ; { x1 , x2 , x3 , x4 } = { x1 } \/ { x2 , x3 , x4 } the Sorts of ( U1 /\ ( U1 "\/"_os U2 ) ) c= the Sorts of U1 ; ( - ( 2 * a ) * ( b / ( 2 * a ) ) + b ) ^2 - delta ( a , b , c ) > 0 ; consider W00 such that for z being element holds z in W00 iff z in [: N , N :] & P [ z ] ; assume ( the Arity of S ) . o = <* a *> & ( the ResultSort of S ) . o = r ; then A4 : Z = dom ( ( ( #Z ( n - 1 ) ) * arccot ) / ( f1 + #Z 2 ) ) ; middle_sum ( f , Sf ) is convergent & lim ( middle_sum ( f , Sf ) ) = integral ( f ) ; ( 'X' ( alt ( f ) => gnb ) ) => ( xaf => xgnb ) in LTL_axioms ; len ( M2 * M4 ) = n & width ( M4 ~ * M2 * M4 ) = n ; X1 union X2 is open SubSpace of X & X1 , X2 are_separated implies X1 is open SubSpace of X for L being upper-bounded with_suprema antisymmetric RelStr for X being non empty Subset of L holds X "\/" { Top L } = { Top L } reconsider fb = F3 . b `2 as Function of free_magma ( X , b `2 ) , M ; consider w being FinSequence of I such that the InitS of M , <* s *> ^ w -leads_to q ; g . ( a |^ 0 ) = g . ( 1_ G ) .= 1_ H .= ( g . a ) |^ 0 ; assume for i being Nat st i in dom f ex z being Element of L st f . i = rpoly ( 1 , z ) ; ex L being Subset of X st Lg = L & for K being Subset of X st K in C holds L /\ K <> {} ; ( the carrier' of C1 ) /\ the carrier' of C2 c= the carrier' of C1 ; reconsider op = o9 -tree p as Element of TS ( DTConMSA ( the Sorts of A ) ) ; 1 * x1 + 0 * x2 + 0 * x3 = x1 + 0* n .= x1 ; Ex1 " . 1 = ( Ex1 qua Function ) " . 1 .= 1 / 2 ; reconsider u112 = the carrier of ( U1 /\ ( U1 "\/" U2 ) ) as non empty Subset of U0 ; ( x "/\" z ) "\/" ( x "/\" y ) "\/" ( z "/\" y ) <= ( x "/\" ( z "\/" y ) ) "\/" ( z "/\" ( x "\/" y ) ) ; |. f . ( s1 . ( l1 + 1 ) ) - f . ( s1 . l1 ) .| < 1 / ( |. M .| + 1 ) ; LSeg ( Lower_Seq ( C , n ) /. ii , Lower_Seq ( C , n ) /. ( ii + 1 ) ) is vertical ; ( f | Z ) /. x - ( f | Z ) /. x0 = L /. ( x - x0 ) + R /. ( x - x0 ) ; ( g . c ) * 1 - ( g . c ) * f . c + f . c <= ( h . c ) * ( 1 - f . c ) + f . c ; ( f + g ) | divset ( D , i ) = f | divset ( D , i ) + g | divset ( D , i ) ; for f st ColVec2Mx f in Solutions_of ( A , ColVec2Mx b ) holds len f = width A len ( - M4 ) = len M1 & width ( - M4 ) = width M1 ; for n , i be Nat st i + 1 < n holds [ i , i + 1 ] in the InternalRel of Necklace n pdiff1 ( f1 , 2 ) is_partial_differentiable_in z0 , 1 & pdiff1 ( f2 , 2 ) is_partial_differentiable_in z0 , 1 ; a <> 0 & b <> 0 & Arg a = Arg b implies Arg - a = Arg - b for c be set holds not c in [. a , b .] implies not c in Intersection half_open_sets ( a , b ) assume that V1 is linearly-closed & V2 is linearly-closed and V3 = { v + u : v in V1 & u in V2 } ; z * x1 + ( 1r - z ) * x2 in M & z * y1 + ( 1r - z ) * y2 in N ; rng ( ( ( PS qua Function ) " ) * SdX ) = Seg card dfX ; consider s2 being Rational_Sequence such that s2 is convergent and b = lim s2 and for n holds s2 . n <= b ; ( h2 " ) . n = ( h2 . n ) " & 0 < - 1 / ( h2 . n ) ; ( Partial_Sums abs rseq ) . m = ( abs rseq ) . m .= 0 ; Comput ( P1 , s1 , 1 ) . b = 0 .= Comput ( P2 , s2 , 1 ) . b ; - v = ( - 1_ GF ) * v & - w = ( - 1_ GF ) * w ; sup ( ck .: D ) = sup ( ( inclusion k ) .: ( ck .: D ) ) .