thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; contradiction ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; thesis ; contradiction ; hence thesis ; hence thesis ; assume not thesis ; assume not thesis ; let B ; a <> c T c= S D c= B let G , c ; let a , b ; let n , X ; b in D ; x = e ; let m ; h is onto ; N in K ; let i ; j = 1 ; x = u ; let n ; let k ; y in A ; let x ; let x ; m c= y ; F is injective ; let q ; m = 1 ; 1 < k ; G is cyclic ; b in A ; d divides a ; i < n ; s <= b ; b in B ; let r ; B is one-to-one ; R is total ; x = 2 ; d in D ; let c ; let c ; b = Y ; 0 < k ; let b ; let n ; r <= b ; x in X ; i >= 8 ; let n ; let n ; y in f ; let n ; 1 < j ; a in L ; C is boundary ; a in A ; 1 < x ; S is finite ; u in I ; z << z ; x in V ; r < t ; let t ; x c= y ; a <= b ; let G , n , m ; f is meet-preserving ; not x in Y ; z = +infty ; k be Nat ; K9 is being_line ; assume n >= N ; assume n >= N ; assume X is positive-implicative ; assume x in I ; q is dominated_by_0 ; assume c in x ; 1 - p > 0 ; assume x in Z ; assume x in Z ; 1 <= k2a ; assume m <= i ; assume G is cyclic ; assume a divides b ; assume P is closed ; d - c > 0 ; assume q in A ; W is not bounded ; f is weakly-one-to-one ; assume A is boundary ; g is being_S-Seq ; assume i > j ; assume t in X ; assume n <= m ; assume x in W ; assume r in X ; assume x in A ; assume b is even ; assume i in I ; assume 1 <= k ; X is non empty ; assume x in X ; assume n in M ; assume b in X ; assume x in A ; assume T c= W ; assume s is atomic ; b9 <=' c9 ; A meets W ; i9 <= j9 ; assume H is universal ; assume x in X ; let X be set ; let T be Tree ; let d be element ; let t be element ; let x be element ; let x be element ; let s be element ; k <= 5 - 2 ; let X be set ; let X be set ; let y be element ; let x be element ; P [ 0 ] let E be set ; let C be Category ; let x be element ; let k be Nat ; let x be element ; let x be element ; let e be element ; let x be element ; P [ 0 ] let c be element ; let y be element ; let x be element ; let a be Real ; let x be element ; let X be element ; P [ 0 ] let x be element ; let x be element ; let y be element ; r in REAL ; let e be element ; n1 is epi ; Q halts_on s ; x in ICC ; M < m + 1 ; T2 is open ; z in b U+ a ; R2 is well-ordering ; 1 <= k + 1 ; i > n + 1 ; q1 is one-to-one ; let X , Y ; PR is one-to-one n <= n + 2 ; 1 <= k + 1 ; 1 <= k + 1 ; let e be Real ; i < i + 1 ; p3 in P ; p1 in K ; y in C1 ; k + 1 <= n ; let a be Real ; X |- r => p ; x in { A } ; let n be Nat ; let k be Nat ; let k be Nat ; let m be Nat ; 0 < 0 + k ; f is_differentiable_in x ; let x0 ; let E be Ordinal ; o ~= o4 ; O <> O3 ; let r be Real ; let f be FinSeq-Location ; let i be Nat ; let n be Nat ; Cl A = A ; L c= Cl L ; A /\ M = B ; let V be ComplexNormSpace ; not s in Y ^0 ; rng f is_<=_than w b "/\" e = b ; m = m4 ; t in h . D ; P [ 0 ] ; z = x * y ; S . n is bounded ; let V be RealLinearSpace ; P [ 1 ] ; P [ {} ] ; C1 is a_component ; H = G . i ; 1 <= i9 + 1 ; F . m in A ; f . o = o ; P [ 0 ] ; a - a <= r - a ; R [ 0 ] ; b in f .: X ; q = q2 ; x in [#] V ; f . u = 0 ; e1 > 0 ; let V be RealUnitarySpace ; s is trivial non empty ; dom c = Q ; P [ 0 ] ; f . n in T ; N . j in S ; let T be complete LATTICE ; the ObjectMap of F is one-to-one sgn x = 1 ; k in support a ; 1 in Seg 1 ; rng f = X ; len T in X ; va < n ; SI is bounded ; assume p = p2 ; len f = n ; assume x in P1 ; i in dom q ; let UN ; pc = c ; j in dom h ; let n be non zero Nat , k ; f | Z is continuous ; k in dom G ; UBD C = B ; 1 <= len M ; p in north_halfline x ; 1 <= j19 ; set A = KurExSet ; a *' [= c ; e in rng f ; cluster B ++ A -> empty ; not H is Until ; assume n0 <= m ; T is increasing Ordinal-Sequence ; e2 <> e4 Z c= dom g ; dom p = X ; H is_proper_subformula_of G ; ( i + 1 ) <= n ; not v = 0. V ; A c= Affin A ; S c= dom F ; m in dom f ; let X0 be set ; c = sup N ; R is_connected_in union M ; assume not x in REAL ; Image f is complete ; x in Int y ; dom F = M ; a in On W ; assume e in A ( ) ; C c= Cy ; mbcd <> {} ; let x be Element of Y ; let f be ConwayGameChain ; not n in Seg 3 ; assume X in f .: A ; p <= m ; assume not u in { v } ; d is Element of A ; A ^b misses B ; e in v .edgesOut() ; - y in I ; let A be non empty set ; Pk = 1 ; assume r in F . k ; assume f is_simple_func_in S ; let A be uncountable set ; rng f c= NAT assume P [ k ] ; fC1 <> {} ; let X be set , o be Ordinal ; assume x is being_a_sum_of_amalgams_of_squares ; assume not v in { 1 } ; let IPS ; j < l ; v = - u ; assume s . b > 0 ; let d1 , d2 , d3 , d4 ; assume t . 1 in A ; let Y be non empty TopSpace ; assume a in uparrow s ; let S be non empty Poset ; a , b // b , a ; a * b = p * q ; assume Gen x , y ; assume x in Big_Omega ( f ) ; [ a , c ] in X ; mbcde <> {} ; M +^ N c= M +^ M ; assume M is strongly_Mahlo ; f is union-distributive ; let x , y be element ; let T be non empty TopSpace ; b , a // b , c ; k in dom Sum p ; let v be Element of V ; [ x , y ] in T ; assume len p = 0 ; assume C in rng f ; k1 = k2 ; m + 1 < n + 1 ; s in S \/ { s } ; n + i >= n + 1 ; assume Re ( y ) = 0 ; k1 <= j1 ; f | A is uniformly_continuous ; f . x - a <= b ; assume y in dom h ; x * y in B1 ; set X = Seg n ; 1 <= i2 + 1 ; k + 0 <= k + 1 ; p ^ q = p ; j |^ y divides m ; set m = max A ; [ x , x ] in R ; assume x in succ 0 ; a ( ) in sup phi ; let S , z , CH ; q2 c= C1 ; a2 < c2 ; s2 is 0 -started ; IC s = 0 ; s6 = s5 ; let v be 0 -started State of SCMPDS , V ; let x , y be element ; let x be Element of T ; assume a in rng F ; then x in dom T9 ; let S be System of L ; y " <> 0 ; y " <> 0 ; 0. V = u - w ; are_Prop y2 , y ; let X , G , K , RK ; let a , b be Real ; let a be Object of C ; let x be Vertex of G ; let o be Object of C ; r '&' q = P ! l ; let i , j be Nat ; let s be State of A ; s4 . n = N ; let x ; mi in dom g ; l . 2 = y1 ; |. g . y .| <= r ; f . x in C0 ; VP is non empty ; let x be Element of X ; 0 <> f . g2 ; f2 /* q is convergent ; f . i is_measurable_on E ; assume xi in Nx0 ; reconsider i9 = i as Ordinal ; r * v = 0. X ; rng f c= INT ; G = 0 .--> goto 0 ; let A be Subset of X ; assume A0 is dense open ; |. f . x .| <= r ; addLoopStr , x be Element of R ; let b be Element of L ; assume x in Wy ; P [ k , a ] ; let X be Subset of L ; let b be object of B ; let A , B be AltCatStr ; set X = MSVars C ; let o be OperSymbol of S ; let R be connected non empty Poset ; n + 1 = succ n ; xx c= Z1 ; dom f = C1 ; assume [ a , y ] in X ; Re seq is convergent ; assume a1 = b1 ; A = sInt A ; a <= b or b <= a ; n + 1 in dom f ; let F be Instruction-Sequence of S ; assume r2 > x0 ; let X be set , Y be non empty set ; 2 * x in dom W ; m in dom g2 ; n in dom g1 ; k + 1 in dom f ; still_not-bound_in { s } is finite ; assume x1 <> x2 ; v4 in VG ; not [ b9 , b ] in T ; ii + 1 = i ; T c= CnCPC ( T ) ; l `1 = 0 ; let f be sequence of TOP-REAL N , n be Nat ; t `2 = r ; AF is_integrable_on M ; set v = VAL g , t = TVERUM ; let A , B be real-membered set ; k <= len G + 1 ; MP-conectives misses MP-variables product so is non empty ; e <= f or f <= e ; cluster non empty normal for Sequence ; assume c2 = b2 ; assume h in [. q , p .] ; 1 + 1 <= len C ; not c in B . m1 ; cluster R .: X -> empty ; p . n = H . n ; vseq is Cauchy_sequence_by_Norm ; IC s3 = 0 ; k in N or k in K ; F1 \/ F2 c= F Int G1 <> {} ; z `2 = 0 ; p01 <> p1 ; assume z in { y , w } ; MaxADSet ( a ) c= F ; ex_sup_of downarrow s , S ; f . x <= f . y ; TopRelStr ; ( q |^ m ) >= 1 ; a is_>=_than X & b is_>=_than Y ; assume <^ a , c ^> <> {} ; F . c = g . c ; G is one-to-one faithful full onto ; not A \/ { a } c= B ; 0. V = 0. Y ; I being IC-relocable Instruction of S ; fn1 . x = 1 ; assume z \ x = 0. X ; C4 = 2 to_power n ; let B be SetSequence of Sigma ; assume X1 = p .: D ; n + l2 in NAT ; f " P is compact ; assume x1 in REAL+ ; p1 = KD1 ; M . k = <*> REAL ; phi . 0 in rng phi ; OSMSubSort ( A ) is opers_closed assume z0 <> 0. L ; n < NS . k ; 0 <= seq . 0 ; - q + p = v ; { v } is Subset of B ; g = Del ( f , 1 ) ; cR is StableSet of R ; set cR = Vertices R ; pWH c= P4 ; x in [. 0 , 1 .[ ; f . y in dom F ; let T be Scott TopAugmentation of S ; ex_inf_of the carrier of S , S ; types a = types b ; P , C , K is_coplanar ; let x be element ; 2 to_power i < 2 to_power m ; x + z = x + z + q ; x \ ( a \ x ) = x ; ||. x - y .|| <= r ; Y <> {} ; a [x] b , b [x] a are_isomorphic assume a in A ( ) . i ; k in dom qq ; p is distProbFinS of S ; i -' 1 = i - 1 ; reconsider A = [: {} , D :] as empty set ; assume x in f .: X ( ) ; i2 - i1 = 0 ; j2 + 1 <= i2 ; g " * a in N ; K <> { [ {} , {} ] } ; cluster strict for EuclidianRing ; ( |. q .| ) ^2 > 0 ; |. p4 .| = |. p .| ; s2 - s1 > 0 ; assume x in { Gij } ; W-min C in C ; assume x in { Gij } ; assume i + 1 = len G ; assume i + 1 = len G ; dom I = Seg n ; k <> i ; 1 + 1 - 1 <= i + j - 1 ; dom S = dom F ; let s be Element of NAT ; let R be ManySortedRelation of A ; let n be Element of NAT ; TopStruct ; let f be ManySortedSet of I ; let z be Element of COMPLEX ; u in { bg } ; 2 * n < 2tpk ; let f be finite-support Function , x , y be set ; BF c= Vc1 assume I is_halting_on s , P ; UIL = UIL1 ; M /. 1 = z /. 1 ; x11 = x22 ; i + 1 < n + 1 + 1 ; x in { {} , <* 0 *> } ; fx <= fy ; let L be LATTICE , l be Element of L ; x in dom Fp ; let i be Element of NAT ; rF is COMPLEX -valued ; <^ o2 , o ^> <> {} ; ( s . x ) to_power 0 = 1 ; card K1 in M ; assume that X in U and Y in U ; let D be Dynkin_System of Omega ; set r = q - { k + 1 } ; y = W . ( 2 * x - 1 ) ; dom g = cod f ; let X , Y be non empty TopSpace ; for A being Interval , x being Real holds x ++ A is Interval |. <*> A .| . a = 0 cluster strict for SubLattice of L ; a1 in B . s1 ; let V be finite-dimensional VectSp of F ; A * B on B , A ; fd = NAT --> 0 ; let A , B be Subset of V ; z1 = P1 . j ; assume f " P is closed ; reconsider j = i as Element of M ; let a , b be Element of L ; q in A \/ ( B "\/" C ) ; dom ( F * C ) = o ; set S = Funcs ( X , INT ) ; z in dom ( A --> y ) ; P [ y , h . y ] ; { x0 } c= dom f ; let B be non-empty ManySortedSet of I ; PI / 2 < Arg z ; reconsider zz = 0 as Nat ; LIN a9 , d9 , c9 ; [ y , x ] in IR ; Q `3_3 = 0 ; set j = x0 div m ; assume a in { x , y , c } ; j2 - jn2 > 0 ; hence I -TruthEval phi = 1 ; [ y , d ] in FSG ; let f be Function of X , Y ; set A2 = B / C ; s1 , s2 are_co-prime ; j1 -' 1 = 0 ; set m2 = 2 * n + j ; reconsider t9 = t as bag of n ; I2 . j = m . j ; i |^ s , n are_relative_prime ; set g = f | DD1 ; assume that X is bounded_below and 0 <= r ; p1 `1 = 1 ; a < p3 `1 ; L \ { m } c= UBD C ; x in Ball ( x , 10 ) ; not a in LSeg ( c , m ) ; 1 <= i1 -' 1 ; 1 <= i1 -' 1 ; i + i2 <= len h ; x = W-min ( P ) ; [ x , z ] in [: X , Z :] ; assume y in [. x0 , x .] ; assume p = <* 1 , 2 , 3 *> ; len <* A1 *> = 1 ; set H = h . gfB ; b *' * a = |. a .| ; Shift ( w , 0 ) |= v ; set h = h2 ** h1 ; assume x in X3 /\ X4 ; ||. h .|| < d0 ; not x in Carrier f ; f . y = F ( y ) ; for n holds X [ n ] ; then k -' l = k - l ; <* p , q *> /. 2 = q ; let S be Subset of Domains_Lattice Y ; let P , Q be Loop of s ; Q /\ M c= union ( F | M ) f = b * canFS ( S ) ; let a , b be Element of G ; f .: X is_<=_than f . sup X let L be non empty transitive reflexive RelStr ; SF is x -quasi_basis let r be non positive Real , s be non negative Real ; M , v |= x '=' y ; v + w = 0. ZS ; then P [ len cF ] ; InsCode ins = 8 ; the ZeroF of M = 0 ; cluster z * seq -> summable ; let O be Subset of the carrier of C ; ( abs f ) | X is continuous x2 = g . ( j + 1 ) ; cluster -> 0wff for Element of AtomicFormulasOf S ; reconsider l1 = l - 1 as Nat ; vs2 is_vertex_seq_of r2 ; T3 is SubSpace of T2 ; Q1 /\ Q19 <> {} ; let X be non empty set , t be FinSequence of X , k be Nat ; q " is Element of X ; F . t is thin of M ; assume that not n = 0 and not n = 1 ; set eb = EmptyBag n ; let b be Element of Bags n ; for i holds b . i is commutative ; x is_a_root_of p `2 ; not r in ]. p , q .[ ; let R be FinSequence of REAL ; SS does not destroy b1 ; IC SCM R <> a ; |. p - |[ x , y ]| .| >= r ; 1 * seq = seq NAT , x be FinSequence of NAT ; let f be Function of C , D ; for a holds 0. L + a = a IC s = s . NAT ; H + G = F - ( G - G ) ; Ch2 . x = x2 ; f1 = f .= f2 ; Sum <% p . 0 %> = p . 0 ; assume v + W = ( v + u ) + W ; { a1 } = { a2 } ; a1 , b1 _|_ b , a ; d3 , o _|_ o , a3 ; IR is_reflexive_in CR ; IR is_antisymmetric_in CR ; upper_bound rng H1 = e ; x = aa1 * aa1 ; ( |. p1 .| ) ^2 >= 1 ; assume j2 -' 1 < 1 ; rng s c= dom f1 ; assume support a misses support b ; let L be associative well-unital non empty doubleLoopStr ; s " + 0 < n + 1 ; p . c = fd . 1 ; R . n <= R . ( n + 1 ) ; Directed I0 = I0 ; set f = + ( x , y , r ) ; cluster Ball ( x , r ) -> bounded ; consider r being Real such that r in A ; cluster non empty NAT -defined for Function ; let X be non empty filtered Subset of S ; let S be non empty full SubRelStr of L ; cluster InclPoset lambda N -> complete non trivial ; 1 / a " = a ; ( q . {} ) `1 = o ; n - ( i -' 1 ) > 0 ; assume 1 / 2 <= t9 & t9 <= 1 ; card B = ( k + 1 ) - 1 ; x in union ( rng fIp ) ; assume x in the carrier of R ; let Y , Z , M , o , a , b , c , a1 , b1 , c1 , d ; f . 1 = L . ( F . 1 ) ; the_Vertices_of G = { v } ; let G be nonnegative-weighted WEGraph , e , x be set ; let G be VGraph , e , val be set ; c . ic in rng c ; f2 /* q is divergent_to-infty ; set z1 = - z2 ; assume w is_atlas_of S , G ; set f = p |-count t ; let S be Functor of C opp , B , c be Object of C ; assume ex a st P [ a ] ; let x be Element of REAL m ; let IT be Subset-Family of X ; reconsider p9 = p as Element of NAT ; let X be RealLinearSpace , v , w be Point of X ; let s be State of SCM+FSA ; p is FinPartState of SCM+FSA ; stop I ( ) c= PI ; set ci = fc1 /. i ; then w ^ t is_a_prefix_of w ^ s ; W1 /\ W = W1 /\ W9 ; f . j is Element of J . j ; let x , y be type of T2 ; ex d st a , b // b , d ; a <> 0 & b <> 0 & c <> 0 ord x = 1 & x is nilpotent ; set g2 = lim seq2 ; 2 * x >= 2 * ( 1 / 2 ) ; assume ( a 'or' c ) . z <> TRUE ; f (*) g in Hom ( c , c ) ; Hom ( c , c + d ) <> {} ; assume 2 * Sum ( q | m ) > m ; L1 . ( Fbm ) = 0 ; nabla X \/ R1 = nabla X ; sin . x <> 0 ; exp_R . x > 0 ; o1 in XX /\ O2 ; let G be EGraph , e , val be set ; r3 > ( 1 / 2 ) * 0 ; x in P .: ( F -Ideal ) ; left-ideal non empty Subset of R ; h . p1 = f2 . O ; Index ( p , f ) + 1 <= j ; len qK = width M ; Carrier ( L - K ) c= A ; dom f c= union rng FG k + 1 in support pfexp n ; let X be ManySortedSet of the carrier of S ; [ x9 , y9 ] in EqCl R ; i = D1 or i = D2 ; assume a mod n = b mod n ; h . x2 = g . x1 ; F c= bool the carrier of X reconsider w = |. s1 .| as Real_Sequence ; 1 / ( m * m + r ) < p ; dom f = dom Ip ; [#] PY = [#] KX ; redefine func - x -> R_eal ; { d0 } c= A implies A is closed cluster TOP-REAL n -> finite-ind ; let w be Element of N , w1 be Element of M ; let x be Element of dyadic ( n ) ; u in W1 & v in W3 ; reconsider y9 = y as Element of L2 ; N is full SubRelStr of T opp ; sup { x , y } = c "\/" c ; g . n = n to_power 1 .= n ; h . J = EqClass ( u , J ) ; let seq be norm_summable sequence of X ; dist ( x9 , y ) < r / 2 ; reconsider mm = m as Element of NAT ; x - x0 < r1 - x0 ; reconsider P99 = P9 as strict Subgroup of N ; set g1 = p * idseq q9 ; let n , m , k be non zero Nat ; assume 0 < e & f | A is bounded_below ; D2 . ID1 in { x } ; cluster subcondensed -> semi-open for Subset of T ; 2 ; Gik in LSeg ( pion1 , 1 ) ; let f be FinSequence of TOP-REAL 2 , n be Element of NAT ; reconsider SS = S as Subset of T ; dom ( i .--> X9 ) = { i } ; let S be locally_directed OrderSortedSign , X be non-empty ManySortedSet of S ; let S be locally_directed OrderSortedSign , X be non-empty ManySortedSet of S ; op1 c= { [ {} , {} ] } ; reconsider m9 = m - 1 as Element of NAT ; reconsider d9 = x as Element of C ( ) ; let s be 0 -started State of SCMPDS ; let t be 0 -started State of SCMPDS ; parallelogram b , b9 , x , y ; j = k \/ { k } ; let Y be complex-functions-membered set , f be PartFunc of X , Y ; N0 >= sqrt c / sqrt 2 ; reconsider tr = TR as TopSpace ; set q = h * ( p ^ <* d *> ) ; z2 in U_FT y4 /\ Q2 ; A |^ 0 = { <%> E } ; len W2 = len W + 2 ; len h2 in dom h2 ; i + 1 in Seg len s2 ; z in dom g1 /\ dom f ; assume p2 = E-max ( K ) ; ( len G ) + 1 <= i1 + 1 ; f1 (#) f2 is_convergent_in x0 ; cluster seq1 + seq2 -> summable ; assume j in dom ( M1 /. i ) ; let A , B , C be Subset of X ; let x , y , z be Point of X ; b ^2 - 4 * a * c >= 0 ; <* x /" y *> ^ <* y *> ==>. x ; a in { a , b } & b in { a , b } ; len p2 is Element of NAT ; ex x being element st x in dom R ; len q = len ( K (#) G ) ; s1 = Initialize Initialized s ; consider w being Nat such that q = z + w ; x `# is_a_complement'_of x ; k = 0 & n <> k or k > n ; X is discrete implies for A being Subset of X holds A is closed for x st x in L holds x is FinSequence ||. f /. c .|| <= r1 ; c in uparrow p & not c in { p } ; reconsider V9 = V as Subset of Sierpinski_Space ; let L be non empty 1-sorted , N , M be net of L ; z is_>=_than waybelow x implies z is_>=_than compactbelow x M ! f = f & M ! g = g ; ( Bin1 1 ) /. 1 = TRUE ; dom g = dom Funcs ( X , f ) ; mode Trail of G is Trail-like Walk of G ; [ i , j ] in Indices M ; reconsider s = x " as Element of H ; let f be Element of dom Subformulae p ; F1 ?- a1 = G1 ; cluster circle ( a , b , r ) -> compact ; let a , b , c , d be Real ; rng s c= dom ( f ^ ) ; ProjMap2 ( FF2 , k ) is additive ; set k2 = card dom B ; set X = ( the Sorts of A ) (\/) V , G = DTConMSA X ; reconsider a = [ x , s ] as Terminal of G ; let a , b be Element of MPS ; reconsider s1 = s as Element of S0 ; rng p c= the carrier of L ; let p be QC-formula of A , d be Subset of bound_QC-variables ( A ) ; x .|. x = 0 iff x = 0. W ; Ik in dom stop ( I ) ; let g be continuous Function of X | B , Y ; reconsider D = Y as Subset of Euclid n ; reconsider i0 = len p1 as Integer ; dom f = the carrier of S ; rng h c= Union Carrier J cluster All ( x , H ) -> ZF-formula-like ; d * N1 ^2 > N1 * 1 ; ]. a , b .[ c= [. a , b .] ; set g = ( f " ) | D1 ; dom ( p | mm ) = mm ; 3 + - 2 <= k + - 2 ; tan is_differentiable_in arccot . x ; x in rng ( f :- p ) ; let D be non empty set , f , g be FinSequence of D ; cp in the carrier of S1 ; rng ( f " ) = dom f ; ( the_Target_of G ) . e = v ; width G -' 1 < width G ; assume v in rng ( S | E1 ) ; assume x is_a_root_of g or x is_a_root_of h ; assume 0 in rng ( g2 | A ) ; let q be Point of TOP-REAL 2 ; let p be Point of TOP-REAL 2 ; dist ( O , u ) <= |. p2 .| + 1 ; assume dist ( x , b ) < dist ( a , b ) ; <* Smax *> is_in_the_area_of Ca ; i <= len Ga -' 1 ; let p be Point of TOP-REAL 2 ; x1 in the carrier of I[01] ; set p1 = f /. i , p2 = f /. ( i + 1 ) ; g in { g2 : r < g2 } ; Q2 = SQ1 " Q ; ( 1 / 2 ) GeoSeq is summable ; - p + I c= - p + A ; n < LifeSpan ( P1 , s1 ) ; CurInstr ( p1 , s1 ) = i ; ( A /\ Cl { x } ) \ { x } <> {} ; rng f c= ]. r , r + 1 .