= ck . sup D ; ( A |^ ( k , l ) ) ^^ ( A |^.. n ) = ( A |^.. n ) ^^ ( A |^ ( k , l ) ) for R being add-associative non empty addLoopStr , I , J , K being Subset of R holds I + ( J + K ) = ( I + J ) + K ( f . p ) `1 = p `1 / sqrt ( 1 + ( p `2 / p `1 ) ^2 ) ; for a , b being non zero Nat st a , b are_relative_prime holds ppf ( a * b ) = ppf a + ppf b consider Al1 being countable QC-alphabet such that r is Element of CQC-WFF ( Al1 ) & Al is Al1 -expanding ; for X being non empty addLoopStr , M being Subset of X , x , y being Point of X st y in M holds x + y in x + M { [ x1 , x2 ] , [ y1 , y2 ] } c= [: { x1 , y1 } , { x2 , y2 } :] ( h . ( f . O ) ) = |[ A * ( ( f . O ) `1 ) + B , C * ( ( f . O ) `2 ) + D ]| ; Gauge ( C , n ) * ( k , i ) in L~ Upper_Seq ( C , n ) /\ L~ Lower_Seq ( C , n ) ; redefine pred m , n are_relative_prime means : Def2 : for p being prime Nat holds not ( p divides m & p divides n ) ; ( f * F ) . x1 = f . ( F . x1 ) & ( f * F ) . x2 = f . ( F . x2 ) ; for L be LATTICE for a , b , c be Element of L holds a \ b <= c & b \ a <= c implies a \+\ b <= c ; consider b being element such that b in dom ( H / ( x , y ) ) and z = H / ( x , y ) . b ; assume that x in dom ( F * g ) and y in dom ( F * g ) and ( F * g ) . x = ( F * g ) . y ; assume not ( ex e being element st e Joins W . 1 , W . 5 , G or e Joins W . 3 , W . 7 , G ) ; ( fdif ( f , h ) . ( 2 * n ) ) . x = ( cdif ( f , h ) . ( 2 * n ) ) . ( x + n * h ) j + 1 = i - len h11 + 2 - 1 + 1 .= i + 1 -' len h11 + 2 -' 1 ; *' ( /* S ) . f = ( /* S ) . ( opp f ) .= S . ( ( opp f ) opp ) .= S . f ; consider H such that H is one-to-one and rng H = Carrier ( L2 ) and Sum ( L2 (#) H ) = Sum ( L2 ) ; R is being_Region & p in R & q in R & p <> q implies ex P st P is_S-P_arc_joining p , q & P c= R dom <: X --> f :> = meet doms ( X --> f ) .= meet ( X --> dom f ) .= dom f ; upper_bound ( proj2 .: ( Upper_Arc C /\ Vertical_Line w ) ) <= upper_bound ( proj2 .: ( C /\ Vertical_Line w ) ) ; for r being Real st 0 < r ex n being Nat st for m being Nat st n <= m holds |. S . m - pp .| < r i * fx - fe = i * fx - i * yy .= i * ( fx - fy ) ; consider f being Function such that dom f = bool X and for Y being set st Y in bool X holds f . Y = F ( Y ) ; consider g1 , g2 be element such that g1 in [#] Y and g2 in union C and g = [ g1 , g2 ] ; func d |-count n -> Nat means : Def7 : d |^ it divides n & not d |^ ( it + 1 ) divides n ; fg . [ 0 , t ] = f . [ 0 , t ] .= ( - P ) . ( 2 * x `1 ) .= a ; t = h . D or t = h . B or t = h . C or t = h . E or t = h . F or t = h . J ; consider m1 be Nat such that for n st n >= m1 holds dist ( ( seq1 . n ) , ( seq2 . n ) ) < 1 ; ( q `1 / q `2 ) ^2 <= ( q `2 ) ^2 / ( q `2 ) ^2 ; h0 . ( ( i + 1 ) + 1 ) = h21 . ( ( i + 1 ) + 1 -' len h11 + 2 -' 1 ) ; consider o being Element of the carrier' of S , x2 being Element of { the carrier of S } such that a = [ o , x2 ] ; for L being RelStr , a , b being Element of L holds ( a is_<=_than { b } iff a <= b ) & ( a is_>=_than { b } iff b <= a ) ||. h1 .|| . n = ||. h1 . n .|| .= |. h . n .| .= ( abs ( h ) ) . n ; ( f - exp_R ) . x = f . x - exp_R . x .= 1 - exp_R . x ; for F being Function of [: D , D9 :] , E for p being FinSequence of D for q being FinSequence of D9 st r = F .: ( p , q ) holds len r = min ( len p , len q ) ( rm1 / 2 ) ^2 + ( rm / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for i be Nat , M be Matrix of n , K st i in Seg n holds Det M = Sum LaplaceExpL ( M , i ) a <> 0. R implies a " * ( a * v ) = 1. R * v & ( a " * a ) * v = 1. R * v p . ( j -' 1 ) * ( q *' r ) . ( i + 1 -' j ) = Sum ( p . ( j -' 1 ) * r3 ) ; deffunc F ( Nat ) = L . 1 + ( ( R /* ( h ^\ n ) ) (#) ( h ^\ n ) " ) . $1 ; the carrier of H2 ; Args ( o , FreeMSA X ) = ( ( the Sorts of FreeMSA X ) # * the Arity of S ) . o ; H1 = ( n + 1 ) -BinarySequence ( |. 2 to_power ( n + 1 ) + h .| ) .= ( n + 1 ) -BinarySequence ( NH ) ; OO `1_3 = 0 & OO `2_3 = 1 & OO `3_3 = 0 ; F1 .: ( dom F1 /\ dom F19 ) = Im ( F1 , 1 / 2 ) .= { f /. ( n + 2 ) } ; b <> 0 & d <> 0 & b <> d & a / b = e / d implies a / b = ( a - e ) / ( b - d ) dom ( ( f +* g ) | D ) = dom ( f +* g ) /\ D .= ( dom f \/ dom g ) /\ D ; for i being set st i in dom g ex u , v being Element of L , a being Element of B st g /. i = u * a * v ; g9 * P * g9 " = g99 * ( g9 * P ) * g9 " .= g99 * ( g9 * P * g9 " ) ; consider i , s1 such that f . i = s1 & ( not emp s1 implies f . ( i + 1 ) <> pop s1 ) ; hp | ]. a , b .[ = ( g | Z ) | ]. a , b .[ .= g | ]. a , b .[ ; [ s1 , t1 ] , [ s2 , t2 ] are_connected & [ s2 , t2 ] , [ s3 , t3 ] are_connected ; H is negative implies ( not H is atomic ) & ( not H is conjunctive ) & ( not H is ExistNext ) & ( not H is ExistGlobal ) & not H is ExistUntill f1 is total & f2 ^ is total implies ( f1 / f2 ) . c = f1 . c * ( f2 . c ) " z1 in W2 -Seg ( z2 ) or z1 = z2 & not z1 in W2 -Seg ( z2 ) ; p = 1 * p .= ( a " * a ) * p .= ( a " ) * ( b * q ) .= ( a " * b ) * q ; for rseq be Real_Sequence for K be Real st ( for n be Nat holds rseq . n <= K ) holds upper_bound rng rseq <= K east_halfline E-max C meets ( L~ go \/ L~ pion1 ) or east_halfline E-max C meets L~ co ; ||. f . ( g . ( k + 1 ) ) - f . ( g . k ) .|| <= ||. g . 1 - g . 0 .|| * ( K * ( K to_power k ) ) ; assume h = ( B .--> B9 ) +* ( C .--> C9 ) +* ( D .--> D9 ) +* ( E .--> E9 ) +* ( A .--> A9 ) ; |. lower_sum ( ( H . n ) || AB , T ) . k - lower_sum ( H0 , T ) . k .| <= e * ( b - a ) ; ( Fix_inp_ext iv ) . v . e = [ action_at v , the carrier of IIG ] -tree q ; { x1 , x1 , x1 , x1 , x1 , x1 , x1 } = { x1 , x1 } .= { x1 } ; A = [. 0 , 2 * PI .] implies integral ( ( #Z n * cos ) (#) sin , A ) = 0 p9 is Permutation of dom Del ( f1 , i ) & p9 " = ( Sgm Y ) " * ( p " ) * ( Sgm X ) for x , y st x in A & y in A holds |. ( f ^ ) . x - ( f ^ ) . y .| <= 1 * |. f . x - f . y .| p2 `2 = |. q2 .| * ( ( q2 `2 / |. q2 .| - sn ) / ( 1 - sn ) ) ; for f be PartFunc of the carrier of CNS , REAL st dom f is compact & f is_continuous_on ( dom f ) holds ( rng f ) is compact assume not ( for x being Element of Y st x in EqClass ( z , CompF ( B , G ) ) holds ( Ex ( a , A , G ) ) . x = TRUE ) ; consider Fr2 such that dom Fr2 = n1 and for k be Nat st k in n1 holds Q [ k , Fr2 . k ] ; ex u , u1 st u <> u1 & u , u1 '//' v , v1 & u , u1 '//' u2 , v2 ; for G be Group , A , B be non empty Subset of G , N be normal Subgroup of G holds N ~ A * N ~ B = N ~ ( A * B ) for s be Real st s in dom F holds F . s = infty_ext_right_integral ( ( f + g ) (#) ( exp*- s ) , 0 ) width AutMt ( f1 , b1 , b2 ) = len b2 .= width AutMt ( f2 , b1 , b2 ) ; f | ]. - PI / 2 , PI / 2 .[ = f & dom ( f " ) = ]. - 1 , 1 .