[ let f be Function of T , S , g be Function of S , V ; let f be Function of L1 , L2 ; reconsider z9 = z as Element of CompactSublatt L ; let S , T be complete Scott TopLattice , f be Function of S , T ; reconsider g9 = g as Morphism of c9 , b9 ; [ s , I ] in [: S , ElementaryInstructions A :] ; len the connectives of C = 4 ; let C1 , C2 be Subcategory of C ; reconsider V1 = V as Subset of X | B ; p is valid implies All ( x , p ) is valid f .: X c= dom g ; H |^ a " is Subgroup of H ; let A1 be Action of O , E1 ; p2 , r3 , q2 is_collinear ; consider x be element such that x in v ^ K ; not x in { 0. TOP-REAL 2 } ; p in [#] ( I[01] | B11 ) ; In ( 0 , REAL ) < M . EE ; for c being Object of C holds opp ( c opp ) = c ; consider c being element such that [ a , c ] in G ; a1 in dom ( F . s2 ) ; cluster -> Orthocomplemented for naturally_sup-generated CLatAugmentation of L ; set i1 = the Nat , a = the Int-Location ; let s be 0 -started State of SCM+FSA ; assume y in ( f1 union f2 ) .: A ; f . len f = f /. len f ; x , f . x '||' f . x , f . y ; X c= Y implies proj2 X c= proj2 Y let X , Y be ext-real-membered set , x be UpperBound of X , y be UpperBound of Y ; redefine func x `1 -> quasi-loci ; set S = RelStr (# Bags n , iln #) ; set T = Closed-Interval-TSpace ( 0 , 1 / 2 ) ; 1 in dom mid ( f , 1 , 1 ) ; 4 * PI / PI < 2 * PI / PI ; x2 in dom f1 /\ dom f ; O c= dom I & { {} } = { {} } ; ( the Source of G ) . x = v ; { HT ( f , T ) } c= Support f ; reconsider h = R . k as Polynomial of n , L ; ex b being Element of G st y = b * H ; let x9 , y9 , z9 be Element of G9 ; h19 . i = f . ( h . i ) ; p `1 = p1 `1 ; i + 1 <= len Cage ( C , n ) ; len ( <* P *> @ ) = len P ; set NX = the LTLnext of N ; len g - y + ( x + 1 ) - 1 <= x ; ( not a on B ) & not b on B ; reconsider rIv = r * I . v as FinSequence ; consider d such that x = d and a [*] d [= c ; given u such that u in W & x = v + u ; len ( f /^ n ) = len f - n ; set q1 = SW-corner C , q2 = NW-corner C ; set S = Sub_& ( S1 , S2 ) ; MaxADSet ( b ) c= MaxADSet ( P /\ Q ) ; Cl ( G . q1 ) c= F . r2 ; f " D meets h " V ; reconsider D = E as non empty directed Subset of L1 ; H = ( the_left_argument_of H ) '&' ( the_right_argument_of H ) ; assume t is Element of Free ( S , X ) ; rng f c= the carrier of S2 ; consider y being Element of X such that x = { y } ; f1 . ( a1 , b1 ) = b1 the carrier' of G9 = E \/ { E } ; reconsider m = len p - k as Element of NAT ; set S1 = LSeg ( n , UMP C ) ; [ i , j ] in Indices M1 ; assume that P c= Seg m and M is without_repeated_line ; for k st m <= k holds z in K . k ; consider a be set such that p in a and a in G ; L1 . p = p * ( L /. 1p ) ; prodi1 . i = prodi . i ; let PA , PB be a_partition of Y ; 0 < r & r < 1 implies 1 < 1 / r rng transl ( a , X ) = [#] X ; reconsider x9 = x , y9 = y as Element of K ; consider k such that z = f . k & n <= k ; consider x be element such that x in ( X \ { p } ) ; len canFS ( s ) = card s ; reconsider x2 = x1 as Element of L2 ; Q in FinMeetCl the topology of X ; dom ff c= dom ufs ; for n , m st n divides m & m divides n holds n = m reconsider x9 = x as Point of [: I[01] , I[01] :] ; a in DiffElems ( T2 , T2 ) ; not y0 in still_not-bound_in f ; Hom ( ( a [x] b ) [x] c , c ) <> {} ; consider k1 such that p " < k1 ; consider c , d such that dom f = c \ d ; [ x , y ] in [: dom g , dom k :] ; set S1 = GFA3AdderStr ( x , y , z ) ; l3 = m2 & l4 = i2 ; x0 in dom u01 /\ AB ; reconsider p = x as Point of TOP-REAL 2 ; I[01] = ( R^1 ) | B01 ; hence LE f . p4 , f . p1 , P ; FiP `1 <= x `1 ; x `2 = Wmin `2 ; for n being Element of NAT holds P [ n ] ; let F be ManySortedSigmaField of I , Sigma , J , K be non empty Subset of I ; assume 1 <= i & i <= len <* a " *> ; 0 |-> a = <*> ( the carrier of K ) ; X . i in bool ( A . i \ B . i ) ; <* 0 *> in dom ( e --> [ 1 , 0 ] ) ; P [ a ] implies P [ succ a ] reconsider sy1 = sy as Terminal of D ; k - ( i -' 1 ) <= len p - j ; [#] S c= [#] the TopStruct of T ; for V being strict RealLinearSpace holds V in Subspaces ( V ) assume k in dom mid ( f , i , j ) ; let P be non empty Subset of TOP-REAL 2 ; let A , B be Matrix of n1 , K ; ( - a ) * ( - b ) = a * b ; for A being being_line Subset of AS holds A // A idm o2 in <^ o2 , o2 ^> ; ||. x .|| = 0 implies x = 09 ( X ) let N1 , N2 be strict normal Subgroup of G ; j >= len lower_volume ( g , D1 ) ; b = Q . ( len Qr - 1 + 1 ) ; ( f2 * f1 ) /* s is divergent_to+infty ; reconsider h = f * g as Function of N4 , G ; assume that a <> 0 and delta ( a , b , c ) >= 0 ; [ t , t ] in the Relation of A ; ( v |-- E ) | n is Element of TRn ; {} = Carrier ( L1 + L2 ) ; Directed I is_pseudo-closed_on Initialized s , P ; Initialized p = Initialize ( p +* q ) ; reconsider N2 = N1 as strict net of R2 ; reconsider Y9 = Y as Element of InclPoset Ids L ; "/\" ( ( uparrow p ) \ { p } , L ) <> p ; consider j being Nat such that i2 = i1 + j ; not [ s , 0 ] in the carrier of S2 ; mbcd in INTERSECTION ( B '/\' C , D ) \ { {} } ; n <= len PR1 + len PR ; x1 `1 = x2 `1 ; InputVertices S = { x1 ( ) , x2 ( ) } ; let x , y be Element of FTSC1 n ; p = |[ p `1 , p `2 ]| ; g * 1_ G = h " * g * h ; let p , q be Element of SubstLatt ( V , C ) ; x0 in dom x1 /\ dom x2 ; R qua Function " = R " ; n in Seg len ( f -: p ) ; for s being Real st s in R holds s <= s2 ; rng s c= dom ( f2 * f1 ) ; synonym 2Set ( X ) for TWOELEMENTSETS ( X ) ; 1_ K * 1_ K = 1_ K ; set S = Segm ( A , P1 , Q1 ) ; ex w st e = w / f & w in F ; ( ProjMap2 ( PP2 , k9 ) ) # x is convergent ; cluster open -> F_sigma for Subset of TM ; len f1 = 1 .= len f3 ; ( i * p ) / p < ( 2 * p ) / p ; let x , y be Element of OSSub ( U0 ) ; b1 , c1 // b19 , c19 ; consider p being element such that c1 . j = { p } ; assume that f " { 0 } = {} and f is total ; assume IC Comput ( F , s , k ) = n ; Reloc ( J , card I ) does not destroy a ; Goto ( card I + 1 ) does not destroy c ; set m3 = LifeSpan ( p3 , s3 ) ; IC SCMPDS in dom ( Initialize p ) ; dom t = the carrier of SCM R ; ( S-max L~ f ) .. f = 1 ; let a , b be Element of SubstLatt ( V , C ) ; Cl ( union Int F ) c= Cl Int ( union F ) ; ( the carrier of ( X1 union X2 ) ) misses A0 ; assume not LIN a , f . a , g . a ; consider i being Element of M such that i = dD9 ; Y c= { x } implies Y = {} or Y = { x } M , v |= H1 / ( y , x ) ; consider m being element such that m in Intersect FF ; reconsider A1 = support ( u1 ) as Subset of X ; card ( A \/ B ) = ( k - 1 ) + 2 * 1 ; assume that a1 <> a3 and a2 <> a4 ; cluster s -compound ( V ) -> termal for string of S ; Li /. n2 = Li . n2 ; let P be compact non empty Subset of TOP-REAL 2 ; assume rl in LSeg ( p1 , p2 ) ; let A be non empty compact Subset of TOP-REAL n ; [ k , m ] in Indices DT ; 0 <= ( ( 1 / 2 ) GeoSeq ) . p ; ( ( F . N ) | EE ) . x = +infty ; X c= Y & Z c= V implies X (\) V c= Y (\) Z y `2 * z `2 <> 0. I ; 1 + card Xu <= card u ; set g = Rotate ( z , S-max L~ z ) ; k = 1 implies p . k = <% x , y %> . k ; cluster -> total for Element of ( C ) -States ( X ) ; reconsider B = A as non empty Subset of TOP-REAL n ; let a , b , c be Function of Y , BOOLEAN ; L1 . i = ( i .--> g ) . i .= g ; plane ( x1 , x2 , x3 ) c= P ; n <= indx ( D2 , D1 , j1 ) ; ( ( g2 ) . O ) `1 = - 1 ; j + p .. f -' len f <= len f ; set W = W-bound C , S = S-bound C , E = E-bound C , N = N-bound C ; S1 . ( a9 , e9 ) = a + e .= a9 ; 1 in Seg width ( M * ( ColVec2Mx p ) ) ; dom ( (#) ( Im f ) ) = dom Im f ; Phi ( x9 ) = W . ( a , *' ( a , p9 ) ) ; set Q = SIGMA ( Foax ( g , f , h ) ) ; cluster MSCongruence-like for MSEquivalence-like ManySortedRelation of U1 ; for F st ( ex A st F = { A } ) holds F is discrete reconsider zyMm = y - x as Element of product carr G ; rng f c= rng f1 \/ rng f2 ; consider x such that x in f .: A and x in f .: C ; f = <*> ( the carrier of F_Complex ) ; E , j |= All ( x1 , x2 , H ) ; reconsider n1 = n as Morphism of o1 , o2 ; assume that P is idempotent and R is idempotent and P ** R = R ** P ; card ( B2 \/ { x } ) = ( k - 1 ) + 1 ; card ( ( x \ B1 ) /\ B1 ) = 0 ; g + R in { s : g - r < s & s < g + r } ; set qsa = ( q , <* s *> ) -admissible ; for x being element st x in X holds x in rng f1 h0 /. ( i + 1 ) = h0 . ( i + 1 ) ; set mw = max ( B , InvLexOrder NAT ) ; t in Seg width ( 1. ( K , n ) ) ; reconsider X = findom C as Element of Fin NAT ; IncAddr ( i , k ) = a =0_goto ( l + k ) ; S-bound L~ f <= q `2 ; R is condensed implies Int R is condensed & Cl R is condensed 0 <= a & a <= 1 & b <= 1 implies a * b <= 1 u in c /\ ( ( d /\ b ) /\ e ) /\ f /\ j ; u in c /\ ( ( d /\ e ) /\ b ) /\ f /\ j ; len C + ( - 2 ) >= 9 + ( - 3 ) ; x , z , y is_collinear & x , z , x is_collinear ; a |^ ( n1 + 1 ) = a |^ n1 * a ; 0* n in Line ( x , a * x ) ; set xy = <* x , y *> , yc = <* y , c *> , xc = <* x , c *> ; FF /. 1 in rng Line ( D , 1 ) ; p . m orientedly_joins r /. m , r /. ( m + 1 ) ; p `2 = ( f /. i1 ) `2 ; W-bound ( X \/ Y ) = W-bound X ; 0 + p `2 <= 2 * r + p `2 ; x in dom g & not x in g " { 0 } ; f1 /* ( seq ^\ k ) is divergent_to+infty ; reconsider u2 = u as VECTOR of RLSp_PFunct X ; p |-count ( Product Sgm X11 ) = 0 ; len <* x *> < i + 1 & i + 1 <= len c + 1 ; assume that I is non empty and { x } (/\) { y } = [[0]] I ; set ic4 = ( card I + 4 ) .--> goto 0 ; x in { x , y } & h . x = {} TM ; consider y being Element of F such that y in B and y <= x9 ; len S = len the charact of A0 ; reconsider m = M , i = I , n = N as Element of X ; A . ( j + 1 ) = ( B . ( j + 1 ) \/ A . j ) ; set Next = AP:NextBestEdges ( Gn ) , e = the Element of Next ; rng F c= the carrier of gr { a } ; IDEA_Q_F ( Key , n , r ) is FuncSequence ; f . k in rng f & f . ( Euler n ) in rng f ; h " P /\ [#] T1 = f " P ; g in dom f2 \ f2 " { 0 } ; g12X /\ dom f1 = g1 " X ; consider n being element such that n in NAT and Z = G . n ; set d1 = real_dist . ( x1 , y1 ) ; b9 + 1 / 2 < 1 / 2 + 1 / 2 ; reconsider f1 = f as VECTOR of R_VectorSpace_of_BoundedFunctions ( X , Y ) ; i <> 0 implies i ^2 mod ( i + 1 ) = 1 j2 in Seg len ( g2 . i2 ) ; dom ii = dom ia .= a ; cluster sec | ]. PI / 2 , PI .] -> one-to-one ; Ball ( u , e ) = Ball ( f . p , e ) ; reconsider x1 = x0 as Function of S , If ; reconsider R1 = x , R2 = y as auxiliary Relation of L ; consider a , b being Subset of A such that x = [ a , b ] ; ( <* 1 *> ^ p ) ^ <* n *> in RT ; S1 +* S2 = S2 +* S1 ; exp_R * cos is_differentiable_on Z ; cluster [. 