[ ; for n st X is closed_wrt_A1-A7 & a in X & a c= X & y in Funcs ( fs , a ) holds { { [ n , x ] } \/ y : x in a } in X then A2 : Z = dom ( exp_R (#) arctan ) /\ dom ( exp_R / ( f1 + #Z 2 ) ) ; func variables_in ( l , V ) -> Subset of V equals { l . k : 1 <= k & k <= len l & l . k in V } ; for L being non empty TopSpace , N being net of L , M being subnet of N for c being Point of L st c is_a_cluster_point_of M holds c is_a_cluster_point_of N for s being Element of NAT holds ( seq_id ( v ) + seq_id ( CZeroseq ) ) . s = ( seq_id ( v ) ) . s z /. 1 = N-min L~ z implies ( N-max L~ z ) .. z < ( S-min L~ z ) .. z len ( p ^ <* 0 qua Real *> ) = len p + len <* 0 qua Real *> .= len p + 1 ; assume that Z c= dom ( - ( ln * f ) ) and for x st x in Z holds f . x = a - x & f . x > 0 ; for R being right_zeroed left_add-cancelable left-distributive non empty doubleLoopStr , I , J being add-closed left-ideal non empty Subset of R holds ( I + J ) *' ( I /\ J ) c= I /\ J consider f be Function of [: B1 , B2 :] , B12 such that for x be Element of [: B1 , B2 :] holds f . x = F ( x ) ; dom ( x2 + y2 ) = Seg len x .= Seg len mlt ( x2 , z2 ) .= dom mlt ( x , z ) ; for S being Contravariant_Functor of C , B , c being Object of C holds S *' . ( id c ) = id ( ( Obj S *' ) . c ) ex a st a = a2 & a in fC1 /\ fC2 & InitSegm ( fC1 , a ) = InitSegm ( fC2 , a ) ; a in Free ( ( H3 / ( x. 4 , x. k ) ) '&' ( H2 / ( x. 3 , x. k ) ) ) ; for C1 , C2 being Coherence_Space for f , g being U-stable Function of C1 , C2 st Trace f = Trace g holds f = g ( W-min ( L~ go \/ L~ co ) ) `1 = W-bound ( L~ go \/ L~ co ) ; u = <* x0 , y0 , z0 *> & f is_hpartial_differentiable`13_in u implies SVF1 ( 3 , pdiff1 ( f , 1 ) , u ) is_differentiable_in z0 ( t . {} ) `1 in Vars implies ex x being Element of Vars st x = ( t . {} ) `1 & t = x -term C ; Valid ( p '&' p , J ) . v = ( Valid ( p , J ) . v ) '&' ( Valid ( p , J ) . v ) .= Valid ( p , J ) . v ; assume for x , y being Element of S st x <= y for a , b being Element of T ~ st a = f . x & b = f . y holds a >= b ; func Classes R -> Subset-Family of R means : Def6 : for A being Subset of R holds A in it iff ex a being Element of R st A = Class a ; defpred P [ Nat ] means ( PRIM:CompSeq ( G ) . $1 ) `1 c= G .reachableFrom ( the Element of the_Vertices_of G ) ; V2 is_the_direct_sum_of U1 , U2 ; main-constr ( m term t ) = ( ( m term t ) . {} ) `1 .= [ m , the carrier of C ] `1 .= m ; d11 = xx ^ d11 .= f . ( yy , d22 ) .= {} ^ d22 .= d22 ; consider g such that x = g and dom g = dom ff and for x being element st x in dom ff holds g . x in ff . x ; x + 0c ( len x ) = x + ( len x ) |-> 0c .= addcomplex .: ( x , ( len x ) |-> 0c ) .= x9 ; k11 -' k21 + 1 in dom ( ( f /^ ( k21 -' 1 ) ) | ( k11 -' k21 + 1 ) ) ; P1 /\ P2 = { p1 , p2 } ; reconsider a1 = a , b1 = b , b19 = b9 , p1 = p , p19 = p9 , c1 = c as Element of AFV0 ; reconsider G1tbF1f = G1 . ( t ! b * F1 . f ) as Morphism of ( G1 * F1 ) . a , ( G1 * F2 ) . b ; LSeg ( f , i + i1 -' 1 ) = LSeg ( f /. ( i + i1 -' 1 ) , f /. ( i + i1 -' 1 + 1 ) ) ; integral' ( M , ( P . m ) | dom ( P . n - P . m ) ) <= integral' ( M , ( P . n ) | dom ( P . n - P . m ) ) ; for x , y being element st [ x , y ] in dom f1 holds f1 . ( x , y ) = f2 . ( x , y ) ; consider v such that v = y and dist ( u , v ) < min ( r - G * ( i , 1 ) `1 , G * ( i + 1 , 1 ) `1 - r ) ; for G being Group , H being Subgroup of G , a being Element of H for b being Element of G st a = b for i being Integer holds a |^ i = b |^ i ; consider B be Function of Seg ( S + L ) , the carrier of V1 such that for x being element st x in Seg ( S + L ) holds P [ x , B . x ] ; reconsider K1 = { p7 where p7 is Point of TOP-REAL 2 : P [ p7 ] } as Subset of TOP-REAL 2 ; ( N-bound C - S-bound C ) / 2 |^ m <= ( N-bound C - S-bound C ) / 2 |^ ( m9 + 1 ) ; for x be Element of X , n be Nat st x in E holds ( |. ( Re F ) . n .