0 , 1 .] -valued for Function of C , REAL ; set Czx = 1GateCircStr ( <* z , x *> , f3 ) ; EL2 . e2 = EL . e2 - T ; arctan * ln is_differentiable_on Z ; upper_bound A = PI * 3 / 2 & lower_bound A = 0 ; F ?- dom f is_transformable_to F ?- cod f ; reconsider pz = qz as Point of Euclid 2 ; g . W in [#] Y0 & [#] Y0 c= [#] Y ; let C be compact non vertical non horizontal Subset of TOP-REAL 2 ; LSeg ( f ^ g , j ) = LSeg ( f , j ) ; rng s c= dom f /\ left_open_halfline ( x0 ) ; assume x in { idseq 2 , Rev idseq 2 } ; reconsider n2 = n , m2 = m as Element of NAT ; for y be ExtReal st y in rng seq holds g <= y for k st P [ k ] holds P [ k + 1 ] ; m = m1 + m2 .= ( m1 + m2 ) ; assume for n holds H1 . n = G . n - H . n ; set BB = f .: the carrier of X1 ; ex d be Element of L st ( d in D ) & ( x << d ) ; assume R -Seg ( a ) c= R -Seg ( b ) ; t in ]. r , s .[ or t = r or t = s ; z + v2 in W & x = u + ( z + v2 ) ; x2 ==> y2 iff P [ x2 , y2 ] ; x1 <> x2 implies |. x1 - x2 .| > 0 assume p2 - p1 , p3 - p1 are_lindependent2 ; set p = nega ( f ^ <* A *> ) , q = ( nega f ) ^ <* 'not' A *> ; REAL-NS n ; ( ( n mod ( 2 * k ) ) - k ) = ( n mod k ) ; dom ( T * ( t succ ) ) = dom ( t succ ) consider x being element such that not ( x in wfp iff x in c ) ; assume ( F * G ) . ( v . x3 ) = v . x4 ; assume Terminals D1 c= Terminals D2 ; reconsider A1 = [. a , b .[ as Subset of R^1 ; consider y being element such that y in dom F and F . y = x ; consider s being element such that s in dom o and a = o . s ; set p = W-min L~ Cage ( C , n ) ; n1 -' len f + 1 <= len g - 1 + 1 ; Quadr ( q , O1 ) = [ u , v , a9 , b9 ] ; set CK1 = ( MCS:CSeq ( G ) ) . ( k + 1 ) ; Sum ( L (#) p ) = 0. R * Sum ( p ) .= 0. V ; consider i being element such that i in dom p and t = p . i ; defpred Q [ Nat ] means 0 = Q ( $1 ) ; set s3 = Comput ( P1 , s1 , k ) , P3 = P1 ; let P be ( QC-pred_symbol of k , Al ( ) ) , l be QC-variable_list of k , Al ( ) ; reconsider Ugg = Union GG as Subset-Family of TM ; consider r such that r > 0 and Ball ( p9 , r ) c= Q9 ; ( h | ( n + 2 ) ) /. ( i + 1 ) = p29 ; reconsider B = the carrier of X1 as Subset of X2 ; pj1 = <% - csj1 , 1. L %> ; attr f is natural-valued means : Def4 : rng f c= NAT ; consider b being element such that b in dom F & a = F . b ; x20 < card X0 + card Y0 ; X c= B1 implies limpoints X c= succ B1 w in cl_Ball ( x , r ) implies dist ( x , w ) <= r angle ( x , y , z ) = angle ( x - y , 0 , z - y ) 1 <= len s implies Op-Shift ( s , 0 ) = s f . ( k + ( n + 1 ) ) = f . ( k + n + 1 ) .= fkn1 ; the carrier of (1). G = { 1_ G } ; ( p '&' q ) in HP_TAUT implies ( q '&' p ) in HP_TAUT - t `1 < ( t `1 ) ^2 ; US . 1 = US /. 1 .= Wmin ; f .: the carrier of x = the carrier of x ; Indices ONE = [: Seg n , Seg n :] ; for n being Element of NAT holds G . n c= G . ( n + 1 ) ; V in M -neighbour implies ex x being Element of M st V = { x } ex f be Element of Fun st f is_a_unity_wrt ADD ; [ h . 0 , h . 3 ] in the InternalRel of G ; s +* Initialize ( ( intloc 0 ) .--> 1 ) = s3 ; |[ w1 , v1 ]| - b <> 0. TOP-REAL 2 ; reconsider t9 = t as Element of Funcs ( Funcs ( X , INT ) , INT ) ; C \/ P c= [#] ( GX | ( [#] GX \ A ) ) ; f " V in PSO X /\ D(alpha,ps) ( X ) ; x in [#] ( the carrier of FT ) /\ ( A ^delta ) ; g . x <= h1 . x & h . x <= h1 . x ; InputVertices S = { xy , yz , zx } ; for n being Nat st P [ n ] holds P [ n + 1 ] ; set R = RLine ( M , i , a * Line ( M , i ) ) ; assume that M1 is line_circulant & M2 is line_circulant and M3 is line_circulant ; reconsider a = f4 . ( i0 -' 1 ) as Element of K ; len B2 = Sum Len ( F1 ^ F2 ) ; len Base_FinSeq ( n , i ) = n ; dom ( max- ( f + g ) ) = dom ( f + g ) ; ( superior_realsequence seq ) . n = upper_bound Y1 ; dom ( p1 ^ p2 ) = dom f12 ; M . [ 1r , y ] = 1r * v1 .= y ; assume that W is non trivial and W .edges() c= the_Edges_of G2 ; Ci2 /. i1 = G1 * ( i1 , i2 ) ; CY |- ( 'not' Ex ( x , p ) ) 'or' ( p . ( x , y ) ) ; for b st b in rng g holds lower_bound rng f - a <= b - ( q1 `1 / |. q1 .| ) = 1 ; LSeg ( c , m ) \/ ml \/ LSeg ( l , k ) c= R ; consider p being element such that p in south_halfline x and p in L~ f ; Indices ( X @ ) = [: Seg n , Seg 1 :] ; cluster ( s => ( q => p ) ) => ( q => ( s => p ) ) -> valid ; ( Im ( Partial_Sums F ) ) . m is_measurable_on E ; redefine func f .. ( x1 , x2 , x ) -> Element of D ; consider g being Function such that g = F . t & Q [ t , g ] ; p in LSeg ( NW-corner Z , NE-corner Z ) ; set RO = R^1 ( right_open_halfline ( b ) ) , LC = R^1 ( left_closed_halfline ( a ) ) ; IncAddr ( I , k ) = SubFrom ( da , db ) ; seq . m <= ( superior_realsequence seq ) . k ; a + b = ( a ` *' b ` ) ` ; id ( X /\ Y ) = id ( X ) /\ id ( Y ) for x being element st x in dom h holds h . x = f . x ; reconsider H = U11 \/ U21 as non empty Subset of U0 ; u in c /\ ( ( ( d /\ e ) /\ b ) /\ f ) /\ j /\ m ; consider y being element such that y in Y and P [ y , inf B ] ; consider A being finite StableSet of R such that card A = stability# R ; p2 in rng ( f |-- p1 ) \ rng <* p1 *> ; len s1 - 1 > 1 - 1 & len s2 - 1 > 1 - 1 ; ( NW-corner P ) `2 = N-bound P ; Ball ( e , r ) c= LeftComp Cage ( C , k + 1 ) ; ( f . a1 ) ` = f . ( a1 ` ) ; ( seq ^\ k ) . n in left_open_halfline ( x0 ) ; gg . s0 = ( g . s0 ) | ( G . s0 ) ; the InternalRel of S is_asymmetric_in field the InternalRel of S deffunc F ( Ordinal , Ordinal ) = phi ( $2 ) ; ( F . s1 ) . a1 = ( F . s2 ) . a1 ; x9 = ( A ?. o ) . a .= Den ( o , A . a ) ; Cl ( f " P1 ) c= f " ( Cl P1 ) ; FinMeetCl the topology of S c= the topology of T ; attr o is constructor means : Def11 : o <> * & o <> non_op ; assume that nextcard X = nextcard Y and card X <> card Y ; stabilization-time s <= 1 + stabilization-time s9 ; LIN a , a1 , d or b , c // b1 , c1 ; . 1 = 0 & . 2 = 1 & . 3 = 0 ; then EQ in SS & not EQ in { NOR } ; set TE = I -TermEval , u = TE . tt , J = ( l , u ) ReassignIn I , LH = I -TruthEval IT , RH = J -TruthEval phii ; set A1 = GFA0AdderOutput ( ap , bp , cp ) ; set cindm = [ <* cin , dm *> , and2c ] ; x * z9 * x " in x * ( z * N ) * x " ; for x being element st x in dom f holds f . x = g3 . x right_cell ( f , 1 , G ) c= RightComp f \/ L~ f ; UA is_an_arc_of W-min C , E-max C ; set fg = ( C , f ) @ "/\" ( C , g ) @ , R = RealPoset [. 0 , 1 .] , J = C --> R ; S1 is convergent & S2 is convergent implies S1 - S2 is convergent f . ( 0 + 1 ) = ( 0 qua Ordinal ) +^ a .= a ; cluster anti-pcs-like -> reflexive transitive pcs-tol-irreflexive pcs-tol-symmetric pcs-compatible for pcs-Str ; consider d being element such that R reduces b , d and R reduces c , d ; not b in dom Start-At ( ( card I + 2 ) , SCMPDS ) ; ( z + a ) + x = z + ( a + y ) .= ( z + a ) + y ; len Subst ( l , ( A ) a. 0 .--> x ) = len l ; tt null {} is ( {} \/ rng tt ) -valued FinSequence ; t = <* F . t *> ^ ( ( C . p ) ^ qq ) ; set pW = W-min L~ Cage ( C , n ) ; kk -' ( i + 1 ) = kk - ( i + 1 ) ; consider u9 being Element of L such that u = ( u9 ) % and u9 in D9 ; len ( width bG |-> a ) = width bG ; Fr . x in dom ( ( G * the_arity_of o ) . x ) ; , cH1 = the carrier of H1 , cH2 = the carrier of H2 , cS = the carrier of S ; , cH1 = the carrier of H1 , cH2 = the carrier of H2 , cS = the carrier of S ; Comput ( P , s , 6 ) . intpos m = s . intpos m ; IC Comput ( Q3 , t , k ) = ( lm + 1 ) ; dom ( cos * sin ) = REAL ; cluster <* l *> ^ phi -> ( 1 + Depth phi ) -wff for string of S ; set bpcp = [ <* bp , cp *> , and2 ] ; Line ( Segm ( M9 , P , Q ) , x ) = L * Sgm Q ; n in dom ( ( the Sorts of A ) * ( the_arity_of o ) ) ; cluster f1 + f2 -> continuous for PartFunc of REAL , the carrier of S ; consider y be Point of X such that a = y & ||. x - y .|| <= r ; set x3 = t8 . DataLoc ( s8 . SBP , 2 ) ; set WHL = while<>0 ( a ( ) , i ( ) , I ( ) ) , pWH = stop WHL , pI = stop I ( ) ; consider a being Point of D2 such that a in W1 and b = g . a ; { A , B , C , D , E } = { A , B } \/ { C , D , E } ; let A , B , C , D , E , F , J , M be set ; ( |. p2 .| ) ^2 - ( p2 `2 ) ^2 >= 0 ; ( l -' 1 ) + 1 = ( n - 1 ) * lb + ( m - 1 ) + 1 ; x = v + ( a * w1 + b * w2 ) + c * w3 ; the TopStruct of L = ConvergenceSpace Scott-Convergence L ; consider y being element such that y in dom H1 and x = H1 . y ; fs \ { n } = code Free ( All ( v1 , H ) ) ; for Y be Subset of X st Y is summable_set holds Y is weakly_summable_set 2 * n in { N : 2 * Sum ( p | N ) = N & N > 0 } ; for s be FinSequence holds len ( Op-RightShift ( s ) ) = len s for x st x in Z holds ( #R ( 1 / 2 ) ) * f is_differentiable_in x rng ( h2 * f2 ) c= the carrier of R^1 ; j + 1 - len f <= len f + ( len g - 1 ) - len f ; reconsider R1 = R * I as PartFunc of REAL , REAL-NS n ; Cs11 . x = s1 . a0 .= Cs21 . x ; ( power F_Complex ) . ( z , n ) = 1 .= x |^ n ; t value_at ( C , s ) = f . ( the_array_sort_of S ) . t ; support ( f + g ) c= support ( f ) \/ ( CX /\ support ( g ) ) ; ex N st N = j1 & 2 * Sum ( rq | N ) > N ; for y , p st P [ p ] holds P [ All ( y , p ) ] { [ x1 , x2 ] : not contradiction } is Subset of [: X1 , X2 :] ; h = IFEQ ( i , j , h , ( id B ) . i ) .= H . i ; ex x1 being Element of G st x1 = x & x1 * N c= A ; set X = Quadr ( q , O1 ) `1_4 , Y = Quadr ( q , O1 ) `2_4 ; b . n in { g1 : x0 < g1 & g1 < a1 . n } ; f /* s1 is convergent & f /. x0 = lim ( f /* s1 ) ; Domains_Lattice Y = Open_Domains_Lattice Y ; ( 'not' a . x '&' b . x ) 'or' ( a . x '&' 'not' b . x ) = FALSE ; 2k1 = len ( q0 ^ r1 ) + len q1 ; ( 1 / a ) (#) ( sec * f1 ) - id Z is_differentiable_on Z ; set K1 = upper_integral ( lim ( H , AB ) || AB ) ; assume e in { w1 / w2 : w1 in F & w2 in G } ; reconsider da9 = dom a9 , dF9 = dom F9 as finite set ; LSeg ( f :- q , j ) = LSeg ( f , j9 + q .. f ) ; assume X in { T . ( N2 , K2 ) : h . K2 = N2 } ; <: f , g :> * f1 = <: f , g :> * f2 ; dom SN = dom S /\ Seg n .