| ) . x <= P . x & ( |. ( Im F ) . n .| ) . x <= P . x len @ F = len ( @ p ^ @ q ) + len <* [ 2 , 0 ] *> .= len ( @ p ^ @ q ) + 1 ; v / ( x. 3 , m1 ) / ( x. 0 , m2 ) / ( x. 4 , m3 ) . ( x. 4 ) = m3 ; consider r being Element of M such that M , v2 / ( x. 3 , m ) / ( x. 4 , m4 ) |= H2 iff m4 = r ; func w1 \ w2 -> Element of Union ( G , RK ) equals HKOp ( G , RK ) . ( w1 , w2 ) ; s2 . b2 = Exec ( n2 , s1 ) . b2 .= s1 . b2 .= s0 . b2 .= s . b2 ; for n , k be Nat holds 0 <= Partial_Sums ( |. seq .| ) . ( n + k ) - Partial_Sums ( |. seq .| ) . n set TT = AllTermsOf S , E = TheEqSymbOf S , p = SubTerms phi , F = S -firstChar , r = F . phi , n = |. ar r .| , U = Class R , I = i quotient R , UV = I -TermEval , N1 = n -tuples_on U1 , V = I -AtomicEval phi , uv = i -TermEval , v = i -AtomicEval phi , f = I === . r , G = I . r , g = i . r , d = U -deltaInterpreter ; Partial_Sums ( seq ) . K + Sum ( seq ^\ ( K + 1 ) ) >= Partial_Sums ( seq ) . K + 0 ; consider L , R such that for x st x in N holds ( f | Z ) . x - ( f | Z ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) ; closed_inside_of_rectangle ( a , b , c , d ) = outside_of_rectangle ( a , b , c , d ) ` a * b ^2 + a * c ^2 + b * a ^2 + b * c ^2 + ( c * a ^2 ) + ( c * b ^2 ) >= 6 * a * b * c ; v / ( x1 , m1 ) / ( x2 , m2 ) / ( x1 , m ) = v / ( x2 , m2 ) / ( x1 , m ) ; Firing ( Q ^ <* x *> , M0 ) = Firing ( Q , M0 ) +* ( *' { x } --> FALSE ) +* ( { x } *' --> TRUE ) ; Sum Fr2 = r |^ n1 * ( Sum CatalR ) .= C ( n1 ) .= Cat . n1 .= ( Cat ^\ 1 ) . n ; ( GoB f ) * ( len GoB f , 2 ) `1 = ( GoB f ) * ( len GoB f , 1 ) `1 ; defpred X [ Element of NAT ] means Partial_Sums ( s ) . $1 = a * ( $1 + 1 ) * $1 / 2 + $1 * b + b ; the_arity_of g = ( the Arity of S ) . g .= [ ( the Arity of S ) . g , g `2 ] `1 .= g `1 ; Funcs ( Z , [: X , Y :] ) , [: Funcs ( Z , X ) , Funcs ( Z , Y ) :] are_equipotent & card Funcs ( Z , [: X , Y :] ) = card [: Funcs ( Z , X ) , Funcs ( Z , Y ) :] for a , b being Element of S , s being Element of NAT st s = n & a = F . n & b = F . ( n + 1 ) holds b = N . ( s + 1 ) \ G . s ; E , f |= All ( x. 2 , x. 2 'in' x. 0 <=> x. 2 'in' x. 1 ) => x. 0 '=' x. 1 ; ex R2 being 1-sorted st ( R2 = ( p | ns ) . i ) & ( ( Carrier ( p | ns ) ) . i = the carrier of R2 ) ; [. a , b + 1 / ( k + 1 ) .[ is Element of Borel_Sets & ( Partial_Intersection half_open_sets ( a , b ) ) . k is Element of Borel_Sets ; Comput ( P , s , 2 + 1 ) = Exec ( P . 2 , Comput ( P , s , 2 ) ) .= Exec ( a3 := a0 , Comput ( P , s , 2 ) ) ; ( h1 *' ) . k = power ( F_Complex ) . ( - 1_ F_Complex , k ) * ( Sum u ) .= ( ( f *' ) *' ( g *' ) ) . k ; ( f / g ) /. c = ( f /. c ) * ( g /. c ) " .= ( f /. c ) * ( ( g ^ ) /. c ) .= ( f (#) ( g ^ ) ) /. c ; len CR - len ovlpart ( CR /^ 1 , CR ) = len CR -' len ovlpart ( CR /^ 1 , CR ) ; dom ( ( r (#) f ) | X ) = dom ( r (#) f ) /\ X .= dom f /\ X .= dom ( f | X ) .