= dom LN ; x in H |^ a iff ex g st x = g |^ a & g in H ( multint ( n ) ) . ( a , 1 ) = a9 - 0 * n .= a9 ; D2 . ( j - 1 ) in { r : lower_bound A <= r & r <= D1 . i } ; ex p being Point of TOP-REAL 2 st p = x & P [ p ] ; ( for c holds f . c <= g . c ) iff ( C , f ) @ <<= ( C , g ) @ dom ( f1 (#) f2 ) /\ X c= dom ( f1 (#) f2 ) ; 1 = ( p * p ) / p .= p * ( p / p ) .= p * 1 ; len g = len f + len <* x + y *> .= len f + 1 ; dom Fni1 = dom ( F | [: N1 , SS :] ) ; dom ( f . t (#) I . t ) = dom ( f . t (#) g . t ) ; assume a in ( "\/" ( F , ( T |^ the carrier of S ) ) ) .: D ; assume that g is one-to-one and ( the carrier' of S ) /\ rng g c= dom g ; ( ( x \ y ) \ z ) \ ( ( x \ z ) \ ( y \ z ) ) = 0. X ; consider f9 such that f * f9 = id b and f9 * f = id a ; cos | [. 2 * PI * 0 , PI + 2 * PI * 0 .] is decreasing ; Index ( p , co ) <= len LS - Gik .. LS ; let t1 , t2 , t3 be Element of TermAlg S , s ; Inf ( ( Frege curry H ) . h ) <= Inf Sups G ; P [ f . i0 ] implies F ( f . ( i0 + 1 ) ) < j ; Q [ [ D . x , 1 ] `1 , F . [ D . x , 1 ] ] ; consider x being element such that x in dom ( F . s ) and y = F . s . x ; l . i < r . i & [ l . i , r . i ] is Gap of G . i ; the Sorts of A2 = ( the carrier of S2 ) --> BOOLEAN ; consider s be Function such that s is one-to-one and dom s = NAT and rng s = F ; dist ( b1 , b2 ) <= dist ( b1 , a ) + dist ( a , b2 ) ; Lower_Seq ( C , n ) /. ( len Lower_Seq ( C , n ) ) = Wmi ; q <= ( UMP Upper_Arc L~ Cage ( C , 1 ) ) `2 ; LSeg ( f | i2 , i ) /\ LSeg ( f | i2 , j ) = {} ; given a being ExtReal such that a <= IT and A = ]. a , IT .] ; consider a , b being complex number such that z = a & y = b and z + y = a + b ; set X = { b |^ n where n is Element of NAT : not contradiction } ; ( ( ( ( x * y ) * z ) \ x ) \ z ) \ ( ( x * y ) \ x ) = 0. X ; set xyz = [ <* xy , yz , zx *> , f4 ] ; lc /. ( len lc ) = lc . ( len lc ) ; ( q `2 / |. q .| - sn ) / ( 1 - sn ) = 1 ; ( p `2 / |. p .| - sn ) / ( 1 - sn ) < 1 ; ( S-max ( X \/ Y ) ) `2 = S-bound ( X \/ Y ) ; ( sp - sq ) . k = sp . k - sq . k ; rng ( ( h + c ) ^\ n ) c= dom SVF1 ( 1 , f , u0 ) the carrier of ( X modified_with_respect_to X0 ) = the carrier of X ; ex p4 st p3 = p4 & |. p4 - |[ a , b ]| .| = r ; m = |. ar a .| , g = f | ( m -tuples_on AT ) , AF = AtomicFormulasOf S , ch = chi ( X , AF ) ; ( 0 * n ) iter R = Imf ( X , X ) .= 0 iter ( n iter R ) ; ( Partial_Sums ProjMap2 ( FF2 , n ) ) . n is nonnegative ; f2 = Choice . EvalSet ( V , Kai , len ( H ) ) ; S1 . b = s1 . b .= s2 . b .= S2 . b ; p2 in LSeg ( p2 , p1 ) /\ LSeg ( p2 , p00 ) ; dom ( f . t ) = Seg n & dom ( I . t ) = Seg n ; assume o = In ( ( the connectives of S ) . 11 , the carrier' of S ) ; psi = ( l1 , l2 ) -SymbolSubstIn phi , E1 = R#1 ( S ) , E2 = R#2 ( S ) , E5 = R#5 ( S ) ; pred p is_monic_wrt T means : Def6 : HC ( p , T ) = 1. L ; Y1 `2 = - 1 & 0. TOP-REAL 2 <> Y1 ; defpred X [ Nat , set , set ] means P [ $2 , $3 ] ; consider k be Nat such that for n be Nat st k <= n holds s . n < x0 + g ; Det 1. ( K , m -' n ) = 1_ K ; ( - b - sqrt ( b ^2 - 4 * a * c ) ) / ( 2 * a ) < 0 ; Cs2i1 . d = Cs2i . da mod Cs2i . db ; X1 is everywhere_dense & X2 is everywhere_dense implies X1 meet X2 is everywhere_dense SubSpace of X deffunc Fb ( Element of E , Element of I ) = $2 * $1 ; t ^ <* n *> in { t ^ <* i *> : Q [ i , T9 . t ] } ; ( x \ y ) \ x = ( x \ x ) \ y .= y ` .= 0. X ; for X being non empty set , Y being Subset-Family of X holds Y is Basis of TopStruct (# X , UniCl Y #) ; pred A , B are_separated means : Def1 : Cl A misses B & A misses Cl B ; len MR1 = len p & width MR1 = width MR ; vp v = { x where x is Element of K : 0 < v . x } ; ( ( Sgm RelPrimes ( m ) ) . d ) - ( ( Sgm RelPrimes ( m ) ) . e ) <> 0 ; lower_bound divset ( D2 , k + k2 ) = D2 . ( k + k2 - 1 ) ; g . r1 = ( - 2 ) * r1 + 1 & dom h = [. 0 , 1 .] ; |. a .| * ||. f .|| = 0 * ||. f .|| .= ||. a * f .|| ; f . x = ( h . x ) `1 & g . x = ( h . x ) `2 ; ex w st w in dom B1 & <* 1 *> ^ s = <* 1 *> ^ w ; [ 1 , {} , <* d1 *> ] in { [ 0 , {} , {} ] } \/ S1 \/ S2 ; IC Exec ( i , s1 ) + n = IC Exec ( i , s2 ) ; IC Comput ( P , s , 1 ) = ICplusConst ( s , 9 ) .= ( 5 + 9 ) ; IExec ( WH1 , Q , t ) . intpos me = t . intpos me ; LSeg ( ( f -: q ) , i ) misses LSeg ( f :- q , j ) ; for x , y being Element of L st x in C & y in C holds x <= y or y <= x ; integral ( f `| X , C ) = f . ( upper_bound C ) - f . ( lower_bound C ) ; for F , G being one-to-one FinSequence st rng F misses rng G holds F ^ G is one-to-one ||. R /. ( L . h ) .|| < e1 * ( ( K + 1 ) * ||. h .|| ) ; assume a in { q where q is Element of M : dist ( z , q ) <= r } ; [ 2 , 1 ] .--> [ 2 , 0 , 1 ] , f = id ( [: SegM 3 , { 0 , 1 } :] , { - 1 , 0 , 1 } , 0 ) ; consider x , y being Subset of X such that [ x , y ] in F and x c= d and not y c= d ; for y9 , x9 being Element of REAL+ st y9 in Y9 & x9 in X9 holds y9 <=' x9 func index p -> QC-symbol of A equals min NBI p ; consider t9 being Element of S such that x9 , y9 '||' z9 , t9 & x9 , z9 '||' y9 , t9 ; dom x1 = Seg len x1 & len x1 = len l1 ; consider y2 be Real such that x2 = y2 and 0 <= y2 & y2 < 1 / 2 ; ||. ( f | X ) /* s1 .|| = ( ( ||. f .|| ) | X ) /* s1 ; ( the InternalRel of A ) -Seg ( x9 ) /\ Y = {} \/ {} .= {} ; i + 1 in dom p ; reconsider h = f | X ( ) as Function of X ( ) , rng ( f | X ( ) ) ; u1 in the carrier of W1 & u2 in the carrier of W2 ; defpred P [ Element of L ] means M is_<=_than f . $1 & f . $1 <= $1 ; Tern ( u , a , v ) = s * x + ( ( - s * x ) + y ) .= b ; - ( x - y ) = - x + - - y .= - x + y ; given a being Point of GX such that for x being Point of GX holds a , x are_joined ; ff2 = [ [ dom ( @ f2 ) , cod ( @ f ) ] , h2 ] ; for k , n be Nat holds k <> 0 & k < n & n is prime implies k , n are_relative_prime for x being element holds x in A ^d iff x in ( ( A ` ) ^f ) ` consider u , v being Element of R , a being Element of A such that l /. i = u * a * v ; 1 - ( ( p `1 / |. p .| - cn ) / ( 1 + cn ) ) ^2 > 0 ; LF . k = LS . ( F . k ) & F . k in dom LS ; set i1 = ( a , i ) <=0_goto ( card I + 3 ) , i2 = AddTo ( a , i , - n ) , i3 = goto - ( card I + 2 ) ; B is quantifiable implies CQCSub_the_scope_of ( CQCSub_All ( B , SQ ) ) = B `1 aa "/\" D = { a "/\" d where d is Element of N : d in D } ; absreal . ( q29 - q19 ) * absreal . b9 >= absreal . b9 ( - f ) . ( upper_bound A ) = ( ( - f ) | A ) . ( upper_bound A ) ; Gik `1 = Ga * ( len Ga , k ) `1 ; Proj ( i , n ) . Ldiff = <* proj ( i , n ) . Ldiff *> ; ( f1 + f2 ) * reproj ( i , x ) is_differentiable_in proj ( i ) . x ; for x be Real st cos . x <> 0 holds tan . x = tan x ex t being SortSymbol of S st t = s & h1 . t . x = h2 . t . x ; defpred C [ Nat ] means PSI ( $1 ) is Consistent & PSI ( $1 ) is Al2 -Consistent ; consider y being element such that y in dom pe and qe . i = pe . y ; reconsider L = product ( { x1 } +* ( indx B , l ) ) as Block of Segre_Product A ; for c being Element of C ex d being Element of D st T . id c = id d ; Ins ( f , n , p ) = ( f | n ) ^ <* p *> .= f ^ <* p *> ; ( f * g ) . x = f . ( g . x ) & ( f * h ) . x = f . ( h . x ) ; p in { 1 / 2 * ( G * ( i + 1 , j ) + G * ( i + 1 , j + 1 ) ) } ; f9 - cp = f - c | ( n , L ) *' ( f - g ) .= f - c * ( f - g ) ; consider r be Real such that r in rng ( f | divset ( D , j ) ) and r < m + s ; f1 . ( |[ r8 `1 , r8 `2 ]| ) in f1 .: W5 ; eval ( a | ( n , L ) , x ) = coefficient ( a | ( n , L ) ) .= a ; z = DigB ( tx , xx ) .= DigA ( tx , xx ) ; set H = { Intersect S where S is Subset-Family of X : S c= G } ; consider S19 being Element of j -tuples_on D9 , d9 such that S9 = S19 ^ <* d9 *> ; assume that x1 in dom f and x2 in dom f & f . x1 = f . x2 ; - 1 <= ( ( q `2 / |. q .| - sn ) ) / ( 1 + sn ) ; ZeroLC ( V ) is Linear_Combination of A & Sum ( ZeroLC ( V ) ) = 0. V ; let k1 , k2 , k3 , k4 , k5 be Instruction of SCM+FSA ; consider j be element such that j in dom a and j in g " { k9 } and x = a . j ; H1 . x1 c= H1 . x2 or H1 . x2 c= H1 . x1 ; consider a being Real such that p = ( 1 - a ) * p1 + a * p2 and 0 <= a and a <= 1 ; assume that a <= c & c <= d & d <= b and [' a , b '] c= dom f & [' a , b '] c= dom g ; cell ( Gauge ( C , m ) , X-SpanStart ( C , m ) -' 1 , 0 ) is non empty ; Aq2 in { ( S . i ) `1 where i is Element of NAT : not contradiction } ; ( T * b1 ) . y = L * ( b2 /. Lb ) .= ( F9 * b1 ) . y ; g . ( s , I ) . x = s . y & g . ( s , I ) . y = |. s . x - s . y .| ; ( log ( 2 , k + k ) ) ^2 >= ( log ( 2 , k + 1 ) ) ^2 ; p => q in S & not x in still_not-bound_in p implies p => All ( x , q ) in S ; dom ( the Tran of rtfsm1 ) misses dom ( the Tran of rtfsm2 ) ; attr f is e.i.-valued means : Def3 : for x being set st x in rng f holds x is ext-integer ; for X being Subset-Family of D holds f . ( f .: X ) = f . ( union X ) ; i = len p1 .= len p3 + len <* x *> .= len p3 + 1 ; l `1_3 = g `1_3 + k `1_3 - e `1_3 ; CurInstr ( P2 , Comput ( P2 , s2 , l2 ) ) = halt SCM+FSA ; assume ( for n being Nat holds ||. seq .|| . n <= Rseq . n ) & Rseq is summable ; sin ( r - s ) = ( sin r ) * ( cos s ) - ( cos r ) * ( sin s ) .= 0 ; set q = |[ diff ( g1 , t0 ) , diff ( g2 , t0 ) , diff ( g3 , t0 ) ]| ; consider G being sequence of S such that for n being Element of NAT holds G . n in MeasPart ( F . n ) ; consider G such that F = G and ex G1 st G1 in SN1 & G = 'X' G1 ; root-tree [ x , s ] in ( the Sorts of Free ( C , X ) ) . s ; Z c= dom ( ( #R ( 3 / 2 ) ) * ( f + ( exp_R * f1 ) ) ) ; for k be Element of NAT holds rseqi . k = ( middle_sum ( ( Im f ) , Si ) ) . k assume that - 1 < cn and q `2 > 0 and q `1 / |. q .| < cn ; assume that f is continuous one-to-one and a < b and c < d & f = g & f . a = c & f . b = d ; consider r being Element of NAT such that sm = Comput ( P1 , s1 , r ) and r <= q ; LE f /. ( i + 1 ) , f /. j , L~ f , f /. 1 , f /. len f ; assume that x in the carrier of K and y in the carrier of K and ex_inf_of { x , y } , L ; assume f +* ( i1 , xi1 ) in proj ( F , i2 ) " Ai2 ; rng ( ( Flow M ) ~ | ( the carrier of M ) ) c= the carrier' of M ; assume z in { [: the carrier of G , { t } :] where t is Element of T : not contradiction } ; consider l be Nat such that for m be Nat st l <= m holds ||. s1 . m - x0 .|| < g ; consider t being VECTOR of product G such that mt = ||. DD . t .|| & ||. t .|| <= 1 ; branchdeg v = 2 implies v ^ <* 0 *> in dom p & v ^ <* 1 *> in dom p consider a being Element of the Points of XX , A being Element of the Lines of XX such that not a on A ; ( ( - x ) |^ ( k + 1 ) ) * ( ( ( - x ) |^ ( k + 1 ) ) " ) = 1 for D being set holds ( for i st i in dom p holds p . i in D ) implies p is FinSequence of D defpred R [ element ] means ex x , y st [ x , y ] = $1 & P [ x , y ] ; L~ f2 = union { LSeg ( p0 , p10 ) , LSeg ( p10 , p1 ) } ; i -' len h11 + 2 -' 1 < i -' len h11 + 2 - 1 + 1 ; for n be Element of NAT st n in dom F holds F . n = |. np . ( n -' 1 ) .| for r , s1 , s2 holds r in [. s1 , s2 .] iff s1 <= r & r <= s2 assume v in { G where G is Subset of T2 : G in B2 & G c= z1 } ; let g be Euclidean ExecutionFunction of A , Funcs ( X , INT ) , Funcs ( X , INT ) \ ( b , 0 ) ; min ( g . [ x , y ] , k . [ y , z ] ) = min ( g , k , x , z ) . y ; consider q1 be sequence of CNS such that for n holds P [ n , q1 . n ] from FUNCT_2 : sch 3 ( A4 ) ; consider f being Function such that dom f = NAT & for n being Element of NAT holds f . n = F ( n ) ; set Z = B \ A , O = A /\ B , f = B --> 0 , g = O --> 1 , IT = chi ( A , B ) ; consider j be Element of NAT such that x = Base_FinSeq ( n , j ) and 1 <= j & j <= n ; consider x such that z = x & card ( x . O2 ) in card ( x . O ) & x in L1 ; ( C * Special_Function4 ( k , n2 ) ) . 0 = C . ( ( Special_Function4 ( k , n2 ) ) . 0 ) ; dom ( X --> rng f ) = X & dom rngs ( X --> f ) = dom ( X --> f ) ; S-bound L~ SpStSeq C <= b `2 & b `2 <= N-bound L~ SpStSeq C ; pred x , y are_collinear means : Def1 : x = y or ex l being Block of S st { x , y } c= l ; consider X be element such that X in dom ( f | ( n + 1 ) ) and ( f | ( n + 1 ) ) . X = Y ; holds x << y iff a << b ; ( 1 / ( 2 * ( m - n ) ) ) (#) ( sin * AffineMap ( m - n , 0 ) ) is_differentiable_on REAL ; defpred P [ Element of omega ] means ( Partial_Union A1 ) . $1 = A1 . $1 ; IC Comput ( P , s , 2 ) = succ IC Comput ( P , s , 1 ) .= ( 6 + 1 ) ; f . x = f . g1 * f . g2 .= f . g1 * 1_ H .= f . g1 ; ( M * Fm ) . n = M . ( Fm . n ) .= M . { ( canFS ( Omega ) ) . n } ; Carrier ( L1 + L2 ) c= Carrier ( L1 ) \/ Carrier ( L2 ) ; trap a , b , c , x , o & trap a , b , c , y , o implies x = y ( ( Partial_Product s ) . n ) <= ( ( Partial_Product s ) . n ) * ( s . ( n + 1 ) ) ; - 1 <= r & r <= 1 implies diff ( arccot , r ) = - 1 / ( 1 + r ^2 ) sp in { p ^ <* n *> where n is Nat : p ^ <* n *> in T1 } ; |[ x1 , x2 , x3 ]| . 2 - |[ y1 , y2 , y3 ]| . 2 = x2 - y2 ; for F be Functional_Sequence of X , REAL st ( for m be Nat holds F . m is nonnegative ) holds for m be Nat holds ( Partial_Sums F ) . m is nonnegative len normsequence ( G , z ) = len ( normsequence ( G , xx ) + normsequence ( G , yy ) ) ; consider u , v being VECTOR of V such that x = u + v and u in W1 /\ W2 & v in W2 /\ W3 ; given F be XFinSequence of NAT such that F = x and dom F = n & rng F c= { 0 , 1 } & Sum F = k ; 0 = lambda * mu * nu - q iff 1 = ( lambda / ( 1 - lambda ) ) * ( ( mu * nu ) / ( ( 1 - mu ) * ( 1 - nu ) ) ) ; consider n be Nat such that for m be Nat st n <= m holds |. ( f # x ) . m - lim ( f # x ) .| < e ; cluster satisfying_Sheffer_1 satisfying_Sheffer_2 satisfying_Sheffer_3 properly_defined -> Boolean Lattice-like for non empty ShefferOrthoLattStr ; "/\" ( {} , BS ) = Top BS .= the carrier of S .= [#] S .= "/\" ( {} , InIdsS ) ; ( r / 2 ) ^2 + ( rm / 2 ) ^2 <= ( r / 2 ) ^2 + ( r / 2 ) ^2 ; for x being element st x in A /\ dom ( ( f `| X ) || A ) holds ( ( f `| X ) || A ) . x >= r2 ( 2 * r1 - 1 ) * |[ a , c ]| - ( ( 2 * r1 - 1 ) * |[ b , c ]| ) = 0. TOP-REAL 2 ; reconsider p = Col ( P , 1 ) , q = a " * ( Base_FinSeq ( K , n , 1 ) ) as FinSequence of K ; consider x1 , x2 being element such that x1 in wayabove s and x2 in wayabove t and x = [ x1 , x2 ] ; for n be Nat st 1 <= n & n <= len q1 holds q1 . n = lower_volume ( g , MD1 ) . n consider y , z being element such that y in the carrier of A and z in the carrier of A and i = [ y , z ] ; given H1 , H2 being strict Subgroup of G such that x = H1 and y = H2 & H1 is Subgroup of H2 ; for S , T being non empty Poset , d being Function of T , S st T is complete holds d is sups-preserving iff d is monotone & d is lower_adjoint [ [** a , 0 **] , b2 ] in [: the carrier of F_Complex , the carrier of V :] ; reconsider maxFq = max ( len F1 , len ( p . n * ( <% x %> `^ n ) ) ) as Element of NAT ; I <= width GoB ( Incr ( X_axis ( h ) ) , Incr ( Y_axis ( h ) ) ) ; f2 /* q = ( f2 /* ( f1 /* s ) ) ^\ k .= ( ( f2 * f1 ) /* s ) ^\ k ; A1 \/ A2 is linearly-independent & A1 misses A2 implies Lin A1 /\ Lin A2 = (0). V func A -carrier_of C -> set equals union { A . s where s is Element of R : s in C } ; dom ( mlt ( Line ( v , i + 1 ) , Col ( mConv ( p , m ) , 1 ) ) ) = dom ( F ^ G ) ; reduce [ x `1_4 , x `2_4 , x `3_4 , x `4_4 ] to x ; E |= All ( x1 , All ( x2 , x2 'in' x0 <=> x2 'in' x1 ) => x0 '=' x1 ) ; F .: ( id X , g ) . x = F . ( id X . x , g . x ) .= F . ( x , g . x ) ; R . ( h . m ) = F . ( x0 + In ( h . m , REAL ) ) - F . x0 - L . In ( h . m , REAL ) ; cell ( G , XS -' 1 , YS + ( t + 1 ) ) \ L~ f meets UBD L~ f ; IC Result ( P2 , s2 ) = IC IExec ( I , P , Initialize s ) .= card I ; sqrt ( 1 - ( - ( q `1 / |. q .| - cn ) ) ^2 / ( 1 + cn ) ^2 ) > 0 ; consider x0 be element such that x0 in dom a and x0 in g " { k9 } and y0 = a . x0 ; dom ( r1 (#) chi ( A . m , C ) ) = dom chi ( A . m , C ) .= C ; dy . [ y , z ] = [ y , z ] `1 `2 - [ y , z ] `2 `2 ; for A , B , C being SetSequence of the carrier of TOP-REAL 2 st for i being Nat holds C . i = A . i /\ B . i holds Lim_sup C c= Lim_sup A /\ Lim_sup B x0 in dom f & f is_continuous_in x0 implies ||. f .|| is_continuous_in x0 & - f is_continuous_in x0 for T being non empty TopStruct , A being Subset of T , p being Point of T holds p in Cl A iff for K being Basis of p , Q being Subset of T st Q in K holds A meets Q for x being Element of REAL n st x in Line ( x1 , x2 ) holds |. y1 - y2 .| <= |. y1 - x .| func first_epsilon_greater_than a -> epsilon Ordinal means : Def6 : a in it & for b being epsilon Ordinal st a in b holds it c= b ; [ a1 , a2 , a3 ] in [: the carrier of A , the carrier of A , the carrier of A :] ; ex a , b being element st a in the carrier of S1 & b in the carrier of S2 & x = [ a , b ] ; ||. ( vseq . n ) - ( vseq . m ) .|| * ||. x .|| < e / ||. x .|| * ||. x .|| ; ( for Z be set holds Z in { Y where Y is Element of InIdS : F c= Y } implies z in Z ) implies z in x sup compactbelow [ s , t ] = [ sup proj1 compactbelow [ s , t ] , sup proj2 compactbelow [ s , t ] ] ; consider i , j being Element of NAT such that i < j and [ y , f . j ] in IR and [ f . i , z ] in IR ; for D being non empty set , p , q being FinSequence of D st p c= q holds ex p9 being FinSequence of D st p ^ p9 = q consider e19 be Element of Af ( X ) such that c39 , a39 // a29 , e19 and a29 <> e19 ; set E = TheEqSymbOf S , p = SubTerms phi , F = S -firstChar , s = F . phi , UV = I -TermEval , V = I -AtomicEval phi , d = U -deltaInterpreter , U2 = 2 -tuples_on U , TT = AllTermsOf S , D = { <* u , u *> where u is Element of U : not contradiction } , n = |. ar s .| ; ( |. q4 .| ) ^2 = ( q4 `1 ) ^2 + ( q4 `2 ) ^2 .= ( |. q .| ) ^2 ; for T being non empty TopSpace , x , y be Element of InclPoset the topology of T holds x "\/" y = x \/ y & x "/\" y = x /\ y dom signature U1 = dom the charact of U1 & Args ( o , MSAlg U1 ) = dom O1 ; dom ( h | X ) = dom h /\ X .= dom abs ( h ) /\ X .= dom ( abs ( h ) | X ) ; for N1 for K1 being Element of GT1 holds dom ( h . K1 ) = N & rng ( h . K1 ) = K1 ( mod ( u , m ) + mod ( v , m ) ) . i = ( mod ( u , m ) . i ) + ( mod ( v , m ) . i ) ; - q `1 < - 1 or q `2 >= q `1 & q `2 <= - q `1 ; for r1 , r2 being Real , fr1 , fr2 being Element of F_Real st r1 = fr1 & r2 = fr2 holds r1 * r2 = fr1 * fr2 ; vseq . m is bounded Function of X , the carrier of Y & xseq . m = modetrans ( ( vseq . m ) , X , Y ) . x ; a <> b & b <> c & angle ( a , b , c ) = PI implies angle ( b , c , a ) = 0 & angle ( c , a , b ) = 0 consider i , j being Nat , r , s being Real such that p1 = [ i , r ] and p2 = [ j , s ] and i < j & r < s ; ( |. p .| ^2 - 2 * |( p , q )| + |. q .| ^2 ) = ( |. p .| ^2 + |. q .| ^2 - 2 * |( p , q )| ) ; consider p1 , q1 be Element of X ( ) * such that y = p1 ^ q1 and q1 ^ p1 = pq ; mult2 ( r1 , r2 , s1 , s2 , Amp ) = s2 / gcd ( r1 , s2 , Amp ) ; ( LMP A ) `2 = lower_bound ( proj2 .: ( A /\ Vertical_Line w ) ) & proj2 .: ( A /\ Vertical_Line w ) is non empty ; s , kai |= H1 EU H2 iff s |= Evaluate ( H1 , kai ) EU Evaluate ( H2 , kai ) ; len sb1 + 1 = ( card ( support b1 ) + 1 ) .= card ( support b2 ) .= len sb2 ; consider z being Element of L1 such that z >= x & z >= y and for z9 being Element of L1 st z9 >= x & z9 >= y holds z9 >= z ; LSeg ( UMP D , |[ ( W-bound D + E-bound D ) / 2 , N-bound D ]| ) /\ D = { UMP D } lim ( ( ( f `| N ) / ( g `| N ) ) /* b ) = lim ( ( ( f `| N ) / ( g `| N ) ) , x0 ) ; P [ i , ( pr1 f ) . i , ( pr2 f ) . i , ( pr1 f ) . ( i + 1 ) , ( pr2 f ) . ( i + 1 ) ] ; for r be Real st 0 < r ex m be Nat st for k be Nat st m <= k holds ||. ( seq1 . k ) - RNg .