= dom ( r (#) ( f | X ) ) ; defpred P [ Nat ] means for n holds 2 * Lucas ( n + $1 ) = Lucas ( n ) * Lucas ( $1 ) + 5 * Fib ( n ) * Fib ( $1 ) ; consider f be Function of Segm ( n + 1 ) , Segm ( k + 1 ) such that f = f9 and f is onto "increasing and n < n + 1 implies f " { f . n } = { n } ; consider chAB be Function of S , BOOLEAN such that chAB = chi ( ( A \/ B ) , S ) & EP . ( A \/ B ) = Prob ( chAB , D ) ; consider y being Element of Y ( ) such that a = "\/" ( { F ( x , y ) where x is Element of X ( ) : P [ x ] } , L ( ) ) and Q [ y ] ; assume A1 : A c= Z & Z = dom f & f = exp_R (#) ( sin / cos ) + exp_R / cos ^2 ; ( f /. i ) `2 = ( ( GoB f ) * ( 1 , j2 ) ) `2 .= ( ( GoB f ) * ( I , j2 ) ) `2 ; dom Shift ( Seq q2 , len Seq q1 ) = { j + len Seq q1 where j is Nat : j in dom Seq q2 } ; consider G1 , G2 , G3 being Element of V such that G1 <= G2 & G2 <= G3 and g is Morphism of G2 , G3 and f is Morphism of G1 , G2 ; func - f -> PartFunc of C , V means : Def5 : dom it = dom f & for c st c in dom it holds it /. c = - ( f /. c ) ; consider phi such that phi is increasing & phi is continuous & for a st phi . a = a & {} <> a for va holds Union L , ( Union L ) ! va |= H iff L . a , va |= H ; consider i1 , j1 such that [ i1 , j1 ] in Indices GoB f and f /. ( i + 1 ) = ( GoB f ) * ( i1 , j1 ) ; consider i , n such that n <> 0 and sqrt p = i / n and for i1 being Integer , n1 being Nat st n1 <> 0 & sqrt p = i1 / n1 holds n <= n1 ; assume that not 0 in Z and Z c= dom ( arccot * ( f ^ ) ) and for x st x in Z holds ( f ^ ) . x > - 1 & ( f ^ ) . x < 1 ; cell ( G1 , i1 -' 1 , 2 |^ ( m -' AI ) * ( YI -' 2 ) + 2 ) \ L~ f1 c= BDD L~ f1 ; ex Q1 being open Subset of X st s = Q1 & ex FQ being Subset-Family of [: Y , X :] st FQ c= F & FQ is finite & [: [#] Y , Q1 :] c= union FQ ; gcd ( mult1 ( r1 , r2 , s1 , s2 , Amp ) , mult2 ( r1 , r2 , s1 , s2 , Amp ) , Amp ) = 1. R ; Rs = ( Computation ( Computation s2 ) . 1 ) . ( m2 + 1 ) by Th10 .= ( Computation s3 ) . ( m2 + 1 ) .= [ 3 , j1 + m2 , t2 ] ; CurInstr ( PP , Comput ( PP , ss , m1 + m3 ) ) = CurInstr ( P3 , Comput ( P3 , s3 , m3 ) ) .= halt SCMPDS ; P1 /\ P2 = { p1 } \/ ( LSeg ( p1 , p11 ) /\ LSeg ( p01 , p2 ) ) \/ ( ( LSeg ( p11 , p2 ) /\ L1 ) \/ { p2 } ) ; func still_not-bound_in f -> Subset of bound_QC-variables ( Al ) means : Def5 : a in it iff ex i , p st i in dom f & p = f . i & a in still_not-bound_in p ; for a , b being Element of F_Complex st |. a .| > |. b .| for f being Polynomial of F_Complex st deg ( f ) >= 1 holds f is Hurwitz iff a * f - b * ( f *' ) is Hurwitz defpred P [ Nat ] means 1 <= $1 & $1 <= len g implies for i , j st [ i , j ] in Indices G & G * ( i , j ) = g . $1 holds j < j0 ; C1 , C2 are_similar_wrt f , g implies for s1 being State of C1 , s2 being State of C2 st s1 = s2 * f holds s1 is stable iff s2 is stable ( ( ||. f .|| ) | X ) . c = ( ||. f .|| ) . c .= ||. f /. c .|| .= ||. ( f | X ) /. c .|| .= ||. ( f | X ) .|| . c ; ( |. q .| ) ^2 = ( q `1 ) ^2 + ( q `2 ) ^2 & 0 + ( q `1 ) ^2 < ( q `1 ) ^2 + ( q `2 ) ^2 ; for F be Subset-Family of TM st F is open & not {} in F & for A , B be Subset of TM st A in F & B in F & A <> B holds A misses B holds card F c= iC ; assume that len F >= 1 and len F = k + 1 and len F = len G and len F = len H and for k st k in dom F holds H . k = g . ( F . k , G . k ) ; i |^ ( Euler n ) - i |^ s = i |^ ( s + k ) - i |^ s .= i |^ s * i |^ k - i |^ s * 1 .= i |^ s * ( i |^ k - 1 ) ; consider q being Simple oriented Chain of G such that r = q and q <> {} and FS . ( q . 1 ) = v1 & FT . ( q . ( len q ) ) = v2 and rng q c= rng pq ; defpred P [ Element of NAT ] means $1 <= ( len I ) - 1 implies ( PartDiffSeq ( g , Z , I ) ) . $1 = ( PartDiffSeq ( f , Z , ( G ^ I ) ) ) . ( len G + $1 ) ; for A , B being Matrix of n , REAL holds len ( A * B ) = len A & width ( A * B ) = width B & len ( A * B ) = n & width ( A * B ) = n consider s being FinSequence of the carrier of R such that Sum s = u and for i being Element of NAT st 1 <= i & i <= len s ex a , b being Element of R st s . i = a * b & a in I & b in J ; func |( x , y )| -> Element of COMPLEX equals |( Re x , Re y )| - * ( |( Re x , Im y )| ) + * ( |( Im x , Re y )| ) + |( Im x , Im y )| ; consider g0 being FinSequence of FT such that g0 is continuous & rng g0 c= A & g0 . 1 = x1 & g0 . ( len g0 ) = x2 and k0 = len g0 ; n1 >= len p1 implies crossover ( p1 , p2 , n1 , n2 , n3 , n4 , n5 ) = crossover ( p1 , p2 , n2 , n3 , n4 , n5 ) q `1 * a <= q `1 & - q `1 <= q `1 * a or q `1 * a >= q `1 & q `1 * a <= - q `1 ; FT . ( pe . len pe ) = FT . ( p . len pe ) .= vs /. ( len pe + 1 ) .= vs . ( len pe + 1 ) ; consider k1 being Nat such that k1 + k = 1 and a := k = ( <% a := intloc 0 %> ^ ( k1 --> SubFrom ( a , intloc 0 ) ) ^ <% halt SCM+FSA %> ) ; consider Bo being Subset of B1 , yo1 being Function of Bo , A1 such that Bo is finite and D1 = cylinder0 ( A1 , B1 , Bo , yo1 ) ; v2 . b2 = ( curry ( F2 , g ) * IdMap B ) . b2 .= curry ( F2 , g ) . ( ( IdMap B ) . b2 ) .= F2 . ( g , id b2 ) ; dom IExec ( IF , P , Initialize s ) = the carrier of SCMPDS .= dom ( IExec ( I , P , Initialize s ) +* Start-At ( ( card I + 2 ) , SCMPDS ) ) ; ex dd1 be Real st dd1 > 0 & for h be Real st h <> 0 & |. h .| < dd1 holds |. h .| " * ||. ( R2 * ( L + R1 ) ) /. h .|| < ee ; LSeg ( G * ( len G , 1 ) + |[ 1 , - 1 ]| , G * ( len G , 1 ) + |[ 1 , 0 ]| ) c= Int cell ( G , len G , 0 ) \/ { G * ( len G , 1 ) + |[ 1 , 0 ]| } LSeg ( mid ( h , i1 , i2 ) , i ) = LSeg ( h /. ( i + i1 -' 1 ) , h /. ( i + 1 + i1 -' 1 ) ) .= LSeg ( h , i + i1 -' 1 ) ; A = { q where q is Point of TOP-REAL 2 : LE p1 , q , P , p1 , p2 & LE q , q1 , P , p1 , p2 } ; ( - x ) .|. y = ( - ( 1r *' ) ) * x .|. y .= ( ( - 1r ) *' ) * x .|. y .= x .|. ( ( - 1r ) * y ) .= x .|. ( - y ) ; 0 * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = p `2 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) * sqrt ( 1 + ( p `1 / p `2 ) ^2 ) ; ( Ur / Wr ) * ( Wr * ( q - p ) ) = ( Ur / Wr * Wr ) * ( q - p ) .= ( Wr / Wr * Ur ) * ( q - p ) .= Ur * ( q - p ) ; func Shift ( f , h ) -> PartFunc of REAL , REAL means : Def1 : dom it = - h ++ dom f & for x st x in ( - h ++ dom f ) holds it . x = f . ( x + h ) ; assume that 1 <= k & k + 1 <= len f and [ i , j ] in Indices G and [ i + 1 , j ] in Indices G & f /. k = G * ( i + 1 , j ) & f /. ( k + 1 ) = G * ( i , j ) ; not y in variables_in H implies ( x in Free H implies Free ( H / ( x , y ) ) = ( Free H \ { x } ) \/ { y } ) & ( not x in Free H implies Free ( H / ( x , y ) ) = Free H ) defpred P11 [ Element of NAT , Element of NAT , Prime ] means P [ $1 , $2 , $3 ] & $3 |^ ( $3 |-count $2 ) < p |^ ( p |-count $2 ) ; func sigma_Field ( C ) -> non empty