|| < r for X being set , P being a_partition of X , x , a , b being set st x in a & a in P & x in b & b in P holds a = b ; Z c= dom exp_R /\ ( dom ( exp_R * f ) \ ( exp_R * f ) " { 0 } ) ; ex j being Nat st j in dom ( l ^ <* x *> ) & j < i & y = ( l ^ <* x *> ) . j for u , v being VECTOR of V , r being Real st 0 < r & r < 1 & u in M - N & v in M - N holds r * u + ( 1 - r ) * v in M - N A , Int A , Cl A , Int Cl A , Cl Int A , Cl Int Cl A , Int Cl Int A are_mutually_different ; - Sum <* v , u , w *> = - ( v + u + w ) .= ( - ( v + u ) ) - w .= ( ( - v ) - u ) - w ; Exec ( a := b , s ) . IC SCM R = Exec ( a := b , s ) . NAT .= succ IC s ; consider h being Function such that f . a = h and dom h = I and for x being element st x in I holds h . x in ( Carrier J ) . x ; for S1 , S2 being non empty reflexive RelStr for D being non empty directed Subset of [: S1 , S2 :] holds proj1 D is directed & proj2 D is directed card X = 2 iff ex x , y st x in X & y in X & x <> y & for z st z in X holds z = x or z = y E-max L~ Cage ( C , n ) in rng Rotate ( Cage ( C , n ) , W-min L~ Cage ( C , n ) ) ; for T , T9 being DecoratedTree , p , q being Element of dom T st not p is_a_prefix_of q holds ( T with-replacement ( p , T9 ) ) . q = T . q [ i2 + 1 , j2 ] in Indices G & [ i2 , j2 ] in Indices G & f /. k = G * ( i2 + 1 , j2 ) ; redefine func k lcm n means : Def4 : k divides it & n divides it & for m being Nat st k divides m & n divides m holds it divides m ; dom ( F " ) = the carrier of X2 & rng ( F " ) = the carrier of X1 & F " is one-to-one ; consider C being finite Subset of V such that C c= A and card ( C ) = n - m and the VectSpStr of V = Lin ( Bv \/ C ) ; for T being non empty TopSpace , V being Element of InclPoset the topology of T holds V is prime iff for X , Y being Element of InclPoset the topology of T st X /\ Y c= V holds X c= V or Y c= V set X = { F ( v1 ) where v1 is Element of B ( ) : P [ v1 ] } , Y = { G ( v2 ) where v2 is Element of B ( ) : P [ v2 ] } ; angle ( p1 , p3 , p4 ) = 0 .= angle ( p2 , p3 , p2 ) .= angle ( p , p3 , p2 ) ; - sqrt ( 1 - ( ( q `1 / |. q .| - cn ) / ( 1 - cn ) ) ^2 ) = - sqrt ( 1 - 0 ) .= - 1 ; ex f being Function of I[01] , TOP-REAL 2 st f is continuous one-to-one & rng f = P & f . 0 = p1 & f . 1 = p3 ; for u0 being Element of REAL 3 holds f is_hpartial_differentiable`12_in u0 implies SVF1 ( 2 , pdiff1 ( f , 1 ) , u0 ) is_continuous_in proj ( 2 , 3 ) . u0 ; ex r , s st x = |[ r , s ]| & G * ( len G , 1 ) `1 < r & s < G * ( 1 , 1 ) `2 ; for f being non constant standard special_circular_sequence st f is_sequence_on G & 1 <= t & t <= len G holds G * ( t , width G ) `2 >= N-bound L~ f for i be set st i in dom G holds r (#) ( f * reproj ( modetrans ( G , i ) , x ) ) = ( r (#) f ) * reproj ( modetrans ( G , i ) , x ) consider c1 , c2 being bag of o1 +^ o2 such that ( decomp c ) /. k = <* c1 , c2 *> and c = c1 + c2 ; u0 in { |[ r1 , s1 ]| : r1 < G * ( 1 , 1 ) `1 & s1 < G * ( 1 , 1 ) `2 } ; carr ( X ^ Y ) . k = the carrier of ( X . k2 ) .= CX . k .= ( CX ^ CY ) . k ; for K being Field , M1 , M2 being Matrix of K st len M1 = len M2 & width M1 = width M2 holds M1 = M1 - ( M2 - M2 ) consider g2 be Real such that 0 < g2 and { y where y is Point of S : ||. y - x0 .|| < g2 } c= N2 ; assume x < ( - b + sqrt delta ( a , b , c ) ) / ( 2 * a ) or x > ( - b - sqrt delta ( a , b , c ) ) / ( 2 * a ) ; ( G1 '&' G2 ) . i = ( <* 3 *> ^ G1 ) . i & ( H1 '&' H2 ) . i = ( <* 3 *> ^ H1 ) . i ; for i , j st [ i , j ] in Indices ( M3 + M1 ) holds ( M3 + M1 ) * ( i , j ) < M2 * ( i , j ) for f being FinSequence of NAT , i being Element of NAT st for j being Element of NAT st j in dom f holds i divides f /. j holds i divides Sum f assume F = { [ a , b ] where a , b is Subset of X : for c being set st c in BB & a c= c holds b c= c } ; b2 * q2 + b3 * q3 + - a02 * q2 + - a03 * q3 = 0. TOP-REAL n ; Cl Cl F = { D where D is Subset of T : ex B being Subset of T st D = Cl B & B in Cl F } ; seq1 is summable & seq2 is summable implies seq1 + seq2 is summable & Sum ( seq1 + seq2 ) = Sum ( seq1 ) + Sum ( seq2 ) dom ( ( Sq_Circ " ) | D ) = ( the carrier of ( TOP-REAL 2 ) ) /\ D .= the carrier of ( ( TOP-REAL 2 ) | D ) ; oContMaps ( X , Z ) is directed-sups-inheriting full non empty SubRelStr of ( Omega Z ) |^ the carrier of X & oContMaps ( X , Y ) is directed-sups-inheriting full SubRelStr of ( Omega Z ) |^ the carrier of X ; G * ( 1 , j ) `2 = G * ( i , j ) `2 & G * ( 1 , j ) `1 <= G * ( i , j ) `1 ; pred m1 c= m2 means : Def3 : for p being set st p in P holds m1 multitude_of p <= m2 multitude_of p ; consider a being Element of B ( ) such that x = F ( a ) and a in { G ( b ) where b is Element of A ( ) : P [ b ] } ; struct ( OneStr , multMagma ) multLoopStr (# carrier -> set , multF -> BinOp of the carrier , OneF -> Element of the carrier #) ; GenFib ( a , b , 1 ) + GenFib ( c , d , 1 ) = b + GenFib ( c , d , 1 ) .= b + d .= GenFib ( a + c , b + d , 1 ) ; redefine func addint means for i1 , i2 being Element of INT holds it . ( i1 , i2 ) = addreal . ( i1 , i2 ) ; ( 1 - s2 ) * p1 + ( s2 * p2 - s2 * p2 ) = ( 1 - r2 ) * p1 + r2 * p2 - s2 * p2 ; eval ( ( a | ( n , L ) ) *' p , x ) = eval ( a | ( n , L ) , x ) * eval ( p , x ) .= a * eval ( p , x ) ; Omega S & for V being open Subset of S st sup D in V holds D meets V ; assume 1 <= k & k <= len w + 1 implies Tf . ( ( q11 , w ) -admissible . k ) = ( Tf . q11 , w ) -admissible . k ; 2 * a |^ ( n + 1 ) + 2 * b |^ ( n + 1 ) >= a |^ ( n + 1 ) + a |^ n * b + b |^ n * a + b |^ ( n + 1 ) ; M , v2 |= All ( x. 3 , Ex ( x. 0 , All ( x. 4 , H1 <=> x. 4 '=' x. 0 ) ) ) ; assume that f is_differentiable_on l and ( for x0 st x0 in l holds 0 < diff ( f , x0 ) ) or for x0 st x0 in l holds diff ( f , x0 ) < 0 ; for G1 being _Graph , W being Walk of G1 , e being set , G2 being removeEdge of G1 , e st not e in W .edges() holds W is Walk of G2 c02 is not empty iff x2y0 is not empty & x1y1 is not empty or x1y1 is not empty & x0y2 is not empty or x0y2 is not empty & x2y0 is not empty ; Indices GoB f = [: dom GoB f , Seg width GoB f :] & i1 + 1 in dom GoB f ; for G1 , G2 , G3 being GroupWithOperators of O holds G1 is StableSubgroup of G2 & G2 is StableSubgroup of G3 implies G1 is StableSubgroup of G3 for f being FinSeq-Location holds UsedIntLoc ( insert-sort f ) = { intloc 0 , intloc 1 , intloc 2 , intloc 3 , intloc 4 , intloc 5 , intloc 6 } for f1 , f2 be FinSequence of F st f1 ^ f2 is p -element & Q [ f1 ^ f2 ] holds Q [ f2 ^ f1 ] p `1 / sqrt ( 1 + ( p `1 / p `2 ) ^2 ) = q `1 / sqrt ( 1 + ( q `2 / q `1 ) ^2 ) ; for x1 , x2 , x3 being Element of REAL n holds |( x1 - x2 , x3 )| = |( x1 , x3 )| - |( x2 , x3 )| for x st x in dom ( ( F - G ) | A ) & - x in dom ( ( F - G ) | A ) holds ( F - G ) | A . ( - x ) = - ( F - G ) | A . x for T being non empty TopStruct , P being Subset-Family of T st P c= the topology of T & for x being Point of T ex B being Basis of x st B c= P holds P is Basis of T ( ( a 'or' b ) 'imp' c ) . x = 'not' ( a 'or' b ) . x 'or' ( c ) . x .= 'not' ( ( a ) . x 'or' ( b ) . x ) 'or' ( c ) . x .= TRUE '&' TRUE .= TRUE ; for e be set st e in AA ex X1 being Subset of XV , Y1 being Subset of Y st e = [: X1 , Y1 :] & X1 is open & Y1 is open for i be set st i in the carrier of S for f be Function of SA . i , S1 . i st f = H . i holds F . i = f | ( FG . i ) ; for v , w st for y st x <> y holds w . y = v . y holds Valid ( VERUM ( Al ) , J ) . v = Valid ( VERUM ( Al ) , J ) . w card D = card D1 + card D1 - card { { i , j } } .= ( c1 + 1 ) + ( c1 + 1 ) - 1 .= 2 * c1 + 1 ; IC Exec ( i , s ) = ( s +* ( 0 .--> succ ( s . 0 ) ) ) . 0 .= ( 0 .--> succ ( s . 0 ) ) . 0 .= succ ( IC s ) ; len ( f /^ ( i1 -' 1 ) ) -' 1 + 1 = len ( f /^ ( i1 -' 1 ) ) - 1 + 1 .= len ( f /^ ( i1 -' 1 ) ) ; for a , b , c being Element of NAT st 1 <= a & 2 <= b holds k < a - 1 or a <= k & k <= a + b - 3 or k = a + b - 2 or a + b - 2 < k or k = a - 1 for f being FinSequence of TOP-REAL 2 , p being Point of TOP-REAL 2 , i being Element of NAT st p in LSeg ( f , i ) holds Index ( p , f ) <= i lim ( ( ProjMap2 ( PP2 , k + 1 ) ) # x ) = lim ( ( ProjMap2 ( PP2 , k ) ) # x ) + lim ( ( ProjMap1 ( FF2 , k + 1 ) ) # x ) ; z2 = ( g /^ n1 ) . ( i -' n2 + 1 ) .= g . ( i -' n2 + 1 + n1 ) .= g . ( i -' n2 + n1 + 1 ) ; [ f . 0 , f . 3 ] in id ( the carrier of G ) \/ ( the InternalRel of G ) or [ f . 0 , f . 3 ] in the InternalRel of CmpG ; for G being Subset-Family of B st G = { R .:^ X where R is Subset of [: A , B :] : R in FR } holds ( Intersect FR ) .:^ X = Intersect G CurInstr ( P1 , Comput ( P1 , s1 , m1 + m2 ) ) = CurInstr ( P1 , Comput ( P1 , s2 , m2 ) ) .= halt SCMPDS ; ( not p on P ) & not p on Q & M <> N ; for T st T is T_4 & T is Lindelof & ex F be Subset-Family of T st F is closed & F is Cover of T & F is countable & F is finite-ind & ind F <= 0 holds T is finite-ind & ind T <= 0 for g1 , g2 st g1 in ]. rr - 1 , r .[ & g2 in ]. rr - 1 , r .[ holds |. f . g1 - f . g2 .| <= ( g1 - g2 ) ^2 ; cosh_C /. ( z1 + z2 ) = ( cosh_C /. z1 ) * ( cosh_C /. z2 ) + ( sinh_C /. z1 ) * ( sinh_C /. z2 ) F . i = F /. i .= 0. R + r2 .= b |^ ( n + 1 ) .= ( ( a , b ) In_Power ( n + 1 ) ) . i ; ex y being set st ex f being Function st y = f . n ( ) & dom f = NAT & f . 0 = A ( ) & for n holds f . ( n + 1 ) = RecFun ( n , f . n ) func f (#) F -> FinSequence of V means : Def6 : len it = len F & for i being Nat st i in dom it holds it . i = ( F /. i ) * f . ( F /. i ) ; { x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 } = { x1 , x2 } \/ { x3 , x4 , x5 , x6 , x7 , x8 } for n being Nat , x being set st x = h . n holds h . ( n + 1 ) = o ( x , n ) & x in InputVertices S ( x , n ) & o ( x , n ) in InnerVertices S ( x , n ) ex S1 being Element of QC-Sub-WFF ( Al ( ) ) st Sub_P ( P , ll , e ) = S1 & S1 `1 is Element of CQC-WFF ( Al ( ) ) ; consider P be FinSequence of Gk such that pk9 = Product P and for i st i in dom P ex trans be Element of Permutations ( k ) st P . i = trans & trans is being_transposition ; for T1 , T2 being strict non empty TopSpace , P being prebasis of T1 st the carrier of T1 = the carrier of T2 & P is prebasis of T2 holds T1 = T2 f is_hpartial_differentiable`32_in u0 implies r (#) pdiff1 ( f , 3 ) is_partial_differentiable_in u0 , 2 & partdiff ( ( r (#) pdiff1 ( f , 3 ) ) , u0 , 2 ) = r * hpartdiff32 ( f , u0 ) defpred P [ Nat ] means for F , G being FinSequence of ExtREAL , s being Permutation of Seg $1 st len F = $1 & G = F * s & not -infty in rng F holds Sum F = Sum G ; ex j st 1 <= j & j < width GoB f & ( GoB f ) * ( 1 , j ) `2 <= s & s < ( GoB f ) * ( 1 , j + 1 ) `2 ; defpred U [ set , set ] means ex FS be FamilySequence of T st $2 = FS & Union FS is open & Union FS is Cover of T & Union FS is_finer_than FB . $1 & FS is sigma_discrete ; for p6 being Point of TOP-REAL 2 st LE p4 , p6 , P , p1 , p2 & LE p6 , p , P , p1 , p2 holds p6 `1 <= e for x , H , f holds ( f in St ( H , E ) & for g st for y st g . y <> f . y holds x = y holds g in St ( H , E ) ) iff f in St ( All ( x , H ) , E ) ex p8 being Point of TOP-REAL 2 st x = p8 & p8 `2 / |. p8 .| >= sn & p8 `1 <= 0 & p8 <> 0. TOP-REAL 2 ; assume for dn being Element of NAT st dn <= max_Data-Loc_in ( nt -tree ( tl , tr ) ) holds s1 . dl. dn = s2 . dl. dn ; s <> t & s is Point of Tdisk ( x , r ) & s is not Point of Tcircle ( x , r ) implies ex e being Point of Tcircle ( x , r ) st { e } = halfline ( s , t ) /\ Sphere ( x , r ) given r such that 0 < r and for s holds not 0 < s or ex x1 be Point of CNS st x1 in dom f & ||. x1 - x0 .|| < s & not |. f /. x1 - f /. x0 .| < r ; for x , p holds ( p | x ) | ( p | ( ( x | x ) | ( x | x ) ) ) = ( ( ( x | x ) | ( x | x ) ) | p ) | ( ( ( x | x ) | ( x | x ) ) | p ) x in dom sec & x + h in dom sec implies fD ( sec (#) sec , h ) . x = 4 * sin ( 2 * x + h ) * sin ( h ) / ( cos ( 2 * x + h ) + cos ( h ) ) ^2 i in dom A & len A > 1 implies Solutions_of ( A , B ) c= Solutions_of ( DelLine ( A , i ) , DelLine ( B , i ) ) for i being non zero Element of NAT st i in Seg n holds ( not i divides n or i = n implies h . i = <% 1_ F_Complex %> ) & ( i divides n & i <> n implies h . i = cyclotomic_poly ( i ) ) for a1 , b1 , c1 , a2 , b2 , c2 being Function of Y , BOOLEAN holds ( b1 'imp' b2 ) '&' ( c1 'imp' c2 ) '&' ( a1 'or' b1 'or' c1 ) '&' 'not' ( a2 '&' b2 ) '&' 'not' ( a2 '&' c2 ) '<' ( a2 'imp' a1 ) ( for x holds f . x = ( cot (#) sin ) . x ) & x in dom cot & x - h in dom cot implies bD ( f , h ) . x = cos ( x ) - cos ( x - h ) consider RF , IF be Real such that RF = Integral ( M , Re ( F . n ) ) and IF = Integral ( M , Im ( F . n ) ) and Integral ( M , F . n ) = RF + IF * ; ex k be Element of NAT st k0 = k & 0 < d & for q be Element of product G st q in X & ||. q - x .|| < d holds ||. partdiff ( f , q , k ) - partdiff ( f , x , k ) .|| < r ; x in { x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 } iff x in { x1 , x2 , x3 , x4 } \/ { x5 , x6 , x7 , x8 , x9 } ; G * ( j , io ) `2 = G * ( 1 , io ) `2 .= G * ( jo , io ) `2 .= p `2 .= G * ( j , i ) `2 ; f1 * p = p .= ( ( the Arity of S1 ) +* the Arity of S2 ) . o .= ( the Arity of S ) . o .= ( the Arity of S ) . ( g1 . o ) ; func tree ( T , P , T1 ) -> Tree means : Def1 : q in it iff ( q in T & for p st p in P holds not p is_a_proper_prefix_of q ) or ex p , r st p in P & r in T1 & q = p ^ r ; F /. ( k + 1 ) = F . ( k + 1 ) .= FPower ( p . ( k + 1 -' 1 ) , k + 1 -' 1 ) .= FPower ( p . k , k + 1 -' 1 ) .= FPower ( p . k , k ) ; for A , B , C being Matrix of K st len B = len C & width B = width C & len B = width A & len B > 0 & len A > 0 holds A * ( B - C ) = A * B - A * C seq . ( k + 1 ) = 0c + seq . ( k + 1 ) .= ( Partial_Sums seq ) . k + seq . ( k + 1 ) .= ( Partial_Sums seq ) . ( k + 1 ) ; assume that x in [: the carrier of CS , the carrier of CS :] and y in [: the carrier of CS , the carrier of CS :] and [ x , y ] in the CONGR of CS ; defpred P [ Element of NAT ] means for f st len f = $1 holds ( VAL g ) . kon ( f ) = ( VAL g ) . kon ( f | 1 ) '&' ( VAL g ) . kon ( f /^ 1 ) ; assume 1 <= k & k + 1 <= len f & f is_sequence_on G & [ i , j ] in Indices G & [ i + 1 , j ] in Indices G & f /. k = G * ( i , j ) & f /. ( k + 1 ) = G * ( i + 1 , j ) ; for sn being Real , q being Point of TOP-REAL 2 st sn < 1 & q `1 > 0 & q `2 / |. q .| >= sn holds for p being Point of TOP-REAL 2 st p = ( sn -FanMorphE ) . q holds p `1 > 0 & p `2 >= 0 for M being non empty MetrSpace , x being Point of TopSpaceMetr ( M ) , x9 being Point of M st x = x9 ex f being sequence of Balls ( x ) st for n being Element of NAT holds f . n = Ball ( x9 , 1 / ( n + 1 ) ) defpred P [ Element of omega ] means f1 is_differentiable_on $1 , Z & f2 is_differentiable_on $1 , Z implies diff ( f1 - f2 , Z ) . $1 = diff ( f1 , Z ) . $1 - diff ( f2 , Z ) . $1 ; defpred P1 [ Nat , Point of CNS ] means $2 in Y & ||. s1 . $1 - $2 .|| < 1 / ( $1 + 1 ) & not ||. f /. ( s1 . $1 ) - f /. $2 .|| < r ; ( f ^ mid ( g , 2 , len g ) ) . i = mid ( g , 2 , len g ) . ( i -' len f ) .= g . ( i -' len f + 2 - 1 ) .= g . ( i -' len f + 1 ) ; 1 / ( 2 * n0 + 2 ) * ( ( 2 * n0 + 2 ) * Cl ( TB1 ) ) = ( 1 / ( 2 * n0 + 2 ) * ( 2 * n0 + 2 ) ) * Cl ( TB1 ) .= 1 * Cl ( TB1 ) .= Cl ( TB1 ) ; defpred P [ Nat ] means for G be non empty strict finite irreflexive symmetric RelStr st G is N-free & card the carrier of G = $1 & the carrier of G in FinSETS holds ( the RelStr of G ) in fin_RelStr_sp ; not f /. 1 in Ball ( u , r ) & 1 <= m & m <= len f - 1 & ( for i st 1 <= i & i <= len f - 1 & LSeg ( f , i ) /\ Ball ( u , r ) <> {} holds m <= i ) implies not f /. m in Ball ( u , r ) defpred P [ Element of NAT ] means Partial_Sums ( Maclaurin ( cos , ]. - r , r .[ , x ) ) . ( 2 * $1 + 1 ) = Partial_Sums ( x P_cos ) . $1 ; for x being Element of product F holds x is FinSequence of G & dom x = I & dom x = dom ( Carrier F ) & for i be set st i in dom ( Carrier F ) holds x . i in ( Carrier F ) . i x " |^ ( n + 1 ) = ( x " |^ n ) * x " .= ( x * ( x |^ n ) ) " .= ( ( x |^ 1 ) * ( x |^ n ) ) " .= ( x |^ ( n + 1 ) ) " ; DataPart Comput ( P +* while>0 ( a , I ) , Initialized s , LifeSpan ( P +* I , Initialized s ) + 3 ) = DataPart Comput ( P +* I , Initialized s , LifeSpan ( P +* I , Initialized s ) ) ; given r such that 0 < r and ]. x0 , x0 + r .[ c= dom f1 /\ dom f2 /\ dom f and for g st g in ]. x0 , x0 + r .[ holds f1 . g <= f . g & f . g <= f2 . g ; for X , f1 , f2 st X c= dom f1 /\ dom f2 & f1 | X is continuous & f2 | X is continuous holds ( f1 + f2 ) | X is continuous & ( f1 - f2 ) | X is continuous & ( f1 (#) f2 ) | X is continuous for L being continuous complete LATTICE st for l being Element of L ex X being Subset of L st l = sup X & for x being Element of L st x in X holds x is co-prime for l being Element of L holds l = "\/" ( ( waybelow l ) /\ PRIME ( L opp ) , L ) Support ep in { Support ( m *' p ) where m is Monomial of n , L , p is Polynomial of n , L : ex i being Element of NAT st i in dom A & A /. i = m *' p } ; ( f1 - f2 ) /. ( lim s1 ) = lim ( f1 /* s1 ) - lim ( f2 /* s1 ) .= lim ( f1 /* s1 - f2 /* s1 ) .= lim ( ( f1 - f2 ) /* s1 ) ; ex p1 being Element of QC-WFF ( Al ( ) ) st p1 = p9 & for g being Function of QC-WFF ( Al ( ) ) , D ( ) st Pfn [ g , len @ p1 qua Nat ] holds F . p9 = g . p1 ; ( mid ( f , i , len f -' 1 ) ^ <* f /. ( len f ) *> ) /. j = mid ( f , i , len f -' 1 ) /. j .= f /. ( j + i -' 1 ) .= mid ( f , i , len f ) /. j ; ( p ^ q ^ r ) . ( len p + k ) = ( p ^ q ^ r ) . ( len p + len q + n ) .= ( p ^ q ^ r ) . ( len ( p ^ q ) + n ) .= r . n .= ( q ^ r ) . k ; len mid ( upper_volume ( f , D2 ) , ( indx ( D2 , D1 , j1 ) + 1 ) , indx ( D2 , D1 , j ) ) = indx ( D2 , D1 , j ) -' ( indx ( D2 , D1 , j1 ) + 1 ) + 1 ; ( x * y ) * z = MULT . ( xx * yy , zz ) .= ( xx * yy ) * zz .= xx * ( yy * zz ) .= MULT . ( xx , yy * zz ) .= x * ( y * z ) ; ( v . <* x , y *> - v . <* x0 , y0 *> ) * = ( partdiff ( v , xy0 , 1 ) * ( x - x0 ) + partdiff ( u , xy0 , 1 ) * ( y - y0 ) + proj ( 1 , 1 ) . ( Rv . <* x - x0 , y - y0 *> ) ) * ; * = [* 0 * 0 - 1 * 1 - 0 * 0 - 0 * 0 , 0 * 1 + 1 * 0 + 0 * 0 - 0 * 0 , 0 * 0 + 0 * 0 + 1 * 0 - 0 * 1 , 0 * 0 + 0 * 0 + 1 * 0 - 0 * 1 *] .= [* - 1 , 0 , 0 , 0 *] ; Sum ( L (#) F ) = Sum ( L (#) ( F1 ^ F2 ) ) .= Sum ( ( L (#) F1 ) ^ ( L (#) F2 ) ) .= Sum ( L (#) F1 ) + Sum ( L (#) F2 ) .= Sum ( L (#) F1 ) + 0. V .= Sum ( L (#) G ) + 0. V .= Sum ( L ) ; ex r be Real st for e be Real st 0 < e ex Y0 be finite Subset of X st Y0 is non empty & Y0 c= Y & for Y1 be finite Subset of X st Y0 c= Y1 & Y1 c= Y holds |. r - setopfunc ( Y1 , the carrier of X , REAL , L , addreal ) .| < e ( GoB f ) * ( i , j ) = f /. ( k + 2 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 1 ) or ( GoB f ) * ( i , j ) = f /. ( k + 1 ) & ( GoB f ) * ( i , j + 1 ) = f /. ( k + 2 ) ; ( cos . x ) ^2 = 1 - ( sin . x ) ^2 .= 1 - ( 1 / r ) * ( 1 / r ) .= 1 - 1 / ( r ^2 ) .= ( r ^2 ) / ( r ^2 ) - 1 / ( r ^2 ) .= ( r ^2 - 1 ) / ( r ^2 ) ; x - ( - b + sqrt delta ( a , b , c ) ) / ( 2 * a ) < 0 & x - ( - b - sqrt delta ( a , b , c ) ) / ( 2 * a ) < 0 or x - ( - b - sqrt delta ( a , b , c ) ) / ( 2 * a ) > 0 & x - ( - b + sqrt delta ( a , b , c ) ) / ( 2 * a ) > 0 ; for L being non empty Poset , R being auxiliary(i) auxiliary(ii) ( Relation of L ) , C being non empty strict_chain of R , X being Subset of C st ex_inf_of ( uparrow "\/" ( X , L ) ) /\ C , L & ex_sup_of X , L & C is maximal holds "\/" ( X , subrelstr C ) = "/\" ( ( uparrow "\/" ( X , L ) ) /\ C , L ) & ( not "\/" ( X , L ) in C implies "\/" ( X , L ) < "/\" ( ( uparrow "\/" ( X , L ) ) /\ C , L ) ) ( Normalized B ) . ( j , i ) = IFEQ ( j , i , id ( the Sorts of OAF . i ) , bind ( B , i , j ) ** id ( the Sorts of OAF . i ) ) & IFEQ ( j , i , id ( the Sorts of OAF . i ) , bind ( B , i , j ) ** id ( the Sorts of OAF . i ) ) = bind ( B , i , j ) ** id ( the Sorts of OAF . i ) ;