Subset-Family of X means : Def2 : for A being Subset of X holds ( A in it iff for W , Z being Subset of X holds ( W c= A & Z c= X \ A implies C . W + C . Z <= C . ( W \/ Z ) ) ) ; [#] ( ( dist_min ( P0 ) ) .: ( Q ) ) = ( dist_min ( P0 ) ) .: ( Q ) & lower_bound ( [#] ( ( dist_min ( P0 ) ) .: ( Q ) ) ) = lower_bound ( ( dist_min ( P0 ) ) .: ( Q ) ) ; rng ( F | the_subsets_of_card ( 2 , S ) ) = {} or rng ( F | the_subsets_of_card ( 2 , S ) ) = { 1 } or rng ( F | the_subsets_of_card ( 2 , S ) ) = { 2 } or rng ( F | the_subsets_of_card ( 2 , S ) ) = { 1 , 2 } ; ( f "" ( rngs f ) ) . i = ( f . i ) " ( ( rngs f ) . i ) .= ( f . i ) " ( rng ( f . i ) ) .= dom ( f . i ) .= ( doms f ) . i ; consider P1 , P2 being non empty Subset of TOP-REAL 2 such that P1 is_an_arc_of p1 , p2 and P2 is_an_arc_of p1 , p2 and C = P1 \/ P2 and P1 /\ P2 = { p1 , p2 } ; f . p2 = |[ p2 `1 / sqrt ( 1 + ( p2 `1 / p2 `2 ) ^2 ) , p2 `2 / sqrt ( 1 + ( p2 `1 / p2 `2 ) ^2 ) ]| ; transl ( a , X ) " . x = ( transl ( a , X ) qua Function ) " . x .= u .= 0. X + u .= ( - a + a ) + u .= - a + x .= transl ( - a , X ) . x ; for T being non empty normal TopSpace , A , B being closed Subset of T st A <> {} & A misses B holds for G being Rain of A , B , r being Element of DOM , p being Point of T st ( Thunder G ) . p < r holds p in ( Tempest G ) . r for i st i in dom F & i + 1 in dom F for G1 , G2 being strict normal Subgroup of G st G1 = F . i & G2 = F . ( i + 1 ) holds G2 is strict Subgroup of G1 & [. G1 , (Omega). G .] is strict Subgroup of G2 for x st x in Z holds ( ( ( arctan - arccot ) / exp_R ) `| Z ) . x = ( ( 2 / ( 1 + x ^2 ) ) - arctan . x + arccot . x ) / exp_R . x pred f is_Rcontinuous_in x0 means : Def2 : x0 in dom f & for a st rng a c= right_open_halfline ( x0 ) /\ dom f & a is convergent & lim a = x0 holds f /* a is convergent & f . x0 = lim ( f /* a ) ; X1 , X2 are_separated implies ex Y1 , Y2 being non empty SubSpace of X st Y1 , Y2 are_weakly_separated & X1 is SubSpace of Y1 & X2 is SubSpace of Y2 & ( Y1 misses Y2 or Y1 meet Y2 misses X1 union X2 ) ex N being Neighbourhood of x0 st N c= dom SVF1 ( 1 , f , u ) & ex L , R st for x st x in N holds SVF1 ( 1 , f , u ) . x - SVF1 ( 1 , f , u ) . x0 = L . ( x - x0 ) + R . ( x - x0 ) ; ( p2 `1 ) * sqrt ( 1 + ( p3 `1 ) ^2 ) / sqrt ( 1 + ( p3 `1 ) ^2 ) >= ( p3 `1 ) * sqrt ( 1 + ( p2 `1 ) ^2 ) / sqrt ( 1 + ( p3 `1 ) ^2 ) ; ( ( 1 / t1 (#) ( abs f1 ) ) . x ) to_power m = ( ( 1 / t1 (#) ( abs f1 ) ) to_power m ) . x & ( ( 1 / t2 (#) ( abs g1 ) ) . x ) to_power n = ( ( 1 / t2 (#) ( abs g1 ) ) to_power n ) . x ; ( for x holds f . x = ( cot (#) cos ) . x ) & x in dom cot & x + h in dom cot implies fD ( f , h ) . x = 1 / sin ( x + h ) - sin ( x + h ) - 1 / sin ( x ) + sin ( x ) consider Xx1 being Subset of Y , Yy2 being Subset of X such that t = [: Xx1 , Yy2 :] and ex Y1 being Subset of XV st Y1 = Yy2 /\ [#] ( XV ) & Xx1 is open & Yy2 is open & [: Xx1 , Y1 :] in A ; card ( S . n ) = card ( { Class ( R_EllCur ( a , b , p ) , [ d , Y , 1 ] ) where Y is Element of GF ( p ) : [ d , Y , 1 ] in EC_SetProjCo ( a , b , p ) } ) .= 1 + Lege_p ( d |^ 3 + a * d + b ) ; ( ( ( E-bound D ) - ( W-bound D ) ) / ( 2 |^ m ) ) * ( i - 2 ) = ( ( E-bound D ) - ( W-bound D ) ) * ( ( i1 - 2 ) / ( 2 |^ n ) ) .= ( ( ( E-bound D ) - ( W-bound D ) ) / ( 2 |^ n ) ) * ( i1